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A Model for Solving Uncertain Multi-Objective Solid Transportation Problem

Chaitra M.* Vatsala G. A., K. J. Ghanashyam, Prathyusha G.

ABSTRACT: Solid transportation problem (STP) extends the classic transportation model into three dimen-
sions by incorporating sources, destinations, and different modes of transport, known as conveyances. This
paper addresses the Uncertain Multi-objective Solid Transportation Problem (UMOSTP), a complex variant
where the goal is to simultaneously minimize total transportation cost and time under conditions of uncer-
tainty. Fuzzy cost coefficients are used here to represent the ambiguity introduced by variables such as route
availability and fluctuating fuel prices. Using the a-cut method, we first translate these fuzzy costs into precise
numerical values. We then use a Modified Vogels Approximation Method (MVAM) to identify a basic feasible
initial solution that satisfies all supply, demand, and conveyance constraints while optimising cost and time.
There is a comparison with the conventional Vogels Approximation Method (VAM). A numerical example il-
lustrating the efficacy of the suggested model reveals that MVAM offers a more practical and efficient solution
for the UMOSTP.

Key Words: VAM, a-cut Method, triangular fuzzy numbers, fuzzy cost coefficients, UMOSTP.

Contents
1 Introduction 1
2 Literature Review 2
2.1 Synopsis of the Review . . . . . . . . . e 2
3 Preliminaries and Definitions 3
3.1 Triangular Fuzzy Number: . . . . . . . .. ... o 3
3.2 a-cut Method: . . . . . . Lo 3
3.3 Vogel’'s Approximation Method (VAM): . . . . . . ... . . 3
3.4 Modified Vogel’s Approximation Method (MVAM): . . . . . ... .. ... ... .. .... 4
4 Mathematical Model for Multi-Objective Fuzzy Solid Transportation Problem (MOF-
STP) 4
5 Illustrative Example 5
6 Illustrations of Results 14
7 Conclusion 15

1. Introduction

Transporting goods from several sources to different locations while meeting supply and demand
restrictions is the primary goal of the transportation problem, a particular kind of linear programming
problem (LPP). The main objective is to reduce the total cost of transportation while maintaining the
capacity constraints of each source and the needs of each destination.

This idea is expanded into a three-dimensional model by the solid transportation problem (STP),
which takes conveyance, demand, and supply aspects into account [5,11,13]. Various forms of trans-
portation are considered in this formulation. STP is known as a multi-objective solid transportation
problem (MOSTP) when it takes into account several objectives [7,12,18,19].

Transporting goods between sources and destinations while minimizing the overall fuzzy transporta-
tion cost is the focus of a fuzzy transportation issue [4]. Identifying one or more fuzzy optimum solutions
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to such issues involving several objective functions is referred to as a fuzzy multi-objective transportation
problem [3].

Transporting heterogeneous goods from warehouses to customer locations via a variety of conveyances
while optimizing many competing objectives is the goal of multi-objective fuzzy solid transportation
(MOFSTP) [1]. This approach is very useful for enterprises that transport a variety of items at the same
time.

The emphasis moves from identifying a single ideal solution to establishing an ideal compromise or
effective answer since the goals of such challenges frequently clash.

Finding the best solution to the MOFSTP is the main goal of this work. Both the classic VAM and
the MVAM are used to solve and evaluate the problem for comparison.

2. Literature Review

A Dbasic challenge in linear programming (LPP) is the transportation problem, which focuses on
distributing goods as efficiently as possible from multiple sources to multiple destinations. The main goal
is to satisfy supply and demand constraints while minimising the overall cost of shipping.

This model is advanced by the STP, which adds a third dimension—conveyances, or the various forms
of transportation that are available. When an STP involves the optimization of more than one objective,
such as both cost and time, it is classified as a MOSTP.

This paper focuses on developing a robust methodology to find such a solution for the FMOSTP.
The performance of the established VAM is compared with a MVAM to demonstrate a more effective
approach.

