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Gourava 2-Distance Degree Indices and QSPR Analysis of Alkanes
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abstract: In mathematical chemistry, molecules are often represented as graphs and from these graphs,
Topological indices(TIs) are derived, which are numerical values encoding structural information. TIs are
introduced by Gutman and Trinajstić based on the degrees of the vertices and on distance between the
vertices. QSPR analysis establishes correlations between TIs and measurable physicochemical properties. In
this paper, few generalized topological indices are defined using the 2-distance degree of the vertices. This
extension seeks to offer a more thorough understanding of network structures by capturing deeper connectivity
patterns. The findings contribute to a better understanding of structure-property relationships in alkanes and
can serve as a tool for predicting the properties of other alkanes based on their molecular structures.
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1. Introduction

Understanding the relationship between molecular structure and physicochemical behavior remains
a central theme in theoretical and computational chemistry. By translating molecular architecture into
mathematical form, graph-theoretical approaches allow chemists to quantify how atomic connectivity gov-
erns macroscopic properties. In this framework, molecules are represented as graphs—atoms as vertices
and bonds as edges—enabling structural analysis through numerical descriptors derived from connectivity
patterns [6]. These descriptors, widely employed in quantitative structure–property relationship (QSPR)
and quantitative structure–activity relationship (QSAR) studies, have proven particularly effective in
modeling the behavior of hydrocarbons such as alkanes. Recent developments in distance-2 degree-based
indices have further enhanced this predictive capability by capturing secondary atomic interactions that
strongly influence key properties like boiling point, molar volume, and heat of vaporization refer [1], [16].

The degree of a vertex v ∈ V of a connected graph G(V,E) is the number of vertices which are at
distance one from the vertex v and is denoted by d(v). In this paper, 2-Distance degree-based topological
indices were introduced to extend the classical degree-based descriptors by incorporating second-neighbor
(distance two) interactions in molecular graphs. The concept of degree of a vertex is generalized as
i−distance degree of a vertex v ∈ V in a graph G(V,E) with diameter, diam(G) ≥ i, is defined as the
number of vertices at the distance i from the vertex v is denoted by di(v). If d2(v) = k, ∀v ∈ V (G), then
G is called 2−distance degree k regular graph. We introduce few topological indices based on di(v) called
i−distance degree topological indices in Table 1. In particular, study on 2−distance degree topological
indices are done. Through out the paper, let Er,s = {uv : d2(u) = r and d2(v) = s}.

Unlike traditional indices that consider only adjacent atoms, these indices capture the effect of atoms
separated by two bonds, thereby providing a more nuanced picture of the molecule’s topology. This
approach has proven particularly effective for alkanes—acyclic hydrocarbons characterized by simple
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connectivity but variable branching—where subtle structural differences significantly influence physical
and chemical properties. The First and Second Gourava Indices, proposed as 2− distance extensions
of degree-based indices, measure molecular compactness and branching at the second level of atomic
interaction [10], [15]. The First Gourava Index (GO2

1) combines degree information of atoms and their
second-neighbour connectivity, capturing how atomic environments influence molecular properties such
as stability and boiling point. The Second Gourava Index (GO2

2), on the other hand, incorporates
a multiplicative relationship between the degrees of atoms at distance two, thereby emphasizing the
cumulative branching effect across the molecular framework. These indices have demonstrated strong
predictive capability for structural parameters and physicochemical properties of alkanes [11]. The
Hyper Gourava Indices are nonlinear extensions of the Gourava indices, designed to magnify variations
in atomic environments and capture higher-order connectivity effects.

The First Hyper Gourava Index (HGO2
1) enhances the sensitivity of GO2

1 by incorporating squared
degree terms, which better reflect the influence of highly connected carbon atoms within the alkane
structure. The Second Hyper Gourava Index (HGO2

2) similarly extends GO2
2 by amplifying the role

of distant branching through a power-based relationship between vertex degrees. These hyper versions
provide improved correlation with molecular descriptors and physicochemical properties such as molar
refraction and heat of vaporization, as observed in recent QSPR studies [3], [4]. The Sum Connectivity
Gourava Index (SCO2), inspired by the general sum-connectivity index of Zhou and Trinajstić [18],
considers the sum of vertex degrees at distance two instead of their product or square. This additive
nature makes it particularly effective in distinguishing alkanes with similar degrees of branching but
different chain lengths. It provides a balanced representation of molecular compactness and is often used
alongside other Gourava indices to build robust QSPR models [14].

