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ABSTRACT: In this study, a new family of probability distributions is proposed by integrating the tail flexibil-
ity of the Type I Heavy Tail family and the Topp Leone generated family of distributions and this is called the
Type I Heavy Tailed Topp-Leone Generated (TTHTTL-G) family of distributions. The significant statistical
properties of the TIHTTL-G family of distributions such as moments, generating functions, order statistics,
stochastic ordering, and Rényi entropy are derived. The estimation of the parameters of a specific sub-model,
the TIHTTL-Rayleigh (TIHTTLR), is performed employing ten different estimation techniques, both classical
and Bayesian. Bayesian estimators are derived under three different loss functions namely: Square Error Loss
Function, Linear Exponential Loss Function and Generalized Entropy Loss Function. Simulation experiments
was conducted to examine parameter estimators from the different estimation procedures. Finally, to demon-
strate the applicability of the proposed family, the TIHTTLR was fitted to three real-life datasets, and the
results show its superior fit compared to competing models.
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1. Introduction

The usefulness of probability distributions lies in the fact that it is used to describe the likelihood
of the occurrence of the outcome of a random variable in a probability experiment. Hence, the study
of uncertainty in many real-life scenarios. A great number of standard probability distributions have
been introduced and used for modeling data in several areas. In scientific, biological, and engineering
surveys, empirical data frequently exhibit irregularities such as skewness, excessive kurtosis, tail heaviness,
and outliers, or extreme values. The use of these standard distributions is hampered by such severe
behavior, even though these distributions are preferred for their mathematical simplifications, yet they
are useless when dealing with complicated real data. Some academics have created generalized and
compound distributions by adding more shape factors or by employing transformation techniques in
response to the shortcomings of standard distributions. One of the most encouraging innovations within
this field is the transformed-transformer (T-X) generator, introduced by [27]. This method offers a
formal means of modifying baseline distributions’ tail behaviour without degrading or destroying their
analytical properties. Since its formulation, this T-X generator has inspired the development of several
new distribution families, such as the Type I Heavy-Tailed (TI-HT) family introduced by [3], the Heavy-
Tailed Exponential by [5], the Type II Half-Logistical Odd Fréchet by [6], Type II heavy tailed family
by [28].

The second general and widely used family of distributions is the Topp-Leone-G (TL-G) family in-
troduced by [12], and other Topp-Leone extensions in the literature include the Power Topp-Leone
Weibull proposed by [7], the Marshall-Olkin-Topp-Leone-Gompertz-G distribution introduced by [10],
Topp-Leone-Harris-G distribution proposed by [9], Topp-Leone Dagum distribution introduced by [26],
DUS Topp-Leone family by [8], the Odd Inverted Topp-Leone-H (OITL-H) family [25], the Type I
Half-Logistics-Topp-Leone-G (TTHLTL-G) distribution [24], and the Topp-Leone Type I Heavy-Tailed -
G Power [1]. Other relevant studies include [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46], [47], [48], [49], [50], [51], [52], [53] and [54].

The TL-G family is noted for its structural flexibility and ability to model a variety of distributional
forms through transformations of a base distribution. While the TL-G family has rich modeling flexibility,
the family does not admit heavy-tailed behavior or extreme-value characteristics in a natural way, limiting
its application in domains where such properties are prominent. To bridge this gap, this study proposes
a new and computationally efficient family of generalized distributions called the Type I Heavy-Tailed
Topp-Leone-G (TI-HT-TL-G) family of distributions. The model integrates the tail-flexible of Type I
heavy-tailed family developed by [3] and the Topp Leone (TL-G) family, introduced by [12]. The
resulting distribution offers improved performance for data that have both moderate variability and
extreme values and is therefore particularly targeted towards applications involving robust modeling of
heavy-tailed, skewed, or irregularly shaped distributions.

Due to its attractive characteristics, the new generalized distribution has numerous advantages. It is
mathematically tractable and can be represented as an infinite linear combination of the exponentiated-
G distribution. The new distribution is also versatile and can accommodate data having monotonic or
non-monotonic hazard rate functions and hence suitable for modeling heavy-tailed and skewed data.

2. Derivation of the TI-HT-TL-G Distributions

Based on the Type I Heavy-Tailed-G (TIHTG) distribution introduced by [3] and the Topp-Leone-G
family proposed by [12], this study introduces a new and more flexible class of distributions, referred
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to as the Type I Heavy-Tailed Topp-Leone-G (TI-HT-TL-G) family. This newly developed family is
designed to extend the modeling capabilities of TIHTG and TLG by incorporating features from both
frameworks. The cumulative distribution function (CDF) of the Type I Heavy-Tailed-G distribution, as
discussed in [3], is:

. B 1—F(x;A) f
G(z;0,A)=1-— (1 (19)F(x;A)> , (2.1)

While the probability density function (PDF) is:
02 () [1 = Fla; M)
[L— (1= 0)F(a; )"

g(z;0,A) = , (2.2)

for 6,2 > 0, where A denotes the parameter vector from the baseline distribution F(.). Also the cdf of
the Topp Leone-G family of distribution is

F(z) = [1- (1= T())*] (2.3)
with a corresponding pdf of:

a—1

f@)=2at(x)[1 -T(@)][1-1-T)*]" ", a>0 (2.4)

Replacing the baseline CDF in Eq. (2.1) with the CDF of the TL-G family in Eq. (2.3) an substituting
«a =1 to have the new family of distribution called TI-HT-TL-G with CDF

G(z;0,A) =1 — - {1 _ (T(x)ﬂ (2.5)
- 1-(1-0) (1- (T@)°) '

Substitute Eq. (2.3) and (2.4) into Eq. (2.2) and taking a = 1 to have the PDF of the TI-HT-TLG
family of distributions

20° t(x) (T(x))*

1-a-0 (1= (@)%

Where T(z) = 1 — T(x) is the baseline survival function. ¢(x) is the associated pdf of the baseline
distribution and A is the parameter vector of the baseline distribution F'(.).

9(5L’§9’A) = (26)

0+1

2.1. Reliability Measures

Consider a continuous random variable X characterized by a probability density function (PDF)
g(x), a cumulative distribution function (CDF) G(z), and a survival function defined as S(z) = 1—G(z),
several reliability functions are typically of interest. Some of them are the hazard rate, the mean residual
life, and the reverse hazard rate functions. The hazard rate function, the instantaneous failure rate at
time, can be defined as: h(z) = g((i)) The mean residual life function is employed to establish the expected
remaining lifetime upon survival to time, and the reverse hazard rate function indexes the instantaneous
rate upon non-occurrence prior to x . As shown by [13], such functions possess analogous analytical
features. In this paper, we focus on survival and hazard rate functions since they are directly relevant to
the TTHTTL-G distribution. Using the previously derived CDF and PDF in Eq (2.5) and Eq (2.6), the
survival function of the TI-HT-TLG distribution is:

(T(x))"

0

and the hazard rate is:
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2.2. Quantile Function

The quantile function is instrumental in simulation studies, especially for sampling random vari-
ates of a given distribution. Suppose X is a random variable having the TIHTTL-G distribution, and
U Uniform(0,1). To find the quantile corresponding to X, one has to solve the nonlinear equation:

Let

1
e (T(@)?
o g - @) 2.9
0(1—p)"? = (T@))*[1 - (1= 0)(1 - p)’]
_ _p)1/0
(@) = — D)

T1--ea-p”

o (1 —p)'/?
Tie) = \/1— 001 p)7

1 o(1 —p)t/?
Q) =T <1\/1_(1—9)(1—p)1/9>

Thereby, random variates from the TI-HT-TL-G distribution can be generated using Eq (2.9), where
T represents the baseline cumulative distribution function.

2.3. Expansion of the density function

given the pdf in Eq (2.6), the density function can be expanded thus

g(x;0,A) =

20% t() (T (x))** "
0+1

- (1-0)(1- (T@)?)]
("= - ey

J

—(6+1)

(1-a-001-(TE)?)

_ —0+) RS 0+1 7\ (7
0+ (1—0)(1— (T(x))? =SS (T a0y () @y
(=000 -aem) ™ =237 - ()
_ - 0 J €+1 i _
(2:0.8) = 260% () (T()* S S -0F (T ) -0y (1) (7@,
; > (7)u-or(i)
sta0.a) =22 S-S0 (VT a0y (1) e 2.10)
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2.4. Statistical Properties

Here you can get comprehensive points of interest with respect to the TI-HT-TL-G distribution family.
This comprises their moment, moment-generating function, order-statistics, Rényi entropy.