The STP represents an advanced form of the traditional transportation model by incorporating three
dimensions—sources, destinations, and modes of conveyance—within a single framework. This mul-
tidimensional extension enables the simultaneous consideration of multiple routes, commodities, and
capacities.

Over time, researchers have developed a variety of strategies to optimize STP performance under
different conditions, including deterministic, fuzzy, and uncertain environments.

Shanthi Pandian and Dhanapal [1] introduced the Zero Point Method to obtain optimal solutions for
STP instances, interpreting STP as a balanced transportation problem and applying systematic reduction
and coverage operations to identify zero-cost allocations that meet all constraints.

Sobana and Anuradha [2] formulated a fuzzy solid transportation problem with interval-valued costs,
employing fractional goal programming and converting fuzzy data to crisp equivalents using the a-cut
approach, along with heuristic algorithms for solutions.

Rani and Gulati [3]proposed a fully fuzzy multi-objective multi-item STP and used trapezoidal fuzzy
numbers combined with fuzzy programming to broaden the applicability of transportation and solid
transportation frameworks in multi-item decision-making scenarios.

Dalman and Sivri [5] transformed interval coeflicients into deterministic values through weighted-
factor techniques and developed fuzzy goal programming and global criteria approaches to identify opti-
mal solutions. Their findings showed effective management of uncertain STPs with fuzzy mathematical
programming.

Uddin, Miah, Khan, and AlArjani [7] proposed a goal programming approach tailored to uncertain
multi-objective transportation problems by using uncertain normal distributions and fuzzy membership
functions to derive compromise solutions at various confidence

2.1. Synopsis of the Review

The publications are grouped based on the type of transportation problem the year they were published
and the MCDM method used. The table below gives a summary of all the studies related to STP, FSTP
and UMOSTP



Year Reference TP STP FSTP
2010 1 v v
2018 2 v v
2016 3 v
2023 4 v
2017 5 v
2020 6 v
2021 7
2016 8 v
2017 9 v
2019 10
2022 11
2023 12
2017 13 v
2021 14 v
2020 15
2012 16
2021 17
2023 18
2013 19
Table 1:
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MOTP UMOSTP
v
v
v
v
v
v v
v
' v

Fuzzy Set Membership Function

v v
v v
v v
v v
v

v

' '

B=Balanced; UB=Unbalanced; TP=Transportation Problem; etc.

3. Preliminaries and Definitions

3.1. Triangular Fuzzy Number:

Multi-Obj/Dec B/UB TP Algorithm/Tech

B Zero Point Method

UB Frac. Goal Prog.
v B Fuzzy Programming

B Goal Programming
v UB Membership func.
v B MVAM
v uB Goal Prog.

B VAM

UB Fuzzy Programming
v B Budget constraint
v UB Int. fuzzy logic
v B/UB Rough MOFC TP

UB Profit maximization
v B Hierarchical GP

B Waste mgmt TP
v UB GP, imprecise env.
v B Fuzzy GP

UB Int. fuzzy FCSTP
v UB Alt. methods comp.

Summary of key literature addressing transportation and solid transportation problems.

A triangular fuzzy number is one of the most commonly used types of fuzzy numbers, represented by

three points

A=paly) =

Ov Yy <ax
—a

u7 a1 <y <as

as — aq

a —

37?/7 a2§y<a3

az — az

0, Yy > as

a1=The lower limit (the smallest possible value).
as: The modal value (the most likely value or the peak of the triangle).
a3z: The upper limit (the largest possible value).

