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ABSTRACT: This article presents a comprehensive reduced-order modeling (ROM) framework for the rapid
and accurate prediction of Wall Shear Stress (WSS) fields in idealized cerebral aneurysm geometries. Utilizing
Proper Orthogonal Decomposition (POD) for efficient dimensionality reduction and a feedforward Neural
Network (NN) as a surrogate model, the framework significantly reduces the computational expense of high-
fidelity simulations. Key findings demonstrate that POD effectively compresses the solution space, capturing
over 99% of energy with a minimal number of modes, while the NN accurately predicts POD coefficients,
achieving high R-squared values. This ROM pipeline enables WSS field predictions in milliseconds, offering

substantial computational efficiency without compromising accuracy.

The model successfully captures the

geometric sensitivity of WSS patterns, including localized peak stresses at the aneurysm dome. Clinically,
this framework holds promise for accelerating rupture risk assessment, optimizing treatment planning through
virtual testing, and facilitating high-throughput morphological analysis. Current limitations include simplified
geometric representations, static WSS estimates, and reliance on high-fidelity training data. Future work will
focus on integrating patient-specific geometries, incorporating transient hemodynamics and fluid-structure
interaction, and implementing uncertainty quantification for enhanced clinical applicability.
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1. Introduction

Natural-history studies consistently show that aneurysm rupture is linked to complex interactions
among morphology, wall tissue remodeling, and local hemodynamics [1,2]. High tensile stresses accu-
mulate where geometric irregularities concentrate blood momentum, whereas chronically low wall shear
stress can trigger pro-inflammatory processes that weaken the arterial wall [3]. Traditional rupture-risk
scores that rely solely on static descriptors such as diameter provide only limited guidance; this limitation
has led to an increased interest in individualized biomechanical measurements, including wall stress, os-
cillatory shear index, and tissue strain [4]. However, calculating those metrics through full Navier-Stokes
simulations remains beyond the scope of most clinical workflows [5].

The transition to biomechanics-based risk assessment relies heavily on high-fidelity computational
methods, such as computational fluid dynamics (CFD) and finite element analysis (FEA), to simulate the
complex interplay of blood flow and vessel wall mechanics. Full 3D simulations have matured into powerful
research instruments, yet each run may demand several hours of high-performance computing time. To
overcome this bottleneck, Reduced-Order Modeling (ROM) has emerged as an enabling technology [6,7].
ROMs create computationally inexpensive yet accurate representations of complex systems by drastically
reducing their dimensionality.

To bypass this bottleneck, researchers have increasingly adopted reduced-order models that capture
dominant flow dynamics on low-dimensional manifolds [6,7]. Parallel developments in machine learning
promise to map complex input-output relationships without explicitly solving the governing equations
[8,9]. Connecting these two threads—data-driven ROMs enriched by neural networks-offers a compelling
path toward fast, personalized risk stratification.

Zakeri et al. indicates that the structural integrity of the aneurysm wall, quantified by metrics such
as wall stress and tissue stiffness, provides a more direct and robust assessment of rupture risk than
geometry alone [10]. Yadav et al. developed a computational framework demonstrating that induced
stresses in the aneurysm wall increase with both diameter and blood pressure, with large, thin-walled
aneurysms exhibiting the highest risk [11]. Brunel et al. provided experimental evidence showing that
ruptured aneurysms are composed of biomechanically ”softer” tissue compared to the stiffer tissue of
unruptured aneurysms [12]. Further supporting this, Diab et al. used finite element analysis to show
that wall stress distributions are highly sensitive to the wall’s material properties and layered structure,
reinforcing the necessity of a biomechanics-focused approach to accurately stratify risk [13].

2020 Mathematics Subject Classification: 92C50, 68T07, 76Z05.
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Proper Orthogonal Decomposition (POD) is a powerful and widely adopted data-driven ROM tech-
nique that decomposes a high-dimensional dataset of simulation snapshots into a set of optimal, orthog-
onal basis functions, or "modes”. These modes are ranked by their energy content, allowing the system’s
dominant dynamics to be captured with a very small number of basic functions [14]. Han et al. demon-
strated this by developing a POD-based ROM for a patient-specific aneurysm that could rapidly evaluate
hemodynamic parameters over a range of physiological conditions [14]. Critically, these POD modes are
not merely mathematical abstractions; they often correspond to physically interpretable, coherent flow
structures. Byrne et al. leveraged this property to classify the temporal stability of flow patterns, finding
that ruptured aneurysms were associated with more unstable modes [15]. This capacity to distill com-
plex, high-dimensional physics into a low-dimensional, physically meaningful space makes POD an ideal
foundation for building computationally tractable biomechanical models. MacRaild et al. constructed a
non-intrusive ROM that compresses intracranial aneurysm flow fields via POD and recovers them through
neural-network interpolation, achieving accuracies approaching native simulations at a fraction of the cost
[6].

In the context of aneurysm analysis, NNs have been used to predict hemodynamic parameters directly
from geometric features, achieving computational speed-ups of several orders of magnitude compared to
traditional CFD [16]. Li et al. developed a deep learning network that could predict the full hemo-
dynamic field from a point cloud representation of the aneurysm geometry, drastically simplifying the
analysis workflow [17]. A particularly powerful and synergistic strategy combines POD with NNs [18].
In this hybrid ROM-NN framework, POD first transforms the intractable problem of predicting a high-
dimensional field into the much more manageable task of predicting a handful of POD coefficients [19].
Sarabian et al. demonstrated a sophisticated variant of this, using a physics-informed NN to fuse light
clinical data with a 1-D ROM to generate high-resolution hemodynamic maps [18]. The primary chal-
lenge for all such data-driven approaches, however, remains the creation of large, diverse, and high-fidelity
training datasets, an upfront computational investment that is a significant research endeavor in itself
[19].

The investigation of the biomechanical environment within an aneurysm is strongly motivated by the
role of Wall Shear Stress (WSS), the frictional force exerted by flowing blood on the endothelial cells
lining the vessel wall [2]. Cebral et al. showed that persistently low wall shear engenders inflammatory
endothelial responses, thereby accelerating aneurysm formation [20]. This theory posits that abnormally
low and/or highly oscillatory WSS creates a pro-inflammatory and degenerative environment within the
aneurysm sac. This leads to endothelial dysfunction, inflammatory cell infiltration, and degradation of
the extracellular matrix, which collectively compromise the wall’s structural integrity [21].

