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Sombor Symmetric Division Degree Index and Co-index of Graph Operations

Nagendrappa G.∗, Venkanagouda M. Goudar, Shylaja B. P.

abstract: In the present study, we introduce two new graph invariants called Sombor symmetric division
index and coindex, and discuss their properties with reference to certain graphs. Also, we compute their
values for some of the graph operations such as the Cartesian product, composition, direct product and strong
product of two graphs. Further, we establish bounds on these invariants in terms of other graph parameters
and work on the relation between them. Through a correlative analysis with the π-electron energy of a few
chosen hetero molecules and PAHs, the chemical application of these parameters is examined.
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1. Introduction

Topological indices or molecular descriptors are numerical invariants which can be obtained for any
graph and play an important role in mathematical chemistry. They are extensively used in the devel-
opment of Quantitative Structure Activity Relationships (QSAR) and Quantitative Structure Property
Relationships (QSPR) in the field of chemical graph theory. A topological index that depends on the
degrees of the vertices of the graph G, is known as a vertex-degree-based (VDB) index. An edge-degree-
based (EDB) is also introduced in a similar manner. In literature, various types of VDB and EDB indices
are introduced and studied.

A new molecular descriptor, called the symmetric division degree index of a graph G, denoted by
SDD(G), is defined in [6] and is one among the 148 ”discrete Adriatic indices” that play a vital role
in QSAR/QSPR analysis of chemical compounds. Among all successful molecular descriptors, Zagreb
indices called first Zagreb index and the second Zagreb index defined in [5] are more useful descriptors.
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Also, another topological index called coindex of a graph that measures the non-adjacency properties of
vertices in a graph. It is often defined as the sum of the products of non-adjacent vertices in the graph.
Coindices are used in various fields including Chemistry, where they are used to model the properties of
molecules. When computing the weighted Wiener polynomials of certain composite graphs, non-adjacent
pairs of vertices have been considered in [9]. Also, the first Zagreb coindex and the second Zagreb coindex
are defined in [9].

In this paper, we consider simple, finite, connected and undirected graph G = (V,E) with n vertices
and m edges. We denote the vertex set of G by V (G) and the edge set of G by E(G). The degree of
a vertex denoted by d(u) is defined as the number of edges that are incident with the vertex u in G.
Also, ∆ and δ are respectively called the maximum degree and minimum degree of G. A graph G is the
complement graph of G. Two vertices u and v in G are adjacent if and only if they are not adjacent in G.
Hence, (u, v) ∈ E(G) if and only if (u, v) /∈ E(G) and the number of edges in G denoted by m is defined

as m =

(
n
2

)
−m.

For any unexplained notations, see [2].

2. Preliminaries

We start this paper with some definitions.

Definition 2.1 [1] The Cartesian product of any two graphs G1 and G2, denoted by G1□G2 is
a graph with vertex set V (G1□G2) = V (G1)□V (G2), where two vertices (ui, vj) and (uk, vl) are
adjacent if and only if ui = uk and vj ∼ vl in G2 or vj = vl and ui ∼ uk in G1. We notice that
|E(G1□G2)| = n1m2 +m1n2, and dG1□G2

(ui, vj) = dG1
(ui) + dG2

(vj).

Definition 2.2 [1] The composition of any two graphs G1 and G2, denoted by G1[G2] is a graph with
vertex set V (G1[G2]) in which two vertices (ui, vj) and (uk, vl) are adjacent whenever ui ∼ uk in G1

or ui = uk and vj ∼ vl in G2. In the graph G1[G2], |V (G1[G2])| = n1n2, |E(G1[G2])| = n1m2+m1n
2
2

and dG1[G2](ui, vj) = |V (G2)|dG1(ui) + dG2(vj).

Definition 2.3 [7] The direct product of any two graphs G1 and G2, denoted by G1 ⊗ G2 is the
graph with vertex set V (G1 ⊗G2) in which (ui, vj) ∼ (uk, vl) if ui ∼ uk in G1 and vj ∼ vl in G2. In
this graph |V (G1 ⊗G2)| = n1n2, |E(G1 ⊗G2)| = 2m1m2 and dG1⊗G2

(ui, vj) = dG1
(ui)dG2

(vj).

Definition 2.4 [9] The strong product of any two graphs G1 and G2, denoted by G1⊠G2 is a graph
with vertex set V (G1⊠G2), where (ui, vj) ∼ (uk, vl) if either ui = uk and vj ∼ vl in G2 or vj = vl and
ui ∼ uk in G1 or ui ∼ uk in G1 and vi ∼ vl in G2. In G1⊠G2, we have |V (G1⊠G2)| = n1n2, |E(G1⊠
G2)| = n1m2 +m1n2 + 2m1m2 and dG1⊠G2

(ui, vj) = dG1(ui) + dG2(vj) + dG1(ui)dG2(vj).

Definition 2.5 [6] The SDD index of a graph G is defined as:

SDD(G) =
∑

uv∈E(G)

(
du
dv

+
dv
du

)

Where E(G) is the edge set of a graph G and du, dv denote the degrees of the vertices u, v ∈ V (G)
respectively.

Definition 2.6 [5] First Zagreb index and second Zagreb index of a graph G are defined as:

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)]

and

M2(G) =
∑

uv∈E(G)

dG(u)dG(v)
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Definition 2.7 [9] The first Zagreb coindex and second Zagreb coindex of a graph G are defined as:

M1(G) =
∑

uv/∈E(G)

[dG(u) + dG(v)]

and

M2(G) =
∑

uv/∈E(G)

dG(u)dG(v)

Definition 2.8 [8] The Sombor coindex of a graph G is defined as:

SO(G) =
∑

uv/∈E(G)

√
dG(u)2 + dG(v)2

3. Bounds on the Sombor symmetric division index of Graphs

Inspired by the work on symmetric division degree index and coindex of derived graphs defined in [3],
we define a unique index called Sombor symmetric division index of a graph as follows.
The Sombor symmetric division index of a graph G, denoted by SOSD(G), is defined as:

SOSD(G) =
∑

uv∈E(G)

√
d(u)2

d(v)2
+

d(v)2

d(u)2

where E(G) is the edge set of G and d(u), d(v) denote the degrees of the vertices u, v ∈ V (G) respectively.

3.0.1. Bounds on the Sombor symmetric division index.

Theorem 3.1 Let G1 and G2 be two graphs having vertices n1, n2 and edges m1,m2 respectively. Then

√
2

(
δ1 + δ2
∆1 +∆2

)
(n1m2 +m1n2) ≤ SOSD(G1□G2) ≤

√
2

(
∆1 +∆2

δ1 + δ2

)
(n1m2 +m1n2).

Further, equality holds if the given graphs G1 and G2 are regular.

Proof: Let V (G1) = {ui|i = 1, 2, . . . , n1} and V (G2) = {vj |j = 1, 2, . . . , n2} be the vertex sets of G1

and G2 respectively. Let δi be the minimum degree and ∆i be the maximum degree of the vertex of Gi,
where i = 1, 2. In G1□G2, |V (G1□G2)| = n1n2 and |E(G1□G2)| = n1m2 +m1n2.
By the definition of SOSD(G), we have

SOSD(G) =
∑

uv∈E(G)

√
d(u)2

d(v)2
+

d(v)2

d(u)2
so that

SOSD(G1□G2) =
∑

(ui,vj),(uk,vl)∈E(G1□G2)

√
dG1□G2

(ui, vj)2

dG1□G2
(uk, vl)2

+
dG1□G2

(uk, vl)2

dG1□G2
(ui, vj)2

=
∑

(ui,vj),(uk,vl)∈E(G1□G2)

√
(dG1

(ui) + dG2
(vj))2

(dG1
(uk) + dG2

(vl))2
+

(dG1
(uk) + dG2

(vl))2

(dG2
(ui) + dG2

(vj))2

≤
∑

(ui,vj),(uk,vl)∈E(G1□G2)

√
(∆1 +∆2)2

(δ1 + δ2)2
+

(∆1 +∆2)2

(δ1 + δ2)2

≤
∑

(ui,vj),(uk,vl)∈E(G1□G2)

√
2

(
∆1 +∆2

δ1 + δ2

)

≤
√
2

(
∆1 +∆2

δ1 + δ2

)
(n1m2 +m1n2)
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Since G1 and G2 are regular, the degree of each vertex is same. Therefore, for i = 1, 2, ∆i = δi and
SOSD(G1□G2) =

√
2(n1m2 +m1n2). Hence, equality holds if the graphs G1 and G2 are regular.