2.4.1. Moments and Generating Function. The s-th moment is defined as
oo
us = E[X?°] = / x%g(x; 0, A) dx

By employing the series representation of the probability density function given in Eq (10), we can derive
the formula for the s** raw moment of the TI-HT-TL-G distribution. Let X ~ T — HT —TL — G model.
The s** raw moment is expressed as:

—o0 =0 k=0
o2 gjo kzj;o(—nk (9 j 1) (1— 0y (2) /_ O; 2*4(2) (T(2)) 2 da

Csj = /00 () (T(m))2(9+k)_1da:

The Moment Generating Function (MGF) i

»n

Mx (t) = B[] = -/000 e g(x;0,A) da.

Substituting the pdf expansion in Eq (10): we have the MGF given as

My (t) = 26 i Ej:(—l)k (9 + 1) (1-6) (ki) /0 b et (z)(T(x)) "™ da

o) = g tox ([ o). azoiaz

1= 0
g(x)* = (202t(x))°‘ Z (1) (a& + a;rj - 1) (1— 0)3' <i) (T(I))a(2971)+2k
/Ooo g(2)* dx = /0°° (2(92t(m))a Z Z(il)k <a9 + Ocj-i-j - 1) (1- 0y (i) (T(x))a(29—l)+2k de
=0 k=0
= (292)a ZZ(_I)k af + ocj—i—j - 1) 1- e)j <i> /Oo t(z)® (T(m))a(26—1)+2k da
§=0 k=0 0

£alg) = : 1 ~ Jog (292)a Z (‘Uk (a@ + a;j — 1) (1- 9)3' (i) /OOO #(z)® (T(x))a(2971)+2k da
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Define

— (26%)° i Zj:(—l)k (0‘9 tati- 1) (1— 6y <;) /OOO H(2)* (T(2)) "+ gy,

=0 k=0

so that

1
alg) = T-a log Aj k.

2.4.83. Order Statistics. Order statistics is a key branch of the theory of probability and statistical in-
ference. Consider a sample of independent and identically distributed random variables X1, X5, ..., X},
from the TI-HT-TL-G distribution. The pdf of the s order statistic of this sample is as follows:

M o) (G [ - Gl

gs:n(x) = m

7) = n! 202t (l‘) ( )29(n s+1)— - T(l‘)2 o\ s—1
BRI [1-(1-0)0- T(SE)Z)}Q(H“)+1 (1 [1 -(1-0)0 —T(x)Q)] )

3. Sub-Model of TI-HT-TL-G Family of Distributions

In this section, we present the sub-model of the TI-HT-TL-G family of distributions when the baseline
CDF G(z, A) is specified. We present the special case of Rayleigh distribution given by [29], CDF, and
PDF are given as follows:

T(x)=1-¢ P (3.1)

and

t(x) = 2Bze P (3.2)

respectively.
Substituting Eq. (3.1) into Eq. (3.2) gives the CDF of the TI-HT-TLR distribution as follows:

6—25362 0
G(xvaaﬂ) =1- <1—(1—9)(1—€_2ﬂx2)> (33)

also substituting Eq. (3.2) and Eq. (3.1) into Eq. (2.6) gives the pdf of the TI-HT-TLR distribution.

492&86*295‘”2
1= =0)(1— et

9(x;0,5) = (3.4)

for 6,5 > 0.
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Figure 1: pdf Plots of TI-HT-TLR Distribution

3.1. Expansion of density function of TI-HT-TLR
Given the pdf of TI-HT-TLR in Eq. (3.4)
492,8$e’20ﬁx2

g(aj,ﬂ,ﬂ) = (1 _ (1 B 0) (1 _ e—2ﬂm2))0+1

2 2\ \ —(0+1)
(230.5) = 40%5e 55" x (1= (1—0) (1 - 25+"))

g(z;0,58) = 49261‘6_29512 X Z (9 _: 1) (1— 9)2' (1 . e—zﬁzz)i

— 402 Bge=205" ii (0 er 1) (1 8)i(—1)* (;) - 2kpa?

0k

2 - (0+1 N T —2832° (0+k)

9(w:0.8) =402 x 33 7, A =0 (=DF( | we = Qu
i=0 k=0

3.2. Survival Function

The survival function of a random variable X ~TI-HT-TLR (0, 3) is written as,

R 0
S(2,0,8) =1 - G(x,,8) = o
(I7 9’ - :177 i - 1_(1_9)(1_6_2512)
3.3. Hazard Function

The hazard rate of a random variable X ~TI-HT-TLR(6, 8) is written as,

W)= @00 _ 0@.0.6) 162 B
1—G(z,0,8) S(z,0,8) 1—(1-0)(1—e262?)
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Figure 2: hazard function Plots of TI-HT-TLR Distribution

The shape of the hazard function plots in Figure (2) displays a variety of typical shapes. They are
made up of bimodal-shaped curves, right-skewed, and left-skewed patterns, bell-shaped and symmetric
shapes. There is even one with a predominantly straight-line or linear pattern. These shapes reflect the
flexibility of the TI-HT-TLR distribution to model a wide range of failure behaviors and hazard dynamics
under various parameter settings.

3.4. Quantile Function of TI-HT-TLR Distribution

Let X ~ TI-HT-TLR(6, 8) and the cumulative distribution function (CDF') be represented by Eq. (3.3).
The quantile function, which provides the inverse relationship between the distribution function and the
corresponding quantiles, is obtained by solving the equation:

672'8932 o e*2ﬁm2 0
p=1- (1 (10)(162&52)) =1-p= (1 (19)(le2ﬁ$2)>

— zz
1/6 _ e
1—(1—0)(1— e 2622)

= (1-p)

simplifying gives the quantile function;

a0 = |55 (- ;ﬁ/)elg )] : (36)

The quantile function derived in Eq. (3.6) plays a crucial role in simulating random samples from the
TI-HT-TLR distribution, making it especially valuable for simulation purposes. When the probability
level p = 1/2, the function yields the median of the distribution, representing the typical lifetime in
reliability contexts. Additionally, the quantile function can be employed to derive measures such as
skewness and kurtosis, which provide insights into the shape and tail behavior of the distribution.

Using iterative methods by making use of R software, we present quantiles for the TI-HT-TLR dis-
tribution for some selected values of parameters. The results are shown in Table 1
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Table 1: Quantiles for the TI-HT-TLR, Distribution

q (09,15 (0.51.0) (1.0,0.5) (1.51.5) (0.5,0.1)

0.1  0.2076 0.4386 0.3246 0.1257 1.3869
0.2 0.3011 0.6139 0.4724 0.1840 1.9414
0.3 03795 0.7502 0.5972 0.2343 2.3722
0.4  0.4526 0.8708 0.7147 0.2825 2.7535
0.5 0.5254 0.9864 0.8326 0.3319 3.1192
0.6 0.6019 1.1051 0.957 0.3854 3.4945
0.7 0.6871 1.2359 1.0973 0.4470 3.9084
0.8  0.7909 1.3950 1.2686 0.5245 4.4112
0.9 0.9409 1.6269 1.5174 0.6408 5.1446

3.5. Moment
The j** moment of the TI-HT-TLR distribution is derived as

u;:/ 2l g(x,0,B)dx
0

[e's) 2 —208xz>
15 :/ x7 49" Bae dx
i), TTo (10— e2peR)e

#; _ 492ﬁ/ x.j+le—20ﬂx2(1 _ (1 _ 0)(1 _ e—2ﬁw2))—(9+1)dx
0

Applying general binomial expansion in Eq. (3.5), we get

oo oo 0+1 ; i oo B .2
#}—492522:( ; >(19) (1)’“<k>/0 gl T (k2627 gy

i=0 k=0

The j** moment is given as

), = 62T (; + 1) iz (9 er 1) (1- 9)1‘(_1)%(;) (M) o (3.7)

=0 k=0

The first four moments are obtained by replacing j = 1,7 = 2,j =3 and j = 4 in Eq. (3.7). Some of
the most significant are the mean (), variance and coefficient of variation (CV) of the random variable
X, where the first moment 1} is the mean (u), and the variance represented by ps = pb — % and the
CV = y/Var(X)/u. The first five moments of TI-HT-TLR and the standard deviation (SD), coefficient
of variation (CV), coefficient of skewness and coefficient of kurtosis with their different parameter values
are presented in Table 2

