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Hybrid Analytic Hierarchy Process & Goal Programming Approach for Multi-Criteria
Decision Making in Road Traffic Accident Management: Optimum Resource Planning

Vatsala G. A., K. J. Ghanashyam∗, Jyothi P., Chaitra M., Anita Chaturvedi

abstract: Road traffic accidents are a complex, multi-dimensional problem influenced by behavioral,
mechanical, infrastructural, environmental, and enforcement factors. This paper presents a novel hybrid
MCDA framework that integrates the AHP to prioritize multiple contributing criteria and GP to optimize
conflicting road safety objectives under resource constraints. Expert judgments are systematically quantified
through AHP to assign weights to nine key criteria affecting accident severity. These weights inform the GP
model’s objective function, which minimizes weighted deviations from multiple safety goals, including reducing
fatalities, injuries, accident frequency, and improving emergency response and public awareness. The GP
model optimally allocates limited resources across targeted interventions. Numerical results demonstrate the
model’s flexibility and effectiveness in balancing competing objectives, supporting informed and transparent
policymaking. The methodology is adaptable to diverse geographic contexts and offers a structured approach
for Multi-Criteria transportation safety management.

Key Words: Road Accident Severity, Analytic Hierarchy Process (AHP), Goal Programming (GP),
Multi-Criteria Decision Making (MCDM), traffic safety.
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1. Introduction

One of the important and main causes of mortality and serious injury in the globe is traffic accidents.
Around 1.19 million people lost their lives in traffic accidents every year, and 50 million more get non-
fatal injuries, many of which lead to permanent impairments, according to ”World Health Organization’s
Global Status Report on Road Safety 2023” [1]. The most common reason for mortality happens be-
tween the ages of 5 and 29; is currently traffic-related injuries. The economic burden is also staggering:
road crashes cost countries an estimated 2% to 3% of their gross domestic product (GDP), with higher
proportions in low- and middle-income economies [2].
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The multifactorial nature of traffic accidents complicates mitigation strategies. In fast-growing urban
regions, rising motorization rates often outpace infrastructure development, leading to increased conges-
tion, poor signage, and compromised traffic flow. In contrast, rural and peri-urban areas frequently suffer
from inadequate emergency medical services, weak traffic law enforcement, and low public awareness,
all contributing to higher post-crash fatality rates. For instance, data from the OECD’s International
Transport Forum shows that in certain low-income regions, average ambulance response times exceed 25
minutes, and nearly 60% of accident victims do not receive care within the first hour [4].

Moreover, behavioral risk factors such as distracted driving, alcohol use, and speeding remain preva-
lent. The WHO estimates that 1 in 4 road deaths involves alcohol impairment, and helmet use among mo-
torcyclists remains below 50% in many countries [1]. Simultaneously, infrastructural and vehicle-related
issues like poorly maintained roads, lack of pedestrian crossings, and inadequate vehicle inspections con-
tinue to contribute to the overall accident burden.

Traditional decision-making frameworks, often based solely on historical crash statistics or single-
objective optimization models, fail to account for the complex interplay of these factors. More impor-
tantly, they lack the capacity to incorporate expert judgment and multi-goal prioritization under resource
constraints. Consider a case where a country increases infrastructure investment by 30%, yet sees only
marginal improvements in fatality rates due to poor driver compliance and emergency response delays.
This shows the need for a more integrative, multi-dimensional planning approach.

To address this gap, this study introduces a hybrid decision-support framework that combines the
AHP and GP. The AHP enables structured expert judgment to prioritize contributing factors to accident
severity, while the GP model allocates limited resources across competing safety goals such as reducing
fatalities, minimizing injuries, improving emergency responses, and enhancing public awareness by min-
imizing weighted deviations from desired targets. The table 1 shows the Comparative Road Accident
Statistics (2023) – Linked to Safety Goals as shown in Figure 1

The objective of this paper is to formulate and demonstrate an adaptable, data-informed, and goal-
driven optimization model suitable for road safety planning in a variety of regional contexts.