Similarly, the lower bound can be established.Thus,√
2
(

δ1+δ2
∆1+∆2

)
(n1m2 +m1n2) ≤ SOSD(G1□G2) ≤

√
2
(

∆1+∆2

δ1+δ2

)
(n1m2 +m1n2) 2

Theorem 3.2 Let G1 and G2 be two graphs with |V (G1)| = n1, |E(G1)| = m1 and |V (G2)| = n2,
|E(G2)| = m2 respectively. Then

√
2

(
n2δ1 + δ2
n2∆1 +∆2

)
(n1m2 +m1n

2
2) ≤ SOSD(G1[G2]) ≤

√
2

(
n2∆1 +∆2

n2δ1 + δ2

)
(n1m2 +m1n

2
2).

Further, equality holds if G1 and G2 are regular.

Proof: Let V (G1) = {ui|i = 1, 2, . . . , n1} and V (G2) = {vj |j = 1, 2, . . . , n2} be the vertex sets of G1 and
G2 respectively. Let δi and ∆i be the minimum degree and maximum degree of the vertex of Gi, where
i = 1, 2.
In G1[G2], |V (G1[G2])| = n1n2 and |E(G1[G2])| = n1m2 +m1n

2
2

By the definition of SOSD(G), we have

SOSD(G1[G2]) =
∑

(ui,vj),(uk,vl)∈E(G1[G2])

√
dG1[G2](ui, vj)2

dG1[G2](uk, vl)2
+

dG1[G2](uk, vl)2

dG1[G2](ui, vj)2

=
∑

(ui,vj),(uk,vl)∈E(G1[G2])

√
(n2dG1(ui) + dG2(vj))

2

(n2dG1
(uk) + dG2

(vl))2
+

(n2dG1(uk) + dG2(vl))
2

(n2dG1
(ui) + dG2

(vj))2

≤
∑

(ui,vj),(uk,vl)∈E(G1[G2])

√
(n2∆1 +∆2)2

(n2δ1 + δ2)2
+

(n2∆1 +∆2)2

(n2δ1 + δ2)2

≤
∑

(ui,vj),(uk,vl)∈E(G1[G2])

√
2

(
n2∆1 +∆2

n2δ1 + δ2

)

≤
√
2

(
n2∆1 +∆2

n2δ1 + δ2

)
(n1m2 +m1n

2
2)

when G1 and G2 are regular, the degree of each vertex is same. Therefore, equality holds.
Similarly, the lower bound holds.

Thus,
√
2
(

n2δ1+δ2
n2∆1+∆2

)
≤ {SOSD}(G1[G2]) ≤

√
2
(

n2∆1+∆2

n2δ1+δ2

)
. 2

Theorem 3.3 Let G1 and G2 be two graphs with |V (G1)| = n1, |E(G1)| = m1 and |V (G2)| = n2,
|E(G2)| = m2 respectively. Then

2
√
2

(
δ1δ2
∆1∆2

)
m1m2 ≤ SOSD(G1 ⊗G2) ≤ 2

√
2

(
∆1∆2

δ1δ2

)
m1m2.

Further, equality holds if G1 and G2 are regular.

Proof: Let V (G1) = {u1, u2, . . . , un1} and V (G2) = {v1, v2, . . . , vn2} be the disjoint vertex sets of G1

and G2 respectively. Let mindeg(Gi) = δi and maxdeg(Gi) = ∆i for i = 1, 2.
In G1 ⊗G2, |V (G1 ⊗G2)| = n1n2 and |E(G1 ⊗G2)| = 2m1m2



Sombor Symmetric Division Degree Index and Co-index of Graph Operations 5

By the definition of SOSD(G), we have

SOSD(G) =
∑

uv/∈E(G)

√
d(u)2

d(v)2
+

d(v)2

d(u)2

SOSD(G1 ⊗G2) =
∑

(ui,vj),(uk,vl)∈E(G1⊗G2)

√
dG1⊗G2(ui, vj)2

dG1⊗G2
(uk, vl)2

+
dG1⊗G2(uk, vl)2

dG1⊗G2
(ui, vj)2

=
∑

uik,vjl∈E(G1⊗G2)

√
(dG1

(ui)dG2
(vj))2

(dG1
(uk)dG2

(vl))2
+

(dG1
(uk)dG2

(vl))2

(dG1
(ui)dG2

(vj))2

≤
∑

(ui,vj),(uk,vl)∈E(G1⊗G2)

√
(∆1∆2)2

(δ1δ2)2
+

(∆1∆2)2

(δ1δ2)2

≤
∑

(ui,vj),(uk,vl)∈E(G1⊗G2)

√
2

(
∆1∆2

δ1δ2

)

≤ 2
√
2

(
∆1∆2

δ1δ2

)
m1m2

When the graphs G1 and G2 are regular, we notice that, degree of each vertex is same. Terefore, equality
holds .
Similarly, the lower bound can be proved.

Thus, 2
√
2
(

δ1δ2
∆1∆2

)
m1m2 ≤ SOSD(G1 ⊗G2) ≤ 2

√
2
(

∆1∆2

δ1δ2

)
m1m2. 2

Theorem 3.4 Let G1 and G2 be two graphs with vertices n1, n2 edges m1,m2 respectively. Then√
2
(

δ1+δ2+δ1δ2
∆1+∆2+∆1∆2

)
(n1m2 +m1n2 + 2m1m2) ≤ SOSD(G1 ⊠G2) ≤

√
2
(

∆1+∆2+∆1∆2

δ1+δ2+δ1δ2

)
(n1m2 +m1n2 +

2m1m2).
Equality holds if G1 and G2 are regular.

Proof: Let V (G1) = {u1, u2, . . . , un1} and V (G2) = {v1, v2, . . . , vn2} be the disjoint vertex sets of G1

and G2 respectively. Let mindeg(Gi) = δi and maxdeg(Gi) = ∆i for i = 1, 2.
In G1 ⊠G2, |V (G1 ⊠G2)| = n1n2 and |E(G1 ⊠G2)| = n1m2 +m1n2 + 2m1m2

By the definition of SOSD(G), we have

SOSD(G) =
∑

uv∈E(G)

√
d(u)2

d(v)2
+

d(v)2

d(u)2

SOSD(G1 ⊠G2) =
∑

(ui,vj),(uk,vl)∈E(G1⊠G2)

√
dG1⊠G2

(ui, vj)2

dG1⊠G2
(uk, vl)2

+
dG1⊠G2

(uk, vl)2

dG1⊠G2
(ui, vj)2

=
∑

(ui,vj),(uk,vl)∈E(G1⊠G2)

√
(dG1(ui) + dG2(vj) + dG1(ui)dG2(vj))

2

(dG1(uk) + dG2(vl) + dG1(uk)dG2(vl))
2
+

(dG1(uk) + dG2(vl) + dG1(uk)dG2(vl))
2

(dG1(ui) + dG2(vj) + dG1(ui)dG2(vj))
2

≤
∑

(ui,vj),(uk,vl)∈E(G1⊠G2)

√
(∆1 +∆2 +∆1∆2)2

(δ1 + δ2 + δ1δ2)2
+

(∆1 +∆2 +∆1∆2)2

(δ1 + δ2 + δ1δ2)2

Therefore,

SOSD(G) ≤
∑

(ui,vj),(uk,vl)∈E(G1⊠G2)

√
2

(
∆1 +∆2 +∆1∆2

δ1 + δ2 + δ1δ2

)

≤
√
2

(
∆1 +∆2 +∆1∆2

δ1 + δ2 + δ1δ2

)
(n1m2 +m1n2 + 2m1m2)
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when the graphs G1 and G2 are regular, the degree of each vertex is same. Therefore, equality holds.
Similarly, we follow the lower bound.Thus,√
2
(

δ1+δ2+δ1δ2
∆1+∆2+∆1∆2

)
(n1m2 +m1n2 + 2m1m2) ≤ SOSD(G1 ⊠G2) ≤

√
2
(

∆1+∆2+∆1∆2

δ1+δ2+δ1δ2

)
(n1m2 +m1n2 +

2m1m2). 2

4. Sombor symmetric division coindex of a Graph

Motivated by the work on Sombor coindex of graphs defined in [8] and Zagreb coindices of composite
graphs defined in [8], we defined a new index called Sombor symmetric division coindex of a graph.
The Sombor symmetric division coindex of a graph G, denoted by SOSD(G) is defined as:

SOSD(G) =
∑

uv/∈E(G)

√
d(u)2

d(v)2
+

d(v)2

d(u)2

Where E(G) is the edge set of G and d(u), d(v) denote the degrees of the vertices u, v ∈ V (G) respectively.
In the following propositions, an edge e = (u, v) of a complement graph G is referred to as (a, b)-edge,
where a = dG(u) and b = dG(v).

Proposition 4.1 For n ≥ 3, the complement of Cn has n(n−3)
2 number of (2, 2)-edges. Therefore, by the

definition, we have

SOSD(Cn) =
1√
2
n(n− 3).

Proposition 4.2 Let Kn1,n2
, where n1n2 ≥ 2 be a complete bipartite graph with (n1 + n2) vertices and

n1, n2 edges. Then the complement of Kn1,n2 has n1(n1−1)
2 number of (n2, n2)-edges and

n2(n2−1)
2 number

of (n1, n1)-edges. Hence,

SOSD(Kn1,n2
) =

1√
2
[n1(n1 − 1) + n2(n2 − 1)] .

Proposition 4.3 For n ≥ 5 the complement of Wn has (n−1)(n−4)
2 number of (3, 3)-edges. Hence,

SOSD(Wn) =
1√
2
(n− 1)(n− 4).

Proposition 4.4 For n ≥ 3, the complement of a star graph K1,n−1 has (n−1)(n−2)
2 number of (1, 1)-

edges. Hence,

SOSD(K1,n−1) =
1√
2
(n− 1)(n− 2).

Proposition 4.5 In Pn, we obtain only one (1, 1)-edge, 2(n− 3) number of (1, 2)-edges and (n−3)(n−4)
2

number of (2, 2)-edges. Therefore,

SOSD(Pn) = (n− 3)
√
17 +

1√
2
(n− 3)(n− 4).

4.0.1. Properties of Sombor symmetric division coindex of Graphs. In the present section, we determine
Sombor symmetric division coindex of some graph operations. In the following graph operations, the
cardinality of the edges of a complement graph G that are connected by the vertices (ui, vj) and (uk, vl)
is denoted by |E(a,b)|, where a = d(ui, vj) and b = d(uk, vl)
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Theorem 4.6 For any two path graphs Pn1
and Pn2

, where n1, n2 ≥ 3,

SOSD(Pn1□Pn2) =
1√
2
(n1n2)

2 − n1n2(4n1 + 4n2 − 19) +
√
2 [n1(4n1 − 21) + n2(4n2 − 21) + 48]

+ (n1 + n2 − 5)
4

5

√
97 + [n1n2 − 2(n1 + n2) + 4] 2

√
17

+ (n1 + n2 − 4) [n1n2 − 2(n1 + n2) + 3]
1

6

√
337

Proof: For V (Pn1) = {u1, u2, u3, · · · , un1} and V (Pn2) = {v1, v2, v3, · · · , vn2} the cardinality of the edges
respect to the degree of vertices (ui, vj) and (uk, vl) in the Cartesian product Pn1□Pn2 are given in the
following table.

|E(a,b)| Cardinality

|E(2,2)| 6

|E(2,3)| 8(n1 + n2 − 5)

|E(2,4)| 4(n1 − 2)(n2 − 2)

|E(3,3)| 4(n1 − 2)(n2 − 2) + (n1 − 3)(2n1 − 5) + (n2 − 3)(2n2 − 5) + 2

|E(3,4)| 2(n1 + n2 − 4)[(n1 − 3)(n2 − 2) + (n2 − 3)]

|E(4,4)| 1
2 (n1 − 2)(n2 − 3)(n2 − 4) + 1

2 (n1 − 3)(n1 − 4)(n2 − 2)2 + (n1 − 3)(n2 − 2)(n2 − 3)

By the definition, we have

SOSD(Pn1
□Pn2

) =
∑

(ui,vj),(uk,vl)/∈E(Pn1
□Pn2

)

√
(d(ui) + d(vj))2

(d(uk) + d(vl))2
+

(d(uk) + d(vl))2

(d(ui) + d(vj))2

Using the above table, we get
SOSD(Pn1

□Pn2
)

=6
√
2 + 8(n1 + n2 − 5)

√
4

9
+

9

4
+ 4(n1 − 2)(n2 − 2)

√
4

16
+

16

4
+ [4(n1 − 2)(n2 − 2)+

(n1 − 3)(2n1 − 5) + (n2 − 3)(2n2 − 5) + 2]
√
2 + 2(n1 + n2 − 4)[(n1 − 3)(n2 − 2) + (n2 − 3)]√

9

16
+

16

9
+

[
1

2
(n1 − 2)(n2 − 3)(n2 − 4) +

1

2
(n1 − 3)(n1 − 4)(n2 − 2)2 + (n1 − 3)(n2 − 2)(n2 − 3)

]√
2

=
1√
2

[
(n1n2)

2 − n1n2(4n1 + 4n2 − 19)
]
+
√
2 [n1(4n1 − 21) + n2(4n2 − 21) + 48]+

(n1 + n2 − 5)
4

5

√
97 + [n1n2 − 2(n1 + n2) + 4] 2

√
17 + (n1 + n2 − 4) [n1n2 − 2(n1 + n2) + 3]

1

6

√
337

2

Theorem 4.7 For the path graph Pn1
and the cycle graph Cn2

, where n1 ≥ 3 and n2 ≥ 4,
SOSD(Pn1□Cn2) =

1√
2
[(n1n2)

2 − n1n2(4n2 + 5) + 2n2(4n2 + 3)] + n2(n1n2 − 2n2 − 1) 16
√
337

Proof: For V (Pn1
) = {u1, u2, u3, · · · , un1

} and V (Cn2
) = {v1, v2, v3, · · · , vn2

} the cardinality of the
edges respect to the degree of vertices (ui, vj) and (uk, vl) are given in the following table.
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|E(a,b)| Cardinality

|E(3,3)| n2(n2 − 3) + n2
2

|E(3,4)| 2n2(n1n2 − 2n2 − 1)

|E(4,4)| 1
2 (n1n2 − 2n2 − 2)(n1n2 − 2n2 − 3) + (n2 − 3)

The proof is similar to the above theorem. 2

Theorem 4.8 If Pn1 [Pn2 ] is a composition of Pn1 and Pn2 , then

(i) SOSD(Pn1 [Pn2 ]) = (n2
2 − 7n2 + 14)

√
2 + 4(n2 − 3)

√
(n2+1)2

(n2+2)2 + (n2+2)2

(n2+1)2 for n1 = 2 andn2 ≥ 3

(ii) SOSD(Pn1 [Pn2 ]) =
1√
2
[(n1n2)

2 − n1n2(4n1 + 6n2 − 21) + 2n1(3n1 − 14) + 14n2(n2 − 4) + 88]

+ 4(2n2 − 5)
√

(n2+1)2

(n2+2)2 + (n2+2)2

(n2+1)2 + [n1n2(n1 − 5)− 2n1(n1 − 4) + 4(2n2 − 3)]
√

(2n2+1)2

(2n2+2)2 + (2n2+2)2

(2n2+1)2

for n1, n2 ≥ 3

Proof: Consider a composition Pn1
[Pn2

], where, V (Pn1
) = {u1, u2, · · · , un1

} and
V (Pn2) = {v1, v2, · · · , vn2} be the vertex sets of Pn1 and Pn2 respectively. The cardinality of the edges
respect to the degree of vertices (ui, vj) and (uk, vl) in the graph Pn1 [Pn2] are given in the following
table.

|E(a,b)| Cardinality

for n1 = 2, n2 ≥ 3

|E(n2+1,n2+2)| 4(n2 − 3)

|E(n2+1,n2+1)| 2

|E(n2+2,n2+2)| (n2 − 3)(n2 − 4)

for n1, n2 ≥ 3

|E(n2+1,n2+2)| 4(2n2 − 5)

|E(n2+1,n2+1)| 6

|E(n2+2,n2+2)| (n2 − 3)(2n2 − 5) + 1

|E(2n2+1,2n2+2)| 2(n1 − 2)(n2 − 3) + (n1 − 3)(n1 − 4)(n2 − 2)

|E(2n2+1,2n2+1)| (n1 − 2) + (n1 − 3)(n1 − 4)

|E(2n2+2,2n2+2)| 1
2 [(n1 − 2)(n2 − 3)(n2 − 4) + (n2 − 2)2(n1 − 3)(n1 − 4)

By the definition, we have

SOSD(Pn1 [Pn2 ]) =
∑

(ui,vj),(uk,vl)/∈E(Pn1
[Pn2

])

√
dPn1 [Pn2 ]

(ui, vj)2

dPn1 [Pn2 ]
(uk, vl)2

+
dPn1

[Pn2
](uk, vl)2

dPn1 [Pn2 ]
(ui, vj)2
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Here, clearly we notice that, in a composition graph Pn1
[Pn2

] an edge e = ((ui, vj), (uk, vl)) and
dPn1

[Pn2
](ui, vj) = n2dPn1

(ui) + dPn2
(vj)

dPn1 [Pn2 ]
(uk, vl) = n2dPn1

(uk) + dPn2
(v)

substituting these in the above formula, we get

SOSD(Pn1
[Pn2

]) =
∑

(ui,vj),(uk,vl)/∈E(Pn1 [Pn2 ])

√
(n2dPn1

(ui) + dPn2
(vj))2

(n2dPn1
(uk) + dPn2

(vl))2
+

(n2dPn1
(uk) + dPn2

(vl))2

(n2dPn1
(ui) + dPn2

(vj))2

Using the above table, we get
(i)

SOSD(Pn1 [Pn2 ]) =4(n2 − 3)

√
(n2 + 1)2

(n2 + 2)2
+

(n2 + 2)2

(n2 + 1)2
+ 2

√
(n2 + 1)2

(n2 + 1)2
+

(n2 + 1)2

(n2 + 1)2

+ (n2 − 3)(n2 − 4)

√
(n2 + 2)2

(n2 + 2)2
+

(n2 + 2)2

(n2 + 2)2

=(n2
2 − 7n2 + 14)

√
2 + 4(n2 − 3)

√
(n2 + 1)2

(n2 + 2)2
+

(n2 + 2)2

(n2 + 1)2

ii)

SOSD(Pn1 [Pn2 ]) =4(2n2 − 5)

√
(n2 + 1)2

(n2 + 2)2
+

(n2 + 2)2

(n2 + 1)2
+ 6

√
(n2 + 1)2

(n2 + 1)2
+

(n2 + 1)2

(n2 + 1)2
+

[(n2 − 3)(2n2 − 5) + 1]

√
(n2 + 2)2

(n2 + 2)2
+

(n2 + 2)2

(n2 + 2)2
+

[2(n1 − 2)(n2 − 3) + (n1 − 3)(n1 − 4)(n2 − 2)]

√
(2n2 + 1)2

(2n2 + 2)2
+

(2n2 + 2)2

(2n2 + 1)2
+

[(n1 − 2) + (n1 − 3)(n1 − 4)]

√
(2n2 + 1)2

(2n2 + 1)2
+

(2n+ 1)2

(2n+ 1)2
+

1

2
[(n1 − 2)(n2 − 3)(n2 − 4) + (n2 − 2)2(n1 − 3)(n1 − 4)]

√
(2n2 + 2)2

(2n2 + 2)2
+

(2n2 + 2)2

(2n2 + 2)2

=
1√
2
[(n1n2)

2 − n1n2(4n1 + 6n2 − 21) + 2n1(3n1 − 14) + 14n2(n2 − 4) + 88]+

4(2n2 − 5)

√
(n2 + 1)2

(n2 + 2)2
+

(n2 + 2)2

(n2 + 1)2
+ [n1n2(n1 − 5)− 2n1(n1 − 4) + 4(2n2 − 3)]√

(2n2 + 1)2

(2n2 + 2)2
+

(2n2 + 2)2

(2n2 + 1)2

2

Theorem 4.9 For Pn1
and Cn2

with n1, n2 ≥ 3,

SOSD(Pn1 [Cn2 ]) =
n2√
2
[n1n2(n1 − 6)− 3n1 + 14n2] + 2n2

2(n1 − 3)
√

(n2+2)2

(2n2+2)2 + (2n2+2)2

(n2+2)2

Proof: For V (Pn1) = {u1, u2, · · · , un1} and V (Cn2) = {v1, v2, · · · , vn2} be the vertex sets of Pn1 and
Cn2

respectively. The following table shows the cardinality of the edges respect to the degree of vertices
(ui, vj) and (uk, vl) in the composition graph Pn1

[Cn2
].



10 Nagendrappa G., Venkanagouda M. Goudar, Shylaja B. P.

|Ea,b| Cardinality

|E(n2+2,n2+2)| n2(2n2 − 3)

|E(n2+2,2n2+2)| 2(n1 − 3)n2
2

|E(2n2+2,2n2+2)| n2

2 [(n1 − 2)(n2 − 3) + n2(n1 − 3)(n1 − 4)]

In a composition graph Pn1
[Cn2

],
dPn1

[Cn2
](ui, vj) = n2dPn1

(ui) + dCn2
(vj)

dPn1 [Cn2 ]
(uk, vl) = n2dPn1

(uk) + dCn2
(v). Therefore,

SOSD(Pn1 [Cn2 ]) =n2(2n2 − 3)
√
2 + 2(n1 − 3)n2

2

√
(n2 + 2)2

(2n2 + 2)2
+

(2n2 + 2)2

(n2 + 2)2

+
n2

2
[(n1 − 2)(n2 − 3) + n2(n1 − 3)(n1 − 4)]

√
2

=
n2√
2
[n1n2(n1 − 6)− 3n1 + 14n2] + 2n2

2(n1 − 3)

√
(n2 + 2)2

(2n2 + 2)2
+

(2n2 + 2)2

(n2 + 2)2

2

Theorem 4.10 If Pn1
and Pn2

are any two path graphs of the direct product Pn1
⊗ Pn2

, then
(i)

SOSD(Pn1
⊗ Pn2

) =(2n2
2 − 11n2 + 22)

√
2 + 4(2n2 − 5)2

√
17 for n1 = 2 andn2 > 2

(ii)

SOSD(Pn1 ⊗ Pn2) =(2n2
1 − 11n1 + 22)

√
2 + 4(2n1 − 5)2

√
17 for n1 > 2 andn2 = 2

(iii)

SOSD(Pn1
⊗ Pn2

) =
1√
2

[
(n1n2)

2 − n1n2(4n1 + 4n2 − 19)
]
+ 4 [n1(2n1 − 9) + n2(2n2 − 9) + 13]

+ [(n1n2)(n1 + n2 − 8)− 2n1(n1 − 7)− 2n2(n2 − 7)− 20]
√
17 + (n1 − 3)

(n2
2 − 5n2 + 6)

√
257 for n1 , n2 ≥ 3

Proof: Let V (Pn1) = {u1, u2, · · · , un1} and V (Pn2) = {v1, v2, · · · , vn2} be the vertex sets of Pn1 and
Pn2

respectively. In the direct product Pn1
⊗ Pn2

we obtain the cardinality of the edges respect to the
degree of vertices (ui, vj) and (uk, vl) and are shown in the following table.
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|E(uik,vjl)| Cardinality

for n1 = 2, n2 > 2

|E(1,1)| 6

|E(1,2)| 4(2n2 − 5)

|E(2,2)| (n2 − 3)(2n2 − 5) + 1

for n1 > 2, n2 = 2

|E(1,1)| 6

|E(1,2)| 4(2n1 − 5)

|E(2,2)| (n1 − 3)(2n1 − 5) + 1

for n1, n2 ≥ 3

|E(1,1)| 6

|E(1,2)| 8(n1 + n2 − 4)

|E(2,2)| (n1 + 1)(n1 − 3) + (n1 − 2)(n1 + 3n2 − 11) + (n2 − 1)(n2 − 3)+
(n2 − 2)(n1 + n2 − 5)

|E(1,4)| 4(n1 − 3)(n2 − 2)(n2 − 3)

|E(2,4)| (n1 − 3)(n2 − 2)(2n2 − 4) + (n2 − 3)(n1 − 2)(2n1 − 4) + 2[(n1 − 4)2+
(n2 − 4)2] + 4(n1 + n2 − 6)

|E(4,4)| 1
2 (n1 − 2)(n2 − 2)(n2 − 3) + 1

2 (n1 − 3)(n1 − 4)(n2 − 2)2

+(n1 − 3)[2(n2 − 3) + (n2 − 4)2]

2
By the definition, we have
Here, we notify that, in Pn1 ⊗ Pn2

dPn1
⊗Pn2

(ui, vj) = dPn1
(ui)dPn2

(vj)
dPn1

⊗Pn2
(uk, vl) = dPn1

(uk)dPn2
(vj)

(i)

SOSD(Pn1 ⊗ Pn2) = 6
√
2 + (2n2 − 5)2

√
17 + [(n2 − 3)(2n2 − 5) + 1]

√
2

= (2n2
2 − 11n2 + 22)

√
2 + 4(2n2 − 5)2

√
17

(ii)

SOSD(Pn1
⊗ Pn2

) = 6
√
2 + (2n1 − 5)2

√
17 + [(n1 − 3)(2n1 − 5) + 1]

√
2

= (2n2
1 − 11n1 + 22)

√
2 + 4(2n1 − 5)2

√
17
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(iii)

SOSD(Pn1
⊗ Pn2

) = 6
√
2 + (n1 + n2 − 4)4

√
17 + {[(n1 + 1)(n1 − 3) + (n1 − 2)(n1 + 3n2 − 11)]+

[(n2 − 1)(n2 − 3) + (n2 − 2)(n1 + n2 − 5)]}
√
2 + [(n1 − 3)(n2 − 2) + (n2 − 3)]

√
257 + {[(n1 − 3)(n2 − 2)(2n2 − 4) + (n2 − 3)(n1 − 2)(2n1 − 4)] + 2[(n1 − 4)2

+ (n2 − 4)2] + 4(n1 + n2 − 6)}
√
17

2
+ {1

2
(n1 − 2)(n2 − 2)(n2 − 3) +

1

2
(n1 − 3)

(n1 − 4)(n2 − 2)2 + (n1 − 3)[2(n2 − 3) + (n2 − 4)2]}
√
2

SOSD(Pn1
⊗ Pn2

) =
1√
2

[
(n1n2)

2 − n1n2(4n1 + 4n2 − 19)
]
+ 4 [n1(2n1 − 9) + n2(2n2 − 9) + 13]+

[(n1n2)(n1 + n2 − 8)− 2n1(n1 − 7)− 2n2(n2 − 7)− 20]
√
17+

(n1 − 3)(n2
2 − 5n2 + 6)

√
257

Theorem 4.11 For the path graph Pn1
and the cycle graph Cn2

with n1, n2 ≥ 3,

SOSD(Pn1 ⊗ Cn2) =
1√
2
[(n1n2)

2 − n1n2(4n2 + 5) + 4n2(2n2 + 3) + n2(n1n2 − 2n2 − 2)]
√
17

Proof: Let V (Pn1
) = {u1, u2, · · · , un1

} and V (Cn2
) = {v1, v2, · · · , vn2

} be the vertex sets of Pn1
and

Cn2
respectively. In the direct graph Pn1

⊗ Cn2
, the cardinality of the edges respect to the degree of

vertices (ui, vj) and uk, vl are given in the following table.

|E(a,b)| Cardinality

|E(2,2)| n2(2n2 − 1)

|E(2,4)| 2n2[n1n2 − 2(n2 + 1)]

|E(4,4)| 1
2 [(n1n2 − 3n2)(n1n2 − n2 − 5) + n2(n2 − 1)]

Using the above table, we get

SOSD(Pn1
⊗ Cn2

) =n2(2n2 − 1)
√
2 + n2[n1n2 − 2(n2 + 1)]

√
17 +

1

2
[(n1n2 − 3n2)(n1n2 − n2 − 5)+

n2(n2 − 1)]
√
2

=
1√
2
[(n1n2)

2 − n1n2(4n2 + 5) + 4n2(2n2 + 3) + n2(n1n2 − 2n2 − 2)]
√
17

2

Theorem 4.12 If Pn1 ⊠ Pn2 is the strong product of Pn1 and Pn2 , then

(i)

SOSD(Pn1
⊠ Pn2

) =(n2
2 − 7n2 + 14)2

√
2 + (n2 − 3)

8

15

√
706 for n1 = 2 andn2 ≥ 3
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(ii)

SOSD(Pn1 ⊠ Pn2) =(n2
1 − 7n1 + 14)2

√
2 + (n1 − 3)

8

15

√
706 for n1 ≥ 3 andn2 = 2

(iii)

SOSD(Pn1
⊠ Pn2

) =
1√
2
[(n1n2)

2 − n1n2(4n1 + 4n2 − 15) + 2n1(4n1 + 15) + 2n2(4n2 + 15) + 52]+

(n1 + n2 − 5)
8

15

√
706 + [n1n2 − 2(n1 + n2 + 3)]

1

6

√
4177+

[n1n2(n1 + n2 − 8)− n1(2n1 − 9)− n2(2n2 − 9)]
1

20

√
4721 for n1, n2 ≥ 3

Proof: In Pn1
⊠Pn2

the cardinality of the edges respect to the degree of vertices (ui, vj) and (uk, vl) are
given in the following table.

|E(a,b)| Cardinality

for n1 = 2, n2 ≥ 3
|E(3,3)| 4

|E(3,5)| 8(n2 − 3)

|E(5,5)| 2(n2 − 3)(n2 − 4)

for n1 ≥ 3, n2 = 2
|E(3,3)| 4

|E(3,5)| 8(n1 − 3)

|E(5,5)| 2(n1 − 3)(n1 − 4)

for n1, n2 ≥ 3
|E(3,3)| 6

|E(3,5)| 8(n1 + n2 − 5)

|E(5,5)| (n1 − 3)(2n1 − 3) + (2n2 − 5)(2n1 + n2 − 7)

|E(3,8)| 4[n1n2 − 2(n1 + n2) + 3]

|E(5,8)| 2(n1 − 3)[(n1 − 4) + (n2 − 2)2] + 2(n2 − 3)[(n2 − 4) + (n1 − 2)2]

|E(8,8)| 1
2 (n1 − 2)(n2 − 3)(n2 − 4) + 1

2 (n1 − 3)(n1 − 4)(n2 − 2)2

+(n1 − 3)(n2 − 3)(n2 − 4)

By the definition, we have

SOSD(Pn1 ⊠ Pn2) =
∑

(ui,vj),(uk,vl)/∈E(Pn1
⊠Pn2

)

√
dPn1⊠Pn2

(ui, vj)2

dPn1
⊠Pn2

(uk, vl)2
+

dPn1⊠Pn2
(uk, vl)2

dPn1
⊠Pn2

(ui, vj)2
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Clearly,

dPn1⊠Pn2
(ui, vj) =dPn1

(ui) + dPn2
(vj) + dPn1

(ui)dPn2
(vj)

dPn1
⊠Pn2

(uk, vl) =dPn1
(uk) + dPn2

(vl) + dPn1
(uk)dPn2

(vl)

Using the above table, we get
(i)

SOSD(Pn1
⊠ Pn2

) =4

√
32

32
+

32

32
+ 8(n2 − 3)

√
32

52
+

52

32
+ 2(n2 − 3)(n2 − 4)

√
52

52
+

52

52

=4
√
2 + 8(n2 − 3)

√
9

25
+

25

9
+ (n2 − 3)(n2 − 4)2

√
2

=(n2
2 − 7n2 + 14)2

√
2 + (n2 − 3)

8

15

√
706 for n1 = 2 andn2 ≥ 3

(ii)

SOSD(Pn1
⊠ Pn2

) =4
√
2 + 8(n1 − 3)

√
9

25
+

25

9
+ (n1 − 3)(n1 − 4)2

√
2

=(n2
1 − 7n1 + 14)2

√
2 + (n1 − 3)

8

15

√
706 for n1 ≥ 3 andn2 = 2

(iii)

SOSD(Pn1 ⊠ Pn2) =6

√
32

32
+

32

32
+ 8(n1 + n2 − 5)

√
32

52
+

52

32
+ [(n1 − 3)(2n1 − 3) + (2n2 − 5)

(2n1 + n2 − 7)]

√
52

52
+

52

52
+ 4[n1n2 − 2(n1 + n2) + 3]

√
32

82
+

82

32
+ {2(n1 − 3)[(n1 − 4)+

(n2 − 2)2] + 2(n2 − 3)[(n2 − 4) + (n1 − 2)2]}
√

52

82
+

82

52
+ [

1

2
(n1 − 2)(n2 − 3)(n2 − 4)+

1

2
(n1 − 3)(n1 − 4)(n2 − 2)2 + (n1 − 3)(n2 − 3)(n2 − 4)]

√
82

82
+

82

82

=6
√
2 + 8(n1 + n2 − 5)

√
9

25
+

25

9
+ [(n1 − 3)(2n1 − 3) + (2n2 − 5)(2n1 + n2 − 7)]

√
2

+ 4[n1n2 − 2(n1 + n2) + 3]

√
9

64
+

64

9
+ {2(n1 − 3)[(n1 − 4) + (n2 − 2)2] + 2(n2 − 3)

[(n2 − 4) + (n1 − 2)2]}
√

25

64
+

64

25
+ [

1

2
(n1 − 2)(n2 − 3)(n2 − 4) +

1

2
(n1 − 3)

(n1 − 4)(n2 − 2)2 + (n1 − 3)(n2 − 3)(n2 − 4)]
√
2

=
1√
2
[(n1n2)

2 − n1n2(4n1 + 4n2 − 15) + 2n1(4n1 + 15) + 2n2(4n2 + 15) + 52]+

(n1 + n2 − 5)
8

15

√
706 + [n1n2 − 2(n1 + n2 + 3)]

1

6

√
4177+

[n1n2(n1 + n2 − 8)− n1(2n1 − 9)− n2(2n2 − 9)]
1

20

√
4721 for n1, n2 ≥ 3

2

Theorem 4.13 If Pn1
is a path graph and Cn2

is a the cycle graph, n1, n2 ≥ 4. Then

SOSD(Pn1
⊠ Cn2

) =
1√
2
[(n1n2)

2 − 4n1n2(n2 + 9) + 2n2(4n2 + 9) + n2(n1n2 − 2n2 − 3)]
1

20

√
4721

Proof: The following table contains the cardinality of the edges respect to the degree of vertices (ui, vj)
and (uk, vl), where V (Pn1

) = {u1, u2, u3, · · · , un1
} and V (Cn2

) = {v1, v2, v3, · · · , vn2
}.
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|E(a,b)| Cardinality

|E(5,5)| n2(2n2 − 3)

|E(5,8)| 2n2(n1n2 − 2n2 − 3)

|E(8,8)| 1
2 [n

2
2(n

2
1 − 4n1 + 4) + 3n2(8− 3n1)]

The proof is similar to the above theorem. 2

5. Bounds on the Sombor symmetric division coindex

Theorem 5.1 Let G1 and G2 be two graphs having vertices n1, n2 and edges m1,m2 respectively. Then

m
√
2
(

δ1+δ2
∆1+∆2

)
≤ SOSD(G1□G2) ≤ m

√
2
(

∆1+∆2

δ1+δ2

)
.

Equality holds if the given graphs G1 and G2 are regular.

Proof: Let V (G1) = {ui|i = 1, 2, . . . , n1} and V (G2) = {vj |j = 1, 2, . . . , n2} be the vertex sets of G1

and G2 respectively. Let δi be the minimum degree and ∆i be the maximum degree of the vertex of Gi,
where i = 1, 2.
In G1□G2, |V (G1□G2)| = n1n2 and |E(G1□G2)| = n1m2 +m1n2 and the number of non-adjacent edges

in G1□G2 is m =

(
n1n2

2

)
− (n1m2 +m1n2) .

By the definition of SOSD(G), we have

SOSD(G1□G2) =
∑

(ui,vj),(uk,vl)/∈E(G1□G2)

√
dG1□G2

(ui, vj)2

dG1□G2
(uk, vl)2

+
dG1□G2

(uk, vl)2

dG1□G2
(ui, vj)2

=
∑

(ui,vj),(uk,vl)/∈E(G1□G2)

√
(dG1(ui) + dG2(vj))

2

(dG1
(uk) + dG2

(vl))2
+

(dG1(uk) + dG2(vl))
2

(dG2
(ui) + dG2

(vj))2

≤
∑

(ui,vj),(uk,vl)/∈E(G1□G2)

√
(∆1 +∆2)2

(δ1 + δ2)2
+

(∆1 +∆2)2

(δ1 + δ2)2

≤
∑

(ui,vj),(uk,vl)/∈E(G1□G2)

√
2

(
∆1 +∆2

δ1 + δ2

)

≤ m
√
2

(
∆1 +∆2

δ1 + δ2

)
Since G1 and G2 are regular, the degree of each vertex is same. Therefore, for i = 1, 2, ∆i = δi and
SOSD(G1□G2) = m

√
2. Hence, equality holds if the graphs G1 and G2 are regular.

Similarly, we follow the lower bound.

Thus, m
√
2
(

δ1+δ2
∆1+∆2

)
≤ SOSD(G1□G2) ≤ m

√
2
(

∆1+∆2

δ1+δ2

)
2

Theorem 5.2 Let G1 and G2 be two graphs with |V (G1)| = n1, |E(G1)| = m1 and |V (G2)| = n2,
|E(G2)| = m2 respectively. Then
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m
√
2
(

n2δ1+δ2
n2∆1+∆2

)
≤ SOSD(G1[G2]) ≤ m

√
2
(

n2∆1+∆2

n2δ1+δ2

)
.

Equality holds if G1 and G2 are regular.

Proof: Let V (G1) = {ui|i = 1, 2, . . . , n1} and V (G2) = {vj |j = 1, 2, . . . , n2} be the vertex sets of G1 and
G2 respectively. Let δi and ∆i be the minimum degree and maximum degree of the vertex of Gi, where
i = 1, 2.
In G1[G2], |V (G1[G2])| = n1n2 and |E(G1[G2])| = n1m2 +m1n

2
2 and the number of non-adjacent edges

in G1[G2] is m =

(
n1n2

2

)
−
(
n1m2 +m1n

2
2

)
.

By the definition of SOSD(G), we have

SOSD(G1[G2]) =
∑

(ui,vj),(uk,vl)/∈E(G1[G2])

√
dG1[G2](ui, vj)2

dG1[G2](uk, vl)2
+

dG1[G2](uk, vl)2

dG1[G2](ui, vj)2

=
∑

(ui,vj),(uk,vl)/∈E(G1[G2])

√
(n2dG1(ui) + dG2(vj))

2

(n2dG1
(uk) + dG2

(vl))2
+

(n2dG1(uk) + dG2(vl))
2

(n2dG1
(ui) + dG2

(vj))2

≤
∑

(ui,vj),(uk,vl)/∈E(G1[G2])

√
(n2∆1 +∆2)2

(n2δ1 + δ2)2
+

(n2∆1 +∆2)2

(n2δ1 + δ2)2

≤
∑

(ui,vj),(uk,vl)/∈E(G1[G2])

√
2

(
n2∆1 +∆2

n2δ1 + δ2

)

≤ m
√
2

(
n2∆1 +∆2

n2δ1 + δ2

)

when G1 and G2 are regular, the degree of each vertex is same. Therefore, equality holds.
Similarly, we follow the lower bound.

Thus, m
√
2
(

n2δ1+δ2
n2∆1+∆2

)
≤ SOSD(G1[G2]) ≤ m

√
2
(

n2∆1+∆2

n2δ1+δ2

)
2

Theorem 5.3 Let G1 and G2 be two graphs with |V (G1)| = n1, |E(G1)| = m1 and |V (G2)| = n2,
|E(G2)| = m2 respectively. Then

m
√
2
(

δ1δ2
∆1∆2

)
≤ SOSD(G1 ⊗G2) ≤ m

√
2
(

∆1∆2

δ1δ2

)
.

Equality holds if G1 and G2 are regular.

Proof: Let V (G1) = {u1, u2, . . . , un1} and V (G2) = {v1, v2, . . . , vn2} be the disjoint vertex sets of G1

and G2 respectively. Let mindeg(Gi) = δi and maxdeg(Gi) = ∆i for i = 1, 2.
In G1 ⊗G2, |V (G1 ⊗G2)| = n1n2 and |E(G1 ⊗G2)| = 2m1m2 and the number of non-adjacent edges in

G1 ⊗G2 is m =

(
n1n2

2

)
− 2m1m2.
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By the definition, we have

SOSD(G1 ⊗G2) =
∑

(ui,vj),(uk,vl)/∈E(G1⊗G2)

√
dG1⊗G2(ui, vj)2

dG1⊗G2
(uk, vl)2

+
dG1⊗G2(uk, vl)2

dG1⊗G2
(ui, vj)2

=
∑

(ui,vj),(uk,vl)/∈E(G1⊗G2)

√
((dG1

(ui)dG2
(vj))2

(dG1(uk)dG2(vl))
2
+

(dG1
(uk)dG2

(vl))2

(dG1(ui)dG2(vj))
2

≤
∑

(ui,vj),(uk,vl)/∈E(G1⊗G2)

√
(∆1∆2)2

(δ1δ2)2
+

(∆1∆2)2

(δ1δ2)2

≤
∑

(ui,vj),(uk,vl)/∈E(G1⊗G2)

√
2

(
∆1∆2

δ1δ2

)

≤ m
√
2

(
∆1∆2

δ1δ2

)
When the graphs G1 and G2 are regular, we notice that, degree of each vertex is same. Therefore, equality
holds.
Similarly, we follow the lower bound.

Thus, m
√
2
(

δ1δ2
∆1∆2

)
≤ SOSD(G1 ⊗G2) ≤ m

√
2
(

∆1∆2

δ1δ2

)
. 2

Theorem 5.4 Let G1 and G2 be two graphs with vertices n1, n2 edges m1,m2 respectively. Then

m
√
2
(

δ1+δ2+δ1δ2
∆1+∆2+∆1∆2

)
≤ SOSD(G1 ⊠G2) ≤ m

√
2
(

∆1+∆2+∆1∆2

δ1+δ2+δ1δ2

)
.

Equality holds if G1 and G2 are regular.

Proof: Let V (G1) = {u1, u2, . . . , un1} and V (G2) = {v1, v2, . . . , vn2} be the disjoint vertex sets of G1

and G2 respectively. Let mindeg(Gi) = δi and maxdeg(Gi) = ∆i for i = 1, 2.
In G1 ⊠G2, |V (G1 ⊠G2)| = n1n2 and |E(G1 ⊠G2)| = n1m2 +m1n2 + 2m1m2 and the number of non-

adjacency edges in G1 ⊠G2 is m =

(
n1n2

2

)
− (n1m2 +m1n2 + 2m1m2).

By the definition of SOSD(G), we have

SOSD(G1 ⊠G2) =
∑

(ui,vj),(uk,vl)/∈E(G1⊠G2)

√
dG1⊠G2

(ui, vj)2

dG1⊗G2
(uk, vl)2

+
dG1⊠G2

(uk, vl)2

dG1⊠G2
(ui, vj)2

Here,

dG1⊠G2
(ui, vj) = dG1(ui) + dG2(vj) + dG1(ui)dG2(vj)

≤ ∆1 +∆2 +∆1∆2

dG1⊠G2
(uk, vl) = dG1(uk) + dG2(vl) + dG1(uk)dG2(vl)

≤ δ1 + δ2 + δ1δ2

Hence,

SOSD(G1 ⊠G2) ≤
∑

(ui,vj),(uk,vl)/∈E(G1⊠G2)

√
2

(
∆1 +∆2 +∆1∆2

δ1 + δ2 + δ1δ2

)

≤ m
√
2

(
∆1 +∆2 +∆1∆2

δ1 + δ2 + δ1δ2

)
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when the graphs G1 and G2 are regular, the degree of each vertex is same. Therefore, equality holds.
Similarly, we follow the lower bound. Thus

m
√
2
(

δ1+δ2+δ1δ2
∆1+∆2+∆1∆2

)
≤ SOSD(G1 ⊠G2) ≤ m

√
2
(

∆1+∆2+∆1∆2

δ1+δ2+δ1δ2

)
. 2

6. Relations between Sombor symmetric division index and coindex

Theorem 6.1 For the graph Gi, where i ∈ {1, 2} with n1, n2 vertices and m1,m2 edges,

SOSD(G1□G2) ≤
√
2

(
∆1 +∆2

δ1 + δ2

)(
n1n2

2

)
− SOSD(G1□G2)

Equality holds if Gi is regular.

Proof: From Theorem 5.1 we have

SOSD(G1□G2) ≤ m
√
2

(
∆1 +∆2

δ1 + δ2

)
andm =

(
n1n2

2

)
− (n1m2 +m1n2)

From Theorem 3.1

SOSD(G1□G2) ≤
√
2

(
∆1 +∆2

δ1 + δ2

)
(n1m2 +m1n2)

Clearly, we notice that

SOSD(G1□G2) ≤ SOSD(G1□G2)

From the above three inequalities, we obtain the result as

SOSD(G1□G2) ≤
√
2

(
∆1 +∆2

δ1 + δ2

)(
n1n2

2

)
− SOSD(G1□G2)

2

Theorem 6.2 For the graph Gi, where i ∈ {1, 2} with n1, n2 vertices and m1,m2 edges,

SOSD(G1[G2]) ≤
√
2

(
n2∆1 +∆2

n2δ1 + δ2

)(
n1n2

2

)
− SOSD(G1[G2])

Equality holds if Gi is regular.

Proof: From Theorem 5.2 we have

SOSD(G1[G2]) ≤ m
√
2

(
n2∆1 +∆2

n2δ1 + δ2

)
andm =

(
n1n2

2

)
−

(
n1m2 +m1n

2
2

)
From Theorem 3.2

SOSD(G1[G2]) ≤
√
2

(
n2∆1 +∆2

n2δ1 + δ2

)
(n1m2 +m1n

2
2)

Also, we clarify that

SOSD(G1[G2]) ≤ SOSD(G1[G2])

Using above three inequalities, we obtain the result as

SOSD(G1[G2]) ≤
√
2

(
n2∆1 +∆2

n2δ1 + δ2

)(
n1n2

2

)
− SOSD(G1[G2])

2
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Theorem 6.3 For the graph Gi, where i ∈ {1, 2} with n1, n2 vertices and m1,m2 edges,

SOSD(G1 ⊗G2) ≤
√
2

(
∆1∆2

δ1δ2

)(
n1n2

2

)
− SOSD(G1 ⊗G2)

Equality holds if Gi is regular.

Proof: From Theorem 5.3 we have

SOSD(G1 ⊗G2) ≤ m
√
2

(
∆1∆2

δ1δ2

)
andm =

(
n1n2

2

)
− 2m1m2

From Theorem 3.3

SOSD(G1 ⊗G2) ≤ 2
√
2

(
∆1∆2

δ1δ2

)
m1m2

Clearly, we notice that

SOSD(G1 ⊗G2) ≤ SOSD(G1 ⊗G2)

From the above three inequalities, we obtain the result as

SOSD(G1□G2) ≤
√
2

(
∆1 +∆2

δ1 + δ2

)(
n1n2

2

)
− SOSD(G1□G2)

2

Theorem 6.4 For the graph Gi, where i ∈ {1, 2} with n1, n2 vertices and m1,m2 edges,

SOSD(G1 ⊠G2) ≤
√
2

(
∆1 +∆2 +∆1∆2

δ1 + δ2 + δ1δ2

)(
n1n2

2

)
− SOSD(G1 ⊠G2)

Equality holds if Gi is regular.

Proof: From Theorem 5.4 we have

SOSD(G1 ⊠G2) ≤ m
√
2

(
∆1 +∆2 +∆1∆2

δ1 + δ2 + δ1δ2

)
andm =

(
n1n2

2

)
− (n1m2 +m1n2 + 2m1m2)

From Theorem 3.4
SOSD(G1 ⊠G2) ≤

√
2

(
∆1 +∆2 +∆1∆2

δ1 + δ2 + δ1δ2

)
(n1m2 +m1n2 + 2m1m2)

Clearly, we notice that
SOSD(G1 ⊠G2) ≤ SOSD(G1 ⊠G2)

From the above three inequalities, we obtain the result as

SOSD(G1 ⊠G2) ≤
√
2

(
∆1 +∆2 +∆1∆2

δ1 + δ2 + δ1δ2

)(
n1n2

2

)
− SOSD(G1 ⊠G2)

2
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7. Chemical applicability of SOSD(G)

As explained in [4], we explained the correlation analysis between Sombor symmetric division coindex
and pi-electron energy of some selected hetero molecules and PAHs.

7.1. Correlation analysis between Sombor symmetric division coindex and pi-electron en-
ergy of some selected hetero molecules.

This section explores the chemical applicability of SOSD(G) index upon performing correlation analy-
sis with total pi-electron energy of selected Hetero molecules. For this we have calculated SOSD(G) values
of some selected Hetero molecules . The following Table 1 consists of SOSD(G) values and pi-electron
energy of selected Hetero molecules. Figure 1 illustrate the graph corresponding to Table 1.

Code SOSD(G) Total π-electron energy

H2 3.799 5.66
H3 3.799 5.76
H5 3.799 6.82
H6 3.536 5.23
H7 4.243 6.69
H8 4.243 9.06
H9 4.243 9.1
H10 4.243 9.07
H11 4.243 9.65
H12 5.042 8.19
H13 5.808 12.21
H14 5.832 12.22
H15 5.832 12.21
H16 5.715 11
H17 7.105 14.23
H18 7.105 14.23
H19 7.838 16.15
H20 7.826 16.12
H21 6.434 13.46
H22 6.411 13.59
H23 9.912 20.1
H24 9.912 21.02
H25 9.932 20.56
H26 9.912 21.62
H27 11.44 24.23
H28 9.232 19.39

Table 1: Sombor symmetric division co-index of Hetero molecules
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Figure 1:

7.2. Correlation analysis between Sombor symmetric division coindex and π-electron energy
of some selected PAHs

This section explores the chemical applicability of SOSD(G) index upon performing correlation anal-
ysis with total π-electron energy of selected PAH’s. For this we have calculated SOSD(G) values of some
selected PAH’s. The following Table 2 consists of SOSD(G) values and π-electron energy of selected
PAH’s. Table 2 shows the Sombor symmetric division co-index of PAHs. The graph corresponding to
Table 2 is shown in Figure 2.
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Molecules SOSD(G) Total π-electron energy

Benzene 4.243 8
Naphthalene 7.188 13.68
Phenanthrene 10.09 19.44
Anthracene 9.925 19.31
Chrysene 12.78 25.19

Benzanthracene 12.75 25.1
Triphenylene 12.75 25.27
Tetracene 12.76 25.18

Benzo[a]pyrene 14.17 28.22
Benzo[e]pyrene 14.17 28.22

Perylene 14.18 28.24
Anthanthrene 15.58 31.25
Benzoperylene 15.58 31.42

Dibenzo(a, c)anthracene 15.58 30.94
Dibenzo(a, h)anthracene 15.58 30.88
Dibenzo(a, j)anthracene 15.58 30.94

Picene 15.59 33.95
Dibenzo(a, h)pyrene 17.0 30.94
Dibenzo(a, e)pyrene 16.99 30.94

Pyrene 11.36 22.5
Coronene 16.99 34.57

Fluoranthene 11.35 22.5
Pentacene 15.58 30.54

Acenapthalene 8.564 30.54
Azulene 7.188 30.54

Table 2: Sombor symmetric division co-index of PAHs

Figure 2:
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8. Conclusion

In this study, we have defined the topological indices called Sombor symmetric division index and
coindex of graph and give some properties there on. We have also computed some bounds on the the
Sombor symmetric division degree index and coindex under some standard graph operations, such as
Cartesian product, composition, direct product and strong product. Additionally, we have established a
significant correlation between the Sombor symmetric division index and the π-electron energy of selected
heteroatomic molecules and PAHs.

Work in this paper is entirely the result of the authors’ independent work. No external contributions
or assistance were involved in the preparation of this study.
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