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Pillai-Type Equations with Lucas Numbers and S-Unit Solutions

Abdelghani Larhlid, Abdelhakim Chillali and M’Hammed Ziane

abstract: In this paper, we investigate the exponential Diophantine equation Ln − 5x7y = c, where Ln

denotes the n-th Lucas number. The Lucas sequence is defined by the initial values L0 = 2, L1 = 1, and the
recurrence relation Ln+2 = Ln+1 + Ln for all n ≥ 0. We show that when c = 0, the equation admits exactly
two distinct solutions. Moreover, for any c ∈ N, we prove that there is no integer c for which the equation has
at least three distinct solutions (n, x, y) ∈ Z3

≥0.
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1. Introduction

1.1. Background

The Lucas sequence {Ln}n≥0 is a second-order linear recurrence defined by

Ln+2 = Ln+1 + Ln, for every n ≥ 0,

with initial conditions L0 = 2 and L1 = 1. Its first few terms are

(2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, . . . ).

A well-known Diophantine problem related to exponential equations is the one introduced by Pillai,
which asks for integer solutions of

ax − by = c, (1.1)

where a, b > 1 and c are fixed integers. In his pioneering work [1], Pillai proved that when a and b are
coprime positive integers and the absolute value of c exceeds a certain bound c0(a, b), equation (1.1) has
at most one solution (x, y) in integers.

Over time, several generalizations of this problem have been considered. In particular, many authors
replaced one of the exponential sequences (ax) or (by) with sequences having similar exponential growth,
such as Fibonacci, Tribonacci, Pell, or Lucas numbers, or even with generalized Fibonacci sequences.
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These extensions (see for instance [2], [3], [4], [9], [5], [18], [19]) show that the finiteness property
established by Pillai generally persists in these broader contexts.

From an algebraic point of view, if K is a number field with ring of integers R, an element x ∈ K
is called an S-unit when the ideal it generates factors only into primes belonging to a finite set S. In
the rational case, this means that the numerator and denominator of x have no prime factors outside S.
Equations similar to (1.1) involving S-units have been explored in works such as [6], [7] and [8]. For
example, in [7], the powers of a were replaced by Fibonacci numbers, while in [6], Lucas numbers played
the same role.

In the present paper, we investigate the case where the sequence {Ln} of Lucas numbers interacts
with prime powers. Specifically, we study the exponential Diophantine equation

Ln − 5x7y = c, (1.2)

where n, x, y ∈ Z≥0.

1.2. Main Results

Our main findings can be summarized as follows.

Theorem 1.1 When c = 0, the exponential Diophantine equation (1.2) admits precisely two non-negative
integer solutions, given by

(n, x, y) = (1, 0, 0) and (n, x, y) = (4, 0, 1).

Theorem 1.2 There exists no integer c ∈ N for which equation (1.2) possesses three or more distinct
triples (n, x, y) ∈ Z3

≥0 satisfying it.

2. Methods

2.1. Preliminaries

We begin by recalling the classical closed-form expression, often referred to as the Binet formula, for
the Lucas sequence. It can be written as

Ln = αn + βn, for every n ≥ 0, (2.1)

where

α =
1 +

√
5

2
and β =

1−
√
5

2
.

It is worth observing that these two constants satisfy the simple relation β = −α−1. Then

Ln = αn(1 + (−1)nα−2n). (2.2)

The characteristic polynomial associated with the Lucas sequence (Ln)n≥0 is given by ψ(X) = X2−X−1.
The polynomial ψ(X) is irreducible over Q[X] and has roots α and β. Numerical approximations yield
the following estimates:

1.61 < α < 1.62,
0.61 < |β| < 0.62.

Assuming that n ≥ 10, then

0.999αn < αn(1− α−20) ≤ Ln ≤ αn(1 + α−20) < 1.001αn. (2.3)

In the situation where c > 0, it follows that

5x7y = Ln − c ≤ Ln − 1 ≤ αn by (2.2). (2.4)

This implies that x log 5 + y log 7 < n logα, so that

x < n
logα

log 5
< 0.3n and y < n

logα

log 7
< 0.25n. (2.5)

We also note a straightforward result from calculus, as presented in [7, Lemma 1].
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Lemma 2.1 [7, Lemma 1] Let x be a real number such that |x| < 1
2 . Then | log(1 + x)| < 3

2 |x|.

We conclude this section by presenting an analytic argument, as outlined in [20, Lemma 7].

Lemma 2.2 Let m ≥ 1. For any integer T such that T > (4m2)m and T >
z

(log z)m
, we have

z < 2mT (log T )m.

2.2. Linear Forms in Logarithms

In our work, we often rely on lower bounds of Baker-type for nonzero linear forms in two or three
logarithms of algebraic numbers. Such bounds have been extensively studied in the literature, notably
by Baker and Wüstholz [10] and Matveev [11].

Before stating these inequalities, we recall the definition of the height of an algebraic number.

Definition 2.1 Let λ be an algebraic number of degree d with minimal polynomial over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(x− λ(i)),

where the leading coefficient a0 is positive. The logarithmic height of λ is defined by

h(λ) :=
1

d

(
log a0 +

d∑
i=1

logmax{|λ(i)|, 1}

)
.

The subsequent properties of the logarithmic height function h(·) will be taken as given throughout
the paper, without additional references:

h(ζ ± η) ≤ h(ζ) + h(η) + log(2),

h(ζη±1) ≤ h(ζ) + h(η),

h(ζs) = |s|h(ζ) (s ∈ Z).

(2.6)

A linear form in logarithms is defined as an expression of the type

Λ = b1 log δ1 + · · ·+ bs log δs, (2.7)

where δ1, . . . , δs are positive real algebraic numbers, and b1, . . . , bs are nonzero integers. Let L :=
Q(δ1, . . . , δs) be the field generated by the δi’s, and let D represent the degree of L. Put Γ = eΛ − 1.
With this notation, we begin by stating the main result of Matveev [11], which leads to the following
estimate.

Theorem 2.1 (Matveev, [11]) Let Q(δ1, . . . , δs) be a number field of degree D over Q. Assume that
Γ ̸= 0. Then we have

log |Γ| > −1.4× 30s+3 × s4.5 ×D2(1 + logD)(1 + logB)A1 · · ·As,

where B ≥ max{|b1|, . . . , |bs|}, and for each i = 1, . . . , s, Ai ≥ max {Dh(δi), | log δi|, 0.16} .

This result is the version of Bugeaud, Mignotte, and Siksek ( [17, Theorem 9.4]).

In addition, we utilize a p-adic version of Laurent’s result, as developed by Bugeaud and Laurent in
[21, Corollary 1]. Prior to presenting their result, we first define the requisite concepts.
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Definition 2.2 Let p be a prime number. The p-adic valuation of an integer x, denoted vp(x), is
given by

vp(x) :=

{
max{k ∈ N : pk | x}, if x ̸= 0,

∞, if x = 0.

Moreover, for a rational number x =
a

b
, where a and b are integers, the p-adic valuation is defined

as
vp(x) = vp(a)− vp(b).

