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Pillai-Type Equations with Lucas Numbers and S-Unit Solutions

Abdelghani Larhlid, Abdelhakim Chillali and M’Hammed Ziane

ABSTRACT: In this paper, we investigate the exponential Diophantine equation L, — 5*7Y = ¢, where L,
denotes the n-th Lucas number. The Lucas sequence is defined by the initial values Lo = 2, Ly = 1, and the
recurrence relation L2 = Lp41 + Ly for all n > 0. We show that when ¢ = 0, the equation admits exactly
two distinct solutions. Moreover, for any ¢ € N, we prove that there is no integer ¢ for which the equation has
at least three distinct solutions (n,z,y) € Zio.
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1. Introduction
1.1. Background

The Lucas sequence {L, }»>0 is a second-order linear recurrence defined by
Lyyo=Lpy1+L,, foreveryn >0,
with initial conditions Lo = 2 and Ly = 1. Its first few terms are
(2,1,3,4,7,11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, ...).

A well-known Diophantine problem related to exponential equations is the one introduced by Pillai,
which asks for integer solutions of
a® — b =¢, (1.1)

where a,b > 1 and c are fixed integers. In his pioneering work [1], Pillai proved that when a and b are
coprime positive integers and the absolute value of ¢ exceeds a certain bound cy(a,b), equation (1.1) has
at most one solution (z,y) in integers.

Over time, several generalizations of this problem have been considered. In particular, many authors
replaced one of the exponential sequences (a”) or (b¥) with sequences having similar exponential growth,
such as Fibonacci, Tribonacci, Pell, or Lucas numbers, or even with generalized Fibonacci sequences.
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These extensions (see for instance [2], [3], [4], [9], [5], [18], [19]) show that the finiteness property
established by Pillai generally persists in these broader contexts.

From an algebraic point of view, if K is a number field with ring of integers R, an element x € K
is called an S-unit when the ideal it generates factors only into primes belonging to a finite set S. In
the rational case, this means that the numerator and denominator of x have no prime factors outside S.
Equations similar to (1.1) involving S-units have been explored in works such as [6], [7] and [8]. For
example, in [7], the powers of a were replaced by Fibonacci numbers, while in [6], Lucas numbers played
the same role.

In the present paper, we investigate the case where the sequence {L,} of Lucas numbers interacts
with prime powers. Specifically, we study the exponential Diophantine equation

L, —5%7Y =¢, (1.2)
where n,z,y € Z>o.
1.2. Main Results
Our main findings can be summarized as follows.

Theorem 1.1 When ¢ = 0, the exponential Diophantine equation (1.2) admits precisely two non-negative
integer solutions, given by

(n,z,y) =(1,0,0) and (n,z,y)=(4,0,1).

Theorem 1.2 There exists no integer ¢ € N for which equation (1.2) possesses three or more distinct
triples (n,x,y) € Z3, satisfying it.

2. Methods
2.1. Preliminaries

We begin by recalling the classical closed-form expression, often referred to as the Binet formula, for
the Lucas sequence. It can be written as

L, =a"+4+p", forevery n >0, (2.1)
where
1+v5 P V5
o= an = .
2 2
It is worth observing that these two constants satisfy the simple relation 3 = —a~!. Then

L, =a"(1+ (—=1)"a™?"). (2.2)

The characteristic polynomial associated with the Lucas sequence (L, ),>0 is given by (X)) = X2 —X —1.
The polynomial ¢(X) is irreducible over Q[X] and has roots o and 5. Numerical approximations yield

the following estimates:
1.61 < a0 < 1.62,
0.61 < |B| < 0.62.

Assuming that n > 10, then
0.9990" < a"(1 —a ) < L, <a"(1+a ") < 1.001a™. (2.3)

In the situation where ¢ > 0, it follows that

57 =L,—c<L,—1<a"™ by (22). (2.4)
This implies that xlogb + ylog 7 < nloga, so that
log o log o
— . d — .25n. 2.
z<n10g5<03n an y<n10g7<0 5n (2.5)

We also note a straightforward result from calculus, as presented in [7, Lemma 1].
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Lemma 2.1 [7, Lemma 1] Let x be a real number such that |z| < 3. Then |log(1 + z)| < |z|.

We conclude this section by presenting an analytic argument, as outlined in [20, Lemma 7].

Lemma 2.2 Let m > 1. For any integer T such that T > (4m*)™ and T > , we have

2

(log z)™
z < 2™T(logT)™.

2.2. Linear Forms in Logarithms

In our work, we often rely on lower bounds of Baker-type for nonzero linear forms in two or three
logarithms of algebraic numbers. Such bounds have been extensively studied in the literature, notably
by Baker and Wiistholz [10] and Matveev [11].

Before stating these inequalities, we recall the definition of the height of an algebraic number.

Definition 2.1 Let A\ be an algebraic number of degree d with minimal polynomial over the integers
d
a0z + a2 4 -+ ag = ag 1‘[(9,j — Ay,
i=1
where the leading coefficient ag is positive. The logarithmic height of A is defined by
1 d ,
h(A) := y <log ap + ; log max{|\(V)], 1}) .

The subsequent properties of the logarithmic height function hA(-) will be taken as given throughout
the paper, without additional references:

h(C£n) < h(C)+h(n) +log(2),
h(¢nEY) < Q) + h(n), (2.6)
h¢) = |slh(¢) (s €Z).

A linear form in logarithms is defined as an expression of the type
A =bylogd; + -+ bslogds, (2.7)

where dq,...,05 are positive real algebraic numbers, and bq,...,bs; are nonzero integers. Let L :=
Q(61,...,0,) be the field generated by the d;’s, and let D represent the degree of L. Put I' = e* — 1.
With this notation, we begin by stating the main result of Matveev [11], which leads to the following
estimate.

Theorem 2.1 (Matveev, [11]) Let Q(d1,...,ds) be a number field of degree D over Q. Assume that
I' #0. Then we have

log |T| > —1.4 x 30°T x s*° x D?*(1 +log D)(1 + log B)A; - - - Ay,
where B > max{|b1|,...,|bs|}, and for each i =1,...,s, A; > max {Dh(d;),]|logd;|,0.16} .
This result is the version of Bugeaud, Mignotte, and Siksek ([17, Theorem 9.4]).

