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On Distance-Based Arithmetic Radio Number of Standard Graph Classes

Ramya Hebbar* Sooryanarayana B., Vishukumar M. and Sneha G. Kulkarni

ABSTRACT: Let k € Z* and let G = (V, E) be a connected graph of order n. An arithmetic k-radio labeling
is a bijection n: V — {1,1+ k,1+ 2k, ..., 1+ (n — 1)k} such that for any two distinct vertices u,v € V, the
condition |n(u) — n(v)| > diam(G) — dist(u, v) is satisfied. The least such k is defined as the arithmetic radio
number of G, denoted by Rq(G). In this paper, we establish exact values of Rq(G) for several families of
graphs, including paths, cycles, squares of paths, and the join of graphs. Our results contribute to the broader
context of distance-constrained labeling by combining structural graph properties with arithmetic progressions
in labeling.
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1. Introduction

The study of arithmetic radio numbers finds potential applications in frequency allocation problems,
wireless sensor networks, and distributed computing systems, where efficient and interference-free assign-
ment of communication channels is essential. Moreover, it extends naturally to task scheduling problems,
VLSI design, and resource optimization in parallel processing, where constraints analogous to distance
in graphs dictate feasible allocations.

Recent research in related areas, such as radio number, graceful labelings, metric dimension, and
broadcast domination, suggests that arithmetic radio labeling could serve as a unifying framework for
exploring new extremal properties and optimization strategies in graphs. This motivates a systematic
study of arithmetic radio numbers for different families of graphs, with an emphasis on structural char-
acterizations, bounds, and algorithmic aspects.

Let F be the family of all finite, simple, connected, nontrivial, and un-directed graphs. Let G € F
with set of vertices Viz and set of edges Eg. For each pair u;,u; € Vg the distance between them is
denoted by dist(u;,u;), eccentricity of v € Vg by ecc(v) = max{dist(v,§) : £ € Vig}. The minimum and
maximum value of the eccentricities among all the vertices of the graph are called its radius and diameter,
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respectively, and are denoted by rad(G) and diam(G). A graph G € F with diam(G) = rad(G) is called
self-centric. If a graph has a path containing all its vertices, then such a graph is called semi-Hamiltonian.

The notion of radio labeling arises from the channel assignment problem, as discussed in [5]. The
concept was formally introduced by Chartrand et al. [3] and subsequently explored in various works
such as [2,7,9,10,11,13,15,16,8]. A comprehensive survey of radio labeling is available in [4], and related
developments are discussed in [2].

In this paper, radio arithmetic graceful labeling is introduce and that naturally extend the classical
radio labeling concept by incorporating an arithmetic progression structure into the label set, leading to
the notion of arithmetic radio labeling. We analyze the arithmetic radio number R, (G) for various graph
classes and highlight its structural implications. A radio labeling (rd-labeling) is a vertex labeling with
integers in such a way that the sum of differences of labeling of every pair of two distinct vertices with the
distance between then shall exceed one more than its diameter. The largest label assigned by a labeling
is known as its span. The minimum value of the span of an rd-labeling of G among all such rd-labelings
is called radio number of G, denoted by the symbol rn(G).

The concept radio graceful was initiated in [13]. Given G € F is identified as radio graceful if it admits
a rd-labeling with span is equal to its order. In 2016, Amanda J. N. [1] presented various such graphs and
Sooryanarayana B. and Ramya in [6,14] investigated the relationship between the order and diameter of
radio graceful graphs, provided necessary conditions for G € F to be radio graceful, and characterized
radio graceful graphs of the lower orders. Let R, C F be the family of all radio graceful graphs.

We recall the generalized distance graphs introduced in [12]. Let G € F be of order n. Let D =
{dist(u,v) : u,v € Vg} and H C D. The distance graph D (H) of G associated with the distance subset
H is defined on the vertices of G with and edges whenever the distance between then is in H. We simply
write G; to denote the distance graph Dg({i}) throughout this paper. Further, a pair u,v € Vi is said
to be a k; pair in G if dist(u,v) = 1.

We refer the following results in next section of this paper:

Theorem 1.1 ( [7]) For any { € Z" with £ > 3,

rn(Cy) = + V(KS Q)J +E(0),
0 if =0 (mod 4).
where £(0) = { &3 if =1 (mod 4).

