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Line Graph associated with Equiprime Graph of a Nearring

Sabina Rachana Crasta, Jagadeesha B. *

ABSTRACT: This paper presents a graph-theoretic exploration of three nearring-based graphs—namely, the
generalized graph Gz(N), the equiprime graph EQz(N), and the central graph Cz(N)—each defined with
respect to a fixed ideal Z of a nearring N. Focusing on their respective line graphs, we analyze the structural
changes that emerge when the original adjacency is lifted to edge adjacencies. The motivation stems from
recent advances in algebraic graph theory, where such constructions have yielded insights into ideal-related
interactions within algebraic systems. Through theoretical results and illustrative examples, we demonstrate
how the line graph of the equiprime graph captures nuanced connectivity patterns and contributes to a finer
classification of algebraic elements. This unified approach reveals new perspectives on how algebraic structure
influences graph-theoretic behavior.
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1. Introduction

Graphs arising from algebraic structures offer a visual and combinatorial perspective on algebraic
concepts, revealing relationships not always apparent through traditional symbolic approaches. The
concept of associating graphs to rings began with Beck [1], who defined a graph whose vertices are
ring elements, with adjacency determined by multiplication resulting in zero. This idea evolved into
diverse graph constructions for rings and nearrings, incorporating zero-divisors, ideals, and prime elements
[6,14,15].

In the context of nearrings, which generalize rings by relaxing certain distributivity requirements,
several graph-theoretic models have been introduced to analyze their structural features. The structural
characteristics and behavioral patterns of zero-divisor graphs within nearrings have been the subject
of significant mathematical investigation. In [5,7] and Bhavanari et al. constructed the ideal graph
Gz(N) based on the interaction between nearring elements and ideals [3]. Building on this, further work
introduced variations such as the equiprime graph EQ;(N) and the central graph Cz(N) to better capture
finer ideal-theoretic behaviors [12].

Line graphs, originally introduced in pure graph theory, represent adjacency between edges rather
than vertices [9]. They have found meaningful applications in algebraic contexts when applied to the
graphs associated with algebraic structures. Line graphs retain edge information from the base graph and
thus encode how certain algebraic relationships are shared among elements. The notion of line graphs
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associated with nearring graphs has recently gained attention [11], highlighting unexplored aspects in
their structural interplay.

In recent years, the fusion of algebraic concepts and graph-theoretic methods have revealed deep con-
nections that not only enrich both fields but also open new avenues for applications in coding theory,
cryptography, and combinatorial optimization. By translating algebraic properties into graphical lan-
guage, one can often detect hidden symmetries, invariants, and structural decompositions that are less
transparent in purely algebraic terms. In particular, equiprime graphs and their line graph counterparts
capture delicate interactions between ideals and elements of a nearring, offering a refined perspective
compared to traditional zero-divisor graphs. Moreover, these graphical approaches provide a unifying
platform where tools from spectral graph theory, graph homomorphisms, and combinatorial algorithms
can be applied to algebraic problems. Such perspectives motivate the systematic study of line graphs as-
sociated with nearring-based constructions, extending the existing literature on rings to the more general
framework of nearrings.

This paper aims to unify and generalize previous studies by systematically examining the line graphs
of Gz(N), EQ(N), and Cz(N). We study their mutual relationships, determine conditions for their
equivalence, and analyze the influence of algebraic properties like zero-symmetry, right permutability, and
the IFP on the corresponding line graphs. We also investigate the impact of nearring homomorphisms
on these graphical structures and introduce new results involving the subgraph structure of line graphs
restricted to N\ Z. This investigation builds on a strong foundation laid by prior works in nearring theory
[13,8,2] and graph homomorphisms [10].

Throughout the paper, illustrative examples and counterexamples demonstrate the necessity of hy-
potheses and highlight the distinctions between various graph constructions.

2. Preliminaries

This section summarizes the fundamental definitions and results required for our study. All nearrings
considered are associative and contain a multiplicative identity unless otherwise specified.

Definition 2.1 (Nearring) We refer [13,8,2] for detailed background of nearrings.
A nearring (N, +,-) is a nonempty set N with two operations satisfying the following:

e The structure (N, +) forms a (not necessarily abelian) group.
e The operation - makes (N, -) a semigroup.

e The structure satisfies right distributivity, i.e., for all z,y, z € N, the identity (z +y) -2z =
xz + yz holds.

Definition 2.2 (Equiprime ideal) An ideal Z is called equiprime if, whenever xzny — 2n0 € Z holds
for every n € N, then at least one among x or y is in Z. This concept was formalized in [12].