Alkanes, as saturated hydrocarbons, serve as fundamental model systems in molecular topology due
to their simple yet structurally diverse frameworks. Their properties—boiling point (BP), melting point
(MP), molar refraction (MR), heat of vaporization (HV), critical temperature (CT), and surface tension
(ST)—are highly dependent on molecular size, shape, and branching [2,7,9]. Boiling Point (BP) re-
flects the strength of intermolecular forces, which increase with molecular size and branching complexity;
topological indices can effectively quantify these variations. Melting Point (MP) depends on molecular
symmetry and packing efficiency—parameters well captured by degree-based descriptors. Molar Refrac-
tion (MR) is linked to polarizability and molecular volume, making it highly responsive to topological
features. Heat of Vaporization (HV) and Critical Temperature (CT) correlate with cohesive energy and
molecular interactions, both of which are influenced by branching captured through distance-2 indices.
Surface Tension (ST) reflects the intermolecular cohesion at phase boundaries, which can also be in-
ferred from molecular connectivity patterns. Thus, distance-2 Gourava indices provide a mathematically
grounded approach to understanding and predicting these properties, bridging molecular structure and
macroscopic behavior [12,17]. Studies such as those by Chandrakala et al. [1] and Raja and Anuradha
[11] have confirmed that these indices establish strong, often quadratic or linear, relationships with the
physicochemical parameters of alkanes, validating their use in QSPR modeling. Hence, the 2− distance
degree-based Gourava indices and their variants, including GO2

1, GO2
2, HGO2

1, HGO2
2, and SCO2 are ex-

tend traditional topological descriptors by considering interactions beyond immediate atomic neighbors.
Their ability to capture the subtle effects of molecular branching and connectivity makes them powerful
tools for modeling and predicting the physical properties of alkanes. Through these indices, complex
relationships between molecular topology and properties such as boiling point, molar refraction, and heat
of vaporization can be quantitatively elucidated, advancing the predictive scope of chemical graph theory
in hydrocarbon chemistry. For further studies of numerous kinds of topological indices of graphs and
chemical structures, refer [2], [5], [7], [8], [10].

2. Basic Results

This section presents the computation of the newly introduced Gourava topological indices for differ-
ent graph configurations, as summarized in Table 1. By analyzing 2-distance degree-based topological
indices for standard graphs, reference values linked to specific molecular structures are obtained, which
assist in predicting and characterizing chemical properties. The study not only highlights the mathe-
matical characteristics of these indices, such as their structural sensitivity, computational behavior, and
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Table 1: Definitions of i–distance degree Gourava Indices

Name of the indices Notation and Definition

i–distance degree First Gourava Index GOi
1(G) =

∑
uv∈E [di(u) + di(v) + di(u)di(v)]

i–distance degree Second Gourava Index GOi
2(G) =

∑
uv∈E [di(u)di(v)][di(u) + di(v)]

i–distance degree First Hyper Gourava In-
dex

HGOi
1(G) =

∑
uv∈E [di(u) + di(v) + di(u)di(v)]

2

i–distance degree Second Hyper Gourava
Index

HGOi
2(G) =

∑
uv∈E [(di(u)di(v))(di(u) + di(v))]

2

i–distance degree Sum Connectivity
Gourava Index

SGOi(G) =
∑

uv∈E
1√

di(u)+di(v)+di(u)di(v)

correlation with molecular parameters, but also underscores their potential use in molecular modeling
and quantitative structure–property relationship (QSPR) analysis. Specifically, these indices can serve as
valuable molecular descriptors that capture subtle variations in molecular topology, enabling researchers
to establish predictive models that relate molecular structure to physicochemical properties, biological
activities, and material performance.

Proposition 2.1 In a graph G of order n, if deg(v) = n− 1, then d2(v) = 0.

Proposition 2.2 In a graph G of order n if deg(v) = 1, then 1 ≤ d2(v) ≤ n− 2.

Proposition 2.3 For a k−regular connected graph G with order n and 1 < k < n− 1, then 1 ≤ d2(v) ≤
k(k − 1).

Proposition 2.4 For a graph G with order n, d2(v) ≤ n− 1− δ.

Proof: For any vertex v ∈ G, d(v) ≥ δ and d2(G) ≤ n− 1−d(v). Combining both we have the result. 2

Theorem 2.5 For a path Pn(n ≥ 3);

(i) GO2
1(Pn) =

{
7n− 19, for 3 ≤ n ≤ 5
8(n− 3), for n ≥ 6

(ii) GO2
2(Pn) =

 0, for n = 3
6, for n = 4
16(n− 4), for n ≥ 5

(iii) HGO2
1(Pn) =


2, for n = 3
27, for n = 4
68, for n = 5
4(16n− 63), for n ≥ 6

(iv) HGO2
2(Pn) =


0, for n = 3
12, for n = 4
80, for n = 5
256n− 1200, for n ≥ 6
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(v) SGO2(Pn) =


2, for n = 3

3
√
3, for n = 4

2(
√
3 +

√
5), for n = 5

7.9362 + 2(n− 5)
√
2, for n ≥ 6

Proof: Consider a path Pn : v1 − v2 − ... − vn on n vertices, in which 2−distance degree of vertices is

given by d2(vi) =

{
1, for i ∈ {1, 2, n− 1, n}
2, for 3 ≤ i ≤ n− 2

The edge set for n = 3 is E1,0, for n = 4 is E1,1, for

n = 5 is E1,1 ∪ E2,1 and for n ≥ 6 is E1,1 ∪ E1,2 ∪ E2,2. Hence

(i) GO2
1(Pn) =

∑
uv∈E [d2(u) + d2(v) + d2(u)d2(v)]

For n = 3, the GO2
1(Pn) = |E1,0|[0 + 1 + 0] = 2 · 1 = 7(3)− 19 = 2

For n = 4, the GO2
1(Pn) = |E1,1|[1 + 1 + 1] = 3 · 3 = 7(4)− 19 = 9

For n = 5, the GO2
1(Pn) = |E1,1|[1 + 1 + 1] + |E2,1|[1 + 2 + 2] = 7(5)− 19 = 16

For n ≥ 6, GO2
1(Pn) = |E1,1|(1+1+1)+|E1,2|(1+2+2)+|E2,2|(2+2+4) = 2(3)+2(5)+(n−5)(8) = 8(n−3).

