
Bol. Soc. Paran. Mat. (3s.) v. 2026 (44) 4 : 1–19.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.80120

Triangular Norm-Based Interval Valued L-Fuzzy Soft Ideals in Nearrings

Jagadeesha B.∗, Sabina Rachana Crasta

abstract: This study explores interval-valued L-fuzzy soft ideals within nearrings, where this structure
is established over a complete bounded lattice. The approach employs interval-valued triangular norms and
conorms as tools for handling graded membership and uncertainty. The algebraic characteristics of these
ideals are examined, together with their behavior under nearring homomorphisms and the corresponding
coset structures. We also analyze the relationship between such ideals and their associated level sets, thereby
extending the scope of fuzzy soft algebraic theory. The framework not only brings together earlier notions of
fuzzy and soft ideals but also introduces threshold-based flexibility, which broadens its range of applicability.
Possible applications include decision-making, reasoning under uncertainty, and computational intelligence,
particularly in contexts where algebraic precision and soft set-based modeling need to be combined.
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1. Introduction

In the current era of rapid digitalization, the collection of massive volumes of data has become both
common and convenient. However, such accessibility often comes with an inherent challenge: the data
obtained is frequently imprecise, vague, or uncertain. Uncertainty naturally arises in real-world problems
from areas such as social sciences, medical diagnostics, engineering, and economics.Traditional crisp
mathematical models that rely on binary classifications are often inadequate for effectively capturing and
processing such uncertainty.

To address these challenges, various uncertainty-handling frameworks have been proposed, including
fuzzy sets, rough sets, and probabilistic models. While each approach provides unique insights, none
alone is sufficient to tackle the wide spectrum of practical problems involving uncertainty. To bridge this
gap, Molodtsov [22] introduced soft set theory in 1999, which offers a parameterized approach well-suited
for decision-making and computational tasks. The adaptability of soft sets arises from their ability to
encode multiple parameters, thereby making them more flexible in modeling vague and complex data.

The fusion of soft and fuzzy set concepts led to the development of fuzzy soft sets, first introduced
by Maji, Biswas, and Roy [20]. This framework enhanced modeling capabilities by incorporating graded
membership levels. Subsequent research extended these ideas in various directions. Mujumdar and
Samata [24] explored the benefits of this theory in decision analysis, whereas Yang et al. [26] developed
an interval-valued formulation to handle intricate uncertainty scenarios. Collectively, these works demon-
strate the growing importance of combining soft and fuzzy methodologies to achieve more comprehensive
uncertainty representation.
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Significant progress has also been made in analyzing the algebraic aspects of soft and fuzzy frameworks.
Aktas and Cagman [2] initiated research on soft groups, which was later generalized to fuzzy soft groups
by Aygunoglu and H. Aygun [3]. Subsequent developments include the introduction of soft rings and the
study of fuzzy soft ideals in nearrings by Acar et al. [1] and Inan and Ozturk [12], respectively. Ozturk
and Inan [25] later examined soft subnearrings and their fuzzy analogues. These contributions highlight
the adaptability of soft and fuzzy algebraic ideas within traditional algebraic frameworks.

In parallel, lattice-based fuzzy frameworks have drawn significant attention. For instance, Kedukodi
et al. [15] studied L-fuzzy prime ideals in nearrings, while Kuncham et al. [18] explored interval-valued
L-fuzzy cosets. Additional interconnections between fuzzy, rough, and soft sets have been investigated
in several studies [8,9,23,16]. Jagadeesha et al. [14] further enriched this direction by developing fuzzy
implication operators on lattices. Such works indicate the importance of hybrid models where lattice
theory, fuzzy structures, and algebraic systems complement one another.

Motivated by these works, the present paper proposes a new algebraic framework called Interval
Valued L-Fuzzy Soft Ideals (IVLF soft ideals) in nearrings. Unlike earlier approaches, our construction
is defined over a complete bounded lattice L, which need not be distributive or totally ordered. The
framework is established using interval-valued t-norm and conorms, thereby extending the scope of soft
ideals to capture graded membership within interval uncertainty.

This generalized setting unifies several earlier notions of fuzzy, soft, and interval-valued ideals, while
also introducing new algebraic properties. We analyze their stability under nearring homomorphisms,
define corresponding soft cosets, and examine the role of level sets in this context. Beyond theoretical
generalization, these results pave the way for potential applications in decision-making, approximate rea-
soning, and computational intelligence, where both algebraic rigor and uncertainty-handling flexibility
are essential. Moreover, the study offers a unifying perspective that connects interval-valued fuzzy meth-
ods with soft set parameterization, and thereby provides a foundation for further applications in machine
learning, information sciences, and algebraic cryptographic systems [6,7,10].

Furthermore, this investigation bridges the conceptual gap between algebraic and logical representa-
tions of uncertainty by extending soft ideals to an interval-valued L-fuzzy environment. The integration
of lattice operations with triangular norms ensures that the proposed framework supports both algebraic
closure and flexible uncertainty aggregation. Unlike conventional fuzzy or soft ideals, IVLF soft ideals
accommodate partial order and interval membership simultaneously, enabling deeper structural analy-
sis. The study not only generalizes earlier fuzzy ideal constructions but also enhances interpretability in
computational systems that rely on graded truth values. Finally, the methodological approach adopted
here lays a theoretical foundation for future extensions in multi-parameter algebraic systems and hybrid
intelligent models.

2. Preliminaries

We recall only the essential definitions required for our work. For a more details on lattices we refer
to [10], on triangular norms to [17], on fuzzy ideals in nearrings to [6,7], and on soft sets to [22,20,21]

Let (L,∧L,∨L) denote a complete bounded lattice, with its minimal and maximal elements m and M
respectively. The ordering relation on L is expressed by ≤L.

Definition 2.1 [11]

A t-norm on L is a mapping T : L × L → L that satisfies commutativity, associativity, and
monotonicity in both arguments. The element M serves as the identity of T . The dual concept,
called a t-conorm ζ : L × L → L, takes m as its identity. A t-norm T is said to be idempotent if
T (p, p) = p ∀ p ∈ L.

Definition 2.2 [13] Let Tf and Tg be the t-norms defined on L such that Tf (a, b) ≤L Tg(a, b),∀a, b ∈
L. Then,

TI([a, a], [b, b]) = [Tf (a, b), Tg(a, b) ].

defines an interval-valued triangular norm (IVTN) on C(L). The parallel construction with t-
conorms leads to an interval-valued triangular conorm (IVTCN).
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Definition 2.3 [7] An interval-valued L-fuzzy set (IVLF set) on a universe E is a mapping ν̂ : E →
C(L) given by

ν̂(u) = [ν(u), ν(u)], ν(u) ≤L ν(u), u ∈ E.

Definition 2.4 Let X be a set of parameters and Y ⊆ X. A pair (ĝ, Y ) is called an IVLF soft set
over E if ĝ : Y → P(E) assigns to each y ∈ Y an IVLF subset ĝ(y), denoted by ĝy.