Definition 2.3 (Equiprime Graph)
Let Z be an ideal of N and p € N. Let EQ%(N) be the graph with vertex set N and the pair of
distinct points p and (z — y) are connected by an edge if and only if pra — pry € T for all r € N or
(x—y)rp— (x—y)r0 € T for all r € N. Then EQz(N) = U,enEQY(N) is called the equiprime graph
of N with respect to Z. If we restrict the vertex set of FQz(N) to N\ Z then the graph obtained
after deleting the isolated vertices if any is denoted by EQz(N\ Z). This concept was introduced
in [12]

Definition 2.4 (Central Graph)
The central graph Cz(N) has the vertex set N and two elements z,y € N are connected by an edge
if the product zy or yz is in Z, [3].

Definition 2.5 (Generalized Graph)
The graph G7(N) is defined with vertex set N, where two elements x,y € N are adjacent if the set
Ny or yNz is entirely contained in Z.
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Table 1: Table of Notations

Notation | Meaning
N A nearring defined with binary operations (+, -).
T A nontrivial ideal contained within N.
EQz(N) Equiprime graph formed from N based on the ideal Z.
L(G Line graph derived from a given graph G.
L (EQz(N)) | Line graph constructed by EQ(N).
Cz(N Central graph indicating elements whose product belongs to Z.

)
)
)
girth(G) Length of the smallest cycle occurring in G.
g

T
Gz(N generalized graph of N with respect to Z.

diam(G) Maximum distance between any two vertices in the graph G.
Figure 1: EQI Figure 2: EQZ(N Figure 3: EQZ(N) Figure 4: EQ7(N

Figure 5: Equiprime graphs EQ7(N)for z € N for Z = {4, ¢}

Definition 2.6 (Line Graph) The line graph L£(G) of a graph G is obtained by assigning a vertex
to each edge of G. Two vertices in £(G) are adjacent if and only if their corresponding edges in G
share a common vertex [9].

Proposition 2.1 [11], Let N be a nearring. If T is a c-prime ideal, then £(Gz(N)) = L(Cz(N)).

3. Line Graph of the Equiprime Graph over a Nearring

Definition 3.1 Let EQ;(N) denote the equiprime graph constructed from a nearring N and an ideal
Z. The line graph associated with it, denoted by L(EQ(N)), is defined such that each of its vertices
corresponds to an edge in EQ;(N). Two distinct vertices in L(EQ(N)) are connected by an edge
if and only if their respective edges in EQz(N) share a common vertex.

Example 3.1 Consider the nearring N = {i,p,q,r} as defined in Table 2. It can be verified that this
structure forms a mearring.

+ |1 |plgl|r . 1{plqglr
i i|lplqgl|r I S T S O S R I |
plp|i|r|gq pli|p|i]|p
qlqg|r|i|p qlq|a|lql|q
T T q p 1 T q T q T

Table 2: Operation tables defining a nearring structure on N = {i,p, ¢,r}

Let T = {i,q}. The equiprime graphs EQZ(N) for various elements x € N are illustrated in Figure 5.
The full equiprime graph EQz(N) and corresponding line graph L(EQz(N)) are shown in Figure 6 and 7
respectively.

Proposition 3.1 Let Z be a proper ideal of N. Then L(EQz(N)) is connected and its diameter satisfies
diam(£(EQz(N)) < 3.
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Figure 6: EQz(N) with Z = {i, ¢}

(g, 7]

(4, p]

Figure 7: L(EQZ(N)) for Z = {4, ¢}

Proof:

Since 0 € N is adjacent to all other vertices in EQz(N), every edge in the graph involves 0 or is
connected through it. Let A = [p,¢| and B = [r, s] be two distinct vertices in L(EQz(N)), corresponding
to edges in EQ7(N).

If A and B share a vertex in the original graph (that is, p=r,p=s, ¢ =, or ¢ = s), then they are
adjacent in the line graph, giving a path of length 1. If not, then there exists a path through vertex 0,
such as: [p,q] ~ [p,0] ~ [0, s] ~ [r, s], which is a path of length 3. Thus, in all cases, any two vertices in
L(EQz(N)) have the distance at most 3 between them, proving the claim. O

Proposition 3.2 Let T = {0} be a 3-prime ideal of a simple, zero-symmetric integral nearring N. If
IN| = n, then L(EQz(N)) forms a complete graph.

Proof: Since N is both zero-symmetric and integral, the element 0 is linked to all nonzero elements in the
graph EQz(N). Suppose an edge (a, b) exists with a,b # 0. Then either anb — an0 € Z or bna — bn0 € 7
for every n € N. Given the zero-symmetry property, an -0 = 0 and bn - 0 = 0, implying anb and bna
belong to 7.