Table 2: Moments of TI-HT-TLR Distribution

E(X) E(X? EX3) EX%Y  E(X? SD Vv CS CK

( ) 0.5554 0.3892  0.3193 0.2952 0.3005 0.2841 0.5116 0.5874 3.1785
( ) 1.0172  1.2465  1.7420 2.7017 4.5728 0.4603 0.4525 0.4427 3.1323
(1.0,0.5) 0.8862 1.0000  1.3293 2.0000 3.3234 0.4633 0.5227 0.6311 3.2451
( )
( )

0.3626  0.1728  0.0995 0.0661 0.0493 0.2033 0.5606 0.8202 3.6832
3.2165 12.4645 55.0861 270.1719 1446.0615 1.4555 0.4525 0.4427 3.1323
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Figure 3: Mean, Variance, Skewness, and Kurtosis of TI-HT-TL-R Distribution

Figure (3) displays the mean, variance, skewness, and kurtosis. The plot in Figure (3) illustrates
the behavior of the key moments of the TIHTTLR . distribution as a function of its parameters 6 and
case (a) illustrates that the mean of the TTHTTLR distribution is nonlinear with regard to 6 and S. It
is a maximum when 6 takes moderate values and 3 takes small values and decreases as both parame-
ters increase. This indicates that larger 6 and beta are heavy tailed around small values, producing a
dome-shaped mean surface that reflects the joint impact of the parameters on tail and scale behavior.
The variance as shown in case (b) has a non-monotonic and nonlinear relationship with 6 and 5. It
increases with both parameters at first, reaching a definite maximum before declining slowly. This is an
indication of extreme sensitivity of the dispersion of the distribution to the interaction of 6 and 3, i.e.,
intermediate parameter values produce the most variation in results. Similarly, in case (c¢) the skewness
is mostly positive, indicating a right-skewed shape with a heavier right tail. The extent of asymmetry is
highest at small values of § and 8 and diminishes progressively as the two parameters get larger, showing
a tendency towards symmetry for large values of the parameters. Also in case (d), the kurtosis shows that
the TIHTTLR distribution is largely leptokurtic with heavier tails and a more peaked shape than the
normal distribution. Kurtosis decreases slightly with increasing 6 and 3, meaning that the distribution
becomes less heavy-tailed and less peaked for larger parameter values.
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3.6. Moment Generating Function (MGF)
The moment generating function for the TI-HT-TLR distributed random variable X is given as

M,(t) = E[e™] = /000 e g(x)dx

> 402,6’326_29“2
M — tx
+(t) /0 “ 1z (1—0)(1 — e—2627)0+1 d

Using the series expansion for g(z) in Eq. (3.5) we have

D Sl G (R A
i 0

oo
i,k=0

M, (t) = 02 i:O (9 - 1) (1-0) (;) (“1)*(0 + K)o

]

3.7. Reliability Function under the TI-HT-TLR Model

Let X ~ TI-HT-TLR(61, 81) be the component strength, and Z ~ TI-HT-TLR(6s, 82), be the stress
imposed on the same system. The reliability function, which provides the probability that the component
strength is higher than the induced stress, is expressed as, R = P(Z < X). "This reliability measure
can be calculated by integrating the joint distribution of the random variable for stress and the random
variable for strength over the appropriate domain. In case the two random variables are independent,
then the reliability function” simplifies to:

R /OOO [/Oxg(x)G(z) dz] do

B /°° 49%61956_2915””2
0 (1—(1—61)(1 —e2ma?))" ™!

1 6_2132%2 02 d
T TS ()1 = ez v

x {1 S [1 — (1 6y) (1 - e—w”z)} 92} do

R=P(z < x) = 4628, i i (91 ! 1) (1—6,) (;) (1)

1=0 k=0
- 2(01+k) B 26, B2 28,22\ "%
x/ P GRS R DY [1—(1—62) (1—e— foc )} dz
0

3.8. Order Statistics

Order statistics play a vital role in solving intricate problems in statistical analysis. Consider a
random sample X1, Xo,...X,, from a population. The r*" order statistic, X (r) for r = 1,2,...,n, is the
r*" smallest value after arranging the sample in ascending order. Order statistics are particularly useful
in analyzing data that obeys the TIHTTLR distribution.

() (G [ G

gr:n(xaevﬁ) = m
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r—1

n! e20’ ’
R TV ] 1(1—(1—0)(1—e2ﬂw2>>

0 n—r
. o—26° y 462 Bre—208"
1—(1=0)(1—e28?) [1—(1-0)(1—e2022)]" )
The pdf for the maximum order statistics is derived by setting r = n, yielding

—nl1 e~ 282" 0 492 Bare= 200"
g(n)(:l,‘)—n - (1_(1—9)(1—62512)> <[1_(1_a)(1_e—2ﬁzz)]9+1>

The pdf of the first-order statistics is derived by setting r =1

4n92ﬂxe—2ﬁz2(1+0(n—1))

g(l)(l‘) = [1 —(1-0)1-— 672512)]0n+1

3.9. Measure of uncertainty

In the context of statistical inference, entropy is a quantification of unpredictability or uncertainty
about a random variable. One among a number of entropy definitions, which is used extensively, is Rényi
entropy, introduced by [15], which generalizes Shannon entropy by the introduction of a parameter that
emphasizes different aspects of the distribution. For TI-HT-TLR, it is derived thus:

Rg =

[ee] 1 (oo}
T log/o 9’ (z)dx = log/o 4925“3:”6_2“%“”2(1 —(1-6)1- e‘zﬁxz))_“(“l)da@

1—v
_ 1 > 2 qu, v, —v(0+k)28x2 = vl +i+i—1 i i k
= log/o 405" x"e Z ; (1-19) k (=1)%dx

1—v )
i,k=0

_ 1 sl (VFLY = (VO +i+i—1\ i\ Can
g =7 log [ 4075 zf( 2 )Z_( ; )<1 0) (k)< 1)*(2(00 + k)B)

Where v # 1 but v > 0.

4. Estimation of Parameters

In this, various parameter estimation techniques were employed to effectively model and describe the
data. They aim to determine the values of the unknown parameters that best describe the behavior of
the observed data set. The approaches considered are maximum likelihood estimate (MLE), maximum
product spacing (MPS), least squares (LS), weighted least squares (WLS), Cramér-von Mises (CVM),
Anderson-Darling (AD), and the right-tailed Anderson-Darling (RTAD) approach. Moreover, Bayesian
estimation was used in selected samples under different loss functions, namely squared error loss (SEL),
linear exponential loss (LINEX), and generalized entropy loss (GEL). Performance of every estimation
was compared via comparative examination based on bias and root mean square error (RMSE).

4.1. Maximum likelihood estimation (MLE)

The parameters of the TI-HT-TLR distribution can be estimated using the maximum likelihood
estimation method. If x1,x9,...,x, are random samples and given the expression in Eq. (3.5), the
likelihood function is:

n n

L, 8) = [J9(xs,0,8) =[]

i=1 i=1

49263[:1-6_2‘95‘1”12
[1—(1—6)(1 — e 26a7)]0+1
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While the log-likelihood function is expressed as:

n

£00,8) =nln(4) + 2nln(f) + nln(s —i—Zln x;) 9—|—1)Zln<1—(1—9)(1—@‘2&5?))—ZQﬁZx?
i=1

=1

Taking partial derivative with respect to 6.

ol (1—e~ 25:” 98322
= zﬁzx + 9“)21_(1_9)( _wm Zln(l— (1—0)1—e 261)) (4.1)

=1

Similarly, taking the partial derivative with respect to g

2

ol = 2(1 — )x2e=2P7
29§ : 0+1)> i
3B 5 0T T g0 — e

1=1

(4.2)

The MLEs (é, B) for (6, 3) are obtained by equating the score function that is, the partial derivatives of
the log-likelihood function with respect to each parameters, given in Eq. (4.1) and Eq. (4.2) to zero and
solving the resulting system of equations simultaneously. Since these equations are non-linear, they are
solved iteratively using the Newton-Raphson method with the help of R software to obtain the MLEs of
the unknown parameters.

Newton Raphson Algorithm for TIHTTLR distribution
In this study, the Newton-Raphson iterative method is employed to approximate the estimates.