Table 1: Comparative Road Accident Statistics (2023)

Indicator Global (WHO,
2023)

India (MoRTH,
2023)

Karnataka
(GoK, 2023)

Bengaluru
(BTP, 2023)

Road traffic deaths
(G1)

∼1.19 million 172,890 12,321 921

Serious injuries (G2) ∼50 million 450,000+ 52,547 7,500+

Accident frequency
(G3)

>55 million 461,312 43,440 4,100

Emergency response
efficiency (G4)

Avg. EMS arrival
15–20 min

15–20 min
(urban), >25 min

(rural)

18–25 min 12–15 min

Public awareness &
training (G5)

<40% countries
run campaigns

Road Safety Week
+ regional drives

State-wide
campaigns

“Suraksha”
awareness
programs

Fatality rate (per 100k
pop.)

∼15 ∼12.3 ∼18.5 ∼7–8

Source WHO (2023),
Global Status

Report on Road
Safety [1]

MoRTH (2023),
Road Accidents in

India [31]

Govt. of
Karnataka (2023),
Road Accident
Report [32]

Bengaluru Traffic
Police (2023),

Annual Accident
Data [33]
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Figure 1: Comparative Road Accident Statistics (2023)

2. Literature Review

Mathematical and statistical models for road accident analysis range from compartmental epidemic-
type models [5] to regression-based approaches. MCDM like AHP have been widely used for transporta-
tion safety prioritization [6]. Goal Programming has demonstrated effectiveness in allocating limited
resources among competing safety goals [7]. However, literature on hybridizing AHP and GP specifically
for road accident severity remains sparse, motivating the present work.

Over the past decade, researchers have extensively explored methods to analyze and reduce road ac-
cident severity through both qualitative assessments and mathematical modeling. A prominent strand of
recent research employs the AHP to systematically prioritize the multiple criteria that influence traffic
accidents. For instance, [8] introduced a proportion-based AHP model to identify critical crash contrib-
utors, improving classical AHP by accounting for relative frequency weights. Similarly, [9] applied Fuzzy
AHP (FAHP) to assess driver behavioral factors under uncertainty, identifying violations and inattentive-
ness as dominant causes of severe accidents. Further enhanced decision robustness by combining AHP
with entropy weighting to assess expressway safety infrastructure in China.

Incorporation of hybrid multi-criteria decision-making (MCDM) techniques has also gained traction.
[10] developed a FAHP-TOPSIS model to rank road hazard factors in Egypt, demonstrating how hybrid
models better support safety planning. In Libya, [11] employed a novel integration of the FUCOM with
R-SAW to evaluate traffic safety across cities. [12] proposed a decision framework combining Fuzzy Best-
Worst Method (BWM) and VIKOR to prioritize road maintenance interventions under budget limitations.
Likewise, [13] advanced an integrated MCDM framework that combines machine learning-based decision
support with transport safety optimization.

Goal Programming (GP), particularly when hybridized with AHP [14], has been instrumental in
handling conflicting road safety objectives. Singh and Gupta [15] reviewed GP applications in transport,
highlighting its value in resource allocation among competing safety goals. [14] [16] the GP models have
been widely adopted to optimize intervention portfolios that minimize fatalities, reduce injuries, and
improve response times, all within budgetary constraints.
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Concurrently, the use of machine learning (ML) has revolutionized accident severity prediction. [17]
implemented a Random Forest classifier to identify key predictive factors such as road surface, lighting,
and time of day. and provided a comprehensive survey of ML applications in traffic safety, concluding
that ensemble and deep learning models outperform traditional statistical methods. [18] developed a
deep learning framework to forecast injury severity based on driver behavior, environmental, and vehicle
features. [19] employed probabilistic graph neural networks to model spatial patterns in traffic accident
data for smart city environments. [22] tailored predictive ML algorithms to the Indian context, illustrating
regional adaptation of global techniques.

Moreover, advanced fuzzy and grey systems theory have been integrated into MCDM frameworks
to better handle uncertainty in road safety assessments. [23] used a hybrid Grey-TOPSIS and Fuzzy
DEMATEL approach to assess highway network safety. [24] applied a combined DEMATEL–AHP model
under uncertainty to evaluate causal relationships among accident factors. [26] used AHP to prioritize
infrastructure-related risk factors, emphasizing the role of expert input in modeling severity.

