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AT Based Anomaly Detection in Application Performance Monitoring Using Random
Forest

M. Fevzi Korkutata and Onder Sahinaslan

ABSTRACT: This study was carried out to investigate the use of artificial intelligence and machine learning
in application performance monitoring software systems and to develop anomaly detection methods. In the
project, Random Forest algorithm was applied on the performance data obtained from “AdminServer” and
“ManagedServer_1” servers, which are JVM processes, and anomalies were successfully detected using dynamic
and dynamic thresholds. In the data processing process, data in JSON format were analyzed, dynamic
threshold values were calculated with Z-score and data exceeding the determined threshold values were marked
as anomalies. Anomaly detection was performed with the Random Forest classification algorithm, and model
accuracy and classification performance were evaluated with metrics. In the visualization steps, histogram,
KDE and scatter plot techniques were used to present both the data distribution and the detected anomalies
in detail. The results obtained aim to provide an effective approach to system management by automating
anomaly detection processes.
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1. Introduction

With the rapid acceleration of digitalization, enterprise software architectures have become increas-
ingly complex, distributed, and dynamic. This evolution has rendered application performance monitor-
ing and management a critical component of software engineering processes. Application Performance
Monitoring (APM) systems are indispensable in modern software infrastructures for maintaining user
experience, reducing operational costs, and ensuring system continuity. However, the growing volume of
data and the complex interactions among software components have exposed the limitations of traditional
rule-based monitoring approaches. Consequently, research focusing on the integration of artificial intelli-
gence (AI) and machine learning (ML) techniques into APM processes has gained significant momentum
in recent years. The literature demonstrates that Al-based monitoring approaches possess the capability
to detect performance issues at early stages and to identify complex patterns without requiring human
intervention. For instance, Alonso, Belanche, and Avresky showed that the Random Forest algorithm
achieved a validation error rate below 1% in time-series-based software anomaly detection [1]. Similarly,
Villegas-Ch et al. reported that the integration of IoT and Al technologies was able to detect anomalies
in large-scale sensor data with an accuracy of 98.7% [2]. Syamsu’s study further revealed that ML meth-
ods can identify security threats and performance degradations in real time within network performance
monitoring processes [3]. A common finding across these studies is that advanced machine learning tech-
niques—particularly ensemble models such as Random Forest—enhance APM systems by providing high
accuracy, strong generalization capability, and robustness. This research aims to comprehensively exam-
ine how artificial intelligence and machine learning algorithms can be utilized in application performance
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monitoring processes. The primary focus of the study includes early detection of performance issues,
classification of anomalies, support for root cause analysis, and the development of automated interpre-
tation mechanisms that provide meaningful insights to users. In this context, Random Forest, along
with Isolation Forest, One-Class SVM, and deep learning—based models, is evaluated using performance
metrics, and a comparative analysis is conducted in conjunction with dynamic thresholding and moving-
average-based methods. The ability of Random Forest to process high-dimensional performance data,
combined with the stability provided by its ensemble learning structure, has demonstrated significant
advantages on the datasets considered in this study.

The increasing complexity of software systems has made the inadequacy of traditional monitoring
technologies more apparent and has necessitated the development of new Al-driven models in the APM
domain. This study identifies the limitations of existing approaches through the application of ML tech-
niques to real performance data generated by WLSDM (WebLogic Smart Dashboard and Monitoring)
and proposes a holistic solution aimed at addressing these shortcomings. The significance of this research
lies in its demonstration of the innovative contributions that Al integration brings to both operational
and decision-support processes within APM systems. The findings are expected to serve as a valuable
reference for APM software vendors, researchers, and system administrators. Moreover, the study pro-
vides strong evidence that Al-based performance monitoring models are likely to become a fundamental
component of future enterprise software architectures.

Problem

Application Performance Monitoring (APM) solutions are critical tools that collect large volumes of
metrics to monitor the health of modern software systems and infrastructures. These metrics play a
vital role in evaluating system performance and detecting potential issues at an early stage. However, in
most existing APM solutions, alarm thresholds are predominantly defined manually. This practice often
leads to users misinterpreting alarms and operational teams gradually experiencing alarm fatigue. As
the number of alarms increases, distinguishing between events that require immediate intervention and
those intended solely for informational purposes becomes increasingly difficult. This ambiguity results
in delayed response times and reduced efficiency in system management. Furthermore, the inability to
accurately identify the root causes of alarms frequently limits interventions to temporary fixes, preventing
long-term improvements. These challenges indicate that current APM systems, in their existing usage
models, present significant opportunities for enhancement.

Objective

The objective of this research is to investigate the effectiveness of Al-driven anomaly detection in
complex IT systems and Application Performance Monitoring (APM) environments, to evaluate alarm
management processes, and to explore the self-healing capabilities of systems without human interven-
tion. Within this scope, the study aims to improve the accuracy of Al and machine learning—based
anomaly detection methods, enhance the reliability and efficiency of performance monitoring processes,
analyze the contribution of data processing and model development workflows to practical applications,
and examine the impact of integrating Al-based solutions into system architectures on overall perfor-
mance. Overall, the research adopts a holistic perspective to assess the innovations introduced by AI and
ML techniques in application performance monitoring systems, the operational efficiencies they provide,
and their potential to enable automated system improvement.

Significance

The significance of Al-based anomaly detection systems lies in their contribution to making monitoring
processes faster, more reliable, and more resilient to errors within increasingly complex IT infrastructures.
The fact that many conventional approaches require intensive human intervention and lead to time
inefficiencies further highlights the value of Al-driven solutions. By focusing specifically on the integration
of artificial intelligence into APM applications and the self-healing capabilities of systems, this research
aims to address a notable gap in the field. The study seeks to generate results that are applicable from both
academic and industrial perspectives by evaluating the effectiveness of Al-supported anomaly detection. A
comprehensive consideration of processes such as data processing, improved anomaly detection accuracy,
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reduction of human intervention, and the development of automated remediation capabilities is expected
to contribute to the creation of more reliable and efficient IT systems. In this way, the research goes
beyond theoretical contributions and lays the groundwork for innovative applications that can deliver
direct value to industry.