The Hessian matrix of second-order partial derivatives is defined as

v o
062 0008
H = 4.3
0pos  9p?
where the individual elements are given as follows:
20 2 o~ 1—e 2 T (1 e 20eiy2
Z o= >+ (0+1) 4.4
90>~ ; 0+ (1— )27 ; 01 (1= 6)c 2578 (44)
2 " 224e=2077 (0 4 (1 — 0)e= 2077 4 2(1 — f)at (e207)?
9 6 221 6+ (1 — §)e—25%
0%/ 72 —2ﬁm
[ _2 _ 9 ’L
9008 8680 Z” Z 0+ (1— 0)e—207
(4.6)

n 2 72Ba: (1 _ 672&1:1-)

tE+10-0) 2_; $(96+ (1— 0)e—28%)?

The Newton-Raphson Technique is then applied to iteratively solve the system on nonlinear score
equations and obtain the maximum likelihood estimate of the model parameters.
Algorithm 1: Newton-Raphson procedure for TIHTTLR MLE

Require: Observed sample y = (y1,...,¥y,), initial parameter vector 8(°) = (§(9), 30 convergence
tolerance ¢, and maximum number of iterations V.

Ensure: Maximum likelihood estimates 6 = (6, 5) and asymptotic variance—covariance matrix U.

e Set k<+ 0

e Set 6 + 600

e Repeat
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ol (%)T

e Evaluate the score vector at %) ) = A¢(9(*)) = (30, B

e Compute the Hessian matrix at %)

[
w _ | 062 9608
e HW =1 920 o

0B 9B2 ) g
e Determine the Newton step direction (%)
e Solve the linear system: H®)~*) = _g(k)

e Update the parameter vector:
O+ = g(k) 4 ~ (k)

e Check convergence criterion

If|[v*)| < € or k > N, terminate the iteration
e Otherwise, set k < k + 1, and repeat the process

e Untilconvergence Set 6 = 6(-+1) a5 MLE Estimates

e Compute the observed Fisher information matrix: Iy = —H(0)

e Obtain the asymptotic variance—covariance matrix: U = I 1
4.2. Least Square Estimation (LSE) Method

Least squares estimation is a technique most commonly used to estimate the parameters of distribu-
tions by minimizing the squared empirical-theoretical distribution function differences. Initially proposed
by [16] as a parameter estimation method for the Beta distribution, the method has since been adapted for

application with other distributions, we write E [Gz;., | 6, 6] = nil andZ [Gx,,.. | 0,58] = %

The least square estimates éLSE, and BLSE of the parameter 6, and [ are obtained by minimizing the
function L(8, 8) with respect to (w. r. t) 6, and 8

n

10.6) =3 [0 e 108) - ]

i=1

The estimate are derived by solving set of non-linear equations.

> [G (@(imy 1 6,8) — ni 1] Ay (#(imy | 0,8) =0 (4.7)
i=1
i=1
Where
672[312 0 672Bz2 e (1 . 672/812)
Ay (ﬂv(i:n) \ 075) = (1 —(1-9) (1 _ 62512)> In (1 “(1-9) (1 _ 62512)> 1 (1-10) (1 — e*zﬁzz)
(4.9)

1— (1) (1 —e262%) 1— (1) (1 —e262%)

Eq. (4.9), and Eq. (4.10) are obtained by partially differentiating the CDF of TI-HT-TLR contained
in Eq. (3.3) with respect to 6, and /3 respectively.

7ﬁ1‘2 0 _ _ 7ﬂﬂ32
As (ﬂf(i;n>|97ﬁ)=29$2< i ) ( 0408 e ) (4.10)



TyYPE-1 HEAVY-TAILED TOPP-LEONE FAMILY OF DISTRIBUTIONS 15

4.3. Weighted-Least Squares Estimate (WLSE)

The WLSE 6y 1.s E, and BW rsg of TI-HT-TLR distribution with the parameter 8, and 3 are obtained
by minimizing the function W (0, 8) with respect to 6, and 8

n 2 n i 2

Deriving the following non-linear equation yields the estimate.

> D 6 rany 10.6) — | A o 10.9) =0 (4.11)
Z: W {G (x(i:n) | 9,5) - nj_ 1:| Ag (x(iin) | 076) =0 (4.12)

Where Ay (x(im) | 6, 5), and Ay (gc(im) | 6, 6) are defined in Eq. (4.9), Eq (4.10) respectively.
4.4. Maximum Product Spacing Estimation (MPSE) Method

MPSE provides an alternative to the maximum likelihood method, especially in cases where likelihood
functions are either complex or contain flat regions. First introduced by [17], the method focuses on
maximizing the geometric mean of spacings of the distribution function. then, the MPSE for the TI-HT-
TLR is given as follows:

Fs(0, 8 | data)

n+1 ﬁ
HA (2i.9, 5]

Where A;(x;,0,8) = G(x,0,8) — G(x;-1,0,08), i = 1,2,...,n. likewise, we can also maximize the
function

n+1

M0, 5) = - i - Y A6.9) (4.13)

Taking the first derivative of M (6, 3) w. r. t 6, and 8, and solving the resulting non-linear equation, at

OM(0.5) d 2M.0)

55— = 0, an = 0, the parameter estimates value can be obtained.

4.5. Cramer-von-Mises Estimation (CVME)

The Cramér—von Mises estimation method is based on minimizing squared differences between em-
pirical and theoretical cumulative distribution functions over the data range. The approach is distinct
from other estimation techniques and is known to be robust for goodness-of-fit assessment. For TI-HT-
TLR distribution, parameter estimates éCV ME, and Bcv M E are obtained by minimizing the following
function,

C (6, 8) = arg min

n 2 —1 2
+Z( x(i:n)|0a/6)_ Z2n >‘|

The estimates are obtained by solving the non-linear equations,

i 2 —1

Z ( x(z n) | 0 B m > Ay (x(z‘:n) | evﬁ) =0, (414)
=1

o 2i —1

Z( (T(im) | 0, 8) — o >A2 (2 | 0,8) =0, (4.15)

Where A; (x(m) | 6, 6), and Ao (x(im) | 6, ﬁ), is as defined in Eq. (4.9), and Eq. (4.10) respectively.
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4.6. Anderson Darling Estimation (ADE)

The Anderson Darling estimate éADE, and B 4pg of the parameters 6, and S of the TI-HT-TLR
distribution are the solution to the problem of minimizing the function A(f, ) in terms of both 6, and

B.

A(evﬁ) = argman(Qz - 1) [hlG (x(zn) | 97 ﬁ) +1n (1 -G (x(n+17i:n) I eaﬁ))]

i=1
The estimates are obtained by solving the following sets of non-linear equations,

U At (Zamy 16,8)  A1G (T(ny1—iom) | 6, 8) }
21— 1 — =0, 4.16
;( Z ) { G (.Z'(Zﬂ) | e’ﬂ) 1-G (x(nJrlfi:n) | 076) ( )

" . Ay (z(zn) | 036) Avies (x(n-l—l—i:n) | 03/8)
Y (20 -1 - =0, 4.17
2. 2i=1) { G (@i |0:8) 1= G (@ny1_im | 6,5) (.17)

Where Ay (x(im) | 6, 5), and Ao (x(im) | 6, 5) is as defined in Eq. (4.9), and Eq. (4.10) respectively.
4.7. Right-Tailed Anderson-Darling Estimation (RTADE)

The Right-Tailed Anderson-Darling estimates denoted by 0 RTADE, and B rTADE for the TI-HT-TLR
distribution parameters 6, and S are derived by minimizing the function R(6, ) with respect to (w. r.
t) both 6 and

n

= 1
R(6, B) = arg min % =237 G (v 10.8) = = > (2 = DIn {1 = G (w(us1-sm) | 6,8) )
1=1

i=1

The estimate can be obtained by solving the following set of non-linear equation

A1 x(zn | 0 6) 1< . AG (m(n+17i:n) | eaﬁ)
-2 —_— 4 — 2:—1 =0 4.18
Z x(zn | 0 /B) n ;< >1 -G (x(n+17i:n) | 9,,6) ( )
A2 x(z n) |0 6 1 & (x(n—&-l in) IQ B)
-2 — 4 — (2 — 1) =0 4.19
Z x(zn |9/8 TL; 1_G( T(n+1—imn) |9aﬂ) ( )

Where A (w(i:n) | &B), and As (x(i:n) | H,ﬁ) is as defined Eq. (4.9), and Eq. (4.10) respectively. The
estimates given in Eq. (4.1), (4.2), (4.7), (??), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16), (4.17),
(4.18), and (4.19) they are computed using the optim() function in R, which applies the Newton-Raphson
iterative procedure.