The expression for vp(x) in the case of rational numbers, as given in Definition 2.2, does not depend
on the particular representation of x as a fraction of integers. From this definition, it follows that for any
rational number x,

vp(x) = ordp(x),

where ordp(x) denotes the exponent of p in the prime factorization of x. For instance, we have v5
(

9
25

)
=

−2.
Next, for an algebraic number λ, we define its p-adic valuation as

vp(λ) :=
vp(ad/a0)

d
,

where a0 and ad are integers associated with λ as in Definition 2.1, and d is the degree of λ. For instance, if
x = ad

a0
is a rational number in lowest terms with a0 ≥ 1, then its minimal polynomial is f(X) = a0X−ad,

which has degree 1. In this case, vp(x) = vp

(
ad

a0

)
, which is consistent with Definition 2.2. The p-adic

valuation gives rise to a corresponding absolute value.
In a manner analogous to the previous context, let λ1 and λ2 be algebraic numbers over Q, regarded

as elements of the field Kp := Qp(λ1, λ2), where D := [Qp(λ1, λ2) : Qp]. As in Theorem 2.1, we employ a
modified height function. In particular, the adjusted height of λi is defined as

h′(λi) ≥ max

{
h(λi),

log(p)

D

}
, for i = 1, 2.

Lemma 2.3 (Bugeaud and Laurent, [21]) Let b1, b2 be positive integers, and let λ1 and λ2 be mul-
tiplicatively independent algebraic numbers such that vp(λ1) = vp(λ2) = 0. Define

E :=
b1

h′(λ2)
+

b2
h′(λ1)

and F := max {logE + log log p+ 0.4, 10, 10 log p} .

Then, the p-adic valuation of λb11 λ
b2
2 − 1 satisfies

vp
(
λb11 λ

b2
2 − 1

)
≤ 24pg

(p− 1)(log p)4
F 2D4 h′(λ1)h

′(λ2),

where g > 0 denotes the smallest integer such that vp(λ
g
i − 1) > 0 for i = 1, 2.

To employ Lemma 2.3, it is necessary to verify that λ1 and λ2 are multiplicatively independent. In our
setting, this amounts to ensuring that α and

τ(t) =
αt − 1

βt − 1
(2.8)

are multiplicatively independent. The following result, taken from [7, Lemma 5], is useful in this context.

Lemma 2.4 [7, Lemma 5] Let t ≥ 1 be an integer. The algebraic numbers α and τ(t) are multiplicatively
dependent if and only if t = 1, t = 3, or t is even. In these cases, we have

τ(1) = −α−2, τ(3) = −α2, and τ(2t) = −α2t.
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Lemma 2.4 shows that in infinitely many instances (t even or t = 1, 3), Lemma 2.3 does not apply,
and one must instead estimate vp(α

x±1). This can be achieved using the p-adic logarithm logp (see [22],
Sect. II.2.4 for details).

For an algebraic number x, define |x|p := p−vp(x). Let Cp denote the complex p-adic field, which is
complete with respect to | · |p and algebraically closed. The p-adic logarithm logp x is defined on the ball

D
(
0, p−

1
p−1

)
:= {ξ ∈ Qp : |ξ − 1|p < p−

1
p−1 },

by the convergent series

logp ξ := −
∞∑
i=1

(1− ξ)i

i
.

It satisfies the usual property

logp(xy) = logp x+ logp y, for x, y ∈ D
(
0, p−

1
p−1

)
,

and moreover,
| logp ξ|p = |ξ − 1|p, and vp(logp ξ) = vp(ξ − 1), (2.9)

for all ξ ∈ D
(
0, p−

1
p−1

)
.

In practice, these calculations often produce upper bounds on the variables that are too large, so
reduction techniques are required. In this paper, we make use of the following result related to continued
fractions (see [23, Theorem 8.2.4]).

Lemma 2.5 (Legendre). Let µ be an irrational number, and let its continued fraction expansion be given
by [a0, a1, a2, . . . ]. Define the convergents of the continued fraction of µ as

pi
qi

= [a0, a1, a2, . . . , ai], for all i ≥ 0,

and let M be a positive integer. Let N be the smallest integer such that qN > M . Then, for the quantity

a(M) := max{ai : i = 0, 1, 2, . . . , N},

the following inequality holds for all pairs (r, s) of positive integers with 0 < s < M :∣∣∣µ− r

s

∣∣∣ > 1

(a(M) + 2)s2
.

We will need the following result, taken from [24, Lemma 2.6].

Lemma 2.6 (Adapted from [24, Lemma 2.6]) The equation

1− γw

1− γh
=

1− αw

1− αh
(2.9)

has no integer solutions h,w satisfying h > w ≥ 1.

Lemma 2.7 For any positive integer x and z ∈ {α, β}, we have:

1.

ν5(z
x − 1) =

{
ν5(x) +

1
2 , if x ≡ 0 (mod 4),

0, if x ̸≡ 0 (mod 4).

ν5(z
x + 1) =

{
ν5(x) +

1
2 , if x ≡ 2 (mod 4),

0, if x ̸≡ 2 (mod 4).
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2.

ν7(z
x − 1) =

{
ν7(x) + 1, if x ≡ 0 (mod 16),

0, if x ̸≡ 0 (mod 16).

ν7(z
x + 1) =

{
ν7(x) + 1, if x ≡ 8 (mod 16),

0, if x ̸≡ 8 (mod 16).

Proof: We provide the proof in the case z = α; the case z = β follows by the same argument.
For v5(α

x − 1) :

• If x ≡ 0 (mod 4). Since α4 ≡ 1 (mod 5), we expect a non-zero valuation. Using a generalized
Lifting The Exponent (LTE) property, we have v5(α

n − 1) = v5(α
4 − 1) + v5(

n
4 ). We need to

compute v5(α
4 − 1). Since α2 − 1 = α and (α2 + 1) = 5+

√
5

2 . it follows that α4 − 1 = 5+
√
5

2 · α. To
calculate v5(α

4 − 1), we use the valuation on Q5(
√
5), where v5(

√
5) = 1

2 and

v5(
5+

√
5

2 · α) = v5(5 +
√
5)− v5(2) + v5(α)

= v5(
√
5(
√
5 + 1))

= v5(
√
5) + v5(1 +

√
5)

= 1
2 .

Since
√
5 + 1 is a 5-adic unit (it is norm is - 4, which is not divisible by 5).

So, if x ≡ 0 (mod 4), v5(α
x − 1) = v5(

x
4 ) +

1
2 = v5(x) +

1
2 .

• If x ̸≡ 0 (mod 4). Then αx ̸≡ 1 (mod 5), so v5(α
x − 1) = 0.

For v5(α
x + 1):

• If x ≡ 2 (mod 4). Then αx ≡ α2 ≡ 4 ≡ −1 (mod 5). v5(α
x + 1) = v5(α

2 + 1) + v5(
x
2 ), and

v5(α
2 + 1) = v5(

5+
√
5

2 ) = 1
2 . So, if x ≡ 2 (mod 4), v5(α

x + 1) = v5(
x
2 ) +

1
2 = v5(x) +

1
2 .

