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A Note on Eisenstein Series and Convolution of Sums

Shruthi and B. R. Srivatsa Kumar∗

abstract: The Eisenstein series plays a central role in modern number theory and mathematical analysis,
especially in the theory of modular forms. Its applications span arithmetic, combinatorics, and mathematical
physics. Eisenstein series play a significant role in mathematical physics, primarily due to their modular
and automorphic properties. They arise naturally in string theory, where non-holomorphic Eisenstein series
encode S-duality symmetries and appear in the coefficients of higher-order terms in superstring amplitudes.
In quantum field theory and conformal field theory, Eisenstein series contribute to modular-invariant partition
functions and describe lattice sums associated with compactified dimensions. In this paper, we investigate
connections between Borweins’ cubic theta functions and modular forms of level 6. Utilizing these relationships,
we obtain an explicit representation of an Eisenstein series of level 6. In addition, we deduce several convolution

sum identities of the form
∑

2i+3j=m

σ(i)σ(j),
∑

i+6j=m

σ(i)σ(j) and
∑

i+8j=m

σ(i)σ(j) which illustrate the interplay

between theta functions and arithmetic functions.
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1. Introduction

The Borweins’ cubic theta functions a(q), b(q) and c(q) are defined by

a(q) :=

∞∑
m,n=−∞

qm
2+mn+n2

,

b(q) :=

∞∑
m,n=−∞

ωm−nqm
2+mn+n2

,

c(q) :=

∞∑
m,n=−∞

q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 (1.1)

we assume | q |< 1 and ω = exp(2πi/3). It is easy to see that a(0) = 1, b(0) = 1, and c(0) = 0. The
Jacobi’s theta function φ(q) is defined as

φ(q) :=

∞∑
n=−∞

qn
2

. (1.2)

Alaca and Williams [1,2,3] obtained the parametric representations for mL(qm)−L(q), M(qn), b(qi) and
c(qi) for m ∈ {2, 3, 4, 6, 12}, n ∈ {1, 2, 3, 6} and i ∈ {1, 2, 4} in terms of parameters p and k, namely

p = p(q) =
φ2(q)− φ2(q3)

2φ2(q3)
and k = k(q) =

φ3(q3)

φ(q)
. (1.3)
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Since φ(0) = 1, it is easy to see that p(0) = 0 and k(0) = 1. From [1] we have

a(q) = (1 + 4p+ p2)k. (1.4)

S. Ramanujan, in his second notebook [12], provide the definitions of the Eisenstein series P (q), Q(q)
and R(q) as follows:

P (q) := 1− 24

∞∑
m=1

mqm

1− qm
, (1.5)

Q(q) := 1 + 240

∞∑
m=1

m3qm

1− qm
, (1.6)

R(q) := 1− 504

∞∑
m=1

m5qm

1− qm
. (1.7)

The divisor function σk(m) is given by

σk(m) =
∑
d|m

dk, m, k ∈ N, (1.8)

here d runs through the positive divisors of m. If m is not a positive integer, set σi(m) = 0. For

convenience, we denote σ(m) for σ1(m). For the wonderful work on convolution
∑

i+kj=m

σ(i)σ(j) for

k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 18 and 24 one can refer [1,2,3,4,5,6,9,10,13,14,15,16,17,18].

2. Result on Eisenstein Series

Theorem 2.1 We have

3P (q3)− P (q)− 3P (q6) + P (q2) =
1

ψ3(q)ϕ3(q3)
(12qψ2(q)ψ3(q3)φ2(q)φ3(q3)

+ 60q2ψ(q)ψ6(q3) + 48q3φ(q)ψ9(q9))).

Proof: From [7,11], we have
3P (q3)− P (q) = 2a2(q), (2.1)

where a(q) is as defined as in (1.4). On replacing q to q2 in (2.1), we have

3P (q6)− P (q2) = 2a2(q2). (2.2)

On subtracting (2.1) from (2.2), we obtain

3P (q3)− P (q)− 3P (q6) + P (q2) = 2(a2(q2)− a2(q)). (2.3)

On simplifying using (1.4), we obtain

3P (q3)− P (q)− 3P (q6) + P (q2) = 3k2(2p+ 5p2 + 2p3).

On using (1.3) in the above, we deduce

3P (q3)− P (q)− 3P (q6) + P (q2) =3{φ
2(q)− φ2(q3)

φ2(q3)
+

5

4

(φ2(q)− φ2(q3))2

φ4(q3)

+
1

4

(φ2(q)− φ2(q3))3

φ6(q3)
}
(
φ6(q3)

φ2(q)

)
. (2.4)
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From [11, p.232, eq. (5.1)], we have(
(1− β)3

1− α

)1/8

=
m+ 1

2
and

(
β3

α

)
=
m− 1

2
, (2.5)

where β has degree 3 over α and m =
z1
z3

, the multiplier. Also from [11, p. 122-123], we have

φ(q) =
√
z (2.6)

and

ψ(q) =

√
z

2

(
α

q

)1/8

. (2.7)