In addition, we utilize a p-adic version of Laurent’s result, as developed by Bugeaud and Laurent in
[21, Corollary 1]. Prior to presenting their result, we first define the requisite concepts.
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Definition 2.2 Let p be a prime number. The p-adic valuation of an integer z, denoted v, (z), is
given by
max{k € N: p¥ |z}, ifz#0,
vp(x) = {

o0, if x =0.

. a . . . .
Moreover, for a rational number z = 7 where a and b are integers, the p-adic valuation is defined
as

vp(z) = vp(a) — vp(b).

The expression for v,(x) in the case of rational numbers, as given in Definition 2.2, does not depend
on the particular representation of = as a fraction of integers. From this definition, it follows that for any
rational number x,

vp(x) = ordy(z),

where ord,(z) denotes the exponent of p in the prime factorization of z. For instance, we have vs (%) =
—2.

Next, for an algebraic number A\, we define its p-adic valuation as

vy(ag/a
() = 2l00/00)
where ap and ag4 are integers associated with A as in Definition 2.1, and d is the degree of A. For instance, if
T = Z—‘; is a rational number in lowest terms with ag > 1, then its minimal polynomial is f(X) = aoX —ayg,

which has degree 1. In this case, v,(x) = v, (Z—g), which is consistent with Definition 2.2. The p-adic

valuation gives rise to a corresponding absolute value.

In a manner analogous to the previous context, let A\; and A\s be algebraic numbers over QQ, regarded
as elements of the field K, := Qp (A1, A2), where D := [Qp (A1, A2) : Qp]. As in Theorem 2.1, we employ a
modified height function. In particular, the adjusted height of \; is defined as

R () > max {h()\i), logD(p)} , for i=1,2.

Lemma 2.3 (Bugeaud and Laurent, [21]) Let by, by be positive integers, and let Ay and Ay be mul-
tiplicatively independent algebraic numbers such that vy(A1) = vy(A2) = 0. Define

b b
Bo__" 2

and F :=max{log E +loglogp+ 0.4, 10, 10logp} .

Then, the p-adic valuation of \2* N3 — 1 satisfies
(NN — 1) < 239 p2pi (a1 (),
(p—1)(log p)*
where g > 0 denotes the smallest integer such that vy,(A] —1) >0 fori=1,2.

To employ Lemma 2.3, it is necessary to verify that A\; and Ao are multiplicatively independent. In our
setting, this amounts to ensuring that o and

ot —1
0= 5= (2.8)

are multiplicatively independent. The following result, taken from [7, Lemma 5], is useful in this context.

Lemma 2.4 [7, Lemma 5] Lett > 1 be an integer. The algebraic numbers o and 7(t) are multiplicatively
dependent if and only if t =1, t =3, ort is even. In these cases, we have

(1) = —a”2, 7(3) = —a?, and 7(2t) = —a?t
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Lemma 2.4 shows that in infinitely many instances (¢ even or ¢t = 1,3), Lemma 2.3 does not apply,
and one must instead estimate v,(a® 41). This can be achieved using the p-adic logarithm log, (see [22],
Sect. 11.2.4 for details).

For an algebraic number z, define |z|, := p~vr(*) Let C, denote the complex p-adic field, which is
complete with respect to |- |, and algebraically closed. The p-adic logarithm log, z is defined on the ball

1 1
D(0,p777) == {6 € Qi 6~ 1, <p 7T},
by the convergent series

log, &=~ a-¢ _Z,f)l.

i=1

It satisfies the usual property

log,(zy) = log, * +log,y, forz,y€ D(O,p_lﬂlj),

and moreover,
|10gp lp=16—1lp, and Up(l()gp §) =vp(§—1), (2.9)
for all £ € D(O,piﬁ).
In practice, these calculations often produce upper bounds on the variables that are too large, so

reduction techniques are required. In this paper, we make use of the following result related to continued
fractions (see [23, Theorem 8.2.4]).

Lemma 2.5 (Legendre). Let u be an irrational number, and let its continued fraction expansion be given

by [ag, a1, as,...]. Define the convergents of the continued fraction of u as
bi [ag, a1, a9, ...,a;], foralli>0,
di

and let M be a positive integer. Let N be the smallest integer such that qy > M. Then, for the quantity
a(M) :=max{a; : 1 =0,1,2,...,N},
the following inequality holds for all pairs (r,s) of positive integers with 0 < s < M:

5> Gon roe

We will need the following result, taken from [24, Lemma 2.6].
Lemma 2.6 (Adapted from [24, Lemma 2.6]) The equation

1—~" 1—av
1—Ah T 11—k (2.9)

has no integer solutions h,w satisfying h > w > 1.

Lemma 2.7 For any positive integer x and z € {«, 8}, we have:

1.
T 1y _ vs(z)+ %, ifr=0 (mod 4),
v5(2% —1) = {07 2 20 1)

vs(x)+ 3, ifz=2 (mod4),
0, ifzr#2 (mod4).
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(%~ 1) = vi(z)+1, ifz=0 (mod 16),
e o, ifx 20 (mod 16).

- _Jur(x)+1, ifr=8 (mod 16),
vr(+1) = {0, ifr#8 (mod 16).

Proof: We provide the proof in the case z = «; the case z = 3 follows by the same argument.
For vs(a® — 1) :

o If z = 0 (mod 4). Since a? = 1 (mod 5), we expect a non-zero valuation. Using a generalized
Lifting The Exponent (LTE) property, we have vs(a™ — 1) = vs(a* — 1) 4+ v5(%). We need to
compute vs(a* —1). Since a? — 1 = a and (a? + 1) = 5+f . it follows that at—1= % ~a. To
calculate vs(a* — 1), we use the valuation on Qs(v/5), where v5(VB) = 1 and

vs(352  a) = v5(5+V5) — v5(2) +v5(a)
= us(V5(v5+1))

5(v/5) +vs(1 +/5)

I
<

D=

Since v/5 + 1 is a 5-adic unit (it is norm is - 4, which is not divisible by 5).
So, if =0 (mod 4),vs(a” — 1) = vs5(%) + % —v5( )+ 3.