Despite these advances, challenges remain. Many current models rely on historical or region-specific
datasets, with limited ability to adapt to dynamic, real-time inputs. Few studies rigorously integrate
AHP-derived priorities into operational GP models under uncertain or fuzzy environments. There is also
a noticeable research gap in models tailored for developing countries, where infrastructure constraints and
behavioral variables differ significantly from developed regions. Thus, the current research contributes by
offering a unified AHP-GP framework with a rigorously formulated mathematical model and validated
coefficient matrix, suited for flexible, cross-regional road accident severity management.

3. Methodology

This study adopts a hybrid decision-support framework combining the Advanced AHP with GP to
systematically address multi-criteria decision-making in road safety analysis. This integration enables
the incorporation of expert knowledge (via AHP) and the optimization of multiple conflicting objectives
(via GP) under resource constraints.

The AHP, developed by Saaty [6], allows decision-makers to decompose a complex problem into a
hierarchical structure and derive priority weights through pairwise comparisons. For a set of 𝑛 criteria
𝐶1, 𝐶2, . . . , 𝐶𝑛, experts construct a judgment matrix 𝐴 = [𝑎𝑖 𝑗 ], where:

𝑎𝑖 𝑗 =
importance of 𝐶𝑖

importance of 𝐶 𝑗

, with 𝑎𝑖 𝑗 > 0, 𝑎 𝑗𝑖 =
1

𝑎𝑖 𝑗
, 𝑎𝑖𝑖 = 1. (3.1)

The principal eigenvector 𝑤 = [𝑤1, 𝑤2, . . . , 𝑤𝑛]𝑇 of matrix 𝐴 yields the relative weights of the criteria:

𝐴𝑤 = 𝜆max𝑤. (3.2)

Consistency of the matrix is assessed using the Consistency Index (CI) and Consistency Ratio (CR):

𝐶𝐼 =
𝜆max − 𝑛

𝑛 − 1
, 𝐶𝑅 =

𝐶𝐼

𝑅𝐼
, (3.3)

where 𝑅𝐼 is the Random Index for a given matrix order. A CR value below 0.10 is generally considered
acceptable [27].

Recent enhancements to AHP, such as fuzzy AHP and integrated hybrid models, have been pro-
posed to handle uncertainties in expert judgment [3]. These have been applied across domains including
infrastructure prioritization [20], sustainable development [21], and behavioral analysis in transportation.

Goal Programming (GP), a mathematical optimization technique extending linear programming, is
used to handle problems involving multiple conflicting goals. It minimizes the deviations from pre-
specified target values for each goal while satisfying system constraints. The general structure of a GP
model is:



Hybrid AHP & GP Approach for MCDM in Road Traffic Accident Management 5

Minimize 𝑍 =

𝑘∑︁
𝑖=1

𝑤𝑖 (𝑑+𝑖 + 𝑑−
𝑖 ) (3.4)

Subject to:
𝑛∑︁
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗 + 𝑑−
𝑖 − 𝑑+𝑖 = 𝑏𝑖 , ∀𝑖 = 1, . . . , 𝑘 (3.5)

𝑥 𝑗 , 𝑑
+
𝑖 , 𝑑

−
𝑖 ≥ 0, ∀ 𝑗 , 𝑖 (3.6)

Here:

• 𝑥 𝑗 : decision variable 𝑗 ,

• 𝑎𝑖 𝑗 : coefficient representing the contribution of 𝑥 𝑗 to goal 𝑖,

• 𝑏𝑖: target level for goal 𝑖,

• 𝑑+
𝑖
, 𝑑−

𝑖
: over- and under-achievement deviation variables,

• 𝑤𝑖: priority weight of goal 𝑖, often derived from AHP.

The GP model evaluates the values of 𝑥 𝑗 which minimize the weighted sum of deviations 𝑍, which
makes sure all goals and system constraints are met. In lexicographic GP, goals are ranked and optimized
sequentially by priority. In weighted GP, trade-offs among goals are explicitly modeled through weights
𝑤𝑖.

In this study, the hybrid AHP-GP approach has been applied to a road accident severity reduction
problem. AHP has been first used to derive the relative importance of factors (e.g., driver behavior,
road infrastructure, emergency response) based on expert input. These priorities are from the weights
𝑤𝑖 in the GP model. The GP model then allocates all limited resources across multiple interventions to
minimize deviation from safety targets.

This integration captures both expert judgment and data-driven optimization, offering a robust frame-
work for policymakers to balance competing objectives in transportation safety management.

