
Monograph Series
of the Parana’s Mathematical Society

Chain conditions in modular lattices with applications to Grothendieck categories and
torsion theories

Toma Albu

Simion Stoilow Institute of Mathematics of the Romanian Academy



Monograph Series of the Parana’s Mathematical Society Monograph 01 (2015).
©SPM – E-ISSN-2175-1188 • ISSN-2446-7146 doi:10.5269/bspm.81043
SPM: www.spm.uem.br/bspm

Chain conditions in modular lattices
with applications

to Grothendieck categories and
torsion theories

Toma Albu

Simion Stoilow Institute of Mathematics of the Romanian Academy,
Research Unit 5, P.O. Box 1 - 764, RO - 010145 Bucharest 1,
ROMANIA.
E-mail address: Toma.Albu@imar.ro

2020 Mathematics Subject Classification: Primary: 06-01, 06-02, 06C05, 16-01, 16-02, 16D90;
Secondary: 16S90, 18E15, 18E40.

http://dx.doi.org/10.5269/bspm.81043
www.spm.uem.br/bspm


Monograph Series of the Parana’s Mathematical Society Monograph 01 (2015).
c©SPM – ISSN-0102-3292

SPM: www.spm.uem.br/bspm

Chain conditions in modular lattices

with applications to Grothendieck

categories and torsion theories

Toma Albu

Simion Stoilow Institute of Mathematics of the Romanian Academy
Research Unit 5
P.O. Box 1 - 764
RO - 010145 Bucharest 1, ROMANIA
E-mail address: Toma.Albu@imar.ro

2010 Mathematics Subject Classification: Primary: 06-01, 06-02, 06C05, 16-01, 16-02, 16D90;
Secondary: 16S90, 18E15, 18E40.

www.spm.uem.br/bspm




Contents

Preface v

General notation vii

Introduction ix

Chapter 1. LATTICE BACKGROUND 1
1.1. Basic concepts 1
1.2. Essential and other special elements 8
1.3. Basic concepts in opposite lattices 15

Chapter 2. CHAIN CONDITIONS IN MODULAR LATTICES 19
2.1. Noetherian and Artinian lattices 19
2.2. Goldie dimension 28
2.3. Krull dimension and Gabriel dimension 44

Chapter 3. GROTHEDIECK CATEGORIES AND TORSION THEORIES 51
3.1. Categories and functors 51
3.2. Abelian categories 63
3.3. Quotient categories 68
3.4. Torsion theories 73

Chapter 4. THE HOPKINS-LEVITZKI THEOREM 77
4.1. The Classical Hopkins-Levitzki Theorem 77
4.2. The Relative and the Absolute Hopkins-Levitzki Theorem 80
4.3. The Latticial Hopkins-Levitzki Theorem 83
4.4. Other aspects of the Hopkins-Levitzki Theorem 88

Chapter 5. THE OSOFSKY-SMITH THEOREM 97
5.1. CC lattices 97
5.2. The Latticial Osofsky-Smith Theorem 100
5.3. The Categorical Osofsky-Smith Theorem 105
5.4. The Relative Osofsky-Smith Theorem 107

Bibliography 113
Index 117

iii





Preface

This text is an expanded version of the Lecture Notes [15] of a minicourse that has
been given by the author at the XXIII Escola de Álgebra, Universidade Estadual de
Maringá, July 27-August 1, 2014, Maringá, Paraná, Brazil. The minicourse consisted
of five 50-minute lectures, and each chapter of this text corresponds to a lecture.

The text presents in a compact way some basics of Lattice Theory with a great
emphasis on chain conditions in modular lattices, that are then applied to Grothendieck
categories and module categories equipped with hereditary torsion theories to obtain
immediately and in a unified manner significant results in these areas. We also include
other results of Algebraic Theory of Lattices that are interesting in their own right.
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General notation

N = {1, 2, . . .}, the set of all natural numbers

Z = the ring of all rational integers

Q = the field of all rational numbers

R = the field of all real numbers

C = the field of all complex numbers

|M | = Card(M), the cardinal number of an arbitrary set M

1M = the identity map on the set M

Ab = the category of all Abelian groups

Mod-R = the category of all unital right modules over a unital ring R

MR = M is a right R-module
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Introduction

The main purpose of this text is to present some topics of Lattice Theory, with a
great emphasis on chain conditions in modular lattices, that have nice applications to
important results of Ring and Module Theory, including their relativization and ab-
solutization. Specifically, we illustrate a general strategy which consists on putting
a module-theoretical result into a latticial frame (we call it latticization), in order to
translate that result to Grothendieck categories (we call it absolutization) and module
categories equipped with hereditary torsion theories (we call it relativization).

More precisely, if P is a problem, involving subobjects or submodules, to be inves-
tigated in Grothendieck categories or in module categories with respect to hereditary
torsion theories, our strategy consists of the following three steps:

I. Translate/formulate, if possible, the problem P into a latticial setting.
II. Investigate the obtained problem P in this latticial frame.

III. Back to basics, i.e., to Grothendieck categories and module categories equipped
with hereditary torsion theories.

This approach is very natural and simple, because we ignore the specific context of
Grothendieck categories and module categories equipped with hereditary torsion theo-
ries, focusing only on those latticial properties which are relevant to our given specific
categorical or relative module-theoretical problem P. The renowned Hopkins-Levitzki
Theorem and Osofsky-Smith Theorem from Ring and Module Theory are among the
most relevant illustrations of the power of this strategy.

Each of the five chapters comprising this volume is focused on a single topic. The
first two chapters are devoted to stating and proving several basic results of Algebraic
Theory of Lattices having their roots in Module Theory. These results are then applied
in the last two chapters to Grothendieck categories and module categories equipped with
hereditary torsion theories to obtain immediately and in a unified manner the categori-
cal and relative counterparts of the two renowned theorems of Ring and Module Theory
mentioned above. The middle Chapter 3 presents in a compact way, mostly without
proofs, the basics of Abelian categories and hereditary torsion theories, including quo-
tient categories, Grothendieck categories, and the renowned Gabriel-Popescu Theorem.
We shall now describe in more details the contents of each of these five chapters.

Chapter 1 presents, with complete proofs, some basic notions, terminology, nota-
tion, and results on lattices that will be used throughout the text. Special attention was
given to the concepts of modular lattice, complemented lattice, upper continuous lattice,
complement element, essential element, closed element, pseudo-complement element,
E-complemented lattice, pseudo-complemented lattice, strongly pseudo-complemented
lattice, and essentially closed lattice. Of course, all the results in this chapter have
“duals” obtained by using the opposite lattice. No further proofs are required for them.

ix



x Introduction

In addition, results can be obtained for modules by applying the above results to the
lattice of all submodules of a module. It should be noted that the new concepts of com-
pletely E-complemented lattice and strongly pseudo-complemented lattice introduced in
[34] appear for the first time in a volume. Many results of this chapter are not only used
in the last two chapters for their immediate applications to Grothendieck categories and
torsion theories, but are also interesting in their own right.

In Chapter 2 we study chain conditions in modular lattices. Specifically, we discuss
Noetherian lattices, Artinian lattices, lattices with finite length, Goldie dimension of
lattices, and Krull dimension, dual Krull dimension, classical Krull dimension, and
Gabriel dimension of arbitrary posets. A cornerstone in the development of modern
Ring Theory is the concept of Goldie dimension. Modular lattices provide a very natural
setting for the development of this dimension and therefore we prove thoroughly in this
chapter the basic properties of Goldie dimension of arbitrary modular lattices, which
are not only used in the next chapters, but have also intrinsic value. We also discuss
the dual Goldie dimension a lattice L as being the Goldie dimension of its opposite
lattice Lo and obtain at once results on it just by translating, without requiring any
proofs, the results on the Goldie dimension of L into Lo. In addition, results can be
instantly obtained for the dual Goldie dimension of modules simply by applying the
above latticial results to the lattice of all submodules of a module.

Chapter 3 is a preparation for the last two chapters of this text, where Grothendieck
categories and hereditary torsion theories will show up when applying the latticial results
from Chapters 1 and 2 to these concrete cases. We first present in a very compact
manner, but without proofs, all the basic concepts of Category Theory: direct sum,
direct product, subobject, quotient object, additive category, kernel, cokernel, image,
coimage, Abelian category, quotient category, Grothendieck’s axioms AB1, AB2, AB3,
AB4, and AB5, leading to the definition of a Grothendieck category. A method for
obtaining new Grothendieck categories from the known ones is the localization technique:
for any localizing subcategory T of the category Mod-R of all unital right modules
over a unital ring R, the quotient category Mod-R/T is a Grothendieck category. We
present and explain then the statement of the renowned Gabriel-Popescu Theorem,
which roughly says that all Grothendieck categories are obtained in this way, up to
a category equivalence. We then discuss the concept of a hereditary torsion theory,
focusing on the lattice Satτ (MR) of all τ -saturated submodules of a right module MR,
where τ = (T,F) is a hereditary torsion theory on Mod-R. It turns out that this lattice
is isomorphic to the lattice of all subobjects of the object Tτ (M) in the Grothendieck
category Mod-R/T, where Tτ : Mod-R −→ Mod-R/T is the canonical functor.

Chapter 4 presents various aspects of the celebrated Hopkins-Levitzki Theorem, ab-
breviated H-LT, discovered independently in 1939, so 75 years ago, by C. Hopkins and
J. Levitzki. This theorem states that any right Artinian ring with identity is right Noe-
therian, or, equivalently, any Artinian right R-module over a right Artinian ring R is
Noetherian. In the last fifty years, especially in the 1970’s, 1980’s, and 1990’s this result
has been generalized to modules relative to a hereditary torsion theory (Relative H-LT),
to Grothendieck categories (Absolute or Categorical H-LT), and to arbitrary modular
lattices (Latticial H-LT).
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The aim of this chapter is to briefly explain all these aspects of the H-LT, their
dual formulations, the connections between them, as well as to present other newer
aspects of it involving the concepts of Krull and dual Krull dimension. Let us mention
that the only two module-theoretical proofs available in the literature of the Relative
H-LT, due to Miller and Teply [66] and Faith [49], are very long and complicated. We
show in a unified manner that this result, as well as the Absolute H-LT, are immediate
consequences of the Latticial H-LT, whose proof is very short and simple, illustrating
thus the power of our main strategy explained above.

Chapter 5 is devoted to another famous theorem in Module Theory, namely the
Osofsky-Smith Theorem, abbreviated O-ST, giving sufficient conditions for a finitely
generated or cyclic module to be a finite direct sum of uniform submodules. More
precisely, it says that a finitely generated (respectively, cyclic) right R-module such that
all of its finitely generated (respectively, cyclic) subfactors are CS modules is a finite
direct sum of uniform submodules. We first present the proof (in fact, only a sketch of
it because of space limitation of this text) of the latticial counterpart of this theorem,
and then apply it to derive immediately the Categorical (or Absolute) O-ST and the
Relative O-ST. We believe that the reader will be once more convinced of the power of
our strategy when extending some important results of Module Theory to Grothendieck
categories and to module categories equipped with hereditary torsion theories by passing
first through their latticial counterparts.

The statement and proof of the Categorical O-ST offer a good example showing that
assertions like “basically the same proof for modules works in the categorical setting” are
very risky and may lead to incorrect results; in other words, not all module-theoretical
proofs can be easily transferred into a categorical setting just by saying that they can
be done mutatis-mutandis. Indeed, as we shall see in the last part of Section 5.3, some
well-hidden errors in statements/results occurring in the literature on the Categorical
O-ST could be spotted only by using our latticial approach of it. So, we do not only
correctly absolutize the module-theoretical O-ST but also provide a correct proof of its
categorical extension by passing first through its latticial counterpart.

An effort was made to keep the account as self-contained as possible. However, a
certain knowledge of Ring Theory, Module Theory, and Category Theory, at the level of
a graduate course is needed for a good understanding of most part of this text. Thus, we
assume from the reader some familiarity with basic notions and facts on rings, modules,
and categories as presented e.g., in the books of Anderson and Fuller [39], Lam [58]
and/or Wisbauer [88], although, whenever it was possible, some of them were included
in the text. When proofs are not included, detailed information on where they can be
found is given.





CHAPTER 1

LATTICE BACKGROUND

This first chapter presents some basic notions, terminology, notation, and results
on lattices that will be used throughout the text. A special attention was given to the
concepts of modular lattice, complemented lattice, upper continuous lattice, essential
element, closed element, pseudo-complement element, E-complemented lattice, pseudo-
complemented lattice, strongly pseudo-complemented lattice, and essentially closed lat-
tice. Their dual counterparts in opposite lattices are also discussed.

For all undefined notation and terminology on lattices, as well as for more results on
them, the reader is referred to [41], [42], [44], [56], and/or [85].

1.1. Basic concepts

In this section we present some basic and well-known material about lattices. In
particular, we highlight some facts about modular lattices that will be used repeatedly
in the following sections.

Posets

Recall that a partially ordered set (more briefly, a poset) is a pair (P,6 ) consisting
of a non-empty set P and a binary relation 6 on P which is reflexive, anti-symmetric,
and transitive, i.e., satisfies the following three conditions:

(i) a 6 a for all a ∈ P ;
(ii) given a, b ∈ P , a 6 b and b 6 a together imply a = b;
(iii) given a, b, c ∈ P , a 6 b and b 6 c together imply a 6 c.

Very often, a poset (P,6 ) will be denoted shortly by P .
Another partial order 6o can be defined on P as follows: given a, b ∈ P , a 6o b if

and only if b 6 a. The poset (P,6o ) is called the opposite or dual poset of (P,6 ) and
will be denoted by P o. The poset P is called trivial provided a = b for all elements a
and b in P such that a 6 b.

Let S be a subset of a poset P . An upper bound for S in P is an element u ∈ P
such that s 6 u for all s ∈ S. An element s0 ∈ S is a greatest or last element of S if
s 6 s0 for all s ∈ S; there can be at most one greatest element of S. Similarly one
define lower bound and least element. A least upper bound is a least element in the set
of upper bounds for S, and similarly for greatest lower bound for S.

For a poset P and elements a and b in P such that a 6 b we set

b/a := [a, b] = { x ∈ P | a 6 x 6 b },

An initial interval (respectively, a quotient interval) of b/a is any interval c/a (respec-
tively, b/c) for some c ∈ b/a. A subfactor of P is any interval b/a with a 6 b.

1



2 Chapter 1

For any a ∈ P , we also set

[a) := { x ∈ P | a 6 x },

(a] := { x ∈ P | x 6 a }.

If the poset P has a least element, which is usually denoted by 0, then (a] = a/0
for every element a in P , and if P has a greatest element, which is usually denoted by
1, then [a) = 1/a for every a ∈ P . Clearly a poset P has a least element if and only if
its opposite poset P o has a greatest element. We say that the poset P is bounded if P
has both a least element and a greatest element.

As one might expect, the zero poset is the poset, we shall denote by 0, consisting
of a single element also denoted by 0. A poset P will be called non-zero if P 6= 0. A
proper element of a poset P with greatest element 1 is any element a ∈ P with a 6= 1.

Our main aim throughout this text is to investigate chains of elements in posets and,
in particular, in lattices. A non-empty subset C of a poset P is said to be a chain (also
called totally ordered or linearly ordered) provided for any elements x and y in C either
x 6 y or y 6 x.

A poset P is said to be Noetherian if there is no sequence x1, x2, x3, . . . of elements
of P such that x1 < x2 < x3 < . . . , and P is said to be Artinian if there is no
sequence x1, x2, x3, . . . of elements of P such that x1 > x2 > x3 > . . . , i.e., if the
opposite poset P o is Noetherian. Equivalently, a poset P is Noetherian (respectively,
Artinian) if, for every sequence x1, x2, x3, . . . of elements in P with

x1 6 x2 6 x3 6 . . . (respectively, x1 > x2 > x3 > . . . )

there exists a positive integer n such that xn = xn+1 = . . . .
The sequences in P considered above are also called ascending chains (respectively,

descending chains), and so, we say that a Noetherian (respectively, Artinian) poset
satisfies the ascending chain condition or, more simply, the ACC (respectively, the
descending chain condition or, more simply, the DCC ).

The concepts of Noetherian and Artinian posets can be also equivalently reformu-
lated in terms of maximal and minimal elements. By a maximal element of a non-empty
subset S of a poset P we mean an element m ∈ S such that whenever m 6 x and
x ∈ S then x = m. Similarly, n is a minimal element of S if n ∈ S and whenever
y 6 n and y ∈ S then y = n.

Not every non-empty subset of a poset need have either a maximal element or a
minimal element. Moreover, if a non-empty set S has a maximal element then it can
happen that S has an infinite number of maximal elements, and similarly for minimal
elements. It is not hard to think of examples. If P has a greatest element 1, then 1 is a
maximal element of P , and if P has a least element 0, then 0 is a minimal element of P .
Clearly, any finite poset has maximal elements and minimal elements. The existence of
maximal elements in infinite posets is assured by the following well-known result:

Zorn’s Lemma. Let P be a poset such that every chain of P has an upper bound
in P . Then P has at least a maximal element. �

The next result presents the characterization of Noetherian (respectively, Artinian)
posets using maximal (respectively, minimal) elements.

Proposition 1.1.1. A poset P is Noetherian (respectively, Artinian) if and only if
every non-empty subset of P has a maximal (respectively, minimal) element.
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Proof. Suppose that P is not Noetherian. Then there exists an ascending chain
a1 < a2 < . . . of elements of P . Let X = { ai | i ∈ N }. Recall that N = {1, 2, 3, . . .}
denotes throughout this text the set of all natural numbers. Clearly, the subset X of P
is non-empty and contains no maximal element.

Conversely, suppose that there exists a non-empty subset Y of P such that Y does
not contain a maximal element. Let y1 ∈ Y . Because y1 is not a maximal element of
Y , there exists y2 ∈ Y such that y1 < y2. Next, because y2 is not a maximal element
in Y , there exists y3 ∈ Y such that y2 < y3. In this way, the set Y contains an infinite
ascending chain y1 < y2 < . . . and it follows that P is not Noetherian. To prove the
Artinian result use the opposite poset P o. �

Lattices

By a lattice we mean a poset (L,6) such that every pair of elements a, b in L has
a greatest lower bound or infimum a∧b (also called meet) and a least upper bound a∨b
or supremum (also called join), i.e.,

(i) a ∧ b 6 a, a ∧ b 6 b, and c 6 a ∧ b for all c ∈ L with c 6 a, c 6 b;
(ii) a 6 a ∨ b, b 6 a ∨ b, and a ∨ b 6 d for all d ∈ L with a 6 d, b 6 d.

Note that, for given a, b ∈ L, a ∧ b and a ∨ b are unique, and

a 6 b⇐⇒ a = a ∧ b⇐⇒ b = a ∨ b.

It is easy to deduce that if a, b, c are elements of L such that a 6 b then a ∧ c 6 b ∧ c
and a ∨ c 6 b ∨ c. Note further that the opposite poset Lo is also a lattice and that,
given a, b ∈ L, the greatest lower bound of a and b in Lo is the least upper bound
a ∨ b of a and b in L and the least upper bound of a and b in Lo is the greatest
lower bound a ∧ b of a and b in L. Clearly L is the opposite lattice of the lattice Lo.

A non-empty subset K of L is said to be a sublattice of L provided x ∧ y ∈ K and
x ∨ y ∈ K whenever x ∈ K and y ∈ K.

Let (L,6,∧,∨) (or, more simply, L) be any lattice. It is easy to check that

(a ∧ b) ∧ c = a ∧ (b ∧ c) and (a ∨ b) ∨ c = a ∨ (b ∨ c),

for all elements a, b, c in L. Using this fact and induction it is easy to prove that if
S = {a1, . . . , an} is any finite subset of L then there exists a unique element b of L such
that b 6 ai (1 6 i 6 n) and b > x for every x ∈ L such that x 6 ai (1 6 i 6 n). The
element b is thus the greatest lower bound of the set S and is denoted by

∧

S :=
∧

s∈S s
or by a1 ∧ · · · ∧ an. Similarly, the set S has a least upper bound which will be denoted
by

∨

S :=
∨

s∈S s or by a1 ∨ · · · ∨ an.

Let L and L′ be lattices. A mapping f : L −→ L′ is called a (lattice) morphism if

f(a ∧ b) = f(a) ∧ f(b) and f(a ∨ b) = f(a) ∨ f(b),

for all a, b ∈ L. If, in addition, f is a bijection then f is called an isomorphism and we
write L ≃ L′.

Proposition 1.1.2. Let L and L′ be two lattices. Then, the following statements
are equivalent for a mapping f : L −→ L′.

(1) f is an isomorphism.
(2) f is a bijection and for any a, b ∈ L, (f(a) 6 f(b) in L′ ⇐⇒ a 6 b in L).
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Proof. (1) =⇒ (2) Suppose first that f : L −→ L′ is an isomorphism. Then f is
a bijection. Let a 6 b in L. Then f(a) = f(a ∧ b) = f(a) ∧ f(b) 6 f(b). Now suppose
that a and b are elements of L with f(a) 6 f(b). Then f(a) = f(a)∧ f(b) = f(a∧ b) so
that a = a ∧ b 6 b.

(2) =⇒ (1) Conversely, suppose that f is a bijection with the stated property. Let
a, b ∈ L. Then a 6 a ∨ b gives that f(a) 6 f(a ∨ b). Similarly, f(b) 6 f(a ∨ b). Thus
f(a) ∨ f(b) 6 f(a ∨ b). There exists c ∈ L such that f(c) = f(a) ∨ f(b). Note that
f(a) 6 f(c) so that, by hypothesis, a 6 c. Similarly b 6 c and hence a ∨ b 6 c. It
follows that f(a ∨ b) 6 f(c) = f(a) ∨ f(b). Thus f(a ∨ b) = f(a) ∨ f(b). Similarly,
f(a ∧ b) = f(a) ∧ f(b). Thus f is an isomorphism. �

Note that Proposition 1.1.2 and its proof show that a bijection f from a lattice L
to a lattice L′ such that f(a ∧ b) = f(a) ∧ f(b) for all a, b ∈ L is an isomorphism.
Note also that in Proposition 1.1.2 it is not sufficient to suppose that f is a bijection
such that f(a) 6 f(b) for all a 6 b in L. For example, let L denote the lattice of all
positive divisors of 6 with the ordering given by divisibility and let L′ denote the lattice
{1, 2, 3, 4} with the usual ordering. Consider the mapping f : L −→ L′ defined by
f(6) := 4 and f(i) := i for all i ∈ L \ {6}. Then f : L −→ L′ is a bijection such that
f(i) 6 f(j) for all i 6 j in L but f is not an isomorphism, because f(2) 6 f(3) in L′

but 2 ∤ 3 in L.
We are now going to reformulate Proposition 1.1.2 in the language of Category Theory

(see Section 3.1). If we denote by Pos the class of all posets and by Lat the class of all
lattices, then they can be considered as categories, where the morphisms in Pos are the
increasing (or order-preserving) mappings, and the morphisms in Lat are the mappings
defined just before Proposition 1.1.2. Recall that a mapping f : P −→ P ′ between the
posets P and P ′ is said to be increasing or order-preserving if f(x) 6 f(y) in P ′ for all
x 6 y in P .

Notice that statement (2) in Proposition 1.1.2 means exactly that the mapping
f : L −→ L′ is a bijection such that f and its inverse f−1 are increasing mappings, i.e.,
f is an isomorphism in the category Pos. Thus, Proposition 1.1.2 can be reformulated as
follows: a mapping f : L −→ L′ between two lattices is an isomorphism in the category
Lat if and only if f is an isomorphism in the category Pos.

Modular lattices

Now we come to the central idea in this text. A lattice L is called modular provided

a ∧ (b ∨ c) = b ∨ (a ∧ c),

for all a, b, c in L with b 6 a. Clearly every sublattice of a modular lattice is also
modular.

Let A be an Abelian group. Then the set L(A) of all subgroups of A is a poset
with respect to the partial order given by the usual inclusion, and even a lattice when
we define for given subgroups B and C of A,

B ∧ C := B ∩ C and B ∨ C := B + C.

Note that L(A) has least element the zero subgroup 0 and greatest element A. More-
over, it is easy to check that if B, C, D are subgroups of A such that C ⊆ B, then

B ∩ (C +D) = C + (B ∩D),
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so that L(A) is a modular lattice, and hence so too is every sublattice of L(A). In
particular, let R be a unital ring and let M be a right R-module. Then R is an Abelian
group and hence the set of all two-sided ideals of R and the set of all right ideals of R
are both modular lattices. In the same way, because M is an Abelian group, the set of
all submodules of M is a modular lattice. Note the following elementary fact.

Proposition 1.1.3. Let L be any modular lattice. Then the opposite lattice Lo is
also modular.

Proof. Let a, b, c be any elements of L with b 6 a. Then

a ∧ (b ∨ c) = b ∨ (a ∧ c).

Note that a 6o b and b∨(a∧c) = a∧(b∨c). It follows that Lo is a modular lattice. �

The next result gives a characterization for a lattice to be modular and we shall need
this characterization later.

Proposition 1.1.4. A lattice L is modular if and only if, for all a, b ∈ L, the
mapping

ϕ : (a ∨ b)/a −→ b/(a ∧ b), ϕ(x) = x ∧ b, ∀x ∈ (a ∨ b)/a,

is a lattice isomorphism with inverse

ψ : b/(a ∧ b) −→ (a ∨ b)/a, ψ(y) = y ∨ a, ∀y ∈ b/(a ∧ b).

Proof. Suppose first that L is modular. Let x ∈ (a ∨ b)/a. Then

ϕ(x) = x ∧ b ∈ b/(a ∧ b)

and
(ψ ◦ ϕ)(x) = a ∨ (x ∧ b) = x ∧ (a ∨ b) = x.

Thus ψ ◦ ϕ = 1(a∨b)/a.
Also, for any y ∈ b/(a ∧ b), ψ(y) = y ∨ a ∈ (a ∨ b)/a and

(ϕ ◦ ψ)(y) = b ∧ (y ∨ a) = y ∨ (b ∧ a) = y.

Thus ϕ ◦ ψ = 1b/(a∧b). It follows that ϕ is a bijection.
Moreover, if x 6 x′ in (a ∨ b)/a then ϕ(x) = x ∧ b 6 x′ ∨ b = ϕ(x′). In addition, if

y 6 y′ in b/(a ∧ b) then ψ(y) = y ∨ a 6 y′ ∨ a = ψ(y′). By Proposition 1.1.2, ϕ is a
lattice isomorphism.

Conversely, suppose that ϕ satisfies the stated condition. Let a, b, c ∈ L with a 6 c.
Then

c ∧ (a ∨ b) = (ψ ◦ ϕ)(c ∧ (a ∨ b)) = ψ(c ∧ (a ∨ b) ∧ b) = ψ(c ∧ b) = a ∨ (c ∧ b).

It follows that L is modular. �

We denote by L (respectively, L0, L1, L0,1) the class of all lattices (respectively,
lattices with least element 0, lattices with greatest element 1, lattices with least element
0 and greatest element 1), and L will always designate a member of L. In addition, we
shall denote by M the class of all modular lattices. The notation M0, M1, and M0,1

have similar meanings.
Throughout this text we shall assume that all lattices are modular. In fact, some

results do not require this hypothesis but it will be left to the reader to spot these.
Modularity will be used repeatedly without further comment.
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Complemented lattices

If L is a lattice with least element 0 and greatest element 1, then an element
c ∈ L is a complement (in L) if there exists an element a ∈ L such that a∧ c = 0 and
a ∨ c = 1; we say in this case that c is a complement of a (in L). For example, 1 is
a complement of 0 and 0 is a complement of 1 . One denotes by D(L) the set of all
complements of L, so {0, 1} ⊆ D(L). The lattice L is called indecomposable if L 6= {0}
and D(L) = {0, 1}. An element a ∈ L is said to be an indecomposable element if a/0
is an indecomposable lattice.

However, a given element a need not have a complement. The lattice L is called
complemented if it has least element and greatest element, and every element has a com-
plement. For example, if R is an arbitrary unital ring and M a right unital R-module,
then the lattice L(M) of all submodules of M is complemented (respectively, indecom-
posable) if and only if the module M is semisimple (respectively, indecomposable).

Proposition 1.1.5. Let a 6 b be elements of a complemented (modular) lattice L.
Then the sublattice b/a of L is also complemented.

