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Sombor Symmetric Division Degree Index and Co-index of Graph Operations

Nagendrappa G.*, Venkanagouda M. Goudar, Shylaja B. P.

ABSTRACT: In the present study, we introduce two new graph invariants called Sombor symmetric division
index and coindex, and discuss their properties with reference to certain graphs. Also, we compute their
values for some of the graph operations such as the Cartesian product, composition, direct product and strong
product of two graphs. Further, we establish bounds on these invariants in terms of other graph parameters
and work on the relation between them. Through a correlative analysis with the m-electron energy of a few
chosen hetero molecules and PAHs, the chemical application of these parameters is examined.
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1. Introduction

Topological indices or molecular descriptors are numerical invariants which can be obtained for any
graph and play an important role in mathematical chemistry. They are extensively used in the devel-
opment of Quantitative Structure Activity Relationships (QSAR) and Quantitative Structure Property
Relationships (QSPR) in the field of chemical graph theory. A topological index that depends on the
degrees of the vertices of the graph G, is known as a vertex-degree-based (VDB) index. An edge-degree-
based (EDB) is also introduced in a similar manner. In literature, various types of VDB and EDB indices
are introduced and studied.

A new molecular descriptor, called the symmetric division degree index of a graph G, denoted by
SDD(G), is defined in [6] and is one among the 148 "discrete Adriatic indices” that play a vital role
in QSAR/QSPR analysis of chemical compounds. Among all successful molecular descriptors, Zagreb
indices called first Zagreb index and the second Zagreb index defined in [5] are more useful descriptors.
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Also, another topological index called coindex of a graph that measures the non-adjacency properties of
vertices in a graph. It is often defined as the sum of the products of non-adjacent vertices in the graph.
Coindices are used in various fields including Chemistry, where they are used to model the properties of
molecules. When computing the weighted Wiener polynomials of certain composite graphs, non-adjacent
pairs of vertices have been considered in [9]. Also, the first Zagreb coindex and the second Zagreb coindex
are defined in [9].

In this paper, we consider simple, finite, connected and undirected graph G = (V, E) with n vertices
and m edges. We denote the vertex set of G by V(G) and the edge set of G by F(G). The degree of
a vertex denoted by d(u) is defined as the number of edges that are incident with the vertex u in G.
Also, A and § are respectively called the maximum degree and minimum degree of G. A graph G is the
complement graph of G. Two vertices u and v in G are adjacent if and only if they are not adjacent in G.
Hence, (u,v) € E(G) if and only if (u,v) ¢ E(G) and the number of edges in G denoted by m is defined

— n
as m = —m.

2
For any unexplained notations, see [2].

2. Preliminaries

We start this paper with some definitions.

Definition 2.1 [1] The Cartesian product of any two graphs G; and Gs, denoted by G10Gs is
a graph with vertex set V(G10G2) = V(G1)OV(G2), where two vertices (u;,v;) and (ug,v;) are
adjacent if and only if u; = up and v; ~ v; in G or v; = v; and u; ~ uy in G;. We notice that
|E(G1DG2)| =nimso + minag, and dGlDGQ (ui,vj) = dG1 (ul) + ng (’Uj).

Definition 2.2 [1] The composition of any two graphs G and G, denoted by G1[Gs] is a graph with
vertex set V(G1[G2]) in which two vertices (u;,v;) and (ux, v;) are adjacent whenever u; ~ uy, in Gy
or u; = uy and v; ~ vy in Ga. In the graph G4 [Ga], |V (G1[Ga])| = nina, |E(G1[G2])| = nima+mn3
and dg, (@,)(ui, v;) = |V(G2)lde, (ui) + da, (vj).

Definition 2.3 [7] The direct product of any two graphs G; and G, denoted by G; ® G is the
graph with vertex set V(G1 ® G3) in which (u;, v;) ~ (ug, v) if u; ~ ug in G1 and v; ~ v; in Gy. In
this graph |V(G1 ® G2)| = ning, |E(G1 ® G2)| = 2mims and dg, wa, (ui, vj) = da, (u;i)da, (v5).

Definition 2.4 [9] The strong product of any two graphs G; and G5, denoted by G; K G5 is a graph
with vertex set V/(G1XG3), where (u;, v;) ~ (ug,v;) if either u; = ug and v; ~ vy in G or v; = v; and
u; ~ ug in Gy or u; ~ uy in G1 and v; ~ v; in Go. In G1 XG5, we have |V (G1XGs)| = ning, |F(G1 X
G2)| =nimso +ming + 2m1m2 and dGIgGQ (ui, Uj) = dgl (Ul) + ClG2 (’Uj) + dG1 (’U,i)dG2 (’Uj).

Definition 2.5 [6] The SDD index of a graph G is defined as:
d d
SDD(G) = =+ ==
@= 2 (dv i du)
weEE(Q)

Where E(G) is the edge set of a graph G and d,,, d, denote the degrees of the vertices u,v € V(G)
respectively.

Definition 2.6 [5] First Zagreb index and second Zagreb index of a graph G are defined as:

Mi(G)= Y [de(u)+dg(v)]

weE(G)

and

My(G)= Y de(u)da(v)

weE(G)
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Definition 2.7 [9] The first Zagreb coindex and second Zagreb coindex of a graph G are defined as:
Mi(G) = ) [da(u)+dg(v)]
w¢ E(G)
and
My(G)= > de(u)de(v)
wé E(G)
Definition 2.8 [8] The Sombor coindex of a graph G is defined as:

Y Vdo(w)? +da(v)?

w¢ E(G)

3. Bounds on the Sombor symmetric division index of Graphs

Inspired by the work on symmetric division degree index and coindex of derived graphs defined in [3],
we define a unique index called Sombor symmetric division index of a graph as follows.
The Sombor symmetric division index of a graph G, denoted by SOgp(G), is defined as:

d(w)? = d(v)?
SOsp(G) = 5+ -5
P WEZE:(G) d(v)? " d(u)

where E(G) is the edge set of G and d(u), d(v) denote the degrees of the vertices u,v € V(G) respectively.

3.0.1. Bounds on the Sombor symmetric division indez.

Theorem 3.1 Let Gy and G2 be two graphs having vertices ni,no and edges my, mo respectively. Then

01+ d2 A+ Ay
2 ———— < O <V2|(—7
V2 <A1 n A2> (nyme +ming) < SOgp(G10G:) < f( 51 03

Further, equality holds if the given graphs G1 and G are regular.

) (nyma + ming).

