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Extensions in UP-Algebras and Related Properties ∗

Shwan Adnan Bajalan and Payman Mahmood Hamaali

abstract: In this work, we present and explore the idea of extensions of UP-algebras, inspired by similar
constructions in KU-algebras. We begin by recalling fundamental notions related to UP-algebras and proposea
formal definition of an extension in this context. Several illustrative examples are provided to demonstrate the
structure and behavior of these extensions. We examine the relationship between extensions and homomorphic
images, ideals, and congruences, and we establish some necessary and sufficient conditions under which a UP-
algebra extension exists. Furthermore, we compare our results with those obtained in the theory of KU-algebra
extensions to highlight similarities and differences. This study opens new directions in the algebraic analysis
of UP-structures.
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1. Introduction

Algebraic structures of logical origin have been extensively investigated due to their potential applica-
tions in mathematics, logic, and computer science. One of the important non-classical algebraic systems
is the class of KU-algebras, first studied by Hu and Li [4], and further developed by several authors in
various directions. For instance, Akram et al. [3] examined cubic KU-subalgebras, while Ansari and
Koam [12] studied rough approximations in KU-algebras. More recently, Ali, Haider, and Ansari [1]
proposed an extension of KU-algebras that revealed new structural properties and enriched the theoret-
ical framework. In 2017, Iampan [2] introduced UP-algebras as a new branch of logical algebras, which
generalize certain aspects of KU-algebras while exhibiting independent characteristics. Since their incep-
tion, UP-algebras have attracted significant attention, and numerous generalizations and extensions have
been established. For example, Sawika et al. [7] investigated derivations of UP-algebras, while Satirad et
al. [9] introduced generalized power UP-algebras. Poungsumpao et al. [10] studied fuzzy UP-ideals and
fuzzy UP-subalgebras, extending the theory in the context of fuzzy set theory. Additionally, Iampan [11]
considered fully UP-semigroups, and Iampan [5] developed UP-isomorphism theorems, thereby deepening
the structural understanding of these algebras. Further contributions include the study of independent
UP-algebras by Iampana et al. [6], and the exploration of algebraic graphs associated with UP-algebras
by Ansari et al. [8]. These results illustrate the growing importance of UP-algebras in both pure and
applied mathematics. The present work is motivated by the parallel development of KU- and UP-algebras
and, in particular, by the extensions of KU-algebras considered in [1,12]. Inspired by these studies, we
aim to investigate analogous extensions in the setting of UP-algebras, thereby establishing new structural
insights and broadening the scope of research in this area.
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2. Preliminaries

This section provides definitions and associated terms related to UP-algebras, UP-subalgebras, and
UP-ideals, supported by examples and relevant results.

Definition 2.1 ( [2]) A structure (X; ·, 1) of type (2, 0) is called a UP-algebra if the operation “·” and
the constant 1 satisfy the following axioms for all a, b, c ∈ X:

(UP-1) (b · c) ·
(
(a · b) · (a · c)

)
= 1,

(UP-2) 1 · a = a,

(UP-3) a · 1 = 1,

(UP-4) If a · b = 1 and b · a = 1, then a = b.

Definition 2.2 ( [1]) An algebra structure (X; ·, 1) of type (2, 0) is called a KU-algebra if the following
axioms hold for all a, b, c ∈ X:

(KU-1) (b · a) ·
(
(a · c) · (b · c)

)
= 1,

(KU-2) 1 · a = a,

(KU-3) a · 1 = 1,

(KU-4) If a · b = 1 and b · a = 1, then a = b.

Definition 2.3 ( [1]) Assume that X is a KU-algebra. A nonempty subset J ⊆ X is called a KU-ideal
of X if it satisfies the following conditions:

1. 1 ∈ J ;

2. For any a, b ∈ X, whenever a ∈ J and a · b ∈ J , it follows that b ∈ J .

Lemma 2.1 ( [?]) In every KU-algebra X, the following identity holds for all a, b, c ∈ X:

c · (b · a) = b · (c · a).

Theorem 2.1 ( [2]) Every KU-algebra is a UP-algebra. However, the converse does not always hold;
that is, a UP-algebra need not be a KU-algebra.