1£22] if€=2,3 (mod 4).
Theorem 1.2 ( [6]) Let G € F be of ordern. Then G € R, <= D¢ ({diam(G)}) is semi-Hamiltonian.

In the next section, we introduce and compute a new invariant named as the arithmetic radio number.
Arithmetic k-radio labeling is a generalization of radio graceful labeling.

2. Arithmetic k-Radio labeling

Throughout this paper we take A(a, k,n) be the set of first n terms an arithmetic progression whose
first number is a and common difference .

For any G € F of order n and k € Z*, a bijection ¢ : Vg — A(1,k,n) is called an arithmetic k-
radio labeling (in short, arg-labeling) if |¢(€1) — ¢(¢2)| 4 dist(¢1,£2) > 1 + diam(G), for any two distinct
01,05 € Vio. We see that every graph admits an arg-labeling for every k > diam(G). Here on wards, for
each k € Z", we take Ry (k) be the set of all graphs in F that admits an arj-labeling. Then, Ry(1) =R,
and Ry (k) C Ry(k + 1) for every k € Z*. Hence, we intend to find the least possible integer k for which
G € Ry(k) and call such k as arithmetic radio number of G, denoted by R,(G). An arg-labeling with
k = Rq(G) is simply called an arithmetic radio labeling of G.

Remark 2.1 For any G € F, 1 <R, (G) < diam(G).

Remark 2.2 A graph G € Ry if and only if R,(G) = 1.
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3. Bounds for Arithmetic radio number of a graph

Let G € F and |Vg| = n. Let n: Vg — A(1,k,n) be a function. Then for any induced subgraph
H C G, by the n-chain of H, we mean an arrangement or a sequence wi,ws, . ..,w|y;| of the vertices of
H such that n(w;) < n(w;) whenever i < j.

Further, if n is an arg-labeling of G, then for the n-chain of H C G, we see that

[Vir|—1
n(wn) —n(w1) = Z [M(wit1) — n(wi)]
[Vir|—1

> [(diam(G) + 1) — dist(w;1,w;)]
i=1
[VE|-1

= (|Val - 1)(diam(G) +1) = Y dist(w;r1,w;).
i=1

Thus, as n(w;) > 1, we have;

[V (H)|-1
n(wn) > 1+ (|[V(H)| - 1)(diam(G) + 1) — Z dist(wit1,w;) (3.1)
i=1
The R.H.S. of the inequality (3.1) is independent of every labeling but it depends only the arrangement

or choice of the sequence of vertices in G, that is, the value of S = ZLZ&H)‘A dist(w;41,w;) for every

induced subgraph H of G. Therefore, the optimality of the value of n(w,) among all rd-labeling n of G
purely depends on the value of S and is minimum if and only if the value of S is maximum.

Lemma 3.1 For any G € F of order n,

R.(G) >

"rn(G) - 1} |

n—1

Proof: Let R,(G) = k and n be any arg-labeling of G. Then 7 is also an rd-labeling of G and hence

n(wn) > r(G) = 14+ (n— 1)k > rn(G). So k > % = k> {%—‘ (since k € ZT). O

Lemma 3.2 For every G € F,
R.(G) > 1+ diam(G) — rad(G)

Proof: Let R,(G) = k and 7 : Vo — A(1,k,|Vg|) be an arg-labeling of G. Let w; and w;+1 be any
two consecutive vertices in the 7-chain of G. Then |n(w;t+1) — n(w;)| + dist(w;41,w;) > diam(G) + 1 =
k + dist(w;41,w;) > diam +1. Hence

k> 1+ diam(G) — dist(w;41,w;) (3.2)

The inequality (3.2) shall hold for every consecutive vertices in the n-chain, in particular for the central
vertex also. Thus taking w; as central vertex we see that Ro(G) = k > 1 4 diam(G) — dist(w;, wit1) >
1+ diam(G) — ecc(w;) = 1 + diam(G) — rad(G). O

Above Lemma 3.2 together with Remark 2.1 yeilds;

Corollary 3.3 For every G € F with rad(G) = 1, R (G) = diam(G).

From the above Corollary 3.3, we see that R,(G + K;) = 2 for every graph G # K,,. In particular for
the wheel graph W ,, for every n > 3 and R,(K,,) =1 for every n > 1.

Corollary 3.4 If G € F and Ro(G) = 1, then G is self-centric.