Proof. Let c ∈ L with a 6 c 6 b. There exists d ∈ L such that 1 = c ∨ d and
c ∧ d = 0. Then b = b ∧ (c ∨ d) = c ∨ (b ∧ d) = c ∨ f , where f := a ∨ (b ∧ d) ∈ b/a.
Moreover, c∧ f = c∧ (a∨ (b∧ d)) = a∨ (c∧ b∧ d) = a∨ (0∧ b) = a. It follows that b/a
is complemented. �

Let us illustrate these ideas by an elementary very useful example.

Example 1.1.6. Let F be any field, let V be any infinite dimensional vector space
over F , and let H denote the lattice of all subspaces of V . Then the set G of all finite
dimensional subspaces of V is a sublattice of H . The lattice H has least element the
zero subspace and greatest element V and is complemented. The sublattice G has least
element the zero subspace and no greatest element. �

Not every complemented lattice is modular. The set {1, 3, 4, 6, 12} can be made into
a lattice L where the ordering is given by divisibility. Thus L has greatest element 12
and least element 1. It is easy to check that L is complemented but is not modular.

Complete lattices

A poset in which every subset S has a least upper bound
∨

s∈S s (also denoted
by

∨

S or by sup(S)) and a greatest lower bound
∧

x∈S x (also denoted by
∧

S or
by inf(S)) is called a complete lattice. In a complete lattice L there exist a greatest
element sup(L), denoted by 1, and a least element inf(L), denoted by 0. Observe that
0 = sup(∅) and 1 = inf(∅).

For example, in the lattice L(M) of all submodules of a module M , for any subset
X ⊆ L(M) clearly we have

∨

X =
∑

B∈X

B and
∧

X =
⋂

B∈X

B,

so that L(M) is a complete lattice. The lattice G of Example 1.1.6 does not have
a greatest element and so is not complete, but every non-empty subset has a greatest
lower bound.

Note the following two elementary results that will be used in Chapter 2.
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Lemma 1.1.7. Let Si (1 6 i 6 n) be subsets of a complete lattice L. Then
∨

(S1 ∪ · · · ∪ Sn) =
(
∨

S1

)

∨ · · · ∨
(
∨

Sn

)

.

Proof. Elementary. �

Lemma 1.1.8. Let S and T be non-empty subsets of a complete lattice L, and let

X = { s ∧ t | s ∈ S, t ∈ T }, Y = { s ∨ t | s ∈ S, t ∈ T }.

Then
∧

X = (
∧

S) ∧ (
∧

T ) and
∨

Y = (
∨

S) ∨ (
∨

T ).

Proof. For all s ∈ S and t ∈ T , s ∨ t 6 (
∨

S) ∨ (
∨

T ), and hence
∨

Y 6
(

∨

S
)

∨
(

∨

T
)

.

On the other hand, for all s ∈ S and t ∈ T , s 6 s∨t 6
∨

Y and t 6 s∨t 6
∨

Y , so that
∨

S 6
∨

Y and
∨

T 6
∨

Y , giving (
∨

S)∨ (
∨

T ) 6
∨

Y . Thus
∨

Y = (
∨

S)∨ (
∨

T ).
Similarly,

∧

X = (
∧

S) ∧ (
∧

T ). �

Note that Lemmas 1.1.7 and 1.1.8 are true for any finite subsets of an arbitrary
lattice L.

Upper continuous lattices

A lattice L is said to be upper continuous if L is complete and

a ∧
(

∨

S
)

=
∨

{ a ∧ s | s ∈ S },

for every a ∈ L and every chain (or, equivalently, upward directed subset) S ⊆ L.
Recall that a subset S of L is said to be upward directed if for every x, y ∈ S there
exists z ∈ S with x 6 z and y 6 z. There is an analogous definition for a downward
directed set. A lattice L is called lower continuous if L is complete and

a ∨
(

∧

S
)

=
∧

{ a ∨ s | s ∈ S },

for every a ∈ L and every chain (or, equivalently, downward directed subset) S ⊆ L.
Note that a lattice L is lower continuous if and only if its opposite lattice L0 is upper
continuous.

The lattice L(M) of all submodules of a right R-module M is upper continuous.
However, L(M) need not be lower continuous. For example, in the case R = Z, the ring
of rational integers, let A = Z2 and let C be the chain of ideals Z3 ⊇ Z9 ⊇ Z27 ⊇ . . . .
Then

∧

C = 0 and A ∨ (
∧

C) = A. However, A ∨ C = Z for all C ∈ C, so that if
D = {A ∨ C |C ∈ C}, then

∧

D = Z. Thus L(Z) is not lower continuous.
Given any ring R, an R-module M is called linearly compact provided for every

non-empty family (mi)i∈I of elements of M and family of submodules (Ni)i∈I of M
with

⋂

i∈J(mi+Ni) 6= ∅ for every finite subset J of I, then
⋂

i∈I(mi+Ni) 6= ∅. Every
linearly compact R-module M has the property that its associated submodule lattice
L(M) is lower continuous.
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1.2. Essential and other special elements

In this section we present some basic concepts of Lattice Theory like essential el-
ement, closed element, pseudo-complement element, E-complemented lattice, pseudo-
complemented lattice, strongly pseudo-complemented lattice, and essentially comple-
mented lattice, that will be frequently used in this text.

Throughout this section L will denote a modular lattice with least element 0, i.e.,
L ∈M0.

Essential elements

An element e ∈ L is called essential (in L) if e∧ a 6= 0 for all 0 6= a ∈ L, and E(L)
will denote the set of all essential elements of L. Clearly, if L has a greatest element 1
then 1 is an essential element of L. However, in general L need not possess essential
elements; e.g., in Example 1.1.6, the only essential element of H is V, and E(G) = ∅.

We list below some elementary properties of essential elements of a lattice L (in case
E(L) is non-empty).

Lemma 1.2.1. Let e 6 b in L. Then e ∈ E(L) ⇐⇒ e ∈ E(b/0) and b ∈ E(L).

Proof. Elementary. �

Lemma 1.2.2. Let ei ∈ E(L) (1 6 i 6 n), for some n ∈ N. Then
(1) e1 ∧ · · · ∧ en ∈ E(L).
(2) a ∧ e1 ∧ · · · ∧ en ∈ E(a/0) for every a ∈ L.

Proof. Elementary. �

Corollary 1.2.3. E(L) is a sublattice of L.

Proof. By Lemmas 1.2.1 and 1.2.2. �

Lemma 1.2.4. Let n ∈ N, let ai ∈ L, and let ei ∈ E(ai/0) for all 1 6 i 6 n. Then

e1 ∧ . . . ∧ en ∈ E((a1 ∧ · · · ∧ an)/0).

Proof. Elementary. �

Corollary 1.2.5. Let a, b, c ∈ L be such that a ∈ E(b/0). Then

a ∧ c ∈ E((b ∧ c)/0).

Proof. By Lemma 1.2.4. �

In contrast to Lemma 1.2.4, in general, if n ∈ N, ai ∈ L and ei ∈ E(ai/0) for all
1 6 i 6 n, then it does not follow that e1 ∨ · · · ∨ en ∈ E((a1 ∨ · · · ∨ an)/0). However, as
we shall show next, this is the case in some circumstances. First we prove the following
two lemmas.

Lemma 1.2.6. Let a, b, c ∈ L be such that a ∧ b = 0 and (a ∨ b) ∧ c = 0. Then
(a ∨ c) ∧ b = 0.

Proof. By modularity, we have

(a∨c)∧b = (a∨c)∧((a∨b)∧b) = ((a∨c)∧(a∨b))∧b = (a∨((a∨b)∧c))∧b = a∧b = 0. ✷
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Lemma 1.2.7. Let a, b, c ∈ L be such that a ∧ b = 0 and c ∈ E(b/0). Then
a ∨ c ∈ E((a ∨ b)/0).

Proof. Let x ∈ (a ∨ b)/0 be such that (a ∨ c) ∧ x = 0. Because a ∧ c = 0, Lemma
1.2.6 gives that (a ∨ x) ∧ c = 0 and hence (a∨ x) ∧ b = 0. But a ∧ x = 0, so that, again
using Lemma 1.2.6, (a∨b)∧x = 0. It follows that x = 0. Hence a∨c ∈ E((a∨b)/0). �

Corollary 1.2.8. Let ai, bi ∈ L (i = 1, 2) be such that ai ∈ E(bi/0) (i = 1, 2).
Then b1∧b2 = 0 ⇐⇒ a1∧a2 = 0. Moreover, if a1∧a2 = 0 then a1∨a2 ∈ E((b1∨b2)/0).

Proof. The first part is elementary and the second is a consequence of Lemmas
1.2.1 and 1.2.7. �

This brings us to another key concept. A non-empty subset S of L is called inde-
pendent if 0 /∈ S, and for every x ∈ S, positive integer n, and subset T = {t1, . . . , tn}
of S with x /∈ T , we have

x ∧ (t1 ∨ · · · ∨ tn) = 0.

Clearly a subset S of L is independent if and only if every finite subset of S is
independent.

Notice that a slightly different definition for independence in lattices is given in
[44] as follows: a subset S of a complete lattice L is said to be join independent ,
or just independent , if 0 /∈ S and s ∧

∨

(S \ {s}) = 0 for all s ∈ S. In case L
is upper continuous, then S ⊆ L is independent if and only if every finite subset
of S is independent, so this definition agrees with ours. Alternatively, we say that
a family (xi)i∈I of elements of a complete lattice L is independent if xi 6= 0 and
xi ∧ (

∨

j∈I\{i} xj) = 0 for every i ∈ I, and in this case, necessarily xp 6= xq for each
p 6= q in I. Thus, the definitions of independence, using subsets or families of elements
of L, are essentially the same.

For a non-empty subset S of L , we shall use throughout this text the direct join

notation a =
·
∨

b∈S b (or a =
·
∨

S) if a =
∨

S and S is an independent subset of L.

Proposition 1.2.9. Let n ∈ N, let {b1, . . . , bn} be an independent subset of L,
and let ai ∈ E(bi/0) (1 6 i 6 n). Then a1 ∨ · · · ∨ an ∈ E((b1 ∨ · · · ∨ bn)/0).

Proof. By Corollary 1.2.8 and induction on n. �

Lemma 1.2.10. E([a)) ⊆ E(L) for every a ∈ L.

Proof. Let b ∈ E([a)). Suppose that c ∈ L and b ∧ c = 0. Then b ∧ (a ∨ c) =
a∨(b∧c) = a, so that a∨c = a. Hence c 6 a 6 b and c = b∧c = 0. Thus b ∈ E(L). �

Closed elements

By a closed element of a lattice L we mean an element c such that whenever a ∈ L
with c 6 a and c ∈ E(a/0) then a = c. We denote by C(L) the set of all closed
elements of L. Note that 0 is a closed element of L.

In Example 1.1.6 every element of H and every element of G is closed. Note further
that every element of a complemented lattice is closed. However, if R is any unital
ring, U a simple right R-module, and E the injective hull of U , then in the lattice
L(E) of all submodules of E the only closed elements are 0 and E. In case R is
the ring Z of rational integers and W the sublattice of L(E) consisting of all finitely
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generated submodules of E, then 0 is the only closed element of W . Thus C(H) = H ,
C(L(E)) = {0, E} and C(W ) = {0}.

Note that if K is a sublattice of L and c is an element of K such that c ∈ C(L) then
it is clear that c ∈ C(K). In other words, K ∩C(L) ⊆ C(K) for any sublattice K of L.

Lemma 1.2.11. Let c be an element of a lattice L. If c ∈ C(L) then

[c) ∩ E(L) ⊆ E([c)).

Proof. Let a ∈ [c) ∩ E(L). Let b ∈ [c) with b 6= c. Then c /∈ E(b/0) because
c ∈ C(L). There exists 0 6= d 6 b with c ∧ d = 0. Then a ∧ d 6= 0. Also,

a ∧ (c ∨ d) = c ∨ (a ∧ d) > c

for otherwise a ∧ d 6 c ∧ d = 0, a contradiction. Thus a ∧ b > c. It follows that
a ∈ E([c)). �

E-Complemented lattices

We shall show that the converse of Lemma 1.2.11 is true for so called E-complemented
lattices. A lattice L is called E-complemented (E for “Essential”) provided for each a ∈ L
there exists b ∈ L such that a ∧ b = 0 and a ∨ b ∈ E(L). Clearly, any complemented
lattice is E-complemented. In fact, a lattice L is complemented if and only if L is
E-complemented and E(L) = {1}.

Before proving the converse of Lemma 1.2.11 for E-complemented lattices, we first
obtain some information about such lattices.

Lemma 1.2.12. The following statements hold for an E-complemented lattice L.
(1) [a) is E-complemented for every a ∈ C(L).
(2) b/a is E-complemented for all elements a 6 b in L with a ∈ C(L).
(3) For any b, c ∈ L with b∧ c = 0 there exists d ∈ L such that c 6 d, b∧ d = 0,

and b ∨ d ∈ E(L).

Proof. The proof of (1) is similar to the proof of (2) and so we shall prove (2). Let
x ∈ b/a. By hypothesis there exists y ∈ L such that x ∧ y = 0 and x ∨ y ∈ E(L). Let
z := a ∨ (b ∧ y) ∈ b/a. Note that x ∧ z = a. Now we show that x ∨ z ∈ E(b/a). Note
that x ∨ y ∈ [a) ∩ E(L) ⊆ E([a)), by Lemma 1.2.11. Now, x ∨ z = b ∧ (x ∨ y) ∈ E(b/a)
by Lemma 1.2.2. It follows that b/a is E-complemented.

(3) There exists f ∈ L such that (b ∨ c) ∧ f = 0 and b ∨ c ∨ f ∈ E(L). By Lemma
1.2.6, b ∧ (c ∨ f) = 0 and hence d := c ∨ f has the desired properties. �

Proposition 1.2.13. Let c be an element of an E-complemented lattice L. Then

c ∈ C(L)⇐⇒ [c) ∩ E(L) ⊆ E([c)).

Proof. The necessity is proved in Lemma 1.2.11. Conversely, suppose that

[c) ∩ E(L) ⊆ E([c)).

Now, let x ∈ L with c 6 x and c ∈ E(x/0). Because L is E-complemented, there exists
y ∈ L such that x∧ y = 0 and x∨ y ∈ E(L). By Lemmas 1.2.1 and 1.2.7, c∨ y ∈ E(L),
and so, by hypothesis, c ∨ y ∈ E([c)). Now (c ∨ y) ∧ x = c ∨ (y ∧ x) = c, so that x = c.
It follows that c ∈ C(L). �
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Corollary 1.2.14. Let L be any E-complemented lattice and let b, c ∈ L be such
that c 6 b, c ∈ C(b/0), and b ∈ C(L). Then c ∈ C(L).

Proof. Because L is E-complemented, there exists b′ ∈ L such that b ∧ b′ = 0
and b∨ b′ ∈ E(L). Also, by Lemma 1.2.12(2), there exists c′ ∈ b/0 such that c∧ c′ = 0
and c ∨ c′ ∈ E(b/0). Next, by Proposition 1.2.13, b ∨ b′ ∈ E([b)) and hence, by
Lemma 1.2.10, b ∨ b′ ∈ E([c)). Now c ∨ c′ ∈ E(b/c) by Proposition 1.2.13. But
b ∧ (b′ ∨ c) = c ∨ (b ∧ b′) = c. Applying Lemma 1.2.7, c ∨ c′ ∨ b′ ∈ E((b ∨ b′)/c)). Next,
Lemma 1.2.1 gives that c ∨ c′ ∨ b′ ∈ E([c)).

Let c 6 d in L with c ∈ E(d/0). We want to prove that c = d. Since (c∨ c′)∧ b′ = 0
it follows that c ∧ (c′ ∨ b′) = 0 (Lemma 1.2.6). Thus d ∧ (c′ ∨ b′) = 0 and this implies
that d ∧ (c ∨ c′ ∨ b′) = c ∨ (d ∧ (c′ ∨ b′)) = c. Since c ∨ c′ ∨ b′ ∈ E([c)) it follows that
c = d, as required. Thus c ∈ C(L). �

Pseudo-complements

Next we introduce a special subset of C(L) and a special class of E-complemented
lattices. Given an element a ∈ L, an element b ∈ L is called a pseudo-complement of
a (in L) provided b is maximal in the set of all elements c in L such that a ∧ c = 0.
By a pseudo-complement of L we mean any element b ∈ L such that b is a pseudo-
complement (in L) of some element a ∈ L. We shall denote by P (L) the set of all
pseudo-complements of L. The lattice L is called pseudo-complemented if every element
a has a pseudo-complement.

Clearly if L has a greatest element, then every complement of a ∈ L is a pseudo-
complement of a and any complemented lattice is pseudo-complemented.

Lemma 1.2.15. Let b be a pseudo-complement of a ∈ L. Then a ∨ b ∈ E(L).

Proof. Suppose that (a∨ b)∧ c = 0, for some c ∈ L. Then Lemma 1.2.6 gives that
(b ∨ c) ∧ a = 0, and hence b = b ∨ c, i.e., c 6 b. But this implies that

c = c ∧ b 6 c ∧ (a ∨ b) = 0.

It follows that a ∨ b ∈ E(L). �

Proposition 1.2.16. Let c be an element of a lattice L. Then c ∈ P (L) if and only
if c ∈ C(L) and there exists an element a ∈ L such that a ∧ c = 0 and a ∨ c ∈ E(L).
So, P (L) ⊆ C(L).

Proof. Let c ∈ P (L). There exists an element a ∈ L such that c is a pseudo-
complement of a. Suppose that c ∈ E(b/0) for some b ∈ L. Then a ∧ b = 0 and hence
c = b. Thus c ∈ C(L). Moreover, a ∧ c = 0 and, by Lemma 1.2.15, a ∨ c ∈ E(L).

Conversely, suppose that c has the stated properties. We claim that c is a pseudo-
complement of a in L. Suppose not. Then there exists d ∈ L such that c < d
and a ∧ d = 0. Now c /∈ E(d/0) so that there exists 0 6= x 6 d with c ∧ x = 0.
Next, (c ∨ x) ∧ a = 0 gives that (a ∨ c) ∧ x = 0 by Lemma 1.2.6, and hence x = 0,
which is a contradiction. Thus c is a pseudo-complement of a in L and, in particular,
c ∈ P (L). �

Note that the inclusion P (L) ⊆ C(L) in Proposition 1.2.16 may be strict: in-
deed, in Example 1.1.6, C(G) = G but P (G) = ∅. However, this is not the case for
E-complemented lattices, as the next result shows.
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Corollary 1.2.17. If L is any E-complemented lattice then P (L) = C(L).

Proof. By Proposition 1.2.16. �

Proposition 1.2.18. The following assertions hold.

(1) Every pseudo-complemented lattice is E-complemented.
(2) Every E-complemented lattice L such that E(L) is Noetherian is pseudo-

complemented.

Proof. (1) By Lemma 1.2.15.

(2) Let a ∈ L. By hypothesis, there exists b ∈ L such that a∧b = 0 and a∨b ∈ E(L).
Suppose that there exists b1 ∈ L with b < b1 and a ∧ b1 = 0. Now suppose that
a ∨ b = a ∨ b1. Then

b1 = b1 ∧ (a ∨ b1) = b1 ∧ (a ∨ b) = b ∨ (a ∧ b1) = b ∨ 0 = b,

which is a contradiction. Thus a ∨ b < a ∨ b1. If now b1 < b2 and a ∧ b2 = 0 for some
b2 ∈ L, then the above argument gives a∨b1 < a∨b2. Repeat this argument. This gives
an ascending chain a∨ b < a∨ b1 < a∨ b2 < . . . in E(L). Because E(L) is Noetherian,
this process must stop in a finite number of steps. Thus, there exists n ∈ N such that
bn is a pseudo-complement of a. It follows that L is pseudo-complemented. �

Strongly pseudo-complemented lattices

A lattice L will be called strongly pseudo-complemented if, for all a, b ∈ L with
a ∧ b = 0, there exists a pseudo-complement p of a in L such that b 6 p. Clearly,
strongly pseudo-complemented lattices are pseudo-complemented.

Let R be any unital ring, let M be a right R-module, and let A and B be submodules
of M such that A ∩ B = 0. By Zorn’s Lemma, the set of all submodules Q of M such
that B ⊆ Q and A ∩ Q = 0 has a maximal member. Thus, the lattice L(M) of all
submodules of M is strongly pseudo-complemented, and so, it is pseudo-complemented
and E-complemented (Proposition 1.2.18).

Lemma 1.2.19. Any complemented lattice L is strongly pseudo-complemented.

Proof. Let a, b ∈ L with a ∧ b = 0. Because the sublattice 1/b is complemented
by Proposition 1.1.5, there exists c ∈ L such that 1 = (a ∨ b) ∨ c and b = (a ∨ b) ∧ c.
It follows that 1 = a ∨ c and a ∧ c = a ∧ (a ∨ b) ∧ c = a ∧ b = 0. Thus c is a
pseudo-complement of a in L and b 6 c. �

In Example 1.1.6, P (H) = H and H is pseudo-complemented, but P (G) = ∅ and
G is not pseudo-complemented. Thus, in general, sublattices of pseudo-complemented
lattices need not be pseudo-complemented. However, note the following fact.

Lemma 1.2.20. Let a be any element of a (strongly) pseudo-complemented lattice L.
Then the sublattice a/0 is also (strongly) pseudo-complemented.

Proof. We shall prove the result for strongly pseudo-complemented lattices as the
proof for pseudo-complemented lattices is similar. Suppose that L is strongly pseudo-
complemented. Let a ∈ L and let b, c ∈ a/0 with b ∧ c = 0. By hypothesis, there
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exists a pseudo-complement p of b in L with c 6 p. Note that a∧ p ∈ a/0, c 6 a∧ p,
and b ∧ (a ∧ p) = b ∧ p = 0. Suppose that a ∧ p 6 d ∈ a/0 and b ∧ d = 0. Then

b ∧ (p ∨ d) = b ∧ a ∧ (p ∨ d) = b ∧ (d ∨ (a ∧ p)) = b ∧ d = 0,

and hence p = p ∨ d. It follows that d 6 p, and hence d = a ∧ p. Thus a ∧ p
is a pseudo-complement of b in a/0. It follows that the sublattice a/0 is strongly
pseudo-complemented. �

We have seen above that if L is a pseudo-complemented lattice then so too is the
sublattice a/0 for every a ∈ L. Moreover, every strongly pseudo-complemented lattice
is pseudo-complemented. These observations bring us to the following result.

Proposition 1.2.21. Let L be a lattice such that the sublattice [a) is pseudo-com-
plemented for every a ∈ L. Then L is strongly pseudo-complemented.

Proof. Let a, b ∈ L be such that a ∧ b = 0. Because [b) is pseudo-complemented,
there exists an element p of L maximal with respect to the property (a ∨ b) ∧ p = b.
Note that a ∧ p 6 (a ∨ b) ∧ p = b, so that a ∧ p 6 a ∧ b = 0. Thus a ∧ p = 0. Suppose
that a ∧ q = 0 for some q ∈ L with p < q. Then (a ∨ b) ∧ q = b ∨ (a ∧ q) = b and hence
p = q. Thus p is a pseudo-complement of a such that b 6 p. It follows that L is strongly
pseudo-complemented. �

A lattice L such that [a) is E-complemented for every a ∈ L is called completely
E-complemented. These lattices will be amply discussed in Section 4.3. More generally,
if P is a property of posets, we say that a poset X is completely P if [x) has the
property P for all x ∈ X.

Thus, Proposition 1.2.21 shows that if a lattice L is completely pseudo-complemen-
ted then L is completely strongly pseudo-complemented.

Essentially closed lattices

A lattice L will be called essentially closed if for each element c in L there exists
an element e ∈ L maximal in the set of elements f ∈ L such that c ∈ E(f/0).

Let R be a ring and let M be a right R-module. For any submodule A of M , let SA

denote the set of all submodules B of M such that A is an essential submodule of B
(i.e., in the lattice L(M) of all submodules of M , A ∈ E(B/0)). Clearly, A belongs to
SA and, by Zorn’s Lemma, SA has a maximal member C. Thus L(M) is essentially
closed. Note the following characterization of essentially closed lattices.

Proposition 1.2.22. A lattice L is essentially closed if and only if for each a ∈ L
there exists c ∈ C(L) such that a ∈ E(c/0).

Proof. Suppose first that L is essentially closed. Let a ∈ L. There exists an
element c in L which is maximal with respect to the property a ∈ E(c/0). Let b ∈ L
such that c ∈ E(b/0). By Lemma 1.2.1, a ∈ E(b/0), so that c = b by the choice of c.
Thus c ∈ C(L).

Conversely, assume that L has the stated property, and let x ∈ L. Then there
exists y ∈ C(L) such that x ∈ E(y/0). Suppose that x ∈ E(z/0) for some z ∈ L with
y 6 z. Then y ∈ E(z/0) by Lemma 1.2.1, so that y = z. It follows that L is essentially
closed. �
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Corollary 1.2.23. Let L be an essentially closed lattice. Then [c) is essentially
closed for every c ∈ C(L).

Proof. Let c ∈ C(L). Next let x ∈ [c). By Proposition 1.2.22, there exists y ∈ C(L)
such that x ∈ E(y/0). Thus y ∈ [c) ∩ C(L) ⊆ C([c)) as we remarked before Lemma
1.2.11. But [c) ∩ E(y/0) ⊆ E(y/c) by Lemma 1.2.11, so that x ∈ E(y/c). Again using
Proposition 1.2.22 we see that [c) is essentially closed. �

Theorem 1.2.24. A lattice L is strongly pseudo-complemented if and only if L is
E-complemented and essentially closed.

Proof. Suppose first that L is strongly pseudo-complemented. By Proposition
1.2.18, L is E-complemented. Let a ∈ L. Since L is pseudo-complemented it follows
that there exists an element b ∈ L such that b is a pseudo-complement of a. Next,
because L is strongly pseudo-complemented, there exists a pseudo-complement c of b
such that a 6 c. By Proposition 1.2.16, c ∈ C(L). Suppose that d ∈ c/0 and a ∧ d = 0.
Then (a∨ d)∧ b = 0 gives that a∧ (b∨ d) = 0 by Lemma 1.2.6, and hence b = b∨ d and
d 6 b. It follows that d = d∧ b 6 c∧ b = 0. Thus a ∈ E(c/0). By Proposition 1.2.22, L
is essentially closed.

Conversely, suppose that L is E-complemented and essentially closed. Let x, y ∈ L
with x ∧ y = 0. There exists z ∈ L such that (x ∨ y) ∧ z = 0 and x ∨ y ∨ z ∈ E(L).
By Lemma 1.2.6, x ∧ (y ∨ z) = 0. There exists w ∈ L maximal with respect to the
property y ∨ z ∈ E(w/0). Then x ∧ w = 0. Suppose that w < v ∈ L and x ∧ v = 0.
By hypothesis, y ∨ z /∈ E(v/0), so that (y ∨ z) ∧ u = 0 for some 0 6= u ∈ v/0. But
this implies that w ∧ u = 0. Now x ∧ (w ∨ u) 6 x ∧ v = 0 so that, by Lemma 1.2.6,
(x ∨ w) ∧ u = 0. But x ∨ w ∈ E(L), and we obtain the contradiction u = 0. We have
proved that w is a pseudo-complement of x in L with y 6 w. It follows that L is
strongly pseudo-complemented. �

To summarize, for any lattice L we have the following implications:

complemented =⇒ strongly pseudo-complemented =⇒ pseudo-complemented =⇒ E-complemented

and

E-complemented & essentially closed ⇐⇒ strongly pseudo-complemented =⇒ essentially closed

(see Proposition 1.2.18, Lemma 1.2.19, and Theorem 1.2.24). There are no other impli-
cations in general. For example, the lattice G in Example 1.1.6 is essentially closed but
not E-complemented. We shall give further examples at the end of the next section.

As we noticed before Lemma 1.2.19, the lattice of L(M) of all submodules of any
module M is strongly pseudo-complemented. More generally, using Zorn’s Lemma, we
deduce that any upper continuous modular lattice is strongly pseudo-complemented.
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1.3. Basic concepts in opposite lattices

In the previous section we saw that the lattice L(M) of all submodules of any right
R-module M is strongly pseudo-complemented and hence also pseudo-complemented
and E-complemented. In addition, L(M) is essentially closed. The opposite lattice
L(M)o is also modular by Proposition 1.1.3. Suppose that L(M)o is E-complemented.
This means that for any A 6M there exists B 6 M such that M = A +B and A ∩ B
is a small submodule of M . Not every module has this property (for example, the
Z-module Z does not) but the modules which do have this property are called weakly
supplemented.

