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Exploring Rainbow Coloring and Connectivity Analysis in Hybrid Graph Structures
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abstract: The study of connectivity in complex networks is a vital area within graph theory and network
science. One notable concept that enhances secure and reliable communication is rainbow coloring, here, the
edges are colored to ensure that between any two vertices, one can find a path where each edge has a different
color. To achieve this condition, the minimum quantity of colors needed is defined as the rainbow connection
number.This measure reflects the strength and fault tolerance of network structures and has practical relevance
in areas such as secure data transmission and efficient routing protocols. The research focuses on understanding
the role of structural characteristics of graphs on their rainbow connectivity. We provide new insights and
results regarding hybrid graph structures like Tribun graph Tn, Chain graph is a point shackle K4Pn, Diamond
ladder graph Dln. The results contribute to a deeper understanding of rainbow connection in graph models
and contribute to the development of resilient and well-structured communication networks.
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1. Introduction

In graph theory the first and most well-known problems is graph coloring. In 1852, De Morgan wrote a
letter to his friend Hamilton, mentioning that one of his students had noticed an interesting fact: only four
colors were needed to color the counties on a map of England, such that no neighboring counties do not
shared the same color. This observation marked the beginning of the concept known as graph coloring [1].

Graph coloring refers to the process of assigning colors to certain elements of a graph. Several forms
of graph coloring exist, such as total coloring, vertex coloring, b-coloring, interval coloring, edge coloring,
and rainbow coloring. In rainbow coloring, colors are allocated to the edges do not share the same color to
the adjacent two edges — each edge in a path must be uniquely colored to maintain the rainbow property.

Rainbow connectivity, introduced by Chartrand and co-authors in 2008, offers an interesting extension
of classical graph connectivity. In this framework, the goal is to assign color the graph edges of a connected
graph so that joined the two vertices is a path in which all edges carry distinct colors [2].For graph G is
a nontrivial connected, an edge coloring can be represented as a function c : E(G) → {1, 2, . . . , k}, where
k takes the values natural number indicating the total colors employed. Unlike proper edge coloring, this
approach allows adjacent edges to share the same color. Every edge in every path has a distinct color is
called as a rainbow path. If each pair of distinct u and v vertices in the graph is connected by exists at
least one rainbow path, is termed rainbow connected. The least number of colors required to ensure the
property of rainbow connection number, denoted by rc(G) [8]. Li and Sun, Provided an extensive survey
covering various forms, algorithms, and open problems in rainbow connectivity, including edge vs. vertex
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versions and strong rainbow connectivity [3].

L. Sunil Chandran et.al investigate the relationship of rainbow connection number relates to both
vertex and edge connectivity like Strengthened bounds and Verified bounds are tight for certain graph
families and proved conjectured limits for chordal and girth 7 graphs [4]. Annika et.al studies the rainbow
connection number rc(G) in Erdos–Renyi random graphs. The authors focus on the threshold behaviour
of the property rc(G) ≤ r, where r = fixed integer. They show that for r = 2, the graph achieving
diameter is equal to 2 and rainbow connection 2 occurs nearly simultaneously. However, for r is greater
then equal to 3, this does not hold. They introduce a new threshold and demonstrate that it serves as
an upper bound for the rainbow connection number [5].

Srinivasa Rao and Murali, in [6] and [7], studied the properties of the rainbow connection number
rc(G) as well as src(G) the strong rainbow connection number for various for various types of graphs,
including the stacked book graph, grid graph, and prism graph. Their study additionally examined how
these graphs behave under rainbow coloring and analysed their critical structural properties related to
rainbow connectivity. Magfiroh et al. [9] investigated the concept of b-coloring, a refined form of proper
vertex coloring, each color group includes at least one vertex that is adjacent to vertices in all other
color classes. The study focused on determining the exact b-chromatic number for several special graphs,
including the king’s tour graph Kn,m, tribun graph Tn, diamond ladder graph Dln, three-cycle ladder
graph Tn, and chain graph K4Pn. The authors established the values of the b-chromatic number for
these graphs using pattern recognition and axiomatic deductive methods, contributing novel results to
the ongoing exploration of graph coloring parameters.

In recent years, several new graph-coloring measures have been studied. Chandran et al. [10] intro-
duced the concept of the very strong rainbow connection number, denoted as vsrc(G) and derived tight
bounds and complexity results for various graph families. Bai et al. [11] developed an efficient method
for determining the rainbow disconnection number in 2-trees, confirming prior conjectures. Bushaw,
Johnston and Rombach [12] formalized the rainbow saturation number and analyzed its behavior across
different graph classes, contrasting it with known saturation parameters.