Proof: Let V(G1) = {wli = 1,2,...,n1} and V(G2) = {v;]j = 1,2,...,n2} be the vertex sets of G
and G4 respectively. Let ¢; be the minimum degree and A; be the maximum degree of the vertex of G;,
where ¢ = 1,2. In G10G>, |V(G15G2)| =nyny and |E(G10Gs2)| = nyma + mina.

By the deﬁnltlon of SOsp(G), we have

2
SOsp(G) d(w) v)2 so that
d(v) d(u)
quE(G
d O Ul,U 2 d O Uk, U 2
SOsp(G10G,) = Z \/dGl G> - vj n dGl ngulf U%;Z
(wiyv),(uk,v1) €E(G10G2) 6106, (U, Vi) G10G5 (Uiy Uj

(]

\/ Gy (i) +de, (v5))* | (da, (ur) + da, ()
E(G10G2) (da, (ug) + de,(0))?  (da, (ui) + da, (v5))?

\/(A1 +A2)% (A + Ay)?
(G10G3)

(ui,v5),(uk,v1) €

<

(]

_|_
(ui,vj)7(uk,vl)€E ((51 + 62)2 (51 + 62)2

A A
< T va <1+2>
01 + 92
(uiyv5),(ugk,v) €EE(G10G2)

A+ Ay
<
V2 ( 01 + & > (n1mz +minz)
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Since G and G are regular, the degree of each vertex is same. Therefore, for i = 1,2, A; = §; and
SOsp(G10Gs) = \/i(nlmg + ming). Hence, equality holds if the graphs G; and G are regular.
Similarly, the lower bound can be established.Thus,

V2 (A‘Siii‘;) (n1mg 4+ ming) < SOsp(G10Gs) < V2 (A(;ii?;‘) (n1mg + minz) O

Theorem 3.2 Let Gi and Gy be two graphs with |V(G1)| = n1,|E(G1)] = my1 and [V (G2)| = no,
|E(G2)| = mo respectively. Then

n2d1 + 0 nafi+ A
V2 (TM) (n1ma + min3) < SOsp(G1[Ga]) < V2 (M) (numg +min3).

Further, equality holds if G1 and Gy are regular.

Proof: Let V(G1) = {w;li =1,2,...,n1} and V(G2) = {v;|j = 1,2,...,na} be the vertex sets of G; and
G5 respectively. Let d; and A; be the minimum degree and maximum degree of the vertex of G;, where
i=1,2.

In Gl [GQ], |V(G1[G2])| = nNnin9 and |E(G1 [GQ])| =nimso + mlng

By the definition of SOgp(G), we have

dayjaa) (Ui, v5)? da,[a,) (U, vr)?
SOsp(G1]Gs]) = Z \/d dl 2](u vJ)Q + ] 1l ﬂ(u» )2
(03, (w0 EB(G1[Ga]) VT CrlGIVER GG\ 5

_ > ¢ (nadas (1) +day (v))° | (nad, () + do, (1))
o V(2 () +dey 007 T (nades, (0) +deis (v,

(ui,v5),(ur,v1)EE(Gy

<

(]

(neA1 + A2)2 " (neAq + A2)2
(nady + d2)2 (n2dy + d2)2

(ui,v5),(ur,v) EE(G1[G2])
< Ny + Az)

(i) (01 € E(G1 [Ga)) ( n201 + 02

naAq + Ag 2
<V2| ——=
- \f( n201 + 2 > (nimz +miny)

when G; and G, are regular, the degree of each vertex is same. Therefore, equality holds.
Similarly, the lower bound holds.

Thus, v2 (7285552 ) < (S05p}(G1[Ga]) < v (2255482 ). :

Theorem 3.3 Let G1 and Gy be two graphs with |V(G1)| = ny, |[E(G1)| = my and |V (G2)| = na,
|E(G2)| = ma respectively. Then

2\/5 5152 mimeso § SOSD(Gl ® GQ) S 2\/§ A1A2 mimes.
JASPAY 0102

Further, equality holds if G1 and G2 are regular.
Proof: Let V(G1) = {u1,us2,...,un1} and V(G2) = {v1,v2,...,v,2} be the disjoint vertex sets of Gy

and Gy respectively. Let mindeg(G;) = ¢; and maxdeg(G;) = A; for i = 1,2.
In Gl X GQ, |V(G1 X G2)| = Nni1Nn2y and |E(G1 (24 G2)| = 2m1m2
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By the definition of SOsp(G), we have

d(uw)?2 = d(v)?
SOsp(G) (v)?
d(v) d(u)
uv&E(G
SOsp(Gr ® Gy) = > dor06, (U0 | 615G, (s, v)*
(1,95) (b o) E(G1 ©Ga) dc, 06, (uk,v)?  do,ea, (Ui, vj)?
_ 3 (e, (ui)de, (v))? | (de, (ur)dc, (v))?

v B Groay | (der (ue)des(v)? - (de, (ui)des (v))?

(A1Ag)2 (A Ay)?
< > \/ o+ :
(us ;) (ur,v1)EE(G1®G2) (9102) (9102)
< > V2 (A(;?Q)
(us,v5),(ur,v)EE(G1RG2) 172

< 2\[ <A A2> mimso

When the graphs GG; and G4 are regular, we notice that, degree of each vertex is same. Terefore, equality
holds .

Similarly, the lower bound can be proved.
Thus 2\/>( 0102 ) mime < SOSD(G1 (9 GQ) < 2\/5 (A(SLSA;) mims. O

Theorem 3.4 Let G1 and Gy be two graphs with vertices mi,ne edges my,mo respectively. Then

V2 (%) (namg 4+ ming + 2myms) < SOsp(G1 W Gy) < /2 (%) (nima + ming +

2m1m2).
Equality holds if G1 and G2 are reqular.

Proof: Let V(G1) = {u1,us,...,upn1} and V(G2) = {v1,va,..., 0,2} be the disjoint vertex sets of Gy
and Go respectively. Let mindeg(G;) = 0; and mazdeg(G;) = A; for i = 1,2.