Since Z = {0} is 3-prime, either a € Z or b € Z must hold, which contradicts our assumption that
both a and b are nonzero. Hence, the only edges in EQz(N) are those that include 0 — that is, of the
form (0, ;) for z; € N\ {0}, making the graph a star centered at 0.

Therefore, in L(EQz(N)), each vertex corresponds to an edge sharing the vertex 0 in the original
graph, and thus every pair of vertices is adjacent. This proves that the line graph is complete. O

Remark 3.1 The above result no longer holds if the nearring fails to be integral or zero-symmetric.
In such cases, the equiprime graph need not be a star graph, and hence £L(EQz(N)) may not be
complete. We provide following example.

Example 3.2 Consider the nearring N = {i,p,q,r} defined by the binary operations + and - as
giwen in Table 2 (see Example 3.1) and the ideal 3-prime ideal T = {i}.

The corresponding equiprime graph EQz(N) is illustrated in Figure 8, while its associated L(EQ7(N))
appears in Figure 9.

Observe that although T = {i} is a 8-prime, the nearring does not satisfy the conditions required for
the completeness of the line graph:
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[, D] [, q]

p q r

Figure 8: Equiprime graph EQ(N) [q, 7]

Figure 9: L(EQz(N))

e N is not zero-symmetric since p-q =1 but q-p # i,

e N is not integral because p - q =i even though p # i and q # 1.

As a result, the equiprime graph is not a star graph, and consequently, L(EQz(N)) is not complete.

Proposition 3.3 Let T = {0} be a 3-prime ideal of a simple, zero-symmetric integral nearring N of
order n. Then L(EQ7(N)) is a complete graph.

Proof: Since N is simple, its only ideals are {0} and N itself. If Z = N, then every pair of elements in N
is adjacent in EQ7(N), making it a complete graph, and so is its line graph.

Now consider the nontrivial case Z = {0}. Under the given assumptions (integrality, zero-symmetry,
and 3-primality), Proposition 3.2 applies, and hence L(EQy¢;(N)) is complete. O

Proposition 3.4 Let N be an integral nearring of order n, and let T = {0} be an equiprime ideal. Then
L(EQz(N)) is a complete graph.

Proof: Since N is integral, no two nonzero elements multiply to zero. Let a,b € N\ {0} and suppose
that (a,b) is an edge in EQz(N). Then either anb or bna lies in Z for all n € N. As 7 is equiprime, this
implies either a € Z or b € Z, which contradicts the assumption that a,b # 0.

Therefore, every edge in EQz(N) must involve the zero element. The graph is thus a star centered at
0, and its line graph becomes a complete graph since all edges are incident at 0. |

Proposition 3.5 Let N be an integral, zero-symmetric nearring of order n, and let T = {0} be a 3-prime
ideal of N. Then L(EQz(N)) has infinite girth, i.e., girth(L(EQz(N))) = oo, if and only if n € {2,3}.

Proof: (=) Suppose girth(£(EQoy(N))) = co. This implies that the line graph contains no cycles. Now
assume n > 3. Then the equiprime graph contains at least four vertices, and since 0 is adjacent to all
other elements, the graph includes at least three distinct edges such as [0, z1], [0, z2], [0, 23], which share
the common vertex 0. This structure introduces cycles in the line graph, contradicting the assumption.
Hence, n < 3.
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(«) Conversely, if n = 2, then N = {0, a} and the only edge in EQ;(N) is (0,a). The line graph has
a single vertex and no edges, thus no cycles.

If n =3, let N={0,a,b}. Then only edges involving 0 are present in the equiprime graph (since it is
integral and 7 is 3-prime). Hence, [0, a] and [0,b] represent the sole vertices within the line graph, and
they are not adjacent as they share only the vertex 0 in the original graph. This produces no cycle, so
the girth is again infinite.

Therefore, girth(£(EQqy(N))) = oo if and only if n =2 or n = 3. O

Remark 3.2 The previous result highlights that the girth becomes finite once the nearring has four or
more elements. For instance, in Example 3.1, where [N| > 3, we observe that girth(L(EQ(oy(N))) #
00.

Proposition 3.6 Let N be an integral, zero-symmetric nearring and |[N| = n. Let I be a 3-prime ideal
of simple nearring N. Then gr(L(EQr(N))) = oo if and only if IN| =2 or |N|=3.

Proposition 3.7 Let N be an integral nearring of order n, and let T = {0} be an equiprime ideal of N.
Then L(EQ£(N)) has infinite girth if and only if n =2 orn = 3.

Proposition 3.8 Let T be an equiprime ideal of a nearring N. Then the set P = {{a,b) |a € T orbe I}
is a dominating set of vertices in L(EQz(N)).