(ii) GO2
2(Pn) =

∑
uv∈E [d2(u) + d2(v)][d2(u)d2(v)]

For n = 3, the GO2
2(Pn) = |E1,0|[0 + 1][0] = 0

For n = 4, the GO2
2(Pn) = |E1,1|[1 + 1][1] = 6

For n ≥ 5, the GO2
2(Pn) = |E1,1|([1+1][1])+|E2,1|([1+2][2])+|E2,2|([2+2][2·2]) = 2·2+2·6+(n−5)·16 =

16(n− 4)

(iii) HGO2
1(Pn) =

∑
uv∈E [d2(u) + d2(v) + d2(u)d2(v)]

2

For n = 3, the HGO2
1(Pn) = |E1,0|[0 + 1 + 0]2 = 2 · 1 = 2

For n = 4, the HGO2
1(Pn) = |E1,1|[1 + 1 + 1]2 = 3 · 9 = 27

For n = 5, the HGO2
1(Pn) = |E1,1|[1 + 1 + 1]2 + |E2,1|[1 + 2 + 2]2 = 2 · 9 + 2 · 25 = 68

For n ≥ 6, the HGO2
1(Pn) == |E1,1|(1 + 1+ 1)2 + |E1,2|(1 + 2+ 2)2 + |E2,2|(2 + 2+ 4)2 = 2(9) + 2(25) +

(n− 5)(64) = 4(16n− 63).
(iv) HGO2

2(Pn) =
∑

uv∈E ([d2(u) + d2(v)][d2(u)d2(v)])
2

For n = 3, the HGO2
2(Pn) = |E1,0|([0 + 1][0])2 = 0

For n = 4, the HGO2
2(Pn) = |E1,1|([1 + 1][1])2 = 2(4) = 8

For n = 5, the HGO2
2(Pn) = |E1,1|([1 + 1][1])2 + |E2,1|([1 + 2][2])2 = 2 · 4 + 2 · 36 = 80

For n ≥ 6, the HGO2
2(Pn) = |E1,1|([1 + 1][1])2 + |E2,1|([1 + 2][2])2 + |E2,2|([2 + 2][2 · 2])2 = 2 · 4+ 2 · 36+

(n− 5) · 64 = 256n− 1200

(v) SGO2(Pn) =
∑

uv∈E [d2(u) + d2(v) + d2(u)d2(v)]
− 1

2

For n = 3, the HGO2
1(Pn) = |E1,0|[0 + 1 + 0]−

1
2 = 2 · 1 = 2

For n = 4, the HGO2
1(Pn) = |E1,1|[1 + 1 + 1]−

1
2 = 3 ·

√
3 = 3

√
3

For n = 5, the HGO2
1(Pn) = |E1,1|[1 + 1 + 1]−

1
2 + |E2,1|[1 + 2 + 2]−

1
2 = 2 · 3

√
3 + 2 ·

√
5 = 2(

√
3 +

√
5)

For n ≥ 6, the HGO2
1(Pn) = |E1,1|(1 + 1 + 1)−

1
2 + |E1,2|(1 + 2 + 2)−

1
2 + |E2,2|(2 + 2 + 4)−

1
2 = 2(

√
3) +

2(
√
5) + (n− 5)(

√
8) = 7.9362 + 2(n− 5)

√
2.

2

Theorem 2.6 For a Cycle Cn(n ≥ 4);

(i) GO2
1(Cn) =

{
12, for n = 4
8n, for n ≥ 5.

(ii) GO2
2(Cn) =

{
8, for n = 4
16n, for n ≥ 5.

(iii) HGO2
1(Cn) =

{
36, for n = 4
64n, for n ≥ 5.



Gourava 2-Distance Degree Indices and QSPR Analysis of Alkanes 5

(iv) HGO2
2(Cn) =

{
16, for n = 4
256n, for n ≥ 5.

(v) SGO2(Cn) =

{
4√
3
, for n = 4

n
2
√
2
, for n ≥ 5.

Proof: For n = 4, d2(v) = 1 and n ≥ 5, d2(v) = 2, ∀v ∈ V (G). Also E(C4) = E1,1 and E(Cn) = E2,2 for
n ≥ 5. Hence,

(i) For n = 4, GO2
1(Cn) =

∑
uv∈E [d2(u) + d2(v) + d2(u)d2(v)] = 4(1 + 1 + 1) = 12.