3.2. a-cut Method:

Let A be a fuzzy set and « € [0,1] a real number. The a-cut set A, is a crisp set defined as:

Ay = [a1 + alaz — a1), az — alaz — az)]

where a; + a(az — a1) is the lower bound and a3 — (a3 — az) is the upper bound. This technique
is used to convert fuzzy coefficients into crisp values for computation and graphical representation is as

shown in Figurel.

of an a-cutata=0

— Fuzzy setA
T crisp Set A, (support)
- a=0

Ao ={X €U | ualX) 2DRS [a:, 23]

Membership Grade js(x)

Grade i)

— Fuzzyseta

Crisp Set Aye

- a=05

Generalized Representation of an a-cut at a = 0.5

Aq=(a: + gl — 3), a5\ alas — )]

Generalized Representation of an a-cut at a = 1
— Fumzyseta

Crisn Set Ay = (o)
- am1

A= {XEU | palx) =1} = {3

B
Universal Set (U)

Figure 1: a-cut Method: (a) «

a
Universal set (U)

0, (b) «

3.3. Vogel’s Approximation Method (VAM):

o
Universal Set (U)

VAM is used to compute the initial basic feasible solution for transportation problems, including STP.
The penalty for each row and column is calculated as the difference between the two smallest shipping
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costs. The variable with the lowest cost in the row or column with the largest penalty receives as much
allocation as possible, and the satisfied row or column is crossed out. This iterative process continues,
recalculating penalties at each step, until only one row or column is left for allocation.

3.4. Modified Vogel’s Approximation Method (MVAM):

MVAM enhances VAM by yielding better, more optimal initial solutions. The process involves:

e Phase 1: Problem Formulation. Define the origins (sources), destinations, and conveyances,
along with their respective supply, demand, and capacity constraints. Construct the
three-dimensional cost matrix ¢;j;. Ensure the problem is balanced (total supply = total demand
= total conveyance); if not, add dummy variables.

e Phase 2: Cost Matrix Reduction. To identify the most cost-effective routes, reduce the cost
matrix. For each row (origin), find the minimum cost element and subtract this value from all other
elements in that row. This creates a new reduced cost matrix where the most favourable routes
have a cost of zero.

e Phase 3: Iterative Allocation. Systematically assign quantities z;;; to cells until all constraints
are met.

— Select a Cell: Choose a cell (i, j, k) for allocation, typically starting with a cell that has a zero
cost in the reduced matrix.

— Determine Allocation Quantity: Allocate the maximum possible quantity, which is the mini-
mum of the remaining supply at origin ¢, demand at destination j, and capacity of conveyance
k.

Allocation = min(Current Supply;, Current Demand;, Current Capacity,)
— Update Constraints: Subtract the allocated amount from the respective supply, demand, and
capacity.

— FEliminate Satisfied Constraints: If a row, column, or conveyance’s capacity is reduced to zero,
remove it from further consideration.

— Repeat: Continue this process until all supplies and demands are fully allocated.
e Phase 4: Calculation of Total Cost. Once the allocation is complete, calculate the total

transportation cost by summing the products of the allocated quantities and their corresponding
costs from the original cost matrix:

Total Cost = Z (Zijk X Cijk)
1,5,k

4. Mathematical Model for Multi-Objective Fuzzy Solid Transportation Problem
(MOFSTP)

The mathematical model for a MOFSTP is defined as follows:
Objective Function:

p q T
HliIth = § § § QypwTuvw
u=1v=1w=1

where t = 1,2,...,T corresponds to different objective functions (e.g., cost, time).
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Subject to the Constraints:

q

Zwaszu, u=1,2,...,p

v=1w=1
p T
g g xuvw:va 1):1,2,...,(]
u=1w=1
p q
E E Tuow = Cw, w=1,2,...,7
u=1lv=1

Tyvw > 0 for all u, v, w
where:
® ayyy ¢ fuzzy or uncertain transportation cost (or time, etc.)