In Gl X GQ, |V(G1 X G2)| = Ning and |E(G1 X G2)| =nimo +ming + lemg

By the definition of SOgp(G), we have

d(u)? = d(v)?
SOsp(G) = Z ()2 + d(u)?
wweE(G)
o2 o2
SOsp(G1 B Ga) = Z da,®a, (Ui, v;) n de ®a, (Uk, vr)

d ug,v1)2  d wi, V)2
(Ui,vj),(uk,vl)EE(G1®G2) GlgGg( k> l) GﬂXGg( (3] j)

(dG1 (uk) +dg, (Ul) +da, (uk)dGz (Ul))2

_ Z (dGI (ul) + dGz (Uj) + dGl (ui)dG2 (vj))2 +

(usv07),(up,01) €E(G1KG) (dGl (uk) + dGz (UZ) + dGl (uk)dG2 (Ul))z (dGl (ul) + dGz (Uj) + dGl (ui)dGz (vj))z
< Z \/(Al +Ax+ A1A2)2 (A1 + Ax+ A1A)?
= 2 2

(wi 03, (o0 EE(G1EGs) (61 + 02 + 0102) (61 + 62 + 0102)

Therefore,
AL+ Ay + A1A2>
S0sp(G) < V2
sp(C) < Z < 01 + 92 + 9102

(ui,v5),(ug,0)EE(G1KG?)

A4+ Ag+ AA,
< V2
—\f< 51 + 02 + 0102

) (n1mg + ming + 2myms)
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when the graphs G; and G5 are regular, the degree of each vertex is same. Therefore, equality holds.
Similarly, we follow the lower bound.Thus,

V2 (%) (nimg +ming + 2myms) < SOsp(G1 W Gy) < V2 (%) (n1mg + myng +

2m1m2). O

4. Sombor symmetric division coindex of a Graph

Motivated by the work on Sombor coindex of graphs defined in [8] and Zagreb coindices of composite
graphs defined in [8], we defined a new index called Sombor symmetric division coindex of a graph.
The Sombor symmetric division coindex of a graph G, denoted by SOgp(G) is defined as:

SOsp(GQ) = MU;E(Q ()2 + d(u)?

Where E(G) is the edge set of G and d(u), d(v) denote the degrees of the vertices u,v € V(G) respectively.
In the following propositions, an edge e = (u,v) of a complement graph G is referred to as (a, b)-edge,
where a = dg(u) and b = dg(v).

Proposition 4.1 Forn > 3, the complement of C,, has w number of (2,2)-edges. Therefore, by the
definition, we have

Proposition 4.2 Let K, n,, where ning > 2 be a complete bipartite graph with (n1 + ng) vertices and

nl(nlfl) ng(’ﬂzfl)
2 2

ny,ng edges. Then the complement of Ky, p, has number

of (n1,n1)-edges. Hence,

number of (na, na)-edges and

SOSD(Knl,n2) = % [nl(nl — 1) + ng(ng — 1)] .

Proposition 4.3 Forn > 5 the complement of W,, has %

number of (3,3)-edges. Hence,

SOs5(W,) = %(n ~ ) 4).

Proposition 4.4 For n > 3, the complement of a star graph K, ,—1 has % number of (1,1)-
edges. Hence,

SOSD<K1,n,1) = %(TL - 1)(7’L - 2).

Proposition 4.5 In P,, we obtain only one (1,1)-edge, 2(n — 3) number of (1,2)-edges and %
number of (2,2)-edges. Therefore,

SOsp(Py) = (n—3)V17 + \%(n —3)(n —4).

4.0.1. Properties of Sombor symmetric division coindezx of Graphs. In the present section, we determine
Sombor symmetric division coindex of some graph operations. In the following graph operations, the
cardinality of the edges of a complement graph G that are connected by the vertices (u;,v;) and (ug,v;)
is denoted by |E(q)|, where a = d(u;,v;) and b = d(uy,v)
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Theorem 4.6 For any two path graphs P,, and P,,, where ni,na > 3,

_— 1
SOSD(PnIDPnQ) = E(n1n2)2 — TL1’I’L2(4TL1 + 4712 - 19) + \/§[n1(4n1 — 21) + n2(4n2 — 21) + 48]

4
+ (’I’Ll + Nng — 5)5@4- [nlng — 2(n1 + 77/2) + 4] 2\/ﬁ

1
+ (n1 +no —4) [ning — 2(ny + n2) + 3] 6\/337

Proof: For V(P,,) = {u1,us,us, -+ ,up, t and V(P,,) = {v1,v2,v3,- - , vy, } the cardinality of the edges
respect to the degree of vertices (u;,v;) and (ug,v;) in the Cartesian product P,,,0F,, are given in the
following table.

‘E(a,b) | Cardinality

|E2,2)] 6

|E(2,3)] 8(ny + ng — 5)

|E2,4] 4(ny —2)(ng — 2)

|E3.3) 4(n —2)(n2 — 2) + (n1 — 3)(2n1 — 5) + (n2 — 3)(2n2 — 5) + 2

|E3,4)| 2(n1 +n2 — 4)[(n1 — 3)(nz — 2) + (ng — 3)]

[Bagl | 30m1 =2)(n2 = 3)(n2 — 4) + 5 (1 — 3)(n1 — 4)(n2 = 2)> + (1 — 3)(n2 — 2)(na — 3)

By the definition, we have

SOmE(PoOP,.) = 5 % )+ d0)7 | (dl) A0
(wi,v5),(uk,v1)E E(Pny OPn,)

Using the above table, we get
SOsp(P,,0P,,)

=6v2 + 8(ny + ny — 5)\/3 + % +4(n1 —2)(ng — 2)\/% + 116 + [4(n1 — 2)(n2 — 2)+

(’I’Ll — 3)(2711 — 5) + (77,2 — 3)(27?,2 — 5) + 2]\[24— 2(’/11 —+ ng — 4)[(’/11 — 3)(712 — 2) =+ (ng — 3)}
Va6 + 5+ 500 =~ Dl =3 = 4)+ F0m = 3m — 2)na =27+ (11 = o~ Vs~ 3)| V2

=— [(n1n2)® — nina(4ny + 4ny — 19)] + V2[n1(4ny — 21) + ny(4ny — 21) + 48] +

4 1
(’I’Ll + ng — 5)5@ + [nlng — 2(7&1 + TLQ) + 4] 2\/ﬁ—|— (n1 + ng — 4) [TL1TL2 — 2(’/11 + ng) + 3] év 337

Theorem 4.7 For the path graph P,, and the cycle graph C,,, where ny > 3 and ny > 4,
SOSD(PHIDCTQ) = %[(nlng)Q — n1n2(4n2 + 5) + 2n2(4n2 + 3)] + ng(nlng —2ng — 1)%\/ 337

Proof: For V(P,,) = {u1,uz,us, - ,upn, t and V(Cyp,) = {v1,v2,v3, - ,vp,} the cardinality of the
edges respect to the degree of vertices (u;,v;) and (ug,v;) are given in the following table.
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| Bl Cardinality

|E3,9)] na(ng — 3) +n3

|E3,0)] 2ns(ning — 2ng — 1)

|Esa)| | 3(ning — 2ng — 2)(ning — 2ng — 3) + (ng — 3)