Proof: Let (a,b) be any edge in the equiprime graph EQ(N). According to the definition of an equiprime
ideal, for all n € N, either anb — an0 € Z or bna — bn0 € Z. This implies that at least one of a or b lies
in Z. Thus, every edge in the graph has at least one endpoint from Z.

Therefore, all such edges (a,b) where either a € Z or b € Z, together form an edge-dominating set in
EQz(N). Consequently, the corresponding vertices (a,b) in L(EQz(N)) dominate the remaining vertices
through adjacency. Hence, P is a vertex dominating set. O

Remark 3.3 The preceding result is valid only when Z is an equiprime ideal; otherwise the set
P = {[a,b] | a € T or b € N} might not act as a dominating set in the corresponding line graph.
For example, as shown in Example 2.6, the ideal Z = {0} does not qualify as equiprime, since for
instance bnc —bn0 = 0 € Z holds for all n € N, yet neither b nor c is an element of Z. Consequently,
under such conditions, the set {[0,n] | n € N} fails to dominate all vertices in L(EQz(N)).

Proposition 3.9 Let a,b € N, and let T be a proper ideal of N. If |N| > 3, then the vertex [a,b] in
L(EQ£(N)) cannot be a pendant vertez.

Proof: Since the element 0 shares adjacency with every vertex in the equiprime graph EQ,(N), all edges
of the form [0, z] for © € N\ Z appear as vertices in the line graph.

Given [a,b] € L(EQ£(N)), it follows from the structure of EQz(N) that this edge shares a vertex (either
a or b) with [0, a] or [0,b]. Hence, [a,b] must be adjacent to at least one other vertex in L(EQz(N)), and
thus it cannot be pendant. O

Remark 3.4 The condition |N| > 3 stated earlier is not always essential. For smaller nearrings, a
pendant vertex may occur. For instance, consider the nearring N = Zgs, representing integers modulo
3, and let the ideal be Z = {0}. The equiprime graph EQ;(N) and its line graph are depicted in
Figures 10 and 11, respectively.

In this case, the line graph contains exactly two vertices corresponding to the edges [0,1] and [0, 2],
which are joined by a single edge. Each of these is adjacent to only one other vertex, making both
of them pendant. This demonstrates that the size condition in the previous proposition is indeed
necessary.
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[0,1] [0,2]

o—————@

Figure 11: £(EQ;(Zs3))

Figure 10: Equiprime graph EQ(Zs3)

Proposition 3.10 Let T be an equiprime ideal of a nearring N, and let a,b € N such that [a,b] is a
vertex in L(EQz(N)). Then either a € Z orb e T.

Proof: If either a = 0 or b = 0, then the result holds trivially since the zero element is contained in
every ideal of N. Now assume a # 0 and b # 0.
Since [a, b] is a vertex in L(EQ(N)), it corresponds to the edge (a, ) in the equiprime graph EQ;(N).
By definition of the equiprime graph, we know that either anb — an0 or bna — bn0 is in Z for all n € N.
Without loss of generality (WLOG), assume anb —an0 € Z for alln € N = a € Z or b € Z. Thus,
the claim follows in all cases. O

Remark 3.5 The conclusion of the preceding proposition may not hold when Z fails to be an equiprime
ideal. To illustrate, take Z = {0} in Example 3.2, which is not equiprime. In this case, the pair
(b, ¢) forms an edge in EQ7(N), resulting in [b, ] being included as a vertex in the corresponding line
graph. However, neither b nor c is contained in Z, demonstrating that the equiprime assumption is
essential for the conclusion to be valid.

4. Interrelations between L£(Gz(N)), L(EQ,(N)), and L(Cz(N))
Proposition 4.1 Let N be a nearring and Z a 3-prime ideal of N. Then L(Gz(N)) C LI(EQ£(N)).

Proof: Since V(Gz(N)) = V(EQ£(N)) = N, their line graphs are defined on the same vertex set.

Let (z,y) and (z,w) be adjacent vertices in £(Gz(N)). Then the edges (z ~ y) and (z ~ w) in Gz(N)
share a common vertex. We may assume WLOG, z = z.

From the definition of Gz(N), we have: 2Ny C Z and zNw C Z. Since Z is a 3-prime ideal, it
follows that either x € 7 or y € Z, and either x € Z or w € Z.

Case 1: If z € Z, then for all n € N, zny —an0 € Z, xznw —xn0 € Z, implying (x ~ y) and (x ~ w)
are edges in EQz(N).

Case 2: If y,w € Z, then ynx —yn0 € Z, wnz —wn0 € Z, so (y ~ z) and (w ~ x) are edges in
EQ(N).

