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Contribution to the Study of Linear Cryptosystems: An Analysis of Non-Invertible
Matrix-Based Techniques Beyond the Hill Cipher

N. Rafi, K. Khalouki, K. Bouzkoura and A. Chillali

ABSTRACT: Linear cryptosystem, such as the Hill cipher, are foundational in symmetric-key encryption but
are limited by the requirement of invertible key matrices, reducing key space and security. This study investi-
gates the use of non-invertible matrices to enhance cryptographic complexity and resilience. We analyze the
mathematical principles, design optimized encryption and decryption algorithms, and evaluate their perfor-
mance against known attacks. Experimental results show that non-invertible matrix-based methods provide
stronger data protection than conventional approaches while remaining practically feasible. This proposed
symmetric encryption algorithm advances matrix-based cryptography, offering a robust framework for secure
communication and guiding future cryptosystem development.
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1. Introduction

Currently , classical cryptography has attracted renewed interest, not only as a foundation for modern
encryption methods but also as a pedagogical tool to study the strengths and weaknesses of substitu-
tion—permutation systems. Among these classical methods, the Hill cipher, introduced by Lester S. Hill
in 1929, is notable for being one of the first polygraphic substitution ciphers based on linear algebra.
Previous studies have shown that the Hill cipher offers faster encryption and decryption compared to
many other classical ciphers. Despite these advances, it is also well known that the original Hill cipher is
vulnerable to known-plaintext attacks due to its linear structure and invertibility requirements.
Therefore, the aim of this study is to propose a new version of the Hill cipher that we will generalize by
using a non-invertible matrix for key generation to make its determination more challenging. To encrypt
a message, it is divided into blocks of equal length to the number of rows in the key matrix.

This study provides new insights into strengthening classical ciphers, and the proposed cryptosystem
may have implications for lightweight encryption, educational purposes, and the design of hybrid cryp-
tographic systems.

This paper is organized as follows: Section 2 provides a brief review of the mathematical foundation and
cryptographic background. Section 3 presents the main mathematical results that motivate the proposed
modification and insights used to design the improved version of the Hill cipher. Section 4 describes the
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details of the proposed encryption scheme, including the decryption process and the design principles
of the key management with an experimental example. Section 5 discusses the results, highlighting im-
provements over the classical Hill cipher. Finally, Section 6 concludes the paper and outlines potential
directions for future.

2. Mathematical and Cryptographic Foundations
2.1. Mathematical Background

In this section, we present important algebraic results that will be utilized in our proposed cryptosys-
tem.
Let (F,,+,.) be a finite commutative field, where ¢ is a power of a prime number. Let D = M,, ,,,(F},) be
the set of all n x m matrices over Fy. This set formes a vector space over Fy, under the standard matrix
addition @ and scalar multiplication .
Let B = (E;;) be a family of matrices in M, ., (F;) where the coefficients of each matrix E;; are given by
the Kronecker delta:
Eij = (el )1<p<n Where e = 6,04 for 1 <i <nandfor 1 <j<m

1<g<m

This is the standard basis for the vector space of nxm matrices which shows that D has a finite dimension
and equal to nm .
In the following, we state some key properties of a homomorphism between two vector spaces of matrices,
D and E , over the finite field Fj,.
Let (D, ®p, *p) and (E, g, *g) two vector spaces over Fy; with a finite dimensions
Let ¢ : D — E be a homomorphism i.e:

* p(A@p B) = ¢(A) g ¢(B)
o plaxp A) = axgp(A), with a € F,
Lemma 2.1. ¢ is injective if and only if kerp = {A € D/p(A) = 0g} = {0p}

We denote dim Im(p) = rk(p)
If ¢ is surjective:

e we have span(p(B)) = Im(p) =E.

o If p(B) is linear independent, then dim D = dim E, if not dim E < dimD.
So,
Theorem 2.2. dim D = 1k ¢ + dim ker ¢

2.2. Cryptographic Background

Symmetric cryptography is a method of encryption in which the same secret key is used for both
encrypting and decrypting information. It relies on fast and efficient algorithms, making it suitable for
securing large volumes of data. Classical and modern symmetric techniques include block ciphers, such
as AES, and stream ciphers. The security of symmetric cryptography depends fundamentally on the
confidentiality of the secret key; once the key is compromised, all encrypted data becomes exposed.

