
Bol. Soc. Paran. Mat. (3s.) v. 2026 (44) 5 : 1–13.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.80627

Approximation of Fuzzy Numbers by Modified Meyer-König and Zeller Operators:
Implications for Medical Diagnosis Modeling

Saleem Yaseen Majeed∗, Ecem ACAR and Sevilay Kırcı Serenbay

abstract: In this work, the modified Meyer-König and Zeller operators are generalized to arbitrary compact
intervals, and their approximation behavior and structural properties are thoroughly analyzed. In particular,
we establish that the extended operators maintain key qualitative features such as monotonicity and shape
preservation across any compact domain. To illustrate the practical utility of the framework, the proposed
operators are applied to the fuzzy modeling of diagnostic indicators in cancer patients. The accompanying
numerical experiments, supported by detailed graphical and tabular analyses, confirm that the modified Meyer-
König and Zeller operators yield highly accurate approximations while preserving the interpretability and
clinical relevance of fuzzy medical data.
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1. Introduction

The approximation of continuous functions has been a fundamental theme in analysis since the classi-
cal theorem of Weierstrass (1885), which established that every continuous function on a compact interval
may be uniformly approximated by polynomials to arbitrary precision. Bernstein’s constructive formu-
lation of this result through his celebrated polynomials provided the first explicit approximation scheme
and subsequently inspired the systematic development of positive linear operators. Korovkin’s theorem
(1953) later refined this framework by offering concise and powerful criteria for the uniform convergence
of operator sequences, thereby solidifying the foundations of modern approximation theory.

Among the numerous operator families studied within the Korovkin framework, the Meyer–König and
Zeller (MKZ) operators, introduced in 1960 [19], hold a distinguished position due to their flexibility and
strong approximation properties. For υ ∈ [0, 1], they are defined by

Mn (υ; [0, 1]) (x) =

∞∑
k=0

wn,k (x) · υ
(

k

n+ k

)
where

wn,k (x) =

(
n+ k

k

)
xk (1− x)

n+1
, n ∈ N.
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In recent years, several modifications of the MKZ operators have been proposed to enhance their
endpoint behavior, smoothness reproduction, and stability. A prominent example is the class of Mod-
ified Meyer–König and Zeller (M-MKZ) operators introduced by Rempulska and Tomczak [20]. These
operators incorporate higher-order Taylor terms and are defined by

Mn,r (υ; [0, 1]) (x) =

∞∑
k=0

wn,k(x) ·
r∑

j=0

υ(j) (ξn,k)

j!
(x− ξn,k)

j

where the weights and nodes are given by

wn,k (x) :=

(
n+ k

k

)
xk (1− x)

n+1
, ξn,k =

k

n+ k
, and υ ∈ Cr[a, b]

Their construction ensures improved approximation accuracy as the smoothness of the target function
increases, while maintaining essential structural qualities such as constant reproduction and endpoint
preservation.

Parallel to these advancements, the emergence of fuzzy set theory, pioneered by Zadeh (1965), has
transformed the mathematical treatment of imprecision and uncertainty. Fuzzy numbers—developed
extensively by Dubois, Prade, and others [13]—provide a flexible representation of uncertain quantitative
information. Because fuzzy membership functions can be analytically complex, a variety of approximation
schemes have been developed to simplify their structure while preserving interpretability. These include
interval-based approaches [10,15], triangular forms [4,5,8,14,22], trapezoidal models [6,7,16,21], L–U
parameterizations [2,3,23], and max-product methods [1,9,17,18].

The interface between approximation operators and fuzzy number theory has therefore become a fertile
area of research. By employing operator-theoretic techniques, one may obtain analytically tractable and
computationally efficient representations of fuzzy membership functions, thereby merging the rigor of
positive operator theory with the practical demands of uncertainty modeling. This synthesis has found
applications across engineering, decision sciences, and biomedical diagnostics.

In this article, we pursue this line of inquiry by extending and employing the M-MKZ operators
on general compact intervals and analyzing their approximation rates, uniform convergence properties,
and preservation of essential shape characteristics. These theoretical results are complemented by a
practical application to cancer diagnosis, where fuzzy representations of key oncological indicators—tumor
size, biomarker concentration, and cell density—are approximated using the proposed operators. This
dual theoretical–practical contribution highlights both the improved mathematical performance of the
generalized M-MKZ operators and their effectiveness in modeling complex, uncertain biomedical data.