Modern communication systems often rely on robust and fault-tolerant architectures. Graph mod-
els such as the Tribun graph, chain-shackle K4Pn graph, and diamond ladder graph provide structural
analogs for:
- Multi-tier service architectures (Tribun graphs)
- Linear modular networks or block-chain consensus structures (Chain-Shackle K4Pn)
- Layered redundant topologies like in sensor grids and neural interconnects (Diamond ladder graphs)

Studying the rainbow connectivity of these structures ensures optimal path diversity for resilience,
helps in estimating security margins in routing protocols, and assists in developing efficient coloring al-
gorithms for online and offline applications.

In this research manuscript, we gain the rainbow connection number of the hybrid graph structures
like Tribun graph, Diamond ladder graph, and Chain graph, which presents a challenging problem. We
focus on designing edge coloring that guarantee rainbow connectivity between all pairs of vertices. The
results illustrate how these structures influence the least number of colors needed. This work enhances
the current understanding of rainbow coloring in complex networks and may serve as a foundation for
future research in this area.

2. Definitions

Definition 2.1. For a connected graph G, the rainbow connection number rc(G) is bounded both
below and above by fundamental graph parameters. Specifically, it satisfies the inequality:

diam(G) ≤ rc(G) ≤ E(G)
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Here, diam(G) represents the diameter of the graph, while E(G) denotes the number of edges in G

Definition 2.2. Tribun graph Tn
Tribun graph Tn is a connected graph, consisting of three groups of vertices: xj for 1 ≤ j ≤ n, yj for
1 ≤ j ≤ n + 1 and zj for 1 ≤ j ≤ 2n + 1. The edges in this graph are given by: each zj is connected
to z(j + 1) forming a continuous path, each vertex xj is linked to its corresponding vertex zj and each
vertex yj is also connected to its corresponding vertex zj . This structure results in a layered graph with
between the xj , yj and zj vertex graph.

Definition 2.3. Chain graph is a point shackle K4Pn

A chain graph also knows as a point shackle is a graph formed by connecting multiple duplicates of the
complete graph K4 in a linear sequence. It is denoted by shack K4Pn. when n counts the K4 graphs
are used to connect them. Each K4 in the sequence shares a vertex with the adjacent K4 blocks through
shared vertices.

Definition 2.4. Diamond ladder graph Dln
A diamond ladder graph Dln is a structured graph formed by combing a traditional ladder graph with
additional diagonal and cross connections. It consists of three set of vertices: xj and zj for 1 ≤ j ≤ n
representing the two vertical sides of the ladder and yj for 1 ≤ j ≤ 2n serving as internal connections.
The edges include connections between consecutive xj and zj vertices to form the ladder sides, edges
between each xj and its corresponding zj and edges from each xj and zj to two corresponding yj vertices.
Additionally certain yj vertices are connected in sequence, giving the graph its distinctive diamond shaped
internal structure.

3. Figures

Figure 1, 2 & 3 represents Tribun graph, Chain graph is a point of shackle and Diamond ladder graph.

 

Figure 1: Tribun graph T3
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Figure 2: Chain graph is a point of shackle K4P3

 

Figure 3: Diamond ladder graph Dl3

4. Some Results of Standard Graphs

Theorem 4.1. When graph G can be defined as Tribun graph Tn, then

rc(G) =

{
3n
2 + 1 if n is even
3n+1

2 if n is odd

Proof: The Tribun graph Tn, defined for n ≥ 2, represents a connected graph whose vertices are spec-
ified by V (Tn) = {xj : 1 ≤ j ≤ n + 1} ∪ {yj : 1 ≤ j ≤ n} ∪ {zj : 1 ≤ j ≤ 2n + 1} and its edges set is
described by E(Tn) = {zjzj+1 : 1 ≤ j ≤ 2n} ∪ {xjzj : 1 ≤ j ≤ 4n+ 1} ∪ {yjzj : 1 ≤ j ≤ 2n}

The graph G assumed to be connected. Which means that, for every pair of distinct vertices
u, v ∈ V (G), there exists a always one path connecting u and v. This property guarantees that the
rainbow connection number is both finite and properly defined.

To demonstrate the result, we consider it in two separate cases.

Case (i): Consider the situation when n is an even number.

Step (i): We determine the diameter of a graph G, denoted diam(G), is the maximum distance be-
tween any pair of vertices, and it provide a lower bound for the rainbow connection number
rc(G) ≥ diam(G).