3. List of Notations and Abbreviations

Symbol / Abbreviation Description
N Nearring under consideration
I An ideal of the nearring N
A Parameter set of a soft set / soft ideal
E Universal set

P (E) Power set of E, i.e., the collection of all subsets of E
L Complete bounded lattice

C(L) Collection of all closed intervals in L, i.e., C(L) = {[a, b] : a, b ∈ L, a ≤ b}
[a, b] ∈ C(L) Interval element in L with 0 ≤ a ≤ b ≤ 1

T A triangular norm (t-norm) on lattice L; a binary operation T : L×L →
L satisfying commutativity, associativity, monotonicity, and having M
as the identity element

Ξ A triangular conorm (t-conorm) on lattice L; a binary operation Ξ :
L × L → L satisfying commutativity, associativity, monotonicity, and
having m as the identity element

F (N) Family of all interval-valued L-fuzzy soft sets defined over the nearring
N

M Greatest (maximum) element of the lattice L
m Least (minimum) element of the lattice L
µ Interval-valued L-fuzzy soft mapping

IVF Interval Valued Fuzzy
IVLF Interval Valued L-Fuzzy
IVTN Interval Valued Triangular Norm
IVTCN Interval Valued Triangular Conorm

T A specific IVTN on L
ζ A specific IVTCN on L

xk̂ IVF point with support x and interval membership k̂

xk̂q(f̂a) IVF point xk̂ quasi-coincident with f̂a
(f̂a)k̂ k̂-level set of IVF soft mapping f̂a
(f̂a)k̂q Set of elements quasi-coincident with (f̂a) at threshold k̂

(f̂a)k̂∨q Generalized set combining membership and quasi-coincidence

IFP Insertion of Factors Property

N/(f̂ , A) Collection of IVLF soft cosets of (f̂ , A) in N
eN Identity element of N

4. IVLF Soft Ideals in Nearrings

Definition 4.1

Let E denote the universal set, X the collection of parameters and Y ⊆ X. If P(E) represent the
IVLF power set of E and ĝ : Y → P(E) then pair (ĝ, Y ) is called as IVLF soft set over E. For every
y ∈ Y , we write ĝ(y) as ĝy.

Remark 4.1 The concept of an IVLF soft ideal extends the idea of an interval-valued L-fuzzy ideal
to soft structures, where each parameter a ∈ A induces a distinct fuzzy interval representation on
N .
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Definition 4.2 Let (ĝ, Y ) be an IVLF soft set over E and λ̂, γ̂ ∈ C(L) with λ̂ < γ̂. In this case,

(ĝ, Y ) is called IVLF soft ideal with thresholds λ̂, γ̂ if ∀ y ∈ Y, ∀ p, q, j ∈ E.

1. ζI(λ̂, ĝy(p+ q)) ≥ TI(γ̂, TI(ζI(λ̂, ĝy(p)), ζI(λ̂, ĝy(q)))),

2. ζI(λ̂, ĝy(−p)) ≥ TI(γ̂, ζI(λ̂, ĝy(p))).

3. ζI(λ̂, ĝy(q + p− q)) ≥ TI(γ̂, ζI(λ̂, ĝy(p))),

4. ζI(λ̂, ĝy(pq)) ≥ TI(γ̂, ζI(λ̂, ĝy(p))),

5. ζI(λ̂, ĝy(p(q + j)− pq)) ≥ TI(γ̂, ζI(λ̂, ĝy(j))).
Here TI and ζI are the associated IVTN and IVTCN of IVLF soft ideal (ĝ, Y ) respectively.

Remark 4.2 (i) If we take λ̂ = [k, k], γ̂ = [K,K] and the associated IVTN as TI(â, b̂) = min(â, b̂) then

ζI(λ̂, ĝy(â+ b̂)) = ĝy(â+ b̂) and TI(γ̂, TI(ζI(λ̂, ĝy(â)), ζI(λ̂, ĝy(b̂))))= TI(ĝy(â)), ĝy(b̂)) = min(ĝy(â)), ĝy(b̂).

Here the condition (i) of Definition 4.2 reduces to

ĝy(â+ b̂) ≥ min(ĝy(â), ĝy(b̂)) this corresponds to condition (i) stated in Definition 6 in Ozturk and
Inan [25]. Similarly we can show that other condition is equivalent.
Now we provide examples for IVLF soft ideal with thresholds over N .

Example 4.1 Consider the nearring {0, u, v, w} as defined in Table 1.

Table 1: Nearing operation for Example 4.1
+ 0 u v w
0 0 u v w
u u 0 w v
v v w 0 u
w w v u 0

· 0 u v w
0 0 0 0 0
u 0 0 u u
v 0 u w v
w 0 u v w

The lattice L relevant to this construction is presented in Figure 1.

M

x y

v p q

r

s

t d e

m

z ln o

Figure 1: Lattice L = {m, z, n, o, l, s, x, t, d, e, y, r, v, p, q,M}

Let B = {p1, p2, p3, p4, p5, p6}, A = {p1, p2, p3, p4} ⊂ B.

For each i with 1 ≤ i ≤ 4 we define f̂pi
: A → F(N) as follows:

f̂p1
= {(0, [x, 1]), (u, [a, q]), (v, [0, r]), (w, [0, r])},
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f̂p2
= {(0, [x, 1]), (u, [b, q]), (v, [0, s]), (w, [0, t])},

f̂p3
= {(0, [x, 1]), (u, [c, q]), (v, [0, u]), (w, [0, v])},

f̂p4
= {(0, [x, 1]), (u, [d, q]), (v, [0, w]), (w, [0, y])}.

(i) For g, h ∈ L, define

T1(g, h) =


g, if h = M,

h, if g = M,

m, otherwise,

T2(g, h) = g ∧L h,

Ξ1(g, h) = g ∨L h, Ξ2(g, h) =


g, if h = m,

h, if g = m,

M, otherwise.

Let λ̂ = [m, s] and γ̂ = [v,M ]. Then f̂pi
is an IVLF soft ideal of N with thresholds λ̂, γ̂.

(ii) For g, h ∈ L, define

T1(g, h) = T2(g, h) = g ∧L h, Ξ1(g, h) = Ξ2(g, h) = g ∨L h.

Let λ̂ = [s, q] and γ̂ = [v,M ]. Then (f̂ , A) is an IVLF soft ideal of N with thresholds λ̂, γ̂.

Example 4.2 Consider the nearring N = {0, 1, 2, 3, 4, 5, 6, 7} as defined in Table 2.