• If x ̸≡ 2 (mod 4). Then αx ̸≡ −1 (mod 5), so v5(α
x + 1) = 0.

For v7(α
x − 1):

• If x ≡ 0 mod 16 : Since α16 ≡ 1 (mod 7), we expect a non-zero valuation. v7(α
x − 1) = v7(α

16 −
1) + v7(x/16) = v7(α

16 − 1) + v7(x). We need to compute v7(α
16 − 1). Since 7 is inert, we are

working in Z7[α]. It is common that for inert primes and minimal polynomial, vp(α
order − 1) = 1.

This is analogues to v3(α
8 − 1) = 1 in [18]. So v7(α

x − 1) = v7(x) + 1.

• If x ̸≡ 8 mod 16. Then αx ̸≡ 1 mod 7, so v7(α
x − 1).

For v7(α
x + 1) :

• If x ≡ 8 (mod 16). We have αx ≡ α8 ≡ −1 (mod 7). Then v7(α
x + 1) = v7(α

8 + 1) + v7(x/8) =
v7(α

8 + 1) + v7(x). We need to compute v7(α
8 + 1). Since α8 ≡ −1 (mod 7), v7(α

8 + 1) ≥ 1. This
is analogues to v3(α

4 + 1) = 1 in [18]. So, if x ≡ 8 mod 16, v7(α
x + 1) = v7(x) + 1.

• If x ̸≡ 8 (mod 16). Then αx ̸≡ −1 (mod 7), so v7(α
x + 1) = 0.

2

However, as current continued fraction techniques do not yield lower bounds for linear forms in more
than two variables with bounded integer coefficients, we instead employ a method based on the LLL
algorithm, described below.
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2.3. Reduced Bases for Lattices and LLL-Reduction Methods

Let k be a positive integer. A subset L of the real vector space Rk is called a lattice if there exist
vectors b1, b2, . . . , bk ∈ Rk such that

L =

k∑
i=1

Zbi =

{
k∑

i=1

ribi

∣∣∣∣∣ ri ∈ Z

}
.

The vectors b1, b2, . . . , bk are said to form a basis of L, and they generate the lattice. The integer k is
referred to as the rank of L. The determinant of the lattice L, denoted by det(L), is defined as

det(L) =
∣∣det(b1, b2, . . . , bk)∣∣.

where the bi’s are expressed as column vectors. This determinant is a positive real number and remains
invariant under the choice of basis (refer to [14], Section 1.2).

Consider b1, b2, . . . , bk, a set of linearly independent vectors in Rk. The Gram–Schmidt orthogonal-
ization process provides a method to iteratively construct a set of orthogonal vectors b∗i (for 1 ≤ i ≤ k)
along with corresponding coefficients µi,j (where 1 ≤ j ≤ i ≤ k). These are defined as follows:

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j , µi,j =

⟨bi, b∗j ⟩
⟨b∗j , b∗j ⟩

,

where ⟨·, ·⟩ denotes the standard inner product in Rk. The vector b∗i represents the orthogonal projection
of bi onto the orthogonal complement of the subspace spanned by b1, . . . , bi−1. As a result, b∗i is orthogonal
to b∗1, . . . , b

∗
i−1 for all 1 ≤ i ≤ k.

Hence, the sequence b∗1, b
∗
2, . . . , b

∗
k constitutes an orthogonal basis of Rk.

Definition 2.3 A basis b1, b2, . . . , bn of a lattice L is said to be reduced if the following conditions
hold:

|µi,j | ≤
1

2
, for all 1 ≤ j < i ≤ n, and ∥b∗i + µi,i−1b

∗
i−1∥2 ≥ 2

3
∥b∗i−1∥2, for all 1 < i ≤ n,

where ∥ · ∥ denotes the Euclidean norm.
The constant 2

3 in the second inequality is not fixed; it may be replaced by any real number in the
interval

[
1
4 , 1

]
, (see [12, Section 1]).

Let L ⊆ Rk be a k-dimensional lattice with a reduced basis b1, . . . , bk, and let B be the matrix whose
columns are b1, . . . , bk. We define the function ℓ(L, v) as follows:

ℓ(L, v) =

{
minu∈L ∥u− v∥, if v /∈ L,

minu∈L\{0} ∥u∥, if v ∈ L,

where ∥ · ∥ denotes the Euclidean norm in Rk. It is a well-known result that the LLL algorithm can be
used to compute a polynomial-time lower bound for ℓ(L, v). Specifically, there exists a positive constant
c1 such that ℓ(L, v) ≥ c1 (see [22], Section V.4).

Lemma 2.8 Let v ∈ Rk and z = B−1v, where z = (z1, . . . , zk)
T . Define the following:

(i) If v /∈ L, let i0 be the largest index such that zi0 ̸= 0, and put σ := {zi0}, where {·} denotes the
fractional part or the distance to the nearest integer.

(ii) If v ∈ L, put σ := 1.

Additionally, let

c2 := max
1≤j≤k

{
∥b1∥2

∥b∗j∥2

}
.

Then we have
c21 := c−1

2 σ2∥b1∥2
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In the context of our application, we consider real numbers η0, η1, . . . , ηk that are linearly independent
over Q. Moreover, we assume the existence of two positive constants c3 and c4 such that

|η0 + a1η1 + · · ·+ akηk| ≤ c3 exp(−c4H), (2.10)

where the integers ai are subject to the bounds |ai| ≤ Ai, for some given constants Ai, where 1 ≤ i ≤ k.
For simplicity, we define A0 := max1≤i≤k{Ai}. The primary approach, based on the work of [13], involves
approximating the linear form in inequality(2.10) through a lattice construction. Specifically, we consider
the lattice L generated by the columns of the matrix

A =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
⌊Mη1⌋ ⌊Mη2⌋ · · · ⌊Mηk−1⌋ ⌊Mηk⌋

 ,

where M is a sufficiently large constant, typically chosen around the order of Ak
0 . Suppose that an

LLL-reduced basis b1, . . . , bk for L has been computed, and that a lower bound ℓ(L, y) ≥ c1 holds, where
v := (0, 0, . . . ,−⌊Mη0⌋). The value of c1 can be determined using the results from Lemma 2.8. Under
these assumptions, the following result is analogous to [22, Lemma VI.1].

Lemma 2.9 (Adapted from [22, Lemma VI.1]) Define

S :=

k−1∑
i=1

A2
i and T :=

1 +
∑k

i=1Ai

2
.

If c21 ≥ T 2 + S, then the inequality (2.10) implies that we must have either

a1 = a2 = · · · = ak−1 = 0, and ak = −⌊Mη0⌋
⌊Mηk⌋

,

or

H ≤ 1

c4

(
log(Mc3)− log

(√
c21 − S − T

))
.

2.4. Bounds for Solutions to S-unit Equations

The aim of this subsection is to derive a result from the following proposition.

