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Perfect Bicoloring of the Quintic Graphs of Order at Most 10

Mohammadhadi Alaeiyan, Mehdi Alaeiyan®, Zahra Shokoohi

ABSTRACT: This paper studies the problem of finding perfect bicolorings in graphs of degree five and with at
most ten vertices. A perfect bicoloring is defined as a partition of the vertex set into two subsets, where each
subset induces a regular subgraph. Algebraic techniques are employed to construct parameter matrices that
describe the structure of such bicolorings. After constructing these matrices, all possible parameter matrices
for graphs of degree five with at most ten vertices are classified, and the cases that correspond to graphs
admitting perfect bicolorings are identified.
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1. Introduction

A perfect coloring of a graph Y = (V, E) with ¢ colors is a coloring of the vertex set V' that uses
all ¢ colors and satisfies the following condition: for any two colors r and s, every vertex of color s has
the same number of neighbors of color r, denoted by f.;. The matrix F' = (frs)rse{1,... 4} is called the
parameter matrix of the coloring.

Perfect t-colorings form a topic at the intersection of algebraic combinatorics, coding theory, and
graph theory. In the literature, such colorings are also referred to as equitable partitions [1]. The
study of completely regular codes in graphs has a long and well-established history. In 1973, Delsarte
conjectured that Johnson graphs admit no perfect codes, a question that has since attracted considerable
attention [2,3,4].

Alaeiyan [5] introduced the bipartite Ala graph Ala(m;G; k) and examined its structural and spectral
properties using eigenvalue analysis. Also, it is possible to compute the perfect coloring of the Ala graphs.
Moreover, Alaeiyan et al. [6] studies how to find perfect 2- and 3-colorings of these graphs by comparing
the eigenvalues of their adjacency matrices with those of parameter matrices. Fon-Der-Flaass classified
all perfect bicolorings of hypercubes @, for n < 24 [7,8,9]. Alaeiyan provided a solution for the perfect
3-coloring of the Heawood graph [10]. In a related direction, the present paper determines all parameter
matrices of perfect bicolorings of quintic graphs with at most ten vertices.

In this work, we focus on perfect bicolorings of graphs of degree five with at most ten vertices. A perfect
bicoloring partitions the vertex set into two color classes such that each class induces a regular subgraph.
We use algebraic methods to construct parameter matrices that encode the structural constraints of such
colorings. Based on these matrices, we classify all feasible parameter configurations for quintic graphs of
order at most ten and identify the graphs that admit a perfect bicoloring.

The structure of the paper is organized as follows. Section 2 introduced the necessary background on
perfect bicolorings, parameter matrices, and eigenvalue conditions. Section 3 presented the main results
and identified all parameter matrices that admitted perfect bicolorings for quintic graphs with at most
ten vertices. Finally, Section 4 concluded the paper by summarizing the principal findings.
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Figure 1: Quintic graph of order 6
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Figure 2: Quintic graphs of order 8

2. Preliminaries

This section presents the fundamental ideas and definitions related to perfect bicoloring through the
use of parameter matrices. These matrices record how vertices of different colors are connected and
describe the adjacency structure of the graph. The conditions that help reduce the number of admissible
parameter matrices are also outlined, allowing the analysis and the proof of the main results to become
more manageable. Quintic graphs are 5-regular graphs in which every vertex has degree 5, and such
graphs exist only for even numbers of vertices. The quintic graphs with up to 10 vertices are shown in
Figures 1, 2, and 3.

Definition 1 Let Y = (V, E) be a connected graph and let t be a positive integer. A perfect t-coloring
with parameter matriz F = (frs)r,se{l,“.,t} 1S a surjective mapping

r:vy)—{1,...,t},
such that for every vertex v € V(Y) with T'(v) = r, the vertex v has exactly f.s neighbors of color s.

When t = 2, the colors are red and black in that order. We use R and B to represent the sets of red
Jir o fi2
Ja1 fa2

] up to renaming the colors equal. We start by analyzing the necessary

and black, respectively. We denote the parameter matrix by F = [ } and consider parameter

Jii o fi2 fa2  fa1
Ja1 f22] and [fm Ji1

conditions for a perfect bicoloring of quintic graphs with at most 10 vertices, assuming a fixed parameter
matrix F' = (frs)r s=1,2-

matrices {
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Figure 3: Quintic graphs of order 10

Remark 1 Suppose thatY is a 5-regular graph, and I is a perfect bicoloring with matriz F = [
Then we have fi1 + fi2 = fo1 + foa = 5.

fll f12:|
f21 f22 ’

fll f12

Remark 2 Suppose that I' is a perfect bicoloring with matrizc F = {f f
21 J22

Then we have fia, fa1 # 0.