Hence, in either case, (z,y) and (z, w) are adjacent in L(EQ(N)). Therefore, £(Gz(N)) C L(EQ£(N)).

O

Example 4.1 This example illustrates that the inclusion £(Gz(N)) C L(EQz(N)) may be strict, even
when T is a 3-prime ideal of the nearring N.

Consider the 3-prime ideal T = {i} of the nearring N = {i,p,q,r} as defined in Table 2.

The graphs Gz(N) and EQz(N) are shown in Figure 12 and Figure 13, and the corresponding L(Gz(N))
and L(EQ£(N)) are shown in Figure 14 and Figure 15.

In this illustration, the vertex (y,z) and its associated edges are present in L(EQz(N)), but absent in

L(9z(N)). Therefore, L(Gz(N)) C LEQ(N)).
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i
p q r

Figure 12: Graph Gz(N)

?

p q r
Figure 13: Graph EQz(N)
(i,p) (i,q)

{p,q) (i,7)
Figure 14: Line graph £(Gz(N))

(i,p) (i,q)

(q,m)

Figure 15: Line graph L(EQz(N))
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Proposition 4.2 Let T be an equiprime ideal of the nearring N. Then L(Gz(N)) = L(EQ,(N)).

Proof: Since all equiprime ideals satisfy the condition of being 3-prime, by Proposition 4.1, we have
L(Gz(N)) € L(EQz(N)).

Now, let {x,y) and (z,w) be adjacent vertices in L(EQ;(N)). Then the corresponding edges (z,y)
and (z,w) in EQz(N) share a common vertex. WLOG, assume = = z.

From the definition of EQ;(N), we have: zny —an0 € Z and anw —xzn0 €Z for all n € N. Since
T is equiprime, this implies: - Either x € Z or y € Z, and - Either x € Z or w € 7.

If x € Z, then 2Ny C T and 2Nw C Z, so both edges are in Gz(N).

If y € Z and w € Z, then yNz C 7 and wNz C Z, again both edges are in Gz(N).

Hence, (z,y) and (z,w) are adjacent in L(Gz(N)), establishing the reverse inclusion.

Therefore, £(Gz(N)) = LIEQ,(N)). O

Proposition 4.3 Let Z be an ideal in the nearring N. Then the line graph of the generalized graph Gz (N)
coincides with the line graph of the equiprime graph EQz(N), that is, £L(Gz(N)) = L(EQ£(N)), provided
at least one of the following conditions is satisfied:

1. N is zero-symmetric,
2. N satisfies right distributivity, or

8. T is a totally reflexive ideal of N.

Proof: This result is proved under the assumption that N is zero-symmetric. The arguments under the
other two conditions follow analogously.

Assume N is zero-symmetric and Z is an ideal of N. Let (x,y) and (z,w) be adjacent vertices in
L£(Gz(N)). Then the edges (z,y) and (z,w) in Gz(N) share a common vertex. WLOG, let z = z.

From the definition of Gz(N): a2Ny CZ or yNz CZ, zNw CZ or wNzx CZT.

Case 1: If zNy C 7 and zNw C Z, then for all n € N, xny, znw € T.
Since N is zero-symmetric: any —an0 € Z, znw —an0 € Z, so (x,y) and (z,w) are edges in EQ;(N),
hence (z,y) and (r,w) are adjacent in L(EQz(N)).

Case 2: If yNz C 7 and wNz C Z, then for all n € N, ynz, wnz € Z. By zero-symmetry: ynx —yn0 €
Z, wnz —wnl € Z, so (y,z) and (w,x) are edges in EQz(N) and (y,z), (w,z) are vertices in the line
graph.

Therefore: £(Gz(N)) C L(EQ(N)).

Now, assume (z, y) and (z, w) are adjacent in £L(EQ7(N)). Then (x,y) and (z,w) are edges in EQz(N)
sharing a vertex. Let = = z.

From the definition of EQz(N): zny—a2n0 € Z or ynz—yn0 € Z, znw—zn0 €Z or wnx—
wn0 € 7.

Case 3: For all n € N, if zny — 2n0 € Z and xznw — zn0 € T , then zero-symmetry implies
xny, znw € I, so xNy, zNw C 7T and hence (z,y), (z,w) € Gz(N).

Case 4: If ynx — yn0 € Z and wnz — wn0 € Z for all n € N, then ynz,wnx € Z, i.e., yNz,wNzx C 7.

Thus: L(EQz(N)) C £(Gz(N)).