Table 2: Nearring operations for Example 4.2
+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 6 0 4 3 7 3 5
3 3 7 1 5 2 6 0 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 2 4 0 7 3 5 1
7 7 3 5 1 6 2 4 0

· 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 1 1 0 0 1 1
3 0 0 1 1 0 0 1 1
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 1 1 0 0 1 1
7 0 0 1 1 0 0 1 1

The corresponding lattice is shown in Figure 2.
Let B = {p1, p2, p3, p4, p5}, and A = {p1, p2, p3} ⊂ B. For each i with 1 ≤ i ≤ 3, we define f̂pi

: A →
F(N) as follows:

f̂p1
(x) =


[u,w], if x ∈ {0, 1},
[s, t], if x ∈ {2, 4},
[m, p], if x ∈ {3, 5, 6, 7},

f̂p2(x) =


[u, v], if x ∈ {0, 1},
[r, s], if x ∈ {2, 4},
[m, r], if x ∈ {3, 5, 6, 7},

f̂p3
(x) =


[w,M ], if x ∈ {0, 1},
[s, t], if x ∈ {2, 4},
[m, q], if x ∈ {3, 5, 6, 7}.

For g, h ∈ L, define

T1(g, h) =


g, if h = M,

h, if g = M,

m, otherwise,

T2(g, h) = g ∧L h,
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Figure 2: Lattice L = {m, p, q, r, s, t, u, v, w,M}

Ξ1(g, h) = Ξ2(g, h) = g ∨L h.

Let λ̂ = [s, t] and γ̂ = [w,M ]. Then (f̂ , A) is an IVLF soft ideal of N with thresholds λ̂, γ̂.

Remark 4.3 In Examples 4.1 and 4.2, the nearrings N considered are of orders 4 and 8, respectively.
The operation tables are constructed so that N satisfies all the axioms of a nearring. It is observed
that N is a nearring but not a ring, since it does not satisfy the left distributive law. Specifically,
for certain elements u, v, w ∈ N , we have

u · (v + w) = u · u = u, but u · v + u · w = u+ u = 0,

hence u · (v + w) ̸= u · v + u · w.
In earlier works, authors commonly used the lattice [0, 1], which forms a chain. In contrast, in our
study, we employ a general lattice, as illustrated in Figures 1 and 2. An important property of a
general lattice is the presence of incomparable elements—a feature evident in the lattices shown
in Figures 1 and 2. Furthermore, while previous studies employed the idempotent t-norm and t-
conorm operations ∧ and ∨, we introduce more general (non-idempotent) triangular norms and
conorms defined as follows:

T1(g, h) =


g, if h = M,

h, if g = M,

m, otherwise,

Ξ2(g, h) =


g, if h = m,

h, if g = m,

M, otherwise.

Both T1 and Ξ2 are not idempotent, yet they satisfy the axioms of a t-norm and t-conorm, re-
spectively. With these constructions, we generalize the soft-ideal theory from the standard lattice
[0, 1] (a distributive lattice) to a general lattice that need not be distributive, and from idempotent
to non-idempotent triangular norms and conorms. Hence, these examples establish that neither
distributivity of the lattice nor idempotency of the triangular norms is a necessary condition in the
definition of soft ideals over nearrings.

Definition 4.3 Let (f̂ , A) be an IVLF soft set of N and λ̂, k̂ ∈ C(L). Then for each a ∈ A the set

(f̂a)k̂ = {x ∈ N | ζI(λ̂, f̂a(x)) ≥ k̂ } is called level set of (f̂ , A).
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Proposition 4.1 Let (f̂ , A) be an IVLF soft ideal of N with thresholds λ̂, γ̂ and a ∈ A.

If ζI(λ̂, (f̂a)(0)) ≥ γ̂ then (f̂a)γ̂ ̸= ∅. If the associated IVTN of IVLF soft ideal is idempotent and

(f̂a)γ̂ ̸= ∅ then 0 ∈ (f̂a)γ̂ .

Proof:
Fix a ∈ A. If ζI(λ̂, f̂a(0)) ≥ γ̂, then 0 ∈ (f̂a)γ̂ , hence (f̂a)γ̂ ̸= ∅.

Conversely, assume the associated IVTN TI of (f̂ , A) is idempotent and (f̂a)γ̂ ̸= ∅. Pick x ∈ (f̂a)γ̂ ,

so ζI(λ̂, f̂a(x)) ≥ γ̂. Using the ideal property and monotonicity of the IVTN, we obtain

ζI(λ̂, f̂a(0)) = ζI(λ̂, f̂a(x− x))

≥ TI

(
γ̂, TI

(
ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(−x))

))
≥ TI

(
γ̂, TI

(
ζI(λ̂, f̂a(x)), TI(γ̂, ζI(λ̂, f̂a(x)))

))
(by condition (ii) and monotonicity)

= TI

(
γ̂, TI

(
ζI(λ̂, f̂a(x)), γ̂

))
(since ζI(λ̂, f̂a(x)) ≥ γ̂)

≥ TI

(
γ̂, TI(γ̂, γ̂)

)
= TI(γ̂, γ̂) = γ̂, (idempotence of TI).

Thus ζI(λ̂, f̂a(0)) ≥ γ̂, so 0 ∈ (f̂a)γ̂ and (f̂a)γ̂ ̸= ∅.
2

Proposition 4.2 Let (f̂ , A) be an IVLF soft ideal of N with thresholds λ̂, γ̂ and a ∈ A. If the associated

IVTN TI is idempotent then ζI(λ̂, f̂a(0)) ≥ TI(γ̂, ζI(λ̂, f̂a(x))) ∀ x ∈ N.

Proof:
Fix a ∈ A. Then, for any x ∈ N ,

ζI(λ̂, f̂a(0)) = ζI(λ̂, f̂a(x− x))

≥ TI

(
γ̂, TI

(
ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(−x))

))
(property of interval-valued ideal)

≥ TI

(
γ̂, TI

(
ζI(λ̂, f̂a(x)), TI(γ̂, ζI(λ̂, f̂a(x)))

))
(property of interval-valued ideal)

= TI

(
γ̂, TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(x)))

))
(associativity of TI)

= TI

(
γ̂, TI

(
γ̂, ζI(λ̂, f̂a(x))

))
(idempotent property of TI)

= TI

(
TI(γ̂, γ̂), ζI(λ̂, f̂a(x))

)
(associativity of TI)

= TI

(
γ̂, ζI(λ̂, f̂a(x))

)
(idempotent property of TI).

Therefore, ∀ x ∈ N , ζI(λ̂, f̂a(0)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(x))

)
.

2

Remark 4.4 In this paper we consider IVLF soft ideals (f̂ , A) of N which satisfy the condition

ζI(λ̂, (f̂a)(0)) ≥ γ̂ ∀ a ∈ A.

Proposition 4.3 Let (f̂ , A) be an IVLF soft ideal with thresholds λ̂, γ̂ and let the associated IVTN TI

be idempotent. Then ∀ x, y ∈ N , the following are equivalent:

(1) (i) ζI(λ̂, f̂a(x+ y)) ≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
,
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(ii) ζI(λ̂, f̂a(−x)) ≥ TI(γ̂, ζI(λ̂, f̂a(x))).

(2) ζI(λ̂, f̂a(x− y)) ≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
.