The converse of Corollary 3.4 need not be true in general. In fact, R,(Cg) > 1.
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4. Arithmetic radio number of a path P,

Throughout this section let vy, v1,...,v,_1 denote the vertices of P, in order.

Theorem 4.1 For any n € Z*, R,(P,) = [%].

Proof: The diameter and radius of the path P, are respectively n — 1 and L%J Hence by Lemma 3.2,
we have n n n
Ra(G)>(n—1)+1— bJ —n— bJ - [ﬂ (4.1)

Now, to prove the reverse inequality we execute an arg-labeling with k& = [§]. For which, consider
sequence wi,ws, . ..,wy of vertices of P,, where

(1) w1 = Vpm,Wa = Vo, W3 = Vpny1,Ws = V1, W5 = Uy 2, -+, Wno2 = Um—2,Wn—1 = V2m—1,Wn = Um—1, if
n = 2m.
(i) w1 = Vm, W2 = V0,W3 = Vpm41,Ws = V1, W5 = Um42, -+, Wn-2 = V2m—1,Wn—1 = Um—1,Wn = V2m, if
n=2m+1.
Define a function 7 : Vp, — A(1, k,n) by, n(w1) = 1; n(wi+1) = n(w;) + [%], for 1 <i<n—1.
Since |n(w;) — n(wit1)| = k, to show 7 is an arg-labeling it is sufficient to prove that 7 is a radio
labeling.

n

Let u = w; and v = w; for some 1 < i,j < nyi # j. If [i — j| = 1, then dist(w;,w;) > | %] and hence
In(w;) — n(w;)| + dist(w;, wj) > |i — jlk+ | 2] > [2] + |2]| = n = diam(P,) + 1. If |i — j| > 2, then
In(w;) — n(w;)| > 2k and hence [n(w;) — n(w;)| + dist(w;,w;) > i — j2k+1>2k+1=2[2]+1>n=
diam(P,) + 1. Hence 7 is an arg-labeling with k = [2]. So

Ra(Po) < | 5] (4.2)
Now, Inequality (4.1) and Inequality (4.2) together proves the theorem. O

5. Arithmetic radio number of a square path

Square path of a path P,, denoted by P2, is the graph on the vertices of P, such that two vertices in
P? are adjacent if and only if they are at a distance at most 2 in P,. Throughout this section we take in
order vg,v1,v2,...,v,_1 are the vertices of P,.

Theorem 5.1 For any n € ZT, R,(P2) = [2H].

Proof: For n < 3, P? = K,, and hence rn(P?) = n and R,(P2) = 1. Let n > 4. The diameter d and
radius r of the graph P? are respectively L%J and ["T_l] Therefore, by Lemma 3.2, we have;

Ra(Pf)zl—i—d—r:l—l—V;J—[nil-‘:{nzl-‘. (5.1)

Now to prove the reverse inequality, Consider sequence
(1) w1 = vd,w2 = Vo, W3 = Va41,Ws = V1,Ws = Vit2,We = V2, - -+, Wn—1 = Vam—1,Wn = Vd—1, if n = 2m.
(il) w1 = v, Ws = Vga1, W3 = V1, W4 = Vg4, .- -, Wn—9 = Vg—1,Wn—1 = U, Wn = Vg, if B =2m + 1.

Define a function i : V. — A(1, [(n+1)/4],n) by n(w1) = 1; n(wit1) = n(w;)+ 2], for 1 <i < n—1.
Then for any u = w; and v = w; with i # 7, |n(w;) —n(w;)| +da(wi,w;) > i —jlk+da(wi, wj) > 2k+1 >
2 [”T“-‘ +1> L%J +1=d+ 1 whenever |i — j| > 2. Further, when |i — j| = 1, dg(w;,w;) > da(vo,vq) =
2717 and hence, |n(w;) — n(w;)| + da(wi, w;) = k+ [27] = [22 ] + [272 ] = |2 + 1 =d+ 1. Thus g
is a (n + 1)/4-arithmetic radio labeling.Hence, Rq(P2) = [2F1]. O
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6. Arithmetic radio number of some self-centric graphs
We recall that R,(G) = 1 is possible only for self-centric graphs and the converse need not be true.
In this section we consider some standard self-centric graphs for which R, (G) > 1.
6.1. For the cycles
Throughout this section, C,, denotes a cycle with Vo, = {v; : 0 < i < n —1} and E¢g, =

{viVi41 (mod n) : 0 <@ <m —1}. For each integer n > 3, the diameter of the cycle C), is |5 ].