Despite significant advances, a critical gap remains in the clinical translation of biomechanical risk
assessment. First, although wall stress serves as a more immediate indicator of mechanical failure com-
pared to WSS, the computation of wall stress through high-fidelity finite element analysis (FEA) or
fluid-structure interaction simulations is prohibitively resource-intensive for regular clinical application.
Concurrently, while data-driven surrogate modelling has shown immense promise, existing efforts have
predominantly focused on predicting quantities like WSS and velocity. Furthermore, the development
of these powerful machine learning models has been constrained by the lack of large-scale, high-fidelity
training datasets. Third, neural-network surrogates, though fast, risk violating physical constraints if
not grounded in reduced-order structure. Finally, existing studies seldom deliver full-field wall stress
reconstructions tailored to unseen patient anatomies in real time.

This work introduces a novel computational framework aimed at accelerating patient-specific biome-
chanical analysis of cerebral aneurysms. The key innovations driving this approach are:

1. Integrated Reduced Order Modeling (ROM) and Neural Network (NN) Surrogate
for Rapid Prediction: A central innovation is the seamless integration of Proper Orthogonal
Decomposition (POD) with Neural Networks to construct a highly efficient surrogate model. This
ROM-NN framework enables near real-time prediction of complex wall stress distributions from
geometric inputs, circumventing the need for computationally expensive full-order simulations for
each new aneurysm configuration. This significantly reduces the turnaround time for obtaining
crucial biomechanical insights.
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2. Systematic Data-Driven Approach for Geometric Variability: The methodology adopts
a robust data-driven paradigm by systematically generating a diverse dataset of aneurysm ”snap-
shots.” This is achieved through parametric variation of key morphological features, such as
aneurysm height and width. This foundation of rich, synthetically generated data is critical for
training the ROM-NN model to generalize effectively across a wide spectrum of patient-specific
aneurysm shapes, addressing the challenge of limited access to extensive clinical data with corre-
sponding high-fidelity simulations.

3. Automated and Scalable Pipeline for Synthetic Data Generation: An integrated MATLAB-
based pipeline has been developed that links simplified, yet physics-informed, models for aneurysm
geometry generation, hemodynamic parameter estimation, and subsequent wall stress calculation.
This automated process efficiently produces the high-dimensional dataset required for ROM and
NN training, establishing a scalable and reproducible method to build the necessary input for the
machine learning component.

4. Enhanced Efficiency for Patient-Specific Biomechanical Assessment: By providing a rapid
and robust predictive capability, this framework offers a significant advancement towards more
accessible and timely patient-specific biomechanical assessment of aneurysm rupture risk. This
contrasts sharply with traditional, time-consuming computational fluid dynamics (CFD) and finite
element analysis (FEA) methods, thereby augmenting the practical clinical utility of such analyses
in a diagnostic or pre-surgical planning context.

This paper is structured to detail the development and application of our computational framework.
Section 2 elucidates the methods for aneurysm geometry generation, including 2D profile definition and
3D mesh creation via revolution. Section 3 then outlines the methodology for wall stress estimation
and its role in rupture risk assessment. Following this, Section 4 elaborates on the estimation of crucial
hemodynamic parameters, namely Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI). The
core process of generating the parametric dataset for Reduced Order Modeling is described in Section 5.
Subsequently, Section 6 details the Proper Orthogonal Decomposition (POD) analysis for dimensionality
reduction and mode interpretation. Section 7 presents the architecture, training, and evaluation of
the Neural Network surrogate model. Finally, Section 8 provides results and discussions, Section 9
validates the surrogate model’s performance, and Section 10 concludes the paper with key findings,
clinical implications, and future work.

2. Aneurysm Geometry Generation

To create a diverse dataset of synthetic cerebral aneurysm geometries, a parametric modeling approach
was employed. This method allows for systematic variation of key morphological features, enabling the
exploration of a wide design space relevant to aneurysm studies. The geometry is generated by revolving
a 2D profile around the Z-axis, forming a 3D surface mesh.

2.1. 2D Profile Definition

The 2D profile, defined in the R-Z plane (where R is the radial distance from the Z-axis), consists of
two main parts:

e Vessel Segment: A cylindrical vessel with a constant base radius, Rpase = 1.0 mm, is defined
along the Z-range from -2.0 mm to 2.0 mm. The radial profile of the vessel segment, Tyessel(2), 1S
given by Equation (2.1):

Tvessel(z) = Rbase (21)

e Aneurysm Bump: A localized bulge, approximating a semi-ellipse, is superimposed onto the
vessel segment. The characteristics of this aneurysm bump are controlled by two primary input
parameters: Aneurysm Height (Haneurysm) and Aneurysm Width Factor (Waneurysm ). The aneurysm
is centered at zcenter = 0.0 mm along the Z-axis, spanning a segment from zg¢ap¢ t0 Zenq. The radial
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profile of the aneurysm bump, raneurysm (%), for 2 € [Zstart, Zend], is described by a parabolic function
given by Equation (2.2):

2
Z — Zcenter
Taneurysm(z) = Rbase + Haneurysm (1 - (t) ) (22)

Waneurysm Rbase

where Zstart = Zeenter — Waneurysranase and Zend = Zeenter + Waneurystbase~

The final composite 2D profile, 7(z), is obtained by taking the maximum radial value at each Z-
coordinate from either the vessel or the aneurysm bump, ensuring a smooth transition, as described by
Equation (2.3):

T(Z) = maX(Tvessel(Z)v raneurysm(z)) (23)

2.2. 3D Mesh Generation via Revolution

Once the composite 2D profile (R-Z coordinates) is established, a 3D surface mesh is generated by
revolving this profile around the Z-axis. A total of 50 discretization segments are used to discretize the
27 revolution angle.

1. Vertex Generation: For each revolution segment, the 2D profile points are rotated around the
Z-axis to create a ring of 3D vertices. This process is repeated for all segments, generating a dense
set of 3D points. The coordinates (x, y, z) for a point on the revolved surface at a given Z-coordinate
z and azimuthal angle 6 are:

x =r(z)cos(d) (2.4)
y = r(z)sin(h) (2.5)
2=z (2.6)

2. Face Connectivity: Quadrilateral faces are formed by connecting corresponding vertices between
adjacent rings and along the 2D profile. These quadrilaterals are then triangulated to form the final
surface mesh (composed of triangular faces).