Using (2.6) and (2.7) in (2.5) and after simplifying, we deduce

φ2(q)− φ2(q3) = 4q
φ(q)ψ3(q3)

φ3(q3)ψ(q)
. (2.8)

Using (2.8) in (2.4) and then simplifying, we obtain the result. 2

3. Convolution Sums

Theorem 3.1 We have∑
2i+3j=n

σ(i)σ(j) =
20n− 11

240
σ(n)− 10n+ 1

240
σ
(n
2

)
− n

8
σ
(n
3

)
+

3n− 1

24
σ
(n
6

)
− 19

432
σ3(n) +

16n− 13

48
σ3

(n
3

)
+

17n− 28

48
σ3

(n
6

)
+

1

1040
σ5(n)

+
1

1040
σ5

(n
2

)
+

9

104
σ5

(n
3

)
+

9

104
σ5

(n
6

)
+
A(n)

312
+

1

312
A
(n
2

)
−B(n)

648
− 1

27
C(n)− 1

3
C
(n
3

)
− D(n)

3456
,

where
∞∑

n=1

A(n)qn = q(q; q)6∞(q3; q3)6∞,

1 +

∞∑
n=1

B(n)qn =
(q3; q3)12∞(q6; q6)6∞(q4; q4)2∞
(q; q)4∞(q2; q2)2∞(q12; q12)6∞

,

1

256
+

∞∑
n=1

C(n)qn =

(
φ4(q)

16
+ qψ4(q2)

)2

,

and D(n) is the right hand side of Theorem 2.1.

Proof: On squaring Theorem 2.1 and simplifying using (1.5), we deduce

576

( ∞∑
n=1

σ(n)qn

)2

+ 576

( ∞∑
n=1

σ(n)q2n

)2

+ 5184

( ∞∑
n=1

σ(n)q3n

)2

+ 5184

( ∞∑
n=1

σ(n)q6n

)2

− 1152

( ∞∑
n=1

σ(n)qn

)( ∞∑
n=1

σ(n)q2n

)
− 3456

( ∞∑
n=1

σ(n)qn

)( ∞∑
n=1

σ(n)q3n

)

+ 3456

( ∞∑
n=1

σ(n)q2n

)( ∞∑
n=1

σ(n)q3n

)
+ 3456

( ∞∑
n=1

σ(n)qn

)( ∞∑
n=1

σ(n)q6n

)

− 3456

( ∞∑
n=1

σ(n)q2n

)( ∞∑
n=1

σ(n)q6n

)
− 10368

( ∞∑
n=1

σ(n)q3n

)( ∞∑
n=1

σ(n)q6n

)
= D(n), (3.1)
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where D(n) is as defined as in Theorem 3.1. On extracting the coefficients of qn on both sides of the
above, we deduce that

∑
2i+3j=n

σ(i)σ(j) = −1

6

∑
i+j=n

σ(i)σ(j)− 1

6

∑
i+j=n

2

σ(i)σ(j)− 3

2

∑
i+j=n

3

σ(i)σ(j)

−3

2

∑
i+j=n

6

σ(i)σ(j) +
1

3

∑
i+2j=n

σ(i)σ(j) + 3
∑

i+2j=n
3

σ(i)σ(j)

+
∑

i+3j=n

σ(i)σ(j) +
∑

i+3j=n
2

σ(i)σ(j)−
∑

i+6j=n

σ(i)σ(j)− D(n)

3456.
(3.2)

From ( [18], Theorem 4.1), we have

∑
i+j=n

σ(i)σ(j) =
5

12
σ3(n)−

n

2
σ(n) +

σ(n)

12
, (3.3)

∑
i+2j=n

σ(i)σ(j) =
5

48
σ3(n)−

n

8
σ(n) +

5n

12
σ3

(n
2

)
− n

4
σ
(n
2

)
+

1

24

(n
2

)
+

1

24
σ(n)− 1

9
C(n) (3.4)

∑
i+3j=n

σ(i)σ(j) =
1

1040
σ5(n) +

9

104
σ5

(n
3

)
+

1− 3n

24
σ3

(n
3

)
− 1

240
σ(n) +

A(n)

312
(3.5)

∑
i+6j=n

σ(i)σ(j) =
1

108
σ3(n) +

1

27
σ3

(n
2

)
+

1− n

24
σ(n) +

1− 6n

24
σ
(n
6

)
+
B(n)

648
. (3.6)

On employing (3.3), (3.4), (3.5) and (3.6) in (3.2) and simplifying further, we obtain th result. 2

Theorem 3.2 We have

∑
i+6j=n

σ(i)σ(j) =

(
1− n

24

)
σ(n) +

n

4
σ
(n
3

)
+

(
1− 9n

24

)
σ
(n
6

)
+

1

108
σ3(n)

+
1

27
σ3

(n
2

)
+
B(n)

648

where B(n) is as defined as in Theorem 3.1.