Example 2.1 ( [2]) Let X = {1, a, b, c, d} and define the binary operation ′′·′′ on X by the following
Cayley table:

· 1 a b c d
1 1 a b c d
a 1 1 1 1 1
b 1 b 1 1 1
c 1 b b 1 1
d 1 b b d 1

A direct verification shows that (X; ·, 1) satisfies every axiom of a UP-algebra. On the other hand,
condition (KU-1) fails. Indeed,

(1 · c) ·
(
(c · a) · (1 · a)

)
= c · (b · a) = c · b = b,

which is not equal to 1. Hence, (X; ·, 1) cannot be a KU-algebra.

Definition 2.4 ( [1]) Assume that X is a nonempty set and that K ⊆ X is a nonempty subset. An
extended KU-algebra associated with K is an algebra (XK ; ·,K), the following axioms are satisfied for all
a, b, c ∈ X, where ” · ” is a binary operation onXK :
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(KUE- 1) (b · a)·
(
(a · c) · (b · c)

)
∈ K,

(KUE- 2) a ·K = {a · k : k ∈ K} ⊆ K,

(KUE- 3) K · a = {k · a : k ∈ K} = {a},

(KUE- 4) If a · b ∈ K and b · a ∈ K, then either a = b or both a and b lie in K.

Example 2.2 ( [1]) Let X = {1, 2, 3, 4} and K = {1, 2}. The following Cayley table defines a binary
operation ” · ” on XK , showing that (XK ; ·,K) forms an extended KU-algebra:

· 1 2 3 4
1 1 2 3 4
2 1 2 3 4
3 2 1 2 2
4 1 2 4 1

A direct verification confirms that all axioms of an extended KU-algebra are satisfied with respect to the
subset K.

Definition 2.5 ( [1]) Let XK be an extended KU-algebra. A subset J ⊆ XK is called an ideal of XK if
it satisfies the following conditions:

(1) K ⊆ J ;

(2) For any x, y ∈ XK , if x ∈ J and x · y ∈ J , then y ∈ J .

Proposition 2.1 ( [2]) The following identities hold in every UP-algebra. ∀a, b, c ∈ X,

(1) a · a = 1,

(2) If a · b = 1 and b · c = 1, then a · c = 1,

(3) From a · b = 1 it follows that (c · a) · (c · b) = 1,

(4) From a · b = 1 it also follows that (b · c) · (a · c) = 1,

(5) a · (b · a) = 1,

(6) (b · a) · a = 1,

(7) a · (b · b) = 1.

3. Extended UP-Algebras

This section introduces concept of extension of UP-algebras and presents several related results.

Definition 3.1 Let X be a non-empty set, and let ∅ ̸= U ⊆ X. An extended UP-algebra associated with
U is defined as the algebra (XU ; ·, U), where ” · ” is a binary operation on XU satisfying the following
axioms:

(UPE- 1) (b · c)·
(
(a · b) · (a · c)

)
∈ U ,

(UPE- 2) a · U = {a · u : u ∈ U} ⊆ U ,

(UPE- 3) U · a = {u · a : u ∈ U} = {a},

(UPE- 4) If a · b ∈ U and b · a ∈ U ⇒ a = b or both a and b lie in U . for all a, b, c ∈ X

For convenience, we shall refer to XU simply as the extended UP-algebra (XU ; ·, U).
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Definition 3.2 A binary relation ≤ on the extended UP-algebra XU is defined as follows: for a, b ∈ XU ,
a ≤ b iff a = b or (a · b ∈ U and b /∈ U).

Example 3.1 Let X = {a, b, c, d} and U = {a, b}. As demonstrated in the table below:

· a b c d
a a b c d
b a b c d
c a a b b
d a b d a

The structure XU satisfies the axioms of an extended UP−algebra.

Proposition 3.1 Let XU be an extended UP-algebra. Then, for all a, b, c ∈ X, the following properties
hold:

(1) a · a ∈ U ,

(2) a · (b · a) ∈ U ,

(3) a·
(
(a · b) · b

)
∈ U ,

(4) If a · b ∈ U and b · c ∈ U , then a · c ∈ U ,

(5) If a · b ∈ U then (b · c) · (a · c) ∈ U ,

(6) If a · b ∈ U then (c · a) · (c · b) ∈ U ,

(7) If u · a ∈ U , and u ∈ U then a ∈ U .

Proof: (1) Let a ∈ X and u ∈ U . By axiom (UPE - 2), we have a · u = a and u · u = u. Applying
(UPE-1) a · a = u · (a · a) = (u · u)·

(
(a · u) · (a · u)

)
∈ U .