Hence, the line graphs are equal: £(Gz(N)) = L(EQ£(N)). O

Remark 4.1 The equality £ (Gz(N)) = £ (EQ7(N)), as stated in Proposition 4.3, does not necessarily
hold under general conditions. This is illustrated in Example 4.2, where the nearring N fails to
satisfy one or more of the following properties: zero-symmetry, distributivity, or total reflexivity.
The absence of any of these conditions can lead to a divergence between the line graphs of Gz (N)

and EQ(N).

Proposition 4.4 Let Z be an equiprime ideal of a right permutable nearring N. Then the following
equality holds: L (Gz(N)) = L (Cz(N)) = £ (EQz(N)).
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i i
q b r q p r
Figure 16: Graph Gz(N) Figure 17: Graph EQz(N)

Proof: Suppose z,y € N are such that xy € Z. Then, for every n € N, we have xyn € Z, i.e., xyN C 7.
Due to the right permutability of N, it follows that xNy C 7, meaning that #Ny is contained in Z. Since
T is equiprime, we conclude that either x € Z or y € 7.

This observation confirms that Z is a 3-prime ideal. Further, the right permutability of N ensures
that 3-primality implies c-primality. Hence, Z also satisfies the condition of being c-prime.

Now, by Proposition 2.9, we know that every equiprime ideal is 3-prime, and under right permutabil-
ity, 3-primality implies c-primality. Proposition 4.3 asserts that £ (Gz(N)) = £ (EQz(N)), while Proposi-
tion 2.9 implies £ (Gz(N)) = £ (Cz(N)).

Combining both results, we conclude: £ (Gz(N)) = L (Cz(N)) = L (EQz(N)). O

Proposition 4.5 Let Z be an equiprime ideal of a nearring N. If T satisfies the IFP, then: L(Gz(N)) =
L(Cz(N)) = LIEQz(N)).

Proof: Let z,y € N such that xy € Z. Since Z satisfies the IFP, it follows that zny € Z for all n € N.
Hence, for all n € N: zny — xn0 € Z, since xn0 € Z as constant terms lie in every ideal.

As T is equiprime, x € Z or y € Z. Therefore, Z is also a c-prime ideal.

By Proposition 2.1, this implies:

L(Gz(N)) = L(Cz(N)). (4.1)

Furthermore, since 7 is equiprime, Proposition 4.2 gives:
L(9z(N)) = LEQz(N)). (4.2)
Combining equations (4.1) and (4.2), we conclude: £(Gz(N)) = L(Cz(N)) = L(EQz(N)). O

Proposition 4.6 Let T be a 3 - prime ideal of N. Suppose L(Gz(N)) and L(EQ£(N)) share the same
vertex set, i.e., V(L(Gz(N))) = V(L(EQz(N))), then I is an equiprime ideal of N.

Proof: Let z,y € N be such that zny — 2n0 € Z for all n € N. Then (z,y) € E(EQz(N)), so (z,y) €
V(LEQL(N))).
Given the vertex sets are equal, we have (z,y) € V(£(Gz(N))), which implies (z,y) € E(Gz(N)).
Hence, zZNy C7Z or yNzx CZ7.
Since 7 is 3-prime, it follows that x € Z or y € Z. Therefore, Z is an equiprime ideal of N. O

Remark 4.2 We now demonstrate through counterexamples that the conditions in the preceding
propositions are necessary.

Example 4.2 Let N = {i,p,q,r} be a nearring as defined in Table 2. Let T = {i}. The graphs
L(Gz(N)) and L(EQz(N)) are shown in Figures 18 and 19, respectively.

Observe that V(L(Gz(N))) # V(L(EQ£(N))). Moreover, T = {i} is not an equiprime ideal of N,
since gna — qni € T for alln e N, but ¢ ¢ Z and p ¢ T.
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(i,p) (i,q)

(i,7)

Figure 18: L(Gz(N))

1 2 3

Figure 20: Graph Gz(N)

(0,3)

Figure 22: £(Gz(N))

(i,p) (i,q)

(p,7) (i,7)

Figure 19: L(EQz(N))

1 2 3

Figure 21: Graph EQz(N)

(0,1) (0,2)

(0,3)

Figure 23: L(EQ(N))



12 SABINA RACHANA CRASTA, JAGADEESHA B.

0 (0,1) (0,2)
1 2 3 (0,3)
Figure 24: Cz(N) = EQz(N) Figure 25: £(Cz(N)) = L(EQ(N))

Example 4.3 Let N = Z4, and let T = {0}. The graphs Gz(N) and EQz(N) are shown below:

Here, V(L£(Gz(N))) = V(L(EQz(N))), but Z = {0} is not a 3-prime ideal of N since 2n2 =0 € T
for alln € N, while 2 ¢ T. Hence, T is not equiprime.