Theorem 6.1 For eachn € ZT withn > 3,

%L if n=0 (mod 4)
[%3], if n=1 (mod 4).

R.(Cy) = f%}, if n=2 (mod4) & n#10 (mod 16).
[%-\ +1, if n=2 (mod4) & n=10 (mod 16).
[ote], if n=3 (mod4)

Proof: In view of Theorem 1.1 and Lemma 3.1,

—712%671,1 [ n246n-8 i .
n—1 - ’V 8(n—1) —‘ ifn=0 (HlOd 4)
[n2+2nts ] 5 _
CY—1 — | = %] ifn=1 (mod 4)
R.(C) > [m(i)l‘l b |
n nZtdntd g ’ﬂ2+477,74 . _
3—1 = ’V 8(n—1) —‘ ifn=2 (HlOd 4)
# = “TS] ifn=3 (mod4)

However, R, (G) > [%-‘ +1if n =10 (mod 16). In fact, for any arg-lableling n of C,, with n-chain
w1, wsa, ..., Wy, to label any two vertices with difference k, the minimum distance between them must be
Il =(1+d)—k. Also, if we use d(w;,w;+1) > I, for any 1 < i < n — 1 then we cannot label ws. So,
d(w;,w;r1) =1 for any 1 < i < n — 1. But, with this difference ¥ = 1 + d — d(w;, w;+1), the funciton n
label the vertices either only in clockwise direction or only in anticlockwise direction and in each case it

label only till vertex wz and cannot label wz 1 whenever k = [%—‘. Hence, k > [%—‘.

Sufficiency: We now show that the lower limits established above are actually achievable in each of
the cases by executing an arithmetic radio labeling. Let k£ be the lower bound obtained above in each of
four cases. Let [ = (1+d) — k, where d is diameter of cycle C,,. Then I =1+ [ 5| — k. Define a function
n:V — A(1, k,n) such that n(vy) = 1 and for each i = 1,2, 3,. .., after labeling the vertex v;_1, label the
vertex v; as n(v;) = n(v;) + k, where j is the least positive integer greater than or equal to i+ (mod n)
such that the vertex v; is non-labeled.

Then in the 7-chain wy,ws, . .. ,wy of C,, we observe that | < dist(w;,w;+1) < 2l and |n(w;+1)—n(w;)| =
k. So, to show 7 is a rd-labeling it is sufficient to check for the vertices w2 (mod n),Wi+3 (mod n) and
Witr (mod n), Where 7 > 4 with w;. Let w; and w; (mod n) € Vo, and j >4 and i € Zj, be arbitrary.

Case 1: n =0 (mod 4).
In this case, we have three subcases as follows.

Subcase 1: j =i+ 2 (mod n).
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In this case,

In(w;) — n(w;)| +dist(wj,w;)) > 2k4+n—-20-1=2k+n—-2(1+d—k)—-1
4k — 3 (since d = %)
_ 4 n? + 6n — 8 _3
8(n—1)
- 5+1>d+1 ifn=0 (mod 8)
B 5+3>d+1 ifn=4(mod3)

Subcase 2: j =i+ 3 (mod n).
In this case,

In(w;) — n(w;)| + dist(wj,w;)) > 3k+3l—n

3(1+d)—n (sincel =1+d— k)
34+3d—-2d>d+ 1.

Subcase 3: j =i+ 7 (mod n) for any 7 > 4.
In this case,
n(w;) = n(w:)| + dist(wj,wi) > 4k +1
> 4k —3 > d+ 1 (by Subcase 1).

Case 2: n =1 (mod 4).
Again we have three subcases as above.

Subcase 1: j =i+ 2 (mod n).
We first prove the case n # 9. In this case,

In(w;) — n(w;)| + dist(w;,w;) = 2k+n— 2] (since n and [ are relative primes)
= 2k+n-2(1+d—k)=4k—1 (- d="25)
n+3
]
n+5

>[5]+1>d+1 ifn=1 (mod38)
= ol — 2] +1>d+1 ifn=5 (mod 8)

Now, if n =9, then k =2, 1 = 3, so ged(n,l) # 1 and in this case,
[n(w;) —n(w;)| + dist(wj,w;) >2k+n—-21—1=4k—-2=4(2)—-2=6>5=4+1=d+1.