Proposition 2.1 . Let ∆ > 1080 be a fixed integer. Suppose that

5x7y − 5x17y1 = ∆. (2.11)

Then, we have
5x7y < ∆(log∆)60 log log∆.

Proof: Let u := 5x7y and v := 5x17y1 , then u− v = ∆. We note that

max
{
|x− x1|, |y − y1|

}
log 5 ≤ x log 5 + y log 7 = log u.

Let us divide equation (2.11) through u, then we obtain

|5x1−x7y1−y − 1| < ∆

u
. (2.12)

In view Proposition 2.1 we may assume that u > 2∆, and by Lemma 2.1 we obtain

|Λ| = |(x− x1) log 5 + (y − y1) log 7| <
3

2
· ∆
u
. (2.13)
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Since log 5 and log 7 are linearly independent over Q, the linear form Λ can vanish only in the case where
x = x1 and y = y1, which contradicts the assumption that ∆ ̸= 0. Therefore, by applying [7, Lemma 3]
with D = 1, logA1 = log 5 and logA2 = log 7, we derive

b′ ≤ 2max{|x− x1|, |y − y1|} ≤ 2

log 5
log u.

Thut is

max{log b′ + 0.38, 30} ≤ log(
2

log 5
log u) + 0.38 ≤ log(1.82 log u).

Provided that log(1.82 log u) ≥ 30. Laurent’s lower bound for linear forms in two logarithms yield’s

17.9(log(1.82 log u))2 log 5 log 7 ≥ − log
3

2
− log∆ + log u.

If we substitue u = ∆(log∆)60 log log∆ into this inequality we obtain
17.9 · (log 1.82 + log log(∆(log∆)60 log log∆))2 log 5 log 7 = 17.9 · log(1.82 log∆ + 1.82 · 60

·(log log∆)2)2 log 5 log 7

≥ − log
3

2
− log∆ + log∆ + 60(log log∆)2

56.1 log(1.82 log∆ + 109.3(log log∆)2)2 ≥ −0.406 + 60(log log∆)2.

Since we assume that ∆ > 1080 we have 109.3(log log∆)2 > 15.98 log∆, and also 0.406 < 0.015(log log∆)2.
Thus we get

56.1 log(1.82 log∆ + 15.98 log∆)2 ≥ 60(log log∆)2 − 0.015(log log∆)2

56.1 log(17.80 log∆)2 ≥ 59.985(log log∆)2,
which does not hold if ∆ >

1080. Thus proposition 2.1 holds under the assumption that log(1.82 log u) ≥ 30, i.e that log u > 5.87·1012.
Let us assume that log u ≤ 5.87 · 1012, which implies that

x log 5 ≤ 5.87 · 1012 and y log 7 ≤ 5.87 · 1012,

x ≤ 5.87

log 5
· 1012 < 3.65 · 1012 and y ≤ 5.87

log 7
· 1012 < 3.02 · 1012.

Then
x, y < 3.65 · 1012.

Suppose, for the sake of argument, that u ≥ ∆(log∆)60 log log∆. Under this assumption, inequality (2.13)
becomes

|(x− x1) + (y − y1)
log 7

log 5
| < 3

2 log 5(log∆)60 log log 1080
< 1.03 · 10−709.

Observe that the 25-th convergent
p25
q25

to
log 7

log 5
satisfies p25, q25 > 3.65 · 1012, and we get

|(x− x1) + (y − y1)
log 7

log 5
| < 1.03 · 10−709 < |p25 + q25

log 7

log 5
|.

This, however, contradicts the optimal approximation property of continued fractions (see, for instance,
[16, Theorem 182]). Therefore, Proposition (2.1) also holds when log u ≤ 5.87× 1012. 2

In preparation for the proofs of our main theorems, we establish the following corollary, which will be
of practical use later. For convenience, let us denote X = x log 5+ y log 7 and X1 = x1 log 5+ y1 log 7.

Corollary 2.1 Suppose that the tuple (n, n1, x, x1, y, y1) is a solution of

Ln − 5x7y = Ln1
− 5x17y1 ,

with n > 385 and n > n1. Then

0.38αn < exp(X) < 2αn(n logα)60 log(n logα),
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Proof: If n > 385, then

∆ = 5x7y − 5x17y1 = Ln − Ln1
≥ Ln−2 > L383 > 1080.

So, we apply Proposition 2.1 with ∆ = Ln − Ln1 < Ln ≤ 1.001αn by (2.3). This yields

exp(X) < ∆(log(∆))60 log log∆ < 1.001αn(log(1.001αn))60 log log(1.001αn)

< 2αn(n logα)60 log(n logα).
(2.14)

To explain the preceding computation, observe that
1.001(log(1.001αn))60 log log(1.001αn) = 1.001(n logα+ log 1.001)60 log log(1.001αn)

< 1.001(n logα)60 log(n logα+log 1.001)
(
1 +

log(1.001)
n logα

)60 log(n logα+log(1.001))

< 1.001(n logα)60 log(n logα)(1+log(1.001))/(n logα)

· exp
(

60 log(n logα+log(1.001))·log(1.001)
n logα

)
< 1.001(n logα)60 log(n logα)(n logα)60 log(n logα)(log(1.001)/(n logα)

· exp
(

60 log(n logα+log(1.001)) log(1.001)
n logα

)
< 1.001(n logα)60 log(n logα) · exp

(
60 log(n logα)·log(n logα) log(1.001))

n logα

)
· exp

(
60 log(n logα+log(1.001)) log(1.001)

n logα

)
.

In the argument above, we only relied on the inequality log(1 + y) < y, which holds for all positive real
numbers y. Within the last two exponential terms, when n > 500, the first term does not exceed 0.008
and the second is bounded by 0.002. Hence, together with the factor 1.001, these contributions sum to
at most

1.001 · exp(0.008) · exp(0.002) < 2,

which establishes (2.14). Conversely,

0.38αn < 0.999αn − 1.001αn−1 < Ln − Ln−1 < 5x7y − 5x17y1 < 5x7y = exp(X).

Which gives
0.38αn < exp(X). (2.15)

Combining (2.14) and (2.15), we get

0.38αn < exp(X) < 2αn(n logα)60 log(n logα),

and taking logarithms both sides gives

n logα+ log 0.38 < X < log 2 + n logα+ 60(log(n logα))2 < 1 + n logα+ 60(log(n logα))2.