The proof is similar to the above theorem. O

Theorem 4.8 If P,,[P,.] is a composition of P,, and P,,, then
(i) SOSD (Pp, [Pry]) = (n2 — Tng + 14)V/2 + 4(ny — 3)y /&2t o (et 22 0 — 9 andng > 3

(n2+2)? " (n2+1)2
(ZZ) SOSD(Pn1 [Png]) = %[(nlng)Q — n1n2(4n1 + 6no — 21) + 2m (3711 — 14) + 14”2(’112 — 4) + 88]
n 2 n 2 n 2 n 2
+ 4(2n3 — 5) Enziégz + Eniif;Q + [nina(n1 —5) — 2n1(n1 — 4) + 4(2nz — 3)] §§n§i§)2 + Ei;ﬁ%
forny,ng >3
Proof: Consider a composition P, [P,,], where, V(P,,) = {ui,ug, -+ ,un,} and

V(Pp,) = {v1,v2,- -+ ,un, } be the vertex sets of P,, and P,, respectively. The cardinality of the edges
respect to the degree of vertices (u;,v;) and (ug,v;) in the graph P, [Pns| are given in the following
table.

|Eap)l Cardinality

forny =2,ny >3

|E(n2+17ﬂ2+2)| 4(77‘2 - 3)
|E(n2+17”2+1)| 2
|E(n2+2,n2+2)| (n2 - 3) (n2 - 4)

forny,me >3

|E(nat1,n2+2)| 4(2n2 —5)

|E(nyt1,n0+1) 6

|Eng42,n0+2)| (n2 —3)(2n2 — 5) + 1
|E(2n5+1,2n5+2)] 2(ny —2)(n2 = 3) + (n1 — 3)(n1 — 4)(n2 — 2)
|E(2n5+1,205+1)] (n1 —2) 4+ (n1 —3)(n1 — 4)

|E@nyt2.2m042)] | 5[ = 2)(n2 = 3)(na — 4) + (ng — 2)*(n1 — 3)(n1 — 4)

By the definition, we have

_ d u;,v)2  d U, vy)?
SOSD(Pnl[PHQ]) = Z \/dPnI[Pn2]( J)2 + d 1L1[Pn2]( r l)2
(ui,v5),(uk,v1)E E(Pny [Pny]) Pry [Prs ] SRR Py [Prs ] (i Uj)
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Here, clearly we notice that, in a composition graph P,, [P,,] an edge e = ((u;, v;), (ug, v;)) and
dp,, [P,] (Ui vj) = nadp, (u;) +dp,, (v;)

dp, [Pn,) (UK, 1) = nzdpn1 (ur) +dp,, (v)

substituting these in the above formula, we get

SOSD(PTH [Pnz]) =

(n2dp,, (ur) +dp,, (01))? i (n2dp,, (wi) + dp,, (v;))?

no

5 ¢ (nadp, (u;) +dp,, (v;))2  (nadp, (ur) +dp,, (v7))?
(uiﬂvj)v(uk>vl)¢E(Pn1 [PWQD

Using the above table, we get

(i)

(n2 +1)%  (n2 +2)° (n2+1)%  (ng +1)?
(nz T2 (nz F1E 2\/<n§ IV (nZ +1)2

SOSD(PTH [PTLQ]) :4(n2 - 3)\/

(n2 +1)2  (ng+2)?
(n2 +2)2  (ng+1)?

=(n3 — Tng + 14)V2 + 4(ny — 3)\/

ii)

(n2+1) n
(n2—|—22 (Tl2—|—12

(nz + 2)2 (nz + 1)2 (n2 + 1)2
6\/(”2 12 1)

SOSD(Pnl [P ]) 4(2712 — 5)\/

2)2 2)2
[(n2 — 3)(2n2 — 5) + \/”QJr (n2+2)°

n2+22 7’L2+2)2

2ns+ 12 (202 +2)2
(2n92 + 2)2 (2n9 + 1)2

2(n1 = 2)(n2 = 3) + (n1 — 3)(n1 — 4)(n2 — 2)]\/

(2no +1)2  (2n+1)2
(2ny +1)2  (2n+1)?

[(n1 =2) + (n1 = 3)(n1 — 4)]\/

(2712 + 2)2 (QTLQ + 2)2
(2n9 +2)2 ' (209 +2)2

%[("1 —2)(n2 — 3)(na — 4) + (n2 — 2)(n1 — 3)(n1 — 4)]\/

1
= [(nlng n1n2(4n1 + 6ny — 21) + 2711(377/1 — 14) + 14n2(n2 — 4) + 88]—|—

(ne +1)2  (ng+2)2
4(2n2 — —-5)—2 —4) +4(2ny —
n2 g \/ n2 + 2 ’I’L2 + 1)2 + [nan(nl ) nl(nl ) -+ ( o 3)]

(2ny + 1)2 N (2n + 2)2
(277,2 + 2)2 (2712 + ].)

Theorem 4.9 For P,, and Cy, with n1,ng > 3,
5050(Pay [Cra]) = ™ [mana(ny — 6) — 3ny + L4ng] + 2n3(ny — 3)\/ T

Proof: For V(P,,) = {u1,us, -+ ,un, } and V(C,,) = {v1,v2, -+ ,vn,} be the vertex sets of P,, and
C,,, respectively. The following table shows the cardinality of the edges respect to the degree of vertices
(us,v;) and (ug,v;) in the composition graph Py, [Cy,].
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|Eqp] Cardinality

|E(nst2.ns+2)] n2(2n2 — 3)

|E(nz+2,2n2+2)] 2(ny — 3)n3
|E(2ns+2,2n,42)| | (1 —2)(n2 = 3) + na(n1 — 3)(n1 — 4)]

In a composition graph P, [Cp,],
dp,, [Cp,) (i, v;) = nadp, (u;) +dc,, (v))
dp,, [CTLQ](Ulm vy) = nadp, (ug) + dc,, (vy. Therefore,

(TL2 + 2)2 (2712 + 2)2
(2”2 + 2)2 (712 + 2)2

+ Sl = 2)(m2 = 3) + ma(m — 3)(n1 — )]V

m(Pnl [Cng]) =n2(2n2 - 3)\[2 + 2(7?,1 - 3)7’1%\/

(ng + 2)2 (2ng + 2)2
(2712 + 2)2 (712 + 2)2

:% [n1ng(ny — 6) — 3ny + 14ny] + 2n3(ng — 3)\/

Theorem 4.10 If P,, and P,, are any two path graphs of the direct product P,, ® P,,, then

