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Metric Dimension of Signed Unit Graphs

Pranjali*, Balkrishan Agrawal

ABSTRACT: This paper determines the metric dimension of the signed unit graph Gy (R) associated with a
finite commutative ring R. Explicit formulas and bounds have been established for the metric dimension of
signed unit graph for several classes of rings. Further, we have characterized the rings for which the metric
dimension of the signed unit graph is equal to metric dimension of its underlying graph.
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1. Introduction

Unless mentioned or defined otherwise, for all terminology and notation in graph theory and abstract
algebra not specifically mentioned or defined in this paper, the reader is referred to the standard textbooks
[5,7]. In this paper, we consider only finite and commutative rings with 1 # 0.

“Let G = (V(QG), E(Q)) be a finite, simple, undirected and connected graph of order n = |V(G)|. The
distance d(u,v) between two vertices u,v € V(G) is the length of the shortest u-v path in G. A vertex
u € V(G) resolves a pair {z,y} C V(G) if d(u, ) # d(u,y). A set of vertices S C V(G) is a resolving set
of G if every pair of vertices of G is resolved by some vertex in S. The metric dimension of G, denoted
by dim(G) or 8(G), is the minimum cardinality of a resolving set of G. The concept of resolving set and
metric dimension were first introduced by Slater in 1975 [12], and independently by Harary and Melter
in 1976 [6].”

“The graph G equipped with a signature o is called a signed graph, denoted ¥ := (G,0) = (V, E, 0),
where G = (V, E) is the underlying graph, and o : E — {—,+} is a signature function that assigns a
positive or negative sign to each edge. A signed graph is referred to as positive homogeneous (negative
homogeneous) if all its edges are positive (negative), and as non-homogeneous otherwise. The sign of a
path P, denoted o(P), in a signed graph ¥ is the product of the signs of the edges along the path, i.e.,
o(P) = [l.eppyole). A cycle in ¥ is considered positive (negative) if the product of the signs of all
its edges is positive (negative). A signed graph is balanced if every cycle within it is positive. Given
a signed graph X, the negation —> is the signed graph obtained by negating the sign of each edge. A
signed graph X is said to be anti-balanced if its negation —3 is balanced. A graph is called geodetic if
there is a unique shortest path between every pair of vertices. For more information on signed graphs,
refer to the bibliography by Zaslavsky [13].”

Inspired by the applications of signed graphs and unit graphs, recent work by Pranjali et al. [10]
introduced the concept of signed unit graphs associated with rings. They characterized the commutative
rings for which Gx(R) and its negation n(Gx(R)) are balanced. The formal definition is as follows:

Definition 1.1 [10] “A signed unit graph is an ordered pair Gx(R) := (G(R), o), where G(R) is the
unit graph of a commutative ring R and for an edge (a,b) of Gx(R), o is defined as

— , otherwise.”

o(a,) = {+, if aeU(R)orbeU(R);
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The unit graph G(Zg), G(Zs x Z3) and G(Zs x Zs) and their corresponding signed graphs are shown in
Figure 1, Figure 2 and Figure 3, respectively in which positive edges are drawn as solid line segment and
negative edges as dotted line segment.
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—

Figure 1: The unit graph G(Zg) and associated signed unit graph Gx(Zg)

(2,2)

(2,0) (0,2)

2.1 (1,2) (2,1)
(0,0)

(0,1) (1,0)

(1,1)

Figure 2: The unit graph G(Z3 x Z3) and associated signed unit graph Gx(Z3 x Z3)
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Figure 3: The unit graph G(Zs x Zs) and associated signed unit graph Gx(Zs x Zs)

In this work, we focus on determining the metric dimension of signed unit graphs associated with finite
commutative rings. Recently, Shahul K. Hameed et al. [4] introduced the concept of signed distances for
a signed graph ¥ as follows:

Definition 1.2 [4] “Let p(u,v) be the shortest path between two given vertices v and v, and let P(u,v)
be the collection of all such shortest paths. Then

(1) omax(u,v) = —1 if all shortest u-v paths are negative, and +1 otherwise.

(2) omin(u,v) = +1 if all shortest u-v paths are positive, and —1 otherwise.
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(3) dmax(ug U) = O'max(u, U)d(u, ”U).
(4) dmin(u, 'U) = O'mjn(u, v)d(u, ’U).

