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A Model for Solving Uncertain Multi-Objective Solid Transportation Problem

Chaitra M.∗, Vatsala G. A., K. J. Ghanashyam, Prathyusha G.

abstract: Solid transportation problem (STP) extends the classic transportation model into three dimen-
sions by incorporating sources, destinations, and different modes of transport, known as conveyances. This
paper addresses the Uncertain Multi-objective Solid Transportation Problem (UMOSTP), a complex variant
where the goal is to simultaneously minimize total transportation cost and time under conditions of uncer-
tainty. Fuzzy cost coefficients are used here to represent the ambiguity introduced by variables such as route
availability and fluctuating fuel prices. Using the α-cut method, we first translate these fuzzy costs into precise
numerical values. We then use a Modified Vogels Approximation Method (MVAM) to identify a basic feasible
initial solution that satisfies all supply, demand, and conveyance constraints while optimising cost and time.
There is a comparison with the conventional Vogels Approximation Method (VAM). A numerical example il-
lustrating the efficacy of the suggested model reveals that MVAM offers a more practical and efficient solution
for the UMOSTP.
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1. Introduction

Transporting goods from several sources to different locations while meeting supply and demand
restrictions is the primary goal of the transportation problem, a particular kind of linear programming
problem (LPP). The main objective is to reduce the total cost of transportation while maintaining the
capacity constraints of each source and the needs of each destination.

This idea is expanded into a three-dimensional model by the solid transportation problem (STP),
which takes conveyance, demand, and supply aspects into account [5,11,13]. Various forms of trans-
portation are considered in this formulation. STP is known as a multi-objective solid transportation
problem (MOSTP) when it takes into account several objectives [7,12,18,19].

Transporting goods between sources and destinations while minimizing the overall fuzzy transporta-
tion cost is the focus of a fuzzy transportation issue [4]. Identifying one or more fuzzy optimum solutions
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to such issues involving several objective functions is referred to as a fuzzy multi-objective transportation
problem [3].

Transporting heterogeneous goods from warehouses to customer locations via a variety of conveyances
while optimizing many competing objectives is the goal of multi-objective fuzzy solid transportation
(MOFSTP) [1]. This approach is very useful for enterprises that transport a variety of items at the same
time.

The emphasis moves from identifying a single ideal solution to establishing an ideal compromise or
effective answer since the goals of such challenges frequently clash.

Finding the best solution to the MOFSTP is the main goal of this work. Both the classic VAM and
the MVAM are used to solve and evaluate the problem for comparison.

2. Literature Review

A basic challenge in linear programming (LPP) is the transportation problem, which focuses on
distributing goods as efficiently as possible from multiple sources to multiple destinations. The main goal
is to satisfy supply and demand constraints while minimising the overall cost of shipping.

This model is advanced by the STP, which adds a third dimension—conveyances, or the various forms
of transportation that are available. When an STP involves the optimization of more than one objective,
such as both cost and time, it is classified as a MOSTP.

This paper focuses on developing a robust methodology to find such a solution for the FMOSTP.
The performance of the established VAM is compared with a MVAM to demonstrate a more effective
approach.

The STP represents an advanced form of the traditional transportation model by incorporating three
dimensions—sources, destinations, and modes of conveyance—within a single framework. This mul-
tidimensional extension enables the simultaneous consideration of multiple routes, commodities, and
capacities.

Over time, researchers have developed a variety of strategies to optimize STP performance under
different conditions, including deterministic, fuzzy, and uncertain environments.

Shanthi Pandian and Dhanapal [1] introduced the Zero Point Method to obtain optimal solutions for
STP instances, interpreting STP as a balanced transportation problem and applying systematic reduction
and coverage operations to identify zero-cost allocations that meet all constraints.

Sobana and Anuradha [2] formulated a fuzzy solid transportation problem with interval-valued costs,
employing fractional goal programming and converting fuzzy data to crisp equivalents using the α-cut
approach, along with heuristic algorithms for solutions.

Rani and Gulati [3]proposed a fully fuzzy multi-objective multi-item STP and used trapezoidal fuzzy
numbers combined with fuzzy programming to broaden the applicability of transportation and solid
transportation frameworks in multi-item decision-making scenarios.