e If £ 20 (mod 4). Then o® £ 1 (mod 5), so vs(a® —1) = 0.
For vs(a® + 1):
e If z = 2 (mod 4). Then o® = o?
vs(a? +1) = v5(—5+2\/3) =1.So, ifz
o If 2 #£2 (mod 4). Then o® # —1 (mod 5), so vs(a® + 1) = 0.
For vz(a® — 1):
e If =0 mod 16 : Since a'® =1 (mod 7), we expect a non-zero valuation. v;(a® — 1) = v7(a!® —
1) + v7(2/16) = v7(a!® — 1) + v7(z). We need to compute v7(a!l® — 1). Since 7 is inert, we are
working in Z7[a]. It is common that for inert primes and minimal polynomial, v, (a4 — 1) = 1.
This is analogues to v3(a® —1) =1 in [18]. So v7(a® — 1) = vy(z) + 1.
o If  #8 mod 16. Then a® Z1 mod 7, so v7(a® — 1).
For vz(a® + 1) :
e If # =8 (mod 16). We have a® = a® = —1 (mod 7). Then v7(a® + 1) = v7(a® + 1) + v7(2/8) =
vr(a® + 1) 4+ v7(z). We need to compute v7(a® + 1). Since a® = —1 (mod 7),v7(a® + 1) > 1. This
is analogues to v3(a* +1) = 1 in [18]. So, if z =8 mod 16, v7(a® + 1) = vy(z) + 1.
o If £ 8 (mod 16). Then o® # —1 (mod 7), so v7z(a® +1) = 0.
|

However, as current continued fraction techniques do not yield lower bounds for linear forms in more
than two variables with bounded integer coeflicients, we instead employ a method based on the LLL
algorithm, described below.
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2.3. Reduced Bases for Lattices and LLL-Reduction Methods

Let k be a positive integer. A subset £ of the real vector space R¥ is called a lattice if there exist
vectors by, bs, . .., by € R¥ such that
ri € Z} .

k k
L= ZZbZ = {Zribi
i=1 i=1

The vectors by, b, ..., by are said to form a basis of £, and they generate the lattice. The integer k is
referred to as the rank of £. The determinant of the lattice £, denoted by det(£), is defined as

det(£) = |det(br, b, ..., by)]-

where the b;’s are expressed as column vectors. This determinant is a positive real number and remains
invariant under the choice of basis (refer to [14], Section 1.2).

Consider by, by, ..., bg, a set of linearly independent vectors in R¥. The Gram-Schmidt orthogonal-
ization process provides a method to iteratively construct a set of orthogonal vectors b (for 1 < i < k)
along with corresponding coefficients y; ; (where 1 < j <4 < k). These are defined as follows:

s bia b
b =b; — Zﬂi,jb;‘a Mij = (<b*.,bj’?>>’
=1 VAR
where (-, -) denotes the standard inner product in R*. The vector b} represents the orthogonal projection
of b; onto the orthogonal complement of the subspace spanned by b1, ...,b;_1. Asaresult, b} is orthogonal
to by,..., b7 forall1 <i<k.
Hence, the sequence b7, b3, ..., b} constitutes an orthogonal basis of R,

Definition 2.3 A basis b1, bo,...,b, of a lattice £ is said to be reduced if the following conditions
hold:

1

i il < 2 forall 1 <j<i<n, and |[|bf +pii1bi 1| > =[bj_4||?, foralll<i<n,

[V )

where || - || denotes the Euclidean norm.

The constant % in the second inequality is not fixed; it may be replaced by any real number in the
interval 1, 1], (see [12, Section 1]).

Let £ C R* be a k-dimensional lattice with a reduced basis b1, ..., bg, and let B be the matrix whose
columns are by, ..., b;. We define the function ¢(£,v) as follows:

e, v) = mingeg [[u —vl, ifv ¢ £,
T | mingeeygoy llull, if v € g,

where || - || denotes the Euclidean norm in R¥. Tt is a well-known result that the LLL algorithm can be
used to compute a polynomial-time lower bound for £(£,v). Specifically, there exists a positive constant
¢ such that £(£,v) > ¢1 (see [22], Section V.4).

Lemma 2.8 Let v € RF and 2 = B~ v, where z = (z1,...,21)T. Define the following:

(i) If v ¢ £, let iy be the largest index such that z;,, # 0, and put o := {z;,}, where {-} denotes the
fractional part or the distance to the nearest integer.

(i) If ve L, put o := 1.
Additionally, let
Co := max 16
EREE A WAEN
cf ==y o?|bu?

Then we have
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In the context of our application, we consider real numbers 79, 71, . . . , 7 that are linearly independent
over Q. Moreover, we assume the existence of two positive constants c3 and ¢4 such that

M0 + arm + - - 4 apmr| < ez exp(—caH), (2.10)

where the integers a; are subject to the bounds |a;| < A, for some given constants A;, where 1 <14 < k.
For simplicity, we define Ay := maxi<;<x{A;}. The primary approach, based on the work of [13], involves
approximating the linear form in inequality(2.10) through a lattice construction. Specifically, we consider
the lattice £ generated by the columns of the matrix

1 0 0 0
0 1 0 0
A= : )
0 0 1 0
(M) [Mna| - [Mne—1] [ M)

where M is a sufficiently large constant, typically chosen around the order of AE. Suppose that an
LLL-reduced basis by, ..., by for £ has been computed, and that a lower bound ¢(£,y) > ¢; holds, where
v:=(0,0,...,—|Mng]). The value of ¢; can be determined using the results from Lemma 2.8. Under
these assumptions, the following result is analogous to [22, Lemma VI.1].

Lemma 2.9 (Adapted from [22, Lemma VI.1]) Define

k—1 k
14> A
S = A? d T.=——&i=1""
; 2 an 5
If 2 > T? + S, then the inequality (2.10) implies that we must have either

| Mo
LMWJ ’

H< i <log(M03) _log (@- T)) .

2.4. Bounds for Solutions to S-unit Equations

ap=ay=---=ap_1=0, and ap=—

or

The aim of this subsection is to derive a result from the following proposition.
Proposition 2.1 . Let A > 10% be a fized integer. Suppose that
57V — 517V = AL (2.11)

Then, we have
5ETY < A(lOgA)GOlOglOgA.