2. Preliminaries

2.1. Basic concepts of fuzzy numbers

Definition 2.1 (fuzzy numbers) [11,13] A fuzzy number µ̃ is a fuzzy subset of R with membership
function µµ̃ : R → [0, 1], if and only if µµ̃ satisfies the following conditions:

1. ∃t0 ∈ R such that µµ̃ (t0) = 1 (normality);

2. µµ̃ (αt1 + (1− α) t2) ≥ min{µµ̃ (t1) , µµ̃ (t2)} for all t1, t2 ∈ R, α ∈ [0, 1] (fuzzy convexity);

3. µµ̃ is upper semicontinuous;

4. the support of µ̃ is compact.

Thus, for any fuzzy number µ̃, the membership function µµ̃ can be expressed as:
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µµ̃(t) =



0, t < t1,

lµ(t), t1 ≤ t ≤ t2,

1, t2 ≤ t ≤ t3,

rµ(t), t3 ≤ t ≤ t4,

0, t > t4,

where lµ : [t1, t2] → [0, 1] is non-decreasing (the left side of µµ̃), and rµ : [t3, t4] → [0, 1] is non-
increasing (the right side of µµ̃). The collection of all fuzzy real numbers will be denoted by RF .

Definition 2.2 (α-cut) [12] The α-cut of µ̃ ∈ RF , for α ∈ (0, 1], is the crisp set

µ̃α = {t ∈ R | µµ̃(t) ≥ α}.

Clearly,
µ̃α = [µ̃l(α), µ̃r(α)], α ∈ (0, 1],

where
µ̃l(α) = inf{t ∈ R | µµ̃(t) ≥ α}, µ̃r(α) = sup{t ∈ R | µµ̃(t) ≥ α}.

Remark 2.1

1. The core of µ̃, denoted core(µ̃), corresponds to α = 1, i.e., µ̃1 = [µ̃l(1), µ̃r(1)].

2. The support of µ̃, denoted supp(µ̃), corresponds to α = 0, i.e., µ̃0 = [µ̃l(0), µ̃r(0)].

2.2. Constructing Operators on Compact Intervals [a, b] with Auxiliary Concepts.

In this part, we generalize the operator

Mn,r(υ; [0, 1]) (x)

to an arbitrary compact interval [a, b]. This extension, inspired by the classical Weierstrass approximation
theorem, enables MKZ-type operators to be applied beyond the unit interval, thereby broadening their
analytical and practical scope.

Definition 2.3 Let µ̃ ∈ R+
F be a fuzzy-valued function continuous on [a, b] with µ̃ ∈ Cr[a, b]. Suppose

a < c ≤ d < b, where the core and support of µ̃ satisfy

core(µ̃) = [c, d], supp(µ̃) = [a, b].

For any t ∈ [a, b], we define the operator

M̃n,r(µ̃; [a, b]) (t) =

∞∑
k=0

wn,k(t)φ
(µ̃)
r (ξn,k; t),

where the weights and nodes are given by

wn,k(t) =

(
n+ k

k

)(
t− a

b− a

)k (
b− t

b− a

)n+1

, ξn,k =
k

n+ k
.

Here φ
(µ̃)
r (ξn,k; t) denotes the Taylor polynomial of degree r for µ̃ ∈ Cr[a, b], expanded at

a+ (b− a) ξn,k,

and is given explicitly by

φ(µ̃)
r (ξn,k; t) =

r∑
j=0

µ̃(j)(a+ (b− a)ξn,k)

j!

(
t− a

b− a
− ξn,k

)j

.
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Note 1 For brevity, we denote the general compact interval [a, b] by Ĩ and the unit interval [0, 1] by I
throughout the remainder of this paper.

Theorem 2.1 [20] Let r ∈ N be fixed. Then there exists a constant C(r) > 0 such that, for every
υ ∈ [0, 1] and n ∈ N,

|Mn,r(υ; [0, 1]) (x)− υ(x)| ≤ C(r)

(
1√
n

)r

ω

(
υ(r),

1√
n

)
I

,

where ω(·, ·)I denotes the modulus of continuity on the interval I.

Remark 2.2 [17] Let µ̃ be a quasi − convex continuous function on Ĩ, then there is a point c ∈ Ĩ
such that µ̃ is non-increasing on [a, c] and non-decreasing on [c, b].

3. Approximation and Preservation of Shape Properties

This section develops the approximation properties of the M–MKZ operators on general compact
intervals and examines their ability to preserve essential shape characteristics. Subsection 3.1 begins
with a key remark that extends a classical result attributed to Weierstrass and forms the analytical
foundation for the results that follow.

3.1. Approximation by M–MKZ Operators on Compact Intervals [a, b]

Remark 3.1 Let µ̃ : Ĩ → R+ be continuous on the compact interval Ĩ = [a, b], and define υ : I → R+

on I = [0, 1] by
υ(x) = µ̃

(
a+ (b− a)x

)
, a, b ∈ R.

It follows directly that

υ

(
k

n+ k

)
= µ̃

(
a+ (b− a)

k

n+ k

)
,

and, for every j = 0, 1, . . . , r,

υ(j)

(
k

n+ k

)
= µ̃(j)

(
a+ (b− a)

k

n+ k

)
.

Furthermore, introducing the transformation

x =
t− a

b− a
, t ∈ Ĩ ,

we obtain

υ

(
t− a

b− a

)
= µ̃(t), t = a+ (b− a)x.

Combining these identities yields the correspondence

M̃n,r(µ̃; [a, b]) (t) = Mn,r(υ; [0, 1]) (x),

establishing a direct link between the operator on [a, b] and its counterpart on the unit interval.

Theorem 3.1 Let µ̃ be a continuous fuzzy-valued function belonging to Cr[a, b], and let r ∈ N be fixed.
Then there exists a constant C(r) > 0 such that, for all t ∈ Ĩ,∣∣∣M̃n,r(µ̃; [a, b]) (t)− µ̃(t)

∣∣∣ ≤ C(r)

(
1√
n

)r (
[b− a] + 1

)
ω

(
µ̃(r),

1√
n

)
Ĩ

,

where ω(·, ·)Ĩ denotes the modulus of continuity on the interval Ĩ.
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Proof: By Remark 3.1, we have

M̃n,r(µ̃; [a, b]) (t) = Mn,r(υ; [0, 1]) (x),

with x = (t− a)/(b− a).

Since υ ∈ Cr[0, 1], Theorem 2.1 yields∣∣∣M̃n,r(µ̃; [a, b]) (t)− µ̃(t)
∣∣∣ = |Mn,r(υ; [0, 1]) (x)− υ(x)| ≤ C(r)

(
1√
n

)r

ω

(
υ(r),

1√
n

)
I

.

Using the relation between υ(r) and µ̃(r) established in Remark 3.1, and applying standard scaling
properties of the modulus of continuity, we obtain

ω

(
υ(r),

1√
n

)
I

≤ ω

(
µ̃(r),

b− a√
n

)
Ĩ

≤
(
[b− a] + 1

)
ω

(
µ̃(r),

1√
n

)
Ĩ

.

The stated estimate follows immediately. 2

Corollary 3.1 Let µ̃ ∈ Cr[a, b] for some r ∈ N, and suppose further that the r-th derivative satisfies
µ̃(r) ∈ Lip(α), for some constants M > 0 and 0 < α ≤ 1. Then, for every t ∈ [a, b] and every n ∈ N, the
approximation error of the operator Mn,r admits the estimate∣∣∣M̃n,r(µ̃; [a, b]) (t)− µ̃(t)

∣∣∣ ≤ C(r)
(
[b− a] + 1

)
M n−(r+α)/2,

where C(r) > 0 is a constant depending only on r.

Proof: From Theorem 3.1 we have the uniform approximation estimate∣∣∣M̃n,r(µ̃; [a, b]) (t)− µ̃(t)
∣∣∣ ≤ C(r)

(
1√
n

)r (
[b− a] + 1

)
ω

(
µ̃(r),

1√
n

)
Ĩ

,

By definition of ω and the Lipschitz assumption on µ̃(r),

ω

(
µ̃(r),

1√
n

)
Ĩ

= sup
x,y∈Ĩ

|x−y|≤1/
√
n

|u(r)(x)− u(r)(y)| ≤ M

(
1√
n

)α

.

Substituting this into the inequality above yields∣∣∣M̃n,r(µ̃; [a, b]) (t)− µ̃(t)
∣∣∣ ≤ C(r)

(
[b− a] + 1

)
M

(
1√
n

)r+α

= C(r)
(
[b− a] + 1

)
M n−(r+α)/2,

which completes the proof. 2

3.2. Monotonicity and shape-preserving properties

In approximation theory, one of the central questions is whether an operator preserves the quali-
tative features of the target function. Among these features, monotonicity and quasi-convexity play a
fundamental role in ensuring that the approximants respect the underlying shape of the function. In
this section, we establish that the operators M̃n,r(µ̃; [a, b]) (t) preserve non-increasing monotonicity, non-

decreasing monotonicity, and quasi-convexity. The proofs rely on the correspondence between M̃n,r on
[a, b] and Mn,r on [0, 1] given in Remark 3.1, together with the characterization of quasi-convex functions
in Remark 2.2.
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Theorem 3.2 Let µ̃ ∈ Cr+1[a, b] be nonincreasing on [a, b]. Then, for each fixed n ∈ N, the function

t 7−→ M̃n,r(µ̃; [a, b]) (t)

is nonincreasing on [a, b].

Proof: By Remark 3.1, set υ(x) = µ̃(a+ (b− a)x) on [0, 1], so that

M̃n,r(µ̃; [a, b])(t) = Mn,r(υ; [0, 1])(x), x = t−a
b−a .

Since µ̃ is nonincreasing and t 7→ x is increasing, υ is nonincreasing on [0, 1]. It suffices to show that
Mn,r(υ; [0, 1]) is nonincreasing.

Using the Peano kernel representation of Mn,r, one obtains

Mn,r(υ; [0, 1])(x) = υ(x)− 1

r!

∫ 1

0

Kn,r(x, s) υ
(r+1)(s) ds,

where Kn,r(x, s) ≥ 0 is a nonnegative kernel supported in [0, x]. Differentiating with respect to x and
performing r integrations by parts yields

d

dx
Mn,r(υ; [0, 1])(x) = υ′(x) +

∫ x

0

Kn,0(x, s) υ
′(s) ds,

with Kn,0(x, s) ≥ 0. Since υ′ ≤ 0, the derivative is nonpositive, proving that Mn,r(υ; [0, 1]) is nonin-
creasing. Mapping back to [a, b] completes the proof. 2

Theorem 3.3 Let µ̃ ∈ Cr+1[a, b] be nondecreasing on [a, b]. Then, for each fixed n ∈ N, the function

t 7−→ M̃n,r(µ̃; [a, b]) (t)

is nondecreasing on [a, b].

Proof: As in Theorem 3.2, set υ(x) = µ̃(a + (b − a)x), so that υ is nondecreasing on [0, 1]. The same
kernel representation gives

d

dx
Mn,r(υ; [0, 1])(x) = υ′(x) +

∫ x

0

Kn,0(x, s) υ
′(s) ds,

with Kn,0(x, s) ≥ 0. Since υ′ ≥ 0, the derivative is nonnegative, hence Mn,r(υ; [0, 1]) is nondecreasing.
The monotonicity transfers to [a, b] via x = (t− a)/(b− a). 2

Theorem 3.4 Let µ̃ ∈ Cr+1[a, b] be quasi-convex on [a, b]. Then, for each fixed n ∈ N, the function

t 7−→ M̃n,r(µ̃; [a, b]) (t)

is quasi-convex on [a, b].

Proof: By Remark 2.2, there exists c ∈ [a, b] such that µ̃ is nonincreasing on [a, c] and nondecreasing on
[c, b]. Let α = (c − a)/(b − a) ∈ [0, 1] and define υ(x) = µ̃(a + (b − a)x), so that υ is nonincreasing on
[0, α] and nondecreasing on [α, 1].

From the kernel representation,

d

dx
Mn,r(υ; [0, 1])(x) = υ′(x) +

∫ x

0

Kn,0(x, s) υ
′(s) ds,

with Kn,0(x, s) ≥ 0. For x ∈ [0, α], both terms are nonpositive, so the derivative is ≤ 0, and
Mn,r(υ; [0, 1]) is nonincreasing. For x ∈ [α, 1], the second term eventually dominates the negative con-
tribution from [0, α], ensuring that the derivative becomes nonnegative beyond some α̃ ∈ [α, 1]. Thus
Mn,r(υ; [0, 1]) is nonincreasing on [0, α̃] and nondecreasing on [α̃, 1], i.e., quasi-convex. Mapping back to
[a, b] yields the result. 2
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Remark 3.2 The proofs above demonstrate that the operators M̃n,r(µ̃; [a, b]) (t) are shape-preserving :
they respect the monotonicity and quasi-convexity of the target function. Intuitively, this follows
from the fact that the operator is a positive linear combination of local Taylor expansions evaluated
at nodes that move monotonically across the interval. As the input variable increases, the weight
distribution shifts toward nodes further to the right, and the monotone or quasi-convex structure of
the function ensures that the operator output inherits the same qualitative behavior. This combina-
tion of rigorous kernel analysis and intuitive weight-shift interpretation strengthens the theoretical
foundation of the approximation process.

The theoretical framework developed above, centered on M-MKZ operators for the approximation of
fuzzy numbers, has established their monotonicity and shape-preserving properties. These results guar-
antee that the operators respect essential qualitative features such as non-increasing and non-decreasing
behavior, as well as quasi-convexity. Such properties are not only mathematically significant but also
critically important in applications where fuzzy modeling captures uncertainty and imprecision. In the
subsequent section, Important results and discussion, we demonstrate how these theoretical guarantees
translate into practical benefits in medical diagnosis, with particular emphasis on cancer patients. This
applied analysis illustrates how shape-preserving approximation ensures that diagnostic functions and
risk assessments retain their inherent structure, thereby supporting reliable clinical interpretation and
decision-making.

4. Important Results and Discussion

• Clinical Data and Preprocessing for Fuzzy Modeling

The application of fuzzy approximation operators in medical diagnosis enables a nuanced interpre-
tation of clinical uncertainty, particularly in oncology where biomarker variations and tumor metrics
seldom conform to sharp thresholds. In this study, synthetic clinical data were constructed for five pa-
tients diagnosed with early-stage malignant tumors. Each patient is described by three decisive clinical
attributes: tumor size (cm), biomarker level (ng/mL), and cell density

(
×103cells/mm3

)
. These features

are selected based on their diagnostic relevance in tumor progression and response to treatment.
Table 1 presents the raw clinical measurements. The lower and upper bounds of each attribute are

determined according to the World Health Organization (WHO) and clinical oncology reports to ensure
consistency with medically validated ranges. Specifically, tumor size typically varies within [0.5, 10.0]cm,
biomarker levels within [0, 200]ng/mL, and cell density with in [10, 200] ×103cells/mm3 for comparable
patient cohorts.

Table 1: Hypothetical raw clinical data (5 patients × 3 features).

Patient Tumor size (cm) Biomarker (ng/mL) Cell density
(
×103/mm3

)
1 1.93 20 33
2 3.83 80 70.8
3 5.73 120 120
4 7.62 160 158
5 9.53 196 192.5

Given the heterogeneity in physical units and measurement scales across the clinical features, all
variables were normalized to the common interval [0, 1] using a linear transformation consistent with
WHO reference limits:

t =
x− L

U − L

where x denotes the raw clinical measurement, and [L,U ] represents the physiologically admissible
range for the corresponding attribute.

This rescaling step ensures numerical stability and allows the M-MKZ operators-defined on an ar-
bitrary closed interval [a, b]-to act uniformly across all features. Because normalization is an invertible
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linear transformation, it preserves the intrinsic ordering and relative distances among data points, thereby
maintaining the theoretical integrity of the operator framework.

Table 2 presents the normalized dataset, which serves as the basis for constructing the fuzzy repre-
sentations employed in the subsequent stages of analysis.

Table 2: Normalized clinical data.

Patient Tumor size (cm) Biomarker (ng/mL) Cell density
(
×103/mm3

)
1 0.15 0.10 0.12
2 0.35 0.40 0.32
3 0.55 0.60 0.58
4 0.75 0.80 0.78
5 0.95 0.98 0.96

For instance, patient P1’s tumor size was normalized as:

t =
1.93− 0.5

10.0− 0.5
≈ 0.15

which aligns all measurements proportionally within the standard interval.
This unified normalization framework forms the quantitative basis for fuzzy number approximation

and subsequent application of M-MKZ operators.

• Fuzzy Representation of Clinical Features

Following the normalization of clinical data, each diagnostic characteristic is represented by a trape-
zoidal fuzzy number calibrated according to internationally recognized diagnostic thresholds reported by
the World Health Organization (WHO, 2023), and the American Joint Committee on Cancer
(AJCC, 2022). These references were consulted solely to align the parameter ranges with values of
established diagnostic importance. The aim is mathematical consistency, not medical interpretation,
ensuring that the fuzzy framework remains rigorous yet applicable to real diagnostic ranges.

Accordingly, the normalized trapezoidal fuzzy numbers for the three diagnostic features are defined
as:

µ̃T (t) =


20

3
t− 1

3
, if 0.05 ≤ t < 0.20,

1, if 0.20 ≤ t ≤ 0.70,

4.5− 5t, if 0.70 < t ≤ 0.90.

µ̃B(t) =


20

3
t− 2

3
, if 0.10 ≤ t < 0.25,

1, if 0.25 ≤ t ≤ 0.75,

4.75− 5t, if 0.75 < t ≤ 0.95.

µ̃C(t) =


50

7
t− 4

7
, if 0.08 ≤ t < 0.22,

1, if 0.22 ≤ t ≤ 0.72,

4.6− 5t, if 0.72 < t ≤ 0.92.

where µ̃T (t), µ̃B(t) and µ̃C(t) denote the membership degrees of tumor size, biomarker level, and cell
density, respectively.

Table 3Computed membership degrees µ̃ for each normalized feature(see Figure 1).
For illustration, patient (P3) has (t3 = 0.55), which lies within the core interval of (µ̃T (t)), giving

(µ̃T (t3) = 1). Conversely, (t4 = 0.75) for patient (P4) falls within the right support, yielding a gradual
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Table 3: Fuzzy representation for each normalized feature.

Patient µ̃T (t) µ̃B (t) µ̃C (t)

1 0.67 0.00 0.29
2 1.00 1.00 1.00
3 1.00 1.00 1.00
4 0.75 0.75 0.70
5 0.00 0.00 0.00

decrease to (µ̃T (t4) = 0.75) (see Figure 1). Analogous reasoning applies to the biomarker and cell-density
measures.

This stage establishes a rigorous mapping from crisp inputs to fuzzy-valued representations, form-
ing the analytical foundation for applying M-MKZ operators in the next section. These operators will
then approximate the constructed fuzzy structures while preserving their key properties of continuity,
convexity, and bounded support.

• Application of the M-MKZ Operators to Fuzzy Feature Approximation

Having established trapezoidal fuzzy representations for tumor size, biomarker concentration, and
cell density, the subsequent stage applies the M-MKZ operators to approximate these fuzzy membership
profiles defined over their respective physical domains [a, b]. This extension ensures that the approxima-
tion mechanism operates directly within the natural range of each biomedical variable-rather than on a
normalized unit interval-thus preserving the interpretive link between the mathematical construction and
the corresponding physiological parameter.

In practice, the M-MKZ operator acts on each fuzzy membership function µ̃Fi (t) associated with a
feature Fi ∈ {T,B,C} and produces the smoothed representation M̃n,r (µ̃Fi ; [a, b]) (t) defined on [a, b].
The operator combines polynomial weights with derivative information at localized nodes, providing
a stable and differentiable reconstruction of the underlying fuzzy surface. This procedure preserves the
convexity and normalization of the original fuzzy numbers while significantly reducing local discontinuities
at support boundaries.

Table 4 summarizes the computed results for a representative rank (n = 100), showing both the
original and the approximated membership values for five patients across the three features.

Table 4: Fuzzy representation and M-MKZ operator approximation for all Patients.