(1)

127

SOsp (P, @ Py,) =(2n3 — 11ng + 22)V/2 + 4(2ng — 5)2V17 forni = 2andng > 2

(ii)

SOsp(Pn, @ Py,) =(2n2 — 11ny + 22)V/2 + 4(2n; — 5)2V17 forn, > 2andny = 2

(iii)

SOSD(Pn1 (24 Png) = [(n1n2)2 — n1n2(4n1 + 4no — 19)] +4 [n1 (277/1 — 9) + n2(2n2 — 9) + 13]

1
V2
+ [(n1n2)(ny +ng — 8) — 2n1(ny — 7) — 2na(ny — 7) — 20] V17 + (ny — 3)
(n? — 5ny + 6)V/257 forny ,ny >3

Proof: Let V(P,,) = {u1,uz, -+ ,un, } and V(P,,) = {v1,v2, - ,vn,} be the vertex sets of P,, and
P, respectively. In the direct product P,, ® P,, we obtain the cardinality of the edges respect to the
degree of vertices (u;,v;) and (ug,v;) and are shown in the following table.



By the definition, we have
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1B vi)] Cardinality
forny =2,n9 > 2
|Eq,l 6
|Eq1,2)| 4(2n2 —5)
|E2,2)] (ng —3)(2ny —5) +1

forny >2,ny, =2
Bl
|Eq1,2)|

|E2,2)|

4(2711 — 5)

(n1 — 3)(2711 — 5) + 1

forni,ng >3
| Bl
|Eq,2)l

|E2,2)|

|Eq,4)

|E2,9l

|E(4,4)|

6
8(n1 + ng — 4)

(n1 + 1)(711 — 3) + (n1 — 2)(721 + 3712 — 11) + (TL2 — 1)(712 — 3)+
(n2 —2)(n1 +ng —5)

4y — 3)(nz — 2)(nz - 3)

(’fll — 3)(712 — 2)(2712 — 4) + (Tlg — 3)(711 — 2)(277,1 — 4) + 2[(711 — 4)2+
(TLQ — 4)2] + 4(TL1 + ng — 6)

3(n1 = 2)(n2 = 2)(n2 = 3) + 5(n1 — 3)(n1 — 4)(n2 — 2)?
+(’I’Ll — 3)[2(77/2 — 3) + (ng — 4)2]

Here, we notify that,in F,, ® P,,
dp,, &P, (ui,v;) =dp, (u;)dp,,(v;)
dp, op,, (uk,v) = dp, (u)dp,, (vy)

(i)

SO5D(Pn, ® Pn,) = 6V2 + (2n3 — 5)2V17 + [(ng — 3)(2n2 — 5) + 1]v/2

= (2n3 — 11ng + 22)V/2 + 4(2ny — 5)2V17

SO5p(Pn, @ Pp,) = 6V2 + (201 — 5)2V17 + [(n1 — 3)(2n1 — 5) + 1]v2

= (2n? — 11ny +22)V2 + 4(2n; — 5)2V17

11
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(iii)
SOsp(Pny ® Pny) = 6V2 + (11 +na — 4)4V17 + {[(n1 + 1)(n1 — 3) + (n1 — 2)(n1 + 3n2 — 11)]+
[(ng = 1)(n2 = 3) + (n2 — 2)(n1 + 12 = 5)[}V2 + (1 — 3)(n2 — 2) + (ng — 3)]

\/ﬁ"‘r {[(n1 — 3)(712 — 2)(2ﬂ2 — 4) + (’I”LQ — 3)(TL1 — 2)(2’/11 — 4)] + 2[(TL1 — 4)2
V1T

+ (2 — 47 40 s~ 0} Y0 4+ {3 (1~ 22— 2>~ 3) + 5 (ma —3)
(n1 — 4)(n2 — 2)% + (n1 — 3)[2(n2 — 3) + (n2 — 4)]}V2

SOsp(Py, ® Py,) =—= [(nin2)® — nina(4ny + 4ny — 19)] + 4 [n1(2ny — 9) 4+ na(2ny — 9) + 13] +

1
V2
[(nlng)(nl —+ ng — 8) —2nq (’I”Ll — 7) — 2712(’/12 — 7) — 20]\/ﬁ+
(n1 — 3)(n2 — 5ny + 6)V/257

Theorem 4.11 For the path graph P,, and the cycle graph C,, with ni,ny > 3,

[ 1
SOSD(Pnl X Cn2) = ﬁ[(n1n2)2 — n1n2(4n2 + 5) + 4n2(2n2 + 3) -+ ng(n1n2 — 2712 — 2)]\/ﬁ

Proof: Let V(P,,) = {u1,u2, -+ ,un, } and V(C,,) = {v1,v2, -+ ,vn,} be the vertex sets of P,, and
Cy, respectively. In the direct graph P,, ® C,,, the cardinality of the edges respect to the degree of
vertices (u;,v;) and ug,v; are given in the following table.

| Eap)l Cardinality

|E2,2) na(2ng — 1)

|E(2,0)] 2na[ning — 2(ng + 1)

|Eaay| | 2[(ning — 3n2)(ning — ng — 5) + na(ng — 1)]

Using the above table, we get
1
SOSD(Pnl ® Cn2) :n2(2n2 — 1)\/§+ ng[nan — 2(77,2 -+ 1)]\/ﬁ+ 5[(711712 — 3712)(711712 — No — 5)+
na(ng — 1)}\/5

:7[(711712)2 — n1n2(4n2 =+ 5) =+ 4n2(2n2 + 3) =+ ng(nlng — 2TL2 — 2)]\/ﬁ

N

Theorem 4.12 If P,,, X P,, is the strong product of P,, and P,,, then
()

8
SOsp(Pn, ® Py,) =(n3 — Tng + 14)2V2 + (ny — 3)5\/ 706 forni = 2andng > 3
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(ii)
SOsp(Pn, R P,,) =(n? — Tng +14)2v2 + (ny — 3)%mfor ny > 3andng = 2
(iii)
SOsp (P, X P,,) :%[(nmg)z —nina(4ny + 4ng — 15) + 2nq (4ny + 15) + 2ng(4ns + 15) + 52]+

8 1
(n1 + ng — 5)T5 vV 706 + [anLQ — 2(%1 + n9o + 3)] 6\/4177+

1
[n1na(ny + ng — 8) — ny(2n1 — 9) — na(2ny — 9)] 2—0\/4721 forni,ng >3

Proof: In P,, X P,, the cardinality of the edges respect to the degree of vertices (u;,v;) and (ug,v;) are
given in the following table.