In this graph, we observe that
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diam(G) = 3n
2 + 1

Hence, it follows that

rc(G) ≥ 3n
2 + 1

Step (ii): In order to determine an upper bound, we aim to construct an edge coloring for G using 3n
2 +1

colors, such that the graph remains rainbow connected.

We define a coloring function

c : E(G) → {1, 2, 3, . . . , 3n
2 + 1}

Colors are allocated to edges in such a way that in graph every pair of vertices is connected by a
path where two edges are don’t assigned the same color.

xizi = i for i = 1

yizi = i+ 1 for i = 1

zizi+1 = i for i = 1 and 2

xizi+1 = i for i = 1

xizi = i for i = 2

zizi+1 = i for 3 ≤ i ≤ n

zizi+1 = i+4
2 for 4 ≤ i ≤ n

xizi+1 = 3i−2
2 , for 3 ≤ i ≤ n

xiz2i−1 = 3i
2 − 1 for 2 ≤ i ≤ n

yiz2i+1 = 3i
2 − 1 for 1 ≤ i ≤ n

yiz2i−1 = xiz2i+1 = 3i
2 + 1 for 2 ≤ i ≤ n

xiz2i =
3i
2 for 2 ≤ i ≤ n

Thus we conclude that

rc(G) ≤ 3n
2 + 1

From step (i) and step (ii), we have

3n
2 + 1 ≤ rc(G) ≤ 3n

2 + 1

Thus, the Tribun graph has a rainbow connection number equal to 3n
2 + 1.

Case (ii): Consider when n is an odd number.



6 Madhu N. R. Srinivasa Rao K., Manjunath N. K., Thirumalesh, Sangeetha B.

Step (i): We define the diameter of a graph G, denoted by diam(G), as the maximum distance between
any two vertices in G. In other words, it is the largest value of the shortest-path distance taken over
all pairs of vertices u, v ∈ V (G). This quantity is significant because it establishes a fundamental
lower bound for the rainbow connection number of the graph; that is, no edge-coloring can achieve
a rainbow connection number rc(G) ≥ diam(G).

In this graph, we find that

diam(G) = 3n+1
2

Hence, it abbreviate that

rc(G) ≥ 3n+1
2

Step (ii): To establish an upper bound, we attempt to construct an edge coloring of G using 3n+1
2 colors,

so the graph remains rainbow connected.

Next, we define a coloring function

c : E(G) → {1, 2, 3, . . . 3n+1
2 }

We will construct an edge-coloring of the graph G such that for any pair of vertices u, v ∈ V (G),
there exists at least one path connecting u and v in which all edges are assigned distinct colors; in
other words, no two edges along this path receive the same color.

xizi = i for i = 1

yizi = i+ 1 for i = 1

zizi+1 = i for i = 1 and , 2

xizi+1 = i for i = 1

xizi = i for i = 2

zizi+1 = i for 3 ≤ i ≤ n

zizi+1 = i+4
2 for 4 ≤ i ≤ n

xizi+1 = 3i−1
2 for 3 ≤ i ≤ n

xiz2i−1 = 3i−1
2 for 2 ≤ i ≤ n

yiz2i+1 = 3i−1
2 for 1 ≤ i ≤ n

yiz2i−1 = xiz2i+1 = 3i+1
2 for 2 ≤ i ≤ n

xiz2i =
3i−3
2 for 2 ≤ i ≤ n

Thus we conclude that

rc(G) ≤ 3n+1
2

From step (i) and step (ii), we have

3n+1
2 ≤ rc(G) ≤ 3n+1

2

Thus, Tribun graph has a rainbow connection number equal to 3n+1
2 .



Exploring Rainbow Coloring and Connectivity Analysis ... 7

2

Theorem 4.2. When graph G is defined as Chain graph is a point of shackle K4Pn then rc(G) = n.

Proof: A chain graph K4Pn is a connected graph whose vertex set is defined as V (K4Pn) = {xj :
1 ≤ j ≤ n} ∪ {yj : 1 ≤ j ≤ n + 1} ∪ {zj : 1 ≤ j ≤ n} and its edge defined as E(K4Pn) =
xjyj+1 : 1 ≤ j ≤ n} ∪ {zjyj : 1 ≤ j ≤ n} ∪ {yjyj+1 : 1 ≤ j ≤ n} ∪ {xizj : 1 ≤ j ≤ n.

This graph forms a chain like connection of sub graphs where each unit resembles a K4 complete
graph connected through common vertices in sequences.

Upon examination, it is clear that the graph G possesses the property of connectivity. It means, given
any pair of distinct vertices within the graph, one can always possible to identify at least one path that
links them together. This characteristic guarantees that no vertex is isolated and that every vertex can be
reached from any other vertex. Such a feature is essential, as it provides the foundation for implementing
a rainbow coloring on the graph.