Next, suppose that L(M)o is pseudo-complemented. This means that for each sub-
module A of M there exists a submodule B of M which is minimal in the set of sub-
modules C of M such that M = A + C. Modules M such that L(M)o is pseudo-
complemented are called supplemented.

Finally, a module M with the property that L(M)o is strongly pseudo-complemented
has the property that for all submodules A and B such that M = A+B there exists a
submodule C of B which is minimal with respect to the property M = A+C, and such
a module M is called amply supplemented. Rings R with the property that every right
R-module is (amply) supplemented are called right perfect. On the other hand, rings
R with the property that every finitely generated right R-module is supplemented are
called semiperfect.

Thus, applying our earlier results to L(M)o we can obtain information about these
different types of modules. This motivates what follows in this section. We do not
intend to give the dual of every result in Section 1.2 but shall provide some information
and leave the reader to deduce the rest.

Throughout this section L will denote a modular lattice with greatest element 1,
i.e., L ∈M1.

Small elements

Let L be a lattice with a greatest element 1. Note that Lo is a lattice with a least
element and so is the type of lattice considered in the previous section. An element s
of L is called small or superfluous (in L) provided s ∈ E(Lo). Thus, a small element s
of L is characterized by the fact that 1 6= s ∨ a for any element a ∈ L with a 6= 1. We
shall denote the set of small elements of L by S(L), so that S(L) = E(Lo) and S(L)
is a sublattice of L.

Lemma 1.3.1. Let a 6 s in L. Then s ∈ S(L) ⇐⇒ s ∈ S(1/a) and a ∈ S(L).

Proof. Apply Lemma 1.2.1 to the lattice Lo. �

Lemma 1.3.2. Let si ∈ S(L) (1 6 i 6 n), for some positive integer n, Then

(1) s1 ∨ · · · ∨ sn ∈ S(L).
(2) a ∨ s1 ∨ · · · ∨ sn ∈ S(1/a) for every a ∈ L.

Proof. Apply Lemma 1.2.2 to the lattice Lo. �

By a coindependent subset X of L we mean an independent subset of Lo. Thus X
is characterized by the property that 1 /∈ X and for each x ∈ X, positive integer n,
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and subset T = {t1, . . . , tn} of X with x 6∈ T , we have

x ∨ (t1 ∧ · · · ∧ tn) = 1.

Proposition 1.3.3. Let n ∈ N, let {a1, . . . , an} be a coindependent subset of L,
and let si ∈ S(1/ai) (1 6 i 6 n). Then

s1 ∧ · · · ∧ sn ∈ S(1/(a1 ∧ . . . ∧ an)).

Proof. Apply Proposition 1.2.9 to the lattice Lo. �

Supplemented lattices

By a coclosed element of L we shall mean a closed element of Lo. Thus, c is a
coclosed element of L if and only if for any a ∈ L with a 6 c and c ∈ S(1/a) we
have c = a. The lattice L will be called weakly supplemented provided for each element
a ∈ L there exists b ∈ L such that 1 = a ∨ b and a ∧ b ∈ S(L). Thus, L is weakly
supplemented if and only if Lo is E-complemented.

Proposition 1.3.4. Let c be an element of a weakly supplemented lattice L. Then
c is a coclosed element of L if and only if (c ] ∩ S(L) ⊆ S((c ]).

Proof. Apply Proposition 1.2.13 to the lattice Lo. �

Proposition 1.3.5. Let b 6 c in a weakly supplemented lattice L such that c is a
coclosed element of 1/b and b is a coclosed element of L. Then c is a coclosed element
of L.

Proof. Apply Corollary 1.2.14 to the lattice Lo. �

By a supplement (in L) of an element a ∈ L we mean an element b ∈ L such that
b is minimal in the set of elements c ∈ L with 1 = a ∨ c. Thus, a is a supplement in
L if and only if a is a pseudo-complement in Lo. If a has a complement, then, clearly,
every complement of a is a supplement of a.

The lattice L is called supplemented provided every element of L has a supplement.
Thus, the lattice L is supplemented if and only if Lo is pseudo-complemented.

Proposition 1.3.6. The following assertions hold for a lattice L ∈M1.
(1) Every supplemented lattice is weakly supplemented.
(2) Every weakly supplemented lattice such that S(L) is Artinian is supplemented.

Proof. Apply Proposition 1.2.18 to the lattice Lo. �

A lattice L will be called amply supplemented provided Lo is strongly pseudo-
complemented, i.e., for all a, b ∈ L with 1 = a ∨ b, there exists a supplement c of
a in L such that c 6 b.

We shall call a general lattice L superfluously closed if Lo is essentially closed, i.e.,
for each element a ∈ L there exists an element b ∈ L minimal with respect to the
property that a ∈ S(1/b). Clearly Artinian lattices are superfluously closed.

Proposition 1.3.7. A lattice L is superfluously closed if and only if for each a ∈ L
there exists a coclosed element s in L such that a ∈ S(1/s).

Proof. Apply Proposition 1.2.22 to the lattice Lo. �
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Amply supplemented lattices are obviously supplemented and can be characterized
as follows.

Theorem 1.3.8. A lattice L is amply supplemented if and only if L is weakly
supplemented and superfluously closed.

Proof. Apply Theorem 1.2.24 to the lattice Lo. �

We began this section thinking of a right module M over a ring R. Theorem 1.3.8
can be restated for the lattice L(M) of all submodules of a module M as follows.

Theorem 1.3.9. Let R be any ring. Then a right R-module M is amply supple-
mented if and only if M is weakly supplemented and for each submodule A of M there
exists a submodule B of M which is minimal with respect to the property that (A+B)/B
is a small submodule of M/B. �

We end this section with the following example.

Example 1.3.10. By [43, Example 20.12] the Z-module Q is weakly supplemented
but not supplemented. Let L denote the lattice of all Z-submodules of Q. Then
L is weakly supplemented but not supplemented, and so, the opposite lattice Lo is
E-complemented but not pseudo-complemented. �





CHAPTER 2

CHAIN CONDITIONS IN MODULAR LATTICES

Our main aim throughout this text is to investigate chains of elements in posets and,
in particular, in rings, modules, categories, and lattices. In this chapter we study chain
conditions in modular lattices. Specifically, we discuss Noetherian lattices, Artinian lat-
tices, lattices with finite length, Goldie dimension of lattices, as well as Krull dimension
and Gabriel dimension of arbitrary posets.

2.1. Noetherian and Artinian lattices

In this section we present some basic facts about Noetherian and Artinian lattices. As
stressed before, all lattices considered throughout this text are supposed to be modular.

Basic properties

Recall from Chapter 1 that a poset P is Noetherian (respectively, Artinian) if for
every ascending chain (respectively, descending chain)

x1 6 x2 6 x3 6 . . . (respectively, x1 > x2 > x3 > . . . )

of elements in P there exists an n ∈ N such that xn = xn+1 = . . . .
Clearly, P is Noetherian if and only if the opposite poset P o is Artinian.

Proposition 2.1.1. Let a be an element of a lattice L. Then L is Noetherian
(respectively, Artinian) if and only if (a] and [a) are both Noetherian (respectively,
Artinian).

Proof. By considering Lo, it is clearly sufficient to prove only the result in the
Noetherian case. The necessity is clear.

Conversely, suppose that (a] and [a) are both Noetherian. Let b1 6 b2 6 . . . be
any ascending chain in L. Then a ∧ b1 6 a ∧ b2 6 . . . is an ascending chain in (a] and
a ∨ b1 6 a ∨ b2 6 . . . is an ascending chain in [a). By hypothesis, there exists m ∈ N
such that

a ∧ bi = a ∧ bi+1 = . . . and a ∨ bi = a ∨ bi+1 = . . . ,

for all i > m. Now let i > m. Then, by modularity, we have

bi+1 = bi+1 ∧ (a ∨ bi+1) = bi+1 ∧ (a ∨ bi) = bi ∨ (a ∧ bi+1) = bi ∨ (a ∧ bi) = bi.

Thus bm = bm+1 = . . . . It follows that L is Noetherian. �

Corollary 2.1.2. Let n ∈ N, and let a1 6 . . . 6 an be a finite ascending chain
of elements of a lattice L. Then L is Noetherian (respectively, Artinian) if and only if
(a1], ai+1/ai (1 6 i 6 n− 1), and [an) are all Noetherian (respectively, Artinian).

Proof. Apply Proposition 2.1.1 and induction on n. �

19
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Corollary 2.1.3. Let (ai)16i6n be a finite family of elements of a lattice L. Then

(1) [a1 ∧ . . . ∧ an) is Noetherian (respectively, Artinian) if and only if [ai) is Noe-
therian (respectively, Artinian) for all 1 6 i 6 n.

(2) (a1 ∨ · · · ∨ an] is Noetherian (respectively, Artinian) if and only if (ai] is Noe-
therian (respectively, Artinian) for all 1 6 i 6 n.

Proof. (1) By induction on n, it is sufficient to prove the result only in the case
n = 2. The necessity follows by Proposition 2.1.1. Conversely, suppose that [a1) and
[a2) are both Noetherian. By Proposition 2.1.1, (a1 ∨ a2)/a2 is Noetherian. But, by
Proposition 1.1.4, (a1 ∨ a2)/a2 ≃ a1/(a1 ∧ a2). Thus [a1) and a1/(a1 ∧ a2) are both
Noetherian and, by Corollary 2.1.2, so too is [a1 ∧ a2). Similarly, if [a1) and [a2) are
both Artinian then so too is [a1 ∧ a2).

(2) Apply (1) to the opposite lattice Lo. �

Proposition 2.1.4. Every Noetherian (respectively, Artinian) lattice has a greatest
(respectively, least) element.

Proof. Let L be a Noetherian lattice. By Proposition 1.1.1, L has a maximal
element, say a. Let b ∈ L. Then a 6 a∨ b ∈ L so that a = a∨ b and hence b 6 a. Thus
a is the greatest element of L. For the Artinian result use Lo. �

Lattices of finite length

Let a 6 b be elements of a lattice L. We say that the sublattice b/a of L is simple
in case a 6= b and b/a = {a, b}, i.e., the interval b/a has exactly two elements. If a < b
are elements of L and there is no c ∈ L such that a < c < b, then we say that a is
covered by b, and we write a ≺ b. Thus, the interval b/a is simple if and only if a ≺ b.

An element a of a lattice L with a least element 0 is said to be an atom of L if the
interval a/0 is simple, or equivalently, if 0 ≺ a. As in [74], a lattice L with a greatest
element 1 is called semi-atomic (respectively, semi-Artinian) if 1 is a join of atoms of
L (respectively, if for every x ∈ L, x 6= 1, the sublattice 1/x of L contains an atom).
The socle Soc(L) of a complete lattice L is the join of all atoms of L. If L has no
atoms, then Soc (L) = 0.

Notice that if M is a right R-module, then a submodule N of M is an atom in the
lattice L(M) of all submodules of M if and only if N is a simple submodule of M .
Moreover, the lattice L(M) is semi-atomic if and only if M is a semisimple module.
As in the module case, if L is a semi-atomic upper continuous modular lattice, then L
is complemented, and for every a 6 b in L, the interval b/a of L is also a semi-atomic
lattice by [74, Theorem 1.8.2 and Corollary 1.8.4].

More generally, by a composition series for b/a, if it exists, we mean a finite chain

a = c0 < c1 < · · · < cn = b,

for some n ∈ N and elements ci (0 6 i 6 n) such that ci/ci−1 is simple, i.e., ci−1 ≺ ci
for all 1 6 i 6 n. The integer n will be called the length of the series.

Given a non-zero lattice L with least element 0 and greatest element 1, we say that
the lattice L has a composition series (or has finite length) in case 1/0 has a composition
series. Note that L has a composition series if and only if the opposite lattice Lo has a
composition series. The next result characterizes when b/a has a composition series.
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Lemma 2.1.5. Let a < b be elements of a lattice L. Then b/a has a composition
series if and only if b/a is both Noetherian and Artinian.

Proof. The necessity follows by Corollary 2.1.2. Conversely, suppose that b/a is
both Noetherian and Artinian. Let b1 be a maximal element in the set of proper
elements of b/a. If b1 6= a then choose b2 maximal in the set of proper elements of b1/a.
Repeat this process to obtain a descending chain b = b0 > b1 > b2 . . . > a. Because
b/a is Artinian, there exists k ∈ N such that bk = a. Choose k as small as possible.
Clearly, a = bk < bk−1 < · · · < b0 = b is a composition series for b/a. �

Corollary 2.1.6. Let a 6 c < d 6 b be elements of a lattice L such that b/a has
a composition series. Then d/c has a composition series.

Proof. Apply Proposition 2.1.1 and Lemma 2.1.5. �

Given distinct elements a < b of a lattice L such that b/a has a composition series,
two composition series

a = c0 < c1 < · · · < cn = b,

and
a = d0 < d1 < · · · < dm = b

for b/a are called equivalent provided m = n and there exists a permutation σ of
{1, 2, . . . , n} such that cσ(i)/cσ(i)−1 ≃ di/di−1 for all 1 6 i 6 n.

Theorem 2.1.7. Let a < b be elements of a lattice L such that b/a has a composi-
tion series. Then any two composition series for b/a are equivalent, and in particular
have the same length, called the length of b/a, and denoted by ℓ(b/a).

Proof. For any c < d such that the interval d/c of L has a composition series we
denote by λ(d/c) the length of the shortest composition series for d/c.

Let n = λ(b/a), and let

a = c0 < c1 < · · · < cn = b

be a composition series for b/a. We have to prove that any other composition series

a = d0 < d1 < · · · < dm = b

for b/a is equivalent to the former one.
We will proceed by induction on n. Suppose that n = 1. In this case, b/a is simple,

hence a < b is the unique composition series for b/a, and the result is proved. Now
suppose that n > 2 and the result is true for any interval d/c of L with λ(d/c) < n.

If cn−1 = dm−1 then

a = c0 < c1 < · · · < cn−1 = dm−1,

and
a = d0 < d1 < · · · < dm−1 = dm−1

are two composition series for dm−1/a with λ(dm−1/a) 6 n − 1, and, by induction on
n, they are equivalent, so that the two series for b/a considered above are equivalent.

Now suppose that cn−1 6= dm−1. It follows that b = cn−1 ∨ dm−1 because b/dm−1 is
simple. By Corollary 2.1.6, the interval (cn−1 ∧ dm−1)/a of L has a composition series,
say

a = f0 < f1 < · · · < fk = cn−1 ∧ dm−1,
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for some k ∈ N. But cn−1/fk ≃ dm/dm−1 by Proposition 1.1.4, and hence

a = f0 < f1 < · · · < fk < cn−1

is a composition series for cn−1/a. By induction on n, the composition series

a = f0 < f1 < · · · < fk < cn−1

and
a = c0 < c1 < · · · < cn−1

are equivalent. Similarly, the composition series

a = f0 < f1 < · · · < fk < dm−1

and
a = d0 < d1 < · · · < dm−1

are equivalent.
Finally, note that Proposition 1.1.4 shows that

cn/cn−1 ≃ dm−1/fk and dm/dm−1 ≃ cn−1/fk.

Gathering this information together, we conclude that the given composition series for
b/a are equivalent, as required. �

The next result is easily proved as in the module case:

Proposition 2.1.8. Let L ∈M0,1, and let a ∈ L. Then L has finite length if and
only if both intervals a/0 and 1/a have finite length, and in this case, we have

ℓ(L) = ℓ(a/0) + ℓ(1/a). �

Compact elements

Throughout this subsection L will denote a complete modular lattice. An element
c ∈ L is called compact provided for any non-empty subset X of L with c 6

∨

X there
exists a finite non-empty subset Y of X such that c 6

∨

Y . One denotes by K(L) the
set of all compact elements of L.

The lattice L is said to be compact if its greatest element 1 is a compact element
in L, and compactly generated if any element of L is a join of compact elements. Note
that an element c of an upper continuous lattice is compact if and only if the lattice
c/0 is compact (see Corollary 2.1.12), and any compactly generated lattice is upper
continuous (see, e.g., [85, Chapter III, Proposition 5.3]).

We first aim to identify compact elements in lattices of submodules of modules. Let
us mention that all rings considered in this text are associative with identity element,
and all modules are unital right modules. We often write MR to emphasize that M is
a right module over the ring R. The notation L(MR), or just L(M), stands for the
lattice of all submodules of M , and the notation N 6M means that N is a submodule
of M .

Proposition 2.1.9. The following statements hold for a right R-module M.
(1) A submodule C of M is a compact element of L(M) ⇐⇒ C is a finitely

generated submodule of M .
(2) L(M) is a compactly generated lattice.
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Proof. (1) Suppose first that C is finitely generated. Let X be a non-empty set
of L(M) such that C 6

∨

X. This just means that the submodule C is contained
in the submodule

∑

i∈I Ai of M , where we indexed the set X of submodules of M as
X = {Ai | i ∈ I }. Since C is finitely generated it follows that C ⊆

∑

i∈J Ai for some
finite subset J of I. If Y is the finite subset {Ai | i ∈ J } of X then, in L(M), we have
C 6

∨

Y . It follows that C is a compact element of L(M).

Conversely, suppose that C is a compact element of L(M). Then, we can write
C as the sum C =

∑

x∈C xR of all its cyclic submodules xR, which means exactly
that C =

∨

x∈C xR in the lattice L(M). Since C is a compact element of L(M), it
follows that C 6

∨

x∈F xR =
∑

x∈F xR 6 C for some finite subset F of C, and then
C =

∑

x∈F xR, i.e., C is a finitely generated submodule of M , as required.

(2) follows from (1) because any submodule of M is the sum of all its cyclic sub-
modules. �

We can characterize compact elements in lattices in terms of chains.

Proposition 2.1.10. An element c of L is compact if and only if for each chain
X in L with c 6

∨

X there exists x ∈ X such that c 6 x.

Proof. Suppose first that c is a compact element of L. Let X be any chain in
L such that c 6

∨

X. By hypothesis, there exists a finite subset Y of X such that
c 6

∨

Y . Because the finite set Y is a chain, there exists an element u ∈ Y such that
y 6 u for all y ∈ Y . Then c 6

∨

Y = u and u ∈ X.

Conversely, suppose that c has the stated condition relative to chains in L. Suppose
that c is not a compact element of L. Then, there exists a non-empty subset Z of L
such that c 6

∨

Z but c 

∨

W for every finite subset W of Z. Let S denote the set of
all elements a ∈ L such that c 
 a ∨ (

∨

W ) for every finite subset W of Z. Note that
Z ⊆ S so that the set S is non-empty. Let C be a chain in S and let b =

∨

C. Suppose
that b /∈ S. This implies that there exists a finite subset U of Z such that c 6 b∨ (

∨

U).
Let u =

∨

U . Then

c 6 b ∨ u =
∨

{ d ∨ u | d ∈ C },

by Lemma 1.1.8. But the set { d ∨ u | d ∈ C} is a chain of elements of L so that, by
hypothesis, there exists d0 ∈ C such that

c 6 d0 ∨ u = d0 ∨
(

∨

U
)

,

a contradiction. Thus b ∈ S. So, we can apply Zorn’s Lemma to deduce that S contains
a maximal member m. If z 6 m for all z in Z then c 6

∨

Z 6 m, a contradiction. Let
t ∈ Z such that t 
 m. Then m < m ∨ t so that m ∨ t /∈ S. There exists a finite subset
T of Z such that c 6 (m ∨ t) ∨ (

∨

T ) so that c 6 m ∨ (
∨

(T ∪ {t})) which implies that
m /∈ S, a contradiction. Thus c is a compact element of L. �

Corollary 2.1.11. L is a compact lattice ⇐⇒ 1 6=
∨

X for every chain X of
proper elements of L.

Proof. Apply Proposition 2.1.10. �

We can extend Corollary 2.1.11 in the case of upper continuous lattices.
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Corollary 2.1.12. An element c of an upper continuous lattice L is compact ⇐⇒
c 6=

∨

X for every chain X of proper elements of c/0 (i.e., c/0 is a compact lattice).

Proof. The necessity follows by Proposition 2.1.10. Conversely, suppose that c
has the stated condition. Let Y be a chain of elements of L such that c 6

∨

Y . Then

c = c ∧
(

∨

Y
)

=
∨

{ c ∧ y | y ∈ Y },

because L is upper continuous. But { c ∧ y | y ∈ Y } is a chain of elements of c/0. By
hypothesis c = c ∧ z 6 z for some z ∈ Y . By Proposition 2.1.10, it follows that c is a
compact element. �

One would expect compact elements of lattices to exhibit some of the properties of
finitely generated submodules and this is indeed the case.

Lemma 2.1.13. Let n ∈ N, and let c, c1, . . . , cn ∈ K(L). Then, the following state-
ments hold.

(1) a ∨ c ∈ K(1/a) for every a ∈ L.
(2) c1 ∨ · · · ∨ cn ∈ K(L).
(3) K(1/c) ⊆ K(L), i.e., every compact element of 1/c is a compact element of L.
(4) For each a ∈ L with a < c, there exists a maximal element m of c/0 \ {c}

such that a 6 m.

Proof. (1) Let a ∈ L. Let X be any non-empty subset of 1/a with a ∨ c 6
∨

X.
Then c 6

∨

X, and hence c 6
∨

Y for some finite subset Y of X. Clearly, Y ⊆ 1/a
implies that a ∨ c 6

∨

Y . It follows that a ∨ c is a compact element of 1/a.

(2) Let X be any non-empty subset of L such that c1 ∨ · · · ∨ cn 6
∨

X. For each
1 6 i 6 n, ci 6

∨

X and hence there exists a finite subset Yi of X such that ci 6
∨

Yi.
If Y is the finite subset Y1 ∪ · · · ∪ Yn of X then c1 ∨ · · · ∨ cn 6

∨

Y by Lemma 1.1.7.

(3) Let b be any compact element of 1/c, and let X be any subset of L such that
b 6

∨

X. Set X ′ := { x∨ c | x ∈ X }. By hypothesis, there exists a finite subset U of X ′

such that b 6
∨

U . Next, there exists a finite subset Y of X such that every element u
of U has the form y ∨ c for some y ∈ Y . But c 6 b 6

∨

X so that c 6
∨

Z for some
finite subset Z of X. The set Y ∪ Z is a finite subset of X such that b 6

∨

(Y ∪ Z). It
follows that b is a compact element of L.

(4) Let a < c, and set S := { b ∈ L | a 6 b < c }. Note that a ∈ S, so S 6= ∅. Let
C be any chain contained in S. Suppose that

∨

C /∈ S. Then c =
∨

C. By hypothesis,
c 6

∨

D for some finite subset D of C and hence c 6 d for some d ∈ D ⊆ C ⊆ S.
Then c = d ∈ S a contradiction. Thus

∨

C ∈ S, so we can apply Zorn’s Lemma to
obtain a maximal element of S, that is the desired element m. �

Observe that assertion (4) in Lemma 2.1.13 is the latticial counterpart of the re-
nowned Krull Lemma from Module Theory.

Proposition 2.1.14. The following statements are equivalent for a lattice L.

(1) L is Noetherian.
(2) For each subset X of L there exists a finite subset Y of X with

∨

X =
∨

Y .
(3) Every element of L is compact.
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Proof. (1) =⇒(2) Let X be any (non-empty) subset of a Noetherian lattice L.
Consider the non-empty set S of elements of L of the form

∨

U , where U is a finite
subset of X. By Proposition 1.1.1, there exists a finite subset Y of X such that

∨

Y is
maximal in S. Let x ∈ X. If Z denotes the finite subset Y ∪{x} of X then

∨

Y 6
∨

Z,
and hence

∨

Y =
∨

Z. It follows that x 6
∨

Y for all x ∈ X, and so
∨

X 6
∨

Y .
Thus

∨

X =
∨

Y .

(2) =⇒ (3) Clear.

(3) =⇒ (1) Let a1 6 a2 6 . . . be any ascending chain of elements of L, and set

W := { ai | i ∈ N } and b :=
∨

W .

By hypothesis, b is a compact element of L, and hence b 6
∨

T for some finite subset
T of W . But clearly

∨

T = an for some n ∈ N. Thus, for each i > n,

ai 6
∨

W = b 6 an,

so that an = an+1 = . . . . It follows that L is Noetherian. �

Corollary 2.1.15. Any Noetherian lattice L with least and greatest element is
upper continuous.

Proof. First, observe that by the proof of (1) =⇒ (2) in Proposition 2.1.14, any
non-empty subset S of L has a least upper bound, and so, by [85, Chapter III, Propo-
sition 1.2], L is a complete lattice.

Let C be a chain of L and a ∈ L. We have to prove that

a ∧ (
∨

C) =
∨

{ a ∧ c | c ∈ C }.

By Proposition 2.1.14, we have
∨

C =
∨

F for some finite subset F of C, and so
∨

C = b ∈ C because C is a chain. Then a ∧ (
∨

C) = a ∧ b =
∨

{a ∧ c) | c ∈ C }. �

Compact lattices

In this subsection we present several results on compact lattices.

Proposition 2.1.16. Let s be a small element of L. Then L is a compact lattice
if and only if its interval 1/s is compact.

Proof. The result can be reformulated as follows: 1 is compact in L if and only
if 1 is compact in 1/s. The necessity follows by Lemma 2.1.13(1). Conversely, suppose
that 1 is a compact element of 1/s. Let X be a chain of elements of L such that
1 =

∨

X, and set Y := { x ∨ s | x ∈ X }. Then Y is a chain in 1/s such that 1 =
∨

Y .
By Corollary 2.1.11, 1 = u ∨ s for some u ∈ X and hence u = 1. It follows that 1 is a
compact element of L by Corollary 2.1.11 again. �

Corollary 2.1.17. Let s be a small element of L such that 1/s is Noetherian.
Then L is a compact lattice.

Proof. Apply Propositions 2.1.14 and 2.1.16. �

Proposition 2.1.18. The following statements hold for a lattice L.
(1) If L is a compact lattice, then so is also d/0 for any d ∈ D(L). If additionally

L is upper continuous, then D(L) ⊆ K(L).
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(2) If L is a compact lattice, then so is also any of its quotient intervals 1/a.
(3) Assume that L is upper continuous, and let a 6 b 6 c in L be such that the

intervals b/a and c/b are both compact lattices. Then c/a is also a compact
lattice.

(4) If L is a complete compact lattice, then any lattice isomorphic to L is also
compact.

Proof. (1) Let d ∈ D(L). Then, there exists d′ ∈ L such that d ∨ d′ = 1 and
d ∧ d′ = 0. Let A ⊆ L be such that d =

∨

x∈A x. Because 1 is a compact element of L
and 1 = d ∨ d′ =

∨

x∈A(x ∨ d
′), there exists a finite subset F of A such that

1 =
∨

x∈F

(x ∨ d′) =
(

∨

x∈F

x
)

∨ d′ = y ∨ d′,

where y :=
∨

x∈F x 6 d. By modularity, we have

d = (y ∨ d′) ∧ d = y ∨ (d ∧ d′) = y ∨ 0 = y =
∨

x∈F

x,

which shows that d is a compact element of d/0.
Assume now that additionally L is upper continuous, and let d ∈ D(L). We have

just proved that d is a compact element of d/0. Then, by Corollary 2.1.12, d is a
compact element of L. Thus D(L) ⊆ K(L).

(2) is obvious.

(3) Without loss of generality we may assume that a = 0 and c = 1. So, we have
to prove that if b is compact in b/0 and 1 is compact in 1/b, then 1 is compact in
1/0 = L. Let C be a chain in L such that 1 =

∨

x∈C x. By upper continuity, we have
b =

∨

x∈C(x∧ b), so b = y∧ b, i.e., b 6 y for some y ∈ C because b is compact in b/0.
On the other hand, we have 1 =

∨

x∈C(x∨ b), so 1 = z ∨ b for some z ∈ C because
1 is compact in 1/b. Because C is a chain, t := y ∨ z ∈ {y, z} ⊆ C, so b 6 y 6 t and
1 = t ∨ b 6 t, i.e., 1 = t ∈ C, which shows that 1 is compact in L.

