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Perfect Bicoloring of the Quintic Graphs of Order at Most 10

Mohammadhadi Alaeiyan, Mehdi Alaeiyan∗, Zahra Shokoohi

abstract: This paper studies the problem of finding perfect bicolorings in graphs of degree five and with at
most ten vertices. A perfect bicoloring is defined as a partition of the vertex set into two subsets, where each
subset induces a regular subgraph. Algebraic techniques are employed to construct parameter matrices that
describe the structure of such bicolorings. After constructing these matrices, all possible parameter matrices
for graphs of degree five with at most ten vertices are classified, and the cases that correspond to graphs
admitting perfect bicolorings are identified.
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1. Introduction

A perfect coloring of a graph Y = (V,E) with t colors is a coloring of the vertex set V that uses
all t colors and satisfies the following condition: for any two colors r and s, every vertex of color s has
the same number of neighbors of color r, denoted by frs. The matrix F = (frs)r,s∈{1,...,t} is called the
parameter matrix of the coloring.

Perfect t-colorings form a topic at the intersection of algebraic combinatorics, coding theory, and
graph theory. In the literature, such colorings are also referred to as equitable partitions [1]. The
study of completely regular codes in graphs has a long and well-established history. In 1973, Delsarte
conjectured that Johnson graphs admit no perfect codes, a question that has since attracted considerable
attention [2,3,4].

Alaeiyan [5] introduced the bipartite Ala graph Ala(m;G; k) and examined its structural and spectral
properties using eigenvalue analysis. Also, it is possible to compute the perfect coloring of the Ala graphs.
Moreover, Alaeiyan et al. [6] studies how to find perfect 2- and 3-colorings of these graphs by comparing
the eigenvalues of their adjacency matrices with those of parameter matrices. Fon-Der-Flaass classified
all perfect bicolorings of hypercubes Qn for n < 24 [7,8,9]. Alaeiyan provided a solution for the perfect
3-coloring of the Heawood graph [10]. In a related direction, the present paper determines all parameter
matrices of perfect bicolorings of quintic graphs with at most ten vertices.

In this work, we focus on perfect bicolorings of graphs of degree five with at most ten vertices. A perfect
bicoloring partitions the vertex set into two color classes such that each class induces a regular subgraph.
We use algebraic methods to construct parameter matrices that encode the structural constraints of such
colorings. Based on these matrices, we classify all feasible parameter configurations for quintic graphs of
order at most ten and identify the graphs that admit a perfect bicoloring.

The structure of the paper is organized as follows. Section 2 introduced the necessary background on
perfect bicolorings, parameter matrices, and eigenvalue conditions. Section 3 presented the main results
and identified all parameter matrices that admitted perfect bicolorings for quintic graphs with at most
ten vertices. Finally, Section 4 concluded the paper by summarizing the principal findings.
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Figure 1: Quintic graph of order 6
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Figure 2: Quintic graphs of order 8

2. Preliminaries

This section presents the fundamental ideas and definitions related to perfect bicoloring through the
use of parameter matrices. These matrices record how vertices of different colors are connected and
describe the adjacency structure of the graph. The conditions that help reduce the number of admissible
parameter matrices are also outlined, allowing the analysis and the proof of the main results to become
more manageable. Quintic graphs are 5-regular graphs in which every vertex has degree 5, and such
graphs exist only for even numbers of vertices. The quintic graphs with up to 10 vertices are shown in
Figures 1, 2, and 3.

Definition 1 Let Y = (V,E) be a connected graph and let t be a positive integer. A perfect t-coloring
with parameter matrix F = (frs)r,s∈{1,...,t} is a surjective mapping

Γ : V (Y ) −→ {1, . . . , t},

such that for every vertex v ∈ V (Y ) with Γ(v) = r, the vertex v has exactly frs neighbors of color s.

When t = 2, the colors are red and black in that order. We use R and B to represent the sets of red

and black, respectively. We denote the parameter matrix by F =

[
f11 f12
f21 f22

]
and consider parameter

matrices

[
f11 f12
f21 f22

]
and

[
f22 f21
f12 f11

]
up to renaming the colors equal. We start by analyzing the necessary

conditions for a perfect bicoloring of quintic graphs with at most 10 vertices, assuming a fixed parameter
matrix F = (frs)r,s=1,2.
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Figure 3: Quintic graphs of order 10

Remark 1 Suppose that Y is a 5-regular graph, and Γ is a perfect bicoloring with matrix F =

[
f11 f12
f21 f22

]
.

Then we have f11 + f12 = f21 + f22 = 5.

Remark 2 Suppose that Γ is a perfect bicoloring with matrix F =

[
f11 f12
f21 f22

]
in a connected graph Y .