4.8. Bayesian estimation

In this study, we discuss the Bayesian estimation (BE) of the unknown parameters of the TT-HT-
TLR distribution. In the Bayesian approach, various loss functions such as the squared error loss, linear
exponential (LINEX) loss, and generalized entropy loss can be utilized. We assume that the parameters
# and (8 have independent prior distributions and that they have gamma priors. The prior probability
density functions are given by:

p1(0) < 0 e™ 0 050, ¢; >0, k; >0
/1/2(B) X 562_16_k2ﬁa 6 > 07 Cc2 > 07 k2 >0

Where the hyper-parameters ¢;, g;, 7 = 1,2 were selected to show the prior information of the unknown
parameters.
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The joint prior for ¢ = (6, 8) is given by
1(8) = p1(0) p2(8)

o aclflﬂczfle*(kle*%&,@)

The posterior density given the observed data X = (z1, z2,...x,) is given by: The likelihood is
1(0,8) = [1i—, 9(zi; 0, 8) Implying that the posterior density function is:

1(0]X) o< L(0, B) - (o)

u(6] X) o [H g(xz—;am] ger=1 ger=1 g~ (a0+haf)
i=1

Given any function, such as [(¢) under the squared error loss (SEL) function, the Bayes estimator is
given as

domee, = Ell6 | 7] = / 16 u( | 7) do (4.20)

The symmetric error loss (SEL) function inflicts an identical penalty for overestimation as well as
underestimation. In the majority of real-world cases, one of the estimation errors may be more severe
compared to the other. Due to this fact, the LINEX (Linear-Exponential) loss function is advised as
an alternative. (I(¢),[(¢)) = e!(®)=19) — w([(d)) —1(¢)) —1 Where w # 0 is direction and magnitude
controlling parameter. Overestimation is penalized more for a w > 1, and underestimation is penalized
more when w < 1. For w — 0, the LINEX loss converges to the SEL. For further detailed discussions on
its use in Bayesian estimation, see [18] and [19].

The BE of I(¢) under this loss can be derived as

qASBEfLINEX =F {e‘w“qﬁ) | X] = —é log L/d) e~ wH®) w(o | x) dqﬁ] (4.21)

A second alternative of the symmetric error loss function is the general entropy loss (GEL) function,
which provides a more versatile framework for the imposition of estimation penalties. The GEL function
was introduced by [20] and is in use particularly when different weights are needed to be assigned to

A ; a ;
overestimation and underestimation. The GEL function is given by: (I(¢),{(¢)) = (%) —alog (%) -
1 where the function form offers flexibility to code preferences for estimation errors in one direction rather
than the other. The parameter a # 0 represents the degree of asymmetry in the loss function. When
a > 0, overestimation is penalized more than underestimation, while o < 0. Hence, underestimation is
taken more seriously. Thus, the choice of reflects the decision maker’s sensitivity to estimation errors
of one type versus the other. The resulting Bayes estimator for this asymmetric loss is obtained by
minimizing the posterior expected GEL, thereby incorporating both the asymmetry preferences and the

information in the posterior distribution.

1
— a

1
a

e, = (o)™ 1X]) " = | [ )=o) do (1.22)

As the posterior expressions derived in Eq. (4.20), (4.21), and (4.22) are complex, closed-form Bayes
estimators cannot be obtained. To address this, we used the Markov Chain Monte Carlo (MCMC) method
to estimate the desired estimates based on posterior samples. MCMC is a general-purpose computational
device for sampling complex posterior distributions. Most often, an initial fraction of the sampled points,
the burn-in, is omitted so that the chain may converge. The remaining samples are used to construct
Bayes estimates with respect to the loss function used. For each posterior draw ¢() = (H(j),ﬂ(j)), the
Bayes estimator under different loss functions, e.g. symmetric error loss (SEL), LINEX, and GEL, can
be calculated as follows.

1 N
) _ S o
¢BESEL N . lD ¢

Jj=lp
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N
~ 1 1 )
PBELnEx = 0 log N, Z exp <_w¢(ﬂ)>
Jj=lp
N -1/«
n 1 L\ @
= | — (4)
¢BEGEL - N _ lD jzl: (¢ J )
=lp

Where Ip represents the number of burn-in samples. For further details on MCMC see [22] and [21].

4.8.1. Credible Interval for Bayes Estimates. The credible intervals 100(1 — §)% for the parameters ¢ =
(0, B) under the loss function discussed are

QEBESEL 7é Z€/2 V Var(éBEsEL); qZBBELINEX 7é Z€/2 V Var(gZ)BELINEX); QBBEGEL 7é Z§/2 Var(éBEGEL)

Here Z¢ /5 is the standard normal percentile distribution with right-tailed probability.

5. Simulation

To compare and evaluate the performance of the various non-Bayesian estimators (MLE, MPS, LS,
WLS, CvM, AD, RTAD) of the parameters of the TI-HT-TLR distribution, an extensive simulation
study was conducted. For each of the estimation methods, the parameter estimates were calculated with
10,000 bootstrap replicates for four different sample sizes (n = 25,75,150,200). This allowed for a robust
comparison of bias, root mean squared error (RMSE), and general estimation performance for conditions
from small to large. Additionally, Bayesian estimation was conducted on the rest of the samples using the
"Squared Error Loss (SEL), LINEX loss, and General Entropy Loss (GEL) loss functions. To compare
and analyze the performance of all the estimation techniques, average bias and root mean square error
(RMSE) were computed for each sample size for 10,000 iterations”. The measures provided an overall
evaluation of the precision and accuracy of each technique.

The study also considers different cases by varying the initial values of the parameters, which includes;
Case I: 6 = 1.15,8 = 0.75 Case II: 6 = 1.15,8 = 0.5 Case III: § = 1.75, 3 = 1.25 Case IV: 6 = 1.80,3 =
0.80

Table 3: Simulation for Case I

Type ‘ Method ‘ - n=2 =75 =150 n =200
: Bias RMSE Bias RMSE Bias RMSE Bias RMSE
MLE; 1.42760 19.06019 0.43921 7.14895 0.13805 1.69984 0.09487 0.26125
MLE; 0.07831  0.63679  0.05052 0.28129 0.02789 0.15398 0.00534 0.04485
MPS;; 0.19172  4.56238  0.01059 1.59865 0.05532 0.21763 0.02702 0.18053
MPS,; 0.68820 2.27352  0.39786 1.44508 0.13982 0.37672 0.07611 0.15039
LS 0.40311  4.16108  0.13228 1.36343 0.02416 0.27944 0.02911 0.20415
LS, 0.36668  0.85695 0.15438 0.28472 0.07546 0.10012 0.04400 0.06316
Non Bayesian WLS, 0.54384  6.19866  0.19520 1.98285 0.05366 0.24281 0.04852 0.17295
WLS, 0.32883  0.88197 0.10930 0.24137 0.04319 0.06791 0.02507 0.05159
CvM, 0.91033  6.94581  0.28176 1.69857 0.09133 0.31145 0.07811 0.22022
CvM, 0.14544  0.56370  0.08017 0.22814 0.04229 0.08673 0.02062 0.05630
AD; 0.69238  6.43782  0.19885 1.50299 0.05553 0.23845 0.04987 0.17209
ADB 0.24777  0.80680  0.08688 0.19602 0.04126 0.06607 0.02804 0.07473
RTAD, 0.60290  3.48431  0.22152 1.01098 0.06787 0.24369 0.07275 0.22241
RTAD;, 0.23230  0.84579  0.07532 0.25331 0.03343 0.06139 0.01679 0.05499
SEL; 0.56179  0.47433  0.56969 0.38610 0.57711 0.36945 0.57630 0.36051
SEL, 2.57397  13.5726  2.27918 11.0539 2.09419 9.34322 1.96090 7.77003
LINEX1, | 0.55836  0.47382  0.56743 0.38429 0.57546 0.36786 0.57481 0.35901
LINEX1j | 2.75215  16.4132  2.35021 12.6853 1.95163 7.70898 1.85701 6.37875
Bayesian LINEX2; | 0.56517  0.47498 0.57193 0.38791 0.57876 0.37105 0.57777  0.36200
) LINEX2; | 2.33840  10.5174  2.08068 8.29047 1.94286 7.08281 1.85029 6.15619
GEL1, 0.56679  0.47905 0.57335 0.39003 0.57993 0.37265 0.57882 0.36335
GELIE 2.52546  13.0287  2.23792 10.5634 2.06207 8.94469 1.93620 7.49811
GEL2, 0.57677  0.48869  0.58070 0.39803 0.58559 0.37913 0.58387 0.36911
GEL2; 2.43224  12.0374 2.15924 9.68565 2.00099 8.24134 1.88863 7.00776
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Table 4: Simulation for Case I1