Proof: Let u :=5%7Y and v := 5*17Y%, then u — v = A. We note that
max{|z — z1|, |y — y1|} logh < xlogh+ylog7 = logu.

Let us divide equation (2.11) through w, then we obtain

A
[Ty 1) < (2.12)

In view Proposition 2.1 we may assume that u > 2A, and by Lemma 2.1 we obtain

3 A
Al =[(z —21)log5 + (y — y1)log 7| < 5 - —. (2.13)



PILLAI-TYPE EQUATIONS WITH LUCAS NUMBERS AND S-UNIT SOLUTIONS 9

Since log 5 and log 7 are linearly independent over Q, the linear form A can vanish only in the case where
x = z7 and y = y;, which contradicts the assumption that A # 0. Therefore, by applying [7, Lemma 3]
with D =1, log A; = log 5 and log As = log 7, we derive

2

<2 — — <
= max{|x JI1|, |y Z/1|} = 10g5

log u.

Thut is
2

log

max{log b’ + 0.38,30} < log( 3 logu) + 0.38 < log(1.821log u).

Provided that log(1.821logw) > 30. Laurent’s lower bound for linear forms in two logarithms yield’s
17.9(log(1.821og u))* log 5log 7 > — log g —log A + log u.

If we substitue u = A(log A)601°818 & into this inequality we obtain
17.9 - (log 1.82 4 log log(A(log A)80loglog A))2 oe5]0g7 = 17.9-log(1.821log A + 1.82 - 60
-(loglog A)?)2log 5log 7
—log g —log A + log A + 60(log log A)?
56.11log(1.821og A + 109.3(loglog A)2)2 > —0.406 + 60(loglog A)2.
Since we assume that A > 103 we have 109.3(loglog A)? > 15.98log A, and also 0.406 < 0.015(log log A)2.
Thus we get , , ,
56.11og(1.821log A 4+ 15.98log A >  60(loglog A)* — 0.015(log log A . .
e 56%1 log(17.80 102 A%Q > 59.(98%’)(1% lo)g A)2, 10818 A" which does not hold if A >
108, Thus proposition 2.1 holds under the assumption that log(1.82logu) > 30, i.e that logu > 5.87-10'2.
Let us assume that logu < 5.87 - 102, which implies that

v

xlogh < 5.87-10' and ylog7 < 5.87-10'2,

x < 58T 1012 < 3.65-10"? and y < 58T 10'? < 3.02 - 1012
log 5 log 7
Then
z,y < 3.65 - 10*2,
Suppose, for the sake of argument, that u > A(log A)60!°gloe & Under this assumption, inequality (2.13)
becomes
log 7 3 —709
|(x — 1) + (y — y1)10g5| < 3Tog 5(log A )60 1oE o5 160 < 1.03-10 )
P25 log 7 . 12
Observe that the 25-th convergent q— to log 5 satisfies pos, ga5 > 3.65 - 10°°, and we get
25
log log 7

7 _
(&= 20) + (=) g | < 1031077 < [pos + a5y .

log log 5

This, however, contradicts the optimal approximation property of continued fractions (see, for instance,
[16, Theorem 182]). Therefore, Proposition (2.1) also holds when logu < 5.87 x 1012 O

In preparation for the proofs of our main theorems, we establish the following corollary, which will be
of practical use later. For convenience, let us denote X = xlogb+ylog7 and X; =x1logb+y;logT.

Corollary 2.1 Suppose that the tuple (n,n1,z,21,y,y1) is a solution of
L, —5%7Y = L,, —5%17%,
with n > 385 and n > ny. Then

0.38a™ < exp(X) < 2a"(nlog a)%° log(nloga)
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Proof: If n > 385, then
A =5%TY — 57179 = L, — Ly, > Ly o > Lzgg > 10%.
So, we apply Proposition 2.1 with A = L,, — L, < L,, < 1.001 a™ by (2.3). This yields

GXP(X) < A(log(A))60loglogA < 1.0010&“(10g(1.0010¢n))60IOglOg(l'()Olan)

< 20[”(% log a)60 log(n log oc). (2'14)

To explain the preceding computation, observe that
1.001(log(1.001™))60loglog(1.001a™)  — 1 001 (n log o 4 log 1.001)60 loglog(1.001a™)

60 1. 1 1 1.001
< 1001(n log a)60 log(n log a+log 1.001) 1+ 103‘(&;;2‘1)) og(n log a-+log( R

< 1001(n log a)GO log(n log a)(141og(1.001))/(n log )
60 log(n log a+log(1 001))-log(1.001)

- exp
og
< 1. 001(n log a)60 log(n log a) (TL log 01)60 log(nlog a)(log(1.001)/(n log o)
60 log(n log a+log(1.001)) log(1.001)
nlog a

< 1.001(nlog a)80log(nloga) . gxpy 6010g(nloga><l;g1§)zlsga>log<1-001>>)

- exp

60 log(n log a+log(1.001)) log(1.001)
n log a

- exp
In the argument above, we only relied on the Enequahty log(1+vy) <y, Wthh holds for all positive real
numbers y. Within the last two exponential terms, when n > 500, the first term does not exceed 0.008
and the second is bounded by 0.002. Hence, together with the factor 1.001, these contributions sum to
at most
1.001 - exp(0.008) - exp(0.002) < 2

which establishes (2.14). Conversely,
0.38a™ < 0.999a™ — 1.001a™ 1 < L, — L1 < 5°7Y — 55179 < 5°7% = exp(X).
Which gives
0.38a™ < exp(X). (2.15)
Combining (2.14) and (2.15), we get

0.38a" < exp(X) < 2a"(nloga)® log(nloga)
and taking logarithms both sides gives

nloga +1og0.38 < X < log2 + nloga + 60(log(nloga))? < 1 + nloga + 60(log(nloga))?.

3. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.2 in the case ¢ = 0. Under this assumption, equation (1.2)
simplifies to the Diophantine equation

L, =5°7Y. (3.1)

To handle this case, recall that for every integer n > 12, the Lucas number L, admits at least one
primitive prime factor, that is, a prime dividing L, but not dividing any earlier term L,, with m < n.
This follows from Carmichael’s Primitive Divisor Theorem and its extensions. Therefore, L,, cannot be
divisible by 7 for n > 12, since 7 already divides L4, and thus would not be a primitive divisor. Moreover,
a Lucas number cannot be a pure power of 5. Hence, equation (3.1) has no solutions for n > 12. Thus,
we only need to check the values of L,, for 0 < n < 12, and determine for which values L,, is a product
of powers of 5 and 7. A direct computation shows that the only such values of n are those listed in
Theorem 1.1.
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4. Poof of theorem 1.2

In this section, we prove Theorem 1.2. Note that when n < 2000 in equation (1.2), we have = < 600
and y < 500 according to inequality (2.5). An exhaustive computer search using Maple explored all
triples (n,z,y) with 0 < n < 2000, 0 < z < 600 and 0 < y < 500, and searched for all values of ¢ that
admit at least three representations of the form L, — 5*7Y. This search returned no solution, as stated
in Theorem 1.2.

4.1. An absolute upper bound for n in the case that c € N
From this point onward, we assume that n > 2000 and focus on deriving an upper bound for n. Let
(n,z,y), (n1,21,y1) and (ng, 22, y2) be non-negative integers satisfying

Ly — 5779 = Ly, — 5" 7% = Ly, — 527%2.

It is important to note that n = mny is not possible, at this would imply = = z; and y = y1, leading to
the same representation of c¢. Therefore, without loss of generality, we may assume n > n; > ns.

Lemma 4.1 Let ¢ > 1 such that the Diophantine equation (1.2) admits at least two distinct representa-
tions given by
¢= L, —5%7 = L,, —5"7%.

Then
n—ny < 1.9-10%logn. (4.1)

Proof: Since ¢ > 0, we have L,, > 5%7Y and L,,, > 5"17¥1. We now return to equation (1.2) and rewrite
it as
L,—-5"7" = L, —527"
0<c—l<c—fr=a—577Y = @™ —5"170 4 g _ gn
< Q™ — hrLTYL Wm _Bn| < O/117
where we have used the fact that | — 8" + "1 < —3 + 3% =1 for all n > 2500. So we conclude that

|5*7Ya™ — 1| < a” ("), (4.2)
We now apply Theorem 2.1 to the left-hand side of (4.2). Define
To:=5"Ma™ —1.

Notice that I'y # 0; otherwise, we would have o™ = 5*7Y € Z. Applying any automorphism that maps
a to B, we obtain 8™ = 5*7Y. This leads to a contradiction, since |3"| < 1, whereas 5*7Y > 1 for all
x,y > 0. Next, we use the field K := Q(+/5) of degree D = 2. Here t := 3, and put

"= 57 Y2 = 77 V3 = Q,

and
bi:=x, by:=y, b3:=—n.

Next, we have
max{|b1|, |b2|a |b3|} = max{m,y, TL} =n.

We may therefore take B :=n. Also, A; > max{Dh(~v;), |log~;|,0.16} for all i =1,2,3. So
Ay := Dh(y1) =2logh, As:= Dh(y2) =2log7, As:= Dh(vs)=1loga.
Then by Theorem 2.1, we get

log|l| > —1.4-30%-3%5.22(1 +log2)(1 + logn)(2log5)(21og 7)(log )

> —5.85-10'2(1 +logn). (4.3)
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Simplifying this gives

log|T| > —8.77-10'% - log n. (4.4)
Where the last inequality holds for n > 2000. Comparing (4.2) and (4.4), we get

n—ny < 1.9-10%logn.
This proves Lemma 4.1 O
We now present and prove the following result.

Lemma 4.2 Letc> 1, X :=zlogb+ylog7 and X; := x11logb + y1 log7. Then

X — X; <9.7-10* (logn)?.
Proof: We return to equation (1.2) and rewrite it in the form

a — o™ — 5T7Y = _5Ti7Y +ﬁ”1 — B"

By factoring the terms, we obtain

anl (an—nl _ 1) 1 _ _5$17y1 /6”1 _ /Bn _ _1 + Bnl _ B'IL
52Ty - 5Ty 527y exp(X — X;) exp(X)’
and taking absolute values, we get
a™ (@™ — 1) 1 1
—— 1| < <2 —(X-X 4.5
5Ty < o) T epx —xy) = 2Pl D) (4.5)

where we have used the fact that | — 3" + 3™ | < —3+ % = 1 for all n > 2000. Moreover, if X — X; > 1.4,
1
then 2exp(—(X — X1)) < 3 Let Ty := a™ (o™ ™ —1)57*7"Y — 1. Then

4] < 2exp(—(X — X1). (4.6)
Observe that 'y # 0; otherwise, we would have "5:770;1 = 1. Taking the algebraic conjugates, we obtain
= 020 <1, a contradiction. Therefore, I'y # 0. As before, we work in the field Q(+v/5), which has
degree D = 2.
Here, t := 4,

Y1 = 57 Y2 = 77 V3 =@, Y4 = a"mTmM — 17
by := -, by := -y, b3 =ny, by := 1.
Next, max{|b1, |bz],|b3], |b4|} = max{z,y,1,n1} < n, so we can take B := n. As before, we can still take
A :=2logh, As :=2log7 and A3 := log «, as before and
2h(74) 2h((a"™™ = 1))
2(n — n1)h(a) + 2log 2
2103 1logalogn
10'3 log n,
by (4.1). Therefore, we take A; = 10*®logn. Then, by Theorem 2.1,

log|Ty| > —1.4-307-4%5.22(14log2)(1 4+ logn)(2log5)(21og 7)(log a)(10' log n)

AN NN

> —9.61-102"(logn)2. (4.7)

Comparing (4.5) and (4.7), we get
X — X; <9.7-10* (logn)?. (4.8)
This completes the proof of Lemma 4.2. O

Next, define
Lmin = min{z, 171}, Ymin = min{ya yl}

We now present and prove the following result.
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Lemma 4.3 Assume that ¢ > 1. Then, either
Tmins Ymin <6.2- 1013(10g ’I'L)37

or
n < 37000.