Two vertices v and v in a connected signed graph ¥ are said to be distance compatible, or simply
compatible, if dpax(u,v) = dmin(u,v).”

Turning to metric dimension of graph; Let G = (V| E) be a finite, simple, and connected graph. The
metric dimension of G is defined as the cardinality of the smallest ordered subset W C V such that for
every pair of distinct vertices u,v € V, there exists a vertex w € W for which the length of the shortest
path from w to u differs from that to v. In other words, W uniquely resolves all pairs of vertices in G.
The concept of metric dimension was first introduced by Slater [12] in 1975 . The formal definition is
given below.

Definition 1.3 [12] “Let G be a connected graph with n vertices, and let W = {wy,ws,...,w,} be a
subset of V(G). For any vertex v € V(G), the representation of v with respect to W is defined as

rlv| W)= (d(v,wl), d(v,ws), ..., d(v,wn)),

where d(v,w;) denotes the shortest distance between v and w; for each ¢ = 1,...,n). If every pair of
distinct vertices of G has a distinct representation with respect to W, then W is called a resolving set of
the graph G.”

The concept of metric dimension was also introduced independently by Harary and Melter [6] in 1976,
where metric generators were referred to as resolving sets. The formal definition is as given:

Definition 1.4 [6] A resolving set of minimum cardinality is called a metric basis of G, and its cardi-
nality is known as the metric dimension of G, denoted by dim(G), B(G), or ma(G).

In view of Definition 1.4, one can encounter the following problem:

Problem 1 For a given positive integer k, determine whether there exists a signed unit graph of order
n(n > k) with metric dimension k. If such graphs exist, characterize the commutative rings whose signed
unit graphs possess metric dimension k.

In general, the metric dimension of a graph satisfies the following inequality:
1 <dim(G) <n—1. (1.1)

Shahul Hameed et al. [4] have established the following inequality for the metric dimension of a signed
graph:

1 < dim(X) < dim(G). (1.2)

That is the metric dimension of a signed graph is less than or equal to that of its underlying graph.
In light of Inequalities (1.1) and (1.2), the metric dimension of a signed unit graph satisfies the
following bounds:

1 < dim(Gx(R)) < dim(G(R)). (1.3)
In light of Inequality (1.3), the following problem arises:
Problem 2 Determine the signed unit graphs and associated commutative rings R for which
dim(Gs(R)) = dim(G(R)).
The following example shows the existence of such ring for which both parameter are equal:

Example 1 Let R = Zg. Then the unit graph G(R) is isomorphic to the complete bipartite graph Ky 4,

~

and since all edges of K4 4 are positive, the signed unit graph satisfies Gx(R) = G(R). Consequently, the
metric dimension is dim(G(R)) =4+ 4 — 2 =6 = dim(Gx(R)).
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There are several applications of metric dimension which have been explored in various fields. For
instance, its use in the navigation of robots within networks is discussed in [8], while applications to
chemistry are presented in [2]. Furthermore, problems in pattern recognition and image processing,
including those involving hierarchical data structures, are examined in [9]. Given the wide range of
contexts in which the problem of distinguishing the vertices of a graph arises, numerous variants of the
original concept of metric dimension have emerged in the specialized literature.

In the upcoming theorems, we address Problem 1.

Theorem 1.1 Let R be a commutative ring with 1 # 0 and let Gx(R) be its signed unit graph. Then
dim(Gx(R)) =1 if and only if R = Zy or Zs.

Proof: It is well known that a connected graph has metric dimension 1 if and only if it is a path P,
with n > 2. Hence, if dim(G(R)) = 1, then G(R) = P,, for some n > 2, in particular every vertex has
degree < 2. Note that in G(R), the degree of 0 is [U(R)|, so |[U(R)| < 2. Now we shall tackle both cases
for [U(R)].

If [U(R)| = 1, then necessarily char(R) = 2. If R is not a field, then R is local with nonzero
maximal ideal M and 1+ M C U(R), provide more than one unit, a contradiction. Hence R is a field of
characteristic 2, so R = Zs. For Zs, the unit graph is Ko = P, which has metric dimension 1.

If |U(R)| = 2, then elements are not self inverse, so char(R) # 2. If R is not a field, then again in the
local case 1 + M C U(R) yields [U(R)| > 2, and in R = R; X Ry one has |U(R)| = |U(R1)||U(R2)| > 4,
both contradictions. Hence R is a (finite) field, say |R| = ¢, with [U(R)| = ¢—1 = 2, s0 ¢ = 3 and
R = Z3. For Zs, the unit graph is the path P3, which has metric dimension 1.