(2) and (3) proof directly follow from the Definition 3.2
(4) Assume that a · b ∈ U and b · c ∈ U . By Definition 3.2, a ≤ b means that either a = b or a · b ∈ U
with b /∈ U . If a = b, then a = c. In this case, since b · c ∈ U , we have b · c = a · c ∈ U .
(5) Assume that a · b ∈ U . Then, by Definition 3.2, we have a ≤ b, and therefor a · c ≤ b · c. By the
definition of the order, this implies (a · c) · (b · c) ∈ U .
(6) Can be proved similarly to (3).
(7) Suppose that u · a ∈ U and u ∈ U . By axiom (UPE-3), we have a = u · a. Since u · a ∈ U , it follows
that a ∈ U .

Proposition 3.2 Let XU be an extended UP- algebra.Then ∀a, b, c ∈ X and for every u ∈ U .

(1) a ≤ a,

(2) a ≤ b and b ≤ a, then a = b,

(3) If a ≤ u, then a = u

(4) If a ≤ b and b ≤ c, then a ≤ c.

Proof: (1) By the definition of the relation ≤ we have a ≤ a ⇔ a · a ∈ U . Since Proposition3.1 (1),
states that a · a ∈ U . For every a ∈ X, it follows that a ≤ a.
(2) Assume that a ≤ b and b ≤ a. Suppose, toward a contradiction, that a ̸= b. By Definition 3.2, the
assumptions a ≤ b and b ≤ a imply a · b ∈ U, b · a ∈ U, a, b /∈ U . By axiom (UPE-4), it follows that a = b,
which is a contradiction.
(3) Is similar to (1), the proof follows immediately by definition of ≤.
(4) Suppose that a ≤ b and b ≤ c. If a = b or b = c, the conclusion a ≤ c is immediate. Now suppose
a ̸= b and b ̸= c. By Definition 3.2, we have a · b ∈ U , b · c ∈ U and b, c /∈ U . Using (UPE-1), with y
replaced by a and c replaced by c, we obtain (b · c)·

(
(a · y) · (a · c)

)
∈ U . Since b · c ∈ U and U is closed

under left multiplication by (UPE-2), this simplifies to (a · c) ∈ U . Because c /∈ U , the definition of ≤
implies a ≤ c.
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Definition 3.3 A non-empty subset U of a UP-algebra X is called the minimal set of the ordered struc-
ture (XU ,≤) if, whenever a ≤ b, it follows that a = u for some u ∈ U , for all a, b ∈ X.

Lemma 3.1 An extended UP-algebra XU with binary relation ≤ is a partial ordered set with a minimal
set. Proof: From the definition of ≤ and Proposition 3.1 (1), we have a ≤ a for all x ∈ X. Thus ≤ is
reflexive. Now assume that a ≤ b and b ≤ a. If a = b, there is nothing to prove. Otherwise, by definition
≤, b·a ∈ U and a·b ∈ U . Using axiom (UPIE-4), this implies a = b. Hence, ≤ is antisymmetric. Next, to
show transitivity, assume a ≤ b and b ≤ c. If a = b or b = c, then clearly a ≤ c. Otherwise, by definition
of ≤, a ·b ∈ U and b ·c ∈ U . Applying axioms (UPE-1) and (UPE-3), we obtain (b ·c)·

(
(a ·b) · (a ·c)

)
∈ U ,

which forces a · c ∈ U . Hence a ≤ c, and so ≤ is transitive. Finally, for any u ∈ U and any a ∈ X,
we have a ≤ u by Definition 3.2. Thus, if a ≤ u for some u ∈ U , then Definition 3.2 implies a = u.
Therefore, every element of U is minimal, and U is the minimal set in (XU ,≤). Thus (XU ,≤) is a
partially ordered set with a minimal set U .

Theorem 3.1 Each UP-algebra is an extended UP-algebra; conversely, an extended UP-algebra is a
UP-algebra iff U consists of a single element.

Proof: Clearly, any UP-algebra (X; ·, 1) can be regarded as an extended UP-algebra XU by taking U =
{1}. Conversely, suppose XU is an extended UP-algebra with U = {u}. Then the structure (Xu; ·, 1 = u)
forms a UP-algebra. Now, assume that an extended UP-algebra XU is itself a UP-algebra. Let u1, u2 ∈ U .
By axiom (UPE-3), we have u1 ·u1 = u1 and u2 ·u2 = u2 However, since XU is a UP-algebra, Proposition
2.1 (1) implies that u1 · u1 = u2 · u2 = 1. Therefore u1 = u2 = 1, which leads to the conclusion that
U = {1}.