® X, : amount shipped from source u to destination v by conveyance w

Sy @ supply at source u
e D, : demand at destination v
e (), : capacity of conveyance w
e p,q,r : total number of sources, destinations, and conveyances, respectively
The problem is said to be balanced if
P q T
> Su=3 Di=3 Cu
u=1 v=1 w=1

Note: The coefficients ayyw, Su, Dy, and Cy, may all be fuzzy or uncertain.
The tabular form of the MOFSTP is usually constructed with all these coefficients placed for each
source-destination-conveyance cell as shown in table2

D1 D2 D3
Ci|Cc2|C3|Cl|C2|C3|Cl]|C2|C3

/
S1 | a1 | a2 | @113 | G121 | @122 | @123 | @131 | @132 | @133 | S1

!
S2 | ag11 | @212 | @213 | G221 | @222 | @223 | G231 | @232 | @233 | S2

S3 | asi1 | as12 | @313 | as21 | asez | ases | assi | asse | asss | S3
Cr|c2|c3g|cr|jce|cs|cr|c2|cy
D1/ D2’ D3’

Table 2: Symbolic representation of the Solid Transportation Problem

Where, a;ji, are all transportation cost values, S1’, 52, S3’ are all supply values, D1’, D2/, D3’ are all
destination values, and C1’, C2’, C3’ are conveyance capacity values.
5. Illustrative Example

Example: Consider a multi-objective fuzzy solid transportation that has two objective
functions.



min Z1 =(2,4,6)z111 + (3,5,9)x112 + (3,7,11)z113 + (3,5, 7)x121 + (7,9, 11)z122 + (5,9, 13) 2123
+(5,7,9)z131 + (9,11, 17) 2132 + (7,11, 19)2135 + (4, 6,8)2211 + (6,10, 16)z212 + (4, 8, 18)2213
+ (3,7,11)x221 + (10, 14, 18) 222 + (8,10, 20)x223 + (2,6, 12)x231 + (7,11,19)xz232 + (8, 12,20)x233
+ (1,5,1)xs11 + (3,5,13)z312 + (7,19,23)x313 + (3,9, 15) 2321 + (7,11, 13) 2322 + (7, 15,21) 2303
+(

4, 10, 16).’17331 + (6, 147 22)%332 =+ (10, 12, 14).’1}333

min Zs =(2,6,8)z111 + (3,7,9)112 + (4,8, 12)z113 + (4,6, 10)x121 + (8,10, 14)T129 + (7,9, 13) 2128
+ (6,8, 14)z131 + (8,14, 20)@132 + (9,11, 21) 2135 + (3,7, 11) 2211 + (6,12, 16)2212 + (3,5, 9)213
+(2,6,8)z221 + (7,15,19) @222 + (6,12, 14) 2203 + (4, 6,10) 2231 + (8,12, 16)z2s2 + (9, 13, 17) 233
4 (3,5,9)as11 + (2,8, 14)zs512 + (9, 15, 19)x313 + (4,8, 10) 2321 + (7,9, 13) 2322 + (10, 14, 16) 2323

+ (6, 10, 16)93331 + (8, 12, 14)1‘332 +4 (10, 14, 16)$333

Subject to the Constraints:

e Sources: S7 = (20,40, 60), So = (40,70,90), S3 = (10,50, 70)

e Destinations: Dy = (10,40, 80), Dy = (50,60, 70), D3 = (10, 60, 70)
e Conveyances: C7 = (10, 50,70), Cy = (30,50, 70), C3 = (20, 60, 80)

Now, applying the a-cut method to the above two objective functions, the lower bound and upper
bound (LB & UB) of classic cost coefficient values of MOFSTP are given below in Tables (2)-(25), which
satisfy the equilibrium condition. Applying the VAM and MVAM to each objective function, we obtain
an optimal solution. Below presents the optimal solution values for the respective objective function

under each table.
Objective Function 7;

Lower bound values

Transportation cost values when a =0

CHAITRA M., VaTsaLA G. A., K. J. GHANASHYAM, PRATHYUSHA G.

