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QSPR Study of Coumarins Based on the Hyper Neighbourhood Stress Index

Seema H. R. and R. Murali

ABSTRACT: In this paper, we introduce a novel molecular descriptor called the Hyper neighbourhood stress
index HNS(G), which is based on the neighbourhood stresses of individual vertices. We explore the HNS(G)
values for well-known graphs. Further, we perform QSPR (Quantitative Structure-Property Relationship)
analysis to study the intercorrelation between the HNS(G) of molecular graph structures and the structural
properties of coumarins. Our findings reveal a better correlation between the physicochemical properties of
coumarins and the HNS(G) of their molecular graph structures. Finally, we establish quadratic regression
models to relate these molecular descriptors with the physicochemical properties of coumarins.
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1. Introduction

Cancer cells are abnormal cells, and they can divide uncontrollably and can attack surrounding tissues.
These can destroy the normal cell growth and regulation called mutations. Cancer cells may also develop
resistance to programmed cell death and these cells are having longer life span than the normal cells.
They can create their own blood supply through an angiogenesis process. This process can support to
growth and spread of the cancer cell. Long term health condition disease like cancer, diabetes mellitus
respiratory related diseases and cardiovascular sickness have encounter large portion of population. These
diseases are parament and slowly progressive in the organs of human body. Due to this rigorous research
has been performed to develop potent drugs to cure these diseases.

Coumarins and derivatives of coumarins are mainly used for the treatment of cancer. They can occur
in any organ of the body and also have ability to fight against the side effect caused by the radio therapy.
Both natural and syntactic derivatives of coumarins drawn attention due to their photochemotherapy and
therapeutic applications in cancer. They can expose to a wide range of biological activities like warfarin
and dicoumaral are well known for their ability to hinder the blood clothing. Warfarin is mainly used
as an oral anti-coagulant to prevent and treat thromboembolic disorders such as deep vein thrombosis
and stroke. Coumarins are the class of aromatic compounds contains benzene ring(Cs) and pyrone
rings(C50). In this benzene ring is fused with lactone structure. The molecular formula of coumarin
is CoHgO2. Majority of the natural coumarins originate from the vascular plants such as novobiocin,
coumermycin and uflatoxin are produced by the microbial sources. Recent research in chemical graph
theory has led to the introduction of many new parameters in topological indices. By motivation on the
work of topological indices an attempt is made to define a new parameter in topological index and called
as Hyper neighbourhood stress index HNS(G). We placed explicit formulae for HNS(G) of standard
graph along with QSPR analysis of coumarins.
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2. Preliminary results

Harary’s textbook ([4]) provides standard vocabulary and principles in graph theory. This article will
provide nonstandard information when needed.

Let G = (V, E) be a graph (finite, simple, connected, undirected). The degree of a node v in G is
represented by deg(v). The shortest path (graph geodesic) between two nodes v and v in G is the path
with the fewest number of edges. A graph geodesic P passes through a node v in G if v is an internal
node of P.

Shimbel proposed the notion of stress as a centrality metric for nodes in networks (graphs) in 1953 [23].
This centrality metric has applications in biology, sociology, psychology, and other fields (see [8,21]). The
stress of a node v in a graph G, denoted by strg(v) str(v), is the number of geodesics traveling through.
Bhargava et al.’s study [3] examines the notions of stress number and stress regular graphs. A graph G
is considered k-stress regular if str(v) = k for every v € V(G). neighbourhood of a vertex v is defined as

Ne(v) ={u e V(G) | uwv € E(G)}.

The neighbourhood stress of a vertex v, denoted by Ng(v). This index is defined as the sum of the stresses
of the adjacent vertices of v, formally expressed as:

Ng(v) = Z str(u)

uENgG(v)

. The first neighbourhood stress index of a graph G [1] is defined as

NSi(G)= Y Niv)

veEV(Q)

The second neighbourhood stress index [6] of a graph G is defined as

NSy(G)= > Ny(u)Ny(v).

weE(G)

Within the scope of this investigation, we investigate finite simple connected graphs, which are also
referred to as graphs. A particular graph is denoted by the letter G, and the letter N is used to denote
the number of geodesics in GG that have a length of at least two. In response to the neighbourhood stress
on vertices and the related indices, we come up with a novel topological metric that we call the Hyper
neighbourhood stress index. In addition to constructing several inequalities, proving fundamental facts,
and calculating this index for a range of conventional graphs, Furthermore, we examine the chemical
significance of the Hyper neighbourhood stress index through regression analysis applied to anti-cancer
drugs, investigating its correlation with several physicochemical properties. Many stress related concepts
in graphs and topological indices have been defined and studied by several authors [1,2,5-7,9-20,22,24-26].