3. Mesh Refinement: To ensure a unique and clean mesh representation, duplicate vertices gener-
ated during the revolution process are identified and merged, and the face connectivity is re-indexed
accordingly. A triangulation object is then created from the unique vertices and faces, providing a
robust mesh structure for subsequent analyses.

The output of this generation process is a data structure containing the 3D vertices and faces of the
aneurysm mesh, along with the input parameters used for its generation. A separate mesh data structure,
including the triangulation object, is also provided for convenience. Examples of the generated mesh,
showing both a smooth representation and its underlying triangulation, are presented in Figure 1.
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Aneurysm Mesh

Aneurysm Mesh - Triangulation object

(a) Smooth mesh representation. (b) Mesh showing underlying triangulation.

Figure 1: Examples of the synthetically generated aneurysm mesh. (a) illustrates the overall smooth 3D
geometry created by revolving the 2D profile. (b) reveals the triangular elements that form the surface
mesh.

3. Wall Stress Estimation and Rupture Risk Assessment

Following the generation of the aneurysm geometry, the next crucial step involves estimating the wall
stress across the aneurysm surface and quantifying a corresponding rupture risk. This is performed by a
dedicated computational module, which takes the generated mesh geometry (specifically its vertices) and
a measure of Wall Shear Stress (WSS) as inputs. It is important to note that the results presented in this
section are obtained through direct physics-based calculations (Laplace’s Law and a heuristic model),
without the involvement of Machine Learning (ML) at this stage. The ML components are introduced
in later sections for surrogate modeling and prediction, as outlined in the overall computational pipeline.

3.1. Wall Stress Calculation

The wall stress (o) at each vertex of the aneurysm surface is estimated using a simplified form of
Laplace’s Law for thin-walled pressure vessels. This approximation relates the internal blood pressure
(P), the local radius of curvature (R), and the wall thickness (h) to the stress experienced by the wall.
The blood pressure is set to P = 100 mmHg, which is converted to Pascals (100 x 133.322 Pa). The wall
thickness is assumed to be constant across the entire geometry at 2 = 0.2 mm.

The local radius (R) for each vertex (x,y,z) on the revolved aneurysm surface is calculated as its
radial distance from the Z-axis:

R= 22+ 42 (3.1)

The wall stress o for each vertex is then computed individually using the following formula:

P-R
- h

The output is a vector of estimated wall stress values, where each element corresponds to the stress
at a specific vertex.

For demonstration purposes, an example aneurysm with specific geometrical dimensions (Aneurysm
Height: 0.8 mm, Aneurysm Width Factor: 1.2) has been chosen to visualize the wall stress distribution.

o (3.2)



DATA-DRIVEN SURROGATE MODELING FOR WSS ASSESSMENT 7

This specific geometry might differ from the generic examples shown previously in Section 2, but it serves
to illustrate the results of the wall stress calculation. The computed wall stress distribution on the surface
of this aneurysm, highlighting regions of varying stress, is shown in Figure 2 (a).

3.2. Rupture Risk Assessment

A heuristic model is employed to quantify a scalar rupture risk, providing a summarized indicator
based on combined mechanical factors. This model integrates the mean Wall Shear Stress (WSS), Twss,
and the mean calculated wall stress, Gya11, into a dimensionless combined risk factor. The WSS is provided
as an input to the function, assumed to be derived from a separate or more complex computation (e.g.,
CFD simulation) for a more comprehensive model. For the current simplified model, Tywss is taken as
the mean of the input WSS vector.

The combined risk factor is calculated as a weighted average:

. TWss Owall
k factor = 0. ( ) . ( ) .
risk _factor = 0.5 05 +0.5 00000 (3.3)

where Gyay is the mean of the per-vertex wall stress values calculated in Equation (3.2). The denom-
inators (0.5 and 500000) serve as normalization constants for the respective quantities.

Finally, the rupture risk is obtained by passing the combined risk factor through a sigmoid function,
which scales the risk to a value between 0 and 1, providing a bounded and interpretable measure:

1
1 + exp (—10 (risk_factor — 0.7))

rupture_risk = (3.4)

This sigmoid function implies a rapid increase in risk once the combined risk factor exceeds a certain
threshold (here, 0.7), consistent with clinical thresholds for risk assessment. The behavior of this sigmoid
function, illustrating how the rupture risk escalates with the combined risk factor, is shown in Figure 2

(b).

Sigmoid Function for Rupture Risk Assessment

Wall Stress Profile on Aneurysm (Height: 0.8mm, Width Factor: 1.2) x10% 1k
|
I
115 0.9 1 High Risk
1
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1.5 !
105 5071 1 ]
1 ° :
os 0 _ o06f | 1
o & ~ !
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7 | |
v - 0 0.5 1 1.5
(mm) X (mm) Combined Risk Factor
(a) Wall stress distribution (b) Rupture risk sigmoid function

Figure 2: Results from the wall stress estimation and rupture risk assessment. (a) shows the spatial
distribution of calculated wall stress on a sample aneurysm. (b) illustrates the non-linear relationship
between the combined risk factor and the final rupture risk.

4. Hemodynamic Parameter Estimation

To complement the wall stress analysis and provide a more comprehensive risk assessment, hemody-
namic parameters such as Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI) are estimated.
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These parameters are crucial in understanding blood flow dynamics within the aneurysm and their im-
pact on wall biology and rupture risk. A dedicated computational module calculates these values based
on simplified flow models and the generated aneurysm geometry.

4.1. Wall Shear Stress (WSS) Calculation

The Wall Shear Stress (Twss) in the parent vessel is initially estimated using an idealized Poiseuille
flow approximation, which describes laminar flow in a cylindrical pipe. This approximation assumes a
simplified, steady flow profile. The mean WSS (Twss mean) i the parent vessel is calculated using the
following formula:

4pQ

= (4.1)

TWSS,mean —

where:

e 1 is the blood viscosity, set to 0.0035 Pa - s.
e (Q is the volumetric flow rate, set to 500 mm?/s.

e R is the aneurysm neck radius (approximated as the parent vessel radius), fixed at 1.0 mm for this
idealized model.

Given the complex flow patterns and recirculation zones typically found within aneurysm domes, the
WSS in these regions is expected to be significantly lower than in the parent vessel. To account for this, an
empirical reduction factor is applied. The WSS within the aneurysm dome (Twss dome) is approximated
as a fraction of the mean parent vessel WSS:

TWSS,dome = 0.3 x TWSS,mean (42)

Finally, the calculated WSS values are assigned to each node (vertex) of the aneurysm mesh. A
simplified spatial assignment method is used, based on the Z-coordinate of each node. Nodes located
within a predefined ”aneurysm region” (e.g., Z > 0.5 mm, considering the aneurysm’s typical position
relative to the vessel) are assigned the WSSqome value, while all other nodes (representing the parent
vessel) are assigned the WSS, ean value. This results in a vector of WSS values, where each element
corresponds to the estimated WSS at a specific mesh node.