For n ≥ 5, GO2
1(Cn) = n(2 + 2 + 4) = 8n.

(ii) For n=4, GO2
2(Cn) =

∑
uv∈E [d2(u) + d2(v)][d2(u) · d2(v)] = 4(2 · 1) = 8.

For n ≥ 5, GO2
2(Cn) = nE2,2 = n(2 + 2)(2 · 2) = 16n.

(iii) For n = 4, HGO2
1(Cn) =

∑
uv∈E [d2(u) + d2(v) + d2(u)d2(v)]

2 = 4E1,1 = 4(1 + 1 + 1)2 = 36.
For n ≥ 5 HGO2

1(Cn) = nE2,2 = n(2 + 2 + 4)2 = 64n

(iv) For n = 4 HGO2
2(Cn) =

∑
uv∈E ([d2(u) + d2(v)][d2(u) · d2(v)])2 = 4(2 · 1)2 = 16.

For n ≥ 5, HGO2
2(Cn) = nE2,2 = n((2 + 2)(2 · 2))2 = 256n.

(v) For n = 4, SGO2(Cn) =
∑

uv∈E [d2(u) + d2(v) + d2(u) · d2(v)]−
1
2 = 4(1 + 1 + 1)−1

2 = 4√
3
.

For n ≥ 5, SGO2(Cn) = nE2,2 = n(2 + 2 + 4)−
1
2 = n

2
√
2
.

2

Theorem 2.7 For a Complete Bipartite graph Kp,q, p > q ≥ 2;

(i) GO2
1(Kp,q) = pq(pq − 1)

(ii) GO2
2(Kp,q) = pq(p+ q − 2)(p− 1)(q − 1)

(iii) HGO2
1(Kp,q) = pq(pq − 1)2

(iv) HGO2
1(Kp,q) = pq((p− q − 2)(p− 1)(q − 1))2

(v) SGO2
1(Kp,q) =

pq√
pq−1

Proof: Let V1 and V2 be the partite vertex sets of Kp,q then d2(v) =

{
p− 1, for v ∈ V1

q − 1, for v ∈ V2.
Then

E(Kp,q) = Ep−1,q−1.

(i) GO2
1(Kp,q) = |Ep−1,q−1|(p− 1 + q − 1 + (p− 1)(q − 1)) = pq(pq − 1).

(ii) GO2
2(Kp,q) = |Ep−1,q−1|[(p− 1)(q − 1)][(p− 1)(q − 1)] = pq(p+ q − 2)(p− 1)(q − 1).

(iii) HGO2
1(Kp,q) = |Ep−1,q−1|[(p− 1) + (q − 1) + (p− 1)(q − 1)]2 = pq(pq − 1)2.

(iv) HGO2
2(Kp,q) = |Ep−1,q−1|[(p− 1)(q − 1)][(p− 1)(q − 1)]2 = pq[(p+ q − 2)(p− 1)(q − 1)]2.

(v) SGO2(Kp,q) = |Ep−1,q−1| 1√
(p−1)+(q−1)+(p−1)(q−1)

= pq√
pq−1

.

2

Theorem 2.8 For a k-regular graph G of size m,

(i) GO2
1(G) ≤ mk(k − 1)(k2 − k + 2).
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(ii) GO2
2(G) ≤ 2mk3(k − 1)3.

(iii) HGO2
1(G) ≤ mk2(k − 1)2(k2 − k + 2)2 .

(iv) HGO2
2(G) ≤ 4mk6(k − 1)6

(v) SGO2(G) ≤ m√
k(k−1)(k2−k+2)

Proof:

(i) GO2
1(G) =

∑
uv∈E [d2(u)+d2(v)+d2(u)d2(v)]. From Proposition 2.3, d2(u) ≤ k(k−1), ∀u ∈ V (G).

Therefore, GO2
1(G) ≤

∑
uv∈E [k(k − 1) + k(k − 1) + k2(k − 1)2] =

∑
uv∈E k(k − 1)(k2 − k + 2) =

mk(k − 1)(k2 − k + 2).

(ii) GO2
2(G) =

∑
uv∈E [d2(u)+ d2(v)][d2(u) · d2(v)] ≤

∑
uv∈E [k(k− 1)+ k(k− 1)][k(k− 1) · k(k− 1)] =∑

uv∈E [2k(k − 1)][k2(k − 1)2] = 2mk3(k − 1)3.

(iii) HGO2(G)2 =
∑

uv∈E [d2(u) + d2(v) + d2(u)d2(v)]
2 ≤

∑
uv∈E [k(k− 1) + k(k− 1) + k2(k− 1)2]2 =∑

uv∈E k2(k − 1)2(k2 − k + 2)2 = mk2(k − 1)2(k2 − k + 2)2.