Proof: Suppose (f̂ , A) is an IVLF soft ideal with thresholds λ̂, γ̂ and let TI be idempotent.
(1) ⇒ (2):

ζI(λ̂, f̂a(x− y)) ≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(−y)))

)
≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), TI(γ̂, ζI(λ̂, f̂a(y))))

)
(by (ii) and monotonicity)

= TI

(
γ̂, TI(TI(ζI(λ̂, f̂a(x)), γ̂), ζI(λ̂, f̂a(y)))

)
(associativity)

= TI

(
γ̂, TI(TI(γ̂, ζI(λ̂, f̂a(x))), ζI(λ̂, f̂a(y)))

)
(commutativity)

= TI

(
TI(γ̂, γ̂), TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
(associativity)

= TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
(idempotence).

(2) ⇒ (1):
Taking x = 0 in (2),

ζI(λ̂, f̂a(−y)) = ζI(λ̂, f̂a(0− y))

≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(0)), ζI(λ̂, f̂a(y)))

)
≥ TI

(
γ̂, TI(γ̂, ζI(λ̂, f̂a(y)))

)
(by Remark 4.4)

= TI(γ̂, ζI(λ̂, f̂a(y))) (idempotence).

Thus condition (ii) holds.
Now for (i), note that

ζI(λ̂, f̂a(x+ y)) = ζI(λ̂, f̂a(x− (−y)))

≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(−y)))

)
≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), TI(γ̂, ζI(λ̂, f̂a(y))))

)
(from above)

= TI

(
γ̂, TI(TI(ζI(λ̂, f̂a(x)), γ̂), ζI(λ̂, f̂a(y)))

)
= TI

(
TI(γ̂, γ̂), TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
= TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
.

Thus (i) is also satisfied. Hence, (1) and (2) are equivalent. 2

Remark 4.5 Proposition 4.3 establishes a practical equivalence that is frequently used in later results.
In particular, this characterization simplifies the verification of IVLF soft ideal conditions for specific
threshold pairs (λ̂, γ̂).

Definition 4.4 Let (f̂ , A) be an IVLF soft set over a nearring N . We call (f̂ , A) a θ̂-identity IVLF
soft set over N if for every a ∈ A and x ∈ N ,

f̂a(x) =

{
θ̂, when x = e,

[m,m], otherwise,

here e is the multiplicative identity of N .
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Proposition 4.4 If (f̂ , A) is a θ̂-identity IVLF soft set over N , and T1 is an idempotent IVTN, then

(f̂ , A) forms an IVLF soft ideal of N .

Proof: Fix a ∈ A. We consider several cases.
Case (i): p = e, q = e. Then p+ q = e.

ζI(λ̂, f̂a(p+ q)) = ζI(λ̂, f̂a(e)) = ζI(λ̂, θ̂),

TI(γ̂, TI(ζI(λ̂, f̂a(p)), ζI(λ̂, f̂a(q)))) = TI(γ̂, TI(ζI(λ̂, θ̂), ζI(λ̂, θ̂)))

= TI(γ̂, ζI(λ̂, θ̂)).

By Remark 4.2(i), ζI(λ̂, θ̂) ≥ TI(γ̂, ζI(λ̂, θ̂)). Hence the inequality is satisfied.
Case (ii): p = e, q ̸= e. Then p+ q = q.

ζI(λ̂, f̂a(p+ q)) = ζI(λ̂, f̂a(q)) = ζI(λ̂, [m,m]) = λ̂,

TI(γ̂, TI(ζI(λ̂, f̂a(p)), ζI(λ̂, f̂a(q)))) = TI(γ̂, TI(ζI(λ̂, θ̂), λ̂))

≤ TI(γ̂, λ̂) ≤ λ̂.

Thus the condition holds.
Case (iii): p ̸= e, q = e. This case is symmetric to Case (ii), so the result follows directly.
Case (iv): p ̸= e, q ̸= e, and p+ q ̸= e. Then

ζI(λ̂, f̂a(p+ q)) = λ̂,

TI(γ̂, TI(ζI(λ̂, f̂a(p)), ζI(λ̂, f̂a(q)))) = TI(γ̂, TI(λ̂, λ̂))

≤ TI(γ̂, λ̂) ≤ λ̂.

Hence the inequality holds.
Case (v): p ̸= e, q ̸= e, and p+ q = e. Then

ζI(λ̂, f̂a(p+ q)) = ζI(λ̂, θ̂) ≥ λ̂,

TI(γ̂, TI(ζI(λ̂, f̂a(p)), ζI(λ̂, f̂a(q)))) = TI(γ̂, TI(λ̂, λ̂))

≤ TI(γ̂, λ̂) ≤ λ̂.

Therefore TI(γ̂, . . . ) ≤ ζI(λ̂, f̂a(p+ q)).

The remaining conditions of an IVLF soft ideal can be verified in the same manner. Thus (f̂ , A) is
indeed an IVLF soft ideal of N .

2

Definition 4.5 An IVLF soft set (f̂ , A) is called a θ̂-absolute IVLF soft set over N if f̂a(x) = θ̂ ∀
a ∈ A and x ∈ N .

Proposition 4.5 Let (f̂ , A) be a θ̂-absolute IVLF soft set over N . If the associated IVTN TI is idem-

potent, then (f̂ , A) is an IVLF soft ideal of N .

Proof: Let a ∈ A, and TI be an idempotent IVTN. For any x, y ∈ N , ζI(λ̂, f̂a(x+ y)) = ζI(λ̂, θ̂). On the
other hand,

TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
= TI

(
γ̂, TI(ζI(λ̂, θ̂), ζI(λ̂, θ̂))

)
= TI(γ̂, ζI(λ̂, θ̂)) (idempotence of TI).
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By Remark 4.2(i), we have ζI(λ̂, θ̂) ≥ TI(γ̂, ζI(λ̂, θ̂)). Hence

ζI(λ̂, f̂a(x+ y)) ≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
.

The remaining conditions of an IVLF soft ideal can be verified in a similar manner. Therefore (f̂ , A)
is an IVLF soft ideal of N . 2

Proposition 4.6 Let (f̂ , A) be an IVLF soft ideal of N with associated IVTN TI idempotent, and let

a ∈ A. If ζI(λ̂, f̂a(x− y)) = ζI(λ̂, f̂a(0)) ∀ x, y ∈ N, then TI(γ̂, ζI(λ̂, f̂a(x))) = TI(γ̂, ζI(λ̂, f̂a(y))).

Proof: Let a ∈ A. Assume that ζI(λ̂, f̂a(x− y)) = ζI(λ̂, f̂a(0)).
Now,

ζI(λ̂, f̂a(x)) = ζI(λ̂, f̂a((x− y) + y))

≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(x− y)), ζI(λ̂, f̂a(y)))

)
≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(0)), TI(γ̂, ζI(λ̂, f̂a(y))))

)
≥ TI

(
γ̂, TI(γ̂, TI(γ̂, ζI(λ̂, f̂a(y))))

)
(by Remark 4.4)

= TI

(
γ̂, TI(TI(γ̂, γ̂), ζI(λ̂, f̂a(y)))

)
(associativity of TI)

= TI(γ̂, TI(γ̂, ζI(λ̂, f̂a(y))))

= TI(TI(γ̂, γ̂), ζI(λ̂, f̂a(y))) (associativity)

= TI(γ̂, ζI(λ̂, f̂a(y))) (idempotence of TI).