} in a connected graph Y .

An eigenvalue of the graph Y, denoted by 0, is a scalar satisfying AX = 08X for some nonzero vector X,
where A is the adjacency matrix of Y. Similarly, a number 7 is called an eigenvalue of a perfect bicoloring
with parameter matrix F' if n is an eigenvalue of F'.

The following theorem describes the relationship between these notions.

Theorem 1 [2] If T is a perfect coloring of a graph' Y with t colors, then any eigenvalue of T' is also an
eigenvalue of Y.

We can obtain the eigenvalues of a parameter matrix using the following corollary.

fll f12
f21 f22

graph Y. Then the numbers fi1; — fo1 and k are eigenvalues of I' and hence eigenvalues of Y.

Corollary 1 [11] Let I be a perfect bicoloring with parameter matrix F = { ] of a k-regular

We now apply the lemma to determine the number of red vertices in a perfect bicoloring.

Lemma 1 [2] Let R be the set of all red vertices in a perfect bicoloring of a graph Y with matrix

F = [ﬁi ﬁﬂ . Then we have
_VI(G) far
IRl = Ji2+ for
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From the given condition, it follows that any admissible parameter matrix for a perfect bicoloring of a
quintic graph must be one of the following:

(0 5 0 5 0 5 0 5
Fl__l 4-7 F2_|:2 3:|3 F3_|:3 2:|) F4_|:4 1:|7

[0 5] 1 4 1 4 1 4
F5:_5 O_v F6:|:1 4:|7 F7:|:2 3:|7 F8:|:3 2:|7

(1 4] 2 3 2 3 2 3
Iy =1, 1) Fw{l 4], Fn{Q 3], F12{3 2];

3 2 3 2 4 1
F13:|:1 4:|3 F14:|:2 3:|3 F15:|:1 4:|

3. Main Results

In this section, we identify the parameter matrices for all perfect bicoloring of the quintic graphs with
at most 10 vertices.

Theorem 2 The graph Y1 admits a perfect bicoloring only for the matrices Fy, Fr, Fis.

Proof: To construct a perfect bicoloring of the graph Y7, one of the parameter matrices Fi, ..., Fi5 is
selected. By applying Theorem 1 and Corollary 1, all matrices except Fi, F7, Fig, and Fi5 are excluded.
According to Lemma 1, the matrix F}g is also ruled out, since the number of red vertices would not be
an integer. We now consider the following three mappings I'y, I's, and I's:

[i(n1) =R, Ti(n2) =T1(n3) =T1(na) =T1(ns) =T1(ne) = B.
Ta(n1) =Ta(n2) = R, Ta(n3) =T2(n4) = Ta(ns) = Ta(ng) = B.
Fg(nl) = F3(n3) = Fg(’n5) = R, F3(n2) = F3(n4) = Fg(’ﬁ,(j) = B.

It is easy to see that I';, I's, and I'3 are perfect bicoloring with the matrices Fi, F7, and Fo, respectively.
O

Theorem 3 The graph Yo admits a perfect bicoloring only for the matriz Fs.

Proof: To construct a perfect bicoloring of the graph Y5, one of the parameter matrices Fi, ..., Fi5 is
selected. By Theorem 1 and Corollary 1, all matrices except F3, Fg, Fy, and Fy; are excluded. According
to Lemma 1, the matrices Fi and Fj; cannot occur, since the number of red vertices would not be an
integer. The matrix Fy also fails to yield a perfect bicoloring for the graph Y5. To see this, assume that
Y5 has a perfect bicoloring with parameter matrix Fy. Since f1; = 1, two adjacent vertices must both be
red, and all remaining vertices must be black. This implies |B| = 4, which contradicts the requirement
fa2 = 3. We now define the mapping I' by

F(’I’Ll) = F(TL4) = F(TL(;) = R, F(TLQ) = F(n3) = F(n5) = F(n7) = F(ng) = B

It is easy to see that the mapping I is a perfect bicoloring with the matrix Fj. O

Theorem 4 The graph Y3 does not have a perfect bicoloring .

Proof: To obtain a perfect bicoloring of the graph Y3, one of the parameter matrices Fy,..., Fi5 is
considered. By Theorem 1 and Corollary 1, the admissible matrices are

Iy, Iy, Fio, Fia, Fug.