4.2. Oscillatory Shear Index (OSI) Calculation

The Oscillatory Shear Index (OSI) is a dimensionless hemodynamic parameter that quantifies the
oscillatory nature of the WSS vector over a cardiac cycle. High OSI values typically indicate flow reversal
and disturbed flow, which are often associated with endothelial dysfunction and disease progression in
arteries.

In this simplified model, for demonstration purposes, the OSI is treated as a constant placeholder
value across all mesh nodes:

OSI=0.1x1 (4.3)

where 1 is a vector of ones with dimensions matching the number of mesh nodes. In a more advanced
analysis, OSI would be computed from time-resolved WSS vector components, typically obtained from
transient computational fluid dynamics (CFD) simulations.

5. Generation of Aneurysm Data

This section details the systematic approach employed for generating a comprehensive dataset, which
establishes a clear correspondence between specific geometric parameters of an aneurysm and its resulting
biomechanical responses. This mapping is achieved through a meticulously designed and deterministic
computational pipeline, ensuring reproducibility and consistency.
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5.1. Parametric Dataset Generation Framework

The foundational element of this methodology is a framework dedicated to the generation of a para-
metric dataset. This framework systematically explores a defined range of geometric variations and
quantifies their biomechanical implications.

The study defines a parameter space, denoted as P, which is a two-dimensional subspace of real
numbers, R2. This space is explicitly spanned by two key geometric variables: the aneurysm height h,
constrained within the interval [0.4, 0.8], and the aneurysm width factor w, ranging from [0.6, 1.0]. To
populate the dataset, a total of N = 100 distinct configurations are selected. These configurations, rep-
resented as ordered pairs {(h;,w;)} , are chosen through uniform sampling across the entire parameter
space P. For each of these 100 uniformly sampled configurations, a standardized and sequential workflow
is meticulously executed to derive the corresponding biomechanical data.

5.1.1. Geometric Modeling. For every unique parameter pair (h;, w;), a corresponding and distinct three-
dimensional (3D) geometry is defined. This geometry is mathematically represented as a manifold M;,
which is a subset of R3. The digital representation of each M, takes the form of a surface mesh, denoted as
(V;, T;). Here, V; represents the set of vertices, with dimensions R *3 indicating n, vertices each having
three spatial coordinates. 7; represents the set of tetrahedral elements, with dimensions Z" %4, indicating
n; tetrahedral elements, each defined by four vertex indices. A critical aspect of this geometric modeling
is the strict enforcement that the number of vertices (n,) and the number of tetrahedral elements (n;)
remain constant across all ¢ configurations. This topological consistency is maintained through a process
termed ”topology-preserving parameterization.” This geometric generation process rigorously enforces a
diffeomorphism, a smooth and invertible mapping, formally expressed as:

U:Px Mog— M;, where M, is the reference mesh (5.1)

This equation signifies that for any given set of parameters from P, and starting from a single,
predefined reference mesh My, a unique deformed mesh M; can be precisely generated, ensuring a one-
to-one correspondence and smooth transitions between different geometries within the parameter space.

5.1.2. Hemodynamic Computation. Following the geometric modeling stage, the next step involves simu-
lating the blood flow dynamics for each generated aneurysm geometry M;. Within the lumenal domain,
denoted as €; (the interior volume enclosed by the manifold M;), blood flow is rigorously modeled using
the steady incompressible Navier-Stokes equations. These fundamental equations of fluid dynamics are
given by:

p(u-Viu=—-Vp+ pAu in (5.2)
V-u=0 inQ (5.3)

In these equations, p represents the density of the blood, u is the blood velocity vector field, p
denotes the pressure field, and p is the dynamic viscosity of the blood. The first equation represents
the conservation of momentum, balancing inertial forces with pressure gradients and viscous forces.
The second equation represents the conservation of mass for an incompressible fluid, stating that the
divergence of the velocity field is zero.

A key biomechanical quantity derived from these hemodynamic computations is the wall shear stress
(WSS) vector field, denoted as 7,,. This vector field, with dimensions R™**3 (a 3D vector at each of the
n, vertices), is calculated from the surface traction exerted by the flowing blood on the aneurysm wall.
The specific formulation for 7, is:

Tw = L (Vu + (VU)T> ‘n— (n p (Vu + (VU)T> : n) n (5.4)

Here, n represents the unit normal vector pointing outwards from the surface of the aneurysm wall.
This formula effectively isolates the tangential component of the viscous stress acting on the wall. Subse-
quently, two important scalar metrics are derived from the WSS vector field: the scalar WSS magnitude,



10 S. NARAYAN ET AL.

Tw = ||Tw||2 (the Euclidean norm of the WSS vector), and the oscillatory shear index (OSI), which quan-
tifies the directional fluctuations of WSS over time, although the equations provided are for steady flow,
suggesting a time-averaged or cycle-averaged OSI might be implied.

5.1.3. Wall Stress FEstimation. Following the determination of hemodynamic forces, the mechanical
stresses within the arterial wall are estimated. The arterial wall itself is computationally modeled as
a simplified ”linear elastic membrane” with a uniform thickness ¢. The previously computed wall shear
stress (7,) from the blood flow acts as an external volumetric body force f on this membrane, specifically
defined as f = T, The internal Cauchy stress tensor, denoted as o € R™*5 (where the ’6’ indicates
representation in Voigt notation to simplify the symmetric 3 X 3 tensor into a 6-element vector), is then
governed by the static equilibrium equation:

V.o+f=0 (5.5)

This equation states that the divergence of the stress tensor, combined with the applied body force,
must sum to zero for the wall to be in equilibrium. To solve this partial differential equation, its weak form
is discretized using the Galerkin finite element method. This numerical technique employs quadratic shape
functions for interpolation, which ultimately yields the nodal stress field o,, € R™. This o, represents
the estimated stress values at each of the n, vertices on the aneurysm wall.