Thus, TI(γ̂, ζI(λ̂, f̂a(x))) ≥ TI(γ̂, ζI(λ̂, f̂a(y))).

By symmetry, the reverse inequality also holds: TI(γ̂, ζI(λ̂, f̂a(y))) ≥ TI(γ̂, ζI(λ̂, f̂a(x))).

Therefore, TI(γ̂, ζI(λ̂, f̂a(x))) = TI(γ̂, ζI(λ̂, f̂a(y))). 2

Proposition 4.7 Let (f̂ , A) be an IVLF soft ideal of N , x ∈ N , and a ∈ A.

(i) If ζI(λ̂, f̂a(x+ y)) = ζI(λ̂, f̂a(y + x)) = ζI(λ̂, f̂a(y)), ∀ y ∈ N, then ζI(λ̂, f̂a(x)) = ζI(λ̂, f̂a(0)).

(ii) If the associated IVTN TI is idempotent and ζI(λ̂, f̂a(x)) = ζI(λ̂, f̂a(0)), then

∀ y ∈ N , TI(γ̂, ζI(λ̂, f̂a(y))) = TI(γ̂, ζI(λ̂, f̂a(x+ y))) = TI(γ̂, ζI(λ̂, f̂a(y + x))).

Proof: (i) Assume ζI(λ̂, f̂a(x + y)) = ζI(λ̂, f̂a(y + x)) = ζI(λ̂, f̂a(y)), ∀ y ∈ N. Taking y = 0, we get

ζI(λ̂, f̂a(x)) = ζI(λ̂, f̂a(0)).

(ii) Suppose ζI(λ̂, f̂a(x)) = ζI(λ̂, f̂a(0)) and TI is idempotent. By Proposition 4.2, ∀ y ∈ N ,

ζI(λ̂, f̂a(0)) = ζI(λ̂, f̂a(x)) ≥ TI(γ̂, ζI(λ̂, f̂a(y))). (4.1)

Since (f̂ , A) is an IVLF soft ideal,

ζI(λ̂, f̂a(x+ y)) ≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
≥ TI

(
γ̂, TI(TI(γ̂, ζI(λ̂, f̂a(y))), ζI(λ̂, f̂a(y)))

)
(by (4.1))

= TI(γ̂, TI(γ̂, ζI(λ̂, f̂a(y))))

= TI(TI(γ̂, γ̂), ζI(λ̂, f̂a(y)))

= TI(γ̂, ζI(λ̂, f̂a(y))).
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Hence
TI(γ̂, ζI(λ̂, f̂a(x+ y))) ≥ TI(γ̂, ζI(λ̂, f̂a(y))). (4.2)

On the other hand,

ζI(λ̂, f̂a(y)) = ζI(λ̂, f̂a(−x+ (x+ y)))

≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(−x)), ζI(λ̂, f̂a(x+ y)))

)
≥ TI

(
γ̂, TI(TI(γ̂, ζI(λ̂, f̂a(x+ y))), ζI(λ̂, f̂a(x+ y)))

)
(by (4.1))

= TI(γ̂, TI(γ̂, ζI(λ̂, f̂a(x+ y))))

= TI(γ̂, ζI(λ̂, f̂a(x+ y))).

Thus,
TI(γ̂, ζI(λ̂, f̂a(y))) ≥ TI(γ̂, ζI(λ̂, f̂a(x+ y))). (4.3)

From (4.2) and (4.3), we conclude TI(γ̂, ζI(λ̂, f̂a(y))) = TI(γ̂, ζI(λ̂, f̂a(x+ y))).

A symmetric argument shows that TI(γ̂, ζI(λ̂, f̂a(y))) = TI(γ̂, ζI(λ̂, f̂a(y + x))).

Therefore, ∀ y ∈ N , TI(γ̂, ζI(λ̂, f̂a(y))) = TI(γ̂, ζI(λ̂, f̂a(x+ y))) = TI(γ̂, ζI(λ̂, f̂a(y + x))). 2

Proposition 4.8 Let (f̂ , A) be an IVLF soft subset of N . If ∀ k̂ ∈ (λ̂, γ̂], a ∈ A the level set (f̂a)k̂ is an

ideal of N , then (f̂ , A) is an IVLF soft ideal of N .

Conversely, if (f̂ , A) is an IVLF soft ideal of N with the associated IVTN TI idempotent, then (f̂a)k̂
is an ideal of N ∀ k̂ ∈ (λ̂, γ̂], a ∈ A.

Proof: Assume (f̂ , A) is an IVLF soft subset of N , and that for every k̂ ∈ (λ̂, γ̂] and a ∈ A, the

corresponding level set (f̂a)k̂ is an ideal of N . We show that (f̂ , A) satisfies the conditions of an IVLF
soft ideal.
Assume, for contradiction, the existence of a ∈ A and x, y ∈ N such that

ζI(λ̂, f̂a(x+ y)) < TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
.

Let
k̂ = TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
.

Then ζI(λ̂, f̂a(x + y)) < k̂ implies that x + y /∈ (f̂a)k̂, even though x, y ∈ (f̂a)k̂, contradicting the ideal

property of (f̂a)k̂. Hence, (f̂ , A) must be an IVLF soft ideal of N .

Conversely, assume (f̂ , A) is an IVLF soft ideal of N with idempotent TI . Then for any k̂ ∈ (λ̂, γ̂]

and a ∈ A, the defining properties of IVLF soft ideals guarantee that (f̂a)k̂ forms an ideal of N . 2

Definition 4.6 An IVLF soft ideal (f̂ , A) of N is said to have the insertion of factors property (IFP)
if ∀ x, y ∈ N , a ∈ A, and n ∈ N , we have

ζI(λ̂, f̂a(xny)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(xy))

)
.

Proposition 4.9 Let (f̂ , A) be an IVLF soft ideal of N . If ∀ k̂ ∈ (λ̂, γ̂], a ∈ A the level set (f̂a)k̂ has

IFP, then (f̂ , A) has IFP.

Conversely, if the associated IVTN TI of (f̂ , A) is idempotent and (f̂ , A) has IFP, then (f̂a)k̂ has IFP

∀ k̂ ∈ (λ̂, γ̂], a ∈ A.

Proof: (⇒) Suppose (f̂ , A) does not have IFP. Then for some a ∈ A, there exist x, n, y ∈ N such that

ζI(λ̂, f̂a(xny)) < TI

(
γ̂, ζI(λ̂, f̂a(xy))

)
.



12 Jagadeesha B., Sabina Rachana Crasta

Choose
k̂ = TI

(
γ̂, ζI(λ̂, f̂a(xy))

)
.