Proof: Once again, we consider equation (1.2) and assume that it admits two distinct solutions, namely
(n,z,y) and (n1,21,y1). We then rewrite it as

a —a + B — gM =57V — 5T,
By factoring the terms, we obtain

o™ (a”_nl _ 1) 5Tmin TYmin (5$—ﬂfmm7y—ymm — 5x1_xmin7yl_ym,in>

+ 1= 4.9
5711 (ﬂnfnl _ 1) 6711 (ﬂnfnl _ 1) ( )
Let us denote A := 5%~ Fmin 7V~ Umin _ 5T1=Tmin T¥1=Ymin Since v, () = 0 for p = 5,7, we have
a\"™ ("™ —1) _
- P eEe—— 1) = Tmin — -1 A )
5 ((5) () +1) = omn el )+ os4)
or equivalently
ni n—ni __ 1
Tmin — Us ((g) h + 1) + ’Us(ﬁn_nl — 1) — 1)5(14).
Then )
a\™ atm — 1 nen,
Zmin < Us ((ﬁ) Brom 1 + 1) +vs(8 -1), (4.10)
and similarly
a\™ oM — 1 en
ymin§U7(<5) ,3"_”1—1—’—1) +U7(5 1 —1). (4.11)
Next, we estimate v, (8"~ " — 1) for p =5,7. By Lemma 2.7,
1 _
vp(B"T™ —=1) < 14wy(n—ng) <1+ Og(lzgw
) p
14 log(1.9 - 1013 log n)
61 togp
< 14280

logp
Under the assumption that n > 2000, we proceed to estimate the first terms on the right hand side

of (4.10) and (4.11), respectively.
Assuming n — n, is even, we have by Lemma 2.7 and 2.4
a\™ arm — ] a\™ -
w((5) F=mi) = w((5) o)
= pp(—amtim (o))
= wp(—(—hmarn )

|
S

= yy(a™t™ £1) Therefore, we get inequalities
< 14 log(n + n1)
logp
log 2n
<
log p
log 2n 6logn 7logn
min < 1 91 4.12
v * Jogs log 5 logh o o8 (4.12)
and log 2 61 7
Ymin < 1+ o8 n+1+ g T + g;n<810gn. (4.13)
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If n —ny =1, then by Lemma 2.7 and 2.4, we get
a\™ o™ — 1 L
#((5) (i) ) - w((5s) o o)
= yl(—a)mat (—a)~! +1)
(( )n1+1 ’I’L1 -2 + 1)

= Up( M)
< 1+wvy(ng —2)
1 _
< og(n1 —2)
logp
logn
<
log p

An identical inequality arises in the case when n —n; = 3.
Now suppose that n —nq > 5 is odd. In this case, Lemma 2.3 can be applied to the first terms on the

right-hand sides of (4.10) and (4.11), respectively. Here we note that v, = % and v, = % are
multiplivatively independent by Lemma 2.4. Furthermore, h(7y;) = log(«). We choose h'(v1) = 1055 in
(4.10) and A/ (1) = 10%7 in (4.11). Moreover,

b = (G ) <2 )

< 2((n— m)h(a) +log?2)
= (n—mny)loga+log4
< 10%23logn.
Therefore,
by ba ny 1 n 5
= + = + < <n”.
W(yv2)  h(m) W) W)~ hn)

Assuming that n > 37000, then

F = max{log E + loglogp + 0.4,10,10logp} < 2logn + loglogp+ 0.4
< 2logn+ 1.1,

in both cases. Moreover, we may choose g = 3 when p =5 and g = 4 when p = 7. It then follows from
(4.10) that
24pg
i < -
= (p—1)(logp)?
24-5-
<

F2Dh (71)h/ (72) + vs(B"7™ — 1)
6logn
log 5

W(210gn+1 1)2 2410g 10g5 101310gn+1+

2
1.1 6logn
< 4.9-10'6.(1 24— 1
(logn)* ( o 37000) T s

2
1.1
< (49 1016 . (2 + 10g37000> + 3)(10g n)3

< 6.2-10%(logn)3.
Similarly, (4.11) gives

2474 13 \*  ,log7 6logn
n < =1 2(2 .24 10131 1
Ymin = T (log 7y (08 ") ( +1g37000> 2 I

61
< 1.1-10'(logn)? + 1+ —2"

log 3
< 2.4-10%(logn)3.
This completes the proof of Lemma 4.3. O

Now, we counsider a third solution (ng,xs,ys2), with n > n; > ny and we find an absolute bound for n.
We prove the following result.
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Lemma 4.4 If ¢ > 0 and n > 37000, then

n<9.7-10%, z<3.10%, y<25-10*

Proof: Lemma 4.3 states that, out of any two solutions, the minimal values of x and y are bounded by
6.2 - 1015(logn)3. Therefore, among three solutions, at most one can have x exceeding 6.2 - 1016 (logn)3,
and at most one can have y exceeding this bound. Hence, at least one of the solutions must have both x
and y bounded by this quantity. In particular, this shows that the minimal solution satisfies

Xy = 25log5 +yolog7 < (6.2log5 + 6.2log 7) - 10*°(logn)® < 2.3 - 107 (log n)3.

From which Lemma 4.2 follows
nloga <X —10g0.38 < X+1=Xo+ (X1 -Xo)+ (X —-X;)+1
< 2.3-10Y(logn)®+2-9.7-10*"(logn)? + 1 Which implies
< 2.10%8(logn)3.

n 2.10%8

< < 4.2-10%. 4.14
(logn)3 = loga (4.14)

We apply Lemma 2.2 to inequality (4.14) above with z = n,m = 3,T = 4.2- 10?8, Since T > (4.3%)% and
by (4.14) we get n < 2"T(log T)™ = 23 - 4.2 - 10°%(log(4.2 - 10%)3 < 9.7 - 103,
Further, we have by Corollary 2.1

X < 1+nloga + 60(log(nloga))?

or, equivalently
rlogh+ylog7 < 1+9.7-103loga + 60(log(9.7 - 1034 log ) )?
< 4.7-10%4
This gives
z<3-10% and y < 2.5-10%,

This completes the proof of Lemma 4.4. O

4.2. Reduction of the Upper Bound on n

In this subsection, we employ the LLL-reduction algorithm, the theory of continued fractions, and
p-adic reduction techniques as introduced in [15] to derive a significantly smaller bound for n. Which
will conclude the prof of Theorem 1.2.