2

3. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.2 in the case c = 0. Under this assumption, equation (1.2)
simplifies to the Diophantine equation

Ln = 5x7y. (3.1)

To handle this case, recall that for every integer n > 12, the Lucas number Ln admits at least one
primitive prime factor, that is, a prime dividing Ln but not dividing any earlier term Lm with m < n.
This follows from Carmichael’s Primitive Divisor Theorem and its extensions. Therefore, Ln cannot be
divisible by 7 for n > 12, since 7 already divides L4, and thus would not be a primitive divisor. Moreover,
a Lucas number cannot be a pure power of 5. Hence, equation (3.1) has no solutions for n > 12. Thus,
we only need to check the values of Ln for 0 ≤ n ≤ 12, and determine for which values Ln is a product
of powers of 5 and 7. A direct computation shows that the only such values of n are those listed in
Theorem 1.1.
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4. Poof of theorem 1.2

In this section, we prove Theorem 1.2. Note that when n ≤ 2000 in equation (1.2), we have x ≤ 600
and y ≤ 500 according to inequality (2.5). An exhaustive computer search using Maple explored all
triples (n, x, y) with 0 ≤ n ≤ 2000, 0 ≤ x ≤ 600 and 0 ≤ y ≤ 500, and searched for all values of c that
admit at least three representations of the form Ln − 5x7y. This search returned no solution, as stated
in Theorem 1.2.

4.1. An absolute upper bound for n in the case that c ∈ N

From this point onward, we assume that n > 2000 and focus on deriving an upper bound for n. Let
(n, x, y), (n1, x1, y1) and (n2, x2, y2) be non-negative integers satisfying

Ln − 5x7y = Ln1 − 5x17y1 = Ln2 − 5x27y2 .

It is important to note that n = n1 is not possible, at this would imply x = x1 and y = y1, leading to
the same representation of c. Therefore, without loss of generality, we may assume n > n1 > n2.

Lemma 4.1 Let c ≥ 1 such that the Diophantine equation (1.2) admits at least two distinct representa-
tions given by

c = Ln − 5x7y = Ln1
− 5x17y1 .

Then
n− n1 < 1.9 · 1013 log n. (4.1)

Proof: Since c > 0, we have Ln > 5x7y and Ln1
> 5x17y1 . We now return to equation (1.2) and rewrite

it as
Ln − 5x7y = Ln1

− 5x17y1

0 ≤ c− 1 < c− βn = αn − 5x7y = αn1 − 5x17y1 + βn1 − βn

≤ αn1 − 5x17y1 + |βn1 − βn| ≤ αn1 ,

where we have used the fact that | − βn + βn1 | ≤ −β + β2 = 1 for all n > 2500. So we conclude that∣∣5x7yα−n − 1
∣∣ < α−(n−n1). (4.2)

We now apply Theorem 2.1 to the left-hand side of (4.2). Define

Γ0 := 5x7yα−n − 1.

Notice that Γ0 ̸= 0; otherwise, we would have αn = 5x7y ∈ Z. Applying any automorphism that maps
α to β, we obtain βn = 5x7y. This leads to a contradiction, since |βn| < 1, whereas 5x7y ≥ 1 for all
x, y ≥ 0. Next, we use the field K := Q(

√
5) of degree D = 2. Here t := 3, and put

γ1 := 5, γ2 := 7, γ3 := α,

and
b1 := x, b2 := y, b3 := −n.

Next, we have
max{|b1|, |b2|, |b3|} = max{x, y, n} = n.

We may therefore take B := n. Also, Ai ≥ max{Dh(γi), | log γi|, 0.16} for all i = 1, 2, 3. So

A1 := Dh(γ1) = 2 log 5, A2 := Dh(γ2) = 2 log 7, A3 := Dh(γ3) = logα.

Then by Theorem 2.1, we get

log |Γ| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log n)(2 log 5)(2 log 7)(logα)
> −5.85 · 1012(1 + log n).

(4.3)
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Simplifying this gives
log |Γ| > −8.77 · 1012 · log n. (4.4)

Where the last inequality holds for n > 2000. Comparing (4.2) and (4.4), we get

n− n1 < 1.9 · 1013 log n.

This proves Lemma 4.1 2

We now present and prove the following result.

Lemma 4.2 Let c ≥ 1, X := x log 5 + y log 7 and X1 := x1 log 5 + y1 log 7. Then

X −X1 < 9.7 · 1027(log n)2.

Proof: We return to equation (1.2) and rewrite it in the form

αn − αn1 − 5x7y = −5x17y1 + βn1 − βn.

By factoring the terms, we obtain

αn1 (αn−n1 − 1)

5x7y
− 1 =

−5x17y1

5x7y
+
βn1 − βn

5x7y
=

−1

exp(X −X1)
+
βn1 − βn

exp(X)
,

and taking absolute values, we get∣∣∣∣αn1(αn−n1 − 1)

5x7y
− 1

∣∣∣∣ ≤ 1

exp(X)
+

1

exp(X −X1)
≤ 2 exp(−(X −X1)), (4.5)

where we have used the fact that |−βn+βn1 | ≤ −β+β2 = 1 for all n > 2000. Moreover, if X−X1 > 1.4,

then 2 exp(−(X −X1)) <
1

2
. Let Γ1 := αn1(αn−n1 − 1)5−x7−y − 1. Then

|Γ1| ≤ 2 exp(−(X −X1)). (4.6)

Observe that Γ1 ̸= 0; otherwise, we would have αn−αn1

5x7y = 1. Taking the algebraic conjugates, we obtain

1 = βn−βn1

5x7y < 1, a contradiction. Therefore, Γ1 ̸= 0. As before, we work in the field Q(
√
5), which has

degree D = 2.
Here, t := 4,

γ1 := 5, γ2 := 7, γ3 := α, γ4 := αn−n1 − 1,

b1 := −x, b2 := −y, b3 := n1, b4 := 1.

Next, max{|b1|, |b2|, |b3|, |b4|} = max{x, y, 1, n1} < n, so we can take B := n. As before, we can still take
A1 := 2 log 5, A2 := 2 log 7 and A3 := logα, as before and

2h(γ4) = 2h((αn−n1 − 1))
≤ 2(n− n1)h(α) + 2 log 2
< 2 · 1013 logα logn
< 1013 log n,

by (4.1). Therefore, we take A4 = 1013 log n. Then, by Theorem 2.1,

log |Γ1| > −1.4 · 307 · 44.5 · 22(1 + log 2)(1 + log n)(2 log 5)(2 log 7)(logα)(1013 logn)
> −9.61 · 1027(log n)2. (4.7)

Comparing (4.5) and (4.7), we get

X −X1 < 9.7 · 1027(log n)2. (4.8)

This completes the proof of Lemma 4.2. 2

Next, define
xmin := min{x, x1}, ymin := min{y, y1}.

We now present and prove the following result.
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Lemma 4.3 Assume that c ≥ 1. Then, either

xmin, ymin < 6.2 · 1013(log n)3,

or
n < 37000.

Proof: Once again, we consider equation (1.2) and assume that it admits two distinct solutions, namely
(n, x, y) and (n1, x1, y1). We then rewrite it as

αn − αn1 + βn − βn1 = 5x7y − 5x17y1 .

