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Constant Local Multiset Dimension of Convex Polytopes-Rn and Sn

Manasa D. M., Chandrakala S. B., Pragathi K.∗, Sooryanarayana B., Vishu Kumar M.

abstract: In graph theory, the metric dimension is a concept whose primary purpose is to uniquely identify
each vertex in a graph based on distance with respect to a collection of reference vertices, called resolving sets.
Resolving sets are used in communication networks to uniquely identify the position of each node. In robotics
and navigation systems, robots can determine their exact position with reference to a set of codes generated
by resolving set. Based on the practical requirements of the network problems, there are several variation in
metric dimensions. Local multiset dimension (LMD) of a graph is one such variation, in which a local multiset
basis generates a distinct multiset of distances for every pair of adjacent vertices with reference to a subset of
the vertex set of the graph. Convex polytopes are the two-dimensional geometric shapes that can be used in
designing an optimal network configuration. In this paper, we determined the LMD of two convex polytopes
and hence found that the local multiset dimension for both the polytopes is constant, irrespective of the order
of the graphs.
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1. Introduction

Throughout the paper, G be a simple connected and undirected graph [12] of order |V (G)| and size
|E(G)|, where V (G) is vertex set and E(G) is edge set of G. The length of a shortest path between any
two vertices u and v in G is denoted by d(u, v). Two vertices u, v ∈ V (G) are said to be adjacent if
d(u, v) = 1.
Metric dimension is a major concept in graph theory and it provides a systematic framework to distinguish
all vertices of the graph G, using distances to minimum number of reference vertices. The concept of
dimension was discussed early by Erods et. al. [8,9]. P. J. Slater presented the concept of metric dimension
[18] followed by F. Harary and R. A. Melter in [11]. Slater addressed the cardinality of minimum resolving
set as location number of G. Harary and Melter [11] adopted the term metric dimension rather than
location number.

A set F ⊆ V (G) is a metric generator of the graph G, if every pair of vertices from V (G) is dis-
tinguished by some element of F . Minimum set of metric generator is called a metric basis and the
cardinality of the metric basis is called the metric dimension [19]. Metric generators ensure that each
vertex of the graph can be uniquely identified by its distance to the metric basis. By virtue of this
characteristic, it finds a wide range of applications in network analysis such as communication networks,
transportation systems, robotics and navigation systems, social networks, and biological networks where
identification of nodes based on the distance is essential. In chemistry, metric dimension is used to analyze
and distinguish the molecular structure; each functional group in a chemical compound is mapped as a
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subgraph. It allows the detection of whether two compounds contain the same functional group at the
same position, which is essential in analytical studies related to pharmacological activity.

A subset F = {f1, f2, f3, ..., fn} ⊆ V (G) is called a resolving set if r(u|F ) ̸= r(v|F ) for each u, v ∈
V (G) whenever u ̸= v, where r(x|F ) = (d(x, f1), d(x, f2), d(x, f3), ..., d(x, fn)) is the representation of
metric coordinate of x in G with respect to F . The minimum cardinality of a resolving set is the
metric dimension [19]. Metric dimension of basic graphs like cycle, path [7] and other family of graphs
like unicyclic [10], bicyclic [13], wheel related have been studied. Similarly, various types of convex
polytopes also been studied [16,14]. Various forms of metric dimension has been introduced such as local
metric dimension, multiset dimension, local multiset dimension, edge metric dimension, partition metric
dimension.

Multiset dimension is a variation of metric dimension, which was proposed by Rinovia Simanjuntak
et.al., in 2017 [17]. For u ∈ V (G) and F ⊆ V (G), the multi code of u with respect to F is a multi set of
distances between u and vertices of F and is denoted as rm(u|F ).

In 2020 Ridho et.al. [6] introduced the concept of local multiset dimension (LMD), which finds the
same applications as metric dimension with an added advantage of reduced computational complexity
since it focuses on adjacent vertices. A set F = {f1, f2, f3, ..., fn} ⊆ V (G) is called a local multiset
basis(lmsb), if rm(u|F ) ̸= rm(v|F ) whenever uv ∈ E(G), where rm(u|F ) = {d(u, f1), d(u, f2), d(u, f3), ...,
d(u, fn)} is the multiset code of u in G with respect to F . The minimum cardinality of a local multiset
basis is called the local multiset dimension. Local multiset dimensions have been computed for various
graphs [1,2,3,4,5,15].