Proposition 4.7 Let T be an equiprime ideal of a nearring N. If V(L(EQz(N))) = V(L(Cz(N))), then
7 is a c-prime ideal of N.

Proof: Assume z,y € N such that zy € Z. By definition of Cz(N), we get (z,y) € E(Cz(N)). Since
vertex sets are equal, i.e., V(L(Cz(N))) = V(L(EQz(N))), it follows that the edge (x,y) also belongs to
E(EQz(N)). Hence, for all n € N, we have xny —xn0 € Z. As 7 is equiprime, this implies x € Z or y € Z.
Therefore, 7 satisfies the definition of a c-prime ideal. O

Remark 4.3 The conclusion drawn in Proposition 4.7 may not remain valid if the ideal Z is not
equiprime. In particular, even when the vertex sets of the corresponding line graphs are identical,
it is still possible for Z to fail being c-prime.

Example 4.4 Let N =74, and T = {0}. Here, the equiprime graph EQ;(N) and the central graph Cz(N)
coincide, as depicted in Figure 2/, and their respective line graphs also match, shown in Figure 25.

We observe that V (L(Cz(N))) = V (L(EQz(N))) . However, T = {0} is not equiprime, because for all
neN: 2n2—-2n0=0€Z, but2¢Z. Additionally, T fails to be c-prime since2-2=0€Z, but 2 ¢ T.

5. Graph Homomorphisms Induced by Nearring Homomorphisms

Proposition 5.1 Let n: Ny — Ny be a surjective nearring homomorphism, and let T be an ideal of N.
Then n induces a graph homomorphism from L(EQz(N1)) to L(EQ,,1)(N2)).

Proof: Suppose (x,y) and (y, z) are adjacent vertices in L(EQ;(Ny)). Then (z,y) and (y, z) are edges
in EQ7(Ny), meaning: zny —an0 € Z and ynz—yn0 €Z, Vn € N;. Applying 7 and using its homo-
morphic property: n(zny —xn0) = n(x)n(n)n(y) —n(z)n(n)n(0) € n(Z), which shows that (n(x),n(y)) is
an edge in EQ, 7)(N2). Similarly, (n(y),n(z)) is also an edge in EQ, (1) (Ng).

Thus, the images (n(z),n(y)) and (n(y),n(z)) are adjacent Vertlces in L(EQ,7)(N2)), completing the
proof. O

Proposition 5.2 Let n: Ny — Ny be a surjective nearring homomorphism, and let T be an ideal of N;.
Then n induces a graph homomorphism from L(EQz(N1)) to L(EQ,,1)(N2)).

Proof: Suppose {z,y) and (y, z) are adjacent vertices in L(EQz(N7)). Then (z,y) and (y, z) are edges
in EQ7(Ny), meaning: zny —azn0 € Z and ynz—yn0 €Z, Vn € N;. Applying n and using its homo-
morphic property: n(zny —xzn0) = n(x)n(n)n(y) — n(z)n(n)n(0) € n(Z), which shows that (1(x),n(y)) is
an edge in EQ,,7)(Nz). Similarly, (n(y),n(z)) is also an edge in EQ, () (Ng).

Thus, the images (n(x),n(y)) and (n(y),n(z)) are adjacent Vertlces in L(EQ,,z)(N2)), completing the
pf. O



LINE GRAPH ASSOCIATED WITH EQUIPRIME GRAPH OF A NEARRING 13

MR (p,q) {q,7)
Figure 26: EQ;(N\ Z) Figure 27: L(EQ7(N\ 7))

Proposition 5.3 Let n: Ny — Ny be a surjective homomorphism of nearrings, and let T be an ideal of
Ni. Then the set P = {(n(x),n(y)) | z,y € Z} forms a vertex dominating set in L(EQ, 1) (N2)).

Proof: From earlier work (Theorem 3.6(iii) of Kedukodi et al.) it follows that the edge set
{(z,y) | * € T,y € Ny} forms an edge-dominating set in EQz(Ny).

By Proposition 5.1, the homomorphism n maps this edge-dominating set to EQT](I)(NQ), and hence
its image under 7 is: {(n(z),n(y)) | # € Z,y € N1}. In particular, for z,y € Z, the set P contains vertices
whose incident edges dominate the structure of E(EQW(I) (N3)) through adjacency. Thus, P is a vertex
dominating set. O

Definition 5.1 Let EQ;(N \ Z) denotes the equiprime graph constructed from the elements of a
nearring N excluding its ideal Z. L(EQz(N\ Z)) is a graph in which each vertex corresponds to an
edge in EQ7(N\ Z), and an edge is drawn between two such vertices whenever their corresponding
edges in the equiprime graph meet at a common vertex.