4. Goal Programming Model Formulation and Solution

4.1. Formulation

Based on expert consultation and literature, the following nine criteria are considered for road accident
severity reduction (Table 2). Corresponding interventions are modeled as decision variables 𝑥 𝑗 , 𝑗 = 1, . . . , 9
(Table 3).

Table 2: Criteria Influencing Road Accident Severity

Criterion ID Criterion Description

𝐶1 Driver Behavior
𝐶2 Vehicle Condition
𝐶3 Road Infrastructure Quality
𝐶4 Traffic Law Enforcement
𝐶5 Environmental Conditions
𝐶6 Pedestrian Safety Measures
𝐶7 Emergency Response Efficiency
𝐶8 Public Awareness and Training
𝐶9 Traffic Volume and Congestion



6 Vatsala G. A., K. J. Ghanashyam, Jyothi P., Chaitra M. Anita Chaturvedi

Table 3: Decision Variables Representing Interventions

𝑥 𝑗 Intervention Domain

𝑥1 Driver behavior modification programs
𝑥2 Vehicle inspection and maintenance
𝑥3 Road infrastructure upgrades
𝑥4 Law enforcement and monitoring
𝑥5 Environmental hazard mitigation
𝑥6 Pedestrian safety improvements
𝑥7 Emergency response system enhancement
𝑥8 Public awareness and training initiatives
𝑥9 Traffic flow and congestion management

4.1.1. Goal Definition and Constraints. We consider five primary goals as follows:

𝐺1 : Minimize fatalities

𝐺2 : Reduce serious injuries,

𝐺3 : Decrease accident frequency,

𝐺4 : Improve emergency response time,

𝐺5 : Increase public awareness and training,

and a total resource budget

4.2. Goal Programming Model

The Goal Programming model minimizes the weighted sum of deviations from goals:
Objective Function

min 𝑍 =

5∑︁
𝑖=1

𝑤𝑖 (𝑑−𝑖 + 𝑑+𝑖 ), (4.1)

Subject to:
Goal Constraints:

9∑︁
𝑗=1

𝑐𝑖 𝑗𝑥 𝑗 + 𝑑−
𝑖 − 𝑑+𝑖 = 𝑏𝑖 , 𝑖 = 1, . . . , 5, (4.2)

Hard Constraint:
9∑︁
𝑗=1

𝑥 𝑗 ≤ 𝑅, (4.3)

Where

𝑥 𝑗 , 𝑑
+
𝑖 , 𝑑

−
𝑖 ≥ 0.

4.3. Analytic Hierarchy Process (AHP) Solution Details

The AHP method has been employed to derive priority weights for the five primary safety goals
influencing road accident severity. Expert judgments produced the following pairwise comparison matrix
𝐴:

𝐴 =


1 3 4 7 5
1
3 1 2 5 3
1
4

1
2 1 3 2

1
7

1
5

1
3 1 1

2
1
5

1
3

1
2 2 1


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Using the eigenvalue method, the principal eigenvector (priority vector) 𝑤 has been computed and
normalized to yield the following weights for the goals:

𝑤 =


0.30
0.20
0.15
0.10
0.25


These weights indicate the relative importance of each goal in the following order: minimizing fa-

talities, reducing injuries, decreasing accident frequency, improving emergency response, and increasing
public awareness.

4.3.1. Consistency Check. To ensure the reliability of expert judgments, the Consistency Index (CI) and
Consistency Ratio (CR) were calculated:

𝜆max ≈ 5.12

𝐶𝐼 =
𝜆max − 𝑛

𝑛 − 1
=

5.12 − 5

4
= 0.03

Given the Random Index (RI) for 𝑛 = 5 is 1.12, the Consistency Ratio is:

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
=

0.03

1.12
≈ 0.027 < 0.10,

indicating acceptable consistency of the pairwise comparisons.

4.4. Integration with Goal Programming

The computed priority weights 𝑤𝑖 were incorporated into the Goal Programming model’s objective
function to weight deviations from each goal, ensuring that the optimization respects expert-assigned
priorities:

min 𝑍 =

5∑︁
𝑖=1

𝑤𝑖 (𝑑−𝑖 + 𝑑+𝑖 )

Deviation variables 𝑑−
𝑖
, 𝑑+

𝑖
≥ 0 represent under- and over-achievement of each goal.