(4) Observe first that if f : L −→ L′ is a lattice isomorphism of complete lattices,
then clearly

f
(

∨

i∈I

xi
)

=
∨

i∈I

f(xi)

for any family (xi)i∈I of elements of L. This easily implies that f(c) ∈ K(L′) for any
c ∈ K(L); in particular 1′ = f(1) ∈ K(L′) if 1 is a compact element of L, that is, L′

is compact if so is L. �

Cocompact elements

Let L be a lattice with a greatest element 1. In this case, according to the usual
definition in a poset, 1 is the unique maximal element of L. However, as in Module
Theory, by a maximal element of L we mean an element which is maximal in the set of
all proper elements of L. Thus, m is a maximal element of L if m 6= 1 and whenever
a ∈ L with m 6 a, then a = m or a = 1. On the other hand, if L has a least element,
then a minimal element of L is an element minimal in the set of all non-zero elements of
L. Thus, m is a minimal element of L if m 6= 0 and whenever a ∈ L with a 6 m then
a = m or a = 0. An element c of a complete lattice L is called cocompact provided for
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every non-empty subset X of L with
∧

X 6 c there exists a finite subset Y of X such
that

∧

Y 6 c. Clearly c is a cocompact element of L if and only if c is a compact
element of Lo. We wish to mention below just one result about cocompact elements.
Notice that its proof involves the concept and properties of Goldie dimension which will
be amply discussed in the next section.

Theorem 2.1.19. Let L be a non-zero upper continuous modular lattice. Then, the
least element 0 of L is a cocompact element of L if and only if there exist n ∈ N and
minimal elements mi (1 6 i 6 n) of L such that m1 ∨ · · · ∨mn ∈ E(L).

Proof. Suppose first that m1 ∨ · · · ∨ mn ∈ E(L) for some n ∈ N and minimal
elements mi (1 6 i 6 n) of L. If a = m1 ∨ · · · ∨mn, then a/0 is Artinian by Corollary
2.1.3. By Corollary 2.1.17 applied to the lattice Lo, it follows that its greatest element
0 ∈ L is a compact element of Lo, so 0 is a cocompact element of L, as desired.

Conversely, suppose that the element 0 is cocompact. We claim that L has finite
Goldie dimension. If not, then L contains an infinite independent set { bi | i ∈ N }.
Because 0 is a compact element of Lo, we can apply Lemma 2.1.13(4) for the lattice
Lo to obtain for each i ∈ N a minimal element ui of L such that 0 < ui 6 bi. Note
that the set { ui | i ∈ N } is also independent. For each j ∈ N, set

cj :=
∨

i>j

ui,

and consider the descending chain c1 > c2 > . . . of L. Let C = { ci | i ∈ N }, and
set c :=

∧

C. Since L is upper continuous by hypothesis, it is also strongly pseudo-
complemented as we have observed just after Theorem 1.2.24, and, in particular, it is
E-complemented by Theorem 1.2.24. So, there exists x ∈ L such that c ∧ x = 0 and
e := c∨x ∈ E(L). Since (

∧

C)∧x = 0 and 0 is cocompact, there exists a finite subset
D of C such that (

∧

D) ∧ x = 0, and then ck ∧ x = 0 for some k ∈ N. For each i > k,
ui ∧ e 6= 0 because e ∈ E(L), and hence ui = ui ∧ e 6 e because ui is a minimal element
of L. It follows that ck 6 e = c ∨ x. Thus

ck = ck ∧ e = ck ∧ (c ∨ x) = c ∨ (ck ∧ x) = c ∨ 0 = c 6 ck+1.

This implies that ck = ck+1. But

uk+1 6 uk+1 ∨ uk+2 6 . . . 6
∨

j>k+1

uj = ck+1,

so that, because L is upper continuous and ck+1 =
∨

i>k+1 ui =
∨

i>k+1

(

uk+1 ∨ · · · ∨ ui
)

by a countable variant of Lemma 1.1.7, we have

uk = uk ∧ ck = uk ∧ ck+1 =
∨

j>k+1

(

uk ∧ (uk+1 ∨ · · · ∨ uj)
)

= 0,

a contradiction. It follows that L has finite Goldie dimension, as claimed. By Corollary
2.2.5 there exists a finite independent set S of uniform elements si (1 6 i 6 n) of L
such that b :=

∨

S ∈ E(L), i.e., b is a small element of Lo. Since 0 is a cocompact
element of L, the greatest element of Lo is a compact element of Lo, i.e., Lo is a
compact lattice, so by Lemma 2.1.13(4) applied to the lattice Lo, for each 1 6 i 6 n
there exists a minimal element wi of L such that wi 6 si. Then Lemma 2.2.7 gives
w1 ∨ · · · ∨ wn ∈ E(L), as required. �
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If we apply Theorem 2.1.19 to the opposite lattice of a lattice L and translate the
terms occurring in its statement in their dual counterparts, we obtain at once:

Theorem 2.1.20. A non-zero lower continuous modular lattice L is compact if and
only if there exist n ∈ N and maximal elements mi (1 6 i 6 n) of L such that
m1 ∧ . . . ∧mn is a small element of L. �

Of course, all the results in this section have “duals” obtained by using the opposite
lattice. No further proofs are required. In addition, results can be obtained for modules
by applying the above results to the lattice of submodules of a module. Again we leave
this to the reader.

2.2. Goldie dimension

A cornerstone in the development of modern Ring Theory is the concept of Goldie
dimension. Modular lattices provide a very natural setting for the development of this
dimension as we shall show in this section. Here our concern is with lattices which do
not contain an infinite independent subset. We shall show that in this case, for any
such lattice L, there exists a unique n ∈ N ∪ {0}, called the Goldie dimension of L,
such that every independent subset of L contains at most n elements. Recall that we
denote by N the set {1, 2, 3, . . . } of all natural numbers, and for any set S we denote
the cardinality of S by |S|.

Throughout this section, excepting its last subsection, L will be a modular lattice
with least element 0, i.e., L ∈M0.

Some preparatory results

We first give a result which characterizes when a countable subset of L is independent.

Lemma 2.2.1. A subset S = { ai | i ∈ N } of non-zero elements of L is independent
if and only if

ak+1 ∧ (a1 ∨ · · · ∨ ak) = 0

for all k ∈ N.

Proof. The necessity is clear. Conversely, suppose that S has the stated property.
For each n ∈ N set Sn = {a1, . . . , an}. We show that Sn is independent by induction
on n. Clearly S1 is independent. Suppose that Sn is independent for some n ∈ N. Let
1 6 i 6 n and set bi := a1 ∨ · · · ∨ ai−1 ∨ ai+1 ∨ · · · ∨ an. Because Sn is independent we
have ai ∧ bi = 0. But an+1 ∧ (ai ∨ bi) = 0 by hypothesis. Therefore, by Lemma 1.2.6,
ai∧ (bi∨an+1) = 0. Since an+1∧ (a1∨· · ·∨an) = 0, it follows that Sn+1 is independent.
Thus Sn is independent for every n ∈ N and therefore S is independent. Notice that
for n = 3, the fact that S3 is independent is exactly the result in Lemma 1.2.6. �

Given a finite subset S of L, recall that the greatest lower bound of S is denoted
by

∧

S and the least upper bound of S is denoted by
∨

S.

Corollary 2.2.2. Let S and T be non-empty finite subsets of L. Then S ∪ T is
independent if and only if S and T are both independent and

(
∨

S
)

∧
(
∨

T
)

= 0.
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Proof. Suppose first that S ∪ T is independent. Clearly this implies that both
S and T are independent. Assume that T = {t1, . . . , tn} for some n ∈ N, and let
t := t1 ∨ · · · ∨ tn−1. We proceed by induction on n for any finite subset S of L. So,
assume that

(
∨

S
)

∧ t = 0. If we set S ′ := S ∪ {t1, . . . , tn−1}, then, because S ∪ T is
independent by hypothesis, we have

0 =
(

∨

S ′
)

∧ tn =
((

∨

S
)

∨ t
)

∧ tn = 0.

By Lemma 1.2.6 it follows that
(
∨

S
)

∧ (t ∨ tn) = 0. Thus
(
∨

S
)

∧
(
∨

T
)

= 0.

Conversely, suppose that S and T are independent and
(
∨

S
)

∧
(
∨

T
)

= 0. Then
(
∨

S
)

∧ t1 = 0 and S ∪ {t1} is independent by Lemma 2.2.1. Now suppose that
S ∪ {t1, . . . , ti} is independent for some 1 6 i 6 n− 1, and set c := t1 ∨ · · · ∨ ti. Then
(
∨

S
)

∧c = 0 by the first part, and, by hypothesis,
(
∨

S
)

∧(c∨ti+1) = 0. Lemma 1.2.6
gives that

((
∨

S
)

∨ c
)

∧ ti+1 = 0. By Lemma 2.2.1 we deduce that S ∪ {t1, . . . , ti+1} is
independent. By induction, it follows that S ∪ T is independent. �

A lattice L ∈ M0 is said to be uniform if L 6= 0 and x ∧ y 6= 0 for any non-zero
elements x, y ∈ L. An element u of a lattice L is called uniform if u/0 is a uniform
lattice, i.e., if u 6= 0 and a∧ b 6= 0 for all non-zero elements a and b in u/0. In other
words, a non-zero element u ∈ L is uniform if and only if every non-zero element of
u/0 belongs to E (u/0). We denote by U(L) the set of all uniform elements of L.

Not every lattice contains uniform elements. For example, if R is a non-commutative
domain which is not right Ore then the lattice L(RR) of right ideals of R does not
contain a uniform element. However, if L is a lattice which does not contain an infinite
independent subset then not only does L contain a uniform element but it contains an
abundance of uniform elements. This is what we aim to show in the next few results.

Lemma 2.2.3. Let L be a lattice which does not contain an infinite independent set.
Then a/0 contains a uniform element for every non-zero element a of L.

Proof. Suppose not. Because a is not uniform, there exist 0 6= a1, b1 ∈ a/0 with
a1∧b1 = 0. Because b1 is not uniform, there exist 0 6= a2, b2 ∈ b1/0 such that a2∧b2 = 0.
Repeat this argument. Note that an 6= 0 (n ∈ N) and that

aj ∧ (aj+1 ∨ · · · ∨ ai) 6 aj ∧ bj = 0,

for all 1 6 j 6 i − 1, i > 2. By Lemma 2.2.1, {a1, . . . , ai} is independent for all i ∈ N
and hence {a1, a2, a3, . . . } is independent, a contradiction. The result follows. �

Lemma 2.2.4. Let L be a non-zero lattice which does not contain an infinite inde-
pendent subset, and let S be a (finite) independent set of uniform elements of L. Then
there exists a subset T of L which is either the empty set or is a (finite) independent
set of uniform elements of L such that S ∪ T is independent and

∨
(

S ∪ T
)

∈ E(L).

Proof. By Lemma 2.2.3, L contains a uniform element u1. Suppose that S is
the set {u1, . . . , un} of uniform elements of L, for some n ∈ N. Now suppose that
u1 ∨ · · · ∨ un /∈ E(L). It follows that (u1∨ · · · ∨ un)∧ a = 0 for some non-zero element a
of L. Again using Lemma 2.2.3, there exists a uniform element un+1 in a/0. Note that
(u1 ∨ · · · ∨ un) ∧ un+1 = 0. By Lemma 2.2.1, the set {u1, . . . , un+1} is also independent.
Repeat this argument. Since L does not contain an infinite independent subset it follows
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that there exist a positive integer m > n and uniform elements ui (n+ 1 6 i 6 m) such
that the set X = {u1, . . . , um} is independent and

∨

X ∈ E(L). The result follows. �

Corollary 2.2.5. Let L be a non-zero lattice which does not contain an infinite
independent subset. Then there exists a (finite) independent set S of uniform elements
of L such that

∨

S ∈ E(L).

Proof. Apply Lemmas 2.2.3 and 2.2.4. �

Corollary 2.2.6. Let L be a non-zero lattice which does not contain an infinite
independent subset. Then L is E-complemented.

Proof. Let a ∈ L. Suppose that a 6= 0. By Corollary 2.2.5, there exists a finite
set of uniform elements of a/0 such that

∨

S ∈ E(a/0). Then Lemma 2.2.4 gives a
set T such that (

∨

S ) ∧ (
∨

T ) = 0 and (
∨

S ) ∨ (
∨

T ) ∈ E(L). It follows that
a ∧ (

∨

T ) = 0 and a ∨ (
∨

T ) ∈ E(L). In case a = 0 this proof can easily be adapted
to find such a set T . It follows that L is E-complemented. �

Lemma 2.2.7. Let L be a non-zero lattice which does not contain an infinite inde-
pendent subset. Let S be any finite independent set of uniform elements of L such that
∨

S ∈ E(L), and let e ∈ L. Then e ∈ E(L) if and only if e ∧ s 6= 0 for all s ∈ S.

Proof. The necessity is clear. Conversely, suppose that S = { u1, . . . , un } for
some n ∈ N, and that e∧ui 6= 0 for all 1 6 i 6 n. For each 1 6 i 6 n, e∧ui ∈ E(ui/0).
By Proposition 1.2.9, (e∧ u1)∨ · · · ∨ (e∧ un) ∈ E((u1 ∨ · · · ∨ un)/0). Lemma 1.2.1 gives
that (e ∧ u1) ∨ · · · ∨ (e ∧ un) ∈ E(L) and hence e ∈ E(L). �

The definition of the Goldie dimension

Recall that for any lattice L ∈ M0 we have denoted by U(L) the set, possibly
empty, of all uniform elements of L.

Theorem 2.2.8. Let L ∈ M0, and let S, T be two finite non-empty independent
subsets of L. Then the following statements hold.

(1) If S ⊆ U(L) and
∨

S ∈ E(L) then |T | 6 |S|.
(2) If S ⊆ U(L), T ⊆ U(L),

∨

S ∈ E(L), and
∨

T ∈ E(L) then |S| = |T |.

Proof. (1) Let S = {s1, . . . , sn}, T = {t1, . . . , tk}, and set

s := s1 ∨ · · · ∨ sn, t := t1 ∨ · · · ∨ tk.

Since s ∈ E(L), we have t′i := ti ∧ s 6= 0, t′1 ∨ · · · ∨ t
′
k 6 s, and {t′1, . . . , t

′
k} is an

independent subset of s/0, so, without loss of generality, we may replace L by s/0,
i.e., L has a greatest element 1 = s. Set t := t2 ∨ · · · ∨ tk. We claim that t∧ sj 6= 0 for
some 1 6 j 6 n. Assume not. Then, we would have t ∧ sj ∈ E(sj/0) for all 1 6 j 6 n
because sj ∈ U(L). By Proposition 1.2.9, we would obtain

(t ∧ s1) ∨ · · · ∨ (t ∧ sn) ∈ E((s1 ∨ · · · ∨ sn)/0) = E(s/0) = E(L).

But (t∧s1)∨· · ·∨(t∧sn) 6 t∧s, hence t∧s ∈ E(L), and so, by Lemma 1.2.1, t ∈ E(L),
a contradiction. Therefore, by relabeling the si’s, we may assume that t ∧ s1 = 0.

By Proposition 1.1.4, we have the following sequence of canonical lattice morphisms

t/0 = t/(t ∧ s1)
∼
→ (t ∨ s1)/s1 →֒ 1/s1

∼
→ (s2 ∨ · · · ∨ sn)/0,
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where the penultimate one is the canonical injection. If we denote by f their compo-
sition, we deduce that the lattice t/0 is isomorphic to its homomorphic image f(t/0),
which is a sublattice of L′ := (s2 ∨ · · · ∨ sn)/ 0.

Denote T ′ := {f(t2), . . . , f(tk)} and S ′ := {s2, . . . , sn}. Then, S ′ and T ′ satisfy
the hypotheses from the statement of our theorem for the lattice L′, so we can proceed
by induction on n to obtain k − 1 6 n− 1, and then, k 6 n, as desired. Observe that
the first step for n = 1 of the induction is obviously true.

(2) By (1), we have k 6 n. Interchange now S with T and apply again (1) to obtain
n 6 k. Then n = k, as desired. �

The statement and proof of Theorem 2.2.8 resemble the well-known Steinitz Replace-
ment Theorem from Linear Algebra allowing to define an invariant of any vector space
V, namely its dimension dim(V ). Similarly, based on Theorem 2.2.8, we can associate
with any lattice L ∈ M0 an invariant u(L) ∈ N ∪ {0} ∪ {∞}, called its Goldie or
uniform dimension.

Definition. We say that a non-zero lattice L ∈ M0 has Goldie dimension or
uniform dimension n ∈ N, and we write u(L) = n, if there exists an independent
subset S of L with |S| = n, and

∨

S ∈ E(L). By Theorem 2.2.8, u(L) is well defined.
If no such integer n exists, we write u(L) =∞. For L = 0 we define u(L) = 0. �

It is easy to check from the definition that u(L) = 1⇐⇒ L is uniform.

For any ring R with identity and any unital right R-module M , we define the Goldie
dimension of M , denoted u(M), as being the Goldie dimension u(L(M)) of the lattice
L(M) of all its submodules. Similarly, we say that the module M has finite length if so
is the lattice L(M), and ℓ(M) will denote its length.

Proposition 2.2.9. A lattice L ∈M0 has finite Goldie dimension if and only if L
does not contain an infinite independent subset.

Proof. If u(L) = n < ∞, then L contains no infinite independent subset by
Theorem 2.2.8(1). Conversely, suppose that L does not contain an infinite independent
subset. Then, by Corollary 2.2.5, there exists a finite independent set S of uniform
elements of L such that

∨

S ∈ E(L). By definition, L has finite Goldie dimension. �

Corollary 2.2.10. For any lattice L ∈M0,

u(L) = sup{ k |L contains an independent subset of k elements }.

Proof. Let λ 6 ∞ be this supremum. If λ = ∞, then necessarily u(L) = ∞ by
Theorem 2.2.8(1). Now, if λ <∞ then u(L) must be finite by Proposition 2.2.9, and,
again by Theorem 2.2.8(1), we deduce that u(L) = λ. �

Corollary 2.2.11. The following statements hold for a lattice L ∈M0.

(1) If L is Noetherian then u(L) <∞.
(2) If L ∈M0,1 has finite length, then u(L) 6 ℓ(L), with equality if and only if L

is semi-atomic.

Proof. (1) Assume that L is Noetherian but u(L) = ∞. Then, by Proposition
2.2.9, L contains an infinite independent subset T = { ti | i ∈ N }, and we may consider
the ascending chain t1 < t1 ∨ t2 < t1 ∨ t2 ∨ t3 < . . . , which is a contradiction.
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(2) Let n := ℓ(L). If L contains a finite independent set T = {t1, . . . tk} for some
k ∈ N, then, by a induction on k and repeated application of Proposition 2.1.8 we have

k 6
k

∑

i=1

ℓ(ti/0) = ℓ((t1 ∨ · · · ∨ tk)/0) 6 ℓ(L) = n.

By Corollary 2.2.10, we deduce that u(L) 6 n.
If L is semi-atomic, then u(L) = n by the definition of the Goldie dimension,

Conversely, if u(L) = n, then L contains a finite independent set S = {s1, . . . , sn}.
Applying the inequalities above for S and k = n, we deduce that s1 ∨ · · · ∨ sn = 1 and
ℓ(si/0) = 1, i.e., si is an atom for all 1 6 i 6 n. Thus, L is semi-atomic. �

If V is now any finite dimensional vector space over a field F , then Corollary
2.2.11(2) gives for L = L(V ) the equalities dim(V ) = ℓ(V ) = u(V ) relating the
dimension, length, and Goldie dimension of the module V over the field F .

Note that Artinian lattices need not have finite Goldie dimension. Indeed, let F
be any field, let V be an infinite dimensional vector space over F , and let L denote
the sublattice of the lattice L(V ) of all subspaces of V consisting of V and all finite
dimensional subspaces of V . Then, it is clear that L is an Artinian lattice but L does
not have finite Goldie dimension. For another example, let L(Z) be the lattice of all
ideals of the ring Z of rational integers. Then, the Artinian lattice L(Z)o does not have
finite Goldie dimension because it contains the infinite independent set { pZ | p prime }.
We shall see in Corollary 2.2.17 that an Artinian lattice has finite Goldie dimension if
and only if it is E-complemented.

For any α ∈ N ∪ {0} ∪ {∞} we make the usual convention that α +∞ =∞.

Corollary 2.2.12. Let L ∈ M0, a ∈ L, n ∈ N, and {a1, . . . , an} an independent
subset of L. Then, the following statements hold.

(1) u((a1 ∨ · · · ∨ an)/0) =
∑

16i6n u(ai/0).
(2) u(a/0) 6 u(L) with equality if a ∈ E(L).
(3) If a 6∈ E(L), then u(a/0) < u(L), unless u(a/0) = u(L) =∞.
(4) If u(L) <∞, then a ∈ E(L)⇐⇒ u(L) = u(a/0).

Proof. (1) We proceed by induction on n. Clearly, by Lemma 2.2.1, it is sufficient
to consider only the case n = 2. So, let a and b be non-zero elements of L such that
a ∧ b = 0. Then, we are going to prove that

u((a ∨ b)/0) = u(a/0) + u(b/0).

Suppose that u(a/0) =∞. Then a/0 contains an infinite independent subset and hence
so too does (a ∨ b)/0, and the result is true in this case.

So, we may assume that a/0 and b/0 both have finite Goldie dimension. Then,
there exist a finite independent subset S in a/0 and a finite independent subset T in
b/0 with

∨

S ∈ E(a/0) and
∨

T ∈ E(b/0). Because a∧b = 0, S∪T is an independent
subset of (a ∨ b)/0 by Corollary 2.2.2, so, in particular S ∩ T = ∅. Now, observe that
∨

(S ∪ T ) =
(
∨

S
)

∨
(
∨

T
)

∈ E((a ∨ b)/0) by Lemma 1.1.7 and Proposition 1.2.9. By
the definition of the Goldie dimension, we deduce the desired equality

u((a ∨ b)/0) = |S ∪ T | = |S |+ | T | = u(a/0) + u(b/0).
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(2) Assume first that u(a/0) =∞. Then, by Proposition 2.2.9, ∞ = u(a/0) = u(L).
So, we may assume that u(a/0) <∞. The result is trivial if L = 0, so we may suppose
that L is non-zero. If a ∈ E(L), then, by the definition of the Goldie dimension, there
exists a finite independent set S of uniform elements of a/0 such that

∨

S ∈ E(a/0).
Lemma 1.2.1 gives that

∨

S ∈ E(L), and so, |S| = u(a/0) = u(L).

(3) Assume that a 6∈ E(L). If u(a/0) = ∞, then necessarily u(L) = ∞ too,
so we may consider only the case u(a/0) = n < ∞. It follows that there exists an
independent subset {s1, . . . , sn} of a/0. Because a 6∈ E(L), there exists 0 6= b ∈ L
such that b ∧ a = 0. Then b ∧ (s1 ∨ · · · ∨ sn) = 0, so {b, s1, . . . , sn} is an independent
subset of L. Hence u(L) > n+ 1 > n = u(a/0) by Theorem 2.2.8(1), as desired.

(4) follows immediately from (2) and (3). �

Properties of the Goldie dimension

Theorem 2.2.13. Let a 6 b be elements of a lattice L ∈M0. Then

u(a/0) 6 u(b/0) 6 u(a/0) + u(b/a).

Proof. If u(b/0) = ∞ then u(a/0) 6 u(b/0). On the other hand, if u(b/0) is
finite then u(a/0) 6 u(b/0) by Theorem 2.2.8(1). Thus, in any case, u(a/0) 6 u(b/0).
Next, if u(a/0) =∞ or u(b/a) =∞ then clearly u(b/0) 6 u(a/0) + u(b/a).

Thus suppose that a/0 and b/a both have finite Goldie dimension. By Corollary
2.2.5, there exists a finite independent subset S of uniform elements of a/0 such that
∨

S ∈ E(a/0). Moreover, by Lemma 2.2.4 there exists a finite independent subset T of
uniform elements of b/0 such that S ∪ T is independent and

∨

(S ∪ T ) ∈ E(b/0), and
then

u(b/0) = |S ∪ T | = |S|+ |T | = u(a/0) + |T |.

We complete the proof by showing that |T | 6 u(b/a). Note first that a∧
(
∨

T
)

6= 0
would imply that (

∨

S)∧ (
∨

T ) 6= 0, contradicting Corollary 2.2.2. Thus a∧ (
∨

T ) = 0,
and then T ∪ {a} is independent by Lemma 2.2.1. Now suppose that T = {t1, . . . , tn}
for some n ∈ N. Then, for each 1 6 i 6 n− 1,

(ti+1 ∨ a) ∧ ((t1 ∨ a) ∨ · · · ∨ (ti ∨ a)) = (ti+1 ∨ a) ∧ (a ∨ t1 ∨ · · · ∨ ti)
= a ∨ ((ti+1 ∨ a) ∧ (t1 ∨ · · · ∨ ti)) = a ∨ 0 = a,

by Corollary 2.2.2. It follows that {t1∨a, . . . , tn∨a} is an independent subset of b/a by
Lemma 2.2.1. Finally, Theorem 2.2.8(1) gives that |T | = n 6 u(b/a), as required. �

Corollary 2.2.14. Let a be any element of a lattice L ∈M0. Then

u(a/0) 6 u(L) 6 u(a/0) + u([a)).

Proof. Suppose first that L has a greatest element 1. Then Theorem 2.2.13 gives
the following:

u(a/0) 6 u(1/0) = u(L) 6 u(a/0) + u(1/a) = u(a/0) + u([a)).

Now suppose that L does not have a greatest element. We define a new lattice L1 by
formally adjoining a greatest element i to L as follows. Given a, b ∈ L, the least upper
bound of a and b in L1 is a ∨ b in L, the greatest lower bound of a and b in L1 is
a ∧ b in L, a ∨ i = i, and a ∧ i = a. It is easy to check that L1 is a modular lattice.
By the first part of the proof we obtain the desired result
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u(a/0) 6 u(L1) = u(L) 6 u(a/0) + u(i/a) = u(a/0) + u([a)). �

Theorem 2.2.15. Let a and b be any elements of a lattice L ∈M0. Then

u(a/0) + u(b/0) 6 u((a ∨ b)/0) + u((a ∧ b)/0).

Proof. If a ∧ b = 0 then the result follows from Corollary 2.2.12(1). Now we
consider the general case. The result is clear when u((a ∨ b)/0) = ∞. Thus, suppose
that u((a∨ b)/0) <∞. By Corollary 2.2.6, there exists c ∈ b/0 with (a∧ b)∧ c = 0 and
(a∧b)∨c ∈ E(b/0). Corollary 2.2.12(1) and (4) give that u(b/0) = u((a∧b)/0)+u(c/0).
Note that a ∧ c 6 a ∧ (b ∧ c) = 0, so, using again Corollary 2.2.12(1) we have

u((a ∨ b)/0) > u((a ∨ c)/0) = u(a/0) + u(c/0) = u(a/0) + (u(b/0)− u((a ∧ b)/0)),

and the result follows. �

Observe that if a lattice L has finite Goldie dimension, it may happen that not all of
its sublattices [a) are so. To see that, consider the lattice K = L(Q) of all subgroups
of the Abelian group Q of rational numbers. Since Q is a uniform Z-module, we have
u(K) = 1, but the interval [Z) of K has infinite Goldie dimension because the torsion
Abelian group Q/Z is the infinite direct sum of its primary components.

We say that a lattice L is QFD (acronym for Quotient F inite D imensional) if [a)
has finite Goldie dimension for all a ∈ L. By Proposition 2.1.1 and Corollary 2.2.11(1),
Noetherian lattices are QFD.

Lattices with finite Goldie dimension

We now consider lattices with finite Goldie dimension and derive some of their prop-
erties. We begin with different characterizations for a lattice to have finite Goldie
dimension.

Theorem 2.2.16. The following statements are equivalent for a non-zero lattice
L ∈M0.

(1) L has finite Goldie dimension.
(2) Given any ascending chain a1 6 a2 6 . . . of elements of L, there exists n ∈ N

with ai ∈ E(ai+1/0) for all i > n.
(3) (a) L is E-complemented, and

(b) given any descending chain b1 > b2 > . . . of elements of L, there exists
m ∈ N such that bi+1 ∈ E(bi/0) for all i > m.

Proof. (1) =⇒ (2) Suppose that L has finite Goldie dimension. By Theorem 2.2.13,
for any ascending chain a1 6 a2 6 . . . in L, we have

u(a1/0) 6 u(a2/0) 6 . . . 6 u(L),

and hence there exists n ∈ N such that

u(an/0) = u(an+1/0) = . . . .

By Corollary 2.2.12(4), ai ∈ E(ai+1/0) for all i > n.