Convex polytopes are fundamental objects in geometry and optimization, characterized by flat faces,
edges, and vertices, and they generalize polygons and polyhedra to arbitrary dimensions. Due to the
structure, the polytopes are used in modeling the real-world scenarios.This paper describes local multiset
dimension of some family of convex polytopes Rn and Sn.

This paper is organized as the computation of the local multiset dimension of Rn in section 2 and Sn

in section 3. Section 4 discusses the conclusion of the findings of these two graphs.

2. Preliminaries

The following results provides the foundational framework.

Theorem 2.1 ( [1]). A graph G has µl(G) = 1, if and only if G is bipartite.

Lemma 2.1 ( [15]). Let G be a graph with lmsb F = {f1, f2}. Then, d(f1, f2) ≡ 0 (mod 2).

Remark 1. From Lemma 2.1 it follows that if d(f1, f2) ≡ 1 (mod 2), then F cannot form lmsb of G.

Lemma 2.2. Let G be a graph and F = {f1, f2} ⊆ V (G). If d(f1, f2) ≡ 0 (mod 2) and f1 , f2 lies on
an induced odd cycle in G then F is not an lmsb of G.

Proof. Given that F = {f1, f2} ⊆ V (G) and d(f1, f2) ≡ 0 (mod 2). Since f1 and f2 lies on an odd cycle,
there exist an odd path between f1 and f2, thus from the Remark 1, F is not an lmsb of G 2

Lemma 2.3. Let G be a graph and F = {f1, f2} ⊆ V (G). Suppose f1 lies on an induced odd cycle C2k+1

in G and the vertices uv ∈ E(C2k+1) with d(u, f1) = d(v, f1) = k. If f2 is not equidistant to the vertices
u and v, then F = {f1, f2} is an lmsb of G.

Proof. Given that F = {f1, f2} ⊆ V (G), f1 lies on an induced odd cycle C2k+1 in G and uv ∈ E(C2k+1)
with d(u, f1) = d(v, f1) = k. Assume to the contrary d(u, f2) = d(v, f2) = a. Then rm(u|F ) = rm(v|F ) =
{k, a}. Hence F = {f1, f2} is not an lmsb of G. 2
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3. Local multiset dimension of Rn

The graph Rn, for n ≥ 3 is a symmetric convex polytope with the vertex set V (Rn) = {uj , vj , wj :
0 ≤ j ≤ n−1} and the edge set E(Rn) = {ujuj+1, vjvj+1, wjwj+1, vjuj+1 : 0 ≤ j ≤ n−2}∪{ujvj , vjwj :
0 ≤ j ≤ n− 1}∪{un−1u0, vn−1v0, wn−1w0, vn−1u0}. Order and size of Rn is 3n and 5n respectively. The
graph Rn contains vertices of degrees 3, 4, and 5 and each is n in number.
In this section, local multiset dimension of Rn is computed and executed a multiset basis for each n ∈ Z+.

Lemma 3.1. For any n ∈ Z+ with n ≥ 3, µl(Rn) ≥ 3.

Proof. Let F be the minimum local multiset basis of Rn.

Claim 1. |F | ̸= 1

Since the convex polytope Rn contains C3, Rn is not bipartite and hence by Theorem 2.1, |F | ̸= 1.

Claim 2. |F | > 2

Proof of Claim 2 is discussed by the method of contradiction. Suppose F = {f1, f2} be an lmsb of
Rn, then by Remark 1 d(f1, f2) ≡ 0 (mod 2). Since the graph is symmetric, without loss of generality we
assume f1 ∈ {u0, v0, wo}. In each cycle whenever there are two vertices which are at the same distance
from f1. Since the structure is symmetric, it is sufficient to prove the claim for any one vertex. For each
pair of vertices, a contradiction for different values of n and the corresponding value of j is produced as
follows,
f1 = u0

Case 1:f2 = uj

• When n ≥ 6, 2 ≤ j ≤ 2⌊n−6
4 ⌋ + 2, f2 lies on a C3 and f1 is equidistant to the vertices uj+1,vj .