To begin, we return to equation (4.2). Assuming that n —n; > 2, we can write

3
[Ao| = |x10g5+ylog7—nloga < 504_("_”1)7

1
where we applied Lemma 2.1 under the assumption n —n; > 2, since a~ (=) < =2 < 5 We consider

the approximation lattice
1 0 0
A= 0 1 0 ,
[Mlogh5| |Mlog7| [Mloga]

with M := 1019 and choose v := (0,0, 0). Now, by Lemma 2.8, we get
1(L,v) > ¢ =313-10% and ¢y = 5.7-10%.
Moreover, by Lemma 4.4, we have

<A =310, y<Ay;:=25-10%, n< A3:=9.7-10%.
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3
So, Lemma 2.9 gives S = 1.525-10% and T' = 7.60 - 1034, Since ¢3 > T2 + S, then choosing c3 := 3 and

cq4 :=loga, we get

1
H:=n-n; < oga (1og(10105 : ‘;’> - 10g<\/(3.13 x 1035)2 — 1.525 x 1069 — 7.60 x 1034)> :

Then
n—n; <99.

Next, we revisit equation (4.5). Assume that X — X; > 2. We can then write

|A1] = ‘nl loga + log(a™™™ — 1) — xlogh — y10g7| < 3exp(—(X — X71)),

Thus, we

| —

where we applied Lemma 2.1 along with the fact that 2exp(—(X — X;)) < 2exp(—2) <

proceed by utilizing the same approximation lattice

1 0 0
A= 0 1 0
|[Mlogh| |Mlog7] [Mloga]

However, setting M := 10'% and choosing v := (0,0, —|[M log(a™ ™ — 1)|), we observe that for all
values 1 < n —ny <99, the selected constant M is sufficiently large to ensure that Theorem 2.9 remains
applicable. By Lemma 2.8, we get

I(&,v) > ¢ :=7.32-10° and ¢y = 1.31-10%,
and by Lemma 4.4, we also have
r<A =310 y<Ay,:=25-103 and n< A3:=9.7-10%.

Thus, Lemma 2.9 yields the same values for S and T as before. Since c¢2 > T2 + S, by choosing c3 := 3
and ¢4 := 1, we obtain X — X; < 100. Next, returning to relations (4.10) and (4.11), we get

o a ™M —1

TLmin S Vs ((6) ’ m + 1) +/U5(ﬂn_n1 - 1)7

a\™ o™ — 1 -
Ymin <wy ((B) : m + 1) + ’U7(B - 1)
Note that, by Lemma 2.7,

log(n —nq) <14 log 99

< <3, forp=5,T7.
logp log p

up(B"TM 1) <1+

Assume that n — ny is even. Then, by Lemma 2.4, we have
a\™ anTm — 1
_ n+n
Up <<ﬂ> . m + ].) = ’Up(:l:Oé 14 1)
log(2n
;. log(2n)

log p -
log(2-9.7 - 10%4) Which gives

<

1+
log p
52 if p =5,
43 ifp=T.

Zmin S 55 and Ymin S 46.
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Now consider the cases where n —ny € {1,3}. Again, applying Lemma 2.4, we obtain
ni ni
« a—1 «
v - + 1) = (() (—a™?) + 1)
() G=3)+1) (5

=, (a"1_1 + 1)
<1+wvp(ni—1)

log(ny — 1)
14 e\t 4
<1+ log p
1
<14 logn
log p
1+M<51 iftp=5
< log 5 e ’
log(9.7 - 10°%) .
1+ —=———=<42 ifp=".
+ log 7 - np

ny 3_1 n1
dONCEEDE(ONEED
=Y (O‘nﬁg + 1)
<1+ vy(n1 +3)
log(ny + 3)
logp
log(n + 3)
" logp
log(9.7 - 1034 + 3)

log 5
log(9.7 - 103* + 3)

log 7

<1+

1+

<51 ifp=5,

1+

<42 ifp=T.

Thus, the upper bounds for z,;, and Y, remain unchanged.

Assume now that n — ny > 5 is odd. We explain in detail how we approach this case; that is, we
indicate how to bound v,(L,, — Ly,,) when n — n; is odd, n < 9.7-103* and p € {5,7}.

We carry out the process explicitly for p = 5 and p = 7, and then automate it in Maple. Note that
n < 9.7-103 < 217 50 n has at most 117 binary digits. Let d = n —n; < 99, as established by the
reduction above. Therefore, we need an upper bound for vs(Ly+q — Ly,) for all odd integers d € [5,99)],
with n < 9.7 - 103%. The Lucas sequence is periodic modulo 5**! with period 4 - 5*. In particular,
Lyiq — Ly, is periodic modulo 5%, with period 4 - 5% = 500 < 2000. We looped over all odd values of
d € [5,99], checking whether there exists an integer n < 2000 such that 5* | (L, .q — L,). However, no
such value of d was found. This implies that for all such d, we have vs(Ly+q — Ly,) < 3.
For p = 7, the sequence (L, )n>0 has period 16- 7% modulo 7**1. In particular, the difference L, 1q— L, is
periodic modulo 72 with period 16 - 72 = 784 < 2000. We looped over all odd values d € [5,99], checking
whether there exists an integer n < 2000 such that 7% | (L,1q — L,). All values of d between 5 and
99 satisfy this condition. Here, we will work out a single value of d for illustrative purposes. Namely,
we take d = 11. We compute ng(d) € [1,16 - 7?] such that for n = ng(d), we have v7(Ly+q — Ly) > 3.
In this case, this value is unique and given by ng(d) = 10. Hence, for every n < 9.7 - 1034 such that
v7(Lypyq — Ly) > 3, we must have n = 10 + 16 - 72z for some integer z. Our goal is to find a value of 2
such that v7(L,1+q — Ly) is as large as possible. To this end, we now turn to the Binet formula

Ln—i—ll _ Ln — an+11 + 6n+11 —a" — Bn
_ (a“ o 1)a10+16-72z + (511 B 1)510“6.722«
= (o't —1)al%exp, (7?2 log, al®) + (B — 1)B10 exp,(7%2 log, o).
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In the above calculation, a'6 — 1 = 7(141a + 87), so that |a!® — 1|; = 771, Therfore,

16 16 (1-al%)"
log, a® =log,(1— (1 —a™®)) = —ZT (4.15)

n>1

On the right-hand side, we have

16yn
1—
( o) log n

‘(1 _ alﬁ)n/n|7 _ 7*”7( n > _ 77nv7(17a16)+y7(n) _ 77n+v7(n) < 7—(71— 10g7).