Patient µ̃T (t) M̃n,r (µ̃T ; [a, b]) µ̃B (t) M̃n,r (µ̃B ; [a, b]) µ̃C (t) M̃n,r (µ̃C ; [a, b])

1 0.67 0.656 0.00 0.084 0.29 0.298
2 1.00 0.999 1.00 0.998 1.00 0.998
3 1.00 1.000 1.00 1.000 1.00 1.000
4 0.75 0.741 0.75 0.744 0.70 0.696
5 0.00 0.001 0.00 0.000 0.00 0.000

The results confirm that the operator yields numerically stable and monotonically consistent approx-
imations across the entire domain. Each approximated value remains within the valid fuzzy interval,
indicating that the transformation preserves both the support and the core of the original fuzzy numbers
(see Figure 1). For example, patient (P1) shows a modest increase in cell density membership from 0.28
to 0.319, illustrating the smoothing adjustment near the transition from support to core.

To examine the convergence characteristics of the M–MKZ operators, the approximation error was
evaluated for several operator classes, specifically (n = 10, 20, 60, 100). The reported values represent
the mean relative approximation error, expressed as a percentage, and serve as a direct indicator of the
improvement in approximation quality as the operator rank increases.
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(a) Approximation of the trapezoidal fuzzy number for
tumor size.
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(b) Approximation of the trapezoidal fuzzy number for
biomarker level.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
e
n
s
it
y
(x

)

(c) Approximation of the trapezoidal fuzzy number for cell density.

n=5 , n=20 , n=60 , n=100 , µ̃ (t)

Figure 1: Approximation of M-MKZ Operators w.r.t. Varying Orders of ”n”

For the tumor-size membership function, the computed error percentages En are:
E10 = 44.38, E20 = 28.81, E60 = 14.56, E100 = 11.39.
As shown in Figure 2, the error decreases consistently across these operator classes, reflecting the

enhanced fidelity of the M–MKZ approximation at higher ranks. This behavior aligns with the expected
convergence properties of the operator family and confirms that the approximation improves without
compromising the structural integrity of the underlying fuzzy set.

In summary, applying the M-MKZ operators directly over the true domain [a, b] yields high-fidelity
approximations that are both mathematically robust and biomedically meaningful. The rapid decay of the
approximation error as (n) increases highlights the numerical efficiency of the method and underscores its
potential as a reliable analytical tool for fuzzy data approximation in complex medical and physiological
modeling applications.

• Interpretation of Joint Risks under the M-MKZ operators Approximation

Following the application of the M-MKZ operators to approximate the fuzzy membership functions
of the three clinical features-tumor size, biomarker concentration, and cell density-the resulting approxi-
mation outputs were combined to derive an integrated fuzzy risk score for each patient.

To translate the three approximated memberships into a single interpretable measure, the following
Joint Risk Index (JRI) was defined for each patient(i):

JRIi =
1

3

[
M̃n,r (µ̃Ti

) + M̃n,r (µ̃Bi
) + M̃n,r (µ̃Ci

)
]

The resulting index lies within the interval [0, 1], with values approaching one indicating a higher
estimated pathological risk (see Table 5). The use of an unweighted arithmetic mean provides a neutral
aggregation mechanism, ensuring that no single feature disproportionately influences the composite risk
measure unless justified by the data itself.

Table 5 presents the obtained joint fuzzy risk measures for all patients.
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Figure 2: Error of approximation by M-MKZ operators

Table 5: Joint Risk Index for all patients.

Patient JRIi Condition

1 0.346 Good
2 0.998 Bad
3 1.000 Bad
4 0.727 Bad
5 0.000 Good

For instance, patient P2 exhibits near-maximal membership values across all three features, yielding a
joint index of approximately 0.998, indicative of high estimated risk. Conversely, patient P1 has markedly
lower memberships, resulting in a joint index near 0.346, corresponding to minimal concern under the
same risk scale.

The gradient observed in the JRIi values reflects a coherent and diagnostically meaningful ordering
of patients from lower to higher risk. This demonstrates that the M-MKZ approximations preserve the
intrinsic relational structure of the original fuzzy data while producing numerically stable and smooth
membership estimates.

Overall, this stage of the analysis highlights the complementary roles of approximation theory and
clinical interpretation. The M-MKZ operators ensure mathematically rigorous and uniformly convergent
approximations on [a, b], while the aggregation of these outputs into a Joint Risk Index provides a concise,
interpretable, and clinically relevant summary of multi-attribute fuzzy risk. This illustrates the operator
system’s potential as a robust analytical bridge between advanced fuzzy approximation techniques and
practical medical decision support.
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