Proof: On extracting the coefficients of qn in both sides of the (3.1), we have

∑
i+6j=n

σ(i)σ(j) =− 1

6

∑
i+j=n

σ(i)σ(j)− 1

6

∑
i+j=n

2

σ(i)σ(j)− 3

2

∑
i+j=n

3

σ(i)σ(j)

− 3

2

∑
i+j=n

6

σ(i)σ(j) +
∑

i+2j=n

σ(i)σ(j) + 3
∑

i+2j=n
3

σ(i)σ(j)

+
∑

i+3j=n

σ(i)σ(j) +
∑

i+3j=n
2

σ(i)σ(j)−
∑

2i+3j=n

σ(i)σ(j)− D(n)

3456
.

On using (3.3), (3.4), (3.5) and Theorem 3.1 and then simplifying we obtain the required result. 2
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Theorem 3.3 We have∑
i+8j=n

σ(i)σ(j) =−
(
4− 3n

96

)
σ(n) +

(
1− 27n

24

)
σ
(n
8

)
− 25

48
σ3(n)−

(
112 + 35n

96

)
σ3

(n
2

)
+

63

128
σ3

(n
3

)
+

(
742− 245n

96

)
σ3

(n
4

)
− 2835

64
σ3

(n
6

)
+

(
180− 35n

24

)
σ3

(n
8

)
− 3591

16
σ3

( n
12

)
− 315

2
σ3

( n
24

)
+

7

72
C(n)

+
49

36
C
(n
2

)
+

14

9
C
(n
4

)
+

7

128
E(n) +

7

32
E
(n
2

)
+

189

512
B(n)

+
189

128
B
(n
2

)
− 7

96
F (n)− 7

24
F
(n
2

)
− b(n)

9216

where

1 +

∞∑
n=1

E(n)qn =
(q; q)6∞(q2; q2)6∞
(q3; q3)2∞(q6; q6)2∞

,

1 +

∞∑
n=1

F (n)qn =
(q2; q2)24∞(q3; q3)3∞(q12; q12)∞
(q; q)9∞(q4; q4)3∞(q6; q6)8∞

,

where B(n) and C(n) is as defined as in Theorem 3.1.

Proof: From [8,11], we have
P (q)− 6P (q2) + 8P (q4) = 3φ4(−q). (3.7)

Changing q to q2 in (3.7), we have

P (q2)− 6P (q4) + 8P (q8) = 3φ4(−q2). (3.8)

On subtracting (3.7) from (3.8), we have

P (q)− 7P (q2) + 14P (q4)− 8P (q8) = 3(φ4(−q)− φ4(−q2)). (3.9)

On squaring (3.9) in the above, we have

P 2(q) + 49P 2(q2) + 196P 2(q4) + 64P 2(q8)− 14P (q)P (q2) + 28P (q)P (q4)

− 196P (q2)P (q4)− 16P (q)P (q8) + 112P (q2)P (q8)− 224P (q4)P (q8)

= 9(φ4(−q)− φ4(−q2))2. (3.10)

Employing (1.5) in (3.10) and simplifying, we obtain∑
i+8j=n

σ(i)σ(j) =
1

16

∑
i+j=n

σ(i)σ(j) +
49

16

∑
i+j=n

2

σ(i)σ(j) +
49

4

∑
i+j=n

4

σ(i)σ(j)

+ 4
∑

i+j=n
8

σ(i)σ(j)− 7

8

∑
i+2j=n

σ(i)σ(j)− 49

4

∑
i+2j=n

2

σ(i)σ(j)

− 14
∑

i+2j=n
4

σ(i)σ(j) +
7

4

∑
i+4j=n

σ(i)σ(j) + 7
∑

i+4j=n
2

σ(i)σ(j)− b(n)

9216
.

On using (3.3) and (3.4) and from Theorem 4 [16] we have∑
i+4j=m

σ(i)σ(j) = −25

96
σ3(m) +

3

8
σ3

(m
2

)
+

9

32
σ3

(m
3

)
+

5

6
σ3

(m
4

)
− 423

16
σ3

(m
6

)
− 45

2
σ3

(m
12

)
+

2− 3m

48
σ(m) +

1− 6m

24
σ
(m
4

)
+
E(m)

32
+

27

128
F (m)− G(m)

24
,

and then simplifying , we obtain the required result. 2
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4. Conclusion

In the present investigation, we obtained an relation on Eisenstein series of level 6 in terms of theta
functions. By exploiting the modular transformation properties and the theta-functional decompositions
of these series, we obtain identities that express certain weighted divisor-sum convolutions in closed form.
In particular, our analysis yields three convolution–sum formulas of the types∑

2i+3j=m

σ(i)σ(j),
∑

i+6j=m

σ(i)σ(j)and
∑

i+8j=m

σ(i)σ(j)

which illustrate the interplay between theta functions and arithmetic functions. These identities highlight
the structural interplay between modular forms of half-integral weight, the associated theta functions,
and arithmetic functions arising from the coefficients of Eisenstein series. The results further demonstrate
how level-structure in modular forms naturally encodes convolution relations among divisor functions.
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