Which shows that the series appearing on the right-hand side of (4.15) converges. Moreover, by inspecting
the first few terms, we obtain

16 (1—=a'®)"
l—a®=-7(141a+87) ; w7 — =n-—uvr(n)>2 for n>2.
Which implies that
16 (1 _ al6)n
vr(log; (™)) = vr(—=7(141a + 87)) + Z = vr(=7) = 1.
n>2

For the argument of the exponential, we have v7(7%2 log; ') = v7(732) > 3, s0 |72 log, al; < 773 < 771
Therefore, the exponential series in this term converges 7-adically. The same reasoning applies if « is
replaced by 8. We now truncate the argument of the logarithm at n = 120, so that

120 (1 . aw)"

n

(4.16)

)

N

Il

|
1%

1— 16\n
such that log, a6 = P — Y n>121 (7a). On checks that n — vz(n) > 121 for all n > 121. Indeed,

log n The function n — logn
log 7 log 7

easy to verify by computation that n — vy(n) > 121.
Thus, log; % = P + u, where v;(u) > 121. We therefore have

first n —vz(n) >n— is at least 121 for all n > 124. For n € [121,123] it is

7?2log; a'® = 7?2P + 7% zu,

such that
expq (7?2 log; a'®) = exp, (722P + T?2u) = exp(722P) exp(7*zu).
We have
e (:c)—1+oc+m—2+ —i—ﬁ-i-
*P7AE) = 2 n!

For v7(x) > 2 and n > 2 we have

o (i;) — nvr(2) — vr(n)) > nvr(z) — (n— oa(n)) > n(vr(@) — 1) > va (),

n

-1

where the last inequality holds as it is equivalent to v7(z) > 2 > for all n > 2. In the above ga(n)

denotes the sum of the digits of n in base 2. It then follows that
exp;(z) =1 mod 77@) | provided wvr(x) > 2.

Hence,
exp,(7?zu) =1 mod 7277 =1 mod (7'%).

This means that
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exp;(7?zlog; %) = exp;(7?2P) mod 7'?3
_ (7°2P)*
= D >0 o mod 7123,

Since 1 = vy(log, a'®) = v7(P + u) and v7(u) > 121 is large, we get that v7(P) = 1. Further,

v7 ((72;{3)k> = kv (7?2P) — vy (k!)
Z (2+’U7(P))]€— (k’—O‘g(k))
> 2k.

Since o2(k) > 1 and v7(P) > 1, it follows that the quantities above are at least 2-62 = 124 > 123 for
k > 62. Therefore, we may truncate the series at k = 61, and write

L (722P)*

X ( mod 7'%3).

exp, (7?2 log, a'®) =
k=0

The same reasoning applies when « is replaced by [, so we can write

120
(1-5%)
_ 4.1
Q Z:jl - (4.17)
and them
61
722Q)k
expq(7%zlog, B1%) = Z %( mod 7'%3).
k=0
Thus,

Lopi— Ly = i (all — 1)a10(722P)k2_' (81 — 1)510(722Q)k( mod 71%9).

k=0

The expression on the right-hand side is a polynomial of degree 61 in z whose coefficients are rational
numbers that are 7-adic integers (that is, the numerators of these rational numbers are never divisible by
7). We will show that, within the considered range, this expression is never congruent to 0 (mod 7123).
Consequently, it follows that

v7(Lpy11 — Ly) < 123 for n < 9.7- 1034,

Finding these numbers is not straightforward in Maple, since P and @ involve large powers of a and f.
Nevertheless, we can compute A := P+ @ and B := P(Q. Next, the coefficients

ug = (o' = 1)a'0P% 4 (B —1)310Q*F (4.18)
form a linearly recurrent sequence satisfying
Ugq2 = Augyr — Bug, k>0,

with initial values up and u; obtained from (4.18) for kK = 0 and k = 1, respectively. Hence, all remaining
terms can be computed iteratively, allowing us to consider the polynomial

61
f(z):= Z(?Qz)k% (mod 7'23).
k=0
All coefficients 24 are 7-adic integers, so they can be reduced modulo 7123 At this stage, we obtain a
polynomial in Z/(7'237Z)[z], and our goal is to find z such that this polynomial vanishes modulo 713, We
approach this iteratively: starting with 72z, we reduce f(z) modulo 72, 7%,7%,7%, and so on, determining
the corresponding digits of z modulo each successive power of 7 (from 0 to 6) so that the polynomial
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becomes divisible by increasingly higher powers of 7. This procedure is essentially an application of
Hensel’s Lemma. Following this method, we obtain

2=34+2-T+7+4-T+...
up to 7, which can be written explicitly as
2=3+4+2 T +7+4 TP+ + 742747 4 5. 7T
Reducing f(z) modulo 7'?? gives
f(z) =72%(7420t) (mod 7'??).
Choosing t to be a multiple of 7 leads to
n>10-73(...7.7)=10-7* > 9.7 . 103,
This argument shows that, in effect, v7(L,4+11 — L) < 121. Hence, in all cases, we conclude that
Tmin <55 and  yYmin < 124.
Next, we derive a sharper upper bound for n. Let bx denote the upper bound of X — X;. Then

X = XQ + (X1 — XQ) + (X — Xl) < Tmin 10g5 + Ymin 10g7 + be,
xlogb+ylog7 < 55logh + 1241og 7+ 2 - 100 < 530.
From this we deduce x < 329 and y < 272. On the other hand, Corollary 2.1 implies
nloga +10g0.38 < X < 530,
o that 530 — log 0.38
< 2Z 08T 1890
log o

This contradicts the assumption n > 2000. Thus, Theorem 1.2 is proved.
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