According to Lemma 1, the matrices Fy, Fr7, and Fio are excluded, since the number of red vertices would
not be an integer. For the matrix Fjg, we obtain |R| = 2 and |B| = 6. Using these values together with
the entries of Fig, the vertices can be colored and the possible configurations can be examined. This
leads to the following cases:
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1. If I'(n1) = I'(n2) = R and I'(ng) = I'(n4) = I'(ns) = I'(ng) = I'(n7) = B, then I'(ng) = R, which
contradicts the second row of matrix Fig.

2. If T(n1) = T'(n2) = T'(n3) = I'(ng) = B and I'(ny) = I'(ns) = I'(ng) = R, then I'(n7) = B, but
this case contradicts the second row of the matrix Fjg. Thus, there is no perfect bicoloring for the
graph Y3 with matrix Fig.

Similarly, we can prove for matrix Fi4 as follows:
For matrix Fy4 we have |R| = |B| = 4. Using these numbers and the entries of the matrix Fi4, we
can color the vertices and check different cases. Thus we have the following possibilities:

3. If I'(n1) =T'(ns) =T'(n7) = R and T'(n2) = I'(n3) = I'(ng) = I'(ng) = B, then I'(ng) = R, which
contradicts the second row of matrix Fi4.

4. I T(ny) =T(n2) =T(n3) =T'(ns) = B and I'(ng) = T'(ng) = I'(n7) = R, then I'(ng) = R, but this
case contradicts the second row of matrix Fi4. Hence, there is no perfect bicoloring for the graph
Y3 with matrix Fi4.

Theorem 5 The graph Y, has a perfect bicoloring only for the matrices Fy, Fio and Fi4.

Proof: To obtain a perfect bicoloring of the graph Y, one of the parameter matrices Fy,..., Fis5 is
considered. By Theorem 1 and Corollary 1, the admissible matrices are

F17 F37 F7a F97 FlO» F123 F14'

According to Lemma 1, the matrices F} and F; are excluded, since the number of red vertices would not
be an integer. We now show that the graph Y, admits no perfect bicoloring with parameter matrices Fj
or Fig. We first consider the matrix F3. Suppose that I' is a perfect bicoloring of Y, with parameter
matrix F3, and assume I'(n;) = R. Since f12 = 5, all vertices must be black except for the neighbors ng
and n7. By Lemma 1, the matrix F3 requires |R| = 3, implying I'(n3) = I'(n7) = R. This contradicts
the condition fi; = 0. It remains to show that Y3 has no perfect bicoloring with parameter matrix Fig.
Assume that such a bicoloring exists and let I'(ny) = B. From fy5 = 4, it follows that

I'(n2) =T'(n4) =T'(ns) =T(ne) =B, I'(ng) =R.

Using f11 = 2, we obtain I'(n3) = I'(ny) = R. However, in this situation the black vertex nys becomes
adjacent to three red vertices, contradicting the condition fo; = 1. We now consider the following three
mappings I'y, I's, and I's:

I'i(n1) =Ti(n3) =Ti(ns) =Ti(n7) = R,
T (n2) =T1(ng) =T1(ng) =T1(ng) = B.
La(n1) = Ta(ne) = I'a(n7) = a(ns) = R,
Ta(ng) =Ta(ng) =Ta(ng) =Ta(ns) = B.
I'z(n1) = I'z(ng) = I'z(ns) = I'z(ng) = R,
I's(ng) =Ts(n3) =s(ne) =s(ny) = B.

Clearly,the mappings I'1, s and I's are perfect bicoloring with the matrices Fy, F1o and F}4, respectively.
O

Theorem 6 The graph Ys has a perfect bicoloring only for the matrices Fg and Fi1.
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Proof: To obtain a perfect bicoloring of the graph Y5, one of the parameter matrices Fi, ..., Fi5 is con-
sidered. By Theorem 1 and Corollary 1, the admissible matrices are F, Fg, F7, F11, and Fj5. According
to Lemma 1, the matrices F; and Fy are excluded, since the number of red vertices would not be an
integer. The matrix Fis also fails to produce a perfect bicoloring for Ys;. Assume that I' is a perfect
bicoloring of Y5 with parameter matrix Fio. Let I'(ny) = R. From the first row of Fys, it follows that

F(’I’L2) = F(?’Lg) =R and F(’I’L6) = F(?’Lg) = F(?’Llo) = B.