3. Hyper neighbourhood stress index

Definition 3.1 The Hyper neighbourhood stress index of a graph G is defined as

HNS(G)= > [Ni(u)+ Ny(v)]*. (3.1)

weE(G)
Definition 3.2 A graph G is called k- neighbourhood stress regular if Ny(v) = k for all v € V(G)

Corollary 3.1 If there is no geodesic of length > 2 in a graph G, then HNS(G) = 0. Moreover, for a
complete graph K,, HNS(K,) = 0.

Proof: If there is no geodesic of length > 2 in a graph G, then N,(v) = 0. Hence we have HNS(G) = 0.
In K, there is no geodesic of length > 2 and so HNS(K,,) = 0. O
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Proposition 3.1 For the complete bipartite K, ,,

m3n3

HNS(Kpn) = = [m+n— 2%

Proof: Let Vi = {v1,...,v} and Vo = {uq,...,u,} be the partite sets of K,, ,. We have,

n.m(m — 1)

Ns(vi):fforlgigm (3.2)
and
Ni(uj) = w for1<j<n. (3.3)

Using (3.2) and (3.3) in the Definition 3.1, we have

HNS(Kpp)= 3. [No(u) + Ny(v)]?
weE(G)

— > [Ny (v;) + Ny (u;)]?

1<i<m, 1<j<m

> [nmm; “1) , mntn = 1)}2

1<i<m, 1<j<m

= mn [anQ (m+n— 2)2}

4

3n3

== [m+n—2°.

3

Proposition 3.2 For the star graph K; , on n+ 1 vertices

2
n“(n—1
HNS(K;,) = %
Proof: In a star graph K, , internal vertex has neighbourhood stress zero and remaining n have
neighbourhood stress @ By the Definition 3.1, we have

HNS@G) = Y [No(u) + Ny(v))?
weE(G)
_ni(n—1)2
T4

Proposition 3.3 If G = (V, E) is a k-neighbourhood stress regular graph, then
HNS(G) = 4k?|E)|.
Proof: Suppose that G is a k-neighbourhood stress regular graph. Then

Ns(v) =k for all v € V(G).
By the Definition 3.1, we have

HNS(@) = > [No(w) + Ny(v))

wveE(G)
S k+k
weEE(G)
= 4K*|E|. O
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Corollary 3.2 For a cycle C,,

n(n —1)%(n — 3)2

1 , ifn is odd;
HNS(C,) = )
n3(n —2)?2 L
_ if n is even.
4
Proof: For any node v in C),, we have,
W7 if n is odd;
Ni(v) =
nin —2) e
_— if n is even.
4
Hence C,, is
—1\(n —
W—neighbourhood stress regular, if n is odd;
-2
%—neighbourhood stress regular, if n is even.

Since C,, has n edges, by Proposition 3.3, we have

(n = 1)*(n - 3)?

16 , if n is odd;
HNS(Cy) = 4n x
n?(n — 2)? e
— 16 if n is even.
-1 2 _ 2
n{n )4(” 3) . if n is odd;
B n3(n —2)?2

1 , if n is even.

Proposition 3.4 For the path P, on n nodes HNS(P,,)

n—2
=20Bn -8+ > [(i—-2)(n+1-i)+iln—1—i)+ (i —1)(n—1i)+(i+1)(n—i-2)>.
i=2
Proof: Let P, be the path with node sequence v1,vs,...,v,
We have ,
—=2)(n+1—-i)+in—1—1), ifl<i<n;
Ns(vi) -

(n—2), if i=1 or i=n.

Thus by the Definition 3.1, we have

HNS(P)= Y [Ny(u)+ Ny()

n—2

= [Ns(v1) + NS(U2)]2 + [Ns(vn-1) + NS(Un)]2 + Z [Ns(vi) + NS(vi+1)]2 .
=2
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Thus we have HNS(FP,)
:2(31178)2+Z_:[(if2)(n+lfz')Jri(nf1fi)Jr(i—1)(n72‘)+(i+1)(n7i72)]2.
O

Proposition 3.5 Let Wd(n,m) denotes the windmill graph constructed for n > 2 and m > 2 by joining
m copies of the complete graph K, at a shared universal node v. Then

m3(m —1)%(n —1)°(2n — 3)