Subcase 2: j =i+ 3 (mod n).
In this case,
[n(w;) —nw;)| + dist(w;,w;) > 3k+3l—n
314+d)—n=314+d) —(2d+1) >d+1.

Subcase 3: j =i+ 7 (mod n) for any 7 > 4.
In this case,

[n(w;) —n(w;)| + dist(wj,w;) >4k +1 >4k —1>d+1. (by Subcase 1)

Case 3: n =2 (mod 4).
We now consider the three subcases as follows.
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Subcase 1: j =i+ 2 (mod n).
Two subcases of this case are;

Subcase la: n # 10 (mod 16).
We first prove for n # 6.

In(w;) — n(w;)| + dist(w;,w;) = 2k+n— 2l (since n and [ are relatively primes)
= 2k+n—2(14d—k) =4k — 2 (since n = 2d)
_ 4[n2—|—4n—4—‘_2
8(n—1)
_ {g+12d+1 if n =2 (mod 8)
B 5+3>d+1 ifn=6 (mod8)

Now, when n =6, we get k =2, =2, d = 3 and hence,
In(w;) — n(w;)| +dist(wj,w;) >2k+n—-20—-1=44+6—-4—-1=5>3+1=d+1.

Subcase 1b: n =10 (mod 16).
In this case,

[n(w;) —nlw;)| + dist(wj,w;) = 2k+n—-20-1
= %k+tn—204+d—k) —1
4k — 3 (since n = 2d)
n?+4n —4
1) —
(st +-s

= g+4>d+1

Subcase 2: j =i+ 3 (mod n).
In this case,

v

3k+3l—n
3(1+d) — 2d (since n = 2d)
d+3>d+1.

n(w;) — nlw:)| + dist(w;, wi)

Subcase 3: j =i+ 7 for any 7 > 4.
In this case,

[n(wj) — n(w;)| + dist(wj,w;) >4k +1 >4k —2>d+ 1. (by Subcase 1).

Case 4: n =3 (mod 4).
The three subcases are;

Subcase 1: i = j + 2 (mod n).
In this case,

Vv

2k+n—-20-1
2k+n—-214+d—k)—1
= 4k —2 (sincen=2d+1)
n+95
1|22 -
2l >d+1 if n=3 (mod 8)
N {"'2*'5>d+1 if n =7 (mod 8)

[n(w;) = nwi)| + dist(w;, wi)
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Subcase 2: j =i+ 3 (mod n).
In this case,

[n(w;) —n(w;)| + dist(w;,w;) >3k +3l—n=3(1+d) —(2d+1) >d+1.
Subcase 3: j =i+ 7 (mod n) for any 7 > 4.

In this case, |n(w;) — n(w;)| + dist(w;,w;) =4k +1 > 4k —2 > d + 1. (by Subcase 1)

Also, in all the above four cases, we have
[n(wit1) — n(w;)| + dist(wip1,w;) 2 k+l=k+(1+d)—k=d+ 1.

Thus, n is a rd-labeling. Hence the theorem. O

6.2. For join of Paths

The join of G1,Gs € T, denoted by G1 + Go, is an element of F such that Vg, ¢, = Vo, U Vg, and
Ec,+c, = Eg, UEg, U{uv : u € Vg, and v € Vg,}. From the definition it is clear that joint of K,
and k,, is K,,4+rn. Hence we consider join of two graphs of which at least one of them is non-complete.
For such graphs, the diameter of Gy + G2 is 2 and hence for any n-chain wy,wa, ..., Wy, |1+|vg,| of a
rd-labeling n of G1 + Gg, by Equation (3.1) we have;

n(w\Vc‘,lPerGQ\) > 1+(|VG1|+|VG2| - 1)(2+1) — Maz S
= 3(|Va, |+ |Va,|) —2— Mazx S (6.1)

where § = 327 &ik;, with & + & = |Va, | + [Va,| — 1, & < min{|Eq,
and 61, fg ezZtu {O}

9 |VG1

1 ki=i,1<i<2,

Theorem 6.2 For anyn,m € Z* withn >m > 1,

n+m, if n=2.

n+m-+3, if n=3.

n+m+2, if n>4& me{23}.
n+m-+1, if n,m>4.

rn(P, + Pp,) =

Proof: Let G = P, + P, and G; = Dg({i}). If m = n = 2, then G = K, which is radio graceful
and hence rn(G) = |Vg)| = n + m. We now consider the other cases. Let n be any rd-labeling of G and
W1, W3, . . . ,Wmtn be the n-chain of G.