Conversely, for R = Zy and R = Zg, the unit graphs are P, and Ps, respectively and their correspond-
ing signed graphs are all-positive. Therefore, dim(Gx(R)) = 1 in each case. 0

Theorem 1.2 Let R be a commutative ring with 1 # 0 and Gx(R) be its signed unit graph. If R
is isomorphic to any of the following listed rings: Fs or Zs or Falx]/(x?) or Ze or Zz x Zz. Then
dim (Gx(R)) = 2.

Proof: Let R be isomorphic to any of the following listed rings: F5 or Zy or Fa[z]/(2?) or Zg. Then in
view of [11, Theorem 2.2], dim (Gx(R)) = 2, so due to inequality (1.3), dim (Gx(R)) < 2. According
to Theorem 1.1, dim (Gx(R)) # 1. Thus all the listed rings have dim (Gx(R)) = 2. Next if we take
Z3 X Zs3, then its unit graph and corresponding signed unit graph are shown in Figure 2. Consider the
set W =1{(1,1),(1,2),(2,2)}. The metric representations of the vertices with respect to W are:

T(<O’O)|W) = (15 1, 1)7 T((LO)‘W) (1’ 152)7 7‘((0, 1)|W) = (172a2)a
7“((2,0)|W) = (2a2’ 1)7 T((O,2)‘W) =(2,1,1), 7A((27 1)|W) = (272a2)a
r((1,DIW) =(0,2,2), r((1,2)[W)=1(2,0,2), r((2,2)[W)=(2,2,0).

Since each vertex has a unique metric representation, W is a resolving set. Therefore, W is a minimum
resolving set, and dim(G(R)) = 3. In order to find dim(Gx(R)), we consider the set W = {(2,0), (0,2)}.
The metric representations with respect to W are:

T((0,0)|W) = (272)7 T((170)|W) = (27 _1)7 r((1, 1)|W) = (-2, _2)7
7“((1,2)|W) = (727 1)v 7”((2, 1)|W) = (L 72)7 T((2,2)|W) = (1a 1),
r((0, DIW) = (=1,2), »((2,0)[W) = (0,-1), r((0,2)[W) = (-1,0).

Since each vertex of Gx(Zs x Z3) has a unique metric representation, W is a minimum resolving set for
Gyx(R), and hence dim(Gx(R)) = 2. 0

The above result has also drawn our attention that there exists a ring, namely, R = Zs x Zs for which
dim (Gx(R)) < dim (G(R)).
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Theorem 1.3 Let R be a commutative ring with 1 # 0 and Gx(R) be its signed unit graph. If R is
isomorphic to F7 or ¥y or Zs x Fy, then dim (Gg (R)) =3.

Proof: It is known from [11] that finite commutative rings with unit graphs having metric dimension 3
are isomorphic to rings F7, Fy, or Zs x Fy.

For the field F; and Fy, the metric dimension of Gx(R) is same as of G(R) due to homogeneous
positive nature of Gx(R).

For Zy x Fy there does not exist a set W with |W| = 2, which perform as a resolving set for Gx(R).
Thus due to inequality (1.3), dim (Gx(Zy x F4)) = 3. Hence the result. O

2. Metric Dimension of Signed Unit Graphs Over Local Rings

In this section, we determine the metric dimension of the signed unit graphs associated with local
rings.

Theorem 2.1 Let R be a finite local ring with unity. Then,

dim(Gx(R)) = dim(G(R)).

Proof: Let R be a local ring. In view of [10], the signed unit graph Gx(R) is an all-positive signed
graph. Hence,
Gz(R) = G(R),

and thus the metric dimension of the signed unit graph is same as of its unit graph. O

Theorem 2.2 Let R be a finite local ring with nonzero mazimal ideal M, and suppose that |R/M| = q.
Then
dlm(Gg(R)) = |R| —dq.

Furthermore, if R has Zo as a quotient, then

dim(Gx(R)) = |R| — 2.