HNS(Wd(n,m)) = 1

Hence, for the friendship graph Fy on 2k + 1 nodes,
HNS(Fy) = 24k*(k — 1),

Proof: In the windmill graph Wy(n, m), the stress of any node v; other than the universal node v is zero.
This is because the neighbors of each non-universal node induce a complete subgraph within Wy(n,m).
Since there are m copies of K, (the complete graph on n vertices) in Wy(n,m), and each node v; within
these copies is adjacent to the universal node v, it follows that all geodesics passing through v have length
2. Thus, the stress of v is given by str(v) = M Additionally, note that v has m(n—1) incident
edges, and all edges not incident to v connect nodes whose stress is zero. Therefore, the neighbourhood
stress of the universal node v is zero, while the neighbourhood stress of each remaining vertex wv; is

M. By Definition 3.1, we obtain

m2(m —1)2(n — 1)* m(n—1)(n — m(m —1)(n —1)272
HNS(Wd(n,m))m(nl)l ( 12 (n—1)" | mn—1)(n—2) 2m( ;)( 1)
_ m3(m —1)%(n —1)° N m3(m —1)%(n —1)%(n — 2)
4 2
m3(m —1)%(n —1)5(2n — 3)

4
Since the friendship graph Fj on 2k + 1 nodes is nothing but Wd(3, k), it follows that

HNSS(Fy) = 24k (k — 1),

Proposition 3.6 Let W,, denotes the wheel graph constructed on n > 4 nodes. Then

n?>—3n+6

5 } + (n—1)(n* = 5n +8).

HNS(W,) = (n — 1) {

Proof: In W,, with n > 4, there are (n — 1) peripheral nodes and one central node, say v. It is easy to

see that

(n—1)(n—-4)
2

Let p be a peripheral node. Since v is adjacent to all the peripheral nodes in W,,, there is no geodesic

passing through p and containing v. Hence we have

str(v) = (3.4)

strw, (p) = strw, —(p)
= stre,_, (p)
=1. (3.5)
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Thus we have ,

Ns(v)=(n—1)
and ) A
M@:@;¥ZJ+2

Let us denote the set of all the radial edges in W,, by R and the set of all peripheral edges by @. Note
that there are (n — 1) radial edges and (n — 1) perpheral edges in W,
Thus by the Definition 3.1, we have

HNS(W,) =(n—1) Z [Ns(v) + Ns(p)]2 +4(n—1) Z Ns(p)2
vpeE(G) peP(G)

n2 —5n 2
—(n—1) [(n1)+ (n*° —5n+8)

2 2
n 5n+8} +4(n—1)( ”

2

(1) [”2‘2’”6]2 +(n—1)(n® — 5n +8).

4. A QSPR Analysis

We investigated the physical characteristics of coumarins and coumarin-related compounds used in cancer
pharmacotherapy using QSPR. The Hyper neighbourhood stress index in molecular graphs was used in
this investigation. The Hyper neighbourhood stress index HNS(G) of molecular graphs is shown in
Table 1. The study also takes into account the experimental values for the following physical properties:
boiling point (BP) in °C at 760 mmHg, enthalpy of vaporization (E) in kJ/mol, flash point (FP) in °C,
molar refractivity (MR) in A%, polar surface area (PSA) in cm?, polarizability (P) in dyne/cm, and molar
volume (MV) in cm®. The source of these physical characteristics is http://www.chemspider. com/.

Table 1: Hyper neighbourhood stress index (HNS(G)), boiling
point (BP) , enthalpy of vaporization (E) , flash point (FP) , molar
refractivity (MR) , polar surface area (PSA) , polarizability (P) ,
and molar volume (MV) of anti-cancer drugs.

Drugs HNS(G) BP E FP MR PSA P MV
Coumestrol 6028117 406.0 68.3 199.3 69.4 80 27.5 167.4
Daphnetin 164240 430.4 71.2 184.5 43.5 67 17.3 114.0
Daphnin 5242130 670.0 103.4 252.4 7.4 146 30.7 202.6
Dicumarol 9603345 620.7 96.7 231.9 85.4 93 33.9 213.8
Esculetin 188781 469.7 76.0 201.5 43.5 67 17.3 114.0
Esculin 5727966 697.7 107.3 262.8 77.4 146 30.7 202.6
Gravelliferone 3379093 454.3 74.1 184.9 87.5 47 34.7 267.1
Herniarin 5248733 335.3 57.8 138.6 46.4 36 18.4 141.1
Imperatorin 1004938 448.3 70.7 224.9 75.0 49 29.7 217.5
Isobergapten 449605 412.4 66.5 203.2 56.6 49 224 158.0
Isopimpinellin 828179 448.7 70.7 225.1 63.3 58 25.1 182.0
Limettin 358438 388.1 63.7 176.3 53.1 45 21.1 165.1
Novobiocin 459749666 876.2 133.4 483.7 155.3 196 61.6 431.0
Pimpinellin 916350 441.0 69.8 220.5 63.3 58 25.1 182.0
Psoralen 235768 362.6 60.9 173.1 49.9 39 19.8 134.0
Seselin 720832 403.0 65.4 170.5 62.5 36 24.8 186.7
Skimmin 5248733 632.0 98.2 239.3 75.5 126 29.9 204.2
Umbelliferon 109165 382.1 65.5 181.2 41.6 47 16.5 115.5
Visnadin 9475176 477.7 74.2 206.9 99.3 88 39.4 307.2
Warfarin 4388626 515.2 82.9 188.8 84.4 64 33.5 235.8
Xanthotoxin 447292 414.8 66.8 204.7 56.6 49 224 158.0
Xanthyletin 1037870 340.0 58.4 159.5 45.4 29 18.0 133.9