‘E(a,b) | Cardinality
forny =2,mn, >3

|E3,3) 4

|E3,5)] 8(ng — 3)

|E5,5)] 2(ng — 3)(ng — 4)

forny >3,n0 =2

|E3,3)] 4
|E3,5)| 8(ny — 3)
|Es,5)] 2(n1 — 3)(n1 —4)

forny,me >3

[Es,3) 6

|E,5)] 8(ny + ng — 5)

|E.5)] (1 — 3)(2n1 — 3) + (2ny — 5) (201 +ng — 7)

|Ess)l Alnins — 2(ny + na) + 3]

[E.8)] 2(n1 = 3)[(n1 — 4) + (n2 = 2)’] + 2(n2 — 3)[(n2 — 4) + (n1 — 2)?]
[Es.9)] 3(n1 = 2)(n2 = 3)(n2 — 4) + 3(n1 = 3)(m — 4)(n2 - 2)?

+(n1 - 3)(712 — 3) (’I’LQ — 4)

By the definition, we have

* dp, wp,, (uk,v)?

2

- 7 -
SOsp(Pp, W P,,) = 3y \/ P, 8P, (Ui; V))

2 . .
(Ui71’j)7(ukvvl)¢E(Pn1gpnz) dP7L1®Pn2 (uk’vl) dPnlgpnz (UZ,U])
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Clearly,

dp, wp,, (ui,v;) =dp, (u;) +dp,, (v;) +dp,, (u)dp,, (v;)
dp,,®p,, (uk,v) =dp,, (k) + dp,, (v) + dp,, (w)dp,, (V1)

n2 ni

Using the above table, we get

(i)
— 32 32 /32 52 52 52
9 25

=4v/2 + 8(ng — 3) wtot (n2 —3)(ng — 4)2V2

=(n2 — Tng + 14)2v2 + (ng — 31 \/70 6 forn, = 2andny > 3
(i)

9 25
SOsp(P,, X P,,) =4V2 + 8(n; — 3) Fto+ (n1 —3)(n1 — 4)2v2
=(n? —Tny + 14)2\/5—&— (nq — 3)%\/706 forny > 3andng =2

(iii)

SOsp (P, ® P,,) =6 32 + 32 +8(n1 +n2 — 5) 3 =+ gz T [(n1 — 3)(2n1 — 3) + (2n2 — 5)
(21 +n2 = 7)) 22 + 22 4[nanz = 2(ny +n2) + 3]\/2—2?+ (2(n1 — 3)[(m1 — 4)+
(12— 2] + 2(nz — 3)[(n2 —4) + (m — 211/ 53 + 55 + (2 1 — 22— )2 — )+
L =) — 2~ 2 + (1~ )z~ Bz — D]y o5 + o5

—63/2 + 8(n1 + na — 5),/% + 25 Ll —3)(2n1 — 3) + (2ns — 5)(2n1 + ns — V2

+ 4fning — 2(n1 + n2) + 3] 3 + @ 4 {2(n1 — 3)[(n1 — 4) + (n2 — 2)] + 2(na — 3)

[(n2 — 4) + (m1 — 2)°]} @+%+@m7mm7mmf®+gm7w
(n1 —4)(n2 — 2)* + (n1 — 3)(n2 — 3)(n2 — 4)]v2
1
V2
(77,1 —+ ng — 5)%\/@ + [n1n2 — 2(7],1 + no + 3)] év 41774+

[(n1n2)2 — n1n2(4n1 +4ns — 15) + 2n1(4n1 + 15) =+ 2n2(4n2 + 15) + 52]+
[ninz2(n1 +n2 —8) —n1(2n1 — 9) — n2(2n2 — 9)] %\/4721 forni,ng >3

Theorem 4.13 If P,, is a path graph and C,,is a the cycle graph, ni,ne > 4. Then

[ 1 1
SOSD(Pn1 X an) :ﬁ[(nlng)Q — 477/17?,2(712 + 9) + 2?’12(4’”2 + 9) + ’I’Lg(?’llng — 2ng — 3)]% 4721

Proof: The following table contains the cardinality of the edges respect to the degree of vertices (u;, v;)
and (ug,v;), where V(P,,) = {u1,us,us, -+ ,upn, } and V(Cy,) = {v1,v2,v3, -+ , U, }.
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|E(a,b) | Cardinality
|E(5,5)] na(2ny — 3)
‘E(5,8)‘ 277/2(711712 - 277,2 - 3)

|Esg)l | 3[n3(n7 —4n1 +4) + 3n2(8 — 3n1)]

The proof is similar to the above theorem. O

5. Bounds on the Sombor symmetric division coindex

Theorem 5.1 Let G; and G2 be two graphs having vertices ni,no and edges my, mo respectively. Then

mv2 (255) < 50sp(Gi0Gs) < mva (442).

Equality holds if the given graphs G and Go are regular.

Proof: Let V(G1) = {w;lt = 1,2,...,n1} and V(G2) = {v;]j = 1,2,...,n2} be the vertex sets of Gy
and G respectively. Let §; be the minimum degree and A; be the maximum degree of the vertex of Gj,
where i = 1, 2.

In G10G,, |[V(G10G2)| = ning and |E(G10G3)| = nymsg + ming and the number of non-adjacent edges
in G10G4 ism = ( n12n2
By the definition of SOgp(G), we have

- (nlmg + mlng) .

— d u;,v;)2  d U, vy)?
SOsp(G10G:) = 3 \/ dGlDGQEu UJ;Q + dc’lDG?Eu’? Jiz
(ui,v;),(up,01) £ E(G10G2) G, 0G \Uk, Ul G 0Gy \Ug, Uy

_ 3 \/(d01 (u;) +dg,(v;))? n (dg, (ug) + dg,(v1))?

B 2 , )2
(0, (un o e E(GOGa) Y (@61 (k) s ()2 (dey (ui) + da, (v7))

(A1 +Ag)?  (Ay + Ag)?
= > e CETE
(wi,0;),(u,01)£E(G10Gz) 1T o2 1T o2

A+ Ay
< 5 (2122
o Z \[( 01 + 62 >

(uiyvj),(uk,v1)¢E(G10G2)

< \f<A1+A2)

01 + 02

Since GG; and G are regular, the degree of each vertex is same. Therefore, for i = 1,2, A; = §; and
SOsp(G10G3) = my/2. Hence, equality holds if the graphs G and G5 are regular.
Similarly, we follow the lower bound.