Proof: Let R be a finite local ring with maximal ideal M # 0 and |R/M| = q. The vertices of the unit
graph G(R) split into ¢ cosets of M. All elements within the same coset have same neighbour, so each
coset forms a twin class. In order to find resolving set atleast | M| — 1 vertices must be chosen from |M]|.
Thus every resolving set has at least ¢(|M| — 1) = |R| — g vertices. Now it remains to show that such
chosen W is minimum resolving set.

Now take all except one element from each coset form the set W with |W| = |R| — ¢. If two vertices
belong to the same coset, one of them lies in W and separates the pair. If they lie in different cosets, a
vertex chosen from the coset (—a)+ M will distinguish any pair « € a+M, y € b+ M with a+M # b+ M.
Hence W resolves G(R), and dim(G(R)) = |R| — q.

In the signed unit graph Gx(R), each edge is positive since no two nonunits are adjacent. Thus,

dim(Gs(R)) = dim(G(R)) = |R| — q.

Suppose R is local ring having Zs as a quotient, then G(R) is complete bipartite K g

. Invoking
2 02

Theorem 2.1, dim(Gx(R)) = dim(G(R)) = |R| — 2. O

R

Theorem 2.3 Let F be a finite field with characteristic p. Then,

dim(GE(F)) = |F| -1

5 if p# 2.
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Proof: Let F be a finite field with characteristic p and the associated signed unit graph is Gx(F). Based
on the different values of p, we have the following cases:

Case 1: When p = 2, then Gx(Fa») is an all positive signed graph whose underlying graph is Kan.
Thus, G(Fan) & Gx(Fan). By the [11, Proposition 2.5]

dlm(G(FQn)) = dlm(Gz(FQn)) = |]F| —1.
Case 2: When p # 2, clearly

"—1
5

Note that in view of the Definition 1.1, Gx(F,») is isomorphic to G(F,»). Hence,

G(Fpn) = Kpn \ {e1,€2,...,6e,}, where k = b

dim(G(Fpn)) = dim(Gx (Fpn)) = |F|2_ L

O

Theorem 2.4 Let R be a finite commutative ring with 1 # 0, and R/J = Zg for some ideal J of R.
Suppose G(R) is connected, then dim(Gx(R)) = dim(G(R)).

Proof: Let R be a finite commutative ring with 1 # 0. Suppose there exists an ideal J with R/J = Z,.
Our aim is to show that dim(Gx(R)) = dim(G(R)). Now there are two cases when R is local or R is non
local

Case 1: Suppose R is local then J is the unique maximal ideal. Then J = J(R) and U = R\ J.
Because R/J = Z,, the vertex set of G(R) is partitioned into the two cosets J and u + J. For z,y in
the same coset we have z + y € J, so no edges lie inside a coset. Every edge of G(R) joins J to u + J,
and at least one end vertex is a unit. Therefore G(R) is complete bipartite and due to [10], Gx(R) is
an all-positive bipartite signed graph. This indicates that a set resolves Gx(R) if and only if it resolves
G(R), and therefore dim(Gx(R)) = dim(G(R)).

Case 2: Next let R be a non local ring then J is not the unique maximal ideal. However J is still
a maximal ideal as R/J = Zs. Now as done in Case 1, R again decomposes into the two cosets J and
u+ J, and no edge lies inside a coset; hence G(R) is bipartite with partite sets J and «+ J. In this case
negative edges of Gx(R) are exactly those between a vertex of J and a zero-divisor of u + J. Now we
shall make use of switching. Consider the switching 7: V(Gx(R)) — {1, —1} defined by

(o) = {—1, ifve (u+J)\U,

+1, otherwise.

Under the above switching function, the sign of every edge (v1,v2) has changed by the factor 7(vy)7(va).
By construction, after switching, the edges incident to a unit remains positive, and the negative edges
incident to a zero-divisors in u+ J are flipped to positive. Thus every edge of switched signed unit graph
becomes positive. Thus the switched signed graph has all-positive edges, so its signed distances equal the
ordinary distances.

For any vertices v, w, the sign of every v—w walk changes under switching by the endpoint factor
7(v)7(w); consequently the switched signed distance ds(v,w) satisfies

ds; (v, w) = 7(v)7(w) ds (v, w),

and the distance is unchanged. Choose W as a resolving set of G(R), then W resolves the switched
signed unit graph Gy (R) as it is an all-positive. From [4] it is known that metric dimension of signed
graph is invariant under switching, by which we conclude that dim(Gx(R)) = dim(Gg(R)). Therefore
dim(Gx(R)) = dim(G(R)).