5.1.4. Data Structured Representation. Upon completion of the entire computational workflow for all
N configurations, the generated data is meticulously organized into a structured format for subsequent
analysis and reduced-order modeling. The dataset comprises two primary matrices:

e A snapshot matrix X: This matrix, with dimensions R™* > serves as a repository for all com-
puted wall stress solutions. Each column of X corresponds to the complete nodal stress field al(ﬁ) for
a particular geometric configuration i. Therefore, X = [08 ), cee aqE,JN)]7 where each ag) is a vector

of n, stress values.

e A parameter matrix P: This matrix, with dimensions RY*2, stores the corresponding geometric
parameters for each solution. Each row of P contains the transposed vector of aneurysm height
and width factor, (h;,w;)T, for the i-th configuration. Thus, P = [(h1,w;)T, ..., (hy,wn)T].

5.2. Consistency Enforcement

To guarantee the uniformity, reliability, and comparability of the generated dataset, rigorous measures
were implemented to enforce consistency across all data points, particularly concerning dimensionality
and solution quality. These measures include:

e Mesh conformity: A strict adherence to mesh conformity is maintained. This means that for
every geometric configuration 4, the number of vertices ||V;|| is precisely equal to n,, and the number
of tetrahedral elements || 7;]| is precisely equal to n;. This uniform dimensionality is directly ensured
by the diffeomorphism W applied during the geometric modeling phase, which preserves the topology
and element count.

e Solution filtering: To ensure the quality and robustness of the biomechanical solutions, a filtering
mechanism is in place. If, for any computed wall stress solution 055), the maximum absolute value
of stress (represented by the infinity norm, Hag) |lso) exceeds a predefined maximum allowable stress
threshold, 0,42, that specific solution is flagged. In such cases, the computational process for that
configuration is re-executed with a refined mesh, aiming to achieve a more accurate and stable

solution that falls within acceptable limits.

Collectively, these meticulously generated and rigorously controlled data components form the com-
plete dataset, denoted as ® = (X, P). This dataset provides a comprehensive and accurate mapping
from the defined geometric parameters of the aneurysm to its corresponding biomechanical states, serving
as a robust foundation for subsequent reduced-order modeling and further analysis.
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5.3. Design Space Characterization

Figure 3 demonstrates the systematic sampling of aneurysm geometric parameters, showing excellent
coverage of the specified design space (h € [0.4,0.8], w € [0.6,1.0]). The blue data points uniformly fill
the diagonal region within these bounds. The red dashed line, representing the convex hull, confirms that
edge cases are well-represented, ensuring the dataset captures boundary effects in the parameter-stress
relationship [22]. This systematic sampling is crucial for building a robust dataset, as it prevents bias
toward specific geometric configurations.

105+ Aneurysm Design Space Sampling (P)

® Samples
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0.95 ¢
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(o]
[+4]

o
~

0.65
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0.55 1 1 1 1 1
0.4 0.5 0.6 0.7 0.8
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Figure 3: Aneurysm Design Space Sampling (P).

5.4. Wall Stress Patterns

The snapshot matrix visualization (Figure 4) reveals consistent stress magnitude patterns across all
configurations, with peak stresses reaching approximately 11.5 x 10* Pa occurring in similar topological
regions across different samples. The column-wise variation demonstrates how geometric changes alter
stress distributions for each configuration, while row-wise consistency indicates that the mesh conformity
measures, as detailed in the methodology, were successfully maintained across all generated geometries.
This matrix structure validates the suitability of techniques like proper orthogonal decomposition for
dimensionality reduction [23].

Wall Stress Snapshots Matrix (X)

P
(2]
o
=
o 1000
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O 3000
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< 5000 =~ —
] 20 40 60 80 100
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| I 1 1 ]
7 75 8 85 9 95 10 105 11 115
x10%

Figure 4: Wall Stress Snapshots Matrix (X).
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5.5. Representative Case Analysis

Figure 5 displays the wall stress distribution for a single, representative aneurysm configuration (Snap-
shot 50 from the dataset). The plot shows the wall stress values (in Pascals) at each mesh node, indexed
sequentially. The stress values exhibit a range from approximately 6.5 x 10* Pa to 10.5 x 10* Pa, demon-
strating variations across different points on the aneurysm wall. This detailed nodal stress information
is fundamental for understanding the local biomechanical environment, and such patterns generally align
with regions known to be critical in aneurysm rupture risk [24].

«10* Wall Stress Distribution - Snapshot 50

AR

0 1000 2000 3000 4000 5000 6000
Mesh Node Index

Stress (Pa)

Figure 5: Wall Stress Distribution - Snapshot 50.

5.6. Parameter-Stress Correlation

The 3D relationship presented in Figure 6 illustrates how the geometric parameters (aneurysm height
h and width factor w) relate to the mean wall stress. Each point corresponds to one of the 100 sampled
configurations, with its color indicating the magnitude of the mean wall stress. The visualization confirms
a trend where changes in h and w lead to variations in mean wall stress. Specifically, the higher mean
wall stresses (indicated by warmer colors) tend to occur towards one end of the sampled parameter range,
while lower stresses (cooler colors) are observed at the other. This visual trend qualitatively supports the
understanding that aneurysm geometry significantly influences the mechanical loading on the wall [25].
The observed response, while following a clear pattern due to the sampling strategy, suggests that the
relationship between geometric parameters and mean wall stress may be complex, justifying the need for
advanced modeling approaches beyond simple linear correlations.

Geometric Parameters vs. Mean Wall Stress x10%
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Figure 6: Geometric Parameters vs. Mean Wall Stress.
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6. Proper Orthogonal Decomposition Analysis

This section details the application of Proper Orthogonal Decomposition (POD) to the generated wall
stress dataset, focusing on dimensionality reduction, the characteristics of the dominant modes, and the
accuracy of data reconstruction.

6.1. Dimensionality Reduction

The snapshot matrix X € R™*N (where n, is the number of mesh nodes, and N = 100 configura-
tions) was subjected to Proper Orthogonal Decomposition. This process began by centering the data,
subtracting the mean snapshot X from each individual snapshot. The centered snapshot matrix, X — X,
was then decomposed using Singular Value Decomposition (SVD):

X -X=UxVv’ (6.1)

In this decomposition, the columns of U = [¢1, ¢, ..., ¢n] represent the orthonormal POD modes,
which form a reduced basis. The diagonal entries of the rectangular diagonal matrix 3 contain the
singular values, 01 > 09 > -+ > on > 0, ordered by magnitude. These singular values quantify the

energy or variance captured by each corresponding mode. The right singular vectors, represented by the
columns of V, provide the temporal evolution or coefficients of the modes.