(2) =⇒ (1) Suppose that L contains an infinite independent subset {c1, c2, . . . }.
Then

c1 < c1 ∨ c2 < c1 ∨ c2 ∨ c3 < . . . ,

and c1 ∨ · · · ∨ cn /∈ E((c1 ∨ · · · ∨ cn+1)/0) for all n > 1 by Corollary 2.2.12(3).
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(1) =⇒ (3) Suppose that L has finite Goldie dimension. By Corollary 2.2.6, L
satisfies (3)(a). Also L satisfies (3)(b) by adapting the proof of (1) =⇒ (2).

(3) =⇒ (1) Assume that L is E-complemented but L does not have finite Goldie
dimension. Suppose that L \ {0} = E(L). Then, because L 6= 0, it has a non-
zero element which is necessarily uniform and essential in L, so u(L) = 1. Therefore
L \ {0} 6= E(L). Choose 0 6= x ∈ L \ E(L). By hypothesis, there exists a non-zero
element y ∈ L such that x ∧ y = 0 and x ∨ y ∈ E(L). If x/0 and y/0 both
have finite uniform dimension then so too does (x ∨ y)/0 by Corollary 2.2.12(1), and
consequently, also L has finite Goldie dimension by Corollary 2.2.12(4). Thus, there
exists b1 ∈ L \ E(L) such that b1/0 does not have finite Goldie dimension. Moreover,
Lemma 1.2.12(2) gives that b1/0 is E-complemented. Repeating this argument we
obtain an element b2 ∈ (b1/0) \ E(b1/0) such that b2/0 does not have finite Goldie
dimension. Proceed in the same way to obtain a descending chain b1 > b2 > . . . in L
such that bm+1 /∈ E(bm/0) for all m > 1. Now (3) =⇒ (1) follows immediately. �

Corollary 2.2.17. An Artinian lattice L ∈M0 has finite Goldie dimension ⇐⇒ L
is E-complemented.

Proof. Apply Corollary 2.2.6 and Theorem 2.2.16. �

Next we consider closed elements once more. First we prove the following straight-
forward lemma.

Lemma 2.2.18. Let c be a non-zero closed element in a lattice L ∈ M0 and let
{a1, . . . , an} be an independent set of (non-zero elements) of [c). Then, there exist ele-
ments 0 6= bi ∈ ai/0 (1 6 i 6 n) such that {c, b1, . . . , bn} is an independent subset of
L.

Proof. For each 1 6 i 6 n, c < ai but c /∈ E(ai/0) and hence c∧ bi = 0 for some
0 6= bi ∈ ai/0. It follows that

bj+1 ∧ (c ∨ b1 ∨ · · · ∨ bj) 6 aj+1 ∧ (a1 ∨ · · · ∨ aj) = c

for each 1 6 j 6 n− 1, so that

bj+1 ∧ (c ∨ b1 ∨ · · · ∨ bj) 6 c ∧ bj+1 = 0.

By Lemma 2.2.1, the set {c, b1, . . . , bn} is independent. �

Theorem 2.2.19. The following statements hold for a lattice L ∈ M0 with finite
Goldie dimension and c ∈ L.

(1) If c ∈ C(L) then u(L) = u(c/0) + u([c)).
(2) If L is essentially closed and u(L) = u(c/0) + u([c)) then c ∈ C(L).

Proof. (1) Suppose that c ∈ C(L). If u([c)) = ∞ then [c) contains an infinite
independent subset so that, by Lemma 2.2.18, L contains an infinite independent subset
and u(L) = ∞, a contradiction. Thus [c) has finite Goldie dimension. By Corollary
2.2.5 there exist n ∈ N and a set {u1, . . . , un} of uniform elements of [c) such that
u1 ∨ · · · ∨ un ∈ E([c)). By Lemma 2.2.18 and its proof, for each 1 6 i 6 n there exists
0 6= wi ∈ ui/0 such that c∧wi = 0 and {c, w1, . . . , wn} is an independent set of elements
of L. Now, Proposition 1.1.4 gives

wi/0 ≃ wi/(wi ∧ c) ≃ (wi ∨ c)/c 6 ui/c,



36 Chapter 2

so that wi is a uniform element for each 1 6 i 6 n. Set w := w1 ∨ · · · ∨ wn. Note that
c ∧ w = 0. We show next that c ∨ w ∈ E(L). Firstly, c ∨ w = (c ∨ w1) ∨ · · · ∨ (c ∨ wn)
and c 6= c ∨ wi 6 ui (1 6 i 6 n). By Lemma 2.2.7, c ∨ w ∈ E([c)), so c ∨ w ∈ E(L) by
Lemma 1.2.10. By Corollary 2.2.12,

u(L) = u((c ∨ w)/0) = u(c/0) + u(w/0) = u(c/0) + n = u(c/0) + u([c)).

(2) Suppose that L is essentially closed and let c ∈ L be such that

u(L) = u(c/0) + u([c)).

Proposition 1.2.22 gives that c ∈ E(d/0) for some c 6 d with d ∈ C(L). Applying (1)
and Corollary 2.2.12(4), we have

u(c/0) + u([c)) = u(L) = u(d/0) + u([d)) = u(c/0) + u([d)),

and so u([c)) = u([d)). But, using (1) again, d ∈ C([c)) implies that

u([d)) = u([c)) = u([d)) + u(d/c),

and hence u(d/c) = 0. By Lemma 2.2.3, we deduce that c = d, which proves that
c ∈ C(L). �

Corollary 2.2.20. Let L ∈ M0 be a lattice with finite Goldie dimension, and let
c < b in L with c ∈ C(L). Then u(c/0) < u(b/0).

Proof. Note first that c ∈ C(b/0) and hence u(b/0) = u(c/0)+u(b/c) by Theorem
2.2.19. But b/c 6= 0 implies that u(b/c) 6= 0 and the result follows. �

Corollary 2.2.21. Every lattice L ∈ M0 with finite Goldie dimension satisfies
ACC and DCC on closed elements.

Proof. Apply Corollary 2.2.20. �

Note that Corollary 2.2.21 implies that every lattice with finite Goldie dimension
satisfies ACC and DCC on pseudo-complements (see Proposition 1.2.16). Our next
objective is to present partial converses of Corollary 2.2.21. Recall that we have denoted
by P (L) the set of all pseudo-complement elements of L.

Theorem 2.2.22. The following statements are equivalent for an essentially closed
lattice L ∈M0.

(1) L has finite Goldie dimension.
(2) C(L) is a Noetherian poset.
(3) L is E-complemented and P (L) is a Noetherian poset.

Proof. (1) =⇒ (3) Apply Corollaries 2.2.6 and 2.2.21.

(3) =⇒ (2) Apply Corollary 1.2.17.

(2) =⇒ (1) Suppose that L does not have finite Goldie dimension and let {a1, a2, . . . }
be an infinite independent subset of L. By Proposition 1.2.22, there exists c1 ∈ C(L)
such that a1 ∈ E(c1/0). Proposition 1.2.22 gives an element c2 ∈ C(L) such that
c1 ∨ a2 ∈ E(c2/0). Then there exists c3 ∈ C(L) such that c2 ∨ a3 ∈ E(c3/0), and so on.
This produces a chain c1 6 c2 6 . . . of closed elements of L. Next, c1 ∧ a2 = 0 because
(c1 ∧ a2) ∧ a1 6 a1 ∧ a2 = 0 and a1 ∈ E(c1/0). By Lemma 1.2.1 and Proposition 1.2.9,
we deduce that a1 ∨ a2 ∈ E(c2/0). In the same way a1 ∨ a2 ∨ a3 ∈ E(c3/0) and, in
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general, a1 ∨ · · · ∨ an ∈ E(cn/0) for all n ∈ N. If cn = cn+1 for some n ∈ N, then it
would follow an+1 6 cn+1 = cn, and so an+1 ∧ (a1 ∨ · · · ∨ an) 6= 0, a contradiction. Thus
c1 < c2 < . . . and L does not satisfy ACC on closed elements. �

We now consider descending chain conditions.

Theorem 2.2.23. The following statements are equivalent for a pseudo-comple-
mented lattice L ∈M0.

(1) L has finite Goldie dimension.
(2) C(L) is an Artinian poset.
(3) P (L) is an Artinian poset.

Proof. (1) =⇒ (2) ⇐⇒ (3) by Corollaries 2.2.21 and 1.2.17 and Proposition
1.2.18(1).

(2) =⇒ (1) Note that P (L) = C(L) and P (b/0) = C(b/0) for all b ∈ L by Lemma
1.2.20, Corollary 1.2.17, and Proposition 1.2.18. Suppose that L does not have finite
Goldie dimension and let {a1, a2, . . . } be an infinite independent subset of L. Let b1
be any pseudo-complement of a1 in L. Note that b1 ∈ C(L) by Proposition 1.2.16.
By Lemma 1.2.15, a1 ∨ b1 ∈ E(L) so that (a1 ∨ b1) ∧ a2 6= 0. Lemma 1.2.6 gives
that (a1 ∨ a2) ∧ b1 6= 0. By Lemma 1.2.20 there exists a pseudo-complement b2 of
(a1 ∨ a2) ∧ b1 in b1/0. Then b1 > b2, for otherwise we would have b1 = b2, and then
0 = (a1 ∨ a2) ∧ b1 ∧ b2 = (a1 ∨ a2) ∧ b1, a contradiction. By Corollary 1.2.14, b2 ∈ C(L).
Next, ((a1 ∨ a2) ∧ b1) ∨ b2 ∈ E(b1/0) by Lemma 1.2.15, and hence

a1 ∨ ((a1 ∨ a2) ∧ b1) ∨ b2) ∈ E(L),

by Lemmas 1.2.1 and 1.2.7. Next, using Lemma 1.2.1 again we see that a1∨a2∨b2 ∈ E(L)
because

a1 ∨ ((a1 ∨ a2) ∧ b1) ∨ b2 6 a1 ∨ a2 ∨ b2.

In particular, this means that (a1 ∨ a2 ∨ b2) ∧ a3 6= 0 and hence (a1 ∨ a2 ∨ a3) ∧ b2 6= 0
by Lemma 1.2.6. Let b3 be a pseudo-complement of (a1 ∨ a2 ∨ a3) ∧ b2 in b2/0 (Lemma
1.2.20). Note that b2 > b3 and, by Corollary 1.2.14 and Proposition 1.2.16, b3 ∈ C(L).
Repeat this argument to produce an infinite descending chain b1 > b2 > b3 > . . . of
closed elements bi (i > 1) of L. Thus L does not satisfy DCC on closed elements, and
we are done. �

Corollary 2.2.24. The following statements are equivalent for a strongly pseudo-
complemented lattice L ∈M0.

(1) L has finite Goldie dimension.
(2) C(L) is a Noetherian poset.
(3) P (L) is a Noetherian poset.
(4) C(L) is an Artinian poset.
(5) P (L) is an Artinian poset.

Proof. By Theorems 1.2.24, 2.2.22, and 2.2.23. �

Irreducible decompositions and Goldie dimension

Now we consider another type of special elements of a lattice L and we show how
these elements can be used to characterize when the lattice has finite Goldie dimension.
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An element x of a lattice L is said to be meet irreducible, or just irreducible,
provided whenever x = y ∧ z for some y, z ∈ L then x = y or x = z.

The concept of an irreducible element of a lattice is the latticial counterpart of that
of an irreducible submodule of a module. Notice that an irreducible submodule of a
module M is by definition a proper submodule of M. For this reason, if a lattice L
has a greatest element 1, then, an irreducible element of L has to be, by definition, a
proper element of L; in this case, clearly x ∈ L is an irreducible element of L if and
only if 1/x is a uniform lattice.

Theorem 2.2.25. Let L ∈ M0 be a non-zero essentially closed lattice with finite
Goldie dimension. Then there exist n ∈ N and irreducible elements ai (1 6 i 6 n) of
L such that 0 = a1 ∧ · · · ∧ an.

Proof. Suppose that u(L) = n, for some n ∈ N. By definition, there exists an
independent set of uniform elements ui ∈ L (1 6 i 6 n) such that u1∨ · · ·∨un ∈ E(L).
For each 1 6 i 6 n, Proposition 1.2.22 gives a closed element ci in L such that

u1 ∨ · · · ∨ ui−1 ∨ ui+1 ∨ · · · ∨ un ∈ E(ci/0).

Note that ci ∧ ui = 0 and u(ci/0) = n− 1 for every 1 6 i 6 n). Let c = c1 ∧ · · · ∧ cn.
Then c ∧ u1 6 c1 ∧ u1 = 0, so that c ∧ u1 = 0. Now suppose that c ∧ (u1 ∨ · · · ∨ ui) = 0
for some 1 6 i 6 n− 1. Then

(c ∨ (u1 ∨ · · · ∨ ui)) ∧ ui+1 6 ci+1 ∧ ui+1 = 0.

By Lemma 1.2.6, c∧ (u1∨ · · ·∨ui+1) = 0. By induction, we have c∧ (u1∨ · · ·∨un) = 0,
and hence c = 0 because u1 ∨ · · · ∨ un ∈ E(L).

Let 1 6 j 6 n. By Theorem 2.2.19,

n = u(L) = u(cj/0) + u([cj)) = n− 1 + u([cj)),

so that u([cj)) = 1. It is easy to see that this implies that cj is an irreducible element
of L. Thus, cj is an irreducible element of L for each 1 6 j 6 n, as required. �

Clearly, 0 is a closed element in any lattice. The next result shows that the conclu-
sion of Theorem 2.2.25 holds for any closed element of L and not only for 0.

Corollary 2.2.26. Let L ∈ M0 be a non-zero essentially closed lattice with finite
Goldie dimension. Then every closed element c of L can be written as c = a1∧· · ·∧am
for some m ∈ N and irreducible elements ai (1 6 i 6 m) of L.

Proof. Let c ∈ C(L). By Corollary 1.2.23 the sublattice [c) of L is essentially
closed and, by Theorem 2.2.19(1), [c) has finite Goldie dimension. The result follows
by Theorem 2.2.25. �

The two results above can be reformulated by using the concept of an irreducible
decomposition. If x is an element of a lattice L, then a representation

x = x1 ∧ . . . ∧ xn

of x as a meet of finitely many irreducible elements x1, . . . , xn of L is called a finite
irreducible decomposition of x, which is said to be irredundant if for each 1 6 i 6 n,

x 6= x1 ∧ . . . xi−1 ∧ xi+1 ∧ . . . ∧ xn.
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If x has a finite irreducible decomposition, then clearly it has an irredundant finite
irreducible decomposition by deleting in the original decomposition those irreducible
elements xi such that

∧

j 6=i xj 6 xi.

Theorem 2.2.27. Let L ∈ M0 be a non-zero lattice such that 0 has a finite irre-
ducible decomposition 0 = b1 ∧ · · · ∧ bn for some m ∈ N. Then L has finite uniform
dimension and u(L) 6 n. Moreover, u(L) = n if and only if the considered irreducible
decomposition is irredundant.

Proof. As just mentioned above, the given irreducible decomposition of 0 produces
an irredundant irreducible decomposition 0 = a1 ∧ · · · ∧ am, with 1 6 m 6 n. For each
1 6 i 6 m set

wi := a1 ∧ · · · ∧ ai−1 ∧ ai+1 ∧ . . . ∧ am.

Since ai ∧wi = 0 for each 1 6 i 6 m, we deduce that {w1, . . . , wm} is an independent
subset of L. Moreover, for each 1 6 i 6 m,

wi/0 = wi/(wi ∧ ai) ≃ (wi ∨ ai)/ai.

It follows that wi is uniform for each 1 6 i 6 m because ai is irreducible in (wi∨ai)/ai.
We are now going to prove by induction on m that

∨

16i6mwi ∈ E(L), which
will imply that u(L) = m 6 n by Theorem 2.2.8(1), as desired. Remember that m
is a positive integer such that 0 has a finite irredundant irreducible decomposition
0 = a1 ∧ · · · ∧ am.

If m = 1 then 0 = a1 is an irreducible element of L, i.e., L is a uniform lattice,
which means exactly that u(L) = 1. If m > 2, then observe that w1 = a2 ∧ . . . ∧ am
is an irredundant decomposition of the least element w1 in the lattice [w1), and so
u([w1)) = m− 1.

Assume that w1∨ · · ·∨wm 6∈ E(L). Then b∧ (w1∨ · · ·∨wm) = 0 for some non-zero
b ∈ L. By Lemma 2.2.1, we deduce that {w1, . . . wm, b} is an independent subset of L,
so, by Proposition 1.1.4, we have

(w2 ∨ · · · ∨ wm ∨ b)/0 = (w2 ∨ · · · ∨ wm ∨ b)/(w1 ∧ (w2 ∨ · · · ∨ wm ∨ b)) ≃

≃ (w1 ∨ w2 ∨ · · · ∨ wm ∨ b)/w1 ⊆ [w1).

By Theorem 2.2.8(1), it follows that u([w1)) > m > 2. We obtained a contradiction
because we have seen that wi is a uniform lattice, i.e., u([wi)) = 1 for each 1 6 i 6 m,
in particular u([w1)) = 1. Consequently, we must have w1∨· · ·∨wm 6∈ E(L), as desired.

Conversely, suppose that u(L) = n. If the given irreducible decomposition

0 = b1 ∧ · · · ∧ bn

is not irredundant, then as above, it produces an irredundant irreducible decomposition

0 = a1 ∧ · · · ∧ am

with m < n, and then from (1) it follows that u(L) = m, which is a contradiction. The
result follows. �

Corollary 2.2.28. An essentially closed lattice L ∈ M0 has finite Goldie dimen-
sion if and only if 0 has a finite irreducible decomposition in L.

Proof. The result follows from Theorems 2.2.25 and 2.2.27. �
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By considering the opposite lattice Lo of a lattice L, all the results in this section
can be dualized. An element x of a lattice L with greatest element 1 will be called
join irreducible if x 6= 1, and whenever x = y ∨ z for some elements y, z ∈ L then
x = y or x = z. Thus, x is join irreducible in L if and only if x is irreducible in Lo.
Corollary 2.2.28 gives the following fact:

A superfluously closed modular lattice L with greatest element 1 has finite dual Goldie
dimension if and only if there exist n ∈ N and join irreducible elements ai (1 6 i 6 n)
such that 1 = a1 ∨ · · · ∨ an.

Other dual results can be derived by the interested reader.

Subdirect irreducibility and completely irreducible elements

The concept of subdirectly irreducible, abbreviated SI , appears in various circum-
stances: universal algebras, rings, modules, lattices, posets, etc. Loosely speaking, an
object of a category with direct products is called subdirectly irreducible if it cannot
be represented as a subdirect product of “smaller” subobjects (i.e., proper epimorphic
images). We shall illustrate below more precisely this concept for module categories.

A module MR is called subdirectly irreducible if any representation ofM as a subdirect
product of other modules is trivial, i.e., for every family (Mi)i∈I of right R-modules
and for every monomorphism ε : M ֌

∏

i∈I Mi such that πj ◦ ε is an epimorphism
∀ j ∈ I, ∃ i ∈ I such that πi ◦ ε is an isomorphism, where πj :

∏

i∈I Mi ։ Mj , j ∈ I,
are the canonical projections.

The concept of a subdirectly irreducible module turns out to be the dual of that of
a cyclic module, and therefore such a module is also called cocyclic (see, e.g., [88]). A
simple result states that a module MR is subdirectly irreducible if and only if the poset
L(M) \ {0} of non-zero submodules of M, ordered by inclusion, has a least element
(see, e.g., [88, 14.8]). This naturally leads to the most general concept of a subdirectly
irreducible poset.

A poset P with least element 0 is said to be subdirectly irreducible, abbreviated
SI, if P 6= {0} and the set P \ {0} has a least element, i.e., there exists an element
0 6= x0 ∈ P such that x0 6 x for every 0 6= x ∈ P . An element s ∈ P is said to
be a subdirectly irreducible element of P if the interval 1/s is a subdirectly irreducible
poset, and the set of all subdirectly irreducible elements of P will be denoted by S(P ).

Let L be a complete lattice. We say that L is completely uniform if L 6= {0} and
∧

i∈I xi 6= 0 for any non-empty family (xi)i∈I of non-zero elements xi ∈ L. Notice that
this concept does not agree with that of a completely P poset we introduced in Section
1.2.

An element x ∈ L is said to be completely irreducible, abbreviated CI, if x 6= 1 and
whenever x =

∧

i∈I ai for a non-empty family (ai)i∈I of elements of L, then x = aj
for some j ∈ I, or shortly, if x 6= 1 and whenever x =

∧

S for some ∅ 6= S ⊆ L, then
necessarily x ∈ S.

For any lattice L we denote by I(L) the set of all irreducible elements of L and by
Ic(L) the set of all completely irreducible elements of L. For any module MR we set
I(MR) := I(L(MR)) and Ic(MR) := Ic(L(MR)).

Remarks 2.2.29. (1) The set Ic(L) may be empty: take as L the interval [0, 1] of
real numbers. However, for any non-zero module MR we have Ic(MR) 6= ∅ (see, e.g.,
[27, Lemma 0.2]).
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(2) Clearly, for any lattice L we have Ic(L) ⊆ I(L). In general, the inclusion
Ic(L) ⊆ I(L) may be strict. Indeed, if L is the interval [0, 1] of the set R of real
numbers, then Ic(L) = ∅ and I(L) = L.

(3) The set I(L) may be also empty. Indeed, let I = [0, 1) ⊆ R and consider the
lattice L = (I × I) ∪ {(1, 1)} ordered componentwise. For any (a, b) ∈ L \ {(1, 1)} we
have (a, b) = ((1 + a)/2, b) ∧ (a, (1 + b)/2). Hence (a, b) is not meet irreducible in L.
However, for any non-zero module MR we have I(MR) 6= ∅ by (1) and (2).

(4) If L is a complete lattice, then clearly s ∈ L is a subdirectly element of L if
and only if s is completely irreducible, so S(L) = Ic(L). In the sequel, for the term of
subdirectly irreducible element of any lattice, we will always use the term of completely
irreducible element. �

Proposition 2.2.30. The following statements are equivalent for a non-zero com-
plete lattice L.

(1) L is subdirectly irreducible.
(2)

∧

x∈L\{0} x 6= 0.
(3) L is completely uniform.
(4) L has an atom a such that a 6 x, ∀ x ∈ L \ {0}.
(5) L has an atom a that is essential in L.
(6) L is uniform and Soc(L) 6= 0.

Proof. (1) =⇒ (2) If x0 is the least element of L \ {0}, then 0 6= x0 6
∧

x∈L\{0} x.

(2)⇐⇒ (3) is clear.

(3) =⇒ (4) If a :=
∧

x∈L\{0} x, then a is an atom, and a 6 x, ∀ x ∈ L \ {0}.

(4) =⇒ (5) For any x ∈ L\{0}, we have a 6 x, so x∧a = a 6= 0, i.e., a is essential
in L.

(5) =⇒ (6) Let x, y ∈ L\{0}. Then a∧x 6= 0 and a∧y 6= 0 since a is essential in
L, so a∧x = a and a∧ y = a since a is an atom of L. It follows that a 6 x and a 6 y,
which implies that 0 6= a 6 x∧ y, i.e., L is uniform. Clearly a 6 Soc(L), so Soc(L) 6= 0.

(6) =⇒ (1) Since Soc(L) 6= 0, L has at least an atom, say a. We claim that a
is the single atom of L; indeed, if a′ is another atom of L, then a ∧ a′ 6= 0 since L is
uniform, so a ∧ a′ = a = a′. It follows that Soc(L) = {a}. For every x ∈ L \ {0} we
have 0 6= x ∧ a 6 a, so x ∧ a = a, and then a 6 x. This shows that a is the least
element of L \ {0}; hence L is subdirectly irreducible. �

Corollary 2.2.31. If L is a complete semi-Artinian lattice then I(L) = Ic(L).

Proof. If x ∈ I(L), then the lattice 1/x is uniform, and Soc(1/x) 6= 0 since L is
semi-Artinian lattice, so 1/x is a subdirectly irreducible lattice by Proposition 2.2.30,
i.e., x ∈ Ic(L), as desired. �

Proposition 2.2.32. The following statements are equivalent for a complete lattice
L and 1 6= c ∈ L.

(1) c ∈ Ic(L).
(2) There exists 0 6= x0 ∈ L such that c is maximal with respect to x0 66 c.
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Proof. (1) =⇒ (2) Because the lattice L was assumed to be complete, we can
consider its element y0 :=

∧

x>c x. Then y0 > c since c is CI, so y0 
 c. Now, c is
maximal with respect to y0 66 c, since for any d > c we have y0 6 d by the definition
of y0. Thus (2) holds with x0 as y0.

(2) =⇒ (1) If we consider again the element y0 :=
∧

x>c x of L, then clearly y0 > c.
In order to prove that c is CI, i.e., 1/c is a SI lattice, by Proposition 2.2.32, we must
show that y0 6= c. We have x0 6 x for every x > c by the maximality condition of c
in (2). This implies that x0 6 y0. We cannot have y0 = c since then x0 6 c, which
contradicts (2). �

Observe that if x0 6= 0 is any compact element of a complete lattice L, then the set
L0 = { x ∈ L | x0 66 x } is inductive, so Zorn’s Lemma can be applied to find a maximal
element c of L0, which is completely irreducible by Proposition 2.2.32.

Note that for any module MR, the lattice L(M) of all submodules of M has the
property that for each N < P in L(M), the quotient module P/N has a subdirectly
quotient module P/Q by Remarks 2.2.29(1), so we may say that the lattice L(M) is
“rich in subdirectly irreducibles”. We take this property as definition for an arbitrary
lattice or poset.

A lattice L is said to be rich in subdirectly irreducibles, abbreviated RSI , if for every
a < b in L, the interval b/a has a subdirectly irreducible quotient interval b/c, where
a 6 c 6 b. This concept is indispensable in the evaluation of the dual Krull dimension
of lattices, see Section 2.3.

The next characterization of RSI lattices and its immediate corollary provides large
classes of such lattices (see Section 2.3 for Gabriel and Krull dimension).

Proposition 2.2.33. The following assertions are equivalent for an upper continu-
ous modular lattice L.

(1) L is RSI.
(2) For each a < b in L there exist x < y in b/a such that y/x is simple.
(3) For each a < b in L there exist x < y in b/a such that y/x is compact.
(4) For each a < b in L there exist x < y in b/a such that y/x is compactly

generated.
(5) For each a < b in L there exist x < y in b/a such that y/x has (dual ) Krull

dimension.
(6) For each a < b in L there exist x < y in b/a such that y/x has Gabriel

dimension.

Proof. See [20, Proposition 1.2]. �

Corollary 2.2.34. Let L be an upper continuous modular lattice. If L has Gabriel
dimension or is compactly generated, then L is RSI. In particular, if L is Artinian,
semi-Artinian, Noetherian, or has (dual ) Krull dimension, then L is RSI. �

The property of a lattice L being RSI is related to the property of L being a lattice
with completely irreducible decomposition,, abbreviated CID, which means that every
1 6= a ∈ L can be written as a meet of a family, not necessarily finite, of CI elements
of L, or equivalently a =

∧

x∈Ic(1/a) x.

Proposition 2.2.35. The following statements are equivalent for a non-zero upper
continuous modular lattice L.
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(1) The lattice L is RSI.
(2) For every a < b in L, one has a =

∧

x∈Ic(b/a) x.

In particular, if L is RSI, then 0 =
∧

x∈Ic(L) x.

Proof. See [20, Lemma 1.6] �

Remarks 2.2.36. (1) Consider the subset L = {0} ∪ [1/2, 1] of R. Then 0 is the
only CI element of the lattice L, but for every 0 < a < b in L, the interval [a, b] has no
CI elements; in particular, the lattice L is not RSI. This example shows that an upper
continuous modular lattice L may satisfy the property 0 =

∧

x∈Ic(L) x of Proposition
2.2.35 without being necessarily RSI.

(2) By Corollary 2.2.34 and Proposition 2.2.35, any proper submodule of any module
MR is an intersection of CI submodules of M .

(3) Proposition 2.2.35 can be expressed by saying that a lattice L is RSI if and only
if, for every 0 6= b ∈ L, the lattice b/0 is with CID. In particular, any RSI lattice
is a lattice with CID. The converse may be not true. Indeed, consider the following
example: let L := { (x, y) | x, y ∈ [0, 1], x + y 6 1} ∪ {(1, 1)}, where [0, 1] is the unit
interval in the set R of all real numbers. Then L, ordered componentwise by the usual
relation 6 is a complete semimodular lattice. Since the only covering pairs in L are
(x, 1− x) ≺ (1, 1), x ∈ [0, 1], it follows that L is not RSI. However, every element of L
can be written as an irredundant intersection of at most two coatoms, so, L is a lattice
with CID. By coatom of L we mean an atom of Lo, i.e., a maximal element of L \ {1}.