Thus, 2 (2542 ) < S05p (G106 < miv2 (3182 )

Theorem 5.2 Let Gi and Ga be two graphs with |V(G1)| = n1,|E(G1)] = m1 and |[V(G2)| = na,
|E(G2)| = myg respectively. Then
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mf( a8y 48 ) < S0sp(G1[Ga)) < mV2 (nzAﬁAa).

naA1+As n261+02
Equality holds if G1 and G2 are regular.

Proof: Let V(G1) = {w;li =1,2,...,n1} and V(G2) = {v;|j = 1,2,...,na} be the vertex sets of G; and
G5 respectively. Let §; and A; be the minimum degree and maximum degree of the vertex of G;, where
i=1,2.

In G1[Gs), |V (G1[G2])| = ning and |E(G1[Ga])| = nima + min3 and the number of non-adjacent edges
in G1[Go) ism = < n12n2 ) — (n1m2 + mm%) .

By the definition of SOgp(G), we have

SOsp(G1[Gs]) =

(]

\/dcl[GQ](uivva‘V N da, () (ur, v1)?

(ws.07).(us I EE(Ga[Ca]) da 6] (ursv)?  da, () (ui, v5)?

¢ (naday (us) + day (v5))* | (n2da, (ur) + day (w)?
(G2])

(]

(’Uzi,Uj)!(uk,'Ul)gE(Gl (nZdGl (uk) + dG2 (Ul))2 (nszl (u,L) + dG2 (U]))Q

<

(]

(nady + d2)2 (n2dy + d2)2
o) (n2A1 + A2>

TL2§1 + 52

\/(n2A1 FA0)2 (ol + Ay)?

(ui,v5),(uk,v) EE(G1[G2])

IN

(ui,v;),(uk,v1)¢E(G1[Gz])

. 7'L2A1+A2
< 21 ————=
_m\[< 11201 1 6 )

when G; and G, are regular, the degree of each vertex is same. Therefore, equality holds.
Similarly, we follow the lower bound.

Thus, 7v/2 (%) < 80sp(G1[Ga]) <mV2 (fﬁﬁiéﬂ H

Theorem 5.3 Let Gi and Ga be two graphs with |V(G1)| = n1,|E(G1)] = m1 and |[V(G2)| = na,
|E(G2)| = mya respectively. Then

mV2 (£122) < S05p(G1 @ G2) < V2 (5152).

Equality holds if G1 and G2 are regular.

Proof: Let V(G1) = {u1,ug,...,uy1} and V(G2) = {v1,v9,..., 0,2} be the disjoint vertex sets of Gy
and Go respectively. Let mindeg(G;) = 0; and mazdeg(G;) = A; for i =1, 2.

In G1 ® G2, |V(G1 ® G2)| = ning and |E(G1 ® G2)| = 2mymse and the number of non-adjacent edges in
ning

G1®Ggism=( 9

— 2m1m2.
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By the definition, we have

SOSD(Gl ® GQ) =

(]

\/dG1®G2(uivvj)2 n da,wa, (U, vr)?
)

2 . )2
(ui,vg),(uk,v)EE(G1®G2 dGl ®G2 (Uk, Ul) dG1®G2 (ul’ U])

(]

(da, (uk)de, (v1))?  (da, (ui)da, (v;))?

\/(A1A2)2 n (A1A)?
2 2
(wi,0,),(ure,v1) € B(Gr ®G) (9102) (9102)

< > \/§<A1A2)

616
(uirvy),(ug,v)EE(G1®G2) 192

Smﬂ(AlAQ)

\/ ((de, (us)de, (v;))?

(ui,v5),(uk,v1) ¢ E(G1®G2)

<

(]

0102

When the graphs G; and G5 are regular, we notice that, degree of each vertex is same. Therefore, equality
holds.
Similarly, we follow the lower bound.

Thus, mv/2 (%) < SOsp(G1 ® Ga) <mV?2 (%). O

Theorem 5.4 Let G1 and G2 be two graphs with vertices ny,no edges my, ms respectively. Then
__ §1+02+4+3816 o —_ A1+A+AA

V2 (R ) < S05(G1 B Ga) < mv2 (SRR ).

Equality holds if G1 and Gg are regular.

Proof: Let V(G1) = {u1,ug,...,un1} and V(G2) = {v1,v9,...,0,2} be the disjoint vertex sets of Gy
and Gy respectively. Let mindeg(G;) = ¢; and mazdeg(G;) = A; for i =1,2.

In G1 X Gy, |[V(G1 K Gs)| = ning and |E(G1 X Gs)| = nyma + mine + 2mymse and the number of non-
ning

adjacency edges in G; X Gg is it = 9

— (nyma + ming + 2mimas).

By the definition of SOgp(G), we have

_ d »Ui)2 d ,v1)?
§05p(G1 K Ga) = 3 GGy (4 05)" . ey, (te, o)
(0. s o R (G B G) | G106 (k00 s, (1, 05)
Here,
dGlgGg (uiv vj) = dGl (ul) + dG2 (vj) + dGl (ui)dG2 (vj)
<A+ A+ AjAy
de, &G, (UK, v1) = da, (uk) + da, (v) + da, (uk)de, (vi)
< 1+ 2 + 102
Hence,

SOsp(G1RGy) < s Vo (DAt Ay
51 + 52 + 5152
(wiyw;),(ur,v1) ¢ E(G1RG2)

_ A4+ Ag + A A,
< 2
_mxf( 01+ 62 + 0102 )
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when the graphs G; and G5 are regular, the degree of each vertex is same. Therefore, equality holds.
Similarly, we follow the lower bound. Thus

— 014+92+610 <N — A1 +Ax+AA
V2 (SRR ) < SO0sp(G1 R Gy) <Tv2 (25550 ).