Among the classical symmetric cryptosystems, the Hill cipher stands out as one of the most notable. It
introduced the innovative use of linear algebra and matrix operations in encryption, marking a significant
development in the history of symmetric cryptography. Despite its vulnerability to certain attacks, the
Hill cipher remains an important pedagogical and conceptual model, illustrating how algebraic structures
can be embedded within cryptographic protocols.

Hill Cipher Protocol Details

The Hill cipher encryption and decryption process can be described as a structured protocol with the
following steps.
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Key Generation
e Choose a square matrix K of size n X n as the secret key.

e Ensure that K is invertible modulo 26, i.e.,

det(K) #0 (mod 26) and ged(det(K),26) = 1.

e Keep K secret and share it only with authorized parties.
Plaintext Preparation
e Represent the plaintext message as numerical values, mapping letters A — Z to 0 — 25.
e Divide the plaintext into blocks of size n to match the dimensions of the key matrix.
o If the last block is incomplete, pad it with a neutral value (e.g., X — 23).
Encryption
e Convert each plaintext block into a column vector P of size n x 1.

e Compute the ciphertext vector C' using matrix multiplication modulo 26:

C=KP (mod 26).

e Convert the resulting numerical vector C' back into letters to form the ciphertext block.
e Repeat for all plaintext blocks.

Transmission Send the ciphertext blocks to the recipient over the communication channel. The security
of the message relies entirely on the secrecy of the key matrix K.

Decryption

e The recipient computes the modular inverse of the key matrix, K—!, such that

K 'K =1 (mod 26).

e For each received ciphertext block C, compute the plaintext vector:

P=K'C (mod 26).

e Convert P back to letters to recover the original message.

3. Principal Theoretical Results

Let (Fy,+,.) be a finite commutative field, where ¢ is a power of a prime number p and let A €
My (Fy). We consider

oAt My n(Fy) = My (Fy)
M— MA

Such that,
e oAM+M)=(M+M)A=MA+MA=ps(M)+ @a(M)

o pa(aM) = (aM)A=a(MA)=aps(M)
©4 is a homomorphism.
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o Let B denote the canonical basis of M,, ,,.

B = (Eij)i<ij<n, Eij = (egq)léiq’gf’ where e}, = 0ipl;
e Let B’ denote the canonical basis of M, .

B = (Fik)i<i<n, Fix = (f;l)];)lgp;nv where flF = 6,0k

1<k<m 1<q<m

0 0 0 ail A1m
=10 1 0
0 0 0 an1 R ¢ 2797
0 0 0
= | a5 Qj; Qjm
0 0 0
a1+ app -0 0 0
: : 0 0 0
Am  c Gum - O 0 0
M(pa,B,B') =
0 0 0 - aj; - am
0 0 0 0 A1m, Anm
tA 0 -~ 0 0
0 4 0 -~ 0
=1 : ()
0o 0 --- tA 0
0o 0 --- 0 A

The matrix representation of ¢4 with respect to the bases B and B’. This matrix has nm rows and n?
column and rk(M(pa,B,B')) = n.rk(*A) = n.rk(A).

Lemma 3.1. rk(pa) =n.rk(A).
We already have rk(A) < min(n,m)

e First case :

If m < n and min(n,m) = m, that gives rk(A) <m <n
and then 7k(M(pa,B,B')) = nrk(A) < nm < n? = dimM,, ,
Hence dim(ker(¢a) = n? — rk(M(pa,B,B’)) > 0

e Second case :
If m > n, min(n,m) = n, and we have rk(A) < n

i) If rk(A) <n
then rk(M(pa,B,B")) = n.rk(A) < n? = dimM, ,
We have : dim(Kerpa) =n? —rk(M(pa, B,B')) > 0
the same conclusion.
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ii) If rk(A) = n = min(n,m) with n <m
then rk(M(pa,B,B")) = n.rk(A) = n? = dimM,, ,,
We have : dim(Kerpa) =n? —rk(M(pa,B,B’)) =0
So ¢ is injective.