Type Method n=25 n="75 n =150 n=200
Bias RMSE  Bias RMSE  Bias RMSE  Bias RMSE
MLE; 1.09176  8.93171 0.41519 2.23717 0.20342 0.83982 0.10153 0.27743
MLE; 0.05841 0.34231 0.01760 0.12430 0.00272 0.02476 0.00231 0.01788
MPS; 0.20914 3.42801 0.12577 149973 0.06499 0.59076 0.00923 0.23500
MPS; 0.52296 1.67825 0.15030 0.44775 0.04319 0.07079 0.03289 0.02203
LS; 031301 2.42226 0.18790 1.14788 0.10383 0.47787 0.05386 0.20500
LS; 0.23917 0.49416 0.06210 0.09630 0.02140 0.02927 0.01581 0.01966
Non Bayesian | WLS; 0.46177 3.71309 0.24530 154239 0.11776 0.41106 0.06698 0.18255
WLS,; 0.19601 0.45178 0.03831 0.07043 0.00970 0.02433 0.00887 0.01760
CvM; 0.67963 3.42599 0.31945 1.29739 0.15644 0.46439 0.10338 0.28275
CvMy 0.07202 0.26618 0.01823 0.07345 0.00242 0.02681 0.00143 0.01870
ADE, 0.55111 3.28831 0.25348 116869 0.12340 0.39893 0.07367 0.20303
ADE, 0.12716  0.37050 0.03157 0.07459 0.00773 0.02448 0.00750 0.01768
RTADE,; | 042585 1.85879 0.24621 0.86917 0.14533 0.45735 0.09652 0.23814
RTADE; | 0.18621 0.66079 0.03511 0.10016 0.00902 0.02893 0.00648 0.02161
SEL, 0.59456 0.51342 0.60191 0.42458 0.60516 0.40364 0.60226 0.39181
SEL; 1.96091 7.94905 1.66740 6.01388 1.45168 4.36036 1.32549 3.18312
LINEX1, | 0.59158 0.51312 0.59994 0.42204 0.60367 0.40215 0.60090 0.39039
LINEX1; | 1.96660 8.12995 1.62280 5.73535 133348 3.17626 1.23963 2.25344
Bayesian LINEX2; | 0.59750 0.51385 0.60387 0.42622 0.60663 0.40512 0.60361 0.39324
LINEX2; | 191553 7.46660 1.64179 5.63483 145058 4.24270 1.33723 3.31062
GEL1; | 0.59885 0.51738 0.60514 0.42809 0.60773 0.40661 0.60463 0.39455
GELl; | 1.96050 8.01692 1.65080 5.88648 143300 4.20110 131163 3.09623
GEL2; | 0.60737 0.52541 0.61159 0.43517 0.61288 0.41261 0.60936 0.40007
GEL2; | 1.00748 7.59388 1.64999 5.98756 1.42092 4.16321 1.28456 2.93545

Table 5: Simulation for Case III

n =25 n="75 n = 150 n = 200
Type ‘ Method ‘ Bias, RMSE  Bias RMSE  Bias RMSE  Bias  RMSE
MLE; | 3.57643 142.68064 0.68623 10.63149 0.27739 126300 0.17233  0.90456
MLE; [ 0.04408 0.86237  0.13388 0.80247 0.14477 0.72562 016127 0.79355
MPS; 0.70259  36.70231 013697 247470 0.18776 1.16823 0.20875  0.94423
MPS; | 0.63182 181510 0.78046 2.41731 0.59736 197875 0.55005 1.84758
LS, 144346 31.73346 041135 4.30184 0.21837 1.88124 0.07162  1.34390
LS, 032885  0.96802 027918 0.69413 0.20828 0.49301 0.21695 0.42446
Non Bayesian | WLS; 174880  56.47062 044695 4.05775 0.22887 1.58253 0.11244  1.10830
WLS; | 0.32100 107959 025747 0.77219 017153 0.47675 0.16357 0.39940
CvM; 2.82076 6164280 0.74582 5.27874 0.38516 214853 0.20086  1.45300
CvM; | 0.05946  0.76913  0.14807 0.60891 0.13458 043835 0.14621  0.35186
ADE; 1.82510  40.37347 047069 3.71552 0.21812 1.47600 0.10503  1.04490
ADE; [ 022653 111757 022256 0.72944 0.16940 0.48388 0.15624  0.37100
RTADE; | 1.64869 22.37155 0.45145 3.69498 0.17805 129965 0.00842  0.96414
RTADE; | 0.24521  1.23309 024416 0.83292 0.18496 0.54561 0.15759  0.40443
SEL; 0.84611  0.96648  0.84187 0.78589 0.86672 0.79440 0.88173  0.81063
SEL; 422477 3043351 3.79259 22.66490 3.66552 17.87208 3.65605 16.20723
LINEX1; | 0.83605 0.95771  0.83568 0.77710 0.86247 0.78791 0.87828 0.80513
LINEX1; | 5.02161 4850792 3.93942 24.98880 3.72001 17.28580 3.84414 18.38112
Bayesian LINEX2; | 0.85510  0.97556  0.84800 0.79475 0.87093 0.80093 0.88516  0.81614
LINEX2; | 3.47701 18.36733 3.27082 14.33560 3.34717 13.54053 3.41697 13.45211
GEL1; | 0.85608 0.98624 0.84885 0.79786 0.87148 0.80253 0.88562 0.81733
GEL1; | 4.09214 2827276 3.69036 20.99139 3.59963 16.94424 3.60628 15.61972
GEL2; | 087913 1.02798 0.86313 0.82309 0.88115 0.81940 0.89348 0.83105
GEL2; | 3.84198 2451730 3.50138 18.22240 3.47721 15.43256 351143 14.61930
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Table 6: Simulation for Case IV

Type ‘ Method ‘ n =25 n="75 n = 150 n =200
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

MLE; 2.81509 103.45752 0.38913  4.63158  0.17747 0.77338  0.09110  0.40589
MLE, 0.06064  0.59141  0.12667  0.49361  0.04207 0.23406  0.02443  0.06617
MPS, 0.43175  15.88123  0.14842  2.63876  0.09129  0.63251  0.10662  0.39683
MPS; 0.63606  1.90172  0.49528 1.55922  0.23962 0.91984 0.13157  0.33880
LSy 0.70819  12.39191  0.05981  2.28219  0.07041  0.78395 0.01577  0.51863
LS, 0.36305  0.83978  0.22569  0.37974  0.07787  0.12390  0.06801  0.08706

Non Bayesian WLS; 0.93681 17.08734  0.13462  2.63507 0.10921  0.67820  0.05555  0.43663
WLS, 0.32150  0.87665  0.17593  0.32424  0.04369  0.08088  0.03885  0.05806
CvM, 1.57334  19.03110 0.30320 3.04730  0.17935 0.86779 0.09613  0.55098
CvMj, 0.13016  0.55382  0.14250  0.31458  0.04147 0.10602 0.03941  0.07106
ADE;, 1.37004  24.55519  0.16628  2.61937  0.11271 0.67030  0.05536  0.43448
ADE[; 0.21526  0.73963  0.15450  0.28938  0.04110 0.07673  0.03875  0.05827
RTADE; | 0.99996 11.60004 0.29772  5.01241  0.15888  0.77112  0.06808  0.44815
RTADE; | 0.27208  1.11943  0.15301  0.37765 0.02514  0.06849  0.03596  0.06399
SEL, 0.97597  1.20469  0.97640 1.03115 0.99095 1.02510 0.99922  1.03117
SEL, 3.65132  22.82501 3.16252 15.46627 2.98889 11.98799 2.94224 10.58738
LINEX1, | 096919  1.19823  0.97187 1.02366  0.98773  1.01937 0.99649  1.02616
LINEX1; | 3.72778  24.62533  3.04225 13.01998 2.97698 10.94940 2.96881 10.18530

Bayesian LINEX2; | 0.98263  1.21147  0.98089 1.03865 0.99415 1.03082 1.00194 1.03617
LINEX2; | 3.23739  16.56195  2.91975 12.04130 2.84221 10.16726 2.82399  9.39284
GEL1, 0.98424  1.22098  0.98191 1.04191 0.99486 1.03272  1.00255  1.03768
GELI1,4 3.57475  21.76880  3.12151 15.00623 2.98320 12.13090 2.93461 10.72454
GEL2, 1.00091  1.25462  0.99307 1.06412 1.00275 1.04830 1.00922  1.05088
GEL2; 3.46205  20.46404  3.02053 13.82881 2.91222 11.38902 2.86871 10.08077

Tables(3-6) indicates that the results for the non-Bayesian estimators show improved performance
(smaller RMSE and bias) as sample size increases. Among non-Bayesian methods, RTADE, WLS, and
CvM consistently show higher accuracy for both parameters, especially for large n, the MLE fails in
estimating # in the case of small samples owing to large variance, but this improves considerably with
large n, and the MPS performs well for # but comparatively higher bias for 3.