Step (i): To determine the diameter of the graph, which is the largest distance between the any two
vertices measured along the shortest possible paths. The diameter is fundamental in determining
the least number of colors necessary to achieve a proper rainbow coloring. Thus, it provide a natural
lower limit for rc(G).

Since the diameter of G be is n, denoted by

diam(G) = n

From this we infer that

rc(G) ≥ n

Step (ii): In order to identify the sufficient number of colors, we proceed by constructing an edge col-
oring that utilizes n different colors. The objective is to the edges to apply colors so that, for all
the pair of vertices, there exists possibly at least one path in so all edges receive different colors,
thereby forming a rainbow path.

Coloring function is defined as

c : E(G) → {1, 2, 3, . . . , n}

xjzj = yjyj+1 = yjzj = zjzj+1 = xjyj+1 = j for 1 ≤ j ≤ n

From the above assignment of colors to the edges of G,

it is clear that
rc(G) ≤ n

By combing the step (i) and step (ii), we have

n ≤ rc(G) ≤ n

If both bounds are coincide. We establish with certainty that

rc(G) = n
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2

Theorem 4.3. When the graph G is considered as a Diamond Ladder Graph Dln then rc(G) = n+2.

Proof: A diamond ladder graph Dln is family of connected graph. Diamond ladder graph has a ver-
tex set V (Dln) = {xj : 1 ≤ j ≤ n} ∪ {yj : 1 ≤ j ≤ 2n} ∪ {zj : 1 ≤ j ≤ n} and the edge set
E(Dln) = {xjxj+1 : 1 ≤ j ≤ n − 1} ∪ {zjzj+1 : 1 ≤ j ≤ n − 1} ∪ {xjzj : 1 ≤ j ≤ n} ∪ {xjyj : 1 ≤ j ≤
2n} ∪ {yjzj : 1 ≤ j ≤ 2n} ∪ {y2jy2j+1 : 1 ≤ j ≤ n− 1}.

Let graph G is connected. It means, for every pair of distinct vertices u, v ∈ V (G), there exist a path
that link u to v. As a result, the rainbow connection number rc(G) is defined and finite. Since all the
vertices are connected with in the graph.

Step (i): we aim to calculate the diameter of the graph, which we denote by diam(G). This represents
the greatest distance among all shortest paths connecting any two vertices in the graph.

In this case of this graph the diameter is

diam(G) = n+ 2

The value for the rainbow connection number, leading the inequality

rc(G) ≥ diam(G)

Therefore, we can state that

rc(G) ≥ n+ 2

Step (ii): TWe construct an edge coloring using precisely n + 2 distinct colors to rainbow connection
number rc(G) for upper bound. The coloring is defined by the following function

c : E(G) → {1, 2, 3, . . . , n+ 2}

Colors are systematically assigned to the edges of the graph G in such a way that for each pair of
distinct vertices u, v ∈ V (G), there exist at least one path connecting u and v in which every edge
along the path is colored differently. This ensures that no two edges on such a path share the same
color, thereby creating a rainbow path between the vertices and satisfying the conditions required
for a rainbow-connected graph..

zjy2j−1 = 1 for 1 ≤ j ≤ n

xjy2j = 1 for 1 ≤ j ≤ n

zjy2j = 2 for 1 ≤ j ≤ n

xjy2j−1 = 2 for 1 ≤ j ≤ n

xjxj+1 = j + 2 for 1 ≤ j ≤ n

yjyj+1 = j + 1 for 2 ≤ j ≤ n

zjzj+1 = j + 2 for 1 ≤ j ≤ n

xjzj = j + 1 for 1 ≤ j ≤ n

Based on this construction we conclude that
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rc(G) ≤ n+ 2

From the bounds established in step (i) and step (ii)
We now have

n+ 2 ≤ rc(G) ≤ n+ 2

When both bounds coincide,
Therefore we deduce that rainbow connection number of Diamond ladder graph is

rc(G) = n+ 2

2

5. Conclusion

The study examines the role and impact of rainbow coloring in the context of network analysis, em-
phasizing its role in ensuring distinct and reliable communication paths between nodes.

The results obtained for

(i) When graph G can be defined as Tribun graph Tn, then

rc(G) =

{
3n
2 + 1 if n is even
3n+1

2 if n is odd

(ii) When graph G is defined as Chain graph is a point of shackle K4Pn then rc(G) = n.

(iii) When the graph G is considered as a Diamond Ladder Graph Dln then rc(G) = n+ 2.
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