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On Lucas-Balancing-Like Polynomials

E. Özkan∗ and B. Tekeoğlu Akkaya

abstract: We present a systematic study of a polynomial generalization of the classical Lucas–balancing
numbers, which we call Lucas–balancing–like polynomials and obtain their Binet-type closed form, analyze sev-
eral structural and algebraic identities, and establish a connection with Chebyshev polynomials of the first kind.
Moreover, we demonstrate that fundamental relations that are satisfied by balancing and Lucas–balancing
numbers extend naturally to the polynomial setting. Several new identities, including generalized Catalan-
type identities, are derived. This work provides a unified framework for recurrence-based polynomial sequences
and suggests further research directions within orthogonal polynomials and Diophantine structures.
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1. Introduction

Second-order linear recurrence sequences play a central role in number theory, algebra, combinatorics,
and approximation theory. The most classical examples are the Fibonacci and Lucas sequences, defined
respectively by:

Fn = Fn−1 + Fn−2

with F0 = 0 and F1 = 1.
Ln = Ln−1 + Ln−2

with L0 = 2 and L1 = 1.
Both admit Binet-type formulas and satisfy numerous algebraic identities. The limit of the ratio of
consecutive Fibonacci numbers yields the golden ratio. Accordingly, this limit is given by [4]:

lim
n→∞

Fn+1

Fn
=

1 +
√
5

2

Metallic ratios arise in numerous branches of science [6]. Table 1 presents several of the most intriguing
metallic ratios.

Similarly, as stated in [4],

lim
n→∞

Ln+1

Ln
=

1 +
√
5

2
.

The Fibonacci and Lucas sequences are closely related integer sequences. The algebraic identities that
describe these relationships are presented below.

Fn−1 + Fn+1 = Ln,

Fn + Ln = 2Fn+1.
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Table 1: Metallic Ratios
Ratio Value

Platinum 0+
√
4

2

Golden 1+
√
5

2

Silver 2+
√
8

2

Bronze 3+
√
13

2

Copper 4+
√
20

2

Nickel 5+
√
29

2

Aluminum 6+
√
40

2

Iron 7+
√
53

2

Tin 8+
√
68

2

Lead 9+
√
85

2

Notable examples include the balancing numbers, introduced by Behera and Panda, and the corre-
sponding Lucas–balancing numbers defined through a similar recurrence. Balancing sequence is defined
by the following recurrence relation [16]:

Bn = 6Bn−1 −Bn−2

with B0 = 0 and B1 = 1. Likewise, as stated in [14],

lim
n→∞

Bn+1

Bn
= 3 +

√
8.

For the nth balancing number Bn, the expression 8B2
n + 1 is a perfect square and the square root of this

expression, Cn =
√
8B2

n + 1 is referred to as the nth Lucas–balancing number [14]. The Lucas-balancing
numbers satisfy the recurrence relation presented below.

Cn = 6Cn−1 − Cn−2

with C0 = 1 and C1 = 3.

Similarly,

lim
n→∞

Cn+1

Cn
= 3 +

√
8.

Balancing sequence and Lucas-balancing sequence are closely related sequences. For instance [13]:

C4n+1 − 3 = 16B2nB2n+1

C4n+3 − 3 = 32Bn+1Cn+1B2n+1.

Balancing numbers have been the subject of extensive investigation in the literature. A considerable
amount of research has been carried out on this topic in the literature. For instance, Uysal, Özkan,
and Shannon introduced the concept of dual bicomplex balancing numbers [17]. Taşçı introduced the
Gaussian balancing and Gaussian Lucas balancing numbers [15]. In 2012, Panda and Rout introduced
balancing-like sequences and demonstrated that they possess properties analogous to those of the classical
balancing sequences.

Balancing-like sequences are defined by the following recurrence relation [10]:

xn = Axn−1 − xn−2

with x0 = 0 and x1 = 1.
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Lucas-balancing-like sequences are defined by the following recurrence relation:

yn = Ayn−1 − yn−2

with y0 = 1 and y1 = A
2 .

Subsequently, polynomial forms corresponding to these integer sequences were constructed. Balancing
polynomials are defined by the following recurrence [3]:

Bn(x) = 6xBn−1(x)−Bn−2(x)

with B0(x) = 0 and B1(x) = 1. Similarly, Lucas-balancing polynomials are defined by the following
recurrence [3]:

Cn(x) = 6xCn−1(x)− Cn−2(x)

with C0(x) = 1 and C1(x) = 3x.

Balancing-like polynomials are defined by the following recurrence [2]:

xm(t) = Atxm−1(t)− xm−2(t)

with x0(t) = 0 and x1(t) = 1. The Binet formula of balancing-like polynomials are:

xm(t) =
βm
1 (t)− βm

2 (t)

β1(t)− β2(t)
,

β1(t) =
At+

√
A2t2−4
2 and β2(t) =

At−
√
A2t2−4
2 .