Example 5.1 Let N = {i,p,q,r} be a nearring as defined in Table 2. Let T = {i}. The graph of
EQz(N\Z) and LIEQZ(N\Z)) can be seen in Figure 26 and Figure 27 respectively.

Proposition 5.4 L (EQ;(N\Z)) is a subgraph of L (EQz(N)).

Proposition 5.5 If 7 is an equiprime ideal of the nearring N, then L (EQ;(N\ T)) is an empty graph.

Proof: Suppose for contradiction, that (x,y) is an edge in EQz(N\ Z) for some z,y € N\ Z. Then, by
definition, for some n € N, zny—axn0 € Z or ynzx—yn0 € Z. WLOG, suppose xny —xn0 € T for every
n € N. Since 7 is equiprime, x € 7 or y € Z — a contradiction, as both were chosen outside Z. Thus, no
such edge exists in EQ7(N\ Z), and its line graph must be empty. O

Remark 5.1 The converse of Proposition 5.5 does not necessarily hold. That is, if Z is not equiprime,
L (EQz(N\ 7)) may still be non-empty.
For instance, let Z = {0},(as in example 5.5) which is not equiprime in N since, for every n € N, it
is possible that ynz — yn0 = 0 € Z while y, 2 ¢ Z. Hence, L (EQz(N\ 7)) is clearly not empty.

6. Applications

The study of graph-theoretic structures over nearrings offers both structural clarity and functional
insights in various mathematical and applied domains. In particular, analyzing the interconnections
among L (EQz(N)), £ (Cz(N)), and £ (Gz(N)) reveals patterns that are relevant in algebraic computation,
error analysis, and secure system design.

1. Fault Tracing in Algebraic Computation: In computational models built on nearrings, certain
products yield zero divisors that may indicate computation errors. The graph EQ;(N) identifies
such interactions. Its line graph £ (EQ;(N)) helps trace how these faults could influence neighboring
operations. For instance, when N = Z, and Z = {0}, the connectivity highlights how operations
involving 0 can affect broader computation chains.

2. Structure-Based Cryptographic Analysis: The central graph Cz(N) collects all element pairs
whose product lies in the ideal Z. A dense set of such connections may signal algebraic weakness in
systems relying on nearring-based operations. Examining £ (Cz(N)) aids in identifying and avoiding
structurally predictable patterns in cryptographic routines.
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3. Ideal Classification via Graph Comparison: In some nearrings, it is observed that £ (Gz(N)) =
L (EQz(N)) if and only if the ideal Z satisfies both 3-prime and equiprime properties. This equality
can be utilized in software implementations to algorithmically verify algebraic conditions.

4. Control Structures in Network Topology: As shown in Proposition 4.3, the set P =
{(n(x),n(y)) : =,y € I} serves as a dominating set in £ (EQW(I)(N)). This property is useful

in designing networks where minimal control or observation points can efficiently monitor larger
systems.

5. Error-Correcting Code Design: The boundary region between L(EQ;(N)) and £(Cz(N)) can
be exploited in constructing error-correcting codes. Vertices corresponding to minimal dominating
sets help identify redundancy patterns, ensuring robustness in transmission channels. This provides
an algebraically grounded method of detecting and correcting transmission errors.

6. Complexity Reduction in Algorithmic Verification: When verifying algebraic properties
of large-scale computational systems, direct symbolic computation may be infeasible. By encod-
ing nearring behaviors into £(Gz(N)), algorithmic verification reduces to graph traversal problems.
This translation lowers computational complexity in automated theorem provers and symbolic com-
putation systems.

7. Conclusion

This study presents a detailed graph-theoretic exploration of line graphs arising from different ideal-
based structures over nearrings. By examining the interrelations among L£(Gz(N)), L(EQz(N)), and
L(Cz(N)), we established precise conditions under which these graphs coincide or differ. In particular,
the behavior of these line graphs was characterized based on the nature of the ideal Z—whether it is
3-prime, equiprime, or c-prime.

We introduced new results regarding the structural consequences of properties like zero-symmetry,
total reflexivity, right permutability, and the IFP . Furthermore, the concept of a line graph over the
equiprime graph of N \ Z was formalized and analyzed, offering new insights into the effect of excluding
ideal elements from the vertex set.

Graph homomorphisms induced by nearring homomorphisms were also investigated, demonstrating
how algebraic mappings between nearrings can translate into structural correspondences between their
associated line graphs.

These findings not only deepen the understanding of algebraic-graph theoretic connections in nearring
theory but also open potential applications in cryptographic schemes, secure networks, and algebraic
coding, where ideal-based decomposition and graph equivalence can be leveraged for design and analysis.
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