Dalman and Sivri [5] transformed interval coefficients into deterministic values through weighted-
factor techniques and developed fuzzy goal programming and global criteria approaches to identify opti-
mal solutions. Their findings showed effective management of uncertain STPs with fuzzy mathematical
programming.

Uddin, Miah, Khan, and AlArjani [7] proposed a goal programming approach tailored to uncertain
multi-objective transportation problems by using uncertain normal distributions and fuzzy membership
functions to derive compromise solutions at various confidence

2.1. Synopsis of the Review

The publications are grouped based on the type of transportation problem the year they were published
and the MCDM method used. The table below gives a summary of all the studies related to STP, FSTP
and UMOSTP
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Year Reference TP STP FSTP MOTP UMOSTP Fuzzy Set Membership Function Multi-Obj/Dec B/UB TP Algorithm/Tech
2010 1 ✓ ✓ B Zero Point Method
2018 2 ✓ ✓ ✓ ✓ UB Frac. Goal Prog.
2016 3 ✓ ✓ ✓ ✓ ✓ B Fuzzy Programming
2023 4 ✓ ✓ ✓ ✓ B Goal Programming
2017 5 ✓ ✓ ✓ ✓ ✓ ✓ UB Membership func.
2020 6 ✓ ✓ ✓ B MVAM
2021 7 ✓ ✓ ✓ ✓ UB Goal Prog.
2016 8 ✓ B VAM
2017 9 ✓ ✓ ✓ UB Fuzzy Programming
2019 10 ✓ ✓ B Budget constraint
2022 11 ✓ ✓ UB Int. fuzzy logic
2023 12 ✓ ✓ ✓ B/UB Rough MOFC TP
2017 13 ✓ ✓ UB Profit maximization
2021 14 ✓ ✓ B Hierarchical GP
2020 15 B Waste mgmt TP
2012 16 ✓ UB GP, imprecise env.
2021 17 ✓ B Fuzzy GP
2023 18 ✓ ✓ ✓ ✓ UB Int. fuzzy FCSTP
2013 19 ✓ UB Alt. methods comp.

Table 1: Summary of key literature addressing transportation and solid transportation problems.
B=Balanced; UB=Unbalanced; TP=Transportation Problem; etc.

3. Preliminaries and Definitions

3.1. Triangular Fuzzy Number:

A triangular fuzzy number is one of the most commonly used types of fuzzy numbers, represented by
three points

A = µA(y) =



0, y < a1
y − a1
a2 − a1

, a1 ≤ y < a2

a3 − y

a3 − a2
, a2 ≤ y < a3

0, y ≥ a3

(3.1)

a1=The lower limit (the smallest possible value).
a2: The modal value (the most likely value or the peak of the triangle).
a3: The upper limit (the largest possible value).

3.2. α-cut Method:

Let A be a fuzzy set and α ∈ [0, 1] a real number. The α-cut set Aα is a crisp set defined as:

Aα = [a1 + α(a2 − a1), a3 − α(a3 − a2)]

where a1 + α(a2 − a1) is the lower bound and a3 − α(a3 − a2) is the upper bound. This technique
is used to convert fuzzy coefficients into crisp values for computation and graphical representation is as
shown in Figure1.

Figure 1: α-cut Method: (a) α = 0, (b) α = 0.5, (c) α = 1

3.3. Vogel’s Approximation Method (VAM):

VAM is used to compute the initial basic feasible solution for transportation problems, including STP.
The penalty for each row and column is calculated as the difference between the two smallest shipping
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costs. The variable with the lowest cost in the row or column with the largest penalty receives as much
allocation as possible, and the satisfied row or column is crossed out. This iterative process continues,
recalculating penalties at each step, until only one row or column is left for allocation.

3.4. Modified Vogel’s Approximation Method (MVAM):

MVAM enhances VAM by yielding better, more optimal initial solutions. The process involves:

• Phase 1: Problem Formulation. Define the origins (sources), destinations, and conveyances,
along with their respective supply, demand, and capacity constraints. Construct the
three-dimensional cost matrix cijk. Ensure the problem is balanced (total supply = total demand
= total conveyance); if not, add dummy variables.