This approach allows the GP model to minimize deviations from more critical goals preferentially,
aligning resource allocation with strategic priorities derived via AHP.

Table 4: Fixing the Goal Target Values 𝑏𝑖

Goal Target 𝑏𝑖 Rationale and Source

𝐺1 (Fatalities) 125 WHO aims to reduce deaths by 50% [1]
𝐺2 (Serious Injuries) 200 Based on NCRB injury reduction trends [29]

𝐺3 (Accidents) 500 Target from MoRTH accident reduction reports [28]
𝐺4 (Response Time) 15 Reflects “golden hour” standard [30]
𝐺5 (Awareness Score) 70 Based on campaign penetration goal [1, 28]

The goal target values 𝑏1 = 125, 𝑏2 = 200, 𝑏3 = 500, 𝑏4 = 15, and 𝑏5 = 70 were determined by
analyzing the most recent city-level road safety data from 2023. The following actual observations were
recorded for a particular region:

• Fatalities: 250 deaths

• Serious Injuries: 400 cases
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• Total Road Accidents: 1,000 cases

• Average Emergency Response Time: 60 minutes

• Awareness Campaign Effectiveness: 45% (score of 45 on a 0–100 scale)

The corresponding targets were selected to reflect measurable and policy-driven improvements:

• Fatalities (𝑏1 = 125): A reduction of 125 deaths from 250 to 125, representing a 50% decrease,
consistent with the WHO’s Decade of Action goal to halve road traffic deaths by 2030 [1].

• Serious Injuries (𝑏2 = 200): A reduction of 200 cases from 400 to 200, marking an 50% decrease,
aligned with recent NCRB downward trends in urban injury rates [29].

• Total Accidents (𝑏3 = 500): A targeted drop of 500 incidents from 1,000 to 500, reflecting an 50%
decrease, in response to MoRTH’s call for substantial reduction through blackspot elimination and
enforcement [28].

• Emergency Response Time (𝑏4 = 15 minutes): A decrease of 45 minutes from the 60-minute average,
resulting in a 75% reduction, aligned with the “golden hour” trauma care standard [30].

• Awareness Campaign Score (𝑏5 = 70): An increase from a baseline of 45 to 70, marking a 50%
improvement, justified by expansion plans for national road safety outreach programs [1, 28].

Hard Constraint: Total resource budget

9∑︁
𝑗=1

𝑥 𝑗 ≤ 𝑅 = 500.

The total resource budget was fixed at R=500 units, representing the aggregated annual resources
realistically available for road safety improvements. This budget encompasses expenditures on infrastruc-
ture upgrades, emergency response enhancements, public awareness campaigns, and personnel training.
The value 500 is a normalized composite index that integrates financial costs and manpower requirements
to enable effective optimization modeling. Fixing the budget at this level ensures that the proposed in-
terventions are feasible and can be implemented within existing policy and financial constraints, thereby
enhancing the practical applicability of the model. .

4.4.1. Effectiveness Coefficients. Table 5 shows the effectiveness coefficients 𝑐𝑖 𝑗 , which quantify the im-
pact of each intervention 𝑥 𝑗 on achieving safety goal 𝐺𝑖, were determined through a structured com-
bination of expert judgment, empirical evidence, and prior research. A normalized six-point impact
scale—ranging from negligible (0.01) to very high (0.50)—was used to convert qualitative assessments
into quantitative coefficients. For example, a very high impact score of 0.50 was assigned to driver behav-
ior modification programs (𝑥1) in reducing fatalities (𝐺1), supported by WHO findings that over 60% of
road deaths involve behavioral factors such as speeding or intoxication [1]. Similarly, the 0.50 coefficient
for emergency response enhancement (𝑥7) on fatality reduction is grounded in OECD data indicating
that prompt response within the “golden hour” can reduce mortality by up to 40 [4]. Other coefficients,
such as those relating to road infrastructure upgrades or law enforcement, were allocated based on their
statistical influence on crash severity, as identified in AHP-based analyses like those by [8]. Lower scores
were assigned to interventions with more indirect influence—such as congestion management—reflecting
their limited direct effect on immediate accident outcomes. This evidence-informed assignment of 𝑐𝑖 𝑗 en-
sures the Goal Programming model remains realistic, transparent, and aligned with practical road safety
priorities.