Example 3.2 Consider the set X = {a, b, c, d, e} and U = {a, b}. The binary operation ” · ” is defined
on X according to the table that follows.

· a b c d e
a a b c d e
b a b c d e
c a b a a e
d a a d a e
e a a b a a

The table shows that XU is an extended UP-algebra, but not UP-algebra since (d · b)·
(
(c · d) · (c · b)

)
= b ∈

U ̸= (c · b)·
(
(d · c) · (d · b)

)
= a ∈ U because U is not single element.

Theorem 3.2 Two extended UP-algebras X(U1) and X(U2) having the same operation must satisfy U1 =
U2. Proof: Suppose x ∈ U1. By axiom (UPE-3) we obtain x = x. Then using Proposition 3.2 (1), it
follows that x ∈ U2, so 1 ⊆ U2. Applying the same argument in the opposite direction yields U2 ⊆ U1.
Therefore, we conclude that U1 = U2.

Definition 3.4 Let Y ⊆ X and L ⊆ U . If the structure (Y ; ·, L) froms an extended UP-algebra on its
own, then (Y ; ·, L) is called an extended sub-algebra of XU .

Example 3.3 Let Y = {a, b, c} ⊆ X = {a, b, c, d} and U = {a, b}.

· a b c d
a a b c d
b a b c d
c c a b b
d a b d a

Then XU an extended UP-algebra, and YU is an extended sub-algebra of XU .

Proposition 3.3 Given a family {(Xi; ·;U)}(i∈∆) of extended UP-subalgebras of an extended UP-algebra
(XU ; ·;U), the intersection

⋂
(i∈∆)(Xu; ·; ) is itself an extended UP-algebra.
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Theorem 3.3 Let XU be an extended UP-algebra. A structure YM is an extended sub-algebra of XU iff
the following cicrumstances are met:

(1) a · b ∈ Y for all a, b ∈ Y ;

(2) M = U ∩ Y .

Proof: Assume that YM is a sub-algebra of the extended UP-algebra XU . Then for all a, b ∈ Y , we have
a · b ∈ Y . Let M = U ∩ Y . Since clearly M ⊆ U , it follows that YM is also a sub-algebra of XU . By
Theorem 3.2, we obtain M = L = U ∩ Y . The converse direction follows immediately.

Corollary 3.1 If XL is sub-algebra of XU , then it follows that L = U . Proof: Since XL is a sub-algebra
of XU , by definition we must have L = U ∩ X. But X is the entire algebra’s underlying set, therefor
U ∩ [X = U . Thus, L = U .

4. Ideals in extended UP-Algebras

This section studies ideals of extended UP-algebras and their main properties.

Definition 4.1 Let XU be an extended UP-algebra. A subset J ⊆ X is called an ideal of XU if the
following conditions hold:

(1) U ⊆ J ;

(2) For all a, b ∈ X, if a ∈ J and a · b ∈ J , then b ∈ J .

It is evident that the trivial ideals of XU are U and XU itself.

Example 4.1 Let X = {a, b, c, d, e} and U = {a, b}. The following table illustrates that XU forms an
extended UP-algebra.

· a b c d e
a a b c d e
b a b c d e
c a b a a e
d a a d a e
e a a b a a

Then {a, b, c, d} = J ⊆ X is an ideal of the extended UP-algebra XU .

Theorem 4.1 For every ideal J of the extended UP-algebra XU . If a ∈ J and a ≤ b, then b ∈ J . Proof:
Assume that J is an ideal of an extended UP -algebra XU . By Definition 3.2 if b ≤ a then either a = b
or a · b ∈ U and b /∈ U . By Definition 4.1 U ⊂ J so a · b ∈ J and J is an ideal of XU then b ∈ J .

Lemma 4.1 Let {Ji : i ∈ N} be an ideal family of XU . Then
⋂

(i∈N) Ji is also ideal of XU . Proof: Since

U ⊆ Ji∀i ∈ N , we have U ⊆
⋂

(i∈N) Ji. Let a, b ∈ X with a ∈
⋂

(i∈N) Ji and a · b ∈
⋂

(i∈N) Ji . Then

a, a · b ∈ Ji for each i. Because each Ji is an ideal, it follows that b ∈ Ji∀i, and hence b ∈
⋂

(i∈N) Ji .