(iv) HGO2
2(G) =

∑
uv∈E ([d2(u)+d2(v)][d2(u) ·d2(v)])2 ≤

∑
uv∈E ([k(k− 1)+k(k− 1)][k(k− 1) ·k(k−

1)])2 =
∑

uv∈E [2k(k − 1)]2[k2(k − 1)4] = 4mk6(k − 1)6

(v) SGO2(G) =
∑

uv∈E [d2(u) + d2(v) + d2(u)d2(v)]
− 1

2 ≤
∑

uv∈E
1√

[k(k−1)+k(k−1)+k2(k−1)2]
=∑

uv∈E
1√

k2(k−1)2(k2−k+2)
= m√

k(k−1)(k2−k+2)

2

Table 2: 2−distance degree TIs of Alkanes

No Alkanes GO2
1 GO2

2 HGO2
1 HGO2

2 SGO2

1 2,2,3,3-Tetramethyl pentane 128 510 2168 37116 2.070224
2 2,2,3-Tetramethyl pentane 100 332 1358 17912 2.153531
3 2,2,4,4-Tetramethyl pentane 80 240 976 9648 2.153531
4 2,2,4-Tetramethyl pentane 68 156 632 4392 2.822487
5 2,2,4-Trimethyl hexane 72 176 710 6780 2.831261
6 2,2,4-Trimethyl hexane 53 108 439 3244 3.031261
7 2,2,5-Trimethyl hexane 59 122 499 3244 3.076129
8 2,2,-Di Methyl butane 20 60 245 720 1.889922
9 2,2-Dimethyl pentane 60 136 554 3672 2.116099
10 2,2-Dimethyl hexane 52 112 458 3176 2.37791
11 2,2-Dimethyl pentane 42 78 318 1236 2.759052
12 2,2-Dimethyl propane 6 0 28 0 3.309401
13 2,3-dimethyl-3-ethyl pentane 94 312 1280 17472 2.126668
14 2,3,3,4-Tetramethyl pentane 120 456 1928 31824 2.123708
15 2,3,3-Trimethyl hexane 109 358 1489 18908 2.81923
16 2,3,3-Trimethyl pentane 52 120 487 2532 2.852964
17 2,3,4-Trimethyl hexane 85 272 1133 13976 2.074068
18 2,3,4-Trimethyl pentane 74 208 844 7936 2.215997
19 2,3,5-Trimethyl hexane 76 208 862 9880 2.767396
20 2,3-Dimethyl butane 40 94 380 2280 1.767764
21 2,3-Dimethyl heptane 72 184 750 6168 2.894404
22 2,3-Dimethyl hexane 63 160 653 5376 2.523643
23 2,3-Dimethyl pentane 54 138 576 4248 2.059853
24 2,4-dimethyl-3-ethyl pentane 112 420 1784 30312 2.226815
25 2,4-Dimethyl heptane 62 140 570 4080 3.105401
26 2,4-Dimethyl hexane 54 118 480 3324 2.455521
27 2,4-Dimethyl pentane 38 66 262 944 2.385055
28 2,5-dimethyl-3-ethyl pentane 88 280 1148 15720 2.522249
29 2,5-Dimethyl heptane 74 184 748 5776 2.649342
30 2,5-Dimethyl hexane 49 102 423 3348 2.809082
31 2,6-Dimethyl heptane 56 108 440 2520 2.717808
32 2-Methyl heptane 46 68 278 728 1.788854
33 2-Methyl heptane 44 78 318 1412 2.295202
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Table 2 – continued from previous page

No. Alkanes GO2
1 GO2

2 HGO2
1 HGO2

2 SGO2

34 2-Methyl hexane 36 52 224 1156 2.596467
35 2-Methyl hexane 22 94 382 1668 2.566308
36 2-Methyl pentane 27 38 157 364 2.227706
37 3,3,4-Trimethyl hexane 81 224 911 8504 2.63558
38 3,3-Dimethyl butane 104 308 1264 15504 2.263521
39 3,3-Dimethyl heptane 70 178 724 4204 2.949666
40 3,3-Dimethyl hexane 60 144 584 4264 2.564527
41 3,4-Dimethyl heptane 52 116 468 2600 2.062409
42 3,4-Dimethyl hexane 78 218 898 8716 2.34240
43 3,4-Dimethyl hexane 69 186 759 6588 2.358671
44 3,5-Dimethyl heptane 70 172 698 5704 2.843163
45 3-Ethyl heptane 66 164 672 5728 2.081724
46 3-Ethyl hexane 57 140 575 4960 2.710862
47 3-Ethyl pentane 48 108 438 2808 2.246175
48 3-Ethyl-2-methyl hexane 78 232 964 12360 2.873573
49 3-Ethyl-2-methyl pentane 68 180 740 7440 2.404318
50 3-Ethyl-3-methyl pentane 90 292 1224 16496 2.070622
51 3-Ethyl-3-methyl pentane 81 252 1047 12096 2.166689
52 3-Methyl heptane 54 106 429 2388 2.818207
53 3-Methyl heptane 50 104 422 2352 2.867208
54 3-Methyl hexane 42 82 332 1596 2.414146
55 3-Methyl octane 59 122 493 2644 3.13546
56 3-Methyl pentane 40 80 322 960 1.952087
57 4,4-Dimethyl heptane 80 236 964 10024 2.906412
58 4-Ethyl heptane 64 166 688 6956 3.245001
59 4-Ethyl-2-methyl hexane 64 150 616 5004 3.02804
60 4-Methyl octane 60 128 519 3112 3.237968
61 Heptane 32 48 196 592 2.26635
62 Hexane 24 32 132 336 2.402681
63 Nonane 48 80 324 1104 3.40497
64 Octane 40 64 260 848 3.09788
65 Pentane 16 16 68 80 2.049128