Case 1: m = 2.

If n = 3, then Go = P; and hence & < |E(FP)| = 1. Choosing & = 1, the maximum possible value,
we see that {1 = 3 (since {+&1 = m+n—1=4). So, Maz S = Z?:l Eiki = 1ko+3k; = 1(2)43(1) =
5. Hence from Equation (6.1), we get rn(P, + Py) = min{n(wmin)} > 3(m+n) —2 — Max S =
3(2+3)—2-5=8.

If n > 4, then Gy = P, and hence & < |V(P,) — 1] = n — 1. Choosing & = n — 1, the
maximum possible value, we see that & = 2 (since & +& =2+n—1=n+1). So, Max S =
S22 &k = (n = 1)1ka + 2k = (n — 1)(2) 4+ 2(1) = 2n. Hence from Equation (6.1), we get
rn(Pp + Pp) = mnin{r](wm_m)} >3(m+n)—Max S—2=3(2+n)—2n—2=n+4.

Case 2: m = 3.
If n = 3, then Gy = 2P, and hence & < |E(2P,)| = 2. Choosing ¢ = 2, the maximum possible
value, we see that & = 3 (since & +& =m+n—1=05). So, Max S = 23:1 &iki = 2ko + 3k, =
2(2) + 3(1) = 7. Hence from Equation (6.1), we get rn(P, + Pp,) = mr}n{n(wm+n)} >3(m+n)—
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Max S —2=3(6)—7—2=09.

If n > 4, then Gy & P, U P, and hence & < |Ep,| + [[Vp | = 1] =14 n —1=n. Choosing & =n,
the maximum possible value, we see that §& =2 (since &+ & =m+n—1=3+n—1=n+2).
So, Mazx S = Z?Zl &k = nky + 2k = n(2) + 2(1) = 2n + 2. Hence from Equation (6.1), we get
rn(Py, + Pp) = mgn{n(mern)} >3m+n)—Maxr—25=38+n)—(2n+2)—-2=n+5.

Case 3: m > 4.
In this case, Gy = P, UP, and hence & < [[Vp |-1]+[|Vp |—1] = [n—1]+[m—1] =n+m—2.
Choosing &3 = n+m—2, the maximum possible value, we see that £, = 1 (since £&4+&; = n+m—1).
So, Max 8 = Y2 &k = (n+m — 2ky + 1k1 = (n +m — 2)(2) + 1(1) = 2(m + n) — 3.
Hence from Equation (6.1), we get rn(P, + Pp,) = rnnin{n(wm+n)} >3(m+n)—2— Max S =

3(m+n)—2—[2(m+n)—-3=m+n+1.

Sufficiency: The results follows for the cases m € {2,4} and n € {3,4} from the labeling of the
graph shown in the Figure 1. For m > 2 and n > 5, let element of Vp and Vp, be respectively

1 1 6
8
4 4 9
6
2 2 7
5 3 8 3
6
1 3 1 6 1
9
8 6 4 9 4
7
4 2 7 2

Figure 1: Radio labeling of P, + P, for 2<m <4 and 3 <n <4.

V0, U1, V2, . .., Up_1 and Uy, U1, Us, ..., un_1. Define a sequence of lenght n + m of vertices in P, + P,, by
W1 = Vo, W2 = V2,W3 = U4y ... ,wLn;” = v2(L"’§1J—1)7 wLn;1J+1 = UQL"EIN wLn;1J+2 = V1, wtnglprg = V3,

co Wn—1 = U2 2]-3, Wn = V22 |1, Wntl = U0, Wnt2 = U2, Wnt3 = Ugy .o Wy mot) = ug(tmglJ_ly
wn+L'r7L;1J+1 = u2l_7n;1J7 Wn+L'r7L;1J+2 = Ui, wTL-‘r\_”L;IJ-‘rS = U3, ..., Wn4m—-1 = u2L%J73, Wn+4m = 'LLQL%J?I

Now, for this sequence we define a function 1 : V(P, + Pn) = Zpym+1/{0y by n(wi) = 1 and
N(w;) = n(wi—1) + 3 — dist(w;, w;11). The function for Ps + P; and Py + Py are illustrated in Figure 2
and Figure 3 respectively.