From Lemma 2.3 rm(uj+1|F ) = rm(vj |F ) = {j + 1, 1}.

• When 5 ≤ n ≡ 1 (mod 4), j = ⌊n
2 ⌋,f1 and f2 lies on a Cn cycle. From lemma 2.2 rm(uk+ j

2
|F ) =

rm(uk+ j
2+1|F ) = { j

2 ,
j
2 + 1}

• When 4 ≤ n ≡ 0 (mod 4), j = n
2 , f2 lies on a C3 cycle and f1 is equidistant to the vertices vj ,vj−1.

From Lemma 2.3 rm(vj |F ) = rm(vj−1|F ) = {j, 1}

Case 2: f2 = vj

• When 1 ≤ j ≤ 2⌊n−3
4 ⌋ + 1,f2 lies on a C3 cycle and f1 is equidistant to vertices uj , vj−1. From

Lemma 2.3, rm(uj |F ) = rm(vj−1|F ) = {j, 1}

Case 3: f2 = wj

• When j = 0, f1 and f2 lies on a C5. From Lemma 2.2 rm(wn−1|F ) = rm(vn−1|F )={1,2}.

• When n ≥ 5, 2 ≤ j ≤ 2⌊n−5
4 ⌋ + 1, f2 lies on a C5 and f1 is equidistant to the vertices uj ,vj−1.

From lemma 2.3, rm(uj |F ) = rm(vj−1|F ) = {j, 2}

f1 = v0
Case 1:f2 = vj

• For n ≥ 5, 2 ≤ j ≤ 2⌊n−5
4 ⌋+ 2 then rm(u j

2
|F ) = rm(v j

2+1|F ) = { j
2 ,

j
2 + 1}

• For 4 ≤ n ≡ 0 (mod 4),j = n
2 then rm(uj |F ) = rm(uj+1|F ) = {j, j}

Case 2:f2 = wj

• When n ≥ 4, 1 ≤ j ≤ 2⌊n−4
4 ⌋+1, f2 lies on C5 and f1 is equidistant to the vertices vj+1 and uj+1.

From Lemma 2.3, rm(vj+1|F ) = rm(uj+1|F ) = {j + 1, 2}

• For 3 ≤ n ≡ 3 (mod 4), j = ⌊n
2 ⌋, rm(vn−⌈ j

2 ⌉
|F ) = rm(wn−⌈ j

2 ⌉
|F ) = {⌈ j

2⌉, ⌈
j
2⌉+ 1}
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• For 6 ≤ n ≡ 2 (mod 4), j = n
2 then rm(uj |F ) = rm(uj+1|F ) = {j, 2}

f1 = w0

Case 1:f2 = wj

• When n ≥ 5, 2 ≤ j ≤ 2⌊n−6
4 ⌋+ 2 f2 lies on C5 and f1 is equidistant to the vertices uj+1 and vj+1.

From Lemma 2.3 rm(uj+1|F ) = rm(vj+1|F ) = {j + 2, 2}

• For 4 ≤ n ≡ 0 (mod 4), j = n
2 then rm(uj+1|F ) = rm(uj |F ) = {j + 1, 2}

• When 5 ≤ n ≡ 1 (mod 4), j = ⌊n
2 ⌋, f1 and f2 lies on a Cn cycle. From Lemma 2.2 rm(wk+ j

2
|F ) =

rm(wk+ j
2+1|F ) = { j

2 ,
j
2 − 1}

It is observed from the above cases, for every pair of V (Rn), atleast there is one pair of adjacent vertices
receiving the same multiset code. Therefore µl(Rn) > 2 for any n.
From Claim 1 and Claim 2, it completes to show that µl(Rn) ≥ 3. 2

We prove the upper bound µl(Rn) ≤ 3 in lemma 3.2, where n ≥ 3.

Lemma 3.2. For any n ∈ Z+ with n ≥ 3, µl(Rn) ≤ 3.

Proof: The proof for µl(Rn) ≤ 3 for 3 ≤ n ≤ 7 is illustrated through the graphs in figure 1.