The polynomial analogues, such as balancing polynomials and balancing-like polynomials, have been
studied in recent years. The purpose of the present paper is to introduce and develop the parallel theory for
the Lucas–balancing–like polynomials and to examine their properties, explicit formulas, and structural
connections. We also show that many fundamental identities extend naturally from the numerical setting
to the polynomial domain.

2. Lucas-balancing-like Polynomials

In this section, we will define Lucas-balancing-like polynomials. In addition, we obtain many proper-
ties of these polynomials.

Definition 2.1 Let A be a fixed real parameter. Define the sequence of polynomials {ym(t)} by:

ym(t) = Atym−1(t)− ym−2(t) (2.1)

with initial conditions y0(t) = 1 and y1(t) =
A
2 t.

We refer to this sequence as the Lucas–balancing–like polynomials. The first few polynomials are

y0(t) = 1, y1(t) =
A

2
t, y2(t) =

A2t2

2
− 1, y3(t) =

A3t3

2
− 3At

2
, y4(t) =

A4t4

2
− 2A2t2 + 1, · · ·

Setting A = 6 yields the sequence of Lucas-balancing polynomials. Obviously, ym(1) = ym.
The characteristic equation is:

β2(t)−Atβ(t) + 1 = 0.

Its roots are:

β1(t) =
At+

√
A2t2 − 4

2

β2(t) =
At−

√
A2t2 − 4

2
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The relationship between these roots is given below:

β1(t) + β2(t) = At, β1(t)− β2(t) =
√

A2t2 − 4, β1(t)β2(t) = 1.

In the following theorem, the Binet formula for Lucas-balancing-like polynomials is obtained.

Theorem 2.1 (Binet Formula) For all m ≥ 0,

ym(t) =
βm
1 (t) + βm

2 (t)

2
. (2.2)

Theorem 2.2 Let m ∈ Z+,

ym+1(t) =

⌊m+1
2 ⌋∑

i=0

(
m+ 1

2i

)(
At

2

)m+1−2i(
A2t2 − 4

4

)i

(2.3)

Through this theorem, a closed-form summation expression for the (m + 1)th Lucas-balancing-like
polynomials are obtained, simplifying the computation by eliminating recursive dependence.

Corollary 2.1 (Symmetry Properties)
Let m ∈ Z+,

i) y−m(t) = ym(t)

ii) ym(−t) = (−1)mym(t).

This corollary follows directly from the Binet formula.
There is a close relationship between Lucas-balancing-like polynomials and Chebyshev polynomials;

the subsequent theorem articulates this connection.

Theorem 2.3 (Connection with Chebyshev Polynomials)
For each m ∈ Z+, we have the following identity:

ym(t) = Tm

(
At

2

)
. (2.4)

where Tm(t) is the Chebyshev polynomial of the first kind.

Proof. The Chebyshev polynomials of the first kind may also be defined through the following
recurrence relation: For m ≥ 2,
Tm(x) = 2xTm−1(x)− Tm−2(x) with the initials T0(x) = 1, T1(x) = x. Comparing the definition proves
the theorem.

Theorem 2.4 For t > 2
A ,

lim
m→∞

ym+1(t)

ym(t)
= β1(t). (2.5)

Proof: By using the Binet formula,

lim
m→∞

ym+1(t)

ym(t)
= lim

m→∞

βm+1
1 (t) + βm+1

2 (t)

βm
1 (t) + βm

2 (t)

= lim
m→∞

β1(t) +
(

β2(t)
β1(t)

)m
β2(t)

1 +
(

β2(t)
β1(t)

)m .
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Since β2(t) < β1(t) for every t > 2
A , we obtain

lim
m→∞

(
β2(t)

β1(t)

)m

= 0

and this yields the desired result. 2

The limit of successive terms in an integer sequence has long been regarded as a significant computa-
tion. This limit becomes particularly significant when it yields metallic ratio. Here, by substituting the
values of A and t from Table 2, we observe that the corresponding metallic ratios are obtained

Table 2: Metallic Ratios for Lucas-Balancing-Like Polynomials
A t Ratio Value

1
√
5 Golden 1+

√
5

2

1
√
8 Silver 2+

√
8

2

1
√
13 Bronze 3+

√
13

2

1
√
20 Copper 4+

√
20

2

1
√
29 Nickel 5+

√
29

2

1
√
40 Aluminum 6+

√
40

2

3. Relations Between Balancing-like Polynomials and Lucas-balancing-like Polynomials

Proposition 3.1 The balancing-like and Lucas-balancing-like polynomial families satisfy the evaluations
given below:

xm(0) =

{
0, m even

(−1)
m−1

2 , m odd

ym(0) =

{
(−1)

m
2 , m even

0, m odd

xm

(
2

A

)
= is undefined.

ym

(
2

A

)
= 1,

xm(
√
5) =

√
5Fm,

ym(
√
5) =

Lm

2
.