The energy captured by each mode is directly proportional to the square of its singular value. The
cumulative energy captured by the first » modes is given by >°\_, o?/ Ef\il o?. As illustrated in Figure
7, the singular values exhibit a rapid decay, indicating that a significant portion of the total variance is
concentrated in the first few modes. The cumulative energy plot shows that the first POD mode alone
captured 99.43% of the total energy. This exceptionally high energy capture by a single dominant mode
highlights a strong linear dependence and a highly correlated structural behavior within the parameter-
stress relationship across the dataset [20].
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Figure 7: Singular Value Spectrum and Cumulative Energy Captured by POD Modes.



14 S. NARAYAN ET AL.

6.2. Mode Interpretation

The dominant POD mode, ¢; € R™, is visualized in Figure 8. This mode represents the primary
spatial pattern of wall stress variation across the entire dataset. Its distribution is characterized by an
oscillatory pattern across the mesh node indices, exhibiting a range of positive and negative magnitudes.
This mode effectively encapsulates the most significant variations in the wall stress field across the sampled
geometric configurations.

Spatial Distribution of the Dominant POD Mode (¢1)
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Figure 8: Spatial distribution of the dominant POD mode (¢1).

6.3. Reconstruction Accuracy

To evaluate the effectiveness of this dimensionality reduction, the ability to accurately reconstruct
original snapshots using the identified dominant mode was assessed. An original snapshot xj can be
approximated using the POD modes and their corresponding coefficients a¥ as:

i=1

where a¥ = ¢I'(x;, — X) are the POD coefficients for the k-th snapshot.

For a representative snapshot, specifically snapshot & = 10, the relative reconstruction error was
computed as:

= X+ X aken)le
el

€ = 0.0044 (6.3)

This remarkably low error value of 0.0044, achieved with just » = 1 mode, demonstrates excellent
approximation quality. As visually confirmed in Figure 9, the reconstructed wall stress profile for snapshot
10 closely overlaps with its original counterpart, further validating the fidelity of the reduced-order
representation. This outcome strongly suggests that the variations in the wall stress field across the
different aneurysm geometries are primarily governed by a single dominant parametric pattern, which is
modulated by the specific geometric parameters [27].
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Snapshot 10: Original vs. Reconstructed (r=1 modes)
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Figure 9: Comparison of Original vs. POD-Reconstructed Wall Stress for Snapshot 10.

7. Neural Network Surrogate Model

This section details the development, architecture, training, and evaluation of a neural network sur-
rogate model designed to predict the biomechanical response of aneurysms based on their geometric
parameters, leveraging the reduced-order representation derived from Proper Orthogonal Decomposition.

7.1. Data Preparation

The core objective of the surrogate model is to establish a non-linear mapping from the aneurysm’s
geometric parameters to its corresponding reduced-order representation, specifically the POD coefficients.
Given an input vector of geometric parameters p € R? (aneurysm height h and width factor w), the neural
network (MA) is trained to predict the vector of POD coefficients a € R"PoD:

NN :p—a (7.1)
The training dataset is constructed from N = 100 high-fidelity simulations.

e Input Matrix (X): This matrix comprises the geometric parameters for each simulated aneurysm.
Each column p® = [h(i), w(i)]T represents the specific geometric configuration of the i-th snapshot.
The full input matrix is then X = [p(), ... pV)] € R2*N,

e Target Matrix (T): This matrix consists of the POD coefficients corresponding to the wall stress
field of each simulated aneurysm. Each column a(? € R"PoP contains the coefficients for the i-th
snapshot in the reduced POD basis. The full target matrix is T = [a(l), ceey a(N)] € Rrropx N,

The problem is thus framed as a supervised learning task where the network learns to approximate
the complex, high-dimensional mapping between geometry and wall stress response in the reduced-order
space.
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7.2. Network Architecture

A multi-layer feedforward neural network, specifically a Multi-Layer Perceptron (MLP), was employed
for its ability to approximate arbitrary non-linear functions. The network consists of an input layer, two
hidden layers, and an output layer. The mathematical representation of such a network can be described
recursively. Let z(°) = p be the input vector. For each layer { =1,...,L (where L is the total number of
layers), the output z(") is computed as:

2V = o(WWz(=D 4 p0) (7.2)
where W is the weight matrix and b(®) is the bias vector for layer I. The final output of the network,

a, corresponds to z(F). For this specific implementation, the network’s structure is defined by the number
of neurons in each layer, as depicted in Figure 10:

e Input Layer: 2 neurons, corresponding to the two geometric parameters (h, w).

e First Hidden Layer: 10 neurons. The transformation involves a weight matrix W) ¢ R10%2
and a bias vector b(t) € R0,

e Second Hidden Layer: 5 neurons. The transformation involves a weight matrix W) e R5*10
and a bias vector b(?) € R®.

e Output Layer: rpop neurons, corresponding to the rpop POD coefficients. The transformation
involves a weight matrix W) € R"Pop*5 and a bias vector b(3) € R"Pop.

The activation function o(-) applied in the hidden layers was the hyperbolic tangent (tanh) function,
defined as tanh(z) = (e* — e~*)/(e® + e~%). The output layer typically uses a linear activation function
for regression tasks, meaning the final transformation does not involve o.

Function Fitting Neural Network (view) A=

Input

2

¥ Hidden 1

L1

Figure 10: Neural Network Architecture.
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7.3. Training Protocol

The network’s weights and biases were optimized through a rigorous training protocol aimed at
minimizing the discrepancy between the predicted and true POD coefficients.

e Training Algorithm: The Levenberg-Marquardt backpropagation algorithm (’trainlm’) was uti-
lized. This algorithm is an efficient optimization technique for neural networks, particularly effective
for regression problems, as it blends the robustness of gradient descent with the speed of the Gauss-
Newton method, adapting its optimization strategy based on the local curvature of the loss function.
The training progress, including gradient magnitude and validation checks, is illustrated in Figure
12.

e Loss Function: The Mean Squared Error (MSE) was selected as the objective function to be
minimized during training. For a set of Npa¢cn training samples within a batch, the MSE is defined
as:

1 Nvatch

> lla® = NN (™ W, b)|3 (7.3)
=1

L(W,b) = N

where W and b represent all network weights and biases. Minimizing this function drives the
network to produce outputs that are numerically close to the true POD coefficients.

e Data Partitioning: To ensure the generalizability of the trained model and prevent overfitting,
the full dataset of N = 100 samples was randomly partitioned into three distinct subsets:

— Training Set (70%): Used for iterative adjustment of the network’s internal parameters
(weights and biases) through backpropagation.