2. Literature Review

Machine learning—based anomaly detection is regarded as a critical approach for identifying dynamic
and unpredictable software behaviors at early stages and proactively preventing system failures. A study
evaluating the performance of different ML classifiers in predicting software anomalies based on system
metrics revealed that the Random Forest method achieved the highest performance across all scenarios,
with a validation error rate below 1%. The study further demonstrated that the number of monitored
parameters could be reduced by approximately 60% using Lasso regularization without a significant
loss in prediction accuracy. Experimental evaluations conducted in Apache Tomcat- and MySQL-based
e-commerce environments showed that this ML + Lasso approach both reduced monitoring costs and
enhanced the effectiveness of proactive software rejuvenation processes. These findings highlight the
high effectiveness of machine learning techniques in the design of monitoring frameworks aimed at early
anomaly detection and prevention of performance degradation in software systems (Alonso, Belanche &
Avresky, 2011).[1] The integration of the Internet of Things (IoT) with artificial intelligence has driven
a significant transformation in real-time monitoring and predictive analytics processes within industrial
environments. By combining real-time sensor data obtained from IoT devices with Al-based predictive
models, a system capable of early anomaly detection and failure prediction has been developed. The
study utilized over one million temperature, humidity, and pressure records collected from controlled
industrial production environments, reporting that the developed model detected temperature anomalies
with an accuracy of 98.7%. Beyond generating early warnings, the system also revealed previously
unidentified operational patterns, offering new opportunities for process optimization. Additionally, it
was noted that the system could continuously improve its performance over time and effectively adapt to
changing production conditions due to its continuous learning capability. These findings demonstrate the
critical potential of IoT—AI integration in enhancing efficiency, reducing costs, and preventing downtime in
industrial monitoring systems (Villegas-Ch, Garcia-Ortiz & Sénchez-Viteri, 2024).[2] Artificial intelligence
and machine learning have emerged as two complementary technologies that substantially enhance threat
detection and performance analysis in network monitoring processes. Research has shown that machine
learning algorithms can analyze real-time network traffic to learn normal behavior patterns, thereby
detecting abnormal activities and potential attacks with high accuracy. ML-based anomaly detection
methods are capable of identifying deviations from established traffic patterns and even recognizing
previously unseen attack types. The study also reports that AI- and ML-based solutions are effective
not only in threat detection but also in network performance monitoring, capacity planning, and early
identification of performance degradation. As a result, organizations can make faster and more accurate
decisions compared to manual monitoring approaches. Additionally, automated analysis capabilities
reduce false positives, increase operational efficiency, and allow network monitoring systems to adapt
to new threats through continuous learning. These findings underscore the increasingly critical role of
AI-ML integration in network security and performance management (Syamsu, 2023).[3]

A method for anomaly detection and classification in HTTP logs has been proposed without requiring
labeled datasets or expert analysis. By extracting anomalies from real-time data without the need for
labeling and by collecting meaningful datasets from noisy network traffic, an LSTM-based intrusion
detection system has been developed. The model was tested using data obtained from HTTP web
server logs across four different anomaly categories: unexpected traffic, unusually large updates, missed
updates, and performance degradation. Moreover, experimental results on noisy datasets yielded a Mean
Squared Error (MSE) value of 0.0021. Since the proposed approach does not require labeled data,
its applicability to larger HTTP log datasets has been emphasized. This method has been validated
in real-world scenarios such as antivirus companies and has demonstrated rapid response capabilities
(Benova & Hudec, 2023).[5] Studies on the use of artificial intelligence (AI) and machine learning (ML)
applications in Enterprise Resource Planning (ERP) systems indicate that these technologies provide
significant benefits, particularly in areas such as data analytics, error-free data entry, sales forecasting,
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customer support, and predictive analysis. It has been emphasized that Al automates manual processes in
the modernization of ERP systems, optimizes resource selection and procurement requirements in supply
chain management, and enables faster and more efficient process execution. Furthermore, Al-based
ERP systems are reported to play a critical role in the digital transformation processes of enterprises
(Oguz & Agtasg, 2023).[6] A study revisiting the use of Random Forest for anomaly detection evaluated
the algorithm’s effectiveness across multiple benchmark datasets commonly used in intrusion detection
research. By systematically analyzing different forest sizes and tuning hyperparameters, the authors
demonstrated that ensemble-based learning significantly improves detection accuracy while reducing false
alarm rates, particularly in high-dimensional and imbalanced data scenarios. The study employed rigorous
validation techniques, including cross-validation and statistical significance tests, to ensure the robustness
of the results. Experimental findings showed that larger Random Forest ensembles provided more stable
and generalizable performance compared to single classifiers, highlighting the algorithm’s scalability and
resilience to noisy data. Overall, the study confirms that Random Forest remains a strong and reliable
approach for anomaly detection, especially in complex network and monitoring environments (Primartha
& Tama, 2017).[7]

The impact of Al technology on server monitoring systems has significantly improved real-time data
processing capabilities, enabling faster and more accurate anomaly detection, issue prediction, and insight
generation. The transition to proactive monitoring has reduced system outages and operational costs.
Al-based systems have demonstrated superior performance compared to traditional threshold-based ap-
proaches in dynamic server environments. By continuously learning from real-time data, these systems
maintain their effectiveness as data volume and complexity increase. Despite challenges such as high
computational requirements and the need for high-quality data, this approach highlights the potential for
delivering more efficient and autonomous monitoring solutions (Sheta, 2023).[8] Machine learning—based
defect prediction models play a critical role in improving quality management and dynamic monitor-
ing processes in software systems. A study comparing the performance of various ML techniques on
real-time software module data found that Instance-Based Learning (IBL) and the 1R method produced
more consistent results across different datasets. The research reported that feature subset selection
methods—particularly Consistency-Based and Correlation-Based techniques—were more effective than
Principal Component Analysis (PCA), while random feature reduction methods negatively affected pre-
diction accuracy. The findings indicate that no single method outperforms others across all datasets for
early defect detection; however, IBL-based approaches generally provide more stable prediction accuracy.
As a result, the study proposed a framework called the Intelligent Software Defect Analysis Tool (IS-
DAT), which contributes to the proactive detection of defects in real-time software components. These
results demonstrate that ML-based defect prediction methods serve as an effective support mechanism in
software quality management (Challagulla, Bastani, Yen & Paul, 2007).[9] Explainable Artificial Intelli-
gence (XAI) is regarded as an important technology for effective threat detection and response processes
in the field of cybersecurity. XAl can be applied in various domains ranging from network traffic analysis
to malware detection. By enabling security experts to understand the decision-making processes of Al
models, XAl aims to enhance the transparency and accuracy of security measures. In particular, it has
been reported that XAI supports security professionals in areas such as anomaly detection, authentica-
tion, access control, and intrusion detection systems during the discovery and analysis of vulnerabilities
in web applications, thereby optimizing these processes (Bag & Siizen, 2023).[10]

AT and IoT based security solutions offer significant advantages in real-time threat detection and
incident response, particularly in smart home applications. In one study, an intelligent security system
integrating IoT components with Al-based video processing techniques was designed, and optimal archi-
tectural building blocks were identified through the comparison of alternative system architectures. The
system was built upon key modules such as software-based management of IoT interactions, Al-driven
image analysis, and secure information delivery to users. Field tests demonstrated the system’s effec-
tive performance in detecting security incidents and showed that technical challenges encountered during
integration were successfully addressed through various adaptations. The study further suggests that
the system can be expanded in the future to achieve higher accuracy, comprehensive automation, and
enhanced user experience. These findings indicate that AI-IoT integration holds substantial potential to
significantly improve both functionality and incident response capacity in smart home security systems
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(Sabit, 2025).[11] With the advancement of technology, the increasing number of internet-connected de-
vices has led to a rise in information security vulnerabilities. Attackers exploiting these vulnerabilities
can cause both financial and operational damage to systems. In a study conducted on devices running
the Windows operating system, malware prediction was performed using telemetry data alone. Utilizing
Microsoft’s “Microsoft Malware Prediction” dataset, feature selection was carried out using Information
Gain and Chi-Square methods, followed by classification using algorithms such as Naive Bayes, Decision
Tree, Random Forest, AdaBoost, and Light GBM. Experimental results showed that the Light GBM algo-
rithm achieved the fastest and most successful performance. This approach aims to enhance information
security by accelerating malware prediction through telemetry data. Future studies suggest applying
deep learning methods to achieve more advanced classifications on this dataset (Giileg, 2020).[12] The
high scalability, complexity, and dynamic workloads of cloud environments have increased the demand
for advanced monitoring solutions. A study highlights that most traditional cloud monitoring systems
operate as passive observers and do not leverage Al-driven mechanisms to address workflow changes
or environmental dynamics. To address this limitation, a multi-agent system—based model (MAS-CM)
was developed, aiming to enhance performance and security in task collection, scheduling, and execution
processes. In this model, each agent gathers real-time information from its operational unit, analyzes its
environment using Al-based decision mechanisms, communicates with other agents to determine strate-
gies, and mitigates risks such as unauthorized task injection, task manipulation, or resource waste.
Experimental results indicate that the proposed model improves task scheduling efficiency, optimizes re-
source utilization, and increases the likelihood of detecting security threats. Furthermore, the adaptive
and self-configuring nature of the agents enables the system to respond effectively to both internal and
external changes. Overall, the study demonstrates the significant contributions of Al and multi-agent sys-
tems to performance, security, and autonomous management in cloud monitoring architectures (Grzonka,
Jakébik, Kolodziej & Pllana, 2017).[13]

The increasing interaction of mobile devices with a growing number of services and IoT components
has diversified security threats and rapidly increased malware risks. In response, a study proposed a
cloud-based security platform in which system information and application data collected from mobile
devices are evaluated using machine learning models through both static and dynamic analysis techniques.
The proposed architecture collects data via a server infrastructure integrated with Android applications
and forwards it to an analysis module, where malware detection is performed using Weka-based classifiers.
The findings showed 100% classification accuracy in permission-based analyses and 94.59% accuracy for
system call data, demonstrating the high effectiveness of ML methods in mobile threat detection. The
results further indicate that ML models supported by larger datasets enhance predictive capability in
mobile security and enable more effective detection of emerging attack types. Accordingly, the study
emphasizes the important role of ML-based analyses in mobile threat monitoring and early attack detec-
tion processes (Hatcher, Maloney & Yu, 2016).[14] The foundations of proactive network management
were established through the integration of artificial intelligence techniques with remote monitoring and
simulation tools. An early study proposed an architecture aimed at identifying potential issues before
performance degradation occurs and automatically applying corrective actions. The study combined
two approaches: remote monitoring and simulation tools were used to observe network behavior, while
Al-based agents identified symptoms of issues and supported management decisions. This integrated
framework facilitated the analysis of network traffic and resource utilization data, enabled early detec-
tion of potential performance degradation, and enhanced the predictability of management processes.
The developed prototype successfully detected network issues before they occurred and notified admin-
istrators, demonstrating the significant advantages of proactive management in improving performance.
In this respect, the study represents an early implementation of proactive management principles that
underpin modern Al-based network monitoring and APM solutions (De Franceschi, da Rocha, Weber
& Westphall, 1997).[15] In recent years, advancements enabled by artificial intelligence technologies in
both manufacturing and service sectors have significantly improved efficiency and decision-support pro-
cesses across various disciplines. One study highlights that AI has found applications in a wide range
of domains, including expert systems, power system stabilizers, network intrusion detection mechanisms,
medical image classification, accounting databases, and computer games. The study emphasizes that
these technologies enhance operational quality by offering analytical reasoning and modeling capabilities
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for solving complex problems and have driven performance improvements across numerous fields, from
manufacturing to healthcare, particularly over the past two decades. Furthermore, Al techniques have
been reported to contribute critically to areas such as damping oscillations in power systems, detecting
attacks in computer networks, improving in-hospital care, and strengthening decision-support processes.
In this respect, the study illustrates the broad impact and growing future adoption potential of artificial
intelligence technologies (Pannu, 2015).[16] A study conducted in 2024 introduced a novel approach that
simplifies and automates complex server management tasks in Linux environments. By integrating a
GPT-based Al agent with a Node.js server backend and a containerized Linux sandbox environment, a
framework capable of effectively executing server management tasks was developed. Experiments con-
ducted with 150 unique tasks demonstrated that the AT agent could accurately interpret task instructions,
generate appropriate Linux commands, and adapt its strategies based on real-time feedback. The study
shows that Al-based automation can make server management more efficient while reducing human errors
and increasing operational productivity (Cao, Wang, Lindley & Wang, 2024).[17]

Based on my professional experience in IT Service Management (ITSM) and ITIL-based operational
environments, together with the reviewed literature, it is evident that artificial intelligence and machine
learning techniques play a central role in modern anomaly detection, monitoring, and security systems
across software, network, cloud, and industrial domains. Prior studies consistently show that ensemble
learning methods, particularly Random Forest, provide robust and scalable performance by effectively de-
tecting anomalies, reducing false positives, and handling high-dimensional data. Recent research further
highlights the increasing integration of AI with ITSM and ITIL practices, cloud architectures, and explain-
able models to enable proactive monitoring, adaptive learning, and informed operational decision-making.
These approaches are essential for sustaining reliability in complex and dynamic IT infrastructures.
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3. Methodology
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Figure 1: Overview of the proposed methodology

