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Reduced Second Stress Index

Seema H. R.∗ and R. Murali

abstract: The stress of a vertex is a node centrality index, which has been introduced by Shimbel (1953).
The stress of a vertex in a graph is the number of geodesics (shortest paths) passing through it. A topological
index of a chemical structure (graph) is a number that correlates the chemical structure with chemical reactivity
or physical properties. In this paper, we introduce a new topological index for graphs called reduced second
stress index using stresses of vertices. Further, we establish some inequalities, prove some results and compute
reduced second stress index for some standard graphs.
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1. Introduction

For standard terminology and notation in graph theory, we follow the textbook by Harary [7]. Any
non-standard terminology required in this work will be introduced at the appropriate points.

Let G = (V,E) be a finite, undirected graph. The distance between two vertices u and v in G, denoted
by d(u, v), is the number of edges in a shortest path a geodesic joining them. A geodesic P is said to
pass through a vertex v if v appears as an internal vertex of P ; that is, v lies on P but is not one of its
endpoints. The degree of a vertex v is denoted by d(v).

The notion of stress of a vertex as a centrality measure was introduced by Shimbel in 1953 [27]. This
measure has since found applications in biology, sociology, psychology, and other disciplines (see [25,11]).
The stress of a vertex v in a graph G, denoted strG(v) or simply str(v), is defined as the number of
geodesics that pass through v. The maximum and minimum stress among all vertices of G are denoted
by ΘG and θG, respectively. The concepts of the stress number and stress-regular graphs were introduced
by Bhargava, Dattatreya, and Rajendra [3]. A graph G is said to be k-stress regular if str(v) = k for
every vertex v ∈ V (G).

The well-known Zagreb indices, defined in terms of vertex degrees, have been widely used to study
molecular structures of chemical compounds [5,6]. For a simple graph G, the first and second Zagreb
indices are defined as

M1(G) =
∑

v∈V (G)

d(v)2, (1.1)

M2(G) =
∑

uv∈E(G)

d(u)d(v). (1.2)

Inspired by these classical indices, Rajendra et al. [16] introduced two analogous invariants based on
vertex stress, called the first stress index and the second stress index. For a simple graph G, they are
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defined as

S1(G) =
∑

v∈V (G)

str(v)2, (1.3)

S2(G) =
∑

uv∈E(G)

str(u) str(v). (1.4)

It is well known that the first Zagreb index satisfies the identity

M1(G) =
∑

uv∈E(G)

(
d(u) + d(v)

)
. (1.5)

However, an analogous identity does not hold for the first stress index. To illustrate this, consider the
path P3 on three vertices, shown in Figure 1.

u u uv1 v2 v3

Figure 1: The path P3.

For P3, the vertex stresses are str(v1) = str(v3) = 0 and str(v2) = 1. Hence,

S1(P3) = 02 + 12 + 02 = 1,

while ∑
uv∈E(P3)

str(u) + str(v) = 0 + 1 + 1 + 0 = 2.

The reduced second Zagreb index, introduced in [4], is defined for a graph G by

R2M(G) =
∑

vivj∈E(G)

(d(vi)− 1)(d(vj)− 1). (1.6)

Motivated by this identity, we introduce in the present work a new topological index based on vertex
stress, called the reduced second stress index. We derive several inequalities involving this index and
compute its values for various standard classes of graphs. Many stress related concepts in graphs and
topological indices have been defined and studied by several authors [1,2,8-10,13-24,26,28-30].

2. Reduced Second Stress Index

Definition 2.1 The reduced second stress sum index RS2(G) of a simple graph G is defined as

RS2(G) =
∑

uv∈E(G)

(str(u)− 1)(str(v)− 1). (2.1)

Theorem 2.1 For a graph G, RS2(G) = |E| if and only if neighbours of every vertex induce a complete
subgraph of G.

Proof: Suppose that RS2(G) = |E|. By the definition of the reduced second stress index,

RS2(G) =
∑

uv∈E(G)

(str(u)− 1)(str(v)− 1).

Since the sum equals the number of edges, every summand must be equal to 1. Hence,

(str(u)− 1)(str(v)− 1) = 1 for all uv ∈ E(G),
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which implies that
str(v) = 0 for every v ∈ V (G).

Let v ∈ V (G). We show that the neighbours of v induce a complete subgraph. If v is a pendant vertex,
the statement is trivial. Suppose that v is not pendant. Assume, for contradiction, that there exist
neighbours u,w ∈ N(v) such that uw /∈ E(G). Then the path uvw is a geodesic of length 2 passing
through v, which implies str(v) ≥ 1, a contradiction. Therefore, any two neighbours of v are adjacent, so
the subgraph induced by N(v) is complete. Since v is arbitrary, this holds for all vertices.

Conversely, suppose that the neighbours of every vertex in G induce a complete subgraph. Let v ∈ V (G).
Since every two neighbours of v are adjacent, there exists no geodesic of length at least 2 passing through
v. Hence,

str(v) = 0 for all v ∈ V (G).

It follows that for every edge uv ∈ E(G),

(str(u)− 1)(str(v)− 1) = (−1)(−1) = 1.

Summing over all edges, we obtain

RS2(G) =
∑

uv∈E(G)

1 = |E|.

2

Proposition 2.1 For the complete bipartite Km,n,

RS2(Km,n) =
mn

4

[
(n2 − n− 2)(m2 −m− 2)

]
.

Proof: Let V1 = {v1, . . . , vm} and V2 = {u1, . . . , un} be the partite sets of Km,n. We have,

str(vi) =
n(n− 1)

2
for 1 ≤ i ≤ m (2.2)

and

str(uj) =
m(m− 1)

2
for 1 ≤ j ≤ n. (2.3)

Using (2.2) and (2.3) in the Definition 2.1, we have

RS2(Km,n) =
∑

uv∈E(G)

(str(u)− 1)(str(v)− 1)

=
∑

1≤i≤m, 1≤j≤m

(str(vi)− 1)(str(uj)− 1)

=
∑

1≤i≤m, 1≤j≤n

[
n(n− 1)

2
− 1

] [
m(m− 1)

2
− 1

]
=

mn

4

[
(n2 − n− 2)(m2 −m− 2)

]
.

2

Proposition 2.2 If G = (V,E) is a k-stress regular graph, then

RS2(G) = 2(k − 1)2|E|.
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Proof: Suppose that G is a k-stress regular graph. Then
str(v) = k for all v ∈ V (G).

By the Definition 2.1, we have

RS2(G) =
∑

uv∈E(G)

(str(u)− 1)(str(v)− 1)

=
∑

uv∈E(G)

(k − 1)(k − 1)

= 2(k − 1)2|E|.

2

Corollary 2.1 For a cycle Cn,

RS2(Cn) =


n(n2 − 4n− 5)2

32
, if n is odd

n(n2 − 2n− 8)2

32
, if n is even.

Proof: For any vertex v in Cn, we have,

str(v) =


(n− 1)(n− 3)

8
, if n is odd

n(n− 2)

8
, if n is even.

Hence Cn is 
(n− 1)(n− 3)

8
-stress regular, if n is odd

n(n− 2)

8
-stress regular, if n is even.

Since Cn has n vertices and n edges, by the Proposition 2.2, we have

RS2(Cn) = 2n×


[
(n− 1)(n− 3)

8
− 1

]2
, if n is odd[

n(n− 2)

8
− 1

]2
, if n is even.

=


n(n2 − 4n− 5)2

32
, if n is odd

n(n2 − 2n− 8)2

32
, if n is even.

2

Proposition 2.3 Let T be a tree on n vertices. Then

RS2(T ) =
∑
uv∈J

 ∑
1≤i<j≤m(u)

|Cu
i ||Cu

j | − 1

 ∑
1≤i<j≤m(v)

|Cv
i ||Cv

j | − 1


+
∑
w∈Q

 ∑
1≤i<j≤m(w)

|Cw
i ||Cw

j | − 1

 .

where J is the set of internal(non-pendant) edges in T , Q denotes the set of all vertices adjacent to
pendent vertices in T , and the sets Cv

1 , . . . , C
v
m denotes the vertex sets of the components of T − v for an

internal vertex v of degree m = m(v).
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Proof:
We know that a pendant vertex in T has zero stress. Let v be an internal vertex of T of degree

m = m(v). Let Cv
1 , . . . , C

v
m be the components of T − v. Since there is only one path between any two

vertices in a tree, it follows that,

str(v) =
∑

1≤i<j≤m

|Cv
i ||Cv

j | (2.4)

Let J denotes the set of internal(non-pendant) edges, and P denotes pendant edges and Q denotes the
set of all vertices adjacent to pendent vertices in T . Then using (2.4) in the Definition (2.1), we have

RS2(T ) =
∑
uv∈J

(str(u)− 1)(str(v)− 1) +
∑
uv∈P

(str(u)− 1)(str(v)− 1)

=
∑
uv∈J

(str(u)− 1)(str(v)− 1) +
∑
w∈Q

str(w)− 1

=
∑
uv∈J

 ∑
1≤i<j≤m(u)

|Cu
i ||Cu

j | − 1

 ∑
1≤i<j≤m(v)

|Cv
i ||Cv

j | − 1


+
∑
w∈Q

 ∑
1≤i<j≤m(w)

|Cw
i ||Cw

j | − 1

 .

2

Corollary 2.2 For the path Pn on n vertices

RS2(Pn) =

n−1∑
i=1

[
i4 − 2ni3 + (n2 + n+ 1)i2 − 2ni+ (n+ 1)

]
.

Proof: Let Pn be the path with vertex sequence v1, v2, . . . , vn (shown in Figure 2).

u u u u u u. . . . .
v1 v2 v3 v4 vn−1 vn

Pn

Figure 2: The path Pn on n vertices.

We have,
str(vi) = (i− 1)(n− i), 1 ≤ i ≤ n.

Then

RS2(Pn) =
∑

uv∈E(Pn)

(str(u)− 1)(str(v)− 1)

=

n−1∑
i=1

(str(vi)− 1)(str(vi+1)− 1)

=

n−1∑
i=1

((i− 1)(n− i)− 1) ((i)(n− i− 1)− 1)

=

n−1∑
i=1

[
i4 − 2ni3 + (n2 + n+ 1)i2 − 2ni+ (n+ 1)

]
.

2
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Proposition 2.4 Let G1, G2, . . . , Gm be the components of a disconnected graph H. Then The reduced
second stress index of H is given by

RS2(H) = RS2(G1) +RS2(G2) + · · ·+RS2(Gm).

Proof: We have H =
⋃m

i=1 Gi. Note that an edge uv ∈ E(H) if and only if uv belongs to the same
component. Hence,

RS2(H) = RS2

(
m⋃
i=1

Gi

)

=
∑

u1iv1i∈E(G1)

(str(u1i)− 1)(str(v1i)− 1) + · · ·

+
∑

umivmi∈E(Gm)

(str(umi)− 1)(str(vmi)− 1)

=RS2(G1) +RS2(G2) +RS2(G3) + · · ·+RS2(Gm).

2

Proposition 2.5 Let Wd(n,m) denotes the windmill graph constructed for n ≥ 2 and m ≥ 2 by joining
m copies of the complete graph Kn at a shared universal vertex v. Then

RS2(Wd(n,m)) =
m(n− 1)

[
m(m− 1)(n− 1)2 − 2

]
2

.

Hence, for the friendship graph Fk on 2k + 1 vertices,

RS2(Fk) = 4k3 − 4k2 − 2k.

Proof: Clearly the stress of any vertex other than universal vertex is zero inWd(n,m), because neighbors
of that vertex induces a complete subgraph ofWd(n,m). Also, since there arem copies ofKn inWd(n,m)
and their vertices are adjacent to v, it follows that, the only geodesics passing through v are of length 2

only. So, str(v) =
m(m− 1)(n− 1)

2

2
. Note that there are m(n − 1) edges incident on v and the edges

that are not incident on v have end vertices of stress zero. Hence by the Definition 2.1, we have

RS2(Wd(n,m)) = m(n− 1) (str(v)− 1)

= m(n− 1)

(
m(m− 1)(n− 1)

2

2
− 1

)

=
m(n− 1)

[
m(m− 1)(n− 1)2 − 2

]
2

.

Since the friendship graph Fk on 2k + 1 vertices is nothing but Wd(3, k), it follows that

RS2(Fk) = 4k3 − 4k2 − 2k.

2

Proposition 2.6 Let Wn denotes the wheel graph constructed on n ≥ 4 vertices. Then

RS2(Wn) = 0.



Reduced Second Stress Index 7

Proof: In Wn with n ≥ 4, there are (n− 1) peripheral vertices and one central vertex, say v. It is easy
to see that

str(v) =
(n− 1)(n− 4)

2
(2.5)

Let p be a peripheral vertex. Since v is adjacent to all the peripheral vertices in Wn, there is no geodesic
passing through p and containing v. Hence contributing vertices for str(p) are the rest peripheral vertices.
So, by denoting the cycle Wn − p (on n− 1 vertices) by Cn−1, we have

strWn
(p) = strWn−v(p)

= strCn−1
(p)

= 1 (2.6)

Let us denote the set of all radial edges in Wn by R, and the set of all peripheral edges by Q. Note that
there are (n− 1) radial edges and (n− 1) peripheral edges in Wn. By using Definition 2.1, we have

RS2(Wn) =
∑
xy∈R

[(str(x)− 1)(str(y)− 1)]

+
∑
xy∈Q

[(str(x)− 1)(str(y)− 1)]

=(n− 1)[[(str(v)− 1)(str(p)− 1)]] + (n− 1) (str(p)− 1)
2

=0

2

Proposition 2.7 For the complement of a cycle Cn (n ≥ 5), the reduced second stress index is given by

RS2(Cn) =
n(n− 3)(n− 5)2

2
.

Proof: Let G = Cn and V (G) = {v1, v2, . . . , vn} (from [12] of Theorem 2.5 )

st(vi) = n− 4, vi ∈ V (G)

and the total number of edges in G is

|E(G)| = n(n− 3)

2

By the Definition 2.1, we have

RS2(G) =
∑

uv∈E(G)

[(st(u)− 1)(st(v)− 1)] .

we have st(u) = st(v) = n− 4 for all u, v ∈ V (G)

RS2(Cn) =
∑

uv∈E(G)

[(n− 5)(n− 5)] .

RS2(Cn) =
n(n− 3)

2
(n− 5)2 =

n(n− 3)(n− 5)2

2
.

2

Definition 2.2 The line graph of G, denoted by L(G), is defined such that for every edge of G
there is a corresponding vertex in L(G), and two vertices in L(G) are adjacent if and only if the
corresponding edges of G have a common vertex.
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Proposition 2.8 For the line graph of the complete graph Kn,

RS2(L(Kn)) = n(n− 1)(n− 2)
(
n2 − 5n+ 5

)2
.

Proof: For G = L(Kn), each vertex satisfies (from [12] of Theorem 2.12 )

st(v) = (n− 2)(n− 3), v ∈ V (G),

and the total number of edges in G is

|E(G)| = n(n− 1)(n− 2).

By Definition 2.1,

RS2(L(Kn)) =
∑

uv∈E(G)

[(st(u)− 1)(st(v)− 1)] .

Now, we have: st(u) = st(v) = (n− 2)(n− 3) for all u, v ∈ V (G).

RS2(L(Kn)) =
∑

uv∈E(G)

[((n− 2)(n− 3)− 1)((n− 2)(n− 3)− 1)]

RS2(L(Kn)) = n(n− 1)(n− 2)
(
n2 − 5n+ 5

)2
.

2

Proposition 2.9 For the line graph of Km,n,

RS2(L(Km,n)) =
mn(m+ n− 2)(mn−m− n)2

2
.

Proof: For G = L(Km,n), each vertex satisfies (from [12] of Theorem 2.14 )

st(v) = mn−m− n+ 1, v ∈ V (G),

and the total number of edges in G is

|E(G)| = mn(m+ n− 2)

2
.

By Definition 2.1,

RS2(L(Km,n)) =
∑

uv∈E(G)

[(st(u)− 1)(st(v)− 1)]

we have, st(u) = st(v) = mn−m− n+ 1 for all u, v ∈ V (G)

RS2(L(Km,n)) =
∑

uv∈E(G)

[(mn−m− n)(mn−m− n)]

RS2(L(Km,n)) =
mn(m+ n− 2)(mn−m− n)2

2
.

2

Proposition 2.10 Let Kn and Km be complete graphs on n and m vertices, respectively. Then for the
Kronecker product of Kn and Km, denoted by Kn ⊗Km,

RS2(Kn ⊗Km) = nm(n− 1)(m− 1)

[
(n− 1)(m− 1)(m+ n− 4)− 2

2

]2
.
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Proof: For G = Kn ⊗Km each vertex satisfies (from [12] of Theorem 2.14 )

str(v) =
(n− 1)(m− 1)(m+ n− 4)

2
v ∈ V (G)

RS2(Kn ⊗Km) =
∑

uv∈E(G)

[(st(u)− 1)(st(v)− 1)]

=
∑

uv∈E(G)

[(
(n− 1)(m− 1)(m+ n− 4)

2
− 1

)(
(n− 1)(m− 1)(m+ n− 4)

2
− 1

)]

=nm(n− 1)(m− 1)

[
(n− 1)(m− 1)(m+ n− 4)− 2

2

]2
.

2
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