Thus in both cases we get the desired result. o
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Theorem 2.5 Let R be a finite commutative ring with 1 # 0 and |R| < 12 and R does not have Zg X Zs
as a quotient. Then dim(Gx(R)) € {1,2,3,4,5,6,7}.

Proof: Let R be a finite commutative ring with 1 # 0 and |R| < 12. If the order of R belongs to
{2,3,5,7,11}, then R is isomorphic to a field. By Theorem 2.3, the corresponding metric dimensions are
1,1,2,3, and 5, respectively.

Now, consider the remaining cases where |R| € {4,6,8,9,10}.

For |R| = 4, the possible rings (up to isomorphism) are Zy, Zz X Zz, Fy, and Za[z]/(x?). Among
these, the signed unit graphs of all rings except Zs X Zo are connected. The latter is disconnected and
hence excluded from consideration. The metric dimensions of Gx(Z4) and Gx(Za[x]/(2?)) are both 2,
while dim(Gx(F4)) = 3.

For |R| = 6, by Theorem 1.2, the metric dimension of Gx(Zs) is 2.

When |R| = 8, there exist ten commutative rings with unity, of which six are local and four are non-
local. Among the local rings, five have dim(Gx(R)) = 6, while for the field Fg, we obtain dim(Gg(Fg)) =
7. Among the non-local rings, three namely Zy x Zy, Zo X Zy X Zso, and Zy x Zso[z]/{x?) are excluded
from consideration. For the remaining non-local ring Zs x F4, Theorem 1.3 gives dim(Gx(Za X Fy)) = 3.

For |R| = 9, there are four non-isomorphic rings: Fg, Zg, Z3[x]/(x?), and Z3 x Z3. Using Theorem 2.2,
we have dim(Gx(Zg)) = dim(Gx(Zs[z]/(z?))) = 6. For Fo, dim(Gx(Fy)) = 4, and from Theorem 1.2,
dlm(Gg(Zg X Zg)) = 2.

Finally, when |R| = 10, we have R = Zj. In this case, the set W = {0,1,2,6} forms a resolving set.
For  each  vertex v € V(G(Z10)), the  corresponding  distance  vector
r(v| W)= (d(v,0),d(v,1),d(v,2),d(v,6)) is unique, which implies that dim(Gx(Z19)) = 4.

Hence, for every finite commutative ring R with 1 # 0 and |R| < 12 that does not have Zy x Zs as a
quotient, we have dim(Gx(R)) € {1,2,3,4,5,6,7}. O

Theorem 2.6 Let R be a finite commutative ring with identity and G(R) be its unit graph and let
J = J(R) be its Jacobson radical. Then

max{1, |R| - [R/J]} < dim(Gx(R)) < dim(G(R)) < |R| - 1.

Moreover, the lower bound is tight for every finite local (non-field) ring (J # 0), i.e., when R is local with
residue field k = R/ J,
dim (Gs(R)) = |B| ~ |n].

Proof: The natural homomorphism f : R — R/J partitions R into cosets of J. Elements in the same
cosets are twins in G(R), so any resolving set must contain all but at most one vertex from each coset,
which gives the lower bound |R| — |[R/J|. Since the graph under consideration are connected this gives
dim(G) > 1, hence max{1, |R| — |R/J|}. The upper bound is easily obtained as complete graph has the
largest metric dimension. If R is local with residue field x, then by taking all vertices except one from
each coset r + J resolves the graph, which gives |R| — || O

Remark 2.1 The metric dimension of the signed unit graph formed by the direct product of different
rings can vary; for instance, when R; = Z3 and Ry = Zs, the signed unit graph of Z3 has a metric
dimension of 1, while the metric dimension of the signed unit graph Gx(Zs x Z3) is 2. Next, if Ry & Zy
and Ry = Z4, the signed unit graphs of Zs and Z4 have metric dimensions of 1 and 2 respectively, but
the metric dimension of Gx(Zy x Z4) is not defined as it is disconnected.

Conclusion

In this paper, we have investigated the metric dimension of signed unit graphs G (R) associated with
finite commutative rings. The concept generalize the notion of metric dimension of unit graph. One
of the major outcome of study is that for local rings, the metric dimension of the unit graph and the
associated signed unit graph coincide.
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