(4) Observe that if L is a lattice with CID, and a, b ∈ L, then b 66 a if and only if
there exists a CI element c ∈ L such that a 6 c and b 66 c. Indeed, assume that for
any CI element c ∈ L such that a 6 c we also have b 6 c. Since L is with CID, we
can write a =

∧

i∈I ci with CI irreducible elements ci, i ∈ I. Then b 6 ci, ∀ i ∈ I, so
b 6

∧

i∈I ci = a. This shows the nontrivial implication. �

(5) In [9] it is investigated when a decomposition, not necessarily finite, of an element
of an upper continuous modular lattice L with CID as a meet of irreducible/completely
irreducible elements is irredundant or unique. Recall that a decomposition x =

∧

i∈I xi
is said to be an irredundant irreducible decomposition, respectively, an irredundant com-
pletely irreducible decomposition, if

∧

j∈I\{i} xj 66 xi for every i ∈ I, in other words,
none of the xi’s can be omitted without changing the intersection. �

Recent results on completely irreducible submodules of a module and their connec-
tions with primal submodules, primary submodules, and their meet decompositions may
be found in [33] and [35].

Dual Goldie dimension

We end this section by considering lattices L with a greatest element 1 and with the
property that the opposite lattice Lo does not contain an infinite independent subset
or, in other words, the lattice L does not contain an infinite coindependent subset. An
element h of L is a uniform element of Lo if and only if h is proper (i.e., h 6= 1) and
a ∨ b 6= 1 for all proper elements a, b ∈ 1/h. Such an element h is called hollow.

Theorem 2.2.37. Let L ∈ M1 be a non-zero lattice which does not contain an
infinite coindependent subset. Then there exists a finite coindependent set H of hollow
elements of L such that

∧

H ∈ S(L). Moreover, |H| is an invariant of L.
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Proof. Apply Corollary 2.2.5 and Theorem 2.2.8(2) to the lattice Lo. �

If L ∈M1 is a non-zero lattice with no infinite coindependent subset then we shall
call the invariant |H| in Theorem 2.2.37 the dual Goldie dimension or dual uniform
dimension of L and will denote it by uo(L). In case L is the zero lattice we define
the dual Goldie dimension of L to be 0, and in case L is a lattice with an infinite
coindependent subset we define the dual Goldie dimension of L by uo(L) = ∞. Then
Corollary 2.2.6 gives that every lattice with finite dual Goldie dimension is weakly
supplemented. We shall leave to the reader to deduce from the above results for Goldie
dimension corresponding results for dual Goldie dimension.

2.3. Krull dimension and Gabriel dimension

The idea of dimension is fundamental in many parts of Mathematics. Very intu-
itively, each kind of dimension “takes the measure” of the involved concepts from Math-
ematics in the form of numerical invariants, cardinal invariants, or ordinal invariants.
Usually, it measures the deviation of a certain system from some ideal situation, or how
likely or unlikely a certain object is to enjoy a certain property, or the progress in some
inductive procedure. The most important dimensions encountering in Algebra, and in
particular in Ring and Module Theory, are Krull dimension, Goldie dimension, Gabriel
dimension, (co)homological dimension, and Gelfand-Kirillov dimension.

We have studied in Section 2.2 the concept of Goldie dimension of lattices. In
this section we shall discuss the notions of Krull dimension and Gabriel dimension of
arbitrary posets.

Krull dimension: a brief history

• 1923: E. Noether explores the relationship between chains of prime ideals and
dimensions of algebraic varieties.
• 1928: W. Krull develops Noether’s idea into a powerful tool for arbitrary

commutative Noetherian rings. Later, writers gave the name (classical ) Krull
dimension to the supremum of lengths of finite chains of prime ideals in a ring.
• 1962: P. Gabriel [52] introduces an ordinal valued dimension which he named

“Krull dimension” for objects in an Abelian category using a transfinite sequence
of localizing subcategories.
• 1967: R. Rentschler and P. Gabriel introduce the deviation of an arbitrary

poset, but only for finite ordinals.
• 1970: G. Krause introduces the ordinal valued version of the Rentschler-

Gabriel definition, but only for modules over an arbitrary unital ring.
• 1972: B. Lemonnier [59] introduces the general ordinal valued notion of devi-

ation of an arbitrary poset, called in the sequel Krull dimension.
• 1973: R. Gordon and J. C. Robson [54] give the name Gabriel dimension to

Gabriel’s original definition after shifting the finite values by 1, and provide an
incisive investigation of the Krull dimension of modules and rings.
• 1985: M. Pouzet and N. Zaguia [80] introduce the more general concept of
Γ-deviation of an arbitrary poset, where Γ is any set of ordinals.
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The definition of the Krull dimension of a poset

The Krull dimension of a poset P (also called deviation of P and denoted by
dev(P )) is an ordinal number denoted by k(P ), which may or may not exist, and is
defined recursively as follows:

• k(P ) = −1 ⇐⇒ P = 0, where −1 is assumed to be the predecessor of 0.
• k(P ) = 0 ⇐⇒ P 6= 0 and P is Artinian.
• Let α > 1 be an ordinal number, and assume that we have already defined

which posets have Krull dimension β for any ordinal β < α. Then we define
what it means for a poset P to have Krull dimension α : k(P ) = α if and
only if we have not defined k(P ) = β for some β < α , and for any descending
chain

x1 > x2 > . . . > xn > xn+1 > . . .

of elements of P , ∃n0 ∈ N such that ∀n > n0, k(xn/xn+1) < α, i.e.,
k(xn/xn+1) has previously been defined and it is an ordinal < α.
• If no ordinal α exists such that k(P ) = α , we say that P does not have Krull

dimension.

An alternative more compact equivalent definition of the Krull dimension of a poset
is that involving the concept of an Artinian poset relative to a class of posets. If X

is an arbitrary non-empty subclass of the class P of all posets, a poset P is said to
be X-Artinian if for every descending chain x1 > x2 > . . . in P, ∃ k ∈ N such that
xi/xi+1 ∈ X, ∀ i > k. The notion of an X-Noetherian poset is defined similarly.

For every ordinal α > 0 , we denote by Pα the class of all posets having Krull
dimension < α. Then, it is easily seen that a poset P has Krull dimension an ordinal
α > 0 if and only if P 6∈ Pα and P is Pα-Artinian. So, roughly speaking, the Krull
dimension of a poset P measures how close P is to being Artinian.

The definition of the dual Krull dimension of a poset

The dual Krull dimension of a poset P (also called codeviation of P and denoted
by codev(P )), denoted by ko(P ), is defined as being (if it exists!) the Krull dimension
k(P o) of the opposite poset P o of P . If α is an ordinal, then the notation k(P ) 6 α
(respectively, ko(P ) 6 α ) will be used to indicate that P has Krull dimension (respec-
tively, dual Krull dimension) and it is less than or equal to α.

The existence of the dual Krull dimension ko(P ) of a poset P is equivalent with
the existence of the Krull dimension k(P ) of P in view of the following nice result of
Lemonnier [59, Théorème 5, Corollaire 6]:

Theorem 2.3.1. An arbitrary poset P does not have Krull dimension if and only if
P contains a copy of the (usually) ordered set D = {m/2n |m ∈ Z, n ∈ N } of dyadic
real numbers. Consequently, P has Krull dimension if and only if P has dual Krull
dimension. �

Remember that

P is Artinian (respectively, Noetherian) ⇐⇒ k(P ) 6 0 (respectively, ko(P ) 6 0).

So, we immediately deduce from Theorem 2.3.1 the following fact, which usually is
proved in a more complicated way: any Noetherian poset has Krull dimension.

The following problem naturally arises:
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Problem. Let P be a poset with Krull dimension. Then P also has dual Krull
dimension. How are the ordinals k(P ) and ko(P ) related? �

For other basic facts on the Krull dimension and dual Krull dimension of an arbitrary
poset the reader is referred to [59] and [62].

Krull dimension and dual Krull dimension of modules and rings

Recall that for a module M one denotes by L(M) the lattice of all submodules of
M . The following ordinals (if they exist) are defined in terms of the lattice L(M).

• Krull dimension of M : k(M) := k(L(M)).
• Dual Krull dimension of M : ko(M) := ko(L(M)).
• Right Krull dimension of R: k(R) := k(RR).
• Right dual Krull dimension of R: ko(R) := ko(RR).

The problem we presented above for arbitrary posets can be specialized to modules and
rings as follows (see also the last subsection of Chapter 4):

Problem. Compare the ordinals k(M) and ko(M) of a given module MR with
Krull dimension. In particular, compare the ordinals k(R) and ko(R) of a ring R with
right Krull dimension. �

The Faith’s SI Theorem

A lovely 15-year-old result of Carl Faith [50] states:

Faith’s SI Theorem (FT). A module is Noetherian if and only if it is QFD and
satisfies the ACC on its subdirectly irreducible submodules. �

Recall that a module MR is called quotient finite dimensional (or QFD) if any
quotient module of M has finite Goldie dimension, i.e., the lattice L(M) of all its
submodules is a QFD lattice. Also, recall that the subdirectly irreducible submodules
of M have been called in Section 2.2 completely irreducible submodules, and their
collection denoted by Ic(M). Thus, FT can be stated as follows:

L(M) is a Noetherian poset ⇐⇒ M is QFD and Ic(M) is a Noetherian poset.
Since an arbitrary poset P is Noetherian if and only if it has dual Krull dimension

k0(P ) 6 0, FT can be reformulated in a dual Krull dimension setting as follows:
FT0: k0(L(M)) 6 0⇐⇒ L(M) is a QFD lattice and k0(Ic(M)) 6 0.

The following natural problems related to FT arise:
(1) Investigate whether the dual FT0 of the FT holds.
(2) Do the above reformulation FT0 of the FT hold for an arbitrary ordinal α

instead of 0, i.e., is the following statement
FTα: k0(L(M)) 6 α⇐⇒ L(M) is a QFD lattice and k0(Ic(M)) 6 α

true? A similar question for its dual FT0
α.

(3) Extend (2) from the lattice L(M) to an arbitrary upper continuous modular
lattice L.

(4) Apply (3) to Grothendieck categories and to module categories equipped with
hereditary torsion theories.

We present below only a result concerning these four problems. More results on this
topic may be found in [27] and [20].
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Theorem 2.3.2. (The Latticial FTn). The following statements are equivalent
for an upper continuous modular lattice L and a positive integer n.

(1) k0(L) 6 n.
(2) L is both QFD and RSI, and k0(Ic(L)) 6 n.

Proof. See [20, Theorem 1.18]. �

As we have seen in Corollary 2.2.34, the lattice L(MR) is always RSI, so FTn is
true for L = L(MR), MR any module, and any n ∈ N.

For a survey on the Faith’s SI Theorem and its various extensions and dualizations
the reader is referred to [12].

Classical Krull dimension of rings and posets

A crucial concept in Commutative Algebra, which actually originated the general
concept of Krull dimension of an arbitrary poset, is that of classical Krull dimension
cl.K.dim(R) of a commutative ring R, introduced by W. Krull in 1928; this is the
supremum of length of chains of prime ideals of R, which is either a natural number or
∞. The following result relates the Krull dimension of a ring with its classical Krull
dimension.

Theorem 2.3.3. If R is a commutative ring with finite Krull dimension k(R), then

k(R) = cl.K.dim(R).

Proof. See [54, Proposition 7.8]. �

A more accurate ordinal valued variant of the original Krull’s classical dimension of
a ring R, not necessarily commutative, is due to Gabriel (1962) [52] and Krause (1970).
This can be easily carried out from the poset Spec(R) of all two-sided prime ideals of
R to an arbitrary poset P to define a so called classical Krull dimension cl.K.dim(P )
of P .

To do that, we denote by Max(P ) the set, possibly empty, of all maximal elements
of P . As in [1], we define recursively the following subsets of P :

P0 := Max(P ),

and for any ordinal number α > 1,

Pα := { x ∈ P | x < y =⇒ y ∈
⋃

β<α Pβ }.

Thus, we obtain an ascending chain

P0 ⊆ P1 ⊆ P2 ⊆ . . .

of subsets of P , called the Krull filtration of P . There exists a least ordinal λ(P ) such
that Pλ(P ) = Pλ(P )+1. Clearly, Pλ(P ) 6= ∅ ⇐⇒ Max(P ) 6= ∅. We say that P has
classical Krull dimension if P = Pλ(P ), and in this case λ(P ) is called the classical
Krull dimension of P and is denoted by cl.K.dim(P ).

Lemma 2.3.4. For any poset P and any ordinal α, either Pα = ∅ or Pα is a
Noetherian poset.
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Proof. Assume that Pα 6= ∅. Let ∅ 6= X ⊆ Pα, and let β be the least element
of the set { γ 6 α |X ∩ Pγ 6= ∅ } of ordinals. Clearly β is a non limit ordinal. Let
x ∈ X ∩ Pβ. We claim that x ∈ Max (X). Indeed, if β = 0 then x ∈ P0 = Max (P ),
so x ∈ Max (X). If β > 0 and x < y with y ∈ X, then y ∈ Pβ−1, so y ∈ X ∩ Pβ−1,
which contradicts the definition of β. �

Proposition 2.3.5. A poset P has classical Krull dimension if and only if P is
Noetherian.

Proof. If P has classical Krull dimension, then P = Pλ(P ), so P is Noetherian by
Lemma 2.3.4.

Conversely, assume that P is a Noetherian poset and P 6= Pλ(P ). Then, there exists
a maximal element x of P \ Pλ(P ). It follows that x ∈ Pλ(P )+1 because x < y implies
y ∈ Pλ(P ). Therefore P = Pλ(P ), i.e., P has classical Krull dimension. �

Finally, note that a different classical Krull dimension cl.k.dim(R) of a ring R, called
the little classical Krull dimension of R is also defined in the literature. Its relations
with k(R) and cl.K.dim(R) are given in [54, Proposition 7.9]. Of course, this concept
can be clearly extended to an arbitrary poset P to obtain the so called little classical
Krull dimension cl.k.dim(P ) of P .

Gabriel dimension

The notion of Gabriel dimension for objects of an Abelian category A has been
introduced by P. Gabriel [52] under the name of Krull dimension using quotient cate-
gories and a transfinite sequence of localizing subcategories of A. Roughly speaking, it
measures the deviation of objects of A from the semi-Artinian type. R. Gordon and
J. C. Robson [54] renamed the original Gabriel’s name of this dimension into Gabriel
dimension after shifting the finite values by 1.

We present below after [4], [5] the definition of the Gabriel dimension of an arbitrary
poset P (for Gabriel dimension of upper continuous modular lattices, see also [74], [81]).
Similarly to the Krull dimension of a poset, it is an ordinal number denoted by g(P ),
which may or may not exist, and is defined recursively as follows:

• g(P ) = 0 ⇐⇒ P is a trivial poset (this means that a = b for all a 6 b in P ).
• Let α > 1 be an ordinal number, and assume that we have already defined

which posets do have Gabriel dimension β for any ordinal β < α. Then we
define what it means for a poset P to have Gabriel dimension g(P ) = α.

• First, we say that P is γ-simple, where γ is a non limit ordinal such that
1 6 γ 6 α, if P is non trivial and for each x ∈ P which is not minimal in P one
has g((x]) 6< γ (this means that we have not g((x]) = β for some β < γ) and
g([x)) < γ, i.e., g([x)) has been previously defined and it is an ordinal < γ.
• Now, we define g(P ) = α if g(P ) 6< α (i.e., we have not g(P ) = β for some
β < α) and for every x < y in P , there exists z ∈ P with x < z 6 y such that
z/x is γ-simple for some non limit ordinal γ 6 α.
• If no ordinal α exists such that g(P ) = α , we say that P does not have Gabriel

dimension.
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Remarks. From the definition above the following simple facts follow easily:
(1) g(P ) = γ for any γ-simple poset P .

(2) A poset P is 1-simple if and only if P is not trivial and each non minimal
element of P is maximal. In case P has a least element 0 and a greatest
element 1, then P is 1-simple if and only if 0 6= 1 and P = {0, 1}, i.e., P is
a simple poset.

(3) A poset P has g(P ) = 1 if and only if it is not trivial and for any x < y in P
there exists z ∈ P with x ≺ z 6 y. Thus, any non trivial Artinian poset has
Gabriel dimension 1, in particular, g(W ) = 1 for any well ordered set W 6= 0,
and so g(N) = 1 when N is ordered usually. The usually ordered set Z of
rational integers is not Artinian, but nevertheless g(Z) = 1.

(4) Each of the usually ordered posets Q of rational numbers, R of real numbers,
and D = {m/2n |m ∈ Z, n ∈ N } of dyadic real numbers has no Gabriel
dimension (see [4]).

(5) A non-zero upper continuous modular lattice L has g(L) = 1 if and only L is
semi-Artinian. �

The connections between the Krull dimension and the Gabriel dimension of a poset
are given by the following two results.

Proposition 2.3.6. Any poset P having Krull dimension has also Gabriel dimen-
sion, and then

g(P ) 6 k(P ) + 1.

Proof. See [4, Proposition 2.1]. �

Theorem 2.3.7.The following assertions are equivalent for an upper continuous
modular lattice L.

(1) L has Gabriel dimension and L is QFD.
(2) L has Krull dimension.

Moreover, in this case g(L) = k(L) or g(L) = k(L) + 1.

Proof. See [19, Theorem 5.2]. �





CHAPTER 3

GROTHEDIECK CATEGORIES AND TORSION THEORIES

The main purpose of this chapter is two-fold: firstly, to present in a compact way
some basic concepts of Category Theory as direct sum, direct product, subobject, quo-
tient object, additive category, kernel, cokernel, image, coimage, Abelian category, quo-
tient category, Grothendieck’s axioms AB1, AB2, AB3, AB4, and AB5, leading to the
definition of a Grothendieck category, and secondly, to discuss the concept of a hered-
itary torsion theory, needed in the last two chapters. We also discuss the renowned
Gabriel-Popescu Theorem.

For more details and proofs, the reader is referred to [52], [68], and/or [85].

3.1. Categories and functors

In this section we present the concept of a category and illustrate it with quite
many examples. Then, we define the notions of monomorphism, epimorphism, and
isomorphism. The general concepts of direct product and direct sum in an arbitrary
category are introduced just by taking as definitions the well-known universal properties
of the direct product and direct sum of modules. Next, we give the definition of a
covariant and contravariant functor, and present the concepts of a faithful, full, fully
faithful, and representative functor. Finally, we discuss the concepts of a generator and
cogenerator of a category.

Categories and subcategories

Definition. A category C is given by
(1) A class of objects, Obj (C).
(2) A class of morphisms: for every ordered pair (A,B) of objects in C it is defined

a set (possibly empty) denoted by HomC (A,B) or MorC(A,B), called the set of
morphisms from A to B, such that

HomC (A,B) ∩ HomC (A
′, B′) = ∅ for any (A,B) 6= (A′, B′).

(3) A composition of morphisms, i.e., for every triple (A,B,C) of objects in C

there exists a mapping

µA,B,C : HomC (A,B) × HomC (B,C) −→ HomC (A,C),

(f, g) 7→ gf,

with the following properties:
(i) the composition is associative, i.e., for every A, B, C, D in Obj (C) and

every f ∈ HomC (A,B), g ∈ HomC (B,C), h ∈ HomC (C,D), one has

h(gf) = (hg)f ;

51
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(ii) there are identities, i.e., for any A ∈ Obj (C), there exists a morphism
1A ∈ HomC (A,A), called the identity of A, with

f1A = 1Bf = f

for every B ∈ Obj (C) and f ∈ HomC (A,B). �

Note that the identity 1A of A is uniquely determined. We often write Hom (A,B)
for HomC (A,B), and, more shortly, A ∈ C instead of A ∈ Obj (C).

For f ∈ HomC (A,B) we write f : A −→ B or A
f
−→ B, and we call A the source

or domain of f and B the target or codomain of f .

Warning. In general, the objects of a category C are not always sets and the
morphisms in C are not necessarily mappings; see Examples (12) and (13) below.

However, as for mappings. we shall use diagrams to illustrate morphisms. For
example, the diagram below

❄ ❄

✲

◗
◗s

✑
✑✰

A B

CD

E

f

gl

k h

is called commutative if h gf = k l.

Definition. A subcategory of a category C is a category D satisfying the following
conditions.

(1) Obj (D) ⊆ Obj (C).
(2) HomD (A,B) ⊆ HomC (A,B) for every A,B ∈ Obj (D).
(3) The composition of morphisms in D is the restriction of the composition in C.
(4) For every A ∈ Obj (D), the identity of A in D is the same with the identity

of A in C.

If additionally, HomD (A,B) = HomC (A,B) for every A,B ∈ Obj (D), then we say
that D is a full subcategory of C, and hence, a full subcategory is already determined
by its objects. �

Examples of categories

We are going to list some of the most common categories. First, note that in order
to give a category C we have to specify the following four things:















(i) the objects of C;
(ii) the sets HomC (A,B) for every A,B ∈ C;
(iii) the composition of morphisms;
(iv) the identities 1A for every A ∈ C.

(1) The category Set of sets:

- Obj (Set) is the class of all sets;
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- HomSet(A,B) := BA is the set of all mappings from A to B; note that
HomSet(∅, B) has only one element, the empty mapping, and HomSet(A,∅) =
∅ for any non-empty set A;

- the composition in Set is the composition of mappings;
- 1A is the identity mapping of A.

(2) The category SetRel of sets with relations:

- Obj (SetRel) is the class of all sets;
- HomSetRel

(A,B) := P(A × B) is the power set of A × B, i.e., the set of all
relations between A and B;

- the composition in SetRel is the composition of relations;
- 1A is the relation ∆A (the diagonal of A).

Clearly Set is a subcategory (but not full) of SetRel.

(3) The dual category Co of a category C is defined by

Obj (Co) := Obj (C) , HomCo (A,B) := HomC (B,A)

for any A,B ∈ C, the composition and identities in Co being clear.
An important problem is to describe concretely, modulo an equivalence of categories

(see Section 3.3), the dual of a given category. For example, the dual of the category
of all commutative rings with 1 is equivalent to the category of all affine schemes (by a
result due to Alexander Grothendieck), and the dual of the category Ab of all Abelian
groups is equivalent to the category of all compact Abelian groups (by the Pontryagin
Duality).

(4) The category Pos of posets, mentioned in Section 1.1:

- Obj (Pos) is the class of all partially ordered sets (posets);
- HomPos(A,B) is the set of all order preserving mappings from A to B;
- the composition in Pos is the composition of mappings;
- 1A is the identity mapping of A.

(5) The category Lat of lattices, mentioned in Section 1.1:

- Obj (Lat) is the class of all lattices;
- HomLat(A,B) is the set of all lattice morphisms from A to B;
- the composition in Lat is the composition of mappings;
- 1A is the identity mapping of A.

(6) The categories Top, Top0, Top1, Top2, Top3, Top4:

- the objects are the topological spaces (respectively, topological spaces satisfying
the separation axiom T0, T1, T2, T3, T4, where T0 stands for Kolmogoroff
separation, T1 for Fréchet separation, T2 for Hausdorff separation, T3 for regular
separation, T4 for normal separation);

- the morphisms from A to B are the continuous mappings from A to B;
- the composition is the composition of mappings;
- 1A is the identity mapping of A.

(7) The categories Gr and Ab of all groups and Abelian groups, respectively. Clearly
Ab is a full subcategory of Gr, and Gr is a subcategory of Set, but not full.
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(8) The categories R-Mod and Mod-R of all unital left R-modules and unital right
R-modules, respectively, where R is a unital ring.

(9) The categories R-Alg and R-Lie of all associative unital R-algebras and Lie
R-algebras, respectively, where R is a commutative unital ring.

(10) The categories Rin, Rinc, Rin1, Rinc1 of all rings, commutative rings, unital
rings, commutative unital rings, respectively.

(11) The categories of all affine schemes, differentiable manifolds, complex varieties,
algebraic varieties, Banach spaces, Hilbert spaces, metric spaces, etc.

Of course, the reader can easily guess what are the morphisms, compositions, and
identities in each of the categories (7) - (11) listed above.

(12) Let (M, ·) be an arbitrary monoid. We associate with (M, ·) a category, denoted

by (̃M, ·), as follows:

- Obj ((̃M, ·)) is a singleton set {∗};
- Hom

(̃M,·)
(∗, ∗) := M, so the morphisms of this category are precisely the ele-

ments of M ;

- the composition in (̃M, ·) is the given multiplication “ · ” in (M, ·);
- the identity 1∗ is the identity element of M.

(13) Let (E,6) be a quasi-ordered set. This means that E is a non-empty set endowed
with a reflexive and transitive binary relation “ 6 ”. We shall associate with (E,6) a

category (̃E,6) in the following manner:

- Obj ((̃E,6)) := E, so the objects of this category are precisely the elements
of E;

- Hom
(̃E,6)

(x, y) :=

{

∅ if x 66 y
{(x, y)} if x 6 y ,

for every x, y ∈ E; so Hom (x, y) is ∅ if x 66 y, and it has only one element,
denoted by (x, y) if x 6 y;

- the composition of morphisms is defined by (x, y)(y, z) = (x, z) whenever
x 6 y 6 z in E, and if x 66 y and z is arbitrary, or x is arbitrary and y 66 z,
then the composition is not defined;

- the identity of x is (x, x).

Note that the last two examples are small categories; a category C is called small if
Obj (C) is a set. Moreover, the last two examples show that the morphisms of a category
need not to be mappings.

Special morphisms in a category

Definitions. Let C be a category, and let f : A −→ B be a morphism in C. The
morphism f is called
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• monomorphism (also denoted by A
f
֌ B) if for every object C ∈ C and mor-

phisms g, h ∈ HomC (C,A), fg = fh =⇒ g = h (i.e., f is left cancellable)

C
g

⇒
h
A

f
−→ B;

• epimorphism (also denoted by A
f
։ B) if for every object D ∈ C and mor-

phisms g, h ∈ HomC (B,D), gf = hf =⇒ g = h (i.e., f is right cancellable)

A
f
−→ B

g

⇒
h
D;

• bimorphism if it is both monomorphism and epimorphism;
• section (or coretraction) if there exists B

g
−→ A with gf = 1A

A
f
−→ B

g
−→ A;

• retraction if there exists B
h
−→ A with fh = 1B

B
h
−→ A

f
−→ B;

• isomorphism (also denoted by A
f
∼
−→ B) if it is both retraction and section, or

equivalently if there exists B
g
−→ A with gf = 1A and fg = 1B. �

Observe that f ∈ HomC (A,B) is an epimorphism in C if and only if f , considered
as an element in HomCo (B,A), is a monomorphism.

The notions in a category which are obtained one from another by reversing the
arrows are called dual . For instance, the definition of an epimorphism is obtained by
dualizing the notion of a monomorphism. The dual notion is often denoted with the
prefix “co"; e.g., coretraction is dual to retraction. Note that the bimorphisms and the
isomorphisms are dual to themselves; we say that they are self dual.

Examples. (1) In the full subcategory Div of the category Ab, consisting of all
Abelian divisible groups, the canonical surjective mapping Q −→ Q/Z is a monomor-
phism that is clearly not injective.

(2) In the category Rinc1 of commutative rings with 1, the canonical injection
mapping Z →֒ Q is an epimorphism that is clearly not surjective.

(3) Every morphism in the category (̃E,6) associated with a quasi-ordered set
(E,6) is a bimorphism, and, in case (E,6) is a poset, then every isomorphism is an
identity.

(4) The interested reader is invited to describe the monomorphisms and the epimor-

phisms in each of the categories: (̃M, ·), Set, Mod-R, Gr, Top, and Top2. �

Subobjects and quotient objects

We are going to define the dual concepts of subobject and quotient object of an object
X in an arbitrary category C.

We say that two monomorphisms

X1

f1
〉−→ X and X2

f2
〉−→X
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in C are equivalent if there exists an isomorphism

X1

α
∼
−→ X2

making commutative the diagram

PPPPPq

✏✏✏✏✏✶
❄

X1

X

X2

f1

f2

α

Thus, we obtain an “equivalence" relation in the class of all monomorphisms having the
target X, and an equivalence class of monomorphisms with target X is called subobject
of X. In order to avoid some notational complications, we shall however make an abuse of
notation (and language) by denoting a subobject by some representing monomorphism.