Reduced Transportation Table

D1 D2 D3
cilele |alalc|c [ca|cz| suply
> 23| 33|25 5|9 7|2
S2 sl6| a3 |wls]|2f2]s]4
S3 3| 73|77 4] 6f10]10
Conveyance | 5 [ 30| 20 | 20 [ 30| 20 | 20 | 30 [ 20
Demad 10 50 10
Table 3: Transportation cost values.
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DI D2 D3
cilea|a |[calo|ca|c|c|c]| swly
ST
ol 1| 1 |1 s|3]3] 7] 5]2
§
S 2la|l 21 |s|6] o] 5| 6|4
53 o2 6 266 3] 5] 9]0
Conveyance | ) | 30| 20 20 30| 20| 20 | 30 | 20
Demand 10 50 10

Table 4: Reduced transportation cost values.

The optimal solution of the lower bound classic values of Z; when a =0 is

e Applying the general procedure of VAM, the optimal solution is 420

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is 191 = 20, x212 =
10, w920 = 20, 223 = 10, 2333 = 10 and the total minimum transportation cost is 460

Transportation cost values when o = 0.5

D1 D2 D3
clala |lalalalalo || sy
51
3|al 5 |a]s |3 0| 9 30
) - - —
5 8 6 5 12 9 9 10 335
53 sla|l 3|6 |o ||l 7 ]w0]u 30
Conveyance | 35 | 49 | 40 | 35 [ 40 | 40 | 35 | 40 | 40
Demand 25 55 35

Table 5: Transportation cost values.

Reduced transportation Table is

DI D2 D3
cilala |lalalalale || sy
ST
0 2 1| sa]s]| 7] s 30
) - - —
1 4 2 1 8 5 0 5 6 35
83 ol 1] w36 s|a]7]s 30
Conveyance | 35| 40| 40 [ 35| 40 | 40 | 35 | 40 | 40
Demand 25 55 35 i

Table 6: Reduced transportation cost values.

The optimal solution of the lower bound classic values of Z; when a =0.5 is
e Applying the general procedure of VAM, the optimal solution is 860

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is 121 = 30, 231 =
5, o9 = 15, T913 = 25, X923 = 10, 2330 = 30 and the total minimum transportation cost is 850
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Transportation cost values when o = 1

DI D2 D3
ci|lc|c |c|ca|ci|ct |2 ]c3 | Supply
ot 4] 5 7| 5| ef of 7| 11| 1140
e 6l 0] s| 7| 14] 10] 6| 11| 12|70
S3 s|os| 19| of 11| 15| 10 14] 1250
Conveyance | 5 | 50| 69 [ 50 | 50| 60 | 50 | 50 | 60
— 40 60 60
Table 7: Transportation cost values.
Reduced transportation Table is
DI D2 D3
ci|lc|cs |er|ca|ci|ct |2 |c3 | Supply
ot ol 1| 3 [ 1|55 [3]7] 7]
52 ola|l 21 ]s]a]lo|s] 6]
33 0olo| 1426w s5]oe 50
Conveyance | 55 | 50| 60 [ 50 [ 50 [ 60 | 50 | 50 | 60
Demand 40 60 60

Table 8: Reduced transportation cost values.

The optimal solution of the lower bound classic values of Z1 when a =1 is

e Applying the general procedure of VAM, the optimal solution is 1490

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is 191 = 40, 2931 =
10, x213 = 40, 223 = 20, 2332 = 50 and the total minimum transportation cost is 1470

Upper Bound Values
Transportation cost values when a =0

Cijc2|G3 Ci|jca|ci|cCct[c2|cs Supply

51
6| of nl| 7| 11| 13| 9| 17| 19]60

§
52 sl 16| 18| 11| 18] 20| 12| 19] 20/ 90
53 1| 13| 23| 15| 13| 21| 16] 2| 14|70

Conveyance | 50| 90| g0 [ 70 | 70 [ 80| 70 | 70 | s0
Demand 30 70 70

Table 9: Transportation cost values.