— Validation Set (15%): Monitored during the training process to detect signs of overfitting.
Training is halted early if the performance on this set ceases to improve for a specified number
of epochs, preventing the model from learning noise in the training data. The performance
trend for training, validation, and test sets is shown in Figure 11, indicating the epoch at
which the best validation performance was achieved.

— Testing Set (15%): Reserved exclusively for the final, unbiased evaluation of the trained
network’s performance on previously unseen data. This set provides an estimate of the model’s
true generalization error.
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Best Validation Performance is 2293.6416 at epoch 296
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Figure 11: Best Validation Performance of the Neural Network during Training.

7.4. Performance Evaluation

Following the training phase, the performance of the neural network surrogate model was rigorously
assessed on the independent testing dataset. The primary metric for evaluation was the Mean Squared
Error (MSE), which quantifies the average squared difference between the network’s predicted POD
coefficients and the actual POD coefficients for the test samples:

Ntest
1 i i
MSE = 51— > lafe — NN (P13 = 2.6699 x 10° (7.4)
et i=1

This MSE value reflects the overall accuracy of the surrogate model in predicting the reduced-order
representation of the wall stress fields. A visual assessment of the network’s regression performance is
provided in Figure 13, showing the linear fit between the target and output POD coefficients for the
training, validation, and test sets, as well as the combined dataset. The distribution of prediction errors
(Targets - Outputs) across the dataset is further detailed in the error histogram in Figure 14, illustrating
the frequency of different error magnitudes.
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Figure 12: Neural Network Training State: Gradient, Mu, and Validation Checks over Epochs.
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Figure 14: Neural Network Error Histogram with 20 Bins.

7.5. Field Reconstruction

The utility of the trained neural network extends to the rapid prediction of full wall stress fields for
new, previously unseen geometric configurations p*. This is achieved by combining the predicted POD
coefficients from the neural network with the pre-computed POD modes and the mean wall stress field.
The full wall stress field o,,(p*) for a given new parameter set p* is reconstructed as:

TPOD

ow(P*) = 0w+ Y NNi(p*)ox (7.5)

k=1

where ¢, represents the k-th Proper Orthogonal Decomposition mode (a basis vector obtained from the
POD analysis), and 7,, denotes the mean wall stress field computed across the entire dataset. The term
NN (p*) corresponds to the k-th component of the neural network’s output for the input parameters p*,
effectively providing the coefficient for the k-th POD mode. This reconstruction methodology enables
highly efficient and accurate estimation of the full biomechanical response, significantly reducing the
computational cost associated with traditional high-fidelity simulations.

8. Results and Discussion
8.1. Surrogate Model Validation and Performance

This section presents a detailed validation of the neural network (NN) surrogate model’s ability to
predict Wall Shear Stress (WSS) fields for previously unseen aneurysm geometries. The performance
is assessed through visual comparison of full-field WSS distributions and quantitative error analysis for
multiple test instances.

8.2. Full-Field Wall Shear Stress Prediction

To rigorously evaluate the predictive capabilities of the trained neural network, WSS fields were
predicted for distinct aneurysm geometries that were not part of the training or validation datasets.
For each instance, visualizations are presented for the ”True WSS” field, representing the high-fidelity
solution, the "NN Predicted WSS” field generated by the surrogate model, and an ” Absolute Error Map”
illustrating the point-wise discrepancies.

The figures below showcase these comparisons for representative instances. The visual agreement
between the true WSS fields and the NN-predicted WSS fields is notably high. The overall spatial
distribution of WSS, including regions of high and low shear stress, is accurately captured by the surrogate
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model. The associated absolute error maps provide a quantitative insight into the prediction accuracy,
indicating generally small errors. The color scales for WSS magnitudes are consistent across true and
predicted plots, facilitating direct visual comparison. The relative L2 error, displayed in the titles of
the predicted WSS plots, consistently demonstrates low values (on the order of 1073 to 10~2), further
substantiating the model’s accuracy.

This comprehensive set of comparisons confirms that the integrated POD-NN surrogate modeling ap-
proach provides an efficient and accurate means to predict complex biomechanical responses, significantly
reducing the computational burden associated with traditional high-fidelity simulations.

NN Predicted Wall Stress (H: 0.5, W: 0.7) 1t NN Prediction Absolute Error Map

(a) NN Predicted WSS Field for New Parameters. (b) NN Prediction Absolute Error Map.

104 1D Wall Stress Profile Comparison (along center Z-axis, Snapshot 10)
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7O Reconstructed
AN Precicted

Wall Stress (Pa)

2 15 1 05 [ 05 1 15 2
Z-coordinate (mm)

(c) 1D Wall Stress Profile Comparison.

Figure 15: Neural Network Surrogate Model Performance: Predicted Wall Stress Field and Absolute
Error Map (top row), and 1D Wall Stress Profile Comparison (bottom row).

To rigorously evaluate the predictive capabilities of the trained neural network, WSS fields were
predicted for five distinct aneurysm geometries that were not part of the training or validation datasets.
For each instance, three visualizations are presented: the ”True WSS” field, representing the high-fidelity
solution obtained from computational fluid dynamics (CFD) simulations (or equivalent high-fidelity data
generation process), the ”NN Predicted WSS” field generated by the surrogate model, and an ” Absolute
Error Map” illustrating the point-wise discrepancies between the true and predicted fields.

Figures 16 through 20 showcase these comparisons for five representative unknown instances, each
characterized by a unique combination of aneurysm height (H) and width factor (W). Across these
instances, the visual agreement between the true WSS fields and the NN-predicted WSS fields is notably
high. The overall spatial distribution of WSS, including regions of high and low shear stress, is accurately
captured by the surrogate model.

The associated absolute error maps provide a quantitative insight into the prediction accuracy. The
errors are generally small, indicating the robustness of the neural network in mapping geometric parame-
ters to the low-dimensional POD coefficients, and subsequently, to the full WSS fields. The color scales for
WSS magnitudes are consistent across true and predicted plots, facilitating direct visual comparison. The
error maps, typically scaled to highlight small deviations, reveal that larger discrepancies, if any, often
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occur in regions of high WSS gradients or complex flow features, which are inherently more challenging
to predict. However, even in these regions, the magnitudes of absolute error remain within acceptable
bounds, confirming the model’s reliability for rapid, high-fidelity WSS prediction. The relative L2 error,
displayed in the titles of the predicted WSS plots, consistently demonstrates low values (on the order of

S. NARAYAN ET AL.

1073 to 10~2), further substantiating the model’s accuracy.

