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Uni-Labeling of Graphs Over Finite Commutative Rings

Pranjali*, Seema Swami

ABSTRACT: This paper introduces the notion of uni-labeling of a graph and its empirical study demonstrates
that every finite graph admits a uni-labeling with respect to some finite commutative ring. In the course of
the investigation, it is found that unit graph turns out to be maximal with respect to the optimal uni-labeling
index. Furthermore, the paper determines the optimal uni-labeling index for several well-known families of
graphs. Several new directions for further research are also indicated through problems.
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1. Introduction

For undefined graph theoretical and abstract algebra notations or terminologies that are not described
here, we refer to the reader to standard textbooks [5] and [6], respectively. Throughout this paper, all
graphs are assumed to be simple and finite, and all rings are assumed to be finite, commutative, and
possess unity, unless stated otherwise.

Graph labeling is a significant concept in graph theory aimed at assigning numbers or labels to the
vertices or edges of a graph according to specific rules. Since the mid-1960s, when Rosa [2] introduced
the foundational notions of graph labeling (such as a-labeling, S-labeling, and p-labeling), numerous
variants and generalizations have been developed. Graph labeling has applications in areas including
coding theory, z-ray crystallography, communication networks, and more. In these studies, the structural
properties of graphs and algebraic structures like rings and fields have proven central. In a [S-labeling
of a graph G with ¢ edges, a function f assigns each vertex a unique number from 0 to g, such that
each edge (xy) is assigned the label |f(z) — f(y)|, and all edge labels are distinct. This labeling was
later referred as graceful labeling by Golomb [4]. Over time, a large number of studies have focused on
different aspects of graph labelings. Besides advancing the theory, researchers have also been interested
in exploring their practical applications. For a detailed overview of various labeling techniques and their
applications, reader is referred to [1].

The concept of -labeling, also known as graceful labeling, introduced a way to assign integers to
vertices so that the labels induced on edges meet certain distinctness criteria. This area has received
much attention due to its blend of combinatorics and algebra and its diverse applications. Motivated
by the depth and versatility of these labeling problems, this work seeks to further explore how algebraic
structures, specifically finite commutative rings, can be leveraged to define and study new types of
labelings for various graph families. With this motivation here our aim is to construct a general framework
that unifies known results and opens paths to new findings about labelings over rings.

Substantial research has addressed diverse graph labeling techniques beyond those of Rosa [2] and
Golomb [4], whose work on S-labeling and related problems has been foundational. Surveys such as
Gallian’s [1] extensive range of results, reflecting the richness of the field. Various methods have explored
both theoretical properties and applications, often focusing on graphs labeled over finite fields or with
additive group structures (see [8,9]).

Despite the substantial advances, few studies have systematically examined graph labeling via injective
functions from the vertex set into finite commutative rings, with the additional constraint that the sum
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of labels of adjacent vertices yields a unit in the ring. The notion of a “uni-labeling” as introduced in
this work fills this gap by generalizing classical labeling schemes to a broader algebraic context. The
present research aims to determine existence conditions for uni-labelings, compute optimal indices for
fundamental graph families, and initiate the broader study of uni-labeling indices across graphs and
rings, establishing both foundational results and open questions.

The formal definition of the new notion is as follows:

Definition 1.1 Let G be a graph with vertex set V(G) and edge set E(G), and let R be a commutative
ring with unity. An injective function f : V(G) — R is called a uni-labeling of G if for all (u,v) € E(G),
fw) + f(v) € U(R), where U(R) denotes the set of units of R.

Example 1 Consider the graph of order 4. To ensure the existence of a uni-labeling, the ring must
contain at least 4 elements. Up to isomorphism, there are four such rings, namely, Z, Zz[z]/{x?),
Zy X Zo and F4. Among these, the graph admits uni-labeling using elements of F, only.

0 1

a+1

Figure 1: The uni-labeling of graph of order 4

2. Main results

In this section, we present the main results concerning uni-labelings of graphs over finite commutative
rings. Building upon the foundational definitions and preliminary observations discussed earlier, we first
establish necessary conditions for the existence of uni-labeling on various classes of graphs in the following
theorem:

Theorem 2.1 Let G be a graph of order n. If |R| < n, then G does not admit a uni-labeling from R.

Proof: Suppose to the contrary that G admits a uni-labeling f : V(G) — R. By definition, f is injective;
hence |f(V(Q))| = |[V(G)| = n. But f(V(G)) C R implies n = |f(V(G))| < |R|, contradicting |R| < n.
Therefore no such labeling exists. O

Therefore, a necessary condition for a graph of order n to admit a uni-labeling is that |R| > n.

Theorem 2.2 Let G be a finite graph and let R be a commutative ring with unity. Suppose that G
contains an odd cycle and G admits a uni-labeling from R. Then the following conditions necessarily
hold:

i) |R] = [V(G)].
i) for every mazimal ideal m C R, the quotient ring R/m is not isomorphic to Zs.
iii) there exist a,b € U(R) with a # b such that a +b € U(R).
Proof: (i) Since f : V(G) — R is injective and G is finite, the set R must contain at least |V(G)| distinct
elements. Hence |R| > |V(G)|.

(ii) Suppose, for contradiction, that there exists a maximal ideal m C R with residue field R/m = Z,.
Let 7 : R — R/m = Zs be the quotient map and consider the labeling f := 7o f : V(G) — Zy. For each



UNI-LABELING OF GRAPHS OVER FINITE COMMUTATIVE RINGS 3

edge (u,v) € E(G) we have f(u)+ f(v) € U(R), hence 7(f(u) + f(v)) # 0 in R/m; but in Zy the unique
unit is 1, so

flu)+ flv) =1 for every (u,v) € E(G).

Thus f is a function assume only value 0 and_l. Let C’_be an odd cycle C' = vyvg - - - V2m41V1 We obtain the
alternating pattern 0,1,0,1,..., that gives f(v1) = f(v2m+1) and simultaneously f(v1) + f(vam+1) = 1,
which is a contradiction. Therefore no maximal ideal m has R/m = Z,.

(iii) Assume further that R is a local ring with maximal ideal m; then U(R) = R\ m and the sum of
two elements of m lies in m. Let C' = vivg - - - Vg 4101 be an odd cycle in G. Let us partition the vertex
set into two sets

U:={v;: f(v;) e U(R)}, N :={v;: f(v;) € m}.

Because m is an ideal, no edge of C can join two vertices from N otherwise f(u) + f(v) € m. If, on the
other hand, no edge of C joined two vertices from U, then the cycle C would alternate between U and IV,
which is impossible for an odd cycle. Hence there exists an edge v;v;41 in C with f(v;)+ f(vit1) € U(R).
Set a := f(v;) and b := f(v;y1). By injectivity, @ # b, and by the uni-labeling property for the edge
v;0;+1 we have a + b € U(R). Thus there exist a,b € U(R), a # b, with a + b € U(R). O

Remark 2.1 The argument establishing (iii) uses the locality of R to rule out edges between two non-
units. In a general (non-local) ring the sum of two non-units may be a unit, and the existence of a unit—unit
edge on an odd cycle need not follow from the uni-labeling condition alone. Part (ii) is independent of
locality.

Corollary 2.1 Let R be a finite commutative ring where the sum of two units is not a unit of R. If
graph G admits a uni-labeling over R, then G must be bipartite.

From the foregoing analysis, a natural question arises: does every graph admit a uni-labeling? In this
context, we have the following result:

Theorem 2.3 FEvery finite graph admits unit-labeling.

Proof: Let G be a finite graph of order n and consider a ring which is field with characteristic 2. Define
a function f : V(G) — Fyr such that

fu)) =x; Yu; € V(G), where k > [logyn] .
Now, for each (u;,u;) € E(G), the labels f(u;) and f(u;) are distinct non-zero vectors in For. And, if
f(ui) # f(uj), then
f(ui) + f(u;) #0.

This implies that, for every edge (u;, u;), the sum f(u;) + f(u;) € U(Far).
Hence, f is a uni-labeling. O

At this stage one may naturally ask about optimal index. In this regard we have the following:

Definition 2.1 Let G be a graph and let R denote the class of all finite commutative rings with unity.
The uni-labeling index of G, denoted by 6°(G), is defined as

0°(G) = min{|R| | R € R, there exists an injective f : V(G) — R such that
(u,v) € B(G) = [f(u) + f(v) € U(R)}

where U(R) is the set of units of R. Any uni-labeling f of G is optimal if it uses 8°(G) labels.
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Figure 2: The uni-labeling of K, by Z7 and Fy4, respectively
Example 2 The uni-labeling of K, with respect to Z7 is shown in Figure 2(a) and 2(b), respectively.
Based on Definition 2.1, it is clearly seen that
0°(K4) = min{4, 7}.

Therefore, the optimal index 6°(K,) = 4.
Now consider the wheel graph Wg. The uni-labeling with respect to Z7 and Z,;1 are shown in Figure
3. Again, in view of Definition 2.1, it can be seen that

0°(Ws) = min{7,11}.

Therefore, the optimal index 6°(Wg) = 7.

Figure 3: The Uni-labeling of Wy by Z7 and Z,1, respectively

In view of Theorem 2.3 and Definition 2.1, for a finite graph G of order n, we have the following
inequality.

n < 60°(G) < 2%, (2.1)

where £ is the ceiling of log, n.
The bounds in (2.1) indicate the following problem of fundamental importance.

Problem 1 Characterize graphs for which the bounds in (2.1) are attained. Also, determine all the
commutative rings, which provide an optimal uni-labeling for these graphs.

Invoking the above results, we obtain a partial solution to Problem 1 for certain special classes of graphs.
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Theorem 2.4 For the complete graph K,

0°(K,)) = n if and only if n is power of 2.

Proof: (=) Assume 0°(K,) = n. By definition of optimal index, there exists a finite commutative ring
with unity R such that |R| = n which provides a uni-labeling f : V(K,,) — R. Since |V(K,)| =n = |R|
and f is injective, which gives f is bijective. Hence, for every pair of distinct elements r,s € R (take
r = f(u),s = f(v) for distinct vertices u # v), the uni-labeling condition for the edge (u,v) yields

r+s e U(R).

Note that r and s are arbitrary, thus for all distinct r,s € R, r + s € U(R).
Next we claim that the only possible ring R is field of characteristic 2.

Let if possible R is not field. Then for any x € R\ {0} and = ¢ U(R) for which x +0 ¢ U(R). It is
not possible as all pair of vertices in K,, are adjacent, so R must be field.

Next, if characteristic of field is p, (p > 2), then there exist z and y which are additive inverse of
each other. If we label any pair of adjacent vertices by = and y, then x + y ¢ U(R), a contradiction to
uni-labeling condition. Hence characteristic of field must be 2. Since R is a finite field of characteristic
2, so |R| = 2% for some k € N. Thus, we conclude that n = 2.

(<) Conversely, suppose n = 2F. Take R = Fox, the finite field of order 2* (characteristic 2). Label
the vertices of K, injectively by distinct elements of R. For any distinct vertices labeled a,b € R we have
a+b # 0 and each non-zero element of field is a unit so a+b € U(R), so the uni-condition holds on every
edge of K,,. Therefore, we get 0°(K,) = n. O

Theorem 2.5 Let K,, , denotes the complete bipartite graph on m + n vertices. Then for all m,n € N,
one has

m+n < QO(Km,n) < 9[logs(m+n)]

Moreover, if m +n is a power of prime, then 0°(K, ,) = m +n.

Proof: It can be noticed that §°(K,, ) > m +n is immediate from injectivity condition of uni-labeling.
For the upper bound, take R be field of characteristic 2. Let R = For with 2" > m 4+ n and r =
[logy(m + n)]. In view of Theorem 2.3 and Definition 2.1, one have 6°(K,, ,,) < 2".

Let m +n = p” for some prime. We shall show the existence of uni-labeling by using exactly m + n
labels, i.e., f : V(Kyn) — Fpre. Let us partition the elements of field into two subsets S and 7" with
|S| = m and set T := F,« \ (=S). Then |T| = p¥ — m = n. Label the m vertices in one part by the
elements of S, and the n vertices in the other part by the elements of T'. This labeling is injective because
SNT =@ and |S|+ |T| = p*.

For any edge between v € S and t € T', we have u # —v by construction, hence u +v # 0 in Fp.
Since all nonzero elements are units in a field, v + v € U(F,+). Thus the uni-condition holds on every
edge of K, .

Thus, we obtain §°(K,, ) = p* = m + n.

Hence the result. O

An n-dimensional hypercube Q,, =: (V,,, E,,) is n-regular bipartite graph with 2" nodes and n2"~!
edges, which is obtained by taking two copies of (),,—1 and making their corresponding vertices adjacent,
where )1 is just a path P;.

Theorem 2.6 For the d-dimensional hypercube Qg4

0°(Qq) = 2.



6 PRANJALI, SEEMA SWAMI

Proof: By Definition 2.1, §°(Q) is the minimum of |R| over all finite commutative rings R with unity
that admit an injective labeling f : V(Q4) — R such that for every edge (u,v) € E(Q4) one has
f(u) + f(v) € U(R).

Clearly, in view of Definition 2.1, we have 8°(Q4) > 2¢. To show the upper bound let us consider
R be a field of characteristic 2 has 2¢ elements, and choose any bijection f : V(Q4) = Foa. For any
edge (u,v) € E(Qq) the endpoints are distinct vertices, so f(u) # f(v). In a field of characteristic 2,
the equality « + y = 0 holds if and only if z = y. Thus f(u) + f(v) # 0 for every edge. Moreover each
non-zero elements of Fya is unit so f(u) 4+ f(v) € U(Fa). Hence f is a uni-labeling of Q4 over a ring of
size 2¢. Thus, 6°(Qg) < 2¢. O

Theorem 2.7 For the cycle graph C,, on n vertices,

0°(C,) = {4’ n=3,

n, n#3.

Proof: In light of Inequality (2.1), we found that 6°(C,,) > n.

For n = 3, there exist precisely one ring, namely, Z3 from which 1 and 2 can not label end vertex of
an edge, so #°(C3) > 3. Next we shall look the ring of order 4, there are 4 rings Zy, Zs[x]/(x?), Zo X Zo
and Fy. Among them only F4 provides label to C5 such that it is uni-labeling and 6°(C3) = 4.

For n # 3, take R = Z,,. Consider the unitary addition Cayley graph on the vertex set Z,, in which
x,y are adjacent iff  +y € U(Zy). The map ¢ : Z, — Z,, ¢(x) = —x, is a graph isomorphism from
unitary addition Cayley graph to the unitary Cayley graph Cay(Z,,U(Z,)), whose edges are the pairs
x,y with x —y € U(Z,). Tt is known that Cay(Z,,,U(Z,)) is Hamiltonian for all n > 3. Hence unitary
addition Cayley graph has a Hamilton cycle ag, a1, ..., a,—1 with each a; + a;+1 € U(Z,). Label the i-th
vertex of C,, by a;. Then every edge-sum is a unit in Z,, so this is a uni-labeling over Z,,, which implies
that 6°(C,,) < n. Combined with the lower bound we get §°(C,,) = n for n # 3. O

Theorem 2.8 Let P, be the path on n vertices. Then for every n > 2,
0°(P,) = n.

Proof: Clearly, if n = 2 and 3, the labels are taken from Z, and Zs, respectively. For n > 3, by Theorem
2.7, we have 6°(C,,) = n, and consequently 6°(P,) = n. O

Theorem 2.9 Let T be a tree on n > 2 vertices. Then
n < 0°(T) < 2fesanl,
Moreover, if n is a power of a prime, then

0°(T) = n.

Proof: The lower bound §°(T) > n follows directly from the definition of #°(-) along with inequality
(2.1). For the moreover statement assume that n is a prime power, i.e., n = p¥ and consider the field
R = F,x, which consists of p* elements. It is known that tree is bipartite so its vertex set can be
partitioned into two disjoint sets A and B such that every edge joins a vertex in A to a vertex in B. Now
there are two possibilities for the characteristic of field:

i) If p = 2, then due to Theorem 2.3 any injective function f : V(T') — For is uni-labeling. This
indicate that °(T) = n

ii) If p # 2, then partition all the elements of field into {0} and (p* — 1)/2 pairs consisting of {a, —a},
a € F . Now we shall label each element of A and B. Assign elements of each pair {a, —a} to either A
or B and 0 on other set according to the requirement of |A| and |B|. Since additive inverse lie only in
one partition, which ensure that no pair of adjacent vertices receive label «, —a under uni-labeling.

Therefore, for any edge (u,v) with u € A and v € B, the sum f(u) + f(v) is a unit. This satisfies the
condition of uni-labeling using exactly p* elements from the field F,x. Hence, 6°(T) < n, and together
with the lower bound, we conclude that °(T') = n when n is a prime power. O
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Corollary 2.2 If H is a subgraph of a graph G, then 6°(H) < 6°(G).
Proof: Any uni-labeling of G restricts to a uni-labeling of H using the same ring. O

Theorem 2.10 Let G = Ule G; be a graph with connected components G;. Let R be a commutative
ring with unity. Suppose that for each i = 1,...,k, there exists a uni-labeling f; : V(G;) — R such that

Then the function f : V(G) — R defined by f(v) = fi(v),v € V(G;) is a uni-labeling of G.

Proof: Since the images of the f; are pairwise disjoint and each f; is injective, the union map f is
injective on V(G).

If (u,v) € E(G), then u and v lie in the same connected component G;. For this i, f(u)+ f(v) =
filu) + fi(v) € U(R) because f; is a uni-labeling of G;. Thus the uni-labeling condition holds for every
edge of G. Therefore f is a uni-labeling of G. O

According to Grimaldi [7], unit graph of a finite commutative ring Z,, is a graph whose vertices are
the elements of Z,, and two distinct vertices x and y are adjacent if and only if 4+ y is a unit of Z,.

Theorem 2.11 Let G be a finite simple graph and let R be a finite commutative ring with unity. Then
G admits a uni-labeling over R if and only if G can be embedded as a subgraph of the unit graph G(R).

Proof: (=) Suppose f : V(G) — R is a uni-labeling; by definition f is injective and for every edge
(u,v) € E(G) one has f(u) + f(v) € U(R). Define ¢ : V(G) — V(G(R)) by ¢ = f. Then ¢ is injective.
Moreover, if {u,v} € E(G), the condition f(u)+ f(v) € U(R) implies {¢(u),p(v)} = {f(v), f(v)} €
E(G(R)). Hence ¢ is an injective graph homomorphism G < G(R), i.e., an embedding of G as a
subgraph of G(R).

(<) Conversely, suppose ¢ : V(G) — V(G(R)) = R is an injective graph homomorphism. For every
edge {u,v} € E(G) we have {¢(u), p(v)} € E(G(R)), so by definition of G(R), ¢(u) + ¢(v) € U(R).
Thus f := ¢ is an injective map V(G) — R with the property that every edge-sum is a unit; in other
words, f is a uni-labeling of G over R.

Therefore, G admits a uni-labeling over R if and only if G embeds as a subgraph of G(R). O

Conclusion

This paper introduces the notion of uni-labeling of a graph and its empirical study demonstrates
that every finite graph admits a uni-labeling with respect to some finite commutative ring. Further,
we introduced the uni-labeling index #°(G) for various classes of graphs over finite commutative rings
with unity. We established exact values of §°(G) for fundamental families such as cycles, paths, trees,
and complete bipartite graphs, and derived general lower and upper bounds in terms of the order of the
graph. In particular, for cycles C,,, we proved that 6°(C,,) = n for all n # 3, with §°(C3) = 4 as the only
exceptional case. For paths and trees, we showed that the optimal index coincides with the number of
vertices in the graph, and we demonstrated constructive labelings over appropriate rings to achieve these
bounds.
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