• Phase 2: Cost Matrix Reduction. To identify the most cost-effective routes, reduce the cost
matrix. For each row (origin), find the minimum cost element and subtract this value from all other
elements in that row. This creates a new reduced cost matrix where the most favourable routes
have a cost of zero.

• Phase 3: Iterative Allocation. Systematically assign quantities xijk to cells until all constraints
are met.

– Select a Cell: Choose a cell (i, j, k) for allocation, typically starting with a cell that has a zero
cost in the reduced matrix.

– Determine Allocation Quantity: Allocate the maximum possible quantity, which is the mini-
mum of the remaining supply at origin i, demand at destination j, and capacity of conveyance
k.

Allocation = min(Current Supplyi,Current Demandj ,Current Capacityk)

– Update Constraints: Subtract the allocated amount from the respective supply, demand, and
capacity.

– Eliminate Satisfied Constraints: If a row, column, or conveyance’s capacity is reduced to zero,
remove it from further consideration.

– Repeat: Continue this process until all supplies and demands are fully allocated.

• Phase 4: Calculation of Total Cost. Once the allocation is complete, calculate the total
transportation cost by summing the products of the allocated quantities and their corresponding
costs from the original cost matrix:

Total Cost =
∑
i,j,k

(xijk × cijk)

4. Mathematical Model for Multi-Objective Fuzzy Solid Transportation Problem
(MOFSTP)

The mathematical model for a MOFSTP is defined as follows:

Objective Function:

minZt =

p∑
u=1

q∑
v=1

r∑
w=1

auvwxuvw

where t = 1, 2, . . . , T corresponds to different objective functions (e.g., cost, time).
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Subject to the Constraints:

q∑
v=1

r∑
w=1

xuvw = Su, u = 1, 2, . . . , p

p∑
u=1

r∑
w=1

xuvw = Dv, v = 1, 2, . . . , q

p∑
u=1

q∑
v=1

xuvw = Cw, w = 1, 2, . . . , r

xuvw ≥ 0 for all u, v, w

where:

• auvw : fuzzy or uncertain transportation cost (or time, etc.)

• xuvw : amount shipped from source u to destination v by conveyance w

• Su : supply at source u

• Dv : demand at destination v

• Cw : capacity of conveyance w

• p, q, r : total number of sources, destinations, and conveyances, respectively

The problem is said to be balanced if

p∑
u=1

Su =

q∑
v=1

Dv =

r∑
w=1

Cw

Note: The coefficients auvw, Su, Dv, and Cw may all be fuzzy or uncertain.
The tabular form of the MOFSTP is usually constructed with all these coefficients placed for each

source-destination-conveyance cell as shown in table2

D1 D2 D3

C1 C2 C3 C1 C2 C3 C1 C2 C3

S1 a111 a112 a113 a121 a122 a123 a131 a132 a133 S1′

S2 a211 a212 a213 a221 a222 a223 a231 a232 a233 S2′

S3 a311 a312 a313 a321 a322 a323 a331 a332 a333 S3′

C1′ C2′ C3′ C1′ C2′ C3′ C1′ C2′ C3′

D1′ D2′ D3′

Table 2: Symbolic representation of the Solid Transportation Problem

Where, aijk are all transportation cost values, S1′, S2′, S3′ are all supply values, D1′, D2′, D3′ are all
destination values, and C1′, C2′, C3′ are conveyance capacity values.