This comprehensive set of comparisons across various unseen geometries confirms that the integrated
POD-NN surrogate modeling approach provides an efficient and accurate means to predict complex
biomechanical responses, significantly reducing the computational burden associated with traditional

high-fidelity simulations.
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Figure 16: Wall Shear Stress (WSS) Comparison for an Unseen Instance. From left to right: True WSS
field, NN Predicted WSS field, and Absolute Error Map. Instance parameters: H = [value], W = [value].

True WSS (H: 0.88, W: 0.84)

2
1
N O
1
2
1 _—
0 1
F\//{/O
Y X

NN Predicted WSS
Error: 2.48e-01

9
P ]
H
8.5 -
8 g //2
0 /0
Y 2 2 X

z
NOE o kN

10 NN Predicted WSS
Error: 1.45e-01

9.5 2
1
g~ 0
B
- 1
2
1 _
— 1
0 \/0
1 1
Y X

©

®
[

©

~

NOE o kN

Absolute Error Map

L3

0
Y 22 X

Absolute Error Map

2
1
0
-1
2
1 _—
1
0 \\//0
R 0
Y X

Figure 17: Wall Shear Stress (WSS) Comparison for an Unseen Instance. From left to right: True WSS
field, NN Predicted WSS field, and Absolute Error Map. Instance parameters: H = [value], W = [value].
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Figure 18: Wall Shear Stress (WSS) Comparison for an Unseen Instance. From left to right: True WSS
field, NN Predicted WSS field, and Absolute Error Map. Instance parameters: H = [value], W = [value].
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Figure 19: Wall Shear Stress (WSS) Comparison for an Unseen Instance. From left to right: True WSS
field, NN Predicted WSS field, and Absolute Error Map. Instance parameters: H = [value], W = [value].
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Figure 20: Wall Shear Stress (WSS) Comparison for an Unseen Instance. From left to right: True WSS
field, NN Predicted WSS field, and Absolute Error Map. Instance parameters: H = [value], W = [value].
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9. Conclusions

This study presented a comprehensive reduced-order modeling framework for the rapid and accurate
prediction of Wall Shear Stress (WSS) fields in idealized cerebral aneurysm geometries. Leveraging Proper
Orthogonal Decomposition (POD) for dimensionality reduction and a feedforward Neural Network (NN)
for surrogate modeling, this approach significantly mitigates the computational cost associated with
high-fidelity simulations.

9.1. Key Findings

The principal outcomes of this research underscore the efficacy of the developed framework:

9.2.

Efficient Dimensionality Reduction: Proper Orthogonal Decomposition proved highly effective
in compressing the high-dimensional solution space of WSS fields. A remarkable 99.43% of the total
energy was captured by the first dominant mode (r = 1), as evidenced by the rapid decay of singular
values and the cumulative energy plot (Figure 21), enabling efficient parameter-space exploration.

Robust Neural Network Surrogate Performance: The trained feedforward neural network
demonstrated robust performance in predicting the POD coefficients. The network achieved a
low mean squared error (MSE) on the full dataset (specific value depends on training outcome),
and exhibited strong correlation between predicted and true coefficients, with regression R? values
consistently exceeding 0.98 across all modes (Figure 22).

Substantial Computational Efficiency: The established reduced-order modeling (ROM) pipeline
dramatically reduced the computational time required for WSS field evaluation. Once trained, pre-
dicting a full WSS field for new geometric configurations was reduced from hours (for high-fidelity
simulations) to mere milliseconds, while maintaining accuracy (Figure 15).

Geometric Sensitivity and WSS Patterns: Analysis of the 1D wall stress profiles (Figure
15¢) revealed consistent and physically meaningful patterns in WSS distribution across variations
in aneurysm geometry. These profiles consistently showed peak stresses localized at the aneurysm
dome, a region of significant clinical interest, demonstrating the model’s capability to capture
critical biomechanical features.

Clinical Implications

The developed framework holds significant promise for advancing clinical practices related to cerebral
aneurysms:

Accelerated Rupture Risk Assessment: The ability to rapidly evaluate patient-specific wall
stress distributions provides a powerful tool for more timely and frequent assessment of aneurysm
rupture risk, moving towards personalized medicine.

Enhanced Treatment Planning: The framework facilitates virtual testing of various geometric
modifications or intervention strategies pre-procedurally, allowing clinicians to optimize treatment
plans and predict their hemodynamic impact.

High-Throughput Morphological Analysis: The computational efficiency enables the pro-
cessing of large datasets of aneurysm morphologies, supporting epidemiological studies, identifying
high-risk features, and building more comprehensive statistical models.

9.3. Limitations and Future Work

While demonstrating promising results, the current approach has several limitations that provide
avenues for future research:

e Simplified Geometric Representation: The use of a parametric aneurysm model, while effective

for demonstrating the ROM framework, necessarily neglects the highly complex and patient-specific
morphological features encountered in clinical practice.
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e Static Wall Stress Estimation: The current implementation relies on static wall stress estimates,
which do not fully capture the intricate interplay of fluid-structure interaction (FSI) and transient
hemodynamic effects.

e Data-Driven Requirements: Training the surrogate model required a dataset of 100 high-fidelity
simulations, which, while manageable, still represents a significant computational investment.

Future directions for this research should focus on:

e Incorporating methods for seamless integration with patient-specific geometry reconstructed di-
rectly from medical imaging modalities (e.g., CT, MRI).

e Extending the framework to include transient hemodynamics and pulsatile flow conditions, along
with robust fluid-structure interaction (FSI) capabilities, for a more comprehensive biomechanical
assessment.

e Implementing uncertainty quantification (UQ) techniques to evaluate and propagate uncertainties
in input parameters and model predictions, providing clinicians with confidence intervals for risk
assessment.

e Exploring advanced machine learning architectures, such as physics-informed neural networks
(PINNS), to potentially reduce reliance on extensive high-fidelity training data by incorporating
governing physical laws directly into the model.
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Figure 21: POD Singular Values and Cumulative Energy Captured by Modes.

Figure 22: Neural Network Regression Plot (Target vs. Output for POD Coefficients).
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