By factoring the terms, we obtain

αn1 (αn−n1 − 1)

βn1 (βn−n1 − 1)
+ 1 =

5xmin7ymin(5x−xmin7y−ymin − 5x1−xmin7y1−ymin)

βn1(βn−n1 − 1)
. (4.9)

Let us denote A := 5x−xmin7y−ymin − 5x1−xmin7y1−ymin . Since vp(β) = 0 for p = 5, 7, we have

v5

((
α

β

)n1 (αn−n1 − 1)

(βn−n1 − 1)
+ 1

)
= xmin − v5(β

n−n1 − 1) + v5(A),

or equivalently

xmin = v5

((
α

β

)n1 αn−n1 − 1

βn−n1 − 1
+ 1

)
+ v5(β

n−n1 − 1)− v5(A).

Then

xmin ≤ v5

((
α

β

)n1 αn−n1 − 1

βn−n1 − 1
+ 1

)
+ v5(β

n−n1 − 1), (4.10)

and similarly

ymin ≤ v7

((
α

β

)n1 αn−n1 − 1

βn−n1 − 1
+ 1

)
+ v7(β

n−n1 − 1). (4.11)

Next, we estimate vp(β
n−n1 − 1) for p = 5, 7. By Lemma 2.7,

vp(β
n−n1 − 1) ≤ 1 + vp(n− n1) ≤ 1 +

log(n− n1)

log p

< 1 +
log(1.9 · 1013 log n)

log p

< 1 +
6 logn

log p
.

Under the assumption that n > 2000, we proceed to estimate the first terms on the right hand side
of (4.10) and (4.11), respectively.
Assuming n− n1 is even, we have by Lemma 2.7 and 2.4

vp

((
α

β

)n1 αn−n1 − 1

βn−n1 − 1
+ 1

)
= vp

(
−
(
α

β

)n1

αn−n1 + 1

)
= vp(−αn1+n−n1(−α−1)−n1 + 1)
= vp(−(−1)n1αn+n1 + 1)
= vp(α

n+n1 ± 1)

< 1 +
log(n+ n1)

log p

< 1 +
log 2n

log p
.

Therefore, we get inequalities

xmin < 1 +
log 2n

log 5
+ 1 +

6 logn

log 5
< 3 +

7 logn

log 5
< 9 log n (4.12)

and

ymin < 1 +
log 2n

log 7
+ 1 +

6 logn

log 7
< 3 +

7 logn

log 7
< 8 log n. (4.13)
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If n− n1 = 1, then by Lemma 2.7 and 2.4, we get

vp

((
α

β

)n1
(
αn−n1 − 1

βn−n1 − 1

)
+ 1

)
= vp

((
α

−α−1

)n1 (
−α−2

)
+ 1

)
= vp((−α)n1αn1(−α)−1 + 1)
= vp((−1)n1+1αn1−2 + 1)
= vp(α

n1−2 ± 1)
< 1 + vp(n1 − 2)

< 1 +
log(n1 − 2)

log p

< 1 +
log n

log p
.

An identical inequality arises in the case when n− n1 = 3.

Now suppose that n−n1 ≥ 5 is odd. In this case, Lemma 2.3 can be applied to the first terms on the

right-hand sides of (4.10) and (4.11), respectively. Here we note that γ1 =
α

β
and γ2 =

αn−n1 − 1

βn−n1 − 1
are

multiplivatively independent by Lemma 2.4. Furthermore, h(γ1) = log(α). We choose h′(γ1) =
log 5

2
in

(4.10) and h′(γ1) =
log 7

2
in (4.11). Moreover,

h(γ2) = h

(
αn−n1 − 1

βn−n1 − 1

)
≤ 2h(αn−n1 − 1)

< 2((n− n1)h(α) + log 2)
= (n− n1) logα+ log 4
< 1013 log n.

Therefore,

E =
b1

h′(γ2)
+

b2
h′(γ1)

=
n1

h′(γ1)
+

1

h′(γ2)
≤ n

h′(γ1)
< n2.

Assuming that n ≥ 37000, then

F = max{logE + log log p+ 0.4, 10, 10 log p} < 2 logn+ log log p+ 0.4
< 2 logn+ 1.1,

in both cases. Moreover, we may choose g = 3 when p = 5 and g = 4 when p = 7. It then follows from
(4.10) that

xmin ≤ 24pg

(p− 1)(log p)4
F 2D4h′(γ1)h

′(γ2) + v5(β
n−n1 − 1)

≤ 24 · 5 · 3
(5− 1)(log 5)4

(2 logn+ 1.1)2 · 24 log log 5
2 · 1013 log n+ 1 +

6 logn

log 5

< 4.9 · 1016 · (log n)3
(
2 +

1.1

log 37000

)2

+ 1 +
6 logn

log 5

< (4.9 · 1016 ·
(
2 +

1.1

log 37000

)2

+ 3)(log n)3

< 6.2 · 1016(log n)3.
Similarly, (4.11) gives

ymin ≤ 24 · 7 · 4
(7− 1)(log 7)4

(log n)2
(
2 +

1.3

log 37000

)2

· 24 log 7
2

· 1013 logn+ 1 +
6 logn

log 7

< 1.1 · 1016(log n)3 + 1 +
6 logn

log 3
< 2.4 · 1016(log n)3.

This completes the proof of Lemma 4.3. 2

Now, we consider a third solution (n2, x2, y2), with n > n1 > n2 and we find an absolute bound for n.
We prove the following result.
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Lemma 4.4 If c > 0 and n > 37000, then

n < 9.7 · 1034, x < 3.1034, y < 2.5 · 1034

Proof: Lemma 4.3 states that, out of any two solutions, the minimal values of x and y are bounded by
6.2 · 1016(logn)3. Therefore, among three solutions, at most one can have x exceeding 6.2 · 1016(log n)3,
and at most one can have y exceeding this bound. Hence, at least one of the solutions must have both x
and y bounded by this quantity. In particular, this shows that the minimal solution satisfies

X2 = x2 log 5 + y2 log 7 < (6.2 log 5 + 6.2 log 7) · 1016(log n)3 < 2.3 · 1017(log n)3.

From which Lemma 4.2 follows
n logα < X − log 0.38 < X + 1 = X2 + (X1 −X2) + (X −X1) + 1

< 2.3 · 1017(log n)3 + 2 · 9.7 · 1027(log n)2 + 1
< 2.1028(log n)3.

Which implies

n

(log n)3
<

2.1028

logα
< 4.2 · 1028. (4.14)

We apply Lemma 2.2 to inequality (4.14) above with z = n,m = 3, T = 4.2 · 1028. Since T > (4.32)3 and
by (4.14) we get n < 2mT (log T )m = 23 · 4.2 · 1028(log(4.2 · 1028)3 < 9.7 · 1034.
Further, we have by Corollary 2.1

X < 1 + n logα+ 60(log(n logα))2

or, equivalently
x log 5 + y log 7 < 1 + 9.7 · 1034 logα+ 60(log(9.7 · 1034 logα))2

< 4.7 · 1034.
This gives

x < 3 · 1034 and y < 2.5 · 1034,

This completes the proof of Lemma 4.4. 2

4.2. Reduction of the Upper Bound on n

In this subsection, we employ the LLL-reduction algorithm, the theory of continued fractions, and
p-adic reduction techniques as introduced in [15] to derive a significantly smaller bound for n. Which
will conclude the prof of Theorem 1.2.