If α : Y 〉−→X and β : Z 〉−→X are two subobjects of X, then we shall write
Y 6 Z (or Y ⊆ Z) if there exists a morphism γ : Y −→ Z (necessarily unique, and
monomorphism) such that the diagram

PPPPPq

✏✏✏✏✏✶
❄

Y

X

Z

α

β

γ

is commutative.

For any object X of C we denote by Sub(X) the class of all subobjects of X.
Clearly, 6 is a partial ordering in the class Sub(X) , so we may say that (Sub(X),6)
is a “big poset”. A category C is called locally small if the class Sub(X) is a set for
each X ∈ C, and in this case, it is actually a true poset.

Dually one defines the notion of quotient object of an object in a category C. We
shall leave to the reader its details.

Direct product and direct sum in a category

The well-known universal properties of the direct product and direct sum of modules
can be taken mutatis mutandis as definitions of the concepts of direct product and direct
sum in an arbitrary category. More precisely, we have the following:

Definition. Let C be a category, and let (Ai)i∈I be a family of objects of C. A
direct product of this family is defined as being a pair (P, (pi)i∈I) consisting of an object
P of C and a family of morphisms

pi : P −→ Ai, i ∈ I,

such that, for every X ∈ C and every family (fi)i∈I of morphisms fi : X −→ Ai , i ∈ I,

✻

✲P Ai

X

pi

fif
♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣⑥ there exists a unique morphism f : X → P
making commutative all the diagrams on
the left side, i.e., pif = fi , ∀ i ∈ I. �
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Proposition 3.1.1. Let C be a category, and let (P, (pi)i∈I) and (P ′, (p′i)i∈I) be
two direct products of a given family (Ai)i∈I of objects of C. Then, there exists a unique
morphism u : P −→ P ′ such that for every i ∈ I, the diagram

❩
❩
❩
❩❩⑦ ❄

✲P P ′

Ai

u

p′ipi

is commutative. Moreover, u is an isomorphism.

Proof. For every i ∈ I consider the following diagram.

✻

✲P ′ Ai

P

p′i

piu

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣⑥ By definition, there exists a unique mor-
phism u making this diagram commutative
for each i ∈ I, since (P ′, (p′i)i∈I) is a direct
product of (Ai)i∈I .

Consider now the following diagram and take into account that (P, (pi)i∈I) is a direct
product of (Ai)i∈I .

✻

✲P Ai

P ′

pi

p′iv

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣⑥ Then, by definition, there exists a unique
morphism v making all these diagrams
commutative.

Putting now together for each i ∈ I the two commutative triangles above, we obtain
the following bigger diagram which is also commutative.

❄

✲

✏✏✏✏✏✏✏✏✏✶

❄✑
✑
✑
✑
✑
✑
✑
✑
✑✸

P Ai

P ′

P

pi

u
p′i

v

pi1P

✇

But also 1P makes the bigger diagram commutative, so using again the fact that
(P, (pi)i∈I) is a direct product of (Ai)i∈I , we deduce that

v u = 1P .

In a similar manner we have u v = 1P ′, and consequently u is an isomorphism. �

Using Proposition 3.1.1, we deduce that, if for a given family (Ai)i∈I of objects of
a category C there exists at least a direct product, then it is uniquely determined up
to an isomorphism. We can therefore, once for ever, choose one from all these direct
products, denote it by

∏

i∈I Ai (we renounce to indicate the pi’s, pi :
∏

j∈I Aj −→ Ai,

called the canonical projections, that appear in the definition of a direct product), and
declare it as the (and not “a") direct product of the given family (Ai)i∈I of objects of
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C. For instance, in Mod-R the direct product of a family (Mi)i∈I of R-modules can be
chosen as being precisely the usual Cartesian product

∏

i∈I Mi of the family (Mi)i∈I .

We leave to the reader the pleasure to formulate mutatis mutandis the definition
of a direct sum of a family (Ai)i∈I of objects of C, following the universal property
of the direct sum of a family of modules. It is easily seen that the notion of a direct
sum in a category is dual to the notion of a direct product; therefore, the direct sum
of a family (Ai)i∈I of objects of C is sometimes called the coproduct of (Ai)i∈I , it is
uniquely determined up to an isomorphism, and is denoted by

⊕

i∈I

Ai or
∐

i∈I

Ai.

When all Ai, i ∈ I, are equal to a certain object A, we use the notations AI for the
direct product and A(I) for the direct sum of the family (Ai)i∈I of objects of C.

Definition. A category C is said to be a category with direct products (respectively,
a category with direct sums) if every family of objects of C has a direct product (res-
pectively, a direct sum). �

Examples. (1) In the category (̃E,6) associated with a poset (E,6), for a given
family (ei)i∈I of elements of E there exists a direct sum s of the family (ei)i∈I if and
only if there exists

∨

i∈I ei in (E,6), and in this case, s =
∨

i∈I ei, and a direct product
p if and only if there exists

∧

i∈I ei in (E,6), and in this case, p =
∧

i∈I ei.

(2) In the full subcategory Abfg of Ab consisting of all finitely generated Abelian
groups there exist neither infinite direct sums nor infinite direct products (this means
that any family (Ai)i∈I , I infinite set, of non-zero objects of Abfg has neither direct
sum nor direct product in Abfg).

(3) For any non-zero unital ring R, the full subcategory N(R) of Mod-R consisting
of all Noetherian right R-modules has neither infinite direct sums nor infinite direct
products.

(4) In the full subcategory Setf of Set consisting of all finite sets there exist neither
infinite direct sums nor infinite direct products.

(5) In the full subcategory Fiel of Rinc1 consisting of all fields there exist neither
direct sums nor direct products.

(6) The direct product in Rinc1 of a family of objects is the usual Cartesian product
of rings, and the direct sum in Rinc1 of two commutative unital rings A1, A2 is their
tensor product A1 ⊗Z A2. The interested reader is invited to investigate the existence
of arbitrary direct sums in the category Rinc1 (see also [16]). �

Covariant and contravariant functors

In this subsection we give the definitions of a covariant and contravariant functor
and illustrate them with some examples.

Definitions. Let C and D be categories. A covariant functor

T : C −→ D

consists of a pair T = (To, Tm) of assignments for
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- objects: To : Obj (C) −→ Obj (D), A 7→ To(A),
- morphisms: Tm : Mor(C) −→ Mor(D),

(f : A −→ B) 7→ Tm(f) : To(A) −→ To(B),

where Mor(C) denotes the class of all morphisms of C, with the following two properties:
(i) Tm(1A) = 1To(A) for every A ∈ Obj (C);
(ii) Tm(gf) = Tm(g)Tm(f) for every morphisms f, g in C for which gf is defined,

i.e.,

❩
❩
❩

❩❩⑦ ❄

✲A B

C

f

g
gf

=⇒
❩
❩
❩
❩❩⑦ ❄

✲To(A) To(B)

To(C)

Tm(f)

Tm(g)Tm(gf)

A contravariant functor S : C −→ D consists of a pair S = (So, Sm) of assignments
for

- objects: So : Obj (C) −→ Obj (D), A 7→ So(A),
- morphisms: Sm : Mor(C) −→ Mor(D),

(f : A −→ B) 7→ Sm(f) : So(B) −→ So(A),

with the following two properties:
(i) Sm(1A) = 1So(A) for every A ∈ Obj (C);
(ii) Sm(gf) = Sm(f)Sm(g) for every morphisms f, g in C for which gf is defined,

i.e.,

❩
❩
❩

❩❩⑦ ❄

✲A B

C

f

g
gf

=⇒
❩

❩
❩

❩❩⑥ ✻

✛So(A) So(B)

So(C)

Sm(f)

Sm(g)Sm(gf)

Usually, instead of To and Tm we shall use the same letter T, so we shall write
T (A ) and T (f) for objects A as well as for morphisms f . �

Examples. (1) The obvious transition from any category C to its dual Co defines
clearly a contravariant functor

D : C −→ Co.

(2) The composition of two functors, which is defined in a very obvious manner, is
again a functor, that is covariant if both are either covariant or contravariant, and is
contravariant if one is covariant and the other one is contravariant. In particular, for any
contravariant functor S : Co −→ D, the composition of the functor D defined above
with S yields a covariant functor C −→ D. Thus, the contravariant functors C −→ D

are precisely the covariant functors Co −→ D.
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(3) For any category C and any fixed object A in C two important functors arise:

(i) HomC (A,−) : C −→ Set, X 7−→ HomC (A,X)

(X
f
−→ Y ) 7−→ (HomC (A,X)

HomC(A,f)
−−−−−−→ HomC (A, Y )),

where HomC (A, f) works as follows:

(A
u
−→ X) 7−→ (A

fu
−→ Y ).

This is a covariant functor which is usually denoted by hA or HA.

(ii) HomC (−, A) : C −→ Set, defined in a similar way. This is a contravariant
functor, and usually it is denoted by hA or HA.

(4) If we associate with any group G the Abelian group Ga := G/[G,G], where
[G,G] is the commutator subgroup of G, then we obtain a covariant functor

−a : Gr −→ Ab.

(5) Let ϕ : R −→ S be a unital ring morphism. Then ϕ defines two important
functors.

(i) ϕ⋆ : Mod-S −→ Mod-R, MS 7→ MR,
where MR is the underlying Abelian group of MS endowed with the right R-module
structure given by

x · r = xϕ(r) , ∀ r ∈ R, x ∈ M.

This functor is called the functor of restriction of scalars via ϕ.

(ii) ϕ⋆ : Mod-R −→ Mod-S, MR 7→M ⊗R S,
where M ⊗R S is considered as a right S-module in a canonical way. This functor is
called the functor of extension of scalars via ϕ.

(6) For any category C, one defines the identity functor 1C of C as follows:

1C(A) = A and 1C(f) = f

for any A ∈ C and any f ∈ Mor(C).
More generally, if D is a subcategory of C, then we have the obvious inclusion

functor

D
i
→֒ C.

(7) A category C is said to be concrete in case there is a “mapping"

γ : C −→ Set

such that

HomC (A,B) ⊆ HomSet(γ(A), γ(B)), ∀A, B ∈ C,

1A = 1γ(A) , ∀A ∈ C,

and the composition of morphisms in C is the usual composition of mappings.
Thus, the usual categories Ab, Gr, Mod-R, Rin, R-Alg, Top, etc., are all concrete

categories. Note that γ is in fact a covariant functor, called the forgetful functor. �
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Special functors

A functor T : C −→ D is said to preserve a property of an object A ∈ Obj (C)
(respectively, of a morphism f ∈ Mor(C)) if T (A) (respectively, T (f)) again has the
same property. The functor T is said to reflect a property of an object A (respectively,
of a morphism f) if whenever T (A) (respectively, T (f)) has this property, then this is
also true for A (respectively, f).

For any covariant (respectively, contravariant) functor

T : C −→ D

and for any pair (A,B) of objects of C we have a (set) mapping

TA,B : HomC (A,B) −→ HomD (T (A), T (B))

(respectively, TA,B : HomC (A,B) −→ HomD (T (B), T (A)))

defined by

TA,B(f) := T (f).

This mapping will be used below.

Definitions. A covariant or contravariant functor T : C −→ D is called

• faithful if TA,B is injective for all A, B ∈ C;
• full if TA,B is surjective for all A, B ∈ C;
• fully faithful if T is full and faithful;
• embedding if the assignment T : Mor(C) −→ Mor(D) is injective;
• representative if for every D ∈ D, there exists A ∈ C with T (A) ≃ D. �

Generating objects

We present first a general definition of the concept of an U-generated object that
has meaning in an arbitrary category C.

Definition 1. Let C be an arbitrary category, and let U be a full subcategory of C.
An object A ∈ C is said to be U-generated or generated by U, if for any B ∈ C and

any A
f

⇒
g
B, f 6= g, ∃U ∈ U and U

h
−→ A such that

U
h
−→ A

f

⇒
g
B, fh 6= gh.

In case U = {U} is a singleton we use the terminology: A is U -generated, or U
generates A, or U is a generator for A.

By Gen (U) we shall denote the class of all objects in C which are generated by U.
For U = {U} we write Gen (U) instead of Gen (U).

If C = Gen (U) then we say that U is a class of generators for C, and if C =
Gen (U) we call U a generator for C. �

Proposition 3.1.2. Let C be an arbitrary category, and let U ∈ C.

(1) The following assertions are equivalent for an object A ∈ C.
(a) U generates A.
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(b) The mapping

HU
A,B : HomC (A,B) −→ HomSet(H

U(A), HU(B))

f 7→ HU(f), HU(f)(h) = fh, h ∈ HU(A),

is injective for every B ∈ C, where HU is the covariant functor

HomC (U,−) : C −→ Set, X 7−→ HomC (U,X).

(2) U is a generator for C if and only if the covariant functor HU is faithful.

Proof. (1) The mapping HU
A,B is injective if and only if for every f 6= g in

HomC (A,B), we have
HU(f) 6= HU(g),

i.e., the mappings

HU(f) : HU(A) −→ HU(B) and HU(g) : HU(A) −→ HU(B)

are distinct; this means that ∃h ∈ HU(A) with

fh = HU(f)(h) 6= HU(g)(h) = gh,

which is exactly the definition of the fact that U generates A when B ∈ C is arbitrary.

(2) Follows immediately from (1). �

Of course, we can dualize the definitions and results above for generators to obtain
the corresponding ones for cogenerators. For example, an object C ∈ C is a cogenerator
for C if and only if the contravariant functor HU = HomC (−, U) : C −→ Set is faithful.

Not any category has a generator or cogenerator, e.g., the reader can easily check
that Fiel, the full subcategory of Rinc1 consisting of all fields, has no generator and
no cogenerator.

The next definition is much closer to the definition involving direct sums of an U -
generated module.

Definition 2. Let C be any category with direct sums, and let U be a full subcat-
egory of C. An object A ∈ C is said to be U-generated or generated by U (respectively,
finitely U-generated or finitely generated by U) if there exists a set Λ (respectively, a
finite set Λ), a family (Uλ)λ∈Λ of objects of U, and an epimorphism

⊕

λ∈Λ Uλ −−։ A. �

The next result shows that the apparently distinct Definitions 1 and 2 of U-generated
objects in a category C with direct sums are equivalent when C has a zero object . An
object A of a category C is said to be an initial (respectively, final) object if for every
X ∈ C there exists one and only one morphism from A to X (respectively, from X to
A). A zero object of C is an object which is both initial and final.

We say that a subclass U0 of U is a class of representatives or a representative class
of U if each U ∈ U is isomorphic to some member of U0.

Proposition 3.1.3. Let C be a category with direct sums satisfying additionally the
following condition:

(⋆) HomC (X, Y ) 6= ∅ for every X, Y ∈ C.

(Note that any category having a zero object satisfies (⋆)).
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Let U be a full subcategory of C having a representative set U0. Then, the following
statements are equivalent for an object A ∈ C.

(1) A is U-generated in the sense of Definition 1.
(2) A is U0-generated in the sense of Definition 1.
(3) A is

(
⊕

U∈U0
U
)

-generated in the sense of Definition 1.
(4) A is U-generated in the sense of Definition 2.
(5) A is U0-generated in the sense of Definition 2.
(6) A is

(
⊕

U∈U0
U
)

-generated in the sense of Definition 2.

Proof. See [8, Proposition 5.4]. �

3.2. Abelian categories

In this section we present in a compact way the basic concepts of additive category,
kernel, cokernel, image, coimage, Abelian category, and Grothendieck’s axioms AB1,
AB2, AB3, AB4, AB5, leading to the concept of a Grothendieck category. For more
details and proofs, the reader is referred to [85] and/or [68], [69].

Preadditive categories

Definitions. A category C is said to be preadditive if the following conditions are
satisfied.

(1) For every X, Y ∈ Obj (C), HomC (X, Y ) has a structure of Abelian group.
(2) For every X, Y, Z ∈ Obj (C), the composition mapping

HomC (X, Y )× HomC (Y, Z) −→ HomC (X,Z)
(f, h) 7−→ hf

is bilinear, i.e.,
(h+ k)f = (hf) + (kf)

and
h(f + g) = (hf) + (hg)

for every f, g ∈ HomC (X, Y ) and h, k ∈ HomC (Y, Z), where “+ ” denote the
algebraic operations in the corresponding groups.

A functor T : C −→ D between two preadditive categories is said to be additive if

T (f + g) = T (f) + T (g)

for every X, Y ∈ Obj (C) and every f, g ∈ HomC (X, Y ). �

For any two objects X, Y of a preadditive category C we shall denote by 0X,Y , or
more simple, by 0, the zero element of the Abelian group HomC (X, Y ).

Example. If (M, ·) is a monoid, then the category (̃M, ·) associated with this
monoid is preadditive if and only if M is a ring. �

Note that in a preadditive category C, an object X is a zero object if and only if
1X = 0X,X .
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Additive categories

Definition. A category C is said to be additive if C is preadditive, has a zero
object, and for every X, Y ∈ Obj (C) there exists X

⊕

Y . �

It can be shown that in an additive category C, for every finite family (Xi)16i6n
of objects, there exist their direct sum

⊕

16i6nXi and direct product
∏

16i6nXi, and
they are isomorphic.

Kernel, Cokernel, Image, Coimage

Definitions. Let C be a preadditive category with a zero object, and let f : X −→ Y
be a morphism in C. A kernel of f is a pair (K, i) consisting of an object K ∈ C and
a morphism i : K −→ X satisfying the following two conditions:

✻

✲ ✲K X

A

Yi

uα

f

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣⑥

• fi = 0 .

• For any A ∈ C and any u ∈ HomC (A,X) with fu = 0, there exists a unique
morphism α : A −→ K making the above diagram commutative, i.e., i α = u.

Dually, a cokernel of f is a pair (C, p) consisting of an object C ∈ C and a
morphism p : Y −→ C satisfying the following two conditions:

❄

✲ ✲
♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣✠

X Y

B

C

β

f

v

p

• pf = 0 .

• For any B ∈ C and any v ∈ HomC (Y,B) with vf = 0, there exists a unique
morphism β : C −→ B making the above diagram commutative, i.e., β p = v.

�

It can be easily shown that if (K, i) is a kernel of a morphism X
f
−→ Y, then i is a

monomorphism, and any two kernels of f represent the same subobject of X, i.e., they
are equivalent. So, we can say the kernel of f when it exists, and we shall denote it just
by Ker (f).

Similarly, if (C, p) is a cokernel of a morphism X
f
−→ Y, then p is an epimorphism,

and any two cokernels of f represent the same quotient object of X, i.e., they are
equivalent. So, we can say the cokernel of f when it exists, and we shall denote it just
by Coker (f). If (X ′, i) is a subobject of an objectX, then we denote X/X ′ := Coker (i).

Let C be a preadditive category having a zero object, and assume that each mor-
phism in C has a kernel and a cokernel. For any morphism f : X −→ Y in C we
introduce the following notation:

Im (f) := Ker (Coker (f)) and Coim (f) := Coker (Ker (f)),

which are called the image and coimage of f, respectively.
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Consider now the following diagram:

✲ ✲

❄

✻

✲

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

✒

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣✲

A X Y

IC

B
i f p

j

f

q v

where

(A, i) = Ker (f), (B, p) = Coker (f), (I, j) = Im (f), (C, q) = Coim (f).

Since (C, q) = Coker (i), we have

fi = 0 =⇒ ∃ v : C −→ Y with v q = f.

Now observe that p v q = p f = 0 = 0 q, hence p v = 0 since q is an epimorphism. But
(I, j) = Ker (p), hence ∃ f : C −→ I, called the canonical morphism associated with f ,
such that j f = v, and so

f = j f q.

Abelian categories

Definitions. Let C be a category. We introduce the following axioms for C, due
to Alexander Grothendieck.

AB1: C is a preadditive category with zero object such that for every morphism f in
C there exist Ker (f) and Coker (f).

AB2: C satisfies AB1, and for any morphism f : X −→ Y in C, the canonical
morphism

f : Coim (f) −→ Im (f)

associated with f is an isomorphism.
AB3: C is a category with arbitrary direct sums, i.e., for any set I and any family

(Xi)i∈I of objects of C, there exists
⊕

i∈I Xi.
AB4: C satisfies AB3, and for any set I, for any families (Xi)i∈I , (Yi)i∈I of objects of

C, and for any family (fi)i∈I , fi : Xi 〉−→Yi of monomorphisms, the canonical
morphism

⊕

i∈I

fi :
⊕

i∈I

Xi −→
⊕

i∈I

Yi

is a monomorphism.
The category C is said to be preabelian if it is additive and satisfies AB1. The

category C is said to be Abelian if it is additive and satisfies AB2. �

We shall denote by ABn∗ (n = 1, 2, 3, 4) the axiom ABn in the dual category Co

of C. For instance, AB3∗ means exactly that C has direct products.
Note that if C is an Abelian category, then Co is also Abelian. Indeed, AB1∗ = AB1

and AB2∗ = AB2.

Examples. (1) In the additive full subcategory mod-R of Mod-R consisting of all
finitely generated R-modules, in general, kernels do not exist, and so, mod-R does not
satisfy AB1.

(2) The category A of all Hausdorff topological Abelian groups is a preabelian
category which is not an Abelian category. �
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Sum and intersection of subobjects

Definitions. Let C be an Abelian category, let X ∈ C, and let (Xi)i∈I be a family
of subobjects of X.

(i) If
⊕

i∈I Xi exists, then we define and denote by
∑

i∈I Xi the sum of the subob-
jects Xi as being the image of the canonical morphism α making commutative
all the diagrams below, i ∈ I:

❩
❩
❩
❩
❩❩⑦

✲Xi

⊕

j∈I

Xj

X

εi

αλi

♣

♣

♣

♣

♣

♣

♣

♣❄

where the εi’s are the canonical morphisms defining the direct sum
⊕

j∈I Xj

and the λi’s are the monomorphisms defining the subobjects Xi, i ∈ I.

(ii) If
∏

i∈I(X/Xi) exists (where X/Xi = Coker (λi)) then we define and denote by
⋂

i∈I Xi the intersection of the subobjects Xi as being the kernel of the canonical
morphism β making commutative all the diagrams below, i ∈ I:

✻

✲
∏

j∈I

(X/Xj) X/Xi

X

pi

qiβ
♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣⑥

where the pi’s are the canonical morphisms defining the direct product
∏

j∈I(X/Xj) and the qi’s are the epimorphisms defining the quotient objects
X/Xi, i ∈ I. �

It is easy to see that if (Xi)i∈I is a family of subobjects of an object X ∈ C such
that

∑

i∈I Xi and
⋂

i∈I Xi exist, then
∑

i∈I Xi is the least upper bound and
⋂

i∈I Xi

is the greatest lower bound of the family (Xi)i∈I in the class Sub(X) of all subobjects
of X (which is a set if C is a locally small category).

Note that if C is an arbitrary Abelian category, then, for any X ∈ C, the “big
poset” Sub(X) of all subobjects of X is actually a “big lattice”, which is complete if
the category C has direct sums and direct products. Even more, we have the following
result:

Proposition 3.2.1. Let C be an Abelian category, let X ∈ C, and let A, B, C ∈
Sub(X) be such that B 6 A. Then

A ∩ (B ∪ C) = B ∪ (A ∩ C),

i.e., Sub(X) is a “big” modular lattice with least element 0 and greatest element X.

Proof. See [85, Chapter IV, Proposition 5.3]. �

Proposition 3.2.2. Any Abelian category having a generator is locally small.

Proof. See [85, Chapter IV, Proposition 6.6]. �
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Grothendieck categories

Definition. A category C is said to satisfy the axiom AB5 if C is an Abelian
category satisfying AB3, and moreover, for every object X ∈ C, for every subobject
Y 6 X, and for every family (Xi)i∈I of subobjects of X which is a direct family (this
means, that ∀ i, j ∈ I, ∃ k ∈ I such that Xi 6 Xk and Xj 6 Xk) one has

(∗)

(

∑

i∈I

Xi

)

∩ Y =
∑

i∈I

(Xi ∩ Y ).

A Grothendieck category is any category having a generator and satisfying AB5. �

Note that condition (∗) from the definition above means exactly that for any object
X of a Grothendieck category C, the class Sub(X) of all subobjects of X, which is a
set by Proposition 3.2.2, is an upper continuous lattice. Observe that if C is an Abelian
category with AB3 and a generator, then for every X ∈ C, the set Sub(X) is a complete
modular lattice.

From now on, we shall denote a Grothendieck category by G, and for any object
X ∈ G by L(X) the upper continuous modular lattice of all subobjects of X.

If P is any property on lattices, we say that an object X ∈ G is/has P if the
lattice L(X) is/has P. Similarly, a subobject Y of an object X ∈ G is/has P
if the element Y of the lattice L(X) is/has P. Thus, we obtain the concepts of
a Noetherian object, Artinian object, simple object, semi-Artinian object, uniform
object, completely uniform object, compact object, subdirectly irreducible object, Goldie
dimension of an object, Krull dimension of an object, Gabriel dimension of an object,
pseudo-complement subobject of an object, essential subobject of an object, closed
subobject of an object, complement subobject of an object, irreducible subobject of an
object, completely irreducible subobject of an object, etc.

Consequently, all the notions and results presented in Chapters 1 and 2 for an arbi-
trary lattice L can now be easily specialized for the particular case when L = L(X),
where X is an object of a Grothendieck category G. We leave this task to the reader.

We have seen in Proposition 2.1.9 that the compact elements of the lattice L(M) of
all submodules of a right R-module M are precisely the finitely generated submodules
of M . For this reason, the compact objects X of a Grothendieck category G (i.e., the
objects X for which the lattice L(X) is compact) are called finitely generated. These
are exactly those objects X ∈ G having the property that whenever X =

∑

i∈I Xi

for a family (Xi)i∈I of subobjects of X, there exists a finite subset J of I such that
X =

∑

i∈J Xi. Similarly, for a complement subobject of an object X ∈ G one uses the
well established term of a direct summand of X. Note that a Grothendieck category
may have no non-zero finitely generated object, see below.

Definition. We say that the Grothendieck category C is locally finitely generated
if C has a set of generators consisting of finitely generated objects. �

By [85, p. 122], a Grothendieck category G is locally finitely generated if and only
if the lattices L(X) are compactly generated for all objects X of G. There are plenty
of such Grothendieck categories: for any M ∈ Mod-R, the full subcategory σ[M ]
of all M-subgenerated modules of Mod-R is a locally finitely generated Grothendieck
category. Recall that a module XR is said to be M-subgenerated if X is isomorphic
to a submodule of an M-generated module. In particular, σ[RR] = Mod-R is a locally
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finitely generated Grothendieck category with generator RR. The reader is referred to
[88] and/or [8] for more details on the category σ[M ].

A non-zero Grothendieck category which is locally finitely generated must possess
simple objects, for such a category must possess a non-zero finitely generated object A,
and a routine application of Zorn’s Lemma shows that such an object A must have
maximal proper subobjects (see Lemma 2.1.13(4) for the latticial counterpart of this
categorical version of the renowned Krull Lemma from Module Theory). From this
we infer the existence of simple objects. Notice that the converse of this property
is, in general, not true, i.e., a Grothendieck category possessing simple objects is not
necessarily locally finitely generated: an example of an indecomposable non locally
finitely generated Grothendieck category possessing simple objects is constructed in
[37]. By an indecomposable category we mean any category C which is not equivalent
to a product of non-zero categories C1 × C2.

Observe that not any Grothendieck category G is equivalent to a category σ[N ] for
some ring A with identity and some N ∈ Mod-A. Indeed, this happens whenever G

contains no simple object, and an example of such a category is the following. Let R
be an infinite direct product of copies of a field, and let A be the localizing subcate-
gory of Mod-R consisting of all semi-Artinian R-modules. Then, the quotient category
Mod-R/A has no simple object (see, e.g., [2, Remarks 1.4(1)]), in particular it has no
non-zero finitely generated object. See the next section for the concepts of localizing
subcategory, quotient category, and equivalence of categories.

Problem. Let G be a locally finitely generated Grothendieck category. Is it true
that there exists a ring A with identity and N ∈ Mod-A such that G be equivalent to
the category σ[N ]? �

3.3. Quotient categories

Clearly, for any ring R with identity element, the category Mod-R is a Grothendieck
category. A procedure o construct new Grothendieck categories is to take the quotient
category Mod-R/T of Mod-R modulo any of its localizing subcategories T. The con-
struction of the quotient category of Mod-R/T, or more generally, of the quotient cate-
gory A/S of any locally small Abelian category A modulo any of its Serre subcategories
S is quite complicated and goes back to Serre’s “langage modulo S” (1953), Grothendieck
(1957), and Gabriel (1962) [52].