3. QSPR Analysis of Alkanes employing 2−distance degree TIs

The correlation between the newly introduced graph invariant and various physicochemical properties
of alkanes is examined using their hydrogen-depleted graph models. This analysis demonstrates how the
invariant effectively captures structural variations that influence molecular behavior. Moreover, improved
correlations are obtained by applying an optimally chosen weight function, defined below, which enhances
the predictive capability of the invariant in modeling structure–property relationships.

Weight function: A weight function W is a mapping that assigns a real number to a given topological
index. It is expressed as W(I, γ) = Iγ , where γ is a real parameter representing the weight associated
with the index I.

The linear regression relationship used in this study is expressed as y = m log2 (n · xγo) + b where (y)
represents a given physical property of alkanes CnH2n+2 and x denotes the corresponding topological
index. The computed regression models for various properties are summarized in Table 3 to Table 6. In
this expression, γo refers to the critical weight parameter where the value of γ that minimizes the least-
squares error of the regression fit. Mathematically, this condition can be written as ρ(y, ln(n · xγ)) ≤
ρ(y, ln(n · xγo)) for every real γ.

Using this formulation, linear regression models have been developed for a range of physicochemical
properties of alkanes, including Boiling Point (BP), Molar Volume (MV) at 200C, Molar Refraction (MR)
at 200C, Heat of Vaporization (HV) at 250C, Critical Temperature (CT), and Surface Tension (ST) at
200C . These relationships are established using standard property data of the selected alkanes [1] in
combination with the newly proposed topological indices.

In Table 3, all the examined properties exhibit strong positive correlations with GO2
1, where Molar

Refraction (MR) shows the highest correlation value (0.995681686) and Surface Tension (ST) the lowest
(0.889337752). The Mean Square Error (MSE) analysis indicates that the model predicts MR and Heat
of Vaporization (HV) with minimal error, reflecting their strong linear relationships with the topological
index. However, the model performs less effectively for Boiling Point (BP) and Critical Temperature
(CT), which show relatively higher error values. Although ST yields a low MSE, its weak correlation
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Table 3: QSPR analysis of alkanes (GO2
1) with squared error sum

Property P = m(log2(GO2
1)

c)− b Correlation MSE

BP
BP =137.4543815(log2(GO2

1)
0.05)

+ 318.6688328
0.978572148 110035.1

MV
MV =72.18140062(log2(GO2

1)
0.18)

+ 91.79512686
0.989706265 42030.62

MR
MR =24.20758883(log2(GO2

1)
0)

+ 33.4188291
0.995681686 3518.537

HV
HV =20.71084(log2(GO2

1)
0.23)

+ 37.0571
0.960869 3598.125

CT
CT =164.3409789(log2(GO2

1)
−0.1)

+ 156.5662496
0.970602581 107805

ST
ST =8.62092452(log2(GO2

1)
−0.12)

+ 2.044154065
0.889337752 50.79005

with the experimental data suggests that this parameter is not significantly influenced by the chosen
topological index.

Table 4: QSPR analysis of alkanes (GO2
2) with squared error sum

Property P = m(log2(GO2
2)

c)− b Correlation MSE

BP
BP =142.0032779(log2(GO2

2)
0)

+ 312.5209989
0.977997567 311269.8

MV
MV =95.45691(log2(GO2

2)
−0.05)

+ 91.0271
0.989438 41727.45

MR
MR =24.20758883(log2(GO2

2)
0)

+ 33.4188291
0.995681686 3518.537

HV
HV =28.10176274(log2(GO2

2)
−0.05)

+ 35.78664805
0.955172519 3467.562

CT
CT =155.58928(log2(GO2

2)
0.003)

+ 213.4156567
0.975367269 146053.5

ST
ST =10.39405(log2(GO2

2)
0.015)

+ 2.67438
0.887592 46.374533

In Table 4, Molar Refraction (MR) shows the strongest correlation (0.995681686) and the low MSE
(3518.537), indicating that it provides the most reliable and accurate predictive model among all the
examined properties. Although Surface Tension (ST) also exhibits a low MSE value (46.374533), its
weak correlation (0.887592) suggests that the model has limited predictive capability for this property.
Conversely, Boiling Point (BP) displays the highest MSE (311269.8), implying that despite its positive
correlation, the large prediction error reduces the practical significance of this relationship, making the
correlation less meaningful for BP prediction.