5. Illustrative Example

Example: Consider a multi-objective fuzzy solid transportation that has two objective
functions.
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minZ1 =(2, 4, 6)x111 + (3, 5, 9)x112 + (3, 7, 11)x113 + (3, 5, 7)x121 + (7, 9, 11)x122 + (5, 9, 13)x123

+ (5, 7, 9)x131 + (9, 11, 17)x132 + (7, 11, 19)x133 + (4, 6, 8)x211 + (6, 10, 16)x212 + (4, 8, 18)x213

+ (3, 7, 11)x221 + (10, 14, 18)x222 + (8, 10, 20)x223 + (2, 6, 12)x231 + (7, 11, 19)x232 + (8, 12, 20)x233

+ (1, 5, 11)x311 + (3, 5, 13)x312 + (7, 19, 23)x313 + (3, 9, 15)x321 + (7, 11, 13)x322 + (7, 15, 21)x323

+ (4, 10, 16)x331 + (6, 14, 22)x332 + (10, 12, 14)x333

minZ2 =(2, 6, 8)x111 + (3, 7, 9)x112 + (4, 8, 12)x113 + (4, 6, 10)x121 + (8, 10, 14)x122 + (7, 9, 13)x123

+ (6, 8, 14)x131 + (8, 14, 20)x132 + (9, 11, 21)x133 + (3, 7, 11)x211 + (6, 12, 16)x212 + (3, 5, 9)x213

+ (2, 6, 8)x221 + (7, 15, 19)x222 + (6, 12, 14)x223 + (4, 6, 10)x231 + (8, 12, 16)x232 + (9, 13, 17)x233

+ (3, 5, 9)x311 + (2, 8, 14)x312 + (9, 15, 19)x313 + (4, 8, 10)x321 + (7, 9, 13)x322 + (10, 14, 16)x323

+ (6, 10, 16)x331 + (8, 12, 14)x332 + (10, 14, 16)x333

Subject to the Constraints:

• Sources: S1 = (20, 40, 60), S2 = (40, 70, 90), S3 = (10, 50, 70)

• Destinations: D1 = (10, 40, 80), D2 = (50, 60, 70), D3 = (10, 60, 70)

• Conveyances: C1 = (10, 50, 70), C2 = (30, 50, 70), C3 = (20, 60, 80)

Now, applying the α-cut method to the above two objective functions, the lower bound and upper
bound (LB & UB) of classic cost coefficient values of MOFSTP are given below in Tables (2)-(25), which
satisfy the equilibrium condition. Applying the VAM and MVAM to each objective function, we obtain
an optimal solution. Below presents the optimal solution values for the respective objective function
under each table.

Objective Function Z1

Lower bound values

Transportation cost values when α = 0

Table 3: Transportation cost values.

Reduced Transportation Table
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Table 4: Reduced transportation cost values.

The optimal solution of the lower bound classic values of Z1 when α = 0 is

• Applying the general procedure of VAM, the optimal solution is 420

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x121 = 20, x212 =
10, x222 = 20, x223 = 10, x333 = 10 and the total minimum transportation cost is 460

Transportation cost values when α = 0.5

Table 5: Transportation cost values.

Reduced transportation Table is

Table 6: Reduced transportation cost values.

The optimal solution of the lower bound classic values of Z1 when α =0.5 is

• Applying the general procedure of VAM, the optimal solution is 860

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x121 = 30, x231 =
5, x222 = 15, x213 = 25, x223 = 10, x332 = 30 and the total minimum transportation cost is 850



8 Chaitra M., Vatsala G. A., K. J. Ghanashyam, Prathyusha G.

Transportation cost values when α = 1

Table 7: Transportation cost values.

Reduced transportation Table is

Table 8: Reduced transportation cost values.

The optimal solution of the lower bound classic values of Z1 when α =1 is

• Applying the general procedure of VAM, the optimal solution is 1490

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x121 = 40, x231 =
10, x213 = 40, x223 = 20, x332 = 50 and the total minimum transportation cost is 1470

Upper Bound Values

Transportation cost values when α =0

Table 9: Transportation cost values.

Reduced transportation table is
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Table 10: Reduced transportation cost values.

The optimal solution of the upper bound classic values of Z1 when α =0 is

• Applying the general procedure of VAM, the optimal solution is 2880

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x112 = 60, x221 =
70, x212 = 10, x213 = 10, x333 = 70 and the total minimum transportation cost is 2750

Transportation cost values when α = 0.5

Table 11: Transportation cost values.

Reduced transportation Table is

Table 12: Reduced Transportation cost values.