Theorem 3.1 For integer m the following relations are valid:

i) y2m(t)−
(
A2t2 − 4

2

)
x2
m(t) = 1

ii) xm+1(t)−
A

2
txm(t) = ym(t)

Proof. i) By using the Binet formula of balancing-like polynomials and Lucas-balancing-like polyno-
mials we get,

A2t2 − 4

2
x2
m(t) + 1 = y2m(t).
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ii)By using the Binet formula of balancing-like polynomials and Lucas-balancing-like polynomials we get,

xm+1(t)−
A

2
txm(t) =

βm+1
1 (t)− βm+1

2 (t)

β1(t)− β2(t)
− A

2
t
βm
1 (t)− βm

2 (t)

β1(t)− β2(t)

=
βm
1 (t)(2β1(t)−At) + βm

2 (t)(At− 2β2(t))

2(β1(t)− β2(t))

= ym(t).

The first identity in the preceding theorem may be regarded as the Pell-type equation for balancing-like
polynomials.

Theorem 3.2 For m ∈ Z+,
xm+1(t)− xm−1(t)

2
= ym(t). (3.1)

Proof: By using the Binet formula and since β1(t)β2(t) = 1 we obtain,

xm+1(t)− xm−1(t) =
βm+1
1 (t)− βm+1

2 (t)

β1(t)− β2(t)
− βm−1

1 (t)− βm−1
2 (t)

β1(t)− β2(t)

=
βm
1 (t)(β1(t)− β2(t)) + βm

2 (t)(β1(t)− β2(t))

β1(t)− β2(t)

= βm
1 (t) + βm

2 (t).

2

Theorem 3.3
A

2
txm(t)− xm−1(t) = ym(t) (3.2)

Proof: Using the Binet representations of both the balancing-like and Lucas–balancing-like polynomials,
we derive

A

2
txm(t)− xm−1(t) =

A

2
t
βm
1 (t)− βm

2 (t)

β1(t)− β2(t)
− βm−1

1 (t)− βm−1
2 (t)

β1(t)− β2(t)

=
βm
1 (t)(At− 2β2(t)) + βm

2 (t)(2β1(t)−At)

2(β1(t)− β2(t))

=
βm
1 (t) + βm

2 (t)

2
= ym(t).

2

Theorem 3.4 For m,n ∈ Z+,

i) ym+n(t) = ym(t)yn(t) +
A2t2 − 4

4
xm(t)xn(t) (3.3)

ii) xm+n(t) = ym(t)xn(t) + xm(t)yn(t). (3.4)

Proof: From the Binet formulas of the balancing-like and Lucas–balancing-like polynomials,√
A2t2 − 4

4
xm(t) =

√
A2t2 − 4

2

βm
1 (t)− βm

2 (t)

β1(t)− β2(t)

=
βm
1 (t)− βm

2 (t)

2
.
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Then,

ym(t) +

√
A2t2 − 4

4
xm(t) = βm

1 (t).

Upon replacing m with m+ n in this equation,

ym+n(t) +

√
A2t2 − 4

2
xm+n(t) = βm+n

1 (t).

On the other hand,(
ym(t) +

√
A2t2 − 4

2
xm(t)

)(
yn(t+

√
A2t2 − 4

2
xn(t))

)
= βm

1 (t)βn
2 (t) = βm+n

1 (t).

From the combination of these last two relations we obtain,

i) ym+n(t) = ym(t)yn(t) +
A2t2 − 4

4
xm(t)xn(t)

ii) xm+n(t) = ym(t)xn(t) + xm(t)yn(t).

2

Corollary 3.1 For m ∈ Z+,

i) x2m(t) = 2xm(t)ym(t) (3.5)

ii) y2m(t) = y2m(t) +
A2t2 − 4

4
x2
m(t). (3.6)

Theorem 3.5 For m,n ∈ Z+,

i) ym−n(t) = ym(t)yn(t)−
A2t2 − 4

4
xm(t)xn(t) (3.7)

ii) xm−n(t) = xm(t)yn(t)− ym(t)xn(t). (3.8)

Proof: From the Binet formulas of the balancing-like and Lucas–balancing-like polynomials,

ym(t)−
√

A2t2 − 4

4
xm(t) =

βm
1 (t) + βm

2 (t)

2
− βm

1 (t)− βm
2 (t)

2

= βm
2 (t).

Upon replacing m with m− n in this equation,

ym−n(t)−
√
A2t2 − 4

2
xm−n(t) = βm−n

2 (t).