Angelicin 192767 362.6 60.9 173.1 49.9 39 19.8 134.0
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Bergapten 447636 412.4 66.5 203.2 56.6 49 224 158.0
Alternariol 1201680 384.6 63.3 161.9 62.5 36 24.8 186.7

Regression Models

Using Table 1, a study was carried out with a quadratic regression model
P=A-(HNS(G))*+ B-(HNS(G)) + C,

where P = Physical property and HNS(G) = Hyper neighbourhood stress index.

Table 2: The correlation coefficient r from quadratic regression model between Hyper neighbourhood
stress index and physicochemical properties (BP, E, FP, MR, PSA, P, MV) of coumarins.

BP E FP MR PSA P MV
0.829 0.832 0.918 0.952 0.817 0.952 0.898

Figure 1: Graphical representation of the correlation coefficient (r) for HNS(G).
Quadratic Regression Model

R- Value

o
~

<
(N

BP E FP MR  PSA P MV
physicochemical properties

The quadratic regression models for boiling point (BP), enthalpy of vaporization (E), flash point (FP),
molar refractivity (MR), polar surface area (PSA), polarizability (P), and molar volume (MV) of anti-
cancer drugs are as follows:
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H]

Table 3: Statical parameters for the quadratic QSPR model for Hyper neighbourhood stress index

HNS(G) of lower alkanes.

Physiochemical properties R? Adjusted R? F Sig
boiling point (BP) 0.627 0.594 18.522 0.000
enthalpy of vaporization (E) 0.638 0.606 19.421 0.000
flash point (FP) 0.814 0.797 48.155 0.000
molar refractivity (MR) 0.817 0.8 48.946 0.000
polar surface area (PSA) 0.633 0.6 19.002 0.000
polarizability (P) 0.817 0.8 49.725 0.000
molar volume (MV) 0.734 0.71 30.352 0.000

BP =—-1.429 x 10713
E=-1.060x 107"

- (

(
FP=-1072x 107" . (HNS(G

(

(

(

MR = —-1.085 x 10713 (
PSA=-1.148 x 10713 . (NSS(Q))?
P=-1.034x 10713 . (NSS(Q@))?
2

HNS(G

(G))? +2.076 x 107° - HNSS(G) + 401.045
HNS(G))? +2.902 x 107¢ - HNS(G) + 65.817

(G))? +3.946 x 107% - NSS(G) + 188.483
NSS(G))? +4.12 x 1075 - NSS(G) + 52.94
+7.132 x 107 - NSS(G) + 45.904
+1.638 x 107% - NSS(G) + 20.993

MV = -1.22 x 10713 . (NSS(G))? +1.073 x 107° - NSS(G) + 150.704

AA/\A/\AA
il ol ol ol
N4 ;e W o~
JsZos &

Figure 2: Graphical representation of the scattered points and its quadratic fit using HNS(G) for boiling

point.
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Figure 3: Graphical representation of the scattered points and its quadratic fit using HNS(G) for enthalpy

of vaporization.
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Figure 4: Graphical representation of the scattered points and its quadratic fit using HNS(G) for flash

point.
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Figure 5: Graphical representation of the scattered points and its quadratic fit using HNS(G) for molar

refractivity.
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Figure 6: Graphical representation of the scattered points and its quadratic fit using HNS(G) for polar

surface area.
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Figure 7: Graphical representation of the scattered points and its quadratic fit using HNS(G) for polar-
izability.
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Figure 8: Graphical representation of the scattered points and its quadratic fit using HNS(G) for molar
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5. Conclusion

In this exploration we proposed explicit formulae for HNS(G) of some standard graphs. And table 2

shows that the quadratic regression models (4.1)-(4.2)-(4.3)-(4.4)-(4.5)-(4.6)-(4.7) are effective in predict-
ing the physical properties of anti-cancer drugs. It demonstrates that the Hyper neighbourhood stress
index may be utilized as a forecasting tool in QSPR research.
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