In Table 5, a strong linear correlation is observed between HGO2
1 and the parameter MV, as indicated

by their nearly perfect positive correlation coefficient of 0.9957. Similarly, the correlation between HGO2
1

and MR is also strong, with a coefficient of 0.9905, which, although slightly lower than that of MV,
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Table 5: QSPR analysis of alkanes (HGO2
1) with squared error sum

Property P = m(log2(HGO2
1)

c)− b Correlation MSE

BP
BP =131.7040043(log2(HGO2

1)
−0.03)

+ 311.9364359
0.9776835 105736.1

MV
MV =92.47061908(log2(HGO2

1)
−0.04)

+ 82.14515078
0.990472283 38162.23

MR
MR =24.20758883(log2(HGO2

1)
0)

+ 33.4188291
0.995681686 3518.537

HV
HV =26.33769918(log2(HGO2

1)
−0.03)

+ 33.23910945
0.956476667 3176.789

CT
CT =151.0680904(log2(HGO2

1)
0.05)

+ 232.5612381
0.973053546 161249.5

ST
ST =5.947435181(log2(HGO2

1)
0.1)

+ 2.372559331
0.899717835 46.3373

still signifies a highly linear relationship. However, when considering the mean square error (MSE),
MR shows a smaller MSE value compared to MV, suggesting that the predictive model for MR provides
more accurate estimations. Furthermore, the MSE values for HV are relatively low, yet the corresponding
correlation is weaker than that of MR, indicating a moderate but consistent relationship. For BP, HV, CT,
and ST, the correlation coefficients of 0.97, 0.95, and 0.899 suggest more complex, less direct relationships
between these properties and the HGO2

1 index. Additionally, the higher MSE values for BP, CT, and
ST imply reduced model accuracy, indicating that these properties are influenced by more intricate or
non-linear interactions with the topological index.

Table 6: QSPR analysis of alkanes (HGO2
2) with squared error sum

Property P = m(log2(HGO2
2)

c)− b Correlation MSE

BP
BP =141.2063975(log2(HGO2

2)
0)

+ 310.075423
0.977540907 307449.5

MV
MV =85.87408(log2(HGO2

2)
−0.01)

+ 85.8586
0.988438 39689.75

MR
MR =24.20758883(log2(HGO2

2)
0)

+ 33.4188291
0.995681686 3518.537

HV
HV =23.68685068(log2(HGO2

2)
0)

+ 32.48284566
0.950902688 3111.016

CT
CT =158.2900627(log2(HGO2

2)
0.012)

+ 207.7734789
0.975257151 141889

ST
ST =6.426202(log2(HGO2

2)
0.04)

+ 1.44233
0.90037 46.052583

Table 6 demonstrates that HGO2
2 exhibits strong linear correlations with the properties MV and MR,

with correlation coefficients exceeding 0.98. This indicates a strong predictive relationship between these
parameters. Moreover, the relatively low MSE value for MR suggests that the corresponding model can
predict MR with good accuracy. In contrast, although MV also shows a high correlation, its larger MSE
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value implies greater prediction error and reduced reliability.

For ST, the correlation coefficient is around 0.90, representing a comparatively weaker or more complex
relationship with HGO2

2. Despite its low MSE, the reduced correlation indicates that the model does not
capture the underlying dependency effectively, reflecting limited accuracy in predicting this property.

Table 7: QSPR analysis of alkanes (SGO2) with squared error sum

Property P = m(log2(SGO2)c)− b Correlation MSE

BP
BP =140.7894025(log2(SGO2)0.01)

+ 311.0997887
0.977766531 105206.6

MV
MV =75.55119067(log2(SGO2)0.1)

+ 75.31186978
0.988315953 35630.15

MR
MR =24.20758883(log2(SGO2)0)

+ 33.4188291
0.995681686 3518.537

HV
HV =21.30452315(log2(SGO2)0.17)

+ 30.24176105
0.957702722 2852.226

CT
CT =164.4248953(log2(SGO2)−0.05)

+ 192.2990162
0.973329592 131150.9

ST
ST =8.838714104(log2(SGO2)−0.15)

+ 3.833936205
0.892855722 49.32061

According to Table 7, a strong linear correlation is observed between SCO2 and the molecular property
MR, similar to other topological indices, with a correlation coefficient of 0.9957, indicating an almost
perfect positive relationship. Although the property HV exhibits a relatively low MSE value, it is not
considered to be strongly correlated due to its lower correlation coefficient compared to MR. The MR
parameter, on the other hand, demonstrates both a very high correlation and a low MSE, confirming it
as the most reliable predictor among the studied properties.