Consequently, the homomorphism ¢4 : M,, , = @a (M, ) is isometric if the number of columns of the
matrix A is greater then or equal to her number of rows and rk(A) equal to the number of rows .

In what follows, let A be an n x m matrix of rank n (with n < m ). Consequently, the vector space
spanned by its m columns has dimension n, which guarantees that a basis of n linearly independent
columns can be extracted from them.

We select n linearly independent columns from A to form a new matrix LA.. Since L4 has linearly
independent columns, it is invertible. We denote its inverse by L;l.

Lemma 3.2. The matriz Al; is the matriz A without the i-th column, where I; ;1 denotes the m x m
identity matriz with the ith column removed.

1 -+ 0 0 --- 0
0 1 0 0
0
Lim—1 =
—
i-th col. removed
0 --- 0 1 -+ 0
0 --- 0 0 --- 1

(m,m—1)
Let J = {j1,j2, -, jm—n} that were omitted in the construction of L4. Then, we have the following

lemma:

Lemma 3.3. We have: L4 = Aer{l cm—n}
L, m—k is the matric of type (m — k +1,m — k) defined in Lemma 3.2 that removes the ji-th column of
the matriz Alicqr g1y Lim—i

I, m—k, where:

Proof. We define a sequence of matrices:

A0~ A,

AWM = AL, 1 The matrix A without j;-th column, then AI;, of type (n,m — 1),
A®?) = AW, 5 The matrix of A without the columns ji-th and ja-th,

AD = A(l_l)ljhm_l The matrix of A without the columns ji-th, jo-th,....,5;-th, for I € {1,...,m — n}
Consequently,

La= AHkE{l,.A.,m—n} Ijk
O

In the following theorem, we present a significant result regarding the existence of an important
homomorphism.

Theorem 3.4. Let ¢ o defined by:
d)A : Mn,m — Mn,n

MM I Lem-«Ly'
ke{l,....m—n}
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Then, we have:

(bA opaA = Idn,n
Proof. Let m € M,, ,,, oa(m) =mA

paopa(m)=ga(mA)
= (mA) II L, Ly

ke{l,...,m—n}

=m(A H Ijk)L21

ke{l,...m—n}
=mLaL,!

=m

Then, ¢AO(PA:Idn,n O

4. Proposed Cryptographic Application: Homomorphic Hill Cipher Variant Using
Non-Invertible Matrices

Building upon the principal theoretical results and the homomorphism ¢4 introduced in Section 3,
this section proposes an updated variant of the Hill cipher. This novel symmetric cryptosystem exploits
matrix operations in conjunction with the previously established homomorphic mapping, offering a secure
and systematic method for encryption and decryption.

This section is structured in three parts. The first part conceptualizes the cryptosystem protocol,
demonstrating how the theorems from Section 3 underpin the construction of key generation, encryption,
and decryption algorithms. The second part examines the practical application of the proposed protocol,
highlighting its security enhancements and efficiency. And the third part presents a numerical example,
implemented over the finite field Fj, with n an integer

This updated Hill cipher variant represents a significant improvement over classical versions, providing
a robust framework that can be reused and further explored in future cryptographic implementations. The
system is defined over the finite field Fj, with n an integer, setting the stage for subsequent computational
examples.

4.1. Detailed Description of the proposed cryptosystem

This subsection provides a detailed description of the proposed cryptosystem, outlining its key generation,
encryption, and decryption processes, and demonstrating how the integration of the homomorphism ¢ 4
and non-invertible matrices enhances both security and computational efficiency.