To begin, we return to equation (4.2). Assuming that n− n1 ≥ 2, we can write

|Λ0| =
∣∣x log 5 + y log 7− n logα

∣∣ < 3

2
α−(n−n1),

where we applied Lemma 2.1 under the assumption n− n1 ≥ 2, since α−(n−n1) ≤ α−2 ≤ 1

2
. We consider

the approximation lattice

A =

 1 0 0
0 1 0

⌊M log 5⌋ ⌊M log 7⌋ ⌊M logα⌋

 ,

with M := 10105 and choose v := (0, 0, 0). Now, by Lemma 2.8, we get

l(L, v) ≥ c1 = 3.13 · 1035 and c2 = 5.7 · 1035.

Moreover, by Lemma 4.4, we have

x < A1 := 3 · 1034, y < A2 := 2.5 · 1034, n < A3 := 9.7 · 1034.
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So, Lemma 2.9 gives S = 1.525 · 1069 and T = 7.60 · 1034. Since c22 ≥ T 2 + S, then choosing c3 :=
3

2
and

c4 := logα, we get

H := n− n1 ≤ 1

logα

(
log

(
10105 · 3

2

)
− log

(√
(3.13× 1035)2 − 1.525× 1069 − 7.60× 1034

))
.

Then
n− n1 ≤ 99.

Next, we revisit equation (4.5). Assume that X −X1 ≥ 2. We can then write

|Λ1| =
∣∣n1 logα+ log(αn−n1 − 1)− x log 5− y log 7

∣∣ < 3 exp(−(X −X1)),

where we applied Lemma 2.1 along with the fact that 2 exp(−(X − X1)) ≤ 2 exp(−2) <
1

2
. Thus, we

proceed by utilizing the same approximation lattice

A =

 1 0 0
0 1 0

⌊M log 5⌋ ⌊M log 7⌋ ⌊M logα⌋

 .

However, setting M := 10106 and choosing v := (0, 0,−⌊M log(αn−n1 − 1)⌋), we observe that for all
values 1 ≤ n− n1 ≤ 99, the selected constant M is sufficiently large to ensure that Theorem 2.9 remains
applicable. By Lemma 2.8, we get

l(L, v) ≥ c1 := 7.32 · 1035 and c2 = 1.31 · 1092,

and by Lemma 4.4, we also have

x < A1 := 3 · 1034, y < A2 := 2.5 · 1034 and n < A3 := 9.7 · 1034.

Thus, Lemma 2.9 yields the same values for S and T as before. Since c22 ≥ T 2 + S, by choosing c3 := 3
and c4 := 1, we obtain X −X1 ≤ 100. Next, returning to relations (4.10) and (4.11), we get

xmin ≤ v5

((
α

β

)n1

· α
n−n1 − 1

βn−n1 − 1
+ 1

)
+ v5(β

n−n1 − 1),

ymin ≤ v7

((
α

β

)n1

· α
n−n1 − 1

βn−n1 − 1
+ 1

)
+ v7(β

n−n1 − 1).

Note that, by Lemma 2.7,

vp(β
n−n1 − 1) ≤ 1 +

log(n− n1)

log p
≤ 1 +

log 99

log p
≤ 3, for p = 5, 7.

Assume that n− n1 is even. Then, by Lemma 2.4, we have

vp

((
α

β

)n1

· α
n−n1 − 1

βn−n1 − 1
+ 1

)
= vp(±αn+n1 + 1)

< 1 +
log(2n)

log p

< 1 +
log(2 · 9.7 · 1034)

log p

<

{
52 if p = 5,

43 if p = 7.

Which gives

xmin ≤ 55 and ymin ≤ 46.
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Now consider the cases where n− n1 ∈ {1, 3}. Again, applying Lemma 2.4, we obtain

vp

((
α

β

)n1
(
α− 1

β − 1

)
+ 1

)
= vp

((
α

β

)n1

(−α−2) + 1

)
= vp

(
αn1−1 + 1

)
≤ 1 + vp(n1 − 1)

< 1 +
log(n1 − 1)

log p

< 1 +
log n

log p

<


1 +

log(9.7 · 1034)
log 5

≤ 51 if p = 5,

1 +
log(9.7 · 1034)

log 7
≤ 42 if p = 7.

vp

((
α

β

)n1
(
α3 − 1

β3 − 1

)
+ 1

)
= vp

((
α

β

)n1

(−α2) + 1

)
= vp

(
αn1+3 + 1

)
≤ 1 + vp(n1 + 3)

≤ 1 +
log(n1 + 3)

log p

≤ 1 +
log(n+ 3)

log p

≤


1 +

log(9.7 · 1034 + 3)

log 5
≤ 51 if p = 5,

1 +
log(9.7 · 1034 + 3)

log 7
≤ 42 if p = 7.

Thus, the upper bounds for xmin and ymin remain unchanged.

Assume now that n − n1 ≥ 5 is odd. We explain in detail how we approach this case; that is, we
indicate how to bound vp(Ln − Ln1) when n− n1 is odd, n < 9.7 · 1034 and p ∈ {5, 7}.

We carry out the process explicitly for p = 5 and p = 7, and then automate it in Maple. Note that
n < 9.7 · 1034 < 2117, so n has at most 117 binary digits. Let d = n − n1 ≤ 99, as established by the
reduction above. Therefore, we need an upper bound for v5(Ln+d − Ln) for all odd integers d ∈ [5, 99],
with n < 9.7 · 1034. The Lucas sequence is periodic modulo 5k+1 with period 4 · 5k. In particular,
Ln+d − Ln is periodic modulo 54, with period 4 · 53 = 500 < 2000. We looped over all odd values of
d ∈ [5, 99], checking whether there exists an integer n < 2000 such that 54 | (Ln+d − Ln). However, no
such value of d was found. This implies that for all such d, we have v5(Ln+d − Ln) ≤ 3.
For p = 7, the sequence (Ln)n≥0 has period 16 ·7k modulo 7k+1. In particular, the difference Ln+d−Ln is
periodic modulo 73 with period 16 · 72 = 784 < 2000. We looped over all odd values d ∈ [5, 99], checking
whether there exists an integer n ≤ 2000 such that 73 | (Ln+d − Ln). All values of d between 5 and
99 satisfy this condition. Here, we will work out a single value of d for illustrative purposes. Namely,
we take d = 11. We compute n0(d) ∈ [1, 16 · 72] such that for n = n0(d), we have v7(Ln+d − Ln) ≥ 3.
In this case, this value is unique and given by n0(d) = 10. Hence, for every n ≤ 9.7 · 1034 such that
v7(Ln+d − Ln) ≥ 3, we must have n = 10 + 16 · 72z for some integer z. Our goal is to find a value of z
such that v7(Ln+d − Ln) is as large as possible. To this end, we now turn to the Binet formula

Ln+11 − Ln = αn+11 + βn+11 − αn − βn

= (α11 − 1)α10+16·72z + (β11 − 1)β10+16·72z

= (α11 − 1)α10 exp7(7
2z log7 α

16) + (β11 − 1)β10 exp7(7
2z log7 α

16).
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In the above calculation, α16 − 1 = 7(141α+ 87), so that |α16 − 1|7 = 7−1. Therfore,

log7 α
16 = log7(1− (1− α16)) = −

∑
n≥1

(1− α16)n

n
. (4.15)

On the right-hand side, we have

|(1− α16)n/n|7 = 7
−v7

(
(1−α16)n

n

)
= 7−nv7(1−α16)+v7(n) = 7−n+v7(n) ≤ 7−(n− log n

log 7 ).