Then we have f12, f21 ̸= 0.

An eigenvalue of the graph Y , denoted by θ, is a scalar satisfying AX = θX for some nonzero vector X,
where A is the adjacency matrix of Y . Similarly, a number η is called an eigenvalue of a perfect bicoloring
with parameter matrix F if η is an eigenvalue of F .
The following theorem describes the relationship between these notions.

Theorem 1 [2] If Γ is a perfect coloring of a graph Y with t colors, then any eigenvalue of Γ is also an
eigenvalue of Y .

We can obtain the eigenvalues of a parameter matrix using the following corollary.

Corollary 1 [11] Let Γ be a perfect bicoloring with parameter matrix F =

[
f11 f12
f21 f22

]
of a k-regular

graph Y . Then the numbers f11 − f21 and k are eigenvalues of Γ and hence eigenvalues of Y .

We now apply the lemma to determine the number of red vertices in a perfect bicoloring.

Lemma 1 [2] Let R be the set of all red vertices in a perfect bicoloring of a graph Y with matrix

F =

[
f11 f12
f21 f22

]
. Then we have

|R| = |V (G)f21
f12 + f21

.
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From the given condition, it follows that any admissible parameter matrix for a perfect bicoloring of a
quintic graph must be one of the following:

F1 =

[
0 5
1 4

]
, F2 =

[
0 5
2 3

]
, F3 =

[
0 5
3 2

]
, F4 =

[
0 5
4 1

]
,

F5 =

[
0 5
5 0

]
, F6 =

[
1 4
1 4

]
, F7 =

[
1 4
2 3

]
, F8 =

[
1 4
3 2

]
,

F9 =

[
1 4
4 1

]
, F10 =

[
2 3
1 4

]
, F11 =

[
2 3
2 3

]
, F12 =

[
2 3
3 2

]
,

F13 =

[
3 2
1 4

]
, F14 =

[
3 2
2 3

]
, F15 =

[
4 1
1 4

]
.

3. Main Results

In this section, we identify the parameter matrices for all perfect bicoloring of the quintic graphs with
at most 10 vertices.

Theorem 2 The graph Y1 admits a perfect bicoloring only for the matrices F1, F7, F12.

Proof: To construct a perfect bicoloring of the graph Y1, one of the parameter matrices F1, . . . , F15 is
selected. By applying Theorem 1 and Corollary 1, all matrices except F1, F7, F10, and F12 are excluded.
According to Lemma 1, the matrix F10 is also ruled out, since the number of red vertices would not be
an integer. We now consider the following three mappings Γ1, Γ2, and Γ3:

Γ1(n1) = R, Γ1(n2) = Γ1(n3) = Γ1(n4) = Γ1(n5) = Γ1(n6) = B.

Γ2(n1) = Γ2(n2) = R, Γ2(n3) = Γ2(n4) = Γ2(n5) = Γ2(n6) = B.

Γ3(n1) = Γ3(n3) = Γ3(n5) = R, Γ3(n2) = Γ3(n4) = Γ3(n6) = B.

It is easy to see that Γ1, Γ2, and Γ3 are perfect bicoloring with the matrices F1, F7, and F12, respectively.
2

Theorem 3 The graph Y2 admits a perfect bicoloring only for the matrix F3.

Proof: To construct a perfect bicoloring of the graph Y2, one of the parameter matrices F1, . . . , F15 is
selected. By Theorem 1 and Corollary 1, all matrices except F3, F6, F9, and F11 are excluded. According
to Lemma 1, the matrices F6 and F11 cannot occur, since the number of red vertices would not be an
integer. The matrix F9 also fails to yield a perfect bicoloring for the graph Y2. To see this, assume that
Y2 has a perfect bicoloring with parameter matrix F9. Since f11 = 1, two adjacent vertices must both be
red, and all remaining vertices must be black. This implies |B| = 4, which contradicts the requirement
f22 = 3. We now define the mapping Γ by

Γ(n1) = Γ(n4) = Γ(n6) = R, Γ(n2) = Γ(n3) = Γ(n5) = Γ(n7) = Γ(n8) = B.

It is easy to see that the mapping Γ is a perfect bicoloring with the matrix F3. 2

Theorem 4 The graph Y3 does not have a perfect bicoloring .

Proof: To obtain a perfect bicoloring of the graph Y3, one of the parameter matrices F1, . . . , F15 is
considered. By Theorem 1 and Corollary 1, the admissible matrices are

F1, F7, F10, F12, F14.