Reduced transportation table is
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D1 D2 D3
ci|cafcs |ci|ca|cs|ct|ca|cs| Supply
o 3| s [ a sl 73 ]u]3]e0
= gl 03wl sluln]e
& 2|l a2l s |ufs ]
Conveyance | 50 70| g0 | 70 [ 70 [ 80| 70| 70 | s0
Demand 80 70 70

Table 10: Reduced transportation cost values.

The optimal solution of the upper bound classic values of Z1 when o =0 is
e Applying the general procedure of VAM, the optimal solution is 2880

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is x112 = 60, x921 =
70,2212 = 10,2213 = 10,2333 = 70 and the total minimum transportation cost is 2750

Transportation cost values when o = 0.5

D1 D2 D3
cilea|c |a|le|a|c ||| sy
o s|o7| o 6] 10 11| s 14| 15| 5o
52 7013 3] of 16] 15| o] 15| 16] s0
33 s| o 2| 12| | 18| 13| 18] 3] e
Conveyance | ¢, | 60| 70 [ 60 [ 60 [ 70 | 60 | 60 | 70
Demand 60 65 65

Table 11: Transportation cost values.

Reduced transportation Table is

D1 D2 D3
clala |alolalale || sy
o o2 s 1|56l 3] e]lw] 50
52 ole6] 6 [2]o]s]2 9 %0
53 o1 | | afa]w]|s5]w]s 60
Conveyance | ¢ | 60| 70 |60 | 60 | 70 | 60 | 60 | 70
e 60 65 65

Table 12: Reduced Transportation cost values.

The optimal solution of the upper bound classic values of Z1 when o« =0.5 is
e Applying the general procedure of VAM, the optimal solution is 2215

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is 121 = 50, x212 =
60, 990 = 5, Ta32 = 5, 913 = 50, x333 = 60 and the total minimum transportation cost is 1925
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Transportation cost values when o = 1

D1 D2 D3
ci|ca|cs [ci|c2|c3|ct |2 |c3 | Supply
S1
4| 5 71 5| of of 7| 11| 11]40
.
52 6| 10| 8| 7| 14| 10| 6| 11| 12]70
83 s|os| 1o of 11| 15| 10| 14| 12]50
Conveyance | 50 | 50| 60 |50 | 50| 60 | 50 | 50 | 60
— 40 60 60
Table 13: Transportation cost values.
Reduced transportation Table is
D1 D2 D3
ci|ca|c3 [ci|c2|c3|ct|c2|c3 | Supply
S1
0| 1] 3 15|53 7] 7|4
52 -
0|l 4] 2|1 ]|8]|a]of| 5] 6]70
53 oo 14| a6 0] s5]o 50
Conveyance | 55 | 50 [ 60 | 50 | 50 | 60 | 50 | 50 | 60
Demand 40 60 60

Table 14: Reduced Transportation cost values.

The optimal solution of the upper bound classic values of Z1 when o =1 is
e Applying the general procedure of VAM, the optimal solution is 1490

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is 2191 = 40, 2931 =
10, z913 = 40, 993 = 20, 2332 = 50 and the total minimum transportation cost is 1470

Objective function 7,
Lower Bound Values
Transportation cost values when o =0

D1 D2 D3
clala |alo|a|ca | |c | sy
51
2| 3| 4| 4| s| 7| s| s| o2
,
52 3| 6| 3| 2| 7| 6| 4| s| ol 40
53 3| 2| of 4| 7| 10| s| s| 10]10
Conveyance | 3o | 30 20 [ 20| 30| 20| 20| 30| 20
Denand 10 50 10

Table 15: Transportation cost values.

Reduced transportation Table is
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D1 D2 D3
cilca|cs |cr|cafci|cr|c2|c3| Supply
51
ol 1| 226|535 a|s6] 7|2
52 -
- 1la|l 1t o5 |a]2]6] 740
53 ilo|l 725 |s| a6 s /|0
Conveyance | 5 | 35| 20 [ 203020 20| 30 | 20
Demand 10 50 10

Table 16: Reduced Transportation cost values.