The Bayesian estimators have low and stable bias for S for all sample sizes. Estimation of § under
Bayesian estimators is higher in bias and RMSE, especially under SEL and LINEX1. Among Bayesian
approaches, LINEX2 and GEL2 perform relatively better in estimation accuracy for g particularly as n
becomes large.
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Figure 4: plot of the non-Bayesian simulation result of (a) Case I, (b) II, (c) III, (d) IV

~—

Figure 4, compares Bias and RMSE for 6 and B across sample sizes (n = 25,75, 150, 200) using seven
estimation methods. Bias and RMSE decline as n increases, confirming estimator consistency. For é,
MLE maintains minimal bias and low RMSE at all n, while MPS improves steadily; CvM, AD, LS and
WLS perform moderately well, but RTAD shows persistently high bias. For B , MLE and MPS start with
higher bias at n = 25 but converge rapidly to near unbiased, achieving the lowest RMSE at large n.
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Figure 5: Plot of the Bayesian simulation result of (a) Case I, (b) II, (c¢) III, (d) IV

Figure 5 shows the plots of the bias and root mean square error (RMSE) of the Bayesian estimators for
the symmetric (SEL) and asymmetric loss functions (LINEX1, LINEX2, GEL1, GEL2) of TI-HT-TLR
distribution. The results are presented for different sample sizes to compare the small and large sample
behavior of the estimators. Overall, findings confirm that bias and RMSE diminish with higher sample
sizes as would happen in the asymptotic behavior of Bayesian estimators. Variation between methods
is more prominent when sample sizes are lower (n = 25) and (n = 75), with some estimators exhibiting
more bias and variability. With a higher sample size (n = 150), however, all estimators converge to stable
and effectively unbiased estimators, exhibiting consistency and higher efficiency. A further observation
shows that performance of the estimators varies from parameter to parameter. On the shape parameter
0, SEL, LINEX1, and GELL1 are better consistently on bias and RMSE, especially for moderate to large
sample sizes. However, for the scale parameter 5, GEL2 and LINEX2 have the lowest estimation error
for nearly all sample sizes. These observations highlight the importance the chosen loss function has
in identifying estimator efficiency, particularly in finite samples. Collectively, while all the Bayesian
estimators are consistent, they are efficient depending on both the sample size as well as parameter of
interest. SEL, LINEX1, and GEL1 are recommended in application for estimation of #, but GEL2 and
LINEX2 are preferable for 5. The above thus suggests that optimal choice of loss function can greatly
improve inference under the TI-HT-TLR distribution.
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6. Real Data Applications

In this section, we apply real data to the TIHTTLR distribution to illustrate the modeling per-
formance. The first data (Data I) is the daily ratio of newly reported Covid-19 mortality to new
cases in Italy for 111 consecutive days between 1 April and 20 July 2020. Data-I was retrieved from
https://covid19.who.int/ and presented in Table (7). The second data (Data II) is on the mortality rate
due to COVID-19 in Mexico. Data-II was also obtained from https://covid19.wh and presented in Table
(8). The third data (Data III) is the number of persons who tested positive for malaria using the Rapid
Diagnostic Test (RTD) between 2022 and 2024 in Anambra State, Nigeria. Data-III were obtained from
the Anambra State Ministry of Health, Nigeria and are presented in Table (9)

Table 7: Covid-19 daily mortality cases recoreded in Italy

0.2070 0.1520 0.1628 0.1666 0.1417 0.1221 0.1767 0.1987
0.1408 0.1456 0.1443 0.1319 0.1053 0.1789 0.2032 0.2167
0.1387 0.1646 0.1375 0.1421 0.2012 0.1957 0.1297 0.1754
0.1390 0.1761 0.1119 0.1915 0.1827 0.1548 0.1522 0.1369
0.2495 0.1253 0.1597 0.2195 0.2555 0.1956 0.1831 0.1791
0.2057 0.2406 0.1227 0.2196 0.2641 0.3067 0.1749 0.2148
0.2195 0.1993 0.2421 0.2430 0.1994 0.1779 0.0942 0.3067
0.1965 0.2003 0.1180 0.1686 0.2668 0.2113 0.3371 0.1730
0.2212 0.4972 0.1641 0.2667 0.2690 0.2321 0.2792 0.3515
0.1398 0.3436 0.2254 0.1302 0.0864 0.1619 0.1311 0.1994
0.3176 0.1856 0.1071 0.1041 0.1593 0.0537 0.1149 0.1176
0.0457 0.1264 0.0476 0.1620 0.1154 0.1493 0.0673 0.0894
0.0365 0.0385 0.2190 0.0777 0.0561 0.0435 0.0372 0.0385
0.0769 0.1491 0.0802 0.0870 0.0476 0.0562 0.0138

Table 8: COVID-19 mortality rate in Mexico

4.4130 3.0525 4.6955 7.4810 5.1915 3.6335 6.6100 8.2490
5.8325 3.0075 5.4275 3.0610 3.3280 1.7200 2.9270 5.3425
5.0175 2.6210 2.1720 2.5715 3.8150 7.3020 3.9515 3.1850
1.7685 3.1635 2.3650 1.6075 4.6420 6.4390 4.4065 5.0215
3.6300 2.9925 3.2060 1.6975 2.2120 4.9675 3.9200 4.7750
1.7495 1.8755 3.4840 1.6430 5.0790 4.0540 3.3485 3.5735
3.2800 1.0385 1.8890 1.4940 1.6680 3.4070 4.1625 3.9270
4.2755 1.6140 3.7430 3.3125 3.0700 2.4545 2.3305 2.6960
6.0210 4.3480 0.9075 1.6635 2.7030 3.0910 0.5205 0.9000
24745 2.0445 1.6795 1.0350 1.6490 2.6585 2.7210 2.2785
2.1460 1.2500 3.2675 2.3240 2.3485 2.7295 2.0600 1.9610
1.6095 0.7010 1.2190 1.6285 1.8160 1.6165 1.5135 1.1760
0.6025 1.6090 1.4630 1.3005 1.0325 1.5145 1.0290 1.1630
1.2530 0.9615
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Table 9: Persons Testing Positive for Malaria by RDT in Anambra State, Nigeria (2022-2024)

0.8076 0.2421 0.2332 0.1850 0.5503 0.5395 0.6270 0.4925
0.5869 0.6127 0.8375 0.8743 0.6488 0.2996 0.2670 0.2891
0.6910 0.4482 0.4791 0.7007 0.6245 0.7172 0.4870 0.5532
0.5050 0.6602 0.6593 0.7270 0.3709 0.2879 0.3938 0.3884
0.5151 0.5917 0.9339 0.6627 0.6127 0.4488 0.4716 0.4729
0.4966 0.4335 0.5370 0.6749 0.8185 0.6653 0.2575 0.3296
0.3011 0.7877 0.8287 0.8518 0.4058 0.3855

Table 10: Descriptive Statistics for the three Datasets

Datasets n  Mean SD Med Minimum Maximum R S K Se
Datal 111 0.17  0.08 0.07 0.014 0.5 0.48 0.77 490 0.007
Data I 106  2.91 1.62  2.63 0.52 8.25 773 097 3.67 0.16
Data III 54  0.542 0.189 0.538 0.185 0.934 0.749 0.066 2.174 0.026

where SD is the standard deviation, Med is the median, R is the range, S is the skewness, and K is
the kurtosis. Most Important Observations regarding descriptive Statistics in Table (10). The analysis
of the three data sets reveals various characteristics in magnitude, dispersion, and shape:

Data I (n = 111) has the lowest range and mean of the three sets. It is right skewed but is most
typical of high kurtosis, indicating a distribution much more leptokurtic (heavier tailed and more peaked)
than Data II or Data III.