The aim of this section is to define the important concept of quotient category and to
state the renowned Gabriel-Popescu Theorem. For more details and proofs, the reader is
referred to [52] and [68]. For a different approach using the full subcategory of Mod-R
consisting of all τ -closed R-modules, see [85, Chapter X].

Functorial morphisms

Definition. Let C, D be two categories, and let F : C −→ D, G : C −→ D be two
covariant functors. By a functorial morphism or a natural transformation

ϕ : F −→ G
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from F to G we mean a class of morphisms

ϕX : F (X) −→ G(X), X ∈ C,

of D such that for every morphism u : X −→ Y in C, the diagram

F (X)@ > F (u) >> F (Y )

@V ϕXV V@V V ϕY V

G(X)@ > G(u) >> G(Y )

is commutative.
If all ϕX , X ∈ C, are isomorphisms, then ϕ : F −→ G is called a functorial

isomorphism and we write ϕ : F
∼
−→ G. �

Clearly, if ϕ : F −→ G and ψ : G −→ H are two functorial morphisms, we can
compose ϕ and ψ to obtain a functorial morphism

ψ ◦ ϕ : F −→ H.

Also, for any functor F : C −→ D, the identities 1F (X) : F (X) −→ F (X), X ∈ C, yield
the functorial isomorphism Id : F −→ F.

Definition. Two categories C and D are called equivalent if there exist covariant
functors

F : C −→ D and G : D −→ C

with functorial isomorphisms

G ◦ F
∼
−→ 1C and F ◦G

∼
−→ 1D.

In this case, the functors F and G are called equivalences, and G is called the
(equivalence) inverse of F . �

Proposition 3.3.1. Let F : C −→ D be a covariant functor. Then F is an
equivalence if and only if F is fully faithful and representative.

Proof. See [85, Chapter IV, Proposition 1.1] or [88, 46.1(1)]. �

Exact functors

Definition. A sequence of morphisms

. . . −→ Xi−1
fi−1

−−→ Xi
fi
−→ Xi+1 −→ . . .

in an Abelian category C is said to be exact at Xi if Im (fi−1) = Ker (fi) (equality as
subobjects of Xi). The whole sequence is called exact if it is exact at each Xi. �

Note that in Abelian categories one can work with exact sequences in essentially the
same way as in module categories. Also note that the isomorphism theorems known in
Mod-R hold in any Abelian category as well.

Definition. Let F : C −→ D be an additive covariant functor between two Abelian
categories C and D. We say that F is exact if for any short exact sequence

(∗) 0 −→ X ′ u
−→ X

v
−→ X ′′ −→ 0
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in C, the sequence

0 −→ F (X ′)
F (u)
−−→ F (X)

F (v)
−−→ F (X ′′) −→ 0

is an exact sequence in D.
A contravariant functor F : C −→ D is said to be exact if the associated covariant

functor F ◦ : Co −→ D is exact. �

Serre subcategories and localizing subcategories

We present below a bunch of definitions that will be used in this section for defining
the concept of a quotient category, and in the next section for defining the concept of a
torsion theory.

Definitions. Let A be a full subcategory of Mod-R. We say that:
(1) A is closed under subobjects or A is a hereditary class if for any exact sequence

0 −→ A′ −→ A

in Mod-R with A ∈ A, it follows that A′ ∈ A.
(2) A is closed under quotient objects or A is a cohereditary class if for any exact

sequence
A −→ A′′ −→ 0

in Mod-R with A ∈ A, it follows that A′′ ∈ A.
(3) A is closed under extensions if for any short exact sequence

0 −→ A′ −→ A −→ A′′ −→ 0

in Mod-R with A′ ∈ A and A′′ ∈ A, it follows that A ∈ A.
(4) A is a Serre class or Serre subcategory of Mod-R if it is hereditary, coheredi-

tary, and closed under extensions.
(5) A is closed under direct sums (respectively, closed under direct products) if for

any family of objects (Ai)i∈I , I arbitrary set, with Ai ∈ A, ∀ i ∈ I, it follows
that

⊕

i∈I Ai ∈ A (respectively,
∏

i∈I Ai ∈ A).
(6) A is a localizing subcategory of Mod-R if it is a Serre class which is closed

under direct sums.
(7) A is a closed subcategory of Mod-R if it is closed under subobjects, quotient

objects, and direct sums.
(8) A is a pretorsion class if it is closed under quotient objects and direct sums.
(9) A is a pretorsion-free class if it is closed under subobjects and direct products.

(10) A is a torsion class if it is a pretorsion class which additionally is closed under
extensions. So, a hereditary torsion class is exactly a localizing subcategory of
Mod-R .

(11) A is a torsion-free class if it closed under subobjects, extensions and direct
products. �

Quotient categories

We are now going to present the concept of quotient category. We shall perform
this construction starting with Mod-R, but it can be done “mutatis mutandis" for any
locally small Abelian category instead of Mod-R.
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Let T be an arbitrary Serre subcategory of Mod-R. We shall construct a new cat-
egory called the quotient category of Mod-R modulo T and denoted by Mod-R/T.
This category is expected to have similar properties with that of a quotient module; so,
Mod-R/T should be an Abelian category equipped with a covariant exact functor

T : Mod-R −→ Mod-R/T

such that T “kills" each X ∈ T (this means that T (X) = 0, ∀X ∈ T), and moreover,
T should be universal with these properties.

More precisely, we want to construct for the given Serre class T a pair (Mod-R/T, T ),
where Mod-R/T is an Abelian category and

T : Mod-R −→ Mod-R/T

is a covariant exact functor, such that T (X) = 0, ∀X ∈ T, and such that, for any
Abelian category A and for any exact covariant functor

F : Mod-R −→ A

with F (X) = 0, ∀X ∈ T, there exists a unique functor H making commutative the
diagram:

❩
❩
❩
❩
❩
❩⑦

✲Mod-R Mod-R/T

A

T

HF

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣❄

The construction of the quotient category Mod-R/T of Mod-R modulo T is the
following.

Obj (Mod-R/T) := Obj (Mod-R).

For any M, N ∈ Mod-R denote

IM,N := { (M ′, N ′) |M ′ 6M, N ′ 6 N, M/M ′ ∈ T, N ′ ∈ T },

and define the following order relation in IM,N :

(M ′, N ′) � (M ′′, N ′′) ⇐⇒ M ′′ 6M ′ and N ′ 6 N ′′.

Clearly, IM,N is an upward directed set.
Define now for M, N ∈ Mod-R

HomMod-R/T (M,N) := lim−→
(M ′,N ′)∈IM,N

HomR (M
′, N/N ′).

Theorem 3.3.2. Let T be a Serre subcategory of Mod-R Then, the construction
above defines an Abelian category Mod-R/T, and the assignment

T : Mod-R −→ Mod-R/T
X 7−→ T (X) = X

(X
f
−→ Y ) 7−→ (T (f) : X −→ Y ) = the image of f in

the inductive limit

is an exact functor. Moreover, the pair (Mod-R/T, T ) has the above described universal
property.



72 Chapter 3

Proof. See [52, Chapitre III] or [68, Corollario 25.10, Teorema 25.13]. �

The Gabriel-Popescu Theorem

Next, we are interested in knowing when the Abelian quotient category Mod-R/T
of Mod-R modulo a Serre subcategory T is a Grothendieck category.

It can be shown (see, e.g., [52] or [68]) that the Serre subcategory T of Mod-R is a
localizing subcategory of Mod-R if and only if the canonical functor

T : Mod-R −→ Mod-R/T

has a right adjoint

S : Mod-R/T −→ Mod-R.

This means that for every X ∈ Mod-R and Y ∈ Mod-R/T there exists a “functorial"
isomorphism, i.e., natural in both first and second argument,

HomMod-R/T (TX, Y )
∼
−→ HomR (X,SY ),

and in this case Mod-R/T is a Grothendieck category.

Thus, we have a procedure to construct new Grothendieck categories starting with
Mod-R; namely, by taking quotient categories of Mod-R modulo arbitrary localizing
subcategories of Mod-R.

Roughly speaking, the renowned Gabriel-Popescu Theorem, discovered exactly fifty
years ago, states that in this way we obtain all the Grothendieck categories. More
precisely,

Theorem 3.3.3 (The Gabriel-Popescu Theorem). Let G be an arbitrary Gro-
thendieck category, and consider an arbitrary generator U of G. Denote by R the
ring End G(U) of endomorphisms of U. Then there exists a localizing subcategory T of
Mod-R such that

G ≃ Mod-R/T.

Proof. See [68, pp. 130-138 and Osservazione 25.16] for an error-free and detailed
proof. �

Notice that the ring R and the localizing subcategory T of Mod-R in Theorem
3.3.3 can be obtained in the following (non canonical) way. Let U be any generator of
the Grothendieck category G, and let RU be the ring EndG(U) of endomorphisms of
U . If

SU : G −→ Mod-RU

is the functor HomG(U,−), then SU has a left adjoint TU , TU ◦ SU ≃ 1G, and

Ker(TU) := {M ∈ Mod-RU | TU(M) = 0 }

is a localizing subcategory of Mod-RU . Take now as R any such RU and as T such a
Ker(TU ).
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3.4. Torsion theories

In this section we present some concepts and results on hereditary torsion theories
that will be used in the sequel. The concept of torsion theory for Abelian categories has
been introduced by S.E. Dickson [46] in 1966. For our purposes, we discuss it only for
module categories in one of the many equivalent ways that can be done.

A hereditary torsion theory on Mod-R is a pair τ = (T, F) of non-empty sub-
classes T and F of Mod-R such that T is a localizing subcategory of Mod-R and
F = {FR |HomR(T, F ) = 0, ∀T ∈ T }. Thus, any hereditary torsion theory τ = (T, F)
is uniquely determined by its first component T. Note that F is closed under subobjects,
extensions, and direct products, i.e., is a torsion-free class.

The prototype of a hereditary torsion theory is the pair (A,B) in Mod-Z, where A

is the class of all torsion Abelian groups and B is the class of all torsion-free Abelian
groups.

If I is a right ideal of a unital ring R, M is a right R-module, r ∈ R, and x ∈M ,
then we denote

(I : r) =: { a ∈ R | ra ∈ I } and AnnR(x) := { a ∈ R | xa = 0 }.

A (right) Gabriel filter (or Gabriel topology) on R is a non-empty set F of right
ideals of R satisfying the following two conditions:

• If I ∈ F and r ∈ R, then (I : r) ∈ F ;
• If I and J are right ideals of R such that J ∈ F and (I : r) ∈ F for all
r ∈ J , then I ∈ F .

Each Gabriel filter F on R defines two classes of right R-modules

TF := {MR |AnnR(x) ∈ F, ∀ x ∈M }

and
FF := {MR |AnnR(x) 6∈ F, ∀ x ∈M, x 6= 0 },

and the pair (TF ,FF ) is a hereditary torsion theory on Mod-R. Conversely, to any
hereditary torsion theory τ = (T,F) we can associate the Gabriel filter

Fτ := { I 6 RR | R/I ∈ T }.

It is well-known that the assignment F 7−→ (TF ,FF ) establishes a bijective cor-
respondence between the set of all (right) Gabriel filters on R and the class of all
hereditary torsion theories on Mod-R, with inverse correspondence given by τ 7−→ Fτ

(see, e.g., [85, Chapter VI, Theorem 5.1]). In particular, the class of all hereditary
torsion theories on Mod-R is actually a set.

Throughout this section τ = (T, F) will be a fixed hereditary torsion theory on
Mod-R. For any module MR we denote

τ(M) :=
∑

N6M,N∈T

N.

Since T is a localizing subcategory of Mod-R, we have τ(M) ∈ T, and we call it the
τ -torsion submodule of M . Note that, as for Abelian groups, we have

M ∈ T ⇐⇒ τ(M) =M and M ∈ F ⇐⇒ τ(M) = 0.
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The members of T are called τ -torsion modules, while the members of F are called
τ -torsion-free modules.

For further basic torsion-theoretic notions and results the reader is referred to [53]
and/or [85].

The lattice Satτ (M)

For any MR and any N 6M we denote

Satτ (M) := {N |N 6M, M/N ∈ F },

and call
N :=

⋂

{C |N 6 C 6M, M/C ∈ F }

the τ -saturation of N in M . We say that N is τ -saturated if N = N . Note that
N/N = τ(M/N) and

Satτ (M) = {N |N 6M, N = N },

so Satτ (M) is the set of all τ -saturated submodules of M , which explains the notation.
Clearly, Satτ (M) is a non-empty subset of the poset L(M) of all submodules of M
ordered by inclusion ⊆.

For any family (Ni)i∈I of elements of Satτ (M) we set
∨

i∈I

Ni :=
∑

i∈I

Ni and
∧

i∈I

Ni :=
⋂

i∈I

Ni.

Proposition 3.4.1. For any module MR the set Satτ (M) of all τ -saturated sub-
modules of M is an upper continuous modular lattice with respect to the inclusion ⊆
and the operations

∨

and
∧

defined above, and with least element τ(M) and greatest
element M .

Proof. See [85, Chapter IX, Proposition 4.1] �

Note that though Satτ (M) is a subset of the lattice L(M) of all submodules of
M , it is not a sublattice, because the sum of two τ -saturated submodules of M is not
necessarily τ -saturated.

We present now three basic results on the lattice Satτ (M) that will be very helpful
in the next two chapters.

Lemma 3.4.2. Let MR be a module, and let N ∈ T be a submodule of M . Then,
the assignment L 7→ L/N provides a canonical lattice isomorphism

Satτ (M)
∼
−→ Satτ (M/N).

In particular, Satτ (M)
∼
−→ Satτ (M/τ(M)).

Proof. For any L ∈ Satτ (M) we have N 6 τ(M) 6 L and

(M/N)/(L/N) ≃M/L ∈ F,

i.e., L/N ∈ Satτ (M/N), and the result follows. �

Lemma 3.4.3. Let MR be a module, and let X ∈ Satτ (M). Then, for any N 6M
with N ⊆ X, the τ -saturation N of N in M coincides with the τ -saturation NX of
N in X.
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Proof. By definition,

N/N = τ(M/N) and NX/N = τ(X/N).

Since X/N 6M/N , we have NX/N = τ(X/N) 6 τ(M/N) = N/N , so NX ⊆ N .

In order to prove the opposite inclusion N ⊆ NX , let x ∈ N . Then, there exists a
right ideal I of R such that R/I ∈ T and xI ⊆ N ⊆ X. But x ∈ M and M/X ∈ F,
so x ∈ X. Because xI ⊆ N , we have x + N ∈ τ(X/N) = NX/N , and then x ∈ NX ,
as desired. �

Lemma 3.4.4. The following statements hold for a module MR and submodules
P ⊆ N of MR.

(1) The mapping

α : Satτ (N/P ) −→ Satτ (N/P ), X/P 7→ X/P,

is a lattice isomorphism.
(2) Satτ (N) ≃ Satτ (N).
(3) If M/N ∈ T, then Satτ (M) ≃ Satτ (N).
(4) If N, P ∈ Satτ (M), then the assignment X 7→ X/P defines a lattice iso-

morphism from the interval [P,N ] of the lattice Satτ (M) onto the lattice
Satτ (N/P ).

Proof. (1) Let

β : Satτ (N/P ) −→ Satτ (N/P ), Y/P 7→ (Y ∩N)/P.

It can be easily checked that α and β are well defined mappings, that both are in-
creasing, and that they are inverse to one another. So, α is an isomorphism of posets,
and by Proposition 1.1.2, an isomorphism of lattices. Note that (1) is a specialization
for the lattice L = Satτ (M) of a more general result [29, Proposition 3.9].

(2) By (1) and Lemma 3.4.2 we have

Satτ (N) ≃ Satτ (N/0) ≃ Satτ (N/0) = Satτ (N/τ(M)) ≃ Satτ (N).

(3) If M/N ∈ T, then M/N = τ(M/N) = N/N , so N = M , and then, by (2), we
have

Satτ (N) ≃ Satτ (N) = Satτ (M).

(4) If X ∈ [P,N ] then M/X ∈ F, and so (N/P )/(X/P ) ≃ N/X ∈ F, hence X/P ∈
Satτ (N/P ). Conversely, if X/P ∈ Satτ (N/P ), then P 6 X 6 N and (N/P )/(X/P ) ≃
N/X ∈ F. The exact sequence in Mod-R

0 −→ N/X −→ M/X −→M/N −→ 0

with N/X ∈ F and M/N ∈ F yields M/X ∈ F, i.e., X ∈ [P,N ]. Therefore,
the lattices Satτ (N/P ) and [P,N ] are isomorphic as posets, and consequently also as
lattices by Proposition 1.1.2. �



76 Chapter 3

If P is any property on lattices, we say that a module MR is/has τ -P if the
lattice Satτ (M) is/has P. Thus, we obtain the concepts of a τ -Artinian module, τ -
Noetherian module, τ -uniform module, τ -completely uniform module, τ -subdirectly
irreducible module, τ -compact module, τ -compactly generated module, τ -Goldie di-
mension, τ -Krull dimension, τ -Gabriel dimension, etc. Since the lattices Satτ (M) and
Satτ (M/τ(M)) are canonically isomorphic by Lemma 3.4.2, we deduce that MR is/has
τ -P if and only if M/τ(M) is/has τ -P.

We say that a submodule N of MR is/has τ -P if its τ -saturation N , which is an
element of Satτ (M), is/has P. Thus, we obtain the concepts of a τ -pseudo-complement
submodule of a module, τ -complement submodule of a module, τ -essential submodule
of a module, τ -closed submodule of a module, τ -irreducible submodule of a module,
τ -completely irreducible submodule of a module, etc. Since N = N , it follows that N
is/has τ -P if and only if N is/has τ -P. In the sequel we shall use the well established
term of a τ -direct summand of a module instead of that of a τ -complement submodule
of a module.

Consequently, all the notions and results presented in Chapters 1 and 2 for an arbi-
trary lattice L can now be easily specialized for the particular case when L = Satτ (MR).
We leave this task to the reader.

Example. Let R be a commutative ring with identity, and let S be a multiplica-
tively closed subset of R. Denote by TS the full subcategory of Mod-R consisting of
all modules MR such that the module of fractions S−1M = 0. Using the well-known
properties of modules of fractions we deduce that TS is actually a localizing subcategory
of Mod-R. Denote by τS the (unique) hereditary torsion theory on Mod-R defined by
TS . Then the τS-saturation of N 6M is precisely the S-saturation

SatS(N) := { x ∈M | xs ∈ N for some s ∈ S }

of N , which explains the name. Consequently, SatτS(MR) consists exactly of all S-
saturated submodules of M .

It is well-known that there exists an isomorphism of posets between the set of all
S-saturated submodules of M and the lattice L(S−1MS−1R) of all submodules of the
S−1R-module S−1M . So, the R-module M is τS-Noetherian (respectively, τS-Artinian)
if and only if the S−1R-module S−1M is Noetherian (respectively, Artinian). Moreover,
there exists an equivalence of categories Mod-R/TS ≃ Mod-S−1R. �
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THE HOPKINS-LEVITZKI THEOREM

The Hopkins-Levitzki Theorem (abbreviated H-LT) discovered independently in
1939, so 75 years ago, by C. Hopkins and J. Levitzki states that any right Artinian
ring with identity is right Noetherian, or equivalently, it can be reformulated as:
Classical H-LT. Let R be a right Artinian unital ring. Then any Artinian right R-
module is Noetherian.

In the last fifty years, especially in the 1970’s, 1980’s, and 1990’s it has been gener-
alized as follows:
Relative H-LT. Let R be a ring with identity, and let τ be a hereditary torsion theory
on Mod-R. If the ring R is τ -Artinian, then any τ -Artinian right R -module is τ -
Noetherian.
Absolute H-LT (or Categorical H-LT). Let G be a Grothendieck category having an
Artinian generator. Then any Artinian object of G is Noetherian.
Latticial H-LT. Let L be an arbitrary modular Artinian lattice with 0. Then L is
Noetherian if and only if L satisfies two conditions, one of which guarantees that L has
a good supply of essential elements and the second one ensures that there is a bound for
the composition lengths of certain intervals of L.

The aim of this chapter is to briefly explain all these aspects of the Classical Hopkins-
Levitzki Theorem, their dual formulations, the connections between them, as well as
to present other newer aspects of it involving the concepts of Krull and dual Krull
dimension.

We shall also illustrate a general strategy which consists on putting a module-
theoretical result into a latticial frame (we call it latticization), in order to translate
that result to Grothendieck categories (we call it absolutization) and module categories
equipped with hereditary torsion theories (we call it relativization).

4.1. The Classical Hopkins-Levitzki Theorem

The (Molien-)Wedderburn-Artin Theorem

One can say that the Modern Ring Theory begun in 1908, when Joseph Henry
Maclagan Wedderburn (1882-1948) proved his celebrated Classification Theorem for
finitely dimensional semisimple algebras over a field F (see [87]). Before that, in 1893,
Theodor Molien or Fedor Eduardovich Molin (1861-1941) proved the theorem for F = C
(see [65]).

In 1921, Emmy Noether (1882-1935) considers in her famous paper [75], for the first
time in the literature, the Ascending Chain Condition (ACC)

I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ . . .

77



78 Chapter 4

for ideals in a commutative ring R.
In 1927, Emil Artin (1898-1962) introduces in [40] the Descending Chain Condition

(DCC)

I1 ⊇ I2 ⊇ . . . ⊇ In ⊇ . . .

for left/right ideals of a ring and extends the Wedderburn Theorem to rings satisfying
both the DCC and ACC for left/right ideals, observing that both ACC and DCC are a
good substitute for finite dimensionality of algebras over a field:

The (Molien-)Wedderburn-Artin Theorem. A ring R is semisimple if and
only if R is isomorphic to a finite direct product of full matrix rings over skew-fields

R ≃ Mn1
(D1)× . . .×Mnk

(Dk). �

Recall that by a semisimple ring one understands a ring which is left (or right)
Artinian and has Jacobson radical or prime radical zero. Since 1927, the (Molien-)
Wedderburn-Artin Theorem became a cornerstone of the Noncommutative Ring Theory.

In 1929, Emmy Noether observes (see [76, p. 643]) that the ACC in Artin’s extension
of the Wedderburn Theorem can be omitted. It took, however, ten years until it has
been proved that always the DCC in a unital ring implies the ACC.

The Classical Hopkins-Levitzki Theorem (H-LT)

One of the most lovely results in Ring Theory is the Hopkins-Levitzki Theorem,
abbreviated H-LT. This theorem, saying that any right Artinian ring with identity is
right Noetherian, has been proved independently in 1939 by Charles Hopkins [57]1 (1902-
1939) for left ideals and by Jacob Levitzki [61]2 (1904-1956) for right ideals. Almost
surely, the fact that the DCC implies the ACC for one-sided ideals in a unital ring was
unknown to both E. Noether and E. Artin when they wrote their pioneering papers on
chain conditions in the 1920’s.

An equivalent form of the H-LT, referred in the sequel also as the Classical H-LT ,
is the following one:

The Classical H-LT. Let R be a right Artinian ring with identity, and let MR

be a right module. Then MR is an Artinian module if and only if MR is a Noetherian
module.

1In fact, he proved that any left Artinian ring (called by him MLI ring) with left or right identity
is left Noetherian (see [57, Theorems 6.4 and 6.7]).

2The result is however, surprisingly, neither stated nor proved in his paper, though in the literature,
including our papers, the Hopkins’ Theorem is also wrongly attributed to Levitzki. Actually, what
Levitzki proved was that the ACC is superfluous in most of the main results of the original paper of
Artin [40] assuming both the ACC and DCC for right ideals of a ring. This is also very clearly stated
in the Introduction of his paper: “In the present note it is shown that the maximum condition can
be omitted without affecting the results achieved by Artin.” Note that Levitzki considers rings which
are not necessarily unital, so anyway it seems that he was even not aware about DCC implies ACC
in unital rings; this implication does not hold in general in non unital rings, as the example of the
ring with zero multiplication associated with any Prüfer quasi-cyclic p-group Zp∞ shows. Note also
that though all sources in the literature, including Mathematical Reviews, indicate 1939 as the year of
appearance of Levitzki’s paper in Compositio Mathematica, the free reprint of the paper available at
http://www.numdam.org indicates 1940 as the year when the paper has been published.
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Proof. The standard proof of this theorem, as well as the original one of Hopkins
[57, Theorem 6.4] for M = R, uses the Jacobson radical J of R. Since R is right
Artinian, J is nilpotent and the quotient ring R/J is a semisimple ring. Let n be a
positive integer such that Jn = 0, and consider the descending chain

M ⊇MJ ⊇MJ2 ⊇ . . . ⊇MJn−1 ⊇MJn = 0

of submodules of MR. Since the quotients MJk/MJk+1 are all killed by J , each
MJk/MJk+1 becomes a right module over the semisimple ring R/J , and so, each
MJk/MJk+1 is a semisimple (R/J)-module.

Now, observe that MR is Artinian (respectively, Noetherian) ⇐⇒ all MJk/MJk+1

are Artinian (respectively, Noetherian) R (or R/J)-modules. Since a semisimple module
is Artinian if and only if it is Noetherian, it follows that MR is Artinian if and only if it
is Noetherian, which finishes the proof. �

Extensions of the H-LT

In the last fifty years, especially in the 1970’s, 1980’s, and 1990’s the (Classical)
H-LT has been generalized and dualized as follows:

• 1957: Fuchs [51] shows that a left Artinian ring A, not necessarily unital, is
Noetherian if and only if the additive group of A contains no subgroup isomor-
phic to the Prüfer quasi-cyclic p-group Zp∞.
• 1972: Shock [83] provides necessary and sufficient conditions for a non uni-

tal Artinian ring and an Artinian module to be Noetherian; his proofs avoid
the Jacobson radical of the ring and depend primarily upon the length of a
composition series.
• 1976: Albu and Năstăsescu [25] prove the Relative H-LT, i.e., the H-LT rela-

tive to a hereditary torsion theory, but only for commutative unital rings, and
conjecture it for arbitrary unital rings.
• 1978-1979: Murase [67] and Tominaga and Murase [84] show, among others,

that a left Artinian ring A, not necessarily unital, is Noetherian if and only
J/AJ is finite (where J is the Jacobson radical of R) if and only if the largest
divisible torsion subgroup of the additive group of A is 0.
• 1979: Miller and Teply [66] prove the Relative H-LT for arbitrary unital rings.
• 1979-1980: Năstăsescu [70], [71] proves the Absolute or Categorical H-LT ,

i.e., the H-LT for an arbitrary Grothendieck category.
• 1980: Albu [2] proves the Absolute Dual H-LT for commutative Grothendieck

categories.
• 1982: Faith [49] provides another module-theoretical proof of the Relative

H-LT and also the ∆-Σ and counter versions of it.
• 1984: Albu [3] establishes the Latticial H-LT for upper continuous modular

lattices.
• 1996: Albu and Smith [29] prove the Latticial H-LT for arbitrary modular

lattices.
• 1996: Albu, Lenagan, and Smith [23] establish a Krull dimension-like extension

of the Classical H-LT and Absolute H-LT.
• 1997: Albu and Smith [30] extend the result of Albu, Lenagan, and Smith [23]

from Grothendieck categories to upper continuous modular lattices, using the
technique of localization of modular lattices they developed in [29].
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In the sequel we shall discuss in full detail all the extensions listed above of the HL-T
for unital rings, as well as the connections between them.

4.2. The Relative and the Absolute Hopkins-Levitzki Theorem

In this section we discuss the relative and absolute counterparts of the Classical
Hopkins-Levitzki Theorem and present a latticial strategy which will allow us in the
next section to easily deduce in a unified manner both of them from a more general
latticial approach.

The Relative Hopkins-Levitzki Theorem

The next result is due to Albu and Năstăsescu [25, Théorème 4.7] for commutative
rings, conjectured for non commutative rings by Albu and Năstăsescu [25, Problème
4.8], and proved for arbitrary unital rings by Miller and Teply [66, Theorem 1.4].

Theorem 4.2.1. (Relative H-LT). Let R be a ring with identity, and let τ be
a hereditary torsion theory on Mod-R. If R is a right τ -Artinian ring, then every
τ -Artinian right R-module is τ -Noetherian. �

Let us mention that the module-theoretical proofs available in the literature of the
Relative H-LT, namely the original one in 1979 due to Miller and Teply [66, