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A Smooth Penalty Framework for Solving Nonlinear Inequality-Constrained Optimization
Problems

Dharminder Singh, Amanpreet Singh, Harpreet Singh™

ABSTRACT: We propose a smooth approximation of the exact l; penalty function. This paper presents a novel
smooth penalty function designed to address nonlinear programming problems with inequality-constrained.
With help of this formulation, an algorithm is developed, and its convergence is rigorously established. The
proposed method is tested on two numerical examples to demonstrate its effectiveness, with results com-
pared against those obtained from existing algorithms. The findings demonstrate that the proposed approach
provides reliable convergence and competitive performance for solving these types of optimization problems.
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1. Introduction

We study the nonlinear programming problem

(NLF) min fo(z)
subject to gi(z) <0, diel,
r €R",

where fo: R" > Rand g; : R" - R (i € I ={1,2,...,m}) are continuously differentiable functions.
The feasible region is
Goz{xER"|gl(x)§0 ViEI},

which is assumed to be non-empty.

Penalty function techniques are a standard approach for treating inequality-constrained problems.
The core idea is to transform (NLP,) into an unconstrained optimization problem by augmenting the
objective with penalty terms that discourage infeasibility.

A classical example is the quadratic penalty function:

GO (w, 1) = folz) + 1Y _[gi(2)]?,

iel
with penalty parameter g > 0. The corresponding unconstrained problem is
(NLPy) min G9(z, ).
zER™

Although smooth, this penalty is not exact: obtaining an accurate solution often requires very large
values of u, which is computationally undesirable.
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To overcome this drawback, Zangwill introduced the exact I; penalty function [1]. Later on, such type
of penalty function have been explored in [2,3,4,5,6,7]. Building on this, researchers have investigated
k*'-power penalty functions as in [8,9,10,11,12,13]. where fy(x) is assumed to be positive.

Rubinov and Yang [14] proposed a further variant:

Gli(z,a) = (fo(x) = )" + u Y _lgi(w)]™, (1.1)

icl

under the assumptions that (fo(z) —a) > 0 for all x € R™, with a € R and &k > 0.
The associated problem is
min G/’j (z,a).
Z‘GRTL

This is equivalent to

min (fo(z) - a)*
(NLP,) subjected to g;(x) <0,i € I,
x € R™

Thus, (NLP,) can be interpreted as the I; exact penalty problem of (NLF,).

However, the functions G(9 (x, ), G®) (2, ) for 0 < k < 1, and Gﬁ(x,a) are generally nondifferen-
tiable. To enable the application of classical smooth optimization techniques such as Newton’s method,
smoothing approximations of exact penalty functions have been proposed [12,15,16,17,18].

Unlike most existing smooth penalty approaches, the proposed framework achieves a finer balance
between smoothness and exactness. It preserves the theoretical equivalence with the original constrained
problem while avoiding the numerical ill-conditioning caused by large penalty parameters. This refine-
ment, though incremental, provides a meaningful advancement in the design of differentiable exact penalty
functions.

Motivated by this, we introduce

0, t <o,

m3,u3t4k ¢ 1/k
k ) — <t< | —
pe,,u.(t) - 6e3 ’ 0 st< <mu) ’ (12)

Te X € m e \ /"
- +tk + exp(—ftk-i-l), t> () ;
6mp 3my € mp
for 0 < k < o0, >0, and € > 0.
This construction yields a new smooth penalty function, enabling the constrained problem (N LP,)
to be approximated by a unconstrained problems in sequential form.

2. Smooth Penalty Function
We begin with the basic penalty mapping p”*(t) : R — Rt U {0} defined by
0 ift<0
k =
= 2.1
() {t’f ift>0 21)

where 0 < k < c0.
Many important exact penalty functions have been defined using this function
Based on this penalty mapping, we have

Gy(x,a) = (folz) —a)* +p Zpk (9:(x)) (2.2)

and penalty problem

(NP,) min Gﬁ(m, a) s.t. z € R™. (2.3)
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For 0 < k < oo and p > 0, the function pf ,(¢) is defined as:

0, ift<o0
& m3 Bt . . H
pe,u(t) = 63 ift>0and —t+ (m—#) >0 (2.4)
1
Te k € my gk : € ®
—omp Tt g exp (Z T ), ift > (mi)

where € is the smoothing parameter.

Plot of pe, ,(t)
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Figure 1: The behavior of p’;#(t) at m =3,k =3/2,and p = 10

We proceed to analyze the properties of p’; u(1)-

Theorem 2.1 For 0 < k < oo and e > 0,
1. p’j’#(t) € C! for k> 1 where
0, ift <0

E )] = %#’H, ift>0 and —t+ (m) >0 (2.5)

=

1
kvl 4 kth—lexp (— TR 4 1), ift > (—) *

mp

2. p’éu(t) = convereges to p*(t) as € — 0.

el

Proof: 1. Note that p’; ,,(t) is continuous at every point on R except 0 and <miu) . So, we need to check
1

the continuity of p¥ (1) at 0 and (miu) " only.
(i) Continuity of p’;#(t) at t = 0 is easy to verify.

1

.o . . k o E.
(ii) Continuity of p¢ ,(t) at t = (méu) :

limtﬁ[ . )%]_ p’;#(t) =

mp

1\ 4k
li Mt 33 e\ * .
mm 17 6e3 e mip — 6mpu”
t—>[( . )k]

; k 7 7 k k _
efapt] P ] o R () =
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Also pgu ((wfﬂ) ) = 67;#.

Therefore; lzm [ . )ﬂi prL(t) = lzmt%[( . )%T pE L) = T = pE, <(mu> >

M ™mp

e

3|,

K‘

Now we prove that p

™

,.(t) is continuously differentiable. For this, we need to prove that [pF ,(¢)]'1 is

Hy
continuous at 0 and ( ) *

(i) Continuity of [pfF ,(t)]" at t = 0 is again easy to verify.

1

(ii) Continuity of [pF ,(t)]" at t = (miu) ke

lim k()] =
N (,,fu)% [pe,p,( )]

lim _ 2hmPp k-1 _ 2k (L)l_%
CL A

+ ktF1 F kth T exp (—%tk + 1) :% (L)l_%

mu

2. Now from definition of p*(t) and p¥ ,(t), we have:

0, if ¢ <0
b k th — mlot if£>0and — ¢+ F50
() =) =t — "o i an ) = (2.6)
1
Te my k "
6mu Bm,u ( Mt +1) ) 1ft> <mu>

==

WhenOgtS(miﬂ) ) let w = t*.

Then, 0 < w < -

_m’u

Consider the function

m3pdwt €
w(w):w_ 663 aOSwSm
The derivative of t(w) is given by
2m3 33 €
'w)y=1-"E 2 o<w<s —
¥/ (w) o
Obviously, ¢'(u) > 0 for 0 < u < -=. Moreover, ¥(0) = 0 and ¢ (mu> = 6m“ Hence, we have
o€
0<pr(t)—pk, () < .
<pU(t) —peu(t) < G
%
For t > (mi#) , we have
Te € m Te
0<ph (——t 1) < .
pE(t) —pl (1) = mn  3mp P\ ) <

: k _ .k
= limpc, (1) = p"(7)
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Moreover; from above results; it is clear that
ki) >pk (1), VteR
p ( ) pe,u( )7 :
]

We assume that the parameter a is negative and the absolute value of a is sufficiently large which
leads to the condition that that fo(z) —a > 0 ensuring fo(z) — a to be always positive.

m
GE (x,0) = [folx) —al* + 1) _pF, (gi(z)), 0<k<+o0
i=1
Subsequently, G’j, (7, a) represents an adjusted penalty function that exhibits continuous differentia-

bility for any x € R™. It serves as a smooth approximation to Gﬁ(x, a). The smoothed penalty problem
is as follows:

(NP.,) minGgu(x,a) s.t. x € R".

Theorem 2.2 Let x € R" be arbitrary, then
<Gk - G* < Te
0 u(x7a) e,u($7a)_ 6 0<k <+

Proof: We have
Gh(x,a) = (fo(z) —a)* + > p*(gi(x))

il
and n
GF (x,0) = (folz) — )’ + 1> ¥, (gi(x)), 0<k<+o0
i=1
As .
0 < pk(t) —pk (¢t ¢
PO =0 < g
so we have
Te

O

Theorem 2.3 Let (P) and (NP) have optimal solutions as & and &,, respectively. If &,, is feasible to (P)
then for same problem, it is optimal.

Proof: Note that
fo(2u) = fo(2)
Moreover, as per given conditions
0< [fo (@) —al" = GE (2,a) < G* (2,a) = [fo (1) —a]*, 0<k < +oo.

which implies that
fo (@) < fo(2)
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Theorem 2.4 Consider ,, and &, as the respective minimizers of (NP,) and (NP, ) for some p >0
and € > 0. Then

Te
0<Gj (&p,a) — GE, (Bep,a) < 5 0<k<+o0
Proof: By Theorem 2.2,
E e Te
0 < G (xﬂ’ ) - Ge7p(xﬂ’a) S E
and
k(5 k(s e
0 < G/L(z€7#7a) - GE,/L(IEJL’ a) < g
As 2, is optimal solution to (NP,), so
G’;(ﬁu,a) <G (& p, @)
and similarly we have
Gu(gc6 1 @) < Gﬁ(fcu,a)
Hence;
k N 76
0 < G (xlﬂ ) - Ge,u (‘TE»M’U‘) S E

From the definition of p*(t), p ,(t) and the fact that 2,2, are feasible for problem (P), we have

m

Z 91 xl" Zp€7ﬂ gi 1‘5 M :0

=1

Further as f (&¢,) —a > 0, thus

Jo(Zep) < fo(2,)

Thus, Z.,, is an optimal solution for problem (P). O

3. Algorithm

In this section, we introduce an algorithm, based on the smoothed penalty function, to compute an
optimal solution of problem (NLPF).

Definition: For ¢ > 0, a point Z. € Xj is called an e-feasible solution to (NLP,), if it satisfies
gi (£) < eforalliel

Algorithm : Algorithm for solving problem (P)

Step 1: Choose an initial point x{. Select parameters ¢; > 0,1 > 0,0 < A < 1,8 > 1 and a
constant a < 0 such that fo(z) —a > 0,Vx € X, let j = 1 and proceed to Step 2 .

Step 2: Use 1‘9 as the starting point to solve the following problem:

(NP,,) minGE, (2.a) = [fole) —al* + 15 ) 9k, (9:(x))

zER™ c
=1

Let 7, . be an optimal solution of (NP, ,,), which is obtained by the BFGS method [19].
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Step 3: If x;kj’ u; 18 e-feasible for problem (P), then the algorithm stops and x:j’ u; 18 an approximate
optimal solution of problem (P). Otherwise, let pjy1 = Bpj, €41 = )\ej,xgﬂ =g - Setj < j+1
and return to Step 2.

Remark: Since 0 < A < 1,3 > 1, it follows that as j — +o0, the sequence {¢;} — 0 and the sequence
{u;} — +oo.
4. Numerical Examples
Now we test the feasibility of the given algorithm.
In each example, we take ¢ = 1076 and a = —100.
Example 1. Solve problem given in 7 [21]
minfo(z) = 23 + 23 + 222 + 23 — 52y — 5wy — 21z + Toy
s.t. g1(x) —2xf+x§—|—x§+2x1+x2—|—x4—5 <0,
g2()
g3(x) = z% + 2m§ Jr:v% +2xi —x1— x4 — 10<0

For k = %, let 9 = (5,5,5,5), uy = 10, B =4, ¢, = 0.01, A = 0.1. The results are shown in Table 1.
After five iterations, an approximate optimal solution is obtained as

= (0.1697,0.8357,2.0085, —0.9650)

=2+ 25 +23 +a]+21 — 22+ 23— 34 —8<0,

with an objective function value of
fa*) = —44.2339.

Table 1: Optimization results for different p; and €; values

Sl. No. 1j € T F&E u) || (=g, ) g2(xf, ) || 93(xl; ;)
1 40 0.001 || (0.1873,0.8247,2.1502, —1.1791) || -47.1159 0.3938 1.4209 -0.2088
2 160 || 0.0001 || (0.1697,0.8321,2.0216, —0.9880) || -44.5074 0.0204 0.1313 -1.7289
3 640 1075 (0.1696, 0.8353, 2.0095, —0.9664) -44.2517 1.22 x 1073 8.56 x 10—3 -1.8731
4 2560 || 1075 || (0.1696,0.8355,2.0087, —0.9650) || -44.2350 || 7.61 x 105 || 537 x 10~* || -1.8824
5 10240 10-7 (0.1697,0.8357, 2.0085, —0.9650) -44.2339 4.78 x 10=6 3.36 x 1072 -1.8825

Example 2. Solve the problem in ” [20]

minfo(z) = —x1 — @9

st. gi(x) = =227 + 823 — 822 + 21 —2 <0,

g2(z) = —dat + 3223 — 8822 + 961 + x5 — 36 < 0,
0<x <3,
0<xy <4

Fork;— , let 29 = (1.5,2.0), u1 = 40,8 = 10,6, = 0.001, A = 0.1.

From Table 2 ,we observe that in iteration 1, the optimization starts with p; = 40 and ¢; = 0.001, lead-
ing to an approximate solution z7 , = (2.1484,4.0000), with an objective function value of f(z , )=
—6.1484. The constraint values are g; = —0.0548 and g, = 0.1741.

As the iterations progress p; and €; decrease, and the solution improves. By iteration 5, with us =
10240 and €5 = 1 x 10~7, the approximate solution becomes z7, , = (2.0000,4.0000) with f( 5. Hs)
—6.0000. The constraint values approach near-zero values: g1 = 1.43 x 10~ 5 and go = 1.65 x 10~
indicating that the optimization has nearly converged.

“’II
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Table 2: Iteration results of the optimization process

SL. No. Hj € LI f&E ) || 9@ ) 92(=Z, 1))
1 40 0.001 (2.1484, 4.0000) -6.1484 -0.0548 0.1741
2 160 0.0001 (2.0847, 4.0000) -6.0847 0.0223 0.0572
3 640 1x 1075 || (2.0043,4.0000) -6.0043 0.0041 0.0001
4 2560 || 1 x 10~ || (2.0002,4.0000) -6.0002 2.31 x 1074 || 4.29 x 1077
5 10240 || 1 x 10~7 || (2.0000,4.0000) -6.0000 1.43 x 1072 || 1.65 x 1079

Conclusions

This work developed a smooth penalty framework for tackling nonlinear optimization problems with
inequality constraints. The key idea was to replace the nonsmooth components of the classical exact
penalty with a continuously differentiable approximation, thereby transforming the original constrained
formulation into a sequence of smooth unconstrained subproblems. An iterative algorithm was proposed,
and its convergence was established under mild assumptions. Numerical experiments on benchmark
problems confirmed that the method consistently produces feasible solutions and achieves objective val-
ues comparable to, or better than, existing approaches. The results further indicate that the smoothing
strategy improves numerical stability and efficiency, making the algorithm attractive for practical im-
plementation. Future directions include extending the approach to problems with equality constraints,
investigating large-scale applications, and refining the algorithm to enhance scalability and computational
speed.
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