Using the red vertices no and ng together with f12 = 3, the remaining vertices must all be black, which
contradicts the condition |B| = 5. We now consider the following two mappings, I'y and I's:

I'i(n1) )
I'1(n2) )= Fl( 1) =T'1(n5) =T'1(n7) = Ti(ns)
=T1(ng) = T'1(n10) = B.
Ta(nq) =Ta(ng)
) )

Fg(ng = Fg(n4 = FQ( ) ( 8) = Fg(ng) = FQ(Tllo) = B

Clearly, the mappings I'; and I'y are perfect bicoloring with the matrices Fi and Fi;, respectively. O

Theorem 7 The graph Ys has a perfect bicoloring only for the matrix Fis.

Proof: To obtain a perfect bicoloring of the graph Yg, one of the parameter matrices Fy,..., Fis5 is
considered. By Theorem 1 and Corollary 1, the admissible matrices are Fy, Fy, 7, Fg, and Fjo. According
to Lemma 1, the matrices Fy, Fy, F7, and Fg cannot occur, since the number of red vertices would not be
an integer. The mapping I' is defined by

['(n1) =T'(n2) =T'(ny) =T(ng) =(n1) = R, I'(ng) =T'(ns) =(ng) =T'(n7) =(ng) = B.

It is clear that the mapping I" yields a perfect bicoloring corresponding to the parameter matrix Fio. O

Theorem 8 The graph Y7 has a perfect bicoloring only for the matrices Fg and F1.

Proof: To obtain a perfect bicoloring of the graph Y7, one of the parameter matrices Fy,..., Fi5 is
considered. By Theorem 1 and Corollary 1, the only admissible matrices are Fb, Fg, Fg, F11, and Fis.
According to Lemma 1, the matrices F5 and Fg cannot occur, since the number of red vertices would not
be an integer. Moreover, the matrix F}5 does not produce a perfect bicoloring of Y7. Assume that I is a
perfect bicoloring of Y7 with parameter matrix Fi5. Let T'(n;) = R. From the first row of Fi5, it follows
that

I'(n3) =T'(ns) =T'(neg) =T(n7) =R and T'(ng) = B.

However, the black vertex ng would then be adjacent to three red vertices, contradicting the condition
fo1 = 1. We now examine the following two mappings:

I'1(n1) )
1 (n2) )
=T4(ng) =T'1(n1p) = B.
I'2(ny) )

) 3)

(’I’LQ 715) = FQ(?’L7) = FQ(’I’LS) = Fg(nlo) = B.

It is clear that the mappings I'y and I's form perfect bicolorings associated with the parameter matrices
Fs and Fiq, respectively. O

Theorem 9 The graph Ys admitted a perfect bicoloring only for the matrices F5 and Fg.
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Proof: To determine a perfect bicoloring of the graph Yg, one of the parameter matrices Fi,..., Fi5 is
considered. According to Theorem 1, Corollary 1, and Lemma 1, the only admissible parameter matrices
are F5 and Fg. The mappings I'y and I's are defined as follows:

[i(n1) =T1(ng) =1(ns) =Ti(n7) =Ti(ng) = R,

i (n2) =T1(ng) =T1(ne) =T1(ng) =T'1(n1p) = B
Iy(n1) = Ia(n2) = R,

Fa(n3) = Ta(ng) = a(ns) = Fa(ne) = F2(n7) = Fa(ns)
=T5(ng) =Ty(n1o) = B

Clearly, the mappings I'y and I's were P—2c¢ colorings associated with the matrices F5 and Fg, respectively.
O

In conclusion, the main results of this paper were summarized in Table 1.

Table 1: Parameter matrices of the quintic graphs of order at most 10

Graphs Parameter matrices
Y, Fy, Fr7, Fip
Y, F3
Y3 no parameter matrix
Yy Fy, F1o, F14
Ys Fg, Iy
Ys Fro
Y7 Fg, F1y
Yy Fs, Fg

4. Conclusion

This paper examined the problem of finding perfect bicolorings in graphs of degree five and with at most
ten vertices. A perfect bicoloring was defined as a partition of the vertex set into two subsets, where each
subset induced a regular subgraph. Algebraic techniques were used to construct parameter matrices that
described the structure of such bicolorings. After these matrices were constructed, all possible parameter
matrices for graphs of degree five with at most ten vertices were classified, and the cases that corresponded
to graphs admitting perfect bicolorings were identified.
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