This function is clearly a rd-labeling, because for all 7 > 1, n(wiyr) — n(w;) + dist(w;, wiyr) >
[N(witr) = n(wisr—1)] + [N(Witr—1) = N(Witr—2)] +dist(w;, witr) = [1]+[1]+1 =3 = 14d. Also for 7 =1,
(D)~ 7)) +dist(wis wisr) > (1142 = 14184 % n, and [(wisr) —n(wi)] +dist(wi, wirr) > [2]+1 =
d +1if i = n. Therefore, rn(G) < Spann = n(Wpim) = 1+ 3(n+m — 1) = 0" dg (Wi, wit1) =
1+3m+n—-1)—2x(m+n—-2)+1)=m+n+1.

Hence m(G) =n+m+ 1 for all m,n > 4. O

Further, the graph P,, + P, € R, <= m,n € {1,2}. Hence Ro(Pr, + P,) =1 <= m,n € {1,2}.
Hence, we record this in the form of the following corollary.

Corollary 6.3 For any n,m € Z* with n > m,

1, ifn<2.

ol ) = {2 ifn>2

Theorem 6.4 For G,T' € F, if G and T are semi-hamiltonian, then rn(G +T) = |Vg| + |V¢| + 1.
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1

1
5 5
2

2
6

6
3

3
7

7
4

4
8

Figure 2: A radio labeling of Ps + P;. Figure 3: A radio labeling of Ps + Ps.

Proof: Let |Vg| = m and |Vr| = n. Let wi,ws,...,wn and y1,¥s, ..., Y, be the Hamiltonian paths of G
and T respectively. Then, in the graph G + T, dist(w;, wi11) = dist(y;, y;+1) = 2 and dist(w;, y;) = 1, for
1 <j<n,1<i<m. Now, consider the sequence {w;}i=12, . mtn, where wp, ¢ = ye for 1 < & < n.
Define a function 1 : Vayr = Zmini1/ 10y by n(wi) = 1; n(w;) = n(wi—1) + 3 — dist (w;, wiy1), we can see
as in the proof of Theorem 6.2 that 7 is a rd-labeling with span m+n+1. Hence rn(G+T) < m-+n+1.

On the other hand, Gy = Dg,r({2}) = G UT, a disconnected graph, it follows that Gz is not semi-
hamiltonian and hence G + T' is not radio graceful. So, R,(G) = 2 (since diam(G + T') = 2 and by
Remark 2.1) and rn(G+T) > |V(G+T)|+1=m+n+ 1. Thus, rn(G+T)=m+n+ 1. O

Corollary 6.5 For G,T' € F, if G and T are semi-Hamiltonian, then R,(G +T) = 2.

6.3. For the Tietze’s graph
Theorem 6.6 For the Tietze’s graph G of Figure 4, rn(G) = 13 and R4 (G) = 2.

Figure 4: Tietze’s graph

Proof: The graph Gs = Dg({3}) contains a component isomorphic to C3 induced by {vs,vs,v9} and
hence it is not semi-hamiltonian (being disconnected). Therefore, by Theorem 1.2, G is not radio graceful.
So, rn(G) > |Vg| + 1 = 13. Now, it is easy to verify that the labeling n defined by n(v1) = 4, n(ve) = 1,
77(1]3) = 10, 77(”4) =3, 77(115) =13, 77(1]6) =38, 77(’07) =11, 77(1]8) =0, 77(1}9) =9, 77(”10) =2, 77(1}11) =12,
and n(v12) = 5 is a rd-labeling with rn(n) = 13 and hence rn(G) < 13. Thus, rn(G) = 13.

Further, as G is not radio graceful, we have R,(G) > 2 (by Remark 2.2). To prove the reverse
inequality, consider the labeling 7 of G defined by n(vi) = 11, n(v2) = 3, n(vs) = 21, n(vs) = 5,
n(vs) = 15, n(ve) = 7, n(vy) = 17, n(vs) = 9, n(ve) = 19, n(v1p) = 1, n(v11) = 13, and n(vi2) = 23. This
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function 7 is an arithmetic radio 2-labeling and hence R,(G) < 2. Thus, 5 is an arithmetic radio labeling
and Ry (G) = 2. O

7. End remark

This paper considers several graphs with diameter two or three, for which the arithmetic radio
graceful number is 1. The work is in progress for graphs with higher diameters.
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