On the other hand,

βm−n
2 (t) = βm

2 (t)βn
1 (t) =

(
ym(t)−

√
A2t2 − 4

2
xm(t)

)(
yn(t) +

√
A2t2 − 4

2
xn(t)

)
.

From the combination of these last two relations we obtain,

i) ym−n(t) = ym(t)yn(t)−
A2t2 − 4

4
xm(t)xn(t)

ii) xm−n(t) = xm(t)yn(t)− ym(t)xn(t).

2

The fundamental relationship between balancing and Lucas-balancing numbers discussed in the intro-
duction similarly extends to the balancing-like and Lucas–balancing-like polynomials. This connection is
made explicit in the theorem that follows.
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Theorem 3.6 For m ∈ Z+,

y2m(t) =
A2t2 − 4

4
x2
m(t) + 1. (3.9)

The following result demonstrates that the mth Lucas–balancing-like polynomial can be computed di-
rectly from the balancing-like polynomials, without resorting to the recurrence relation.

Corollary 3.2 For m ∈ Z+

ym(t) =

√
A2t2 − 4

4
x2
m(t) + 1 (3.10)

Theorem 3.7 (Generalized Catalan Identities)

i) xm+n(t)xm−n(t) = x2
m(t)− x2

n(t), (3.11)

ii) ym+n(t)ym−n(t) = y2m(t) + y2n(t)− 1. (3.12)

Proof: i)

xm+n(t)xm−n(t) =

(
βm+n
1 (t)− βm+n

2 (t)

β1(t)− β2(t)

)(
βm−n
1 (t)− βm−n

2 (t)

β1(t)− β2(t)

)
=

β2m
1 (t)− β2n

1 (t)− β2n
2 (t) + β2m

2 (t)

(β1(t)− β2(t))
2

=

(
β2m
1 (t) + β2m

2 (t)− 2
)
−
(
β2n
1 (t) + β2n

2 (t)− 2
)

(β1(t)− β2(t))
2

=

(
βm
1 (t)− βm

2 (t)

β1(t)− β2(t)

)2

−
(
βn
1 (t)− βn

2 (t)

β1(t)− β2(t)

)2

= x2
m(t)− x2

n(t).

ii)

ym+n(t)ym−n(t) =

(
βm+n
1 (t) + βm+n

2 (t)

2

)(
βm−n
1 (t) + βm−n

2 (t)

2

)
=

β2m
1 (t) + β2m

2 (t) + β2n
1 (t) + β2n

2 (t)

4

=
β2m
1 (t) + β2m

2 (t)

2
+

β2n
1 (t) + β2n

2 (t)

4
− 4

4

= y2m(t) + y2n(t)− 1.

2

Theorem 3.8 For m,n ∈ Z+,

xm+n(t) = xm(t)xn+1 − xn(t)xm−1(t). (3.13)

Proof:

xm(t)xn+1 − xn(t)xm−1(t) =

(
βm
1 (t− βm

2 (t))

β1(t)− β2(t)

)(
βn+1
1 (t)− βn+1

2 (t)

β1(t)− β2(t)

)
−

(
βn
1 (t)− βn

2 (t)

β1(t)− β2(t)

)(
βm−1
1 (t)− βm−1

2 (t)

β1(t)− β2(t)

)
=

(
βm+n
1 (t)− βm+n

2 (t)
)
(β1(t)− β2(t))

(β1(t)− β2(t))
2

=
βm+n
1 (t)− βm+n

2 (t)

β1(t)− β2(t)

= xm+n(t).

2



On Lucas-Balancing-Like Polynomials 9

Theorem 3.9 For m,n ∈ Z+,(
A2t2 − 4

4

)
xm+n(t) = ym(t)yn+1(t)− ym−1(t)yn(t). (3.14)

Proof:

ym(t)yn+1(t)− ym−1(t)yn(t) =
(βm

1 (t) + βm
2 (t))

(
βn+1
1 (t) + βn+1

2 (t)
)

4
−

(
βm−1
1 (t) + βm−1

2 (t)
)
(βn

1 (t) + βn
2 (t))

4

=

(
βm+n
1 (t)− βm+n

2 (t)
)
(β1(t)− β2(t))

4
.

From here,

4

(β1(t)− β2(t))
2 ym(t)yn+1(t)− ym−1(t)yn(t) =

βm+n
1 (t)− βm+n

2 (t)

β1(t)− β2(t)

= xm+n(t)

2

4. Conclusion

We introduced the Lucas–balancing–like polynomials, derived their Binet representation, and estab-
lished their structural equivalence with Chebyshev polynomials under a suitable scaling. We proved
several identities generalizing those known for balancing and Lucas–balancing numbers. These results
unify various recurrence-based polynomial families and open further research directions, including orthog-
onal polynomial theory, recurrence-based Diophantine structures, and generalizations involving complex
parameters or higher-order recurrences.
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