Except for ST, which shows a comparatively weaker correlation despite having a lower MSE, all
other properties exhibit strong positive correlations with SCO2, though their higher MSE values suggest
greater prediction variability. Overall, these findings emphasize that SCO2 serves as a robust topological
descriptor for predicting MR, while its relationship with other molecular properties is characterized by
varying degrees of correlation strength and predictive accuracy.
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Table 8: Summary of Critical Points (c) and Correlation coefficients (r) for Different Gourava
Topological Indices

GO2
1 GO2

2 HGO2
1 HGO2

2 SGO2

Property c r c r c r c r c r

BP 0.05 0.9786 0.000 0.9780 0.03 0.9777 0.000 0.9775 0.01 0.9778

MV 0.18 0.9897 -0.050 0.9894 -0.04 0.9905 -0.010 0.9884 0.10 0.9883

MR 0.00 0.9957 0.000 0.9957 0.00 0.9957 0.000 0.9957 0.00 0.9957

HV 0.23 0.9609 -0.050 0.9552 -0.03 0.9565 0.000 0.9509 0.17 0.9577

CT -0.10 0.9706 0.008 0.9754 0.05 0.9731 0.012 0.9753 -0.05 0.9733

ST -0.12 0.8893 0.080 0.8876 0.10 0.8997 0.040 0.9004 -0.15 0.8929

Table 8 presents the summary of critical values along with the correlation coefficients between the
Gourava topological indices and various physicochemical properties. The critical value represents the
statistical threshold used to test the null hypothesis—that there is no significant difference between the
experimentally determined (standard) values of the properties of the alkanes and the values predicted
using the topological indices.

For the molecular volume (MV), the critical values are found to be zero, indicating that the observed
and predicted values are statistically indistinguishable. Moreover, MV exhibits a high correlation with all
the Gourava topological indices, suggesting a strong and consistent linear relationship. This implies that
the null hypothesis can be accepted across all indices, confirming that the Gourava topological indices
are highly reliable predictors of the molecular volume property of alkanes.

4. Analysis with Gamma(γ)-curve

The γ(x, y)−curve of property y with respect to the topological index x is a curve on xy−plane drawn
ρ(y, ln(n · xγ)) versus γ. The γ−curves of physical properties of alkanes with respect to GO2

1, GO2
2,

HGO2
1, HGO2

2 and SGO2 are shown in Figure 1 to 5.
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(a) GO2
1 −BP (b) GO2

1 −MV (c) GO2
1 −MR

(d) M2
1 −HV (e) M2

1 − CT (f) M2
1 − ST

Figure 1: Graph of correlation curves of GO2
1 with various taken over critical point

(a) HGO2
1 −BP (b) HGO2

1 −MV (c) HGO2
1 −MR

(d) HGO2
1 −HV (e) HGO2

1 − CT (f) HGO2
1 − ST

Figure 3: Graph of correlation curves of HGO2
1 with critical point
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(a) GO2
2 −BP (b) GO2

2 −MV (c) GO2
2 −MR

(d) GO2
2 −HV (e) GO2

2 − CT (f) GO2
2 − ST

Figure 2: Graph of correlation curves of GO2
2 with critical point

(a) SGO2 −BP (b) SGO2 −MV (c) SGO2 −MR

(d) SGO2 −HV (e) SGO2 − CT (f) SGO2 − ST

Figure 5: Graph of correlation curves of SGO2 with critical point
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(a) HGO2
2 −BP (b) HGO2

2 −MV (c) HGO2
2 −MR

(d) HGO2
2 −HV (e) HGO2

2 − CT (f) HGO2
2 − ST

Figure 4: Graph of correlation curves of HGO2 with critical point

The curves presented in Graph 1 reveal that even slight variations in Molar Refraction (MR) can sig-
nificantly influence the correlation, as each property exhibits a distinct optimal value for the descriptor.
This observation highlights specific regions where the model could be refined, particularly for parameters
such as Heat of Vaporization, Boiling Point, and Critical Temperature. From Graphs 2c, 4c, 3c, and
5c, it is evident that the BP, MV, HV, CT and ST plots display a well-defined parabolic pattern. This
characteristic shape suggests the presence of a quadratic relationship between the corresponding molec-
ular property and the different Gourava topological indices. In other words, as the values of Gourava
topological indices increase, the associated property first changes at an increasing or decreasing rate
up to a certain point and then reverses direction, forming a curve that resembles a parabola. Such a
trend highlights that the variation in property is not linear but instead depends on the square of in-
dex value, reflecting a more complex and non-linear correlation between the molecular structure and its
physico-chemical or biological property.

5. Conclusion

The QSPR analysis provides valuable insights into the relationship between molecular structure and
physicochemical properties of alkanes. The developed models effectively predict key properties—boiling
point (BP), molar volume (MV), molar refractivity (MR), heat of vaporization (HV), critical temperature
(CT), and surface tension (ST)—based on the chemical structure of the compounds.

The study reveals that these physical properties are significantly influenced by the distance-2 topo-
logical indices ((GO2

1, GO2
2, HGO2

1, HGO2
2, and SGO2). All Gourava indices exhibit strong positive

correlations with the studied properties, confirming their structural sensitivity. Among them, MR stands
out as the most reliable descriptor, showing both high correlation and low mean square error (MSE) with
a zero critical value, thereby supporting the null hypothesis that no significant deviation exists between
predicted and experimental values.

The analysis of molar refraction (MR) further highlights its importance in understanding molecular
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size, shape, and polarizability. However, models for surface tension (ST) demonstrate relatively higher
errors and weaker correlations, suggesting the need for incorporating additional molecular descriptors to
enhance predictive accuracy. Overall, the findings establish Gourava topological indices as powerful tools
for predicting and interpreting the structural-property relationships in alkanes.
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