Then k̂ ≤ γ̂ ∧ ζI(λ̂, f̂a(xy)). Thus γ̂ ≥ k̂ and ζI(λ̂, f̂a(xy)) ≥ k̂, implying xy ∈ (f̂a)k̂. But since

ζI(λ̂, f̂a(xny)) < k̂, we have xny /∈ (f̂a)k̂.

Hence, for k̂ ∈ (λ̂, γ̂], we get xy ∈ (f̂a)k̂ but xny /∈ (f̂a)k̂, contradicting the assumption that (f̂a)k̂ has

IFP ∀ k̂ ∈ (λ̂, γ̂]. Therefore, (f̂ , A) must have IFP.

(⇐) Conversely, assume (f̂ , A) has IFP and let k̂ ∈ (λ̂, γ̂], a ∈ A. Suppose xy ∈ (f̂a)k̂.

Then ζI(λ̂, f̂a(xy)) ≥ k̂.

Since (f̂ , A) has IFP, we have ζI(λ̂, f̂a(xny)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(xy))

)
.

Thus, ζI(λ̂, f̂a(xny)) ≥ TI(γ̂, k̂) ≥ TI(k̂, k̂) = k̂. Hence xny ∈ (f̂a)k̂. Therefore, (f̂a)k̂ has IFP. 2

Proposition 4.10 Let (f̂ , A) be an IVLF soft ideal of a nearfield N with thresholds λ̂, γ̂ and a ∈ A. If
the associated IVTN TI is idempotent, then ∀ x ∈ N we have

ζI(λ̂, f̂a(0)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(x))

)
= TI

(
γ̂, ζI(λ̂, f̂a(1N ))

)
.

Proof: By Proposition 4.2, we have

ζI(λ̂, f̂a(0)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(x))

)
∀x ∈ N.

In particular,
ζI(λ̂, f̂a(0)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(1N ))

)
.

Now take 0 ̸= x ∈ N . Then

ζI(λ̂, f̂a(x)) = ζI(λ̂, f̂a(1Nx)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(1N ))

)
.

Hence
TI

(
γ̂, ζI(λ̂, f̂a(x))

)
≥ TI

(
γ̂, TI(γ̂, ζI(λ̂, f̂a(1N )))

)
= TI

(
γ̂, ζI(λ̂, f̂a(1N ))

)
,

where the last equality follows from the associativity and idempotence of TI . Thus

TI

(
γ̂, ζI(λ̂, f̂a(x))

)
≥ TI

(
γ̂, ζI(λ̂, f̂a(1N ))

)
. (4.4)

Also, since 1N = xx−1, we have

ζI(λ̂, f̂a(1N )) = ζI(λ̂, f̂a(xx
−1)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(x))

)
.

Thus
TI

(
γ̂, ζI(λ̂, f̂a(1N ))

)
≥ TI

(
γ̂, ζI(λ̂, f̂a(x))

)
. (4.5)

From (4.4) and (4.5), it follows that

TI

(
γ̂, ζI(λ̂, f̂a(x))

)
= TI

(
γ̂, ζI(λ̂, f̂a(1N ))

)
.

Therefore,
ζI(λ̂, f̂a(0)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(x))

)
= TI

(
γ̂, ζI(λ̂, f̂a(1N ))

)
,

∀ x ∈ N . 2

Proposition 4.11 Let (f̂ , A) be an IVLF soft ideal of a zero-symmetric nearring N with thresholds λ̂, γ̂
and a ∈ A. Then ∀ x, y, i ∈ N we have

ζI
(
λ̂, f̂a(x(y + i)− xy)

)
≥ TI

(
γ̂, ζI(λ̂, f̂a(i))

)
⇒ ζI(λ̂, f̂a(xi)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(i))

)
.
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Proof: Let x, y, i ∈ N and a ∈ A. By condition (5) of an IVLF soft ideal we have

ζI(λ̂, f̂a(x(y + i)− xy)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(i))

)
.

Choosing y = 0, we obtain

ζI(λ̂, f̂a(x(0 + i)− x0)) = ζI(λ̂, f̂a(xi)) ≥ TI

(
γ̂, ζI(λ̂, f̂a(i))

)
.

Hence the result follows. 2

Proposition 4.12 Let (f̂ , A) be an IVLF soft ideal of N with thresholds λ̂, γ̂ and a ∈ A. Define

Nf̂a
= {x ∈ N | TI(γ̂, ζI(λ̂, f̂a(x))) = TI(γ̂, ζI(λ̂, f̂a(0))) }.

If the associated IVTN TI is idempotent, then Nf̂a
is an ideal of N .

Proof: Let x, y ∈ Nf̂a
. Then

TI(γ̂, ζI(λ̂, f̂a(x))) = TI(γ̂, ζI(λ̂, f̂a(0))),

and similarly for y.

By Proposition 4.2, we know that ∀ z ∈ N ,

ζI(λ̂, f̂a(0)) ≥ TI(γ̂, ζI(λ̂, f̂a(z))).

Hence, in particular,

TI(γ̂, ζI(λ̂, f̂a(0))) ≥ TI(γ̂, ζI(λ̂, f̂a(x+ y))). (4.6)

Since (f̂ , A) is an IVLF soft ideal,

ζI(λ̂, f̂a(x+ y)) ≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))

)
.

Substituting x, y ∈ Nf̂a
gives

ζI(λ̂, f̂a(x+ y)) ≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(0)), ζI(λ̂, f̂a(0)))

)
.

By associativity and idempotence of TI , this reduces to

ζI(λ̂, f̂a(x+ y)) ≥ TI(γ̂, ζI(λ̂, f̂a(0))).

Thus

TI(γ̂, ζI(λ̂, f̂a(x+ y))) ≥ TI(γ̂, ζI(λ̂, f̂a(0))). (4.7)

From (4.6) and (4.7), we conclude

TI(γ̂, ζI(λ̂, f̂a(x+ y))) = TI(γ̂, ζI(λ̂, f̂a(0))).

Hence x+ y ∈ Nf̂a
. Other ideal conditions can be verified similarly. Therefore Nf̂a

is an ideal of N . 2

Proposition 4.13 Let g : N1 → N2 be an onto homomorphism. Let (f̂ , A) be an IVLF soft subset of

N2. If ∀ k̂ ∈ (λ̂, γ̂] and a ∈ A the level set (f̂a)k̂ is an ideal of N2, then g−1((f̂ , A)) is an IVLF soft ideal
of N1.
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Proof: Take k̂ ∈ (λ̂, γ̂] and a ∈ A. Suppose x ∈ N1 with x ∈ g−1((f̂a)k̂). Then g(x) ∈ (f̂a)k̂, i.e.

ζI(λ̂, f̂a(g(x))) ≥ k̂.

Equivalently,
ζI(λ̂, (g

−1f̂a)(x)) ≥ k̂,

so x ∈ (g−1f̂a)k̂.