6. Relations between Sombor symmetric division index and coindex

Theorem 6.1 For the graph G;, where i € {1,2} with ni,ny vertices and m1, mo edges,

A+ A
S0sp(Gi0Gs) < V2 (21122 (M2 ) _ 500 (G,0G,)
01 + 92 2

Equality holds if G; is regular.
Proof: From Theorem 5.1 we have

_ A A
SOsp(G10G:) < mV2 21452 andm = " ) - (n1mg + mins)
51 + do 2

From Theorem 3.1
A1+ Aq

SOsp(G10Gs) < V2
sp(G100Gs) < (51+52

> (n1mg + ming)

Clearly, we notice that
SOsp(G10G2) < SOsp(G10G»)

From the above three inequalities, we obtain the result as

SOsp(G10Gs) < va [ S122) (M7 ) g0 u0as)
01 + 92 2

Theorem 6.2 For the graph G;, where i € {1,2} with ni,ny vertices and m1, mo edges,

S05p(G1[Ga)) < V2 (”A”) ( nan2

n2d1 + 02 2 > ~50sp(Gh[G2])

Equality holds if G; is regular.
Proof: From Theorem 5.2 we have

TOon A A
SOSD(Gl[GQ]) < m\/ﬁ <7l21+2) and T = < ning

. 2
ngd1 + 62 2 ) (n1m2 - mlnz)

From Theorem 3.2
TlgAl + AQ

S0sp(G1]Gs]) < f2< I

) (n1mg + myn3)
Also, we clarify that

SOsp(G1]|Gz)) < SOsp(G1[G2))

Using above three inequalities, we obtain the result as

SOsp(G1[G2)) < V2 (%) ( i > ~50sp(G1[G2))
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Theorem 6.3 For the graph G;, where i € {1,2} with ni,ny vertices and my, mo edges,

_ AIA
SOsp(G1 ® Gs) < \/§< 515 2) ( n12n2 ) —SO35p(G1 ® Ga)
102

Equality holds if G; is reqular.

Proof: From Theorem 5.3 we have

AA
SOsp(G1 ® Ga) < m\/i( 615 2> andm = < n12n2 ) — 2mims
102

From Theorem 3.3

A1 A
SOsp(G1 ® Ga) < Ni( 53 2) myms
102

Clearly, we notice that
SOsp(G1 ® G2) < SOsp(G1 @ G2)

From the above three inequalities, we obtain the result as

A+ A
S0sp(G10G,) < v2 [ 21122 (mn2 ) g0 (G,0Gs)
01 + 99 2

Theorem 6.4 For the graph G;, where i € {1,2} with ny,ny vertices and my, ma edges,

Al + AQ + A1A2> ( ning

SOsp(G1 XGo) < V2
SD( 1 2)_\/>( 01 + 0o + 0102 2

) —SOsp(G1 K Gs)
Equality holds if G; is regular.

Proof: From Theorem 5.4 we have

A1+A2+A1A2) dim
01 + 02 + 6102

S05p(G1 B Ga) <2 ( !

= ( ning ) — (’I’leg + ming + 2m1m2)

From Theorem 3.4 <A1 + Ao+ AL A

X <2 2
SOSD(Gl Gg) < \[ 51+ 0y 1 0105 > (Tblmz + ming + mlmg)

Clearly, we notice that
SOsp(G1 K G2) < SOsp(G1 X Gs)

From the above three inequalities, we obtain the result as

A+ Ao+ A1A2> ( ning
01 + 0o + 5109 2

SOsp(G1 X Gy) < V2 ( ) — S0sp(G1 R Gy)
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7. Chemical applicability of SOsp(G)

As explained in [4], we explained the correlation analysis between Sombor symmetric division coindex
and pi-electron energy of some selected hetero molecules and PAHs.

7.1. Correlation analysis between Sombor symmetric division coindex and pi-electron en-
ergy of some selected hetero molecules.

This section explores the chemical applicability of SOgp(G) index upon performing correlation analy-
sis with total pi-electron energy of selected Hetero molecules. For this we have calculated SOgp(G) values
of some selected Hetero molecules . The following Table 1 consists of SOgp(G) values and pi-electron
energy of selected Hetero molecules. Figure 1 illustrate the graph corresponding to Table 1.

’ Code \ SOsp(Q) \ Total m-electron energy

H2 3.799 5.66
H3 3.799 5.76
Hb5 3.799 6.82
H6 3.536 5.23
Hr 4.243 6.69
HS 4.243 9.06
H9 4.243 9.1

H10 4.243 9.07
H11 4.243 9.65
H12 5.042 8.19
H13 5.808 12.21
H14 5.832 12.22
H15 5.832 12.21
H16 5.715 11

H1v 7.105 14.23
H18 7.105 14.23
H19 7.838 16.15
H20 7.826 16.12
H21 6.434 13.46
H22 6.411 13.59
H23 9.912 20.1
H24 9.912 21.02
H25 9.932 20.56
H26 9.912 21.62
H27 11.44 24.23
H28 9.232 19.39

Table 1: Sombor symmetric division co-index of Hetero molecules
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7.2. Correlation analysis between Sombor symmetric division coindex and m-electron energy
of some selected PAHs

This section explores the chemical applicability of SOgp(G) index upon performing correlation anal-
ysis with total m-electron energy of selected PAH’s. For this we have calculated SOgp(G) values of some
selected PAH’s. The following Table 2 consists of SOgp(G) values and m-electron energy of selected
PAH’s. Table 2 shows the Sombor symmetric division co-index of PAHs. The graph corresponding to
Table 2 is shown in Figure 2.
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Molecules \ SOsp(Q) \ Total m-electron energy
Benzene 4.243 8

Naphthalene 7.188 13.68
Phenanthrene 10.09 19.44
Anthracene 9.925 19.31
Chrysene 12.78 25.19
Benzanthracene 12.75 25.1
Triphenylene 12.75 25.27
Tetracene 12.76 25.18
Benzolalpyrene 14.17 28.22
Benzolelpyrene 14.17 28.22
Perylene 14.18 28.24
Anthanthrene 15.58 31.25
Benzoperylene 15.58 31.42
Dibenzo(a, c)anthracene 15.58 30.94
Dibenzo(a, h)anthracene 15.58 30.88
Dibenzo(a, j)anthracene 15.58 30.94
Picene 15.59 33.95
Dibenzo(a, h)pyrene 17.0 30.94
Dibenzo(a, e)pyrene 16.99 30.94
Pyrene 11.36 22.5
Coronene 16.99 34.57
Fluoranthene 11.35 22.5
Pentacene 15.58 30.54
Acenapthalene 8.564 30.54
Azulene 7.188 30.54

Table 2: Sombor symmetric division co-index of PAHs
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Figure 2:
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8. Conclusion

In this study, we have defined the topological indices called Sombor symmetric division index and
coindex of graph and give some properties there on. We have also computed some bounds on the the
Sombor symmetric division degree index and coindex under some standard graph operations, such as
Cartesian product, composition, direct product and strong product. Additionally, we have established a
significant correlation between the Sombor symmetric division index and the m-electron energy of selected
heteroatomic molecules and PAHs.

Work in this paper is entirely the result of the authors’ independent work. No external contributions
or assistance were involved in the preparation of this study.
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