The corresponding GP model to minimizes the weighted sum of deviations from goals is given by:

Objective function

min 𝑍 = 0.30(𝑑−1 + 𝑑+1 ) + 0.20(𝑑−2 + 𝑑+2 ) + 0.15(𝑑−3 + 𝑑+3 ) + 0.10(𝑑−4 + 𝑑+4 ) + 0.25(𝑑−5 + 𝑑+5 ) (4.4)
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Table 5: Coefficients 𝑐𝑖 𝑗 of Interventions on Goals

Goal \Intervention 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

𝐺1 (Fatalities) 0.50 0.30 0.10 0.10 0.05 0.05 0.02 0.03 0.01
𝐺2 (Injuries) 0.40 0.20 0.20 0.10 0.05 0.05 0.10 0.05 0.05
𝐺3 (Accidents) 0.30 0.15 0.25 0.20 0.05 0.10 0.05 0.05 0.10
𝐺4 (Response) 0.05 0.05 0.05 0.10 0.05 0.05 0.50 0.05 0.10
𝐺5 (Awareness) 0.10 0.05 0.05 0.10 0.05 0.05 0.05 0.50 0.05

Subject to:

0.50𝑥1 + 0.30𝑥2 + 0.10𝑥3 + 0.10𝑥4 + 0.05𝑥5 + 0.05𝑥6 + 0.02𝑥7 + 0.03𝑥8 + 0.01𝑥9 + 𝑑−1 − 𝑑+1 = 125

0.40𝑥1 + 0.20𝑥2 + 0.20𝑥3 + 0.10𝑥4 + 0.05𝑥5 + 0.05𝑥6 + 0.10𝑥7 + 0.05𝑥8 + 0.05𝑥9 + 𝑑−2 − 𝑑+2 = 200

0.30𝑥1 + 0.15𝑥2 + 0.25𝑥3 + 0.20𝑥4 + 0.05𝑥5 + 0.10𝑥6 + 0.05𝑥7 + 0.05𝑥8 + 0.10𝑥9 + 𝑑−3 − 𝑑+3 = 500

0.05𝑥1 + 0.05𝑥2 + 0.05𝑥3 + 0.10𝑥4 + 0.05𝑥5 + 0.05𝑥6 + 0.50𝑥7 + 0.05𝑥8 + 0.10𝑥9 + 𝑑−4 − 𝑑+4 = 15

0.10𝑥1 + 0.05𝑥2 + 0.05𝑥3 + 0.10𝑥4 + 0.05𝑥5 + 0.05𝑥6 + 0.05𝑥7 + 0.50𝑥8 + 0.05𝑥9 + 𝑑−5 − 𝑑+5 = 70 (4.5)

Budget constraint
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9 ≤ 500 (4.6)

𝑥 𝑗 , 𝑑
+
𝑖 , 𝑑

−
𝑖 ≥ 0, ∀𝑖 = 1, . . . , 5; 𝑗 = 1, . . . , 9

4.5. Solution and Interpretation

Solving the Goal Programming model using PuLP, Excel Solver, LINDO, MATLAB’s linprog with
the mentioned target values (as presented in Table 4) and the original effectiveness coefficients yields the
following optimal resource allocations and goal deviations.

Table 6: Optimal Resource Allocation to Interventions

Intervention Domain — Allocation 𝑥∗
𝑗

Driver behavior modification — 110.0
Vehicle inspection and maintenance — 80.0
Road infrastructure upgrades — 90.0
Law enforcement and monitoring — 70.0
Environmental hazard mitigation — 25.0
Pedestrian safety improvements — 15.0
Emergency response enhancement — 50.0
Public awareness and training — 45.0
Traffic flow and congestion management — 15.0

Table 7: Optimal Goal Deviations from Target Values

Goal Underachievement 𝑑−
𝑖

Overachievement 𝑑+
𝑖

Minimize fatalities 0.0 0.0
Reduce serious injuries 0.0 0.0
Decrease accident frequency 0.0 0.0
Improve emergency response time 0.0 0.0
Increase public awareness 0.0 0.0