The optimal solution of the upper bound classic values of Z1 when α =0.5 is

• Applying the general procedure of VAM, the optimal solution is 2215

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x121 = 50, x212 =
60, x222 = 5, x232 = 5, x213 = 50, x333 = 60 and the total minimum transportation cost is 1925
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Transportation cost values when α = 1

Table 13: Transportation cost values.

Reduced transportation Table is

Table 14: Reduced Transportation cost values.

The optimal solution of the upper bound classic values of Z1 when α =1 is

• Applying the general procedure of VAM, the optimal solution is 1490

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x121 = 40, x231 =
10, x213 = 40, x223 = 20, x332 = 50 and the total minimum transportation cost is 1470

Objective function Z2

Lower Bound Values

Transportation cost values when α =0

Table 15: Transportation cost values.

Reduced transportation Table is
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Table 16: Reduced Transportation cost values.

The optimal solution of the lower bound classic values of Z2 when α =0 is

• Applying the general procedure of VAM, the optimal solution is 370

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x121 = 20, x212 =
10, x222 = 20, x223 = 10, x333 = 10 and the total minimum transportation cost is 400.

Transportation cost values when α = 0.5

Table 17: Transportation cost values.

Reduced transportation Table is

Table 18: Reduced Transportation cost values.

The optimal solution of the lower bound classic values of Z2 when α =0.5 is

• Applying the general procedure of VAM, the optimal solution is 860

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x121 = 30, x231 =
5, x222 = 15, x212 = 25, x232 = 10, x333 = 30 and the total minimum transportation cost is 895
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Transportation cost values when α = 1

Table 19: Transportation cost values.

Reduced transportation Table is

Table 20: Reduced Transportation cost values.

The optimal solution of the lower bound classic values of Z2 when α =1 is

• Applying the general procedure of VAM, the optimal solution is 1580

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x121 = 40, x231 =
10, x213 = 40, x223 = 20, x332 = 50 and the total minimum transportation cost is 1510

Upper Bound Values

Transportation cost values when α =0

Table 21: Transportation cost values.

Reduced transportation Table is
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Table 22: Reduced Transportation cost values.

The optimal solution of the upper bound classic values of Z2 when α =0 is

• Applying the general procedure of VAM, the optimal solution is 3030

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x111 = 60, x231 =
10, x222 = 70, x213 = 10, x333 = 70 and the total minimum transportation cost is 2950

Transportation cost values when α = 0.5

Table 23: Transportation cost values.

Reduced transportation Table is

Table 24: Reduced Transportation cost values.

The optimal solution of the upper bound classic values of Z2 when α =0.5 is

• Applying the general procedure of VAM, the optimal solution is 2195

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x121 = 50, x221 =
10, x213 = 60, x223 = 5, x233 = 5, x332 = 60 and the total minimum transportation cost is 2065
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Transportation cost values when α = 1

Table 25: Transportation cost values.

Reduced transportation Table is

Table 26: Reduced Transportation cost values.

The optimal solution of the upper bound classic values of Z2 when α =1 is

• Applying the general procedure of VAM, the optimal solution is 1580

• Using the methodology of MVAM, the optimal solution to the given MOFSTP is x121 = 40, x231 =
10, x213 = 40, x223 = 20, x332 = 50 and the total minimum transportation cost is 1510

6. Illustrations of Results

The Multi-Objective Fuzzy Solid Transportation gives the feasible and compromise solutions for both
the lower and upper bound cost coefficient values of multi-objective function.

Table 27: Illustrations of results.

Visualization of Results
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Figure 2: Comparision Results between VAM and MVAM

7. Conclusion

The obtained results clearly demonstrate that the MOFSTP provides both feasible and compromise
solutions corresponding to the lower and upper bound cost coefficients of the multi-objective functions.
A comparative analysis between the conventional VAM and MVAM reveals that the MVAM consistently
yields improved (lower) transportation costs across all α – levels (α = 0, 0.5 and 1). This indicates that
the MVAM produces solutions that are not only closer to the optimal but also more efficient in addressing
the uncertainty and imprecision inherent in fuzzy transportation parameters. Therefore the MVAM can
be considered a more reliable and efficient heuristic for obtaining superior initial feasible solutions in
MOFSTP.
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