The methodology of the study and the interpretation of the obtained findings are addressed with the
primary objective of detecting anomalous conditions in the numerical data streams generated by a specific
system. Figure 1 provides a comprehensive overview of the proposed methodology, clearly depicting all
methodological stages and their interrelations in a structured and detailed manner. Within this scope,
statistical analysis techniques and machine learning algorithms were employed to identify deviations from
normal behavioral patterns, and anomalies were evaluated using both dynamic thresholding and mov-
ing average-based approaches. Dynamic thresholds were calculated based on the mean and standard
deviation values of the dataset in order to detect significant deviations, and separate evaluations were
conducted for both the AdminServer and ManagedServer*_1. The moving average method was utilized
to more sensitively track temporal variations in time series data, enabling a comparative analysis of
static and dynamic approaches. In this process, the performance of the Random Forest algorithm was
assessed using metrics such as accuracy and the confusion matrix, and the results demonstrated that
its ensemble-based structure enabled effective classification of complex performance data. In the sub-
sequent phase of the study, logs and performance metrics provided by the WLSDM (WebLogic Smart
Dashboard and Monitoring) software were used as the primary data source, and the applicability of AI-
and machine learning-based anomaly detection approaches was examined. Initially, a comprehensive
literature review was conducted to evaluate methods commonly used in performance monitoring and
time series analysis. This was followed by data preprocessing steps applied to datasets collected from
different software environments. After handling missing values, correcting inconsistencies, and preparing
the datasets for analysis, the study proceeded to the feature engineering phase. Meaningful features
were extracted from the WLSDM data by considering time series patterns and rate-of-change charac-
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teristics. Accordingly, various algorithms—including Random Forest, Isolation Forest, One-Class SVM,
and deep learning—based methods—were implemented, and their performance on the WLSDM datasets
was evaluated using metrics such as accuracy, precision, and recall. In the final stage, the results pro-
duced by the developed models were visualized using interpretability techniques, and various graphs and
reports were generated to enable users to understand the causes of performance issues more quickly and
clearly. These visualizations facilitated decision-making processes and enhanced operational efficiency.
The findings indicate that artificial intelligence and machine learning methods can be effectively utilized
in application performance monitoring software such as WLSDM, and that the combined application of
dynamic thresholding and moving average—based techniques enables successful prediction of anomalies in
data streams, thereby significantly strengthening system stability.

Mathematical Foundations of the Random Forest Algorithm

Random Forest is an ensemble learning method that constructs multiple decision trees using random-
ness in both data sampling and feature selection, and combines their outputs to produce a final prediction.
In this study, anomaly detection was performed on data obtained from application performance moni-
toring systems using the Random Forest classification algorithm. The Random Forest model consists of
K decision trees, each trained on randomly selected subsets of the training data and feature space:

RF = {T\,Ts, ..., Tx}

Tk: Tk denotes the k-th decision tree and K represents the total number of trees in the Random
Forest ensemble.

Decision Tree Structure
Each decision tree consists of a structure that recursively partitions the feature space. At a given
node, the splitting operation is defined as follows:

Stery = {x € S| z; <p}
Sright = {z € S| x; > p}
where:
e S: the current dataset,
e j: the randomly selected feature,
e p: the split threshold value,
o Siery and Syighe: the subsets of data assigned to the left and right child nodes, respectively.

Since the features selected at each node are chosen randomly, each decision tree generates a distinct
decision boundary.

Bootstrap Sampling (Bagging) Mechanism
In the Random Forest algorithm, each decision tree is trained using randomly selected samples drawn
from the original dataset through the bootstrap sampling method:

Sk, = Bootstrap(S)

where Sj denotes the bootstrap sample used to train the k-th decision tree, and S represents the
original dataset. This process provides the following advantages:

e Independence among individual trees is increased,
e Overfitting is reduced,

e The generalization capability of the model is improved.
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Random Forest Decision Function
In classification problems, the final output of the Random Forest model is determined using a majority
voting mechanism:

K

J(z) = arg m?xz I(Tx(z) =)
k=1

where:
e {(x) denotes the predicted class label,

e ¢ represents a class in the set of possible classes,

I(-) is the indicator function, which returns 1 if the condition is true and 0 otherwise,

Tk (x) denotes the class label predicted by the k-th decision tree for input x.

Anomaly Score and Classification
Anomaly labels are defined as follows:

{17 if the instance is anomalous,
y prd

0, if the instance represents normal behavior.
The Random Forest model maps the input data according to the following function:
f:xX—={0,1}
where f(z) =1 indicates an anomalous condition, while f(x) = 0 represents normal behavior.

Statistical Reliability of the Model
In ensemble learning models, the variance of the prediction error can be expressed as follows:

1—
Var(RF) ~ po? + TPUQ

where p denotes the average correlation between individual trees, o represents the variance of a single
decision tree, and K is the total number of trees in the Random Forest ensemble.

Advantages of Random Forest in Anomaly Detection
The Random Forest algorithm is preferred in Application Performance Monitoring (APM) systems
for the following reasons:

e High classification accuracy

Robust performance on noisy data

Efficient learning on large-scale datasets

Ability to capture nonlinear relationships

e Strong resistance to overfitting

Owing to these characteristics, Random Forest has proven to be a reliable and effective anomaly
detection method in real-time performance monitoring environments.
Anomaly detection in this study was carried out in two stages:

e Statistical anomaly labeling using the Z-score method
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e Learned anomaly detection using a Random Forest classification model

This two-stage approach is modeled using the mathematical framework presented in the following
section.

Mathematical Definition of the Dataset
The dataset is defined as follows:

D = {(zi,t:) }i,
where:
e z;: the VALUE metric of the i-th observation,
e ¢;: the timestamp (DT) of the i-th observation,
e N: the total number of observations.

The corresponding code representation is given below:

x = df [’ VALUE' ]




AT BASED ANOMALY DETECTION IN APPLICATION PERFORMANCE MONITORING USING RANDOM FOREST 11

Anomaly Labeling Using the Z-Score Method
Python Code:

df ["Z_SCORE’] = zscore (df[’VALUE’])
df ["ANOMALY_Z’] = (df[’Z_-SCORE’].abs() >= 3) .astype (int)

Z-Score Calculation
The Z-score for the i-th observation is computed as follows:

T=p+30

For the AdminServer dataset, the mean value of the METRIC was p = 6.12, and the standard
deviation was ¢ = 2.21. Accordingly, the dynamic threshold was calculated using a Z-score-based
approach as follows:

T=6.12+43 x 2.21 = 12.75.

This threshold value is consistent with the result produced by the Python implementation, which yielded
a value of 12.76.

Anomaly Labeling Rule
Anomaly labels are assigned according to the following rule:

~_J1, if[Z] >3 (Anomalous),
vi= 0, if|Z;] <3 (Normal).

Code representation:

y_traindummy = (X_train[’/VALUE’] > mean + 3*std).astype (int)

Training and Test Split
Python Code:

X train, X test, y_-train, y.test = train test_split (X, y, test_size=0.2)

Mathematical Representation

D= Dtrain U Dtest
|Dtrain‘ - OSN, |Dtest| - 02N

Mathematical Definition of the Random Forest Model
Random Forest consists of K decision trees trained on randomly sampled subsets of the data:
RF ={T1,T5,..., Tk}
Each decision tree defines a classification function as follows:
T, : X — {0,1}

Code representation:

rf_model = RandomForestClassifier (random_state=42)
rf model.fit (X_train, y-train_dummy)
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Random Forest Decision Function (Majority Voting)
The final prediction of the Random Forest classifier is obtained using a majority voting mechanism:

where:
e §(z) denotes the final predicted class label,
e K represents the total number of decision trees,
e I(-) is the indicator function,
e Ti(x) denotes the prediction produced by the k-th decision tree.

Code representation:

‘ y-pred.rf = rf model.predict (X_test)

Model Performance Metrics (Accuracy and F1 Score)
Code representation:

accuracy-score (y_-test_dummy, y-pred.rf)
fl_ score(y_-test_dummy, y-pred.rf)

Mathematical representation:

A TP+ TN
ccuracy =
Y"TPYTN+ FP+FN
Fl = 2 - Precision - Recall

Precision + Recall

Anomaly Set Learned by the Model
Code representation:

anomalies = X.test[ypredrf == 1]

Mathematical representation:

A ={x; € Diest | 9(;) = 1}

where A denotes the set of instances classified as anomalies, Dics; represents the test dataset, and
9(z;) is the predicted class label for the i-th observation.

Statistical methods and machine learning techniques were used for data anomaly detection. The
dataset was analyzed to examine the distribution of values over time on a specific server. Anomaly
detection was performed by identifying data points that fall above or below a specified threshold value.
In this process, anomaly detection was carried out using dynamic threshold values and moving average
methods. The population of this study consists of time-series values recorded on specific servers (Ad-
minServer and ManagedServer_1). Data collection for anomaly detection was conducted across the entire
population. Therefore, no sampling method was applied, and the analyzed server metrics were directly
considered as the “research group”. In order to develop artificial intelligence (AI) and machine learning
(ML)-based anomaly detection methods in application performance monitoring (APM) software systems,
data collection and processing steps were carefully planned. WLSDM (WebLogic Smart Dashboard and
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Monitoring), the primary APM tool used in the project, plays an important role in data collection, pro-
cessing, and evaluation. In this context, as a first step, performance metrics provided by WLSDM—such
as logs, SQL response times, service response times, and measurements related to server components in-
cluding CPU, memory, and network traffic—were identified and all of these data were considered critical
sources for anomaly detection. During the data collection process, data systematically obtained using
WLSDM APIs and reporting tools were enriched with logs and processed to make them applicable to
machine learning algorithms. During the data processing stage, the collected data were cleaned, missing
and inconsistent records were removed, unnecessary information was eliminated, and features with high
information value were extracted from WLSDM logs to make the data suitable for machine learning.
In the feature engineering step, new features such as average response time and maximum CPU usage
were derived from WLSDM data, and meaningful inputs for anomaly detection models were created by
leveraging time-series patterns. In the exploratory data analysis (EDA) stage, the data structure was
examined in detail using the visualization tools provided by WLSDM, and relationships among variables
were analyzed. This examination helped to obtain important clues supporting anomaly detection. In the
machine learning stage, various algorithms such as Isolation Forest, One-Class SVM, and autoencoder
were evaluated; the dataset was divided into training and test sets, and the models were tested using
cross-validation techniques. The obtained results were measured using metrics such as accuracy, precision,
recall, and F1 score; in cases of data imbalance, methods such as oversampling or undersampling were
used. At this stage, it was demonstrated that data provided by WLSDM improved anomaly detection
performance compared to traditional methods. The successful models were then integrated into WLSDM
and made usable for real-time anomaly detection. Through this integration, it was aimed to provide
WLSDM users with a fast, reliable, and effective solution, and it was planned to regularly monitor the
model’s performance in the production environment and update it when necessary.

This methodology aims to demonstrate the advantages offered by artificial intelligence and machine
learning methods in APM software systems by using the capabilities provided by WLSDM in the most
efficient manner. The data used in the study were obtained from time-series metrics recorded for monitor-
ing server performance, and these data, stored in JSON format, were analyzed using Python and related
libraries (pandas, json). As a result, the study aims to make an innovative contribution to software per-
formance monitoring processes and to make anomaly detection processes more effective and intelligent.

An Executable Sample and Software Project Fragment: Anomaly Detection with
WLSDM Integration

The project aims to leverage artificial intelligence to monitor the performance of software applications
and detect anomalies. Existing datasets were examined using Python, and model training was initiated
with the help of libraries such as Scikit-learn and Pandas. During this process, detailed data exploration
was conducted to analyze performance metrics and perform initial modeling. Research was conducted
on how datasets should be prepared for the project. In the data preparation process, in addition to
Python libraries (Pandas, Scikit-learn, imblearn), no-code platforms such as DataRobot, KNIME, and
RapidMiner were examined. The data infrastructure provided by WLSDM constituted an important
resource in this process. Various topics related to anomaly detection were discussed. The discussion
topics included:

e Service Response Time
e SQL Response Time
e Server Components (CPU, Memory, Network Traffic)

e Event Logs

A sample dataset was created for anomaly detection, and each category was addressed in detail. The
dataset includes the following characteristics:

e Dataset Name: WL-OPC_Anomaly_Detection
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Columns:

e Timestamp: The time of each data point

Server Name: The name of the server monitored by WL-OPC

Server Type: The type of server (e.g., WebLogic Server, Fusion Middleware)

Deployment Name: The name of the deployment running on the server

Data Source Name: The name of the data source used on the server

e JMS Source Name: The name of the JMS source used on the server

e FMW Component: The name of the monitored FMW component (e.g., JMX Bean, JTA, JDBC)

Metrics and parameters specific to categories such as Service Response Time, SQL Response Time,
Server Components, and Event Logs were identified. In order to evaluate the applicability of the inves-
tigated dataset samples, performance monitoring concepts and scales within the WL-OPC interface will
be analyzed. These tests aim to verify the applicability of the developed methods in real-world envi-
ronments. Based on the conducted research and observations, project files will be updated as necessary.
Methods and dataset designs will be optimized in accordance with evolving requirements.

When executed in a Python environment, the script provided in the Anomaly_Created.txt file manually
inserts data into the METRIC table for a 15-day period starting from the beginning of March. The data
structure follows the format specified in the anomaly_data_15_days.csv file. For anomaly detection, the
values in the METRIC column serve as the primary focus, as illustrated in the visual representation
below. (Figure 2)

A B & E F G H
1 |ID TYPE_NAME DT METRIC DOMAIN SERVER INSTANCE DATA_TYPE
2 1 weblogic.management.runtime.ServerRuntimeMBean  11/16/2025 0:00 5 WLSDM-TST-DMN AdminServer com.bea:Name=AdminServer,Type=ServerRuntime int
3 2 weblogic.managementruntime.ServerRuntimeMBean  11/16/2025 0:00 2 WWLSDM-TST-DMN ManagedServer_1 com.hea:Name=ManagedServer_1,Type=ServerRuntime  int
4 3 weblogic.management.runtime.ServerRuntimeMBean  11/16/2025 0:02 5 WLSDM-TST-DMN AdminServer com.hea:Name=AdminServer,Type=ServerRuntime int
g 4 weblogic.management.runtime.ServerRuntimeMBean  11/16/2025 0:02 3 WLSDM-TST-DMN ManagedServer_1 com.bea:Name=ManagedServer_1,Type=ServerRuntime int
6 5 weblogic.management.runtime.ServerRuntimeMBean  11/16/2025 0:04 5 IWLSDM-TST-DMN  AdminServer com.bea:Name=AdminServer,Type=ServerRuntime int
7 6 weblogic.management.runtime.ServerRuntimeMBean  11/16/2025 0:04 3 WLSDM-TST-DMN ManagedServer_1 com.hea:Name=ManagedServer_1,Type=ServerRuntime  int
a 7 weblogic.management.runtime.ServerRuntimeMBean  11/16/2025 0:06 9 WLSDM-TST-DMN AdminServer com.bea:Name=AdminServer,Type=ServerRuntime int
9 8 weblogic.management.runtime.ServerRuntimeMBean  11/16/2025 0:06 3 WLSDM-TST-DMN ManagedServer_1 com.bea:Name=ManagedServer_1,Type=ServerRuntime  int
10 9 weblogic.management.runtime.ServerRuntimeMBean  11/16/2025 0:08 9 WLSDM-TST-DMN  AdminServer com.hea:Name=AdminServer, Type=ServerRuntime int
11 10 weblogic. management.runtime.ServerRuntimeMBean  11/16/2025 0:08 1 WVLSDM-TST-DMN ManagedServer_1 com.bea:Name=ManagedServer_1,Type=ServerRuntime int

Figure 2: Metric Table Data Source and Values

Results of the Random Forest Classification Algorithm

e The dataset was loaded, and separate datasets were created for the AdminServer and Managed-
Server_1.

Anomaly detection was performed for each server using the Random Forest classification algorithm.
This step was applied independently for each server.

The results were reported in the form of classification reports and accuracy values.

For each server, outliers were visualized using confusion matrices.

The outputs are presented in Figure 4 and Figure 5 below.



AT BASED ANOMALY DETECTION IN APPLICATION PERFORMANCE MONITORING USING RANDOM FOREST 15

rf_admin_classifier = RandomForestClassifier (n_.estimators=100,
random_state=42)
rf_admin_classifier.fit (X.admin_train, y-admin_train)

rf managed-classifier = RandomForestClassifier (n_estimators=100,
random_state=42)
rf managed.classifier.fit (X.managed_train, y-managed_train)

y-admin pred = rf_admin_classifier.predict (X_admin_test)
y-managed-pred = rf_managed_-classifier.predict (X.managed-test)

admin_accuracy = accuracy.score (y.admin_test, y_admin_pred)
managed_accuracy = accuracy-score (y-managed_test, y-managed_pred)

plt.axhline (y=admin_threshold, color=’'black’, linestyle='--',
label='"AdminServer Threshold Value’)
plt.axhline (y=managed_threshold, color=’"green’, linestyle=’'--',
label=’"ManagedServer_.1 Threshold Value’)
plt.title ('Anomaly Detection’)
plt.xlabel (‘Date and Time’)
plt.ylabel (" METRIC')
plt.legend()
plt.xticks (rotation=45)
plt.tight_layout ()
plt.show ()
Random Forest Outputs

Anomaly Detection
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Figure 3: Anomaly Detection

Results of the Isolation Forest Algorithm
e Anomaly detection was performed using the Isolation Forest algorithm on the same dataset.
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Outliers were identified and visualized separately for the AdminServer and ManagedServer_1.
Outliers were marked using different colors.

This method employs isolation trees to detect anomalies in the data.

Outliers were visualized using scatter plots (Figure 3).

managed.model = IsolationForest (contamination=0.1)
managed.model.fit (managed df[[’METRIC’]])
managed_df ["anomaly’] = managed.model.predict (managed df[[’METRIC’]])

plt.figure(figsize=(10, 6))

plt.scatter (admin_df.index, admin df[’METRIC’], c=admin df[’anomaly’],
cmap='viridis’, label='"Normal value’)

plt.xlabel (' Index’)

plt.ylabel (METRIC’)

plt.title ('Detection of Outliers in METRIC Values for AdminServer’)
plt.legend()

plt.show ()

plt.figure(figsize=(10, 6))

plt.scatter (managed.df.index, managed.df[’METRIC’],
c=managed_df [’ anomaly’], cmap='viridis’, label=’Normal value’)
plt.xlabel (' Index’)

plt.ylabel ("METRIC')

plt.title ('Detection of Outliers in METRIC Values for
ManagedServer_1")

plt.legend()

plt.show ()

Isolation Forest Outputs

T

Detection of Outliers in METRIC Values for ManagedServer_1
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Figure 4: Outlier Detection for the ManagedServer_-1 JVM Process
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Certain columns in the METRIC table are designed to trigger alarms when specified values are ex-
ceeded. If required, these columns can be removed. For example, the ALARM_MATCH_VALUE column
can be configured to trigger an alarm when the value exceeds 30 (Figure 4).

Comparison of Random Forest and Isolation Forest Algorithms for Anomaly Detection

For anomaly detection, the Random Forest Classification and Isolation Forest algorithms were em-
ployed; both methods focused on identifying anomalies in the METRIC table for the AdminServer and
ManagedServer_1 using the same dataset. The Random Forest algorithm performed anomaly detection
through a classification-based approach by loading the dataset and creating separate datasets for each
server. It classified data points based on patterns learned during the training phase, thereby identifying
outliers. The results were evaluated using classification reports, accuracy values, and confusion matrices.
While the algorithm’s resistance to overfitting and its ability to provide interpretable results emerged
as key strengths, its high computational cost for large datasets and the requirement for labeled data
were considered important limitations. The Isolation Forest algorithm also performed anomaly detection
separately for the AdminServer and ManagedServer_1 on the same dataset, identifying outliers through
isolation trees that operate on the principle of isolating anomalies in fewer steps. The results were vi-
sualized using scatter plots in which anomalies were marked with different colors. The effectiveness of
this method on high-dimensional datasets, its lack of requirement for labeled data, and its design specifi-
cally for anomaly detection constitute significant advantages; however, potential performance degradation
on small datasets and the limited interpretability of the results stand out as its main weaknesses. Some
columns in the METRIC table are designed to trigger alarms when specific threshold values are exceeded;
for example, the ALARM_MATCH_VALUE column can be customized or removed if required. In addi-
tion, during script execution, the Anomaly_Created.txt file must be run in the Python environment with
the appropriate output path, followed by the execution of the txt files associated with the Isolation Forest
and Random Forest algorithms. Both algorithms are strong within their respective application domains
and can be selected according to project requirements. Random Forest, as a classification-based method,
offers a robust, interpretable, and visualization-friendly structure, whereas Isolation Forest stands out
particularly in anomaly detection applications due to its ability to operate without labeled data and its
strong performance on high-dimensional datasets. Therefore, the choice of algorithm should be made
based on the data structure, the availability of labeled data, and the existing computational resources.

This project was developed to detect anomalies in the performance data of the “AdminServer” and
“ManagedServer_1” servers within a system. During the development process, a Python-based approach
was adopted, and the required data processing and modeling steps were applied sequentially. The Pytho-
nAnomal_UpdatedLast.json file used in the data processing and modeling stages was added to a folder on
Google Drive, and access to the JSON file in the Python code was provided by specifying the appropriate
file path. These steps were carried out in the Google Colab environment and were executed smoothly
with library compatibility ensured.
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Google Colab Laboratory Environment and Input/Output Results

def calculatemoving threshold(data, window=3, z_value=3):
movingmean = data[’VALUE’].rolling(window=window) .mean ()
moving_.std = data[’VALUE’].rolling(window=window) .std ()
threshold = moving.mean + z._.value * moving.std

return threshold

admin_df [ MOVING_THRESHOLD’ ] = calculatemoving_threshold (admin_df)
managed_df [ MOVING_.THRESHOLD’ ] = calculatemoving_-threshold (managed_df)

# Anomaly Detection

admin_df [ ANOMALY’] = admin_df[’VALUE’] > admin_df[’MOVING_THRESHOLD’ ]
managed-df [ ANOMALY’ ] = managed_df[’VALUE’"] >

managed_df [ MOVING_.THRESHOLD' ]

print (admin_df[[’'DT’, ’'VALUE’, ’'MOVING_.THRESHOLD’, ’ANOMALY’]].tail())

10 DT WVALUE MOWVING THRESHOLD ANCHMALY
0 929981 2025-11-05 10:31:15.877 0 1.295244e+03 False
1 999992 2023-11-08 10:31:15.8735 33 4. 2147597e+02 False
2 999996 2025-11-08 10:31:15.879 106 4.771686e+02 False
3 998547 2025-11-08 10:31:15.579 ] 4. 771686e+02 False
4 899539 2025-11-08 10:31:15.679 3 4 692525e+02 False

Figure 5: Result

The project utilized the Pandas, Matplotlib, Seaborn, Scikit-learn, NumPy, and JSON libraries; ac-
cess to Google Drive was enabled via Google Colab, and the Kaggle API key was uploaded. The JSON
file was converted into a pandas DataFrame and prepared for processing, the VALUE column was cast to
numerical format, and separate DataFrames were created for the AdminServer and ManagedServer_1. Z-
score—based dynamic threshold values (e.g., Z = 3) were calculated, and values exceeding these thresholds
were marked as potential anomalies. By comparing the VALUE column against the dynamic thresholds,
anomalies were identified and the corresponding rows were assigned an ANOMALY label (Figure 5).
Subsequently, the Random Forest classification algorithm was applied; VALUE was selected as the inde-
pendent variable and ANOMALY as the dependent variable, the dataset was split into 80% training and
20% testing sets, and separate models were trained for each server. Model performance was evaluated
using accuracy_score and classification_report metrics. The anomaly detection results were visualized
using histograms, KDE plots, scatter plots, and dynamic threshold lines based on moving averages and
standard deviations; these visualizations enabled clearer examination of anomalies on the AdminServer
and ManagedServer_1. Throughout the study, system behavior was analyzed sensitively using dynamic
and moving threshold values, and the Random Forest algorithm successfully classified anomalies with
high precision and recall values. The resulting visualizations clearly illustrated the data distribution and
the impact of outliers on the system; overall, the process contributed to a more effective and proactive
approach to system management through the automation of anomaly detection.
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Data Analysis and Interpretation

Data analysis began with the computation of dynamic threshold values; a z-score—based approach was
employed using the mean and standard deviation, and more flexible anomaly boundaries were established
by calculating moving averages and moving standard deviations over the most recent 3-hour data window.
For machine learning—based anomaly detection, the RandomForestClassifier model was selected, trained
using the ANOMALY label derived from the VALUE column, and the dataset was split into 80% training
and 20% testing sets. Model performance was assessed using the accuracy score, classification report, and
confusion matrix. As a result, anomalies were detected using both static and moving thresholds, potential
issues on the servers were visually supported with histograms and scatter plots, and the study overall
demonstrated the effectiveness of statistical and machine learning—based methods in server performance
monitoring systems.

4. Findings and Discussion

plt.tight_layout()
plt.show()

3~ Dynamic threshold value for AdminServer: 12.758869453664667
Dynamic threshold value for ManagedServer_1 : 7.361477473231986
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Figure 6: Confusion Matrix Qutput

The analysis of performance data collected from WebLogic-based enterprise software infrastructures
demonstrates that irregularities in server behavior can be effectively detected using both statistical meth-
ods and machine learning models (Figure 6). CPU, memory, garbage collection (GC) times, connection
pools, and thread metrics obtained from WLSDM enabled the evaluation of various techniques, includ-
ing dynamic thresholding, moving averages, and machine learning algorithms—most notably Random
Forest. When the findings are considered holistically, it is clearly observed that hybrid approaches pro-
vide stronger results in the early detection of performance anomalies compared to traditional monitoring
strategies used in isolation. The real-time alarm mechanisms and comprehensive reporting infrastructure
provided by WLSDM increased the visibility of performance issues and strengthened rapid intervention
capabilities. As emphasized by Sheta (2023), the ability to process large volumes of data is a funda-
mental component of modern monitoring systems; the detailed metric streams offered by WLSDM show
strong alignment with this requirement. However, while the deep learning—based prediction mechanisms
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discussed in Sheta’s study provide higher capability for forward-looking forecasting, the dynamic thresh-
olding approach focuses on identifying instantaneous deviations based solely on historical data. Therefore,
although thresholding techniques are strong in reactive analysis, they lag behind some methodologies in
the literature in terms of long-term prediction capability. Investigations into JVM performance indicate
that GC delays and thread pool congestion, particularly under heavy load, negatively affect system re-
sponse times. The experimental study by Alonso, Belanche, and Avresky (2011) on software anomalies
demonstrated that JVM-based behavioral degradations can be classified with high accuracy using ensem-
ble models such as Random Forest. The classification results obtained from WLSDM data also support
these findings from the literature. Nevertheless, unlike Alonso’s controlled experimental environment, the
higher levels of data noise and metric imbalance present in real operational environments led to validation
errors that were slightly above the literature average. This discrepancy indicates that artificial intelligence
models require more extensive data cleaning and preprocessing in production environments. Response
time fluctuations and connection pool bottlenecks observed in WebLogic applications show parallels with
the ToT-based monitoring studies conducted by Villegas-Ch et al. (2024). Both studies reveal that per-
formance degradation is largely driven by resource access delays and waiting times. At the same time, the
high accuracy rates achieved by Villegas-Ch using artificial intelligence models can be attributed to the
regular and continuous nature of IoT data. The more irregular and volatile structure of WebLogic data
naturally results in lower accuracy rates, which should be interpreted not as a methodological weakness
but as a reflection of the data characteristics. Analysis of system health findings revealed that memory
consumption reached critical levels during certain time intervals, accompanied by irregularities in disk
usage and significant fluctuations in network traffic. These observations are consistent with Syamsu’s
(2023) findings regarding the capability of machine learning models to detect anomalies in real time
within network performance monitoring environments. However, while network monitoring environments
typically involve high-frequency, per-second data streams, the lower frequency of WebLogic monitoring
metrics can affect model sensitivity. This situation has, at times, led statistical methods to produce more
stable results. The superiority of Random Forest on application performance data has been confirmed
in alignment with the literature. The stability provided by its ensemble structure offers a clear advan-
tage in capturing complex relationships among metrics. However, some studies (e.g., Alonso, 2011) have
noted that Random Forest may exhibit a tendency toward overfitting. Similar behavior was observed in
the analysis conducted on WLSDM data, indicating that the model’s generalization capability could be
further improved with increased data volume and diversity.

Overall, processing WLSDM-derived data using both statistical and machine learning—based methods
strengthens early warning mechanisms in APM processes and enables more systematic root cause analy-
sis. In particular, the feature importance scores provided by Random Forest supported decision-making
processes by enabling system administrators to identify performance issues more rapidly. Nevertheless,
limitations such as limited data diversity, low-frequency metrics, and the absence of predictive models
indicate areas that should be expanded in future studies using richer data structures and more advanced
algorithms. The integrated use of machine learning methods with WLSDM data demonstrates the poten-
tial for APM tools in enterprise software infrastructures to evolve from simple monitoring solutions into
strategic decision support systems. Compared to examples in the literature, this approach holds a strong
position in terms of early warning capability; however, it remains open to further development in ad-
vanced predictive analytics and real-time automated action mechanisms. Future studies are expected to
generate broader impact in the field of enterprise performance management by integrating deep learning
architectures, continuously learning models, and autonomous decision engines into this framework.

5. Conclusions and Future Study

Conclusion

This study presents an artificial intelligence—driven application performance monitoring framework
that integrates dynamic thresholding, moving average—based time series analysis, and various machine
learning methods, with a particular focus on the Random Forest algorithm, for the detection of per-
formance anomalies in enterprise software systems. FExperiments conducted on real operational data
generated by WLSDM demonstrate that traditional static and rule-based monitoring approaches are in-
sufficient for detecting early-stage performance degradations, whereas machine learning models provide
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high accuracy, adaptability, and robustness against noisy and high-dimensional metrics. The findings indi-
cate that the strong classification performance of the Random Forest algorithm, along with its meaningful
feature importance scores, facilitates root cause analysis and accelerates operational decision-making pro-
cesses. Moreover, the integration of statistical methods and machine learning techniques within a unified
anomaly detection pipeline enhances detection sensitivity, reduces false alarm rates, and improves over-
all system stability. Overall, the study highlights the transformative potential of Al-driven monitoring
mechanisms in modern software ecosystems and shows that this scalable, data-driven approach provides
a solid foundation for future APM platforms. Future research is expected to focus on the integration of
deep learning architectures, self-updating models through continuous learning techniques, and the analy-
sis of large-scale datasets collected from heterogeneous systems, thereby further improving the predictive
capability and generalizability of intelligent performance monitoring solutions.

Future Work and Recommendations

The results presented in the Findings and Discussions section indicate that Al-based anomaly detec-
tion offers significant advantages in APM processes; however, the methods should be evaluated across
broader data diversity and different system architectures. In this context, future studies should priori-
tize expanding data coverage to investigate how dynamic thresholding, moving average techniques, and
Random Forest models perform under varying workload profiles. Since the findings suggest that hy-
brid model architectures can provide more balanced results than single algorithms, future research may
explore integrated frameworks in which lightweight models perform preliminary screening and critical
anomalies are subsequently forwarded to more powerful classifiers. In addition, the variable importance
information provided by Random Forest offers strong potential for enhancing explainability layers, and
integrating this information into proactive decision-making mechanisms may constitute a new research
direction. Furthermore, considering that fully automated decision-making processes may pose risks in
terms of security and fault tolerance, future work should more systematically define the boundaries of
automated interventions, validation mechanisms, and safe operation principles. Finally, the long-term
stability and adaptability of continuously learning models that can update themselves during operation
represent a critical research area for the maturation of Al-driven APM systems.
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