According to Lemma 1, the matrices F1, F7, and F12 are excluded, since the number of red vertices would
not be an integer. For the matrix F10, we obtain |R| = 2 and |B| = 6. Using these values together with
the entries of F10, the vertices can be colored and the possible configurations can be examined. This
leads to the following cases:
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1. If Γ(n1) = Γ(n2) = R and Γ(n3) = Γ(n4) = Γ(n5) = Γ(n6) = Γ(n7) = B, then Γ(n8) = R, which
contradicts the second row of matrix F10.

2. If Γ(n1) = Γ(n2) = Γ(n3) = Γ(n8) = B and Γ(n4) = Γ(n5) = Γ(n6) = R, then Γ(n7) = B, but
this case contradicts the second row of the matrix F10. Thus, there is no perfect bicoloring for the
graph Y3 with matrix F10.

Similarly, we can prove for matrix F14 as follows:

For matrix F14 we have |R| = |B| = 4. Using these numbers and the entries of the matrix F14, we
can color the vertices and check different cases. Thus we have the following possibilities:

3. If Γ(n1) = Γ(n5) = Γ(n7) = R and Γ(n2) = Γ(n3) = Γ(n4) = Γ(n6) = B, then Γ(n8) = R, which
contradicts the second row of matrix F14.

4. If Γ(n1) = Γ(n2) = Γ(n3) = Γ(n5) = B and Γ(n4) = Γ(n6) = Γ(n7) = R, then Γ(n8) = R, but this
case contradicts the second row of matrix F14. Hence, there is no perfect bicoloring for the graph
Y3 with matrix F14.

2

Theorem 5 The graph Y4 has a perfect bicoloring only for the matrices F9, F12 and F14.

Proof: To obtain a perfect bicoloring of the graph Y4, one of the parameter matrices F1, . . . , F15 is
considered. By Theorem 1 and Corollary 1, the admissible matrices are

F1, F3, F7, F9, F10, F12, F14.

According to Lemma 1, the matrices F1 and F7 are excluded, since the number of red vertices would not
be an integer. We now show that the graph Y4 admits no perfect bicoloring with parameter matrices F3

or F10. We first consider the matrix F3. Suppose that Γ is a perfect bicoloring of Y4 with parameter
matrix F3, and assume Γ(n1) = R. Since f12 = 5, all vertices must be black except for the neighbors n3

and n7. By Lemma 1, the matrix F3 requires |R| = 3, implying Γ(n3) = Γ(n7) = R. This contradicts
the condition f11 = 0. It remains to show that Y4 has no perfect bicoloring with parameter matrix F10.
Assume that such a bicoloring exists and let Γ(n1) = B. From f22 = 4, it follows that

Γ(n2) = Γ(n4) = Γ(n5) = Γ(n6) = B, Γ(n8) = R.

Using f11 = 2, we obtain Γ(n3) = Γ(n7) = R. However, in this situation the black vertex n4 becomes
adjacent to three red vertices, contradicting the condition f21 = 1. We now consider the following three
mappings Γ1, Γ2, and Γ3:

Γ1(n1) = Γ1(n3) = Γ1(n5) = Γ1(n7) = R,

Γ1(n2) = Γ1(n4) = Γ1(n6) = Γ1(n8) = B.

Γ2(n1) = Γ2(n6) = Γ2(n7) = Γ2(n8) = R,

Γ2(n2) = Γ2(n3) = Γ2(n4) = Γ2(n5) = B.

Γ3(n1) = Γ3(n4) = Γ3(n5) = Γ3(n8) = R,

Γ3(n2) = Γ3(n3) = Γ3(n6) = Γ3(n7) = B.

Clearly,the mappings Γ1,Γ2 and Γ3 are perfect bicoloring with the matrices F9, F12 and F14, respectively.
2

Theorem 6 The graph Y5 has a perfect bicoloring only for the matrices F6 and F11.
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Proof: To obtain a perfect bicoloring of the graph Y5, one of the parameter matrices F1, . . . , F15 is con-
sidered. By Theorem 1 and Corollary 1, the admissible matrices are F1, F6, F7, F11, and F12. According
to Lemma 1, the matrices F1 and F7 are excluded, since the number of red vertices would not be an
integer. The matrix F12 also fails to produce a perfect bicoloring for Y5. Assume that Γ is a perfect
bicoloring of Y5 with parameter matrix F12. Let Γ(n1) = R. From the first row of F12, it follows that

Γ(n2) = Γ(n3) = R and Γ(n6) = Γ(n9) = Γ(n10) = B.

Using the red vertices n2 and n3 together with f12 = 3, the remaining vertices must all be black, which
contradicts the condition |B| = 5. We now consider the following two mappings, Γ1 and Γ2:

Γ1(n1) = Γ1(n6) = R,

Γ1(n2) = Γ1(n3) = Γ1(n4) = Γ1(n5) = Γ1(n7) = Γ1(n8)

= Γ1(n9) = Γ1(n10) = B.