Which shows that the series appearing on the right-hand side of (4.15) converges. Moreover, by inspecting
the first few terms, we obtain

1− α16 = −7(141α+ 87) ; v7

(
(1− α16)n

n

)
= n− v7(n) ≥ 2 for n ≥ 2.

Which implies that

v7(log7(α
16)) = v7(−7(141α+ 87)) +

∑
n≥2

(1− α16)n

7
= v7(−7) = 1.

For the argument of the exponential, we have v7(7
2z log7 α

16) = v7(7
3z) ≥ 3, so |72z log7 α|7 < 7−3 < 7−1.

Therefore, the exponential series in this term converges 7-adically. The same reasoning applies if α is
replaced by β. We now truncate the argument of the logarithm at n = 120, so that

P := −
120∑
n=1

(1− α16)n

n
, (4.16)

such that log7 α
16 = P −

∑
n≥121

(1− α16)n

n
. On checks that n − v7(n) ≥ 121 for all n ≥ 121. Indeed,

first n− v7(n) ≥ n− log n

log 7
. The function n− log n

log 7
is at least 121 for all n ≥ 124. For n ∈ [121, 123] it is

easy to verify by computation that n− v7(n) ≥ 121.
Thus, log7 α

16 = P + u, where v7(u) ≥ 121. We therefore have

72z log7 α
16 = 72zP + 72zu,

such that
exp7(7

2z log7 α
16) = exp7(7

2zP + 72zu) = exp(72zP ) exp(72zu).

We have

exp7(x) = 1 + x+
x2

2
+ · · ·+ xn

n!
+ · · · .

For v7(x) ≥ 2 and n ≥ 2 we have

v7

(
xn

n!

)
= nv7(x)− v7(n!) ≥ nv7(x)− (n− σ2(n)) ≥ n(v7(x)− 1) ≥ v7(x),

where the last inequality holds as it is equivalent to v7(x) ≥ 2 ≥ n

n− 1
for all n ≥ 2. In the above σ2(n)

denotes the sum of the digits of n in base 2. It then follows that

exp7(x) ≡ 1 mod 7v7(x), provided v7(x) ≥ 2.

Hence,
exp7(7

2zu) ≡ 1 mod 72+v7(u) ≡ 1 mod (7123).

This means that
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exp7(7
2z log7 α

16) ≡ exp7(7
2zP ) mod 7123

≡
∑

k≥0

(72zP )k

k!
mod 7123.

Since 1 = v7(log7 α
16) = v7(P + u) and v7(u) ≥ 121 is large, we get that v7(P ) = 1. Further,

v7

(
(72zP )k

k!

)
= kv7(7

2zP )− v7(k!)

≥ (2 + v7(P ))k − (k − σ2(k))
> 2k.

Since σ2(k) ≥ 1 and v7(P ) ≥ 1, it follows that the quantities above are at least 2 · 62 = 124 > 123 for
k ≥ 62. Therefore, we may truncate the series at k = 61, and write

exp7(7
2z log7 α

16) ≡
61∑
k=0

(72zP )k

k!
( mod 7123).

The same reasoning applies when α is replaced by β, so we can write

Q = −
120∑
n=1

(1− β16)

n
(4.17)

and them

exp7(7
2z log7 β

16) ≡
61∑
k=0

(72zQ)k

k!
( mod 7123).

Thus,

Ln+11 − Ln =

61∑
k=0

(α11 − 1)α10(72zP )k + (β11 − 1)β10(72zQ)k

k!
( mod 7123).

The expression on the right-hand side is a polynomial of degree 61 in z whose coefficients are rational
numbers that are 7-adic integers (that is, the numerators of these rational numbers are never divisible by
7). We will show that, within the considered range, this expression is never congruent to 0 (mod 7123).
Consequently, it follows that

v7(Ln+11 − Ln) < 123 for n < 9.7 · 1034.

Finding these numbers is not straightforward in Maple, since P and Q involve large powers of α and β.
Nevertheless, we can compute A := P +Q and B := PQ. Next, the coefficients

uk := (α11 − 1)α10P k + (β11 − 1)β10Qk (4.18)

form a linearly recurrent sequence satisfying

uk+2 = Auk+1 −Buk, k ≥ 0,

with initial values u0 and u1 obtained from (4.18) for k = 0 and k = 1, respectively. Hence, all remaining
terms can be computed iteratively, allowing us to consider the polynomial

f(z) :=

61∑
k=0

(72z)k
uk
k!

(mod 7123).

All coefficients uk

k! are 7-adic integers, so they can be reduced modulo 7123. At this stage, we obtain a
polynomial in Z/(7123Z)[z], and our goal is to find z such that this polynomial vanishes modulo 7123. We
approach this iteratively: starting with 72z, we reduce f(z) modulo 73, 74, 75, 76, and so on, determining
the corresponding digits of z modulo each successive power of 7 (from 0 to 6) so that the polynomial
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becomes divisible by increasingly higher powers of 7. This procedure is essentially an application of
Hensel’s Lemma. Following this method, we obtain

z = 3 + 2 · 7 + 72 + 4 · 73 + · · ·

up to 7, which can be written explicitly as

z = 3 + 2 · 71 + 72 + 4 · 73 + · · ·+ 731 + 2 · 734 + 735 + · · ·+ 5 · 7114t.

Reducing f(z) modulo 7122 gives

f(z) ≡ 7120(7 + 20t) (mod 7122).

Choosing t to be a multiple of 7 leads to

n ≥ 10 · 72(. . . 739 · 7) = 10 · 742 > 9.7 · 1034.

This argument shows that, in effect, v7(Ln+11 − Ln) < 121. Hence, in all cases, we conclude that

xmin ≤ 55 and ymin ≤ 124.

Next, we derive a sharper upper bound for n. Let bX denote the upper bound of X −X1. Then

X = X2 + (X1 −X2) + (X −X1) < xmin log 5 + ymin log 7 + 2bX ,

x log 5 + y log 7 < 55 log 5 + 124 log 7 + 2 · 100 < 530.

From this we deduce x ≤ 329 and y ≤ 272. On the other hand, Corollary 2.1 implies

n logα+ log 0.38 < X < 530,

so that

n <
530− log 0.38

logα
< 1890.

This contradicts the assumption n > 2000. Thus, Theorem 1.2 is proved.
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