Thus,
⋂

(i∈N) Ji is an ideal of XU .

Theorem 4.2 Let (X, ·, U) be an extended UP-algebra, and define (X1, ∗, 1) as a UP-algebra where

X1 = (X \ U) ∪ {1}.

Then, for any ideal J of the extended UP-algebra XU , the set

I1 = (J \ U) ∪ {1}

is an ideal of the UP-algebra X1.
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Proof: Clearly, 1 ∈ I1. Let a, b ∈ X1 and suppose b ∈ I1 with a ∗ b ∈ I1.

If b = 1, then a ∗ 1 = a ∈ I1, so the condition is satisfied.

Assume now that a, b ̸= 1. Then

a ∈ X1 \ {1} = X \ U, b ∈ I1 \ {1} = J \ U.

If a ∗ b = 1, then by the definition of the UP-algebra operation, a · b ∈ U . Since J is an ideal, a · b ∈ J
and b ∈ J imply a ∈ J . Moreover, a /∈ U , so a ∈ J \ U ⊆ I1.

If a ∗ b ̸= 1, then a · b /∈ U and
a ∗ b = a · b ∈ I1.

Because J is an ideal and b ∈ J , we deduce a ∈ J , hence a ∈ J \ U ⊆ I1.
In all cases, a ∈ I1, proving that I1 is an ideal of X1.

Example 4.2 Let X = {a, b, c, d, e} and U = {a, b}. The operation table below shows that XU forms an
extended UP-algebra.

· a b c d e
a a b c d e
b a b c d e
c a a a a e
d a a d a e
e a a b a a

Now, let X1 = {1, c, d, e} with the operation defined by the table below.

· 1 c d e
1 1 c d e
c 1 1 1 1
d 1 c 1 e
e 1 c d 1

Then X1 forms a UP-algebra. It can be observed that J = {a, b, c, d} is an ideal of XU , and I1 =
(J \ U) ∪ {1} = {1, c, d} is an ideal of X1.

Definition 4.2 Let (X1, ·1, U1) and (X2, ·2, U2) be two extended UP-algebras. A map τ : (X1, ·1, U1) →
(X2, ·2, U2) is called an isomorphism if:

(1) τ is bijective, and;

(2) For all a, b ∈ X1, τ(a ·1 b) = τ(a) ·2 τ(b).

If such a map τ exists, then (X1, ·1, U1) is said to be isomorphic to (X2, ·2, U2), and we write X1U1

∼= X2U2
.

Theorem 4.3 Let τ : (X1, ·1, U1) → (X2, ·2, U2) be an isomorphism between two extended UP-algebras.
Then τ(U1) = U2. Proof: By Definition 4.2, the structure (τ(X1), ·2, τ(U1)) is itself an extended UP-
algebra. Since τ(X1) = X2, it follws that (X2, ·2, τ(U1)) is an extended UP-algebra. Therefor, by Theorem
3.1 we conclude that τ(U1) = U2.

Theorem 4.4 Let τ : (X1, ·1, U1) −→ (X2, ·2, U2) be an isomorphism of extended UP-algebras, and let I
be an ideal of X1(U1). Then

J = τ(I)

is an ideal of X2(U2).

Proof: Since τ is bijective and I is an ideal of X1(U1), we have

U1 ⊆ I =⇒ τ(U1) ⊆ τ(I).

By Theorem 4.3, τ(U1) = U2, so
U2 ⊆ J = τ(I).

The remaining conditions for J to be an ideal follow immediately from the fact that τ is an isomorphism.
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5. Conclusion

In this paper, we introduced an extension of UP-algebras, called extended UP-algebras XU , defined
with respect to a non-empty subset U ⊂ X. We showed that every UP-algebra can be viewed as
an extended UP-algebra, and that an extended UP-algebra XU coincides with the original UP-algebra
X precisely when U is a singleton set. Several structural properties of extended UP-algebras were
established, including results describing the behaviour of ideals and the preservation of ideal structure
under isomorphisms. We also provided examples illustrating how extensions enlarge the algebra while
maintaining the UP-axioms and supporting the transfer of ideal-related properties. As possible directions
for future research, one may study similar extension techniques on other implication-based or logical
algebras. Further investigations might also consider identities and applications involving fuzzification,
rough sets, soft sets, coding theory, and related structures within the framework of extended UP-algebras.
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