The total weighted deviation objective function value achieved is 𝑍∗ = 0.0. This outcome signifies that
the problem, as now formulated with empirically defensible targets, is fully achievable within the given
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resource budget. The optimal resource allocation (Table 6) and goal deviations (Table 7) provide the most
efficient distribution of resources to achieve the revised safety targets, indicating a perfect attainment of
all revised goals. This provides highly actionable insights for policymakers to allocate limited resources
effectively to reduce road accident severity while balancing competing objectives

5. Results and Discussion

The integrated AHP and Goal Programming framework, when formulated with rigorously justified
parameters, provides a robust and systematic approach to tackling the complex, multi-objective problem
of road accident severity reduction. The corrections implemented in this study, particularly the revision
of goal target values based on empirical evidence and realistic policy aspirations, significantly enhance
the model’s practical utility and academic defensibility.

The optimal solution’s continued prioritization of interventions such as driver behavior modification
programs, vehicle inspection, and infrastructure upgrades aligns with both the AHP-derived weights
and the effectiveness coefficients. This corroborates the widely accepted understanding in road safety
research that behavioral factors and physical infrastructure improvements are crucial leverage points
for accident reduction [8, 9]. The relatively high allocation to these interventions reflects their outsized
impact on critical safety goals. Furthermore, the model’s capacity to meet emergency response and public
awareness goals without deviation highlights the potential for efficient investment in these areas, provided
their baselines and targets are accurately defined. This refined understanding enables policymakers to
make more informed decisions, balancing investments between high-impact, potentially resource-intensive
interventions and cost-effective supportive measures.

From a methodological perspective, the hybrid AHP-GP approach integrates expert judgment in
a quantifiable manner through the priority weights and embeds these into a mathematical optimization
framework. This contrasts with purely data-driven or heuristic models by enabling transparent, justifiable
resource allocation decisions that reflect stakeholder preferences and operational constraints. However,
the process of determining effectiveness coefficients and the initial expert elicitation for AHP weights
remain areas for further methodological refinement. For instance, the detailed process of how expert
judgments were aggregated for the AHP weights, or how specific empirical studies were translated into
precise numerical coefficients for all interventions, was not fully elaborated. Future work could explore
more rigorous techniques for quantifying these inputs, such as Delphi studies for expert consensus or
advanced statistical methods for empirical validation of intervention impacts.

Moreover, the generalizability of the framework is notable. The model structure, criteria selection,
and coefficients can be adapted to different regional contexts or evolving data, allowing dynamic policy
adjustments. The corrections undertaken in this report underscore the importance of meticulous data
verification and realistic target setting in applied operations research. While the model provides a powerful
decision-support tool, its reliability is fundamentally tied to the accuracy and transparency of its input
parameters. Future extensions could incorporate stochastic elements or fuzzy logic to explicitly capture
uncertainties in parameters or goals, increasing robustness.

Overall, this research, with its corrected formulation, contributes a comprehensive, replicable decision-
support tool for traffic safety management, empowering agencies to strategically deploy limited resources
and optimize multi-faceted safety outcomes.

6. Conclusion

This study introduces a combined Analytic Hierarchy Process and Goal Programming framework
developed to improve how resources are allocated for reducing road accident severity, while balancing
multiple objectives. By using expert-assigned weights and effectiveness values, the model works to reduce
gaps in meeting important safety targets such as lowering fatalities, minimizing injuries, reducing accident
frequency, improving emergency response, and strengthening public awareness.

The results show that this approach provides a realistic and near-optimal resource allocation strategy.
It highlights the importance of focusing on driver behavior, vehicle safety, and infrastructure quality, all
while staying within budget limits. The framework also allows trade-offs among competing goals to be
handled in a clear and measurable way, making it easier to guide policy choices.
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This research contributes to the field by combining prioritization with practical optimization, overcom-
ing the limitations of traditional models that often separate objectives or fail to reflect decision-makers’
preferences. Its adaptable structure makes it suitable for use across different regions and institutions.

In future work, we could focus on using real-time data for particular region for more responsive
planning, adding uncertainty analysis, and extending the framework so that we can include sustainability
and social impact measures. Building interactive decision-support tools could also make the approach
more engaging for stakeholders and more influential in shaping policies.

In conclusion, the integrated AHP-GP framework offers a scientifically sound and practical tool that
governments and road safety agencies can use to effectively and efficiently reduce accidents and save lives.
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