Γ2(n1) = Γ2(n2) = Γ2(n6) = Γ2(n7) = R,

Γ2(n3) = Γ2(n4) = Γ2(n5) = Γ2(n8) = Γ2(n9) = Γ2(n10) = B.

Clearly, the mappings Γ1 and Γ2 are perfect bicoloring with the matrices F6 and F11, respectively. 2

Theorem 7 The graph Y6 has a perfect bicoloring only for the matrix F12.

Proof: To obtain a perfect bicoloring of the graph Y6, one of the parameter matrices F1, . . . , F15 is
considered. By Theorem 1 and Corollary 1, the admissible matrices are F1, F2, F7, F8, and F12. According
to Lemma 1, the matrices F1, F2, F7, and F8 cannot occur, since the number of red vertices would not be
an integer. The mapping Γ is defined by

Γ(n1) = Γ(n2) = Γ(n4) = Γ(n8) = Γ(n10) = R, Γ(n3) = Γ(n5) = Γ(n6) = Γ(n7) = Γ(n9) = B.

It is clear that the mapping Γ yields a perfect bicoloring corresponding to the parameter matrix F12. 2

Theorem 8 The graph Y7 has a perfect bicoloring only for the matrices F6 and F11.

Proof: To obtain a perfect bicoloring of the graph Y7, one of the parameter matrices F1, . . . , F15 is
considered. By Theorem 1 and Corollary 1, the only admissible matrices are F2, F6, F8, F11, and F15.
According to Lemma 1, the matrices F2 and F8 cannot occur, since the number of red vertices would not
be an integer. Moreover, the matrix F15 does not produce a perfect bicoloring of Y7. Assume that Γ is a
perfect bicoloring of Y7 with parameter matrix F15. Let Γ(n1) = R. From the first row of F15, it follows
that

Γ(n3) = Γ(n5) = Γ(n6) = Γ(n7) = R and Γ(n9) = B.

However, the black vertex n9 would then be adjacent to three red vertices, contradicting the condition
f21 = 1. We now examine the following two mappings:

Γ1(n1) = Γ1(n6) = R,

Γ1(n2) = Γ1(n3) = Γ1(n4) = Γ1(n5) = Γ1(n7) = Γ1(n8)

= Γ1(n9) = Γ1(n10) = B.

Γ2(n1) = Γ2(n4) = Γ2(n6) = Γ2(n9) = R,

Γ2(n2) = Γ2(n3) = Γ2(n5) = Γ2(n7) = Γ2(n8) = Γ2(n10) = B.

It is clear that the mappings Γ1 and Γ2 form perfect bicolorings associated with the parameter matrices
F6 and F11, respectively. 2

Theorem 9 The graph Y8 admitted a perfect bicoloring only for the matrices F5 and F6.
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Proof: To determine a perfect bicoloring of the graph Y8, one of the parameter matrices F1, . . . , F15 is
considered. According to Theorem 1, Corollary 1, and Lemma 1, the only admissible parameter matrices
are F5 and F6. The mappings Γ1 and Γ2 are defined as follows:

Γ1(n1) = Γ1(n3) = Γ1(n5) = Γ1(n7) = Γ1(n9) = R,

Γ1(n2) = Γ1(n4) = Γ1(n6) = Γ1(n8) = Γ1(n10) = B.

Γ2(n1) = Γ2(n2) = R,

Γ2(n3) = Γ2(n4) = Γ2(n5) = Γ2(n6) = Γ2(n7) = Γ2(n8)

= Γ2(n9) = Γ2(n10) = B.

Clearly, the mappings Γ1 and Γ2 were P−2c colorings associated with the matrices F5 and F6, respectively.
2

In conclusion, the main results of this paper were summarized in Table 1.

Table 1: Parameter matrices of the quintic graphs of order at most 10

Graphs Parameter matrices
Y1 F1, F7, F12

Y2 F3

Y3 no parameter matrix
Y4 F9, F12, F14

Y5 F6, F11

Y6 F12

Y7 F6, F11

Y8 F5, F6

4. Conclusion

This paper examined the problem of finding perfect bicolorings in graphs of degree five and with at most
ten vertices. A perfect bicoloring was defined as a partition of the vertex set into two subsets, where each
subset induced a regular subgraph. Algebraic techniques were used to construct parameter matrices that
described the structure of such bicolorings. After these matrices were constructed, all possible parameter
matrices for graphs of degree five with at most ten vertices were classified, and the cases that corresponded
to graphs admitting perfect bicolorings were identified.
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