The optimal solution of the lower bound classic values of Z2 when o« =0 is
e Applying the general procedure of VAM, the optimal solution is 370

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is 191 = 20, x912 =
10, 2992 = 20, 2923 = 10, x333 = 10 and the total minimum transportation cost is 400.

Transportation cost values when o = 0.5

D1 D2 D3
clala [alolalala | s
P! sl s| 6| s| o s| 7| 1] 0] 30
52 s| o 4| 4| 1| o 5| o u| ss
53 4| s| 2| | 8| 12| s| w0 2| 30
Conveyance | 35 | 4o | 40 [ 35 [ 40 [ 40 [ 35| 40 | 40
e 25 55 35

Table 17: Transportation cost values.

Reduced transportation Table is

DI D2 D3
clala |alola|ale || sy
ST
ol 1| 2|1 |s|als]7]s 30
53 - - —
ils] ool 7 ]s]1]6]3 55
53 ol 1| s |2a|s|a]s6]s 30
Conveyance | 35 | 40| 40 |35 | 40 | 40 | 35 | 40 | 40
—— 25 55 35

Table 18: Reduced Transportation cost values.

The optimal solution of the lower bound classic values of Z2 when o =0.5 is
e Applying the general procedure of VAM, the optimal solution is 860

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is 121 = 30, 231 =
5, 09 = 15, T912 = 25, X932 = 10, x333 = 30 and the total minimum transportation cost is 895
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Transportation cost values when o = 1

D1 D2 D3
cilca|c |ei|ea|cs|el |2 |cs | supply
o 6| 7| 8| 6| 10| o | 14] 11]40
52 1l | 5| | 15| 2| 6] 2] 3]
53 s| s 15| 8| of 14] 10] 12] 1450
Conveyance | 50| 50| 60 [ 50 | 50| 60 | 50 | 50 | 60
Demand 10 60 60

Table 19: Transportation cost values.

Reduced transportation Table is

D1 D2 D3
ci{ca|cs |Jer|cafce3 et [c2|c3 | Supply
o ol 1| 2 o443 |2]8]5]4
52 2|7 o 1w 17 ] s
N o3| w3 a]o]s] 7] 95
Conveyance | 50| 50| 60 | 50 | 50 | 60 | 50 | 50 | 60
Demand 0 60 60

Table 20: Reduced Transportation cost values.

The optimal solution of the lower bound classic values of Z2 when a =1 is
e Applying the general procedure of VAM, the optimal solution is 1580

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is 2191 = 40, 2931 =
10, z913 = 40, 993 = 20, 2332 = 50 and the total minimum transportation cost is 1510

Upper Bound Values
Transportation cost values when a =0

DI D2 D3
clala |alalalale || sy
ST
s| of 12| 10| 14| 13| 12| 20| 2160
_
52 1n|16| of s| 1o 14| 10] 16| 17] 90
53

o] 14 1] 10 13| 16| 16| 14| 16|70

Conveyance | 45 | 70| g0 | 70 | 70 [ 80 | 70 | 70 | 80
Demand 80 70 70

Table 21: Transportation cost values.

Reduced transportation Table is
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DI D2 D3
cilca|cs |ci|cafci|cr|c2|c3| Supply
ot 0l 1 | 2 26|56 |12]13]60
52 s s 1 Jofuls6]2]s8] 9%
N ols| w1 lal7]7]s5]7]0
Conveyance | 4 | 70| g0 |70 [ 70 | s0 | 70 | 70 | s0
— 20 70 70

Table 22: Reduced Transportation cost values.

