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A Note on Eisenstein Series and Convolution of Sums

Shruthi and B. R. Srivatsa Kumar*

ABSTRACT: The Eisenstein series plays a central role in modern number theory and mathematical analysis,
especially in the theory of modular forms. Its applications span arithmetic, combinatorics, and mathematical
physics. FEisenstein series play a significant role in mathematical physics, primarily due to their modular
and automorphic properties. They arise naturally in string theory, where non-holomorphic Eisenstein series
encode S-duality symmetries and appear in the coefficients of higher-order terms in superstring amplitudes.
In quantum field theory and conformal field theory, Eisenstein series contribute to modular-invariant partition
functions and describe lattice sums associated with compactified dimensions. In this paper, we investigate
connections between Borweins’ cubic theta functions and modular forms of level 6. Utilizing these relationships,
we obtain an explicit representation of an Eisenstein series of level 6. In addition, we deduce several convolution
sum identities of the form Z o(i)o(y), Z o(i)o(j) and Z o(i)o(j) which illustrate the interplay
2i4+3j=m i+65=m i+8j=m
between theta functions and arithmetic functions.
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1. Introduction

The Borweins’ cubic theta functions a(q),b(q) and ¢(q) are defined by

o0
alg) = Y gmrmme

m,n=—o00
o0
2 2
b(q) — Z Wm—nqm +mn+n 7
m,n=—o0
o0

2 2
Z q(m+1/3) +(m+1/3)(n+1/3)+(n+1/3) (1.1)

m,n=—o0

we assume | ¢ |[< 1 and w = exp(27i/3). Tt is easy to see that a(0) = 1, b(0) = 1, and ¢(0) = 0. The
Jacobi’s theta function ¢(q) is defined as

olg) = Y . (1.2)

Alaca and Williams [1,2,3] obtained the parametric representations for m~L(¢™) — L(q), M (q™), b(¢*) and
c(q®) for m € {2,3,4,6,12}, n € {1,2,3,6} and i € {1,2,4} in terms of parameters p and k, namely

20\ _ 20,3 3.3
p=pl0) = SEZED b=k = S (1.3
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Since ¢(0) = 1, it is easy to see that p(0) = 0 and k(0) = 1. From [1] we have
a(g) = (1 +4p +p°)k. (1.4)

S. Ramanujan, in his second notebook [12], provide the definitions of the Eisenstein series P(q), Q(q)
and R(q) as follows:

Plg) = 1-245 1 1.5
(@ > (1.5
& m3qm
= 14240 , 1.6
Q) > (1.6
o0 5,.m
R(g) = 1-504 1m_qqm. (1.7)
m=1

The divisor function oy (m) is given by

or(m) = de, m,k € N, (1.8)
d]

here d runs through the positive divisors of m. If m is not a positive integer, set o;(m) = 0. For

convenience, we denote o(m) for o1(m). For the wonderful work on convolution Z o(i)o(j) for
i+kj=m

k=1,2,3,4,5,6,7,8,9,12,16, 18 and 24 one can refer [1,2,3,4,5,6,9,10,13,14,15,16,17,18].

2. Result on Eisenstein Series

Theorem 2.1 We have

3P(%) - Plg) — 3P(d°) + P(¢?) = m<1zqw2<q>w3<q3>w2(q>so3<q3>

+60q°9(q)y°(¢°) + 48¢°p(q)v° (¢”))).

Proof: From [7,11], we have
3P(q°) — P(q) = 2a°(q), (2.1)

where a(q) is as defined as in (1.4). On replacing g to ¢* in (2.1), we have

On subtracting (2.1) from (2.2), we obtain
3P(¢%) — P(q) = 3P(¢°) + P(¢*) = 2(a*(¢*) — a*(q))- (23)
On simplifying using (1.4), we obtain
3P(¢°) = P(q) = 3P(¢°) + P(¢*) = 3k*(2p + 5p° + 2p°).

On using (1.3) in the above, we deduce

) 2 _A2(,3 5
3P() - Plo) —3P() + Ple?) =3 ) S S
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From [11, p.232, eq. (5.1)], we have

(

(1-87°

l—«a

>1/8

2!
where 8 has degree 3 over @ and m = —,

and

Using (2.6) and (2.7) in (2.5

z3

m+1

ar

2

d

) and after simplifying, we deduce

©*(q) —

P2(¢%) = 4g 59

()’ (
©*(q

)

Using (2.8) in (2.4) and then simplifying, we obtain the result.

Theorem 3.1 We have

where

3. Convolution Sums

q
(

ﬂ?’

<

(%

?)

q)

>:

the multiplier. Also from [11, p. 122-123],

m—1
2 b

we have
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and D(n) is the right hand side of Theorem 2.1.

Proof: On squaring Theorem 2.1 and simplifying using (1.5), we deduce

=1

576 (;o:
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where D(n) is as defined as in Theorem 3.1. On extracting the coefficients of ¢™ on both sides of the

above, we deduce that

Y ool =3 3 olol) -z X alel) -3 3 ()

g=n i+j=n i+j=% i+j=%
—2 Y. olioli) + % > oli)o()+3 D oli)ol))
i+j=% i+2j=n i+2j=2
+ Y oG+ D oli)el)— Y. o(i)o(i) - ?igé)
i3j=n i+3j=% i+6j=n :
From ([18], Theorem 4.1), we have
" oli)ali) = posn) — Holm) + 22,
i+j=n
N ) n on n n_/n 1 /n 1 1
20 0e0) = ggestm = ot + 350 (5) = 57 (5) + 97 (5) + gyot — 50
. N 1 9 n 1-3n n 1 A(n)
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. . 1 1 n 1—n 1—6n n B(n)
i+62j::na(1)a(]) BT T (3)+ 1o+ (6) T o8

On employing (3.3), (3.4), (3.5) and (3.6) in (3.2) and simplifying further, we obtain th result.

Theorem 3.2 We have

S o(i)e(j) = (12_4”> o(m)+ 5o () + (1;49”> o(3)+ ngcg(n)

+ 3o (5)+ 3

where B(n) is as defined as in Theorem 3.1.

Proof: On extracting the coefficients of ¢™ in both sides of the (3.1), we have

> ooty =—¢ 3 ololi) ¢ 3 alol)— 5 X o))

i+6j=n i+j=n i+j=% i+j=7%
o > ole)+ Y, oa()+3 DY o(i)a())
itj=2 i+2j=n i+2j=2

+ Y oo+ Y olel)— D 0@')00)—%'

i+3j=n i+3j=2 2i4+3j=n

On using (3.3), (3.4), (3.5) and Theorem 3.1 and then simplifying we obtain the required result.
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Theorem 3.3 We have

3 otioti == (555" o + (557 ) (5) = Roat = (HEG™2 ) (5

N %03 (;L) N (742 — 245n> oy g 283503 (Z)
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where B(n) and C(n) is as defined as in Theorem 3.1.
Proof: From [8,11], we have
P(q) = 6P(q*) + 8P(¢") = 3¢p*(—q)-
Changing ¢ to ¢? in (3.7), we have
P(q*) = 6P(q") + 8P(¢") = 3" (—¢?).
On subtracting (3.7) from (3.8), we have
P(q) = TP(¢*) + 14P(q") = 8P(¢") = 3(¢"(=q) — ¢*(=¢*)).

On squaring (3.9) in the above, we have

P2(q) +49P%(¢%) + 196 P2(¢*) + 64P%(¢®) — 14P(q) P(¢*) + 28P(q) P(q*)

—196P(¢*)P(q") — 16P(q) P(q°) + 112P(¢*) P(q") — 224P(¢") P(¢")

=9(¢p*(—q) = ¢*(=¢*))>.
Employing (1.5) in (3.10) and simplifying, we obtain

> olol) =55 . ool + 10 O alol)+ 5 O ool
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. . 7 . . 49 . .
T4 Y alel) -5 > ool -7 D a@el)

i+tj=% i+2j=n i+2j=2

_14 Z J(i)a(j)+£ Z o(t)o(j)+ 7 Z U(i)o(j)—%.

i+2j=2 i+dj=n i+4j=12
On using (3.3) and (3.4) and from Theorem 4 [16] we have

5 ot~ Bt (3 + s ()< s ()~ B ()
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and then simplifying , we obtain the required result.

(3.10)
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4. Conclusion

In the present investigation, we obtained an relation on Eisenstein series of level 6 in terms of theta
functions. By exploiting the modular transformation properties and the theta-functional decompositions
of these series, we obtain identities that express certain weighted divisor-sum convolutions in closed form.
In particular, our analysis yields three convolution—sum formulas of the types

Y ololh), Y ol@o(fand Y al(i)a(i)

2i4+3j=m i+6j=m i+8j=m

which illustrate the interplay between theta functions and arithmetic functions. These identities highlight
the structural interplay between modular forms of half-integral weight, the associated theta functions,
and arithmetic functions arising from the coefficients of Eisenstein series. The results further demonstrate
how level-structure in modular forms naturally encodes convolution relations among divisor functions.
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