Now let x, y ∈ g−1((f̂a)k̂). Then g(x), g(y) ∈ (f̂a)k̂. Since (f̂a)k̂ is an ideal of N2, we have g(x)+g(y) ∈
(f̂a)k̂. Hence g(x+ y) ∈ (f̂a)k̂, which means

x+ y ∈ (g−1f̂a)k̂.

Other ideal properties follow similarly. Therefore (g−1f̂a)k̂ is an ideal of N1 ∀ k̂ ∈ (λ̂, γ̂] and a ∈ A.

By proposition 4.8, it follows that g−1((f̂ , A)) is an IVLF soft ideal of N1. 2

Proposition 4.14 Let g : N1 → N2 be an onto homomorphism. If (f̂ , A) is an IVLF soft ideal of N2,

then g−1((f̂ , A)) is an IVLF soft ideal of N1 with the same thresholds as (f̂ , A).

Proof: Let (f̂ , A) be an IVLF soft ideal of N2 and a ∈ A. For x, y ∈ N1, consider

ζI(λ̂, g
−1(f̂a)(x+ y)) = ζI(λ̂, f̂a(g(x+ y)))

= ζI(λ̂, f̂a(g(x) + g(y)))

≥ TI

(
γ̂, TI(ζI(λ̂, f̂a(g(x))), ζI(λ̂, f̂a(g(y))))

)
= TI

(
γ̂, TI(ζI(λ̂, g

−1(f̂a)(x)), ζI(λ̂, g
−1(f̂a)(y)))

)
.

Thus g−1(f̂a) satisfies the soft ideal condition. Similarly, other conditions can be verified. Therefore

g−1((f̂ , A)) is an IVLF soft ideal of N1 with the same thresholds. 2

Proposition 4.15 Let g : N1 → N2 be an onto map. If (f̂ , A) is a g-invariant IVLF soft ideal of N1,

then ∀ a ∈ A and all k̂ ∈ (λ̂, γ̂] we have

g
(
(f̂a)k̂

)
=

(
g(f̂a)

)
k̂
.

Proof: Fix a ∈ A and k̂ ∈ (λ̂, γ̂]. Suppose y ∈ g((f̂a)k̂). Then y = g(x) for some x ∈ (f̂a)k̂ which means

ζI(λ̂, f̂a(x)) ≥ k̂. By definition of g(f̂a),

g(f̂a)(y) = sup{f̂a(w) | g(w) = y}.

Since g(x) = y, we have g(f̂a)(y) = f̂a(x), and so

ζI(λ̂, g(f̂a)(y)) = ζI(λ̂, f̂a(x)) ≥ k̂.

Hence y ∈ (g(f̂a))k̂, proving g((f̂a)k̂) ⊆ (g(f̂a))k̂.

Conversely, let y ∈ (g(f̂a))k̂. Then ζI(λ̂, g(f̂a)(y)) ≥ k̂, i.e.

ζI(λ̂, sup{f̂a(w) | g(w) = y}) ≥ k̂.

Since g is onto, there exists x ∈ N1 with g(x) = y. Thus ζI(λ̂, f̂a(x)) ≥ k̂, i.e. x ∈ (f̂a)k̂, and so

y = g(x) ∈ g((f̂a)k̂). Therefore (g(f̂a))k̂ ⊆ g((f̂a)k̂).
Combining both inclusions gives

g((f̂a)k̂) = (g(f̂a))k̂.

2
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Proposition 4.16 Let g : N1 → N2 be an onto homomorphism. Suppose (f̂ , A) is a g-invariant IVLF

soft ideal of N1 with a ∈ A. If for every k̂ ∈ (λ̂, γ̂] the level set (f̂a)k̂ is an ideal in N1, then (g(f̂), A) is

an IVLF soft ideal of N2 with the same thresholds as (f̂ , A).

Proof: Let a ∈ A and fix k̂ ∈ (λ̂, γ̂]. Since (f̂a)k̂ is an ideal in N1, its homomorphic image g((f̂a)k̂) is an
ideal in N2.

As (f̂ , A) is g-invariant, Proposition 4.15 gives

g
(
(f̂a)k̂

)
= (g(f̂a))k̂.

Thus (g(f̂a))k̂ is an ideal of N2 ∀ k̂ ∈ (λ̂, γ̂]. By proposition 4.8, (g(f̂), A) is an IVLF soft ideal of N2

with thresholds λ̂, γ̂. 2

Remark 4.6 Homomorphisms preserve the IVLF soft ideal structure, demonstrating that these con-
structions are stable under algebraic mappings between nearrings. This property ensures compati-
bility with categorical approaches in fuzzy algebra.

Definition 4.7 Let (f̂ , A) be an IVLF soft ideal of N . For p ∈ N and a ∈ A, define an IVLF soft

subset p(f̂a) by

p(f̂a)(n) = TI

(
γ̂, ζI(λ̂, f̂a(n− p))

)
, ∀n ∈ N.

This subset is called the IVLF soft coset determined by p and (f̂ , A). The collection of all IVLF

soft cosets of (f̂ , A) in N is denoted by N/(f̂ , A).

Proposition 4.17 Let (f̂ , A) be an IVLF soft ideal of N with associated IVTN TI idempotent and a ∈ A.

Then N/(f̂ , A) forms a nearring under the operations

x(f̂a) + y(f̂a) = x+y(f̂a), x(f̂a) · y(f̂a) = x·y(f̂a), ∀x, y ∈ N.

Moreover, the mapping

[(f̂a)] : N/(f̂ , A) −→ C(L), [(f̂a)](x(f̂a)) = f̂a(x),

is an IVLF soft ideal of N/(f̂ , A).

Proof: Let p, q, r, s ∈ N such that p(f̂a) = q(f̂a) and r(f̂a) = s(f̂a). By definition, ∀ n ∈ N we have

TI(γ̂, ζI(λ̂, f̂a(n− p))) = TI(γ̂, ζI(λ̂, f̂a(n− q))), (4.8)

TI(γ̂, ζI(λ̂, f̂a(n− r))) = TI(γ̂, ζI(λ̂, f̂a(n− s))). (4.9)

Putting n = p in (4.8) gives

TI(γ̂, ζI(λ̂, f̂a(0))) = TI(γ̂, ζI(λ̂, f̂a(p− q))) ≥ TI(γ̂, γ̂),

by monotonicity of TI . Similarly, substituting n = r in (4.9) gives

TI(γ̂, ζI(λ̂, f̂a(r − s))) = TI(γ̂, ζI(λ̂, f̂a(0))) ≥ TI(γ̂, γ̂).

Since TI is idempotent, we conclude

TI(γ̂, ζI(λ̂, f̂a(p− q))) ≥ γ̂, (4.10)

TI(γ̂, ζI(λ̂, f̂a(r − s))) ≥ γ̂. (4.11)
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Next, to show addition is well-defined, consider

p(f̂a)(n) + r(f̂a)(n) = p+r(f̂a)(n).