Key exchange protocol

e Alice and Bob agree on public prime number p and A is a n X m matrix of rank n (with n < m)
with coefficients in the finite field F,, were ¢ is a power of p.

o Alice choose a private keys: l1,ls € N*, the invertible matrix X € M, ,,(F,) and publish the set
Ex determined by the matrices of same order than X that pairwise commute, excluding the zero
and identity matrices. In turn, Bob choose a private keys:
k1, ko € N*, the invertible matrix D € M,, ,(F,) and publish the set Ep determined by the matrices
of same order than D that pairwise commute, excluding the zero and identity matrices.

e Alice choose an other private key: the invertible matrix Y € Ep. She calculated a matrix X' AY!2
and send X" AY*"> to Bob. In turn, Bob choose an other private key: the invertible matrix C' € Ex.
He calculated a matrix C** AD*2 and send C** AD*? to Alice. With their private keys Iy, and
k1, ko, Alice and Bob calculate separately the matrices: C¥1 X1 AY'2 DF2,

Note that C*1 X1 AY2 D*2 is an n x m matrix of rank n.
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Encryption algorithm: The process of encrypting plaintext (the original message) consists:
o If rk(A) # n, then we return to the key exchange protocol.
e Else, The sender determinate a plaintext M € M,, ,,
C =M x B = pg(M) where B = C*1 X1 AY'!2 Dk2

with C is the ciphertext of M
Decryption Algorithm:

e Upon receiving the ciphertext, the receiver selects n linearly independent columns of the secret key
K to determine the Lp matrix and the decryption function D(.) = ¢p(.) as follows:

D(C) =¢p(C)=M

4.2. Cryptosystem protocol

In the following subsection, we present the proposed cryptosystem protocol
Key generation

Input: Random matrix.
Output: Generate Private key.

Step 1: Select a large prime number ¢ = p
Step 2: Choose an n x m matrix A of rank n uniformly at random from D ( with n < m).
Step 3: Return Private key (A, p)

Encryption algorithm

Input : Plaintext M
Output : Ciphertext C

Step 1: Include the Plaintext M.

Step 2: Encrypt the Plaintext M with (B, mod p).

C=E(M)=M x Bmod p, ( Where (x) is the usual matrix multiplication).
Step 3: Return the ciphertext C

Decryption algorithm

Input : Ciphertext
Output : Plaintext

Step 1: Include the Ciphertext C.
Step 2: Calculate M = ¢4(C) mod p.
Step 3: Return the Plaintext M.

4.3. Numerical example of the proposed cryptosystem

In order to understand the relevance of this proposed work, we will provide in the following section a
step-by-step example of the proposed cryptosystem. We will use a key matrix A with coefficients in the
field F,, ( with p a large prime number)and a plaintext matrix m to demonstrate the encryption and
decryption algorithms.

Let’s assume that Alice wants to send a plaintext matrix M to Bob.



N. Rari, K. KHALOUKI, K. BOUZKOURA AND A. CHILLALI

¢ Key generation:
Alice and Bob agree on public prime number ¢ = p and A is a n X m matrix of rank n (with n < m)
with coeflicients in the finite field Fp,.

2 8) and send to Bob Ex = {B €

Alice choose a private keys: [ = 2,15 = 7, the matrix X = <1 5

B L _(ln 8l21
M 2(F,)/BX = X B} in this case B = (lﬂ Iy 4 3121)

0 3 1
In turn, Bob choose a private keys: k1 = 3, ko = 5, the matrix D=1 4 0| and send to Alice
0 1 1
0 3 1
Ep ={M € M33(Z/pZ)/M = al33+ bM; + cMy with a,b,c € R} where M; = (1 4 0
0 1 1
0 10 0
and Mo=13 12 1
1 4 =3

Alice choose an other private key: Y € Ep, suppose she has chosen the matrix I3 3+ M; + Ms. She
calculated a matrix X' AY'"2 and send X' AY"> to Bob. In turn, Bob choose an other private key:

? §> He calculated a matrix C*t AD*2 and

send C* AD*2 to Alice. With their private keys Iy, lo and ki, ko, Alice and Bob calculate separately
the matrices: C*1 Xt AY'!2 DFz,

C € Ex, suppose she has chosen the matrix C = (

For p = 10000000000000000000000013
Fq = Fp = F10000000000000000000000013

4 16 2 0 3 1
N S I I B R b
1 6 3 0 1 1

Alice’s public key

XAyl — X2AYT — <1120297587844 5261357641512 303078822244)

659920011406 3099243658508 178530938526

Bob’s public key

Ok ADR — CPADD — (131266721750 616568033125 35602999375)

78502353346 368730482120 21291910060
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The key that is generated by Alice and BOB
B =C*X?AY"D® = X?C®AD°Y"

[ 74870652952514427944000 351621993912719725376000 20255058764159747192000
-~ \44775229660315063729088 210282065271225765828352  12113222900882584937024

e Encryption part:
In this example,
B_ (74870652952514427944000 351621993912719725376000 20255058764159747192000)
44775229660315063729088 210282065271225765828352 12113222900882584937024

we calculate C = M x C*1 X' AY'2D*2 [mod  p]

14 12
M= <14 8)

The plaintext

The encrypted message
M,=MB =

1585491897258982755965056  7446092698032785345204224  428929497508827479932288
1406390978617722501048704 6604964436947882281890816 380476605905297140184192

e Decryption Process:

After receiving the key A and the ciphertext C. Bob calculates ¢r(C) to retrieve the plaintext
matrix M:

M = ¢r(C)
The decryption matrix

7086875423586258544806557  8773360799755977871799256
B’ = | 8158055906138065790153656 2010174764915323932208244
0 0

the original message

, (14 12 _
MCB_<14 8>_M

5. Discussion and Conclusion

The proposed cryptosystem represents a departure from the traditional Hill Cipher by incorporating
non-invertible matrices and homomorphic principles. This novel approach was designed to address the
limitations of the Hill Cipher, primarily its susceptibility to frequency analysis. Experimental results
validate the feasibility of these modifications, demonstrating a significant enhancement in cryptographic
strength.

The integration of non-invertible matrices substantially expands the key space, rendering brute-force
attacks computationally impractical. Moreover, the utilization of homomorphic properties introduces
additional complexity, thereby increasing the system’s resilience against various cryptanalytic techniques.
These advancements collectively contribute to a heightened level of security compared to the original Hill
Cipher.

While the proposed system offers promising results, it is essential to acknowledge certain limitations.
The increased computational overhead associated with matrix operations might necessitate hardware ac-
celeration for real-time applications. Additionally, a comprehensive security analysis, including resistance
against advanced attacks, is imperative to establish the system’s robustness.
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To quantify the improvements achieved, a comparative analysis was conducted (Table 1 ). The results
clearly demonstrate the superior performance of the proposed cryptosystem in terms of key space, security
level, and algebraic structure.

Feature

Original Hill Cipher

Proposed method

Mathematical Base

Key Space

Security Level

Computational
Efficiency

Implementation
Complexity

Performance

Operates over integer matrices

Limited key space, especially in small
fields

Vulnerable to linear attacks

Relatively efficient finite field arith-
metic but less scalable

Simpler implementation with basic
matrix operations

Moderate performance, can be slower
in large matrices

Operates within finite fields of prime-
power order

Larger key space due to finite field
properties

Enhanced security against known at-
tacks

Efficient operations using finite field
arithmetic

More complex due to finite field oper-
ations

Faster encryption/decryption opera-
tions

Table 1: Comparison Between the proposed Method and the original Hill Cipher

Future research should focus on optimizing computational efficiency while preserving the system’s se-
curity. Integrating error correction codes and exploring the potential for quantum resistance are promising
avenues for further development. A rigorous security evaluation, incorporating advanced cryptanalytic
techniques, is crucial to validate the system’s suitability for practical applications.
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