The optimal solution of the upper bound classic values of Z2 when o =0 is
e Applying the general procedure of VAM, the optimal solution is 3030

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is 111 = 60, x231 =
10, x900 = 70, 213 = 10, 2333 = 70 and the total minimum transportation cost is 2950

Transportation cost values when o = 0.5

DI D2 D3
clala |alo|a|ca ||| sy
o 7| 8| 10| s| 2] u| 1] 17| 18] 50
52 ol 1a| 7| 7| 17| 3] s 14] 15]s0
= 7| 17| of u] 15| 3] 13] 15]e0
Conveyance | ¢4 [ 60| 70 | 60 | 60 | 70 | 60 | 60 | 70
i 60 63 63

Table 23: Transportation cost values.

Reduced transportation Table is

D1 D2 D3
cilaale [alolalalc || sw
o ol 1] 31 s|a]a]w]o]s
e 2|l 7] o o] 1] 7] s |0
83 ola|l w24 ]s]|6][s6] s |60
Conveyance | o | 60| 70 [ 60 [ 60 | 70 | 60 | 60 | 70
— 60 65 65

Table 24: Reduced Transportation cost values.

The optimal solution of the upper bound classic values of Z2 when a =0.5 is
e Applying the general procedure of VAM, the optimal solution is 2195

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is 121 = 50, 221 =
10, x913 = 60, T223 = 5, X233 = 5, X332 = 60 and the total minimum transportation cost is 2065
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Transportation cost values when o = 1

D1 D2 D3
cilca|cs |cr|c2|c3|ct [c2 |3 | Supply
S1
6| 7 8| 6| 10| of 8| 14| 1140
.
52 7| 12 50 6| 15| 12| 6| 12] 13[70
83 s|os| 15| s| of 14| 10| 12| 1450
Conveyance | 50 | 50 | 60 | 50 | 50 [ 60 | 50 [ 50 | 60
— 40 60 60
Table 25: Transportation cost values.
Reduced transportation Table is
D1 D2 D3
cilca|c3 |cr|c2|c3 et [c2 |3 | Supply
S1
0 2 o a3 2] ¢8| 5|4
52 ) 7 7 7 9
2 o |1 |w| 7| 1] 78]
53 o3| w03 afo|ls] 7] 9|50
Conveyance | 55 | 50| 60 | 50 | 50 | 60 | 50 | 50 | 60
Demand 40 60 60

Table 26: Reduced Transportation cost values.

The optimal solution of the upper bound classic values of Z2 when o =1 is

e Applying the general procedure of VAM, the optimal solution is 1580

e Using the methodology of MVAM, the optimal solution to the given MOFSTP is x151 = 40, 231 =
10, z913 = 40, 923 = 20, 2332 = 50 and the total minimum transportation cost is 1510

6. Illustrations of Results

The Multi-Objective Fuzzy Solid Transportation gives the feasible and compromise solutions for both

the lower and upper bound cost coefficient values of multi-objective function.

IMlustrative
Example Cost Values VAM MVAM
a=0 a=035 a=1 a=0 a=035 a=1
Lower Bound of Z1 20 360 1490 460 850 1470
1 Lower Bound of Z2 370 860 1580 400 895 1510
Upper Bound of Z1 2880 2215 1490 2750 1925 1470
Upper Bound of Z2 3030 2195 1580 2950 2065 1510

Table 27: Illustrations of results.

Visualization of Results
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Efficiency Comparison for Objective Z1: VAM vs. MVAM Efficiency Comparison for Objective Z2: VAM vs. MVAM

Figure 2: Comparision Results between VAM and MVAM

7. Conclusion

The obtained results clearly demonstrate that the MOFSTP provides both feasible and compromise
solutions corresponding to the lower and upper bound cost coefficients of the multi-objective functions.
A comparative analysis between the conventional VAM and MVAM reveals that the MVAM consistently
yields improved (lower) transportation costs across all @ — levels (o = 0, 0.5 and 1). This indicates that
the MVAM produces solutions that are not only closer to the optimal but also more efficient in addressing
the uncertainty and imprecision inherent in fuzzy transportation parameters. Therefore the MVAM can
be considered a more reliable and efficient heuristic for obtaining superior initial feasible solutions in
MOFSTP.
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