Using (4.10), (4.11), and the properties of IVLF soft ideals, one checks that

p(f̂a) + r(f̂a) = q(f̂a) + s(f̂a),

so addition is well-defined.
For multiplication, a similar argument with (4.10), (4.11), and the ideal conditions shows

p·r(f̂a)(n) = q·s(f̂a)(n), ∀n ∈ N,

so multiplication is well-defined.
Hence N/(f̂ , A) is a nearring with zero element 0(f̂a) and additive inverse −x(f̂a) for each x ∈ N .
Finally, for x, y ∈ N ,

ζI(λ̂, [(f̂a)](x(f̂a) + y(f̂a))) = ζI(λ̂, f̂a(x+ y)) ≥ TI(γ̂, TI(ζI(λ̂, f̂a(x)), ζI(λ̂, f̂a(y)))),

and the other ideal conditions follow analogously. Thus [(f̂a)] defines an IVLF soft ideal of N/(f̂ , A). 2

Proposition 4.18 Let (f̂ , A) be an IVLF soft ideal of N with the associated IVTN TI idempotent and
a ∈ A. Then for every p, q ∈ N ,

p(f̂a) = q(f̂a) ⇐⇒ (p− q) ∈ (f̂a)γ̂ .

Proof: Suppose p(f̂a) = q(f̂a). Then ∀ n ∈ N ,

TI(γ̂, ζI(λ̂, f̂a(n− p))) = TI(γ̂, ζI(λ̂, f̂a(n− q))). (4.12)

Putting n = p in (4.12) gives

TI(γ̂, ζI(λ̂, f̂a(0))) = TI(γ̂, ζI(λ̂, f̂a(p− q))).

Hence
TI(γ̂, ζI(λ̂, f̂a(p− q))) ≥ TI(γ̂, γ̂) = γ̂,

by monotonicity and idempotency of TI . Thus

ζI(λ̂, f̂a(p− q)) ≥ γ̂,

which means (p− q) ∈ (f̂a)γ̂ .

Conversely, assume (p− q) ∈ (f̂a)γ̂ , i.e. ζI(λ̂, f̂a(p− q)) ≥ γ̂. For n ∈ N ,

TI(γ̂, ζI(λ̂, f̂a(n− p))) = TI(γ̂, ζI(λ̂, f̂a(n− q + (q − p)))).

Using the IVLF soft ideal property and idempotency of TI , this yields

TI(γ̂, ζI(λ̂, f̂a(n− p))) = TI(γ̂, ζI(λ̂, f̂a(n− q))).

Hence p(f̂a) = q(f̂a). 2

Proposition 4.19 Let (f̂ , A) be an IVLF soft ideal of N with idempotent IVTN TI . Then for each
a ∈ A,

N/(f̂a)γ̂ ∼= N/(f̂ , A).
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Proof: Fix a ∈ A. Define h : N → N/(f̂ , A) by

h(p) = p(f̂a), ∀ p ∈ N.

Clearly h is a homomorphism, since

h(p+ q) = p+q(f̂a) = p(f̂a) + q(f̂a) = h(p) + h(q),

h(pq) = pq(f̂a) = p(f̂a) · q(f̂a) = h(p) · h(q).

Now,

kerh = {p ∈ N | h(p) = h(0)} = {p ∈ N | p(f̂a) = 0(f̂a)}.

By Proposition 4.18, this is equivalent to

kerh = {p ∈ N | ζI(λ̂, f̂a(p)) ≥ γ̂} = (f̂a)γ̂ .

Therefore, by the First Isomorphism Theorem for nearrings,

N/(f̂a)γ̂ ∼= N/(f̂ , A).

2

Remark 4.7 The established results collectively demonstrate that IVLF soft ideals unify interval-
valued fuzzy and soft structures within nearring theory. This unified framework may facilitate
further generalizations in related algebraic systems.

5. Applications

Although the present work is mainly theoretical, the ideas of triangular norm-based IVLF soft ideals
in nearrings are relevant to several applied fields where uncertainty and interval-valued information arise.
Some possible directions include:

• Decision-making systems: In multi-criteria decision problems, evaluations are often imprecise
or interval-based. The structure of IVLF soft ideals allows modeling of tolerance levels in such
systems, leading to more flexible and realistic decision processes.

• Coding theory and cryptography: Nearrings are closely related to coding and automata the-
ory. By incorporating IVLF soft ideals, one can study coding and cryptographic structures under
approximate or uncertain conditions, which may support the design of error-tolerant codes and
secure cryptographic protocols.

• Knowledge representation and intelligent systems: Artificial intelligence frequently requires
handling vague, incomplete, or conflicting information. IVLF soft ideals provide an algebraic tool
for representing such uncertainty in pattern recognition, control systems, and reasoning frameworks.

• Mathematical modeling of uncertain data: Many real-world data sets involve interval-valued
or approximate measurements. The algebraic properties of IVLF soft ideals can be applied to
formalize such data and to study stability or robustness of models in uncertain environments.

• Extensions to other algebraic structures: While this study focuses on nearrings, the same
methodology can be transferred to rings, modules, semigroups, and automata. Extending the
approach would provide a broader class of algebraic models capable of incorporating interval-valued
fuzzy soft concepts.
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Illustrative Example. Consider a supplier selection problem involving three suppliers U = {u1, u2, u3}
and two evaluation parameters X = {Cost,Reliability}. The evaluations are uncertain, so each supplier

is represented by an IVLF soft set (f̂ , X) over U , where L is a bounded lattice of performance levels as
shown in Figure 1.

Let the interval-valued membership of each supplier with respect to each parameter be given by
f̂x(ui) = [li1, li2] ∈ L. Using the associated interval-valued triangular norm T1 and conorm Ξ2 defined
earlier, the aggregated evaluation of a supplier can be expressed as

f̂(ui) = T1
(
f̂Cost(ui), f̂Reliability(ui)

)
.

For a given threshold pair (λ̂, γ̂), the set of suppliers satisfying ζI(λ̂, f̂(ui)) ≥ γ̂ forms an IVLF soft ideal
in the nearring N representing acceptable performance levels.

This ideal captures those alternatives whose interval-valued evaluations remain stable under both
parameter aggregation and triangular norm composition. Hence, IVLF soft ideals provide a formal
algebraic framework to model decision-making in uncertain or approximate environments.

6. Conclusion

This study explored triangular norm-based interval-valued L-fuzzy (IVLF) soft ideals in the setting
of nearrings. By employing IVTN and IVTCN, the work extends existing approaches to fuzzy soft ideals
and highlights their fundamental algebraic properties. The incorporation of thresholds provides a graded
mechanism for membership evaluation, making the framework more adaptable to uncertainty in algebraic
environments.

The investigation reinforces the theoretical structure of IVLF soft sets while also indicating their
potential applications beyond abstract algebra. In particular, IVLF soft ideals can be applied in decision-
making processes, knowledge modeling, and the study of vague or approximate algebraic systems. Since
nearrings share close connections with coding theory, automata, and cryptography, the results presented
here offer a useful basis for applying fuzzy and soft computing techniques in contexts where imprecision
and uncertainty must be managed effectively.
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