Data IT (n = 106) is the most extensive and most dispersed set. It possesses the largest mean, standard
deviation, and range, meaning the widest total spread. It is also most skewed to the right, meaning its
mass lies on the lower values with a long right tail leading towards the maximum value.

Data III (n = 54) has the smallest sample size. It is the most symmetric, as attested to by its mean
being almost equal to its median. Moreover, it has the least kurtosis, which suggests its tails are the
lightest of the three datasets.

Table 11: Model comparison and goodness of fit tests for the three Datasets

Datasets ‘ Distributions LL AIC CAIC BIC HQIC W A K-S p-value

Data I TIHTTLR 129.63 -255.27  -255.1589 -249.8509 -253.0717 0.0712 0.4747  0.0592 0.8317
TIHTR 127.47  -250.9604 -250.8493 -245.5413  -248.762  0.1247 0.7677  0.1081 0.1494

TLR 235.23  -466.4558 -466.3447 -461.0367 -464.2574 0.1410 0.8671  0.2952  7.96 x 107°
Rayleigh 127.54  -253.0873 -253.0506 -250.3777 -251.9881 0.1236 0.7611  0.1058 0.1661
Gumbel 127.1  -250.2047 -250.0936 -244.7856 -248.0063 0.1745 1.1019  0.0816 0.4506

Log Normal 117.7  -231.3927 -231.2816 -225.9737 -229.1944 0.5409 3.094  0.1327 0.0401
Data II TIHTTLR  -190.07 384.1364  384.2529  389.4632  386.2954  0.077  0.4829 0.05480 0.9079

TIHTR -190.01  384.1064  384.229 389.4532  386.2544 0.0774 0.4826  0.0548 0.901
TLR -97.21  198.4292  198.5457  203.7561  200.5882 0.0961 0.6167 0.2553  1.99 x 10~°
Rayleigh -190.98  383.9593  383.9978  386.6227  385.0388 0.1082 0.6978  0.0844 0.4368
Gumbel -190.2 384.402 384.5185  389.7289  386.5611 0.0824 0.4961  0.0850 0.4272
Data III TIHTTLR 12.18 -20.369 -20.134 -16.391 -18.835 0.057  0.424 0.087 0.819
TIHTR 12.12 -20.54 -20.133 -16.38 -18.74 0.0572  0.423 0.086 0.810
TLR 89.24 174.253 -174.253  -170.510  -172.954  0.0907  0.603 0.385 223 x 1077
Rayleigh 6.73 -11.458 -11.381 -9.469 -10.691 0.040  0.304 0.161 0.123
Gumbel 11.95 -19.904 -19.670 -15.926 -18.370 0.100  0.671 0.088 0.803
log-Normal 11.65 -19.299 -19.063 -15.321 -17.765 0.121  0.782 0.097 0.688

Table (11 presents the comparison of the fit of six different probability distributions, the TIHTR
by [34], TLR by [31], Rayleigh given by [29], Gumbel introduced by [32] and Log-Normal on three
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datasets. In each of the three datasets, the TIHTTLR distribution provides the best fit every time. It
provides the highest Log-Likelihood (LL) and lowest values for the AIC, BIC, and HQIC information
criteria, which penalize complexity. For all the data sets, TIHTTLR models have Kolmogorov-Smirnov
(K-S) p-values (0.8317,0.9079,0.819) and very small W and A statistics. This justifies that the TTHTTLR
model accurately model the empirical distribution of the data,

Table 12: MLEs and standard errors for the parameters of the three Datasets

Datasets | Distributions éMLE BMLE
Data I TIHTTLR 0.4824(0.1622) 38.2974(17.7705)
TIHTR 64.0543(13.3334)  0.0073 (0.0020)
TLR 46.6692(3.9551) 2.8643(0.3486)
Rayleigh 29.4438(2.7947) -
Gumbel 0.1299(0.0068) 0.0680(0.0049)
Log Normal  -1.9264(0.0546) 0.5754(0.0386)
Data II TIHTTLR 1.7107 (0.763) 0.01849 (0.0152 )
TIHTR 1.7084 (0. 9045) 0.0371 (0.0360)
TLR 0.1399 (0.0134) 2.4479 (0.3231)
Rayleigh 0.0902 (0.0088) -
Gumbel 2.1817 (0.1238) 1.2129 (0.0954)
Data III | TIHTTLR 0.206 (0.158) 9.353 (6.879)
TIHTR 0.205 (0.148) 18.710 (13.766)
TLR 7.287 (0.773) 9.509 (2.037)
Rayleigh 3.041 (0.414) -
Gumbel 0.449 (0.0247) 0.172 (0.018)
Log-Normal  -0.681 (0.052) 0.385 (0.0371)

Table (12) presents the Maximum Likelihood Estimates (MLEs) and their corresponding Standard
Errors (SEs) for the parameters of six distributions fitted to three datasets.

Data |

Data Il

Data lll

Figure 6: Boxplot superimposed on Violin plot for the datasets
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Figure 7: Density plot for the datasets
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Figure 8: Empirical versus Theoretical CDF plot for the Datasets
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Figure 9: Empirical versus Theoretical survival function for the Datasets
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Figure 11: P-P plot for the Datasets
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Figure 12: Q-Q plot for the Datasets

The following inference are drawn from figure (6-12)

T
0.4 0.6 0.8
Data Ill

i Figure (6) (Boxplot and Violin Plot): Data I’s distribution is highly leptokurtic, with its shape
being very narrow and peaked with a sharp peak, graphically validating the high kurtosis value.
There is a little asymmetry, with the distribution decreasing more slowly towards higher values, as
one would anticipate with the positive skewness. The Data III plot is the most symmetric of the
three. The violin shape is nearly equal on both sides of the middle axis. Besides, the overall shape

is wider and less pointed compared to Data I, reflecting lowest kurtosis
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ii Figure (7) (Histograms, superimposed with the fit probability density function (PDF, red line)),
Data I, The histogram is clearly right-skewed, validating the initial descriptive statistics. Data
IT histogram has a wider spread, and this reflects its high dispersion. The distribution is highly
right-skewed. The Data III histogram illustrates a relatively narrow and good balance spread, the
distribution is very much more bell-shaped than the others.

iii Figure (8) (ECDF vs Theoretical CDF plot): The CDF plots graphical confirmation of the goodness-
of-fit statistics, the overall trend of the observed data is well in line with that of the theoretical
TIHTTLR model. This shows that the proposed TIHTTLR is an exceedingly good model for Data
I, 1, T11

iv Figure (9) (Empirical vs. Theoretical Survival Function Plot): In all three cases, the survival
function plots confirm conclusions from CDF and goodness-of-fit test: the theoretical survival
function provides a very good and exact approximation for the empirical survival probability for
Data I, Data II, and Data III.

v Figure (10) (TTT Plots): In each of the three plots, the red curve is above the dashed diagonal line.
This implies that the theoretical TTHTTLR distribution overestimates data points in the lower and
middle quantiles.

vi Figure (11) (P-P Plots): The tight tracking of the empirical probabilities against the theoretical
diagonal line guarantees a good-fitting of TIHTTLR distribution of Data I, Data II, and Data III.

vii Figure (12) (Q-Q Plots): The nearly exact conformity across all three datasets guarantees that the
theoretical TIHTTLR distribution closely replicates the empirical quantile behavior of Data I, Data
II, and Data III.

7. Conclusion

In this research, we successfully developed the Type I Heavy-Tailed Topp-Leone G (TI-HT-TL-G)
family of distributions. The new family has been specifically designed to overcome the limitations of
conventional models when dealing with complex real-world data that are both skewed and heavy-tailed.
By combining the Type I Heavy-Tailed and Topp-Leone G distributions with the Rayleigh distribution as
the sub-model, the new distribution (TI-HT-TLR) possesses greater flexibility and a superior ability to
handle extreme values. These extreme values are of significant importance in applications such as financial
risk, insurance, engineering, and biomedical science. The paper provides a theoretical foundation for the
new distribution by computing its major statistical characteristics, including moments, quantile functions,
and stochastic orderings. The model’s applicability was verified by fitting the distribution to three
diverse datasets and conducting simulation experiments using both Bayesian and conventional methods
of parameter estimation. The findings validate the superior ability of the TI-HT-TLR distribution to
yield a more general and realistic statistical modeling process for a wide range of scientific and biomedical
problems.
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