R3

R4

R5 R6
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R7

Figure 1: Illustration of µl(Rn) ≥ 3 for Rn( 3 ≤ n ≤ 7)
Further for n ≥ 8, depending on the value of n, we have two cases.
Case 1: When n is odd.
Consider n = 2k+1,suppose F = {u0, vn−1, wn−1} ⊆ V (Rn). The multiset codes recieved by each vertex
with respect to F as follows,
The multiset co-ordinates for the vertices {uj : 0 ≤ j ≤ n− 1}

rm(uj |F ) =

 {j, j + 1, j + 2 } for 0 ≤ j ≤ ⌊n
2 ⌋ − 1

{j, n− j, n− j + 1 } for j = ⌊n
2 ⌋

{n− j, n− j, n− j + 1 } otherwise
The multiset code for the vertices {vj : 0 ≤ j ≤ n− 1}

rm(vj |F ) =

 {j + 1, j + 1, j + 2 } for 0 ≤ j ≤ ⌊n
2 ⌋ − 1

{j + 1, n− j − 1, n− j } for j = ⌊n
2 ⌋

{n− j, n− j − 1, n− j } otherwise
The multiset code for the vertices {wj : 0 ≤ j ≤ n− 1}

rm(wj |F ) =

 {j + 2, j + 2, j + 1 } for 0 ≤ j ≤ ⌊n
2 ⌋ − 1

{j + 2, n− j, n− j − 1 } for j = ⌊n
2 ⌋

{n− j + 1, n− j, n− j − 1 } otherwise
It is noted that there are no two adjacent vertices having same multiset code. Therefore µl(Rn) ≤ 3 for
any odd n.
Case 2 : When n is even.
Consider n = 2k, suppose F = {u0, un

2
, u⌊n−1

4 ⌋} ⊆ V (Rn). The multiset codes recieved by each vertex

with respect to F as follows,
The multiset code for the vertices {uj : 0 ≤ j ≤ n− 1}

rm(uj |F ) =


{j, n

2 − j, ⌊n−1
4 ⌋ − j} for 0 ≤ j ≤ ⌊n−1

4 ⌋
{j, n

2 − j, j − ⌊n−1
4 ⌋ } for ⌈n−1

4 ⌉ ≤ j ≤ n
2

{n− j, j − n
2 , j − ⌊n−1

4 ⌋ } for n
2 + 1 ≤ j ≤ ⌊ 3n−1

4 ⌋
{n− j, j − n

2 , n− j + ⌊n−1
4 ⌋ }, otherwise

The multiset code for the vertices {vj : 0 ≤ j ≤ n− 1}

rm(vj |F ) =


{j + 1, n

2 − j, ⌊n−1
4 ⌋ − j} for 0 ≤ j ≤ ⌊n−1

4 ⌋ − 1
{j + 1, n

2 − j, j − ⌊n−1
4 ⌋+ 1} for ⌊n−1

4 ⌋ ≤ j ≤ n
2 − 1

{n− j, j − n
2 + 1, j − ⌊n−1

4 ⌋+ 1} for n
2 ≤ j ≤ ⌊ 3n−1

4 ⌋ − 1
{n− j, j − n

2 + 1, n− j + ⌊n−1
4 ⌋} otherwise

The multiset code for the vertices {wj : 0 ≤ j ≤ n− 1}
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rm(wj |F ) =


{j + 2, n

2 − j + 1, ⌊n−1
4 ⌋ − j + 1} for 0 ≤ j ≤ ⌊n−1

4 ⌋ − 1
{j + 2, n

2 − j + 1, j − ⌊n−1
4 ⌋+ 2} for ⌊n−1

4 ⌋ ≤ j ≤ n
2 − 1

{n− j + 1, j − n
2 + 2, j − ⌊n−1

4 ⌋+ 2} for n
2 ≤ j ≤ ⌊3n−1

4 ⌋ − 1
{n− j + 1, j − n

2 + 2, n− j + ⌊n−1
4 ⌋+ 1} otherwise

It is noted that there are no two adjacent vertices having same multiset code. Therefore µl(Rn) ≤ 3 for
any even n.
Therefore µl(Rn) ≤ 3 for any n. 2

Theorem 3.1. For any n ∈ Z+ n ≥ 3, µl(Rn) = 3.

Lemma 3.1 and Lemma 3.2 completes the proof of 3.1.

4. Local multiset dimension of Sn

The graph of the convex polytope Sn is an extended graph of the convex polytope Rn. It is obtained
by adding an exterior cycle to the outermost cycle of Rn, such that each vertex of the outermost cycle
is connected to the preceeding vertices of the newly added outer cycle. It has a vertex set V (Sn) =
V (Rn) ∪ {wj,1 : 0 ≤ j ≤ n− 1} and edge set E(Sn) = E(Rn) ∪ {wj,1wj+1,1 : 0 ≤ j ≤ n− 2} ∪ {wj,1wj :
0 ≤ j ≤ n − 1} ∪ {wn−1,1w0,1}. Order and size of Sn is 4n and 7n respectively. The graph Sn contains
vertices of degrees 3,5 each are n in number and degree 4, 2n in number.
In this section, local multiset dimension of Sn is computed and executed a multiset basis for each n ∈ Z+.

Lemma 4.1. For any n ∈ Z+ with n ≥ 3, µl(Sn) ≥ 3.

Let F be the minimum local multiset basis of Sn.

Claim 3. |F | ̸= 1

Since the convex polytope Sn contains C3, Sn is not bipartite and hence by Theorem 2.1, |F | ̸= 1.

Claim 4. |F | > 2

Proof of Claim 4 is discussed by the method of contradiction. Suppose F = {f1, f2} be a lmsb of Sn,
then by Remark 1, d(f1, f2) ≡ 0 (mod 2). Since Sn is an extended graph of Rn, it is sufficient to prove
the claim for f1 = w0,1 and f2 ∈ {ui, vi, wi}. In each cycle whenever two vertices are at the same distance
from f1. Since the structure is symmetric, it is sufficient to prove the claim for any one vertex. For each
pair of vertices, a contradiction for different values of n and the corresponding value of j is produced as
follows,
f1 = w0,1

Case 1: f2 = wj,1

• When n ≥ 6, 2 ≤ j ≤ 2⌊n−6
4 ⌋ + 2, f2 lies on C7 and f1 is equidistant to uj+1 and vj+1. From

Lemma 2.3, rm(uj+1|F ) = rm(vj+1|F ) = {j + 3, 3}

• For 4 ≤ n ≡ 0 (mod 4), j = n
2 then rm(uj |F ) = rm(uj+1|F ) = {j + 2, 3}

• When 5 ≤ n ≡ 1 (mod 4), j = ⌊n
2 ⌋ f1 and f2 lies on Cn. From Lemma 2.2 rm(wk+ j

2
|F ) =

rm(wk+ j
2+1|F ) = { j

2 ,
j
2 + 1}

Case 2: f2 = wj

• When n ≥ 4, 1 ≤ j ≤ 2⌊n−4
4 ⌋ + 1 f2 lies on C5 and f1 is equidistant to uj+1 and vj+1. From

Lemma 2.3 rm(uj+1|F ) = rm(vj+1|F ) = {j + 3, 2}

• For 3 ≤ n ≡ 3 (mod 4), j = ⌊n
2 ⌋ rm(wk+⌈ j

2 ⌉
|F ) = rm(wk+⌈ j

2 ⌉+1|F ) = {⌈ j
2⌉, ⌈

j
2⌉+ 1}

• For 6 ≤ n ≡ 2 (mod 4), j = n
2 then rm(uj |F ) = rl(uj−1|F ) = {j + 2, 2}
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Case 3: f2 = vj

• When n ≥ 3, 0 ≤ j ≤ 2⌊n−3
4 ⌋, f2 lies on C3 and f1 is equidistant to uj+1 and vj+1. From Lemma 2.3

rm(uj+1) = rm(vj+1) = {j + 3, 1}

• When 4 ≤ n ≡ 0 (mod 4), j = n
2 , f2 lies on C3 and f1 is equidistant to uj+1 and uj . From

Lemma 2.3, rm(uj+1|F ) = rm(uj |F ) = {j + 2, 1}.

• For 5 ≤ n ≡ 1 (mod 4), j = ⌊n
2 ⌋ then rm(w⌈ 3j+1

2 ⌉|F ) = rm(v⌈ 3j+1
2 ⌉|F ) = { j

2 + 1, j
2 + 2}

Case 4: f2 = uj

• When n ≥ 3, 2 ≤ j ≤ 2⌊n−3
4 ⌋ + 2, f2 lies on C3 and f1 is equidistant to uj−1 and vj−1. From

Lemma 2.3, rm(uj−1|F ) = rm(vj−1|F ) = {j + 1, 1}

It is observed from the above cases, for every pair of V (Sn), atleast there is one pair of adjacent vertices
receiving the same multiset code. Therefore µl(Sn) > 2 for any n.
From Claim 3 and Claim 4, it completes to show that µl(Sn) ≥ 3.

We prove the upper bound µl(Sn) ≤ 3 in lemma 4.2.

Lemma 4.2. For any n ∈ Z+ with n ≥ 3, µl(Sn) ≤ 3.

Proof: The proof for µl(Sn) ≤ 3 for 3 ≤ n ≤ 7 is illustrated through the graphs in figure 2.

S3

S4
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S5 S6

S7

Figure 2: Illustration of µl(Sn) ≥ 3 for Sn( 3 ≤ n ≤ 7)
Further for n ≥ 8, depending on the value of n, we have two cases.
Case 1: When n is odd.
Consider n = 2k + 1, suppose F = {uk, wk, wk+4} ⊆ V (Sn). The multiset codes recieved by each vertex
with respect to F remains the same for the vertices ui, vi, wi since the same basis as Rn is considered.
The multiset code for the vertices {wj,1 : 0 ≤ j ≤ n− 1}

rm(wj,1|F ) =

 {j + 3, j + 3, j + 2 } for 0 ≤ j ≤ ⌊n
2 ⌋ − 1

{j + 3, n− j + 1, n− j } for j = ⌊n
2 ⌋

{n− j + 2, n− j + 1, n− j } otherwise

It is noted that there are no two adjacent vertices having same multiset code. Therefore µl(Sn) ≤ 3 for
any odd n.
Case 2 : When n is even.
Consider n = 2k, suppose F = (w0, wn

2 −1, wn
2
) ⊆ V (Sn). The multiset codes recieved by each vertex

with respect to F remains the same for the vertices ui, vi, wi since the same basis as Rn is considered.

The multiset code for the vertices {wj,1 : 0 ≤ j ≤ n− 1}
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rm(wj,1|F ) =


{j + 3, n

2 − j + 2, ⌊n−1
4 ⌋ − j + 2} for 0 ≤ j ≤ ⌊n−1

4 ⌋ − 1
{j + 3, n

2 − j + 2, j − ⌊n−1
4 ⌋+ 3} for ⌊n−1

4 ⌋ ≤ j ≤ n
2 − 1

{n− j + 2, j − n
2 + 3, j − ⌊n−1

4 ⌋+ 3} for n
2 ≤ j ≤ ⌊ 3n−1

4 ⌋ − 1
{n− j + 2, j − n

2 + 3, n− j + ⌊n−1
4 ⌋+ 2} otherwise

It is noted that there are no two adjacent vertices having same multiset code. Therefore µl(Sn) ≤ 3 for
any even n.
Therefore µl(Sn) ≤ 3 for any n. 2

Theorem 4.1. For any n ∈ Z+ n ≥ 3, µl(Sn) = 3.

Lemma 4.1 and Lemma 4.2 completes the proof of Theorem 4.1.

5. Conclusion

In this paper, LMD of convex polytopes Rn and Sn is determined to be three. Three vertices are
sufficient to uniquely identify all the vertices irrespective of the order of the graph. It can aslo be ob-
served that the same basis resolves both the convex polytopes. Further irrespective of the number of
exterior cycles added to the outermost cycle, the LMD remains the same and also the same basis can be
used to resolve the obtained convex polytope. Thus, LMD of these convex polytopes remains constant
irrespective of the order and also the number of exterior cycles.
The graph of convex polytopes can be modelled as various networks like transportation, computer, elec-
trical, communication, social and so on. Finding the LMD of convex polytopes helps in unique node
identification in any network. Further more in detecting the congestion nodes in transportation network,
to detect failure in computer network connection. In electrical networks voltage instability, overload of
current can be encountered. The local multiset basis is used as monitoring nodes to enhance the efficiency
of these networks. It concludes that local multiset dimension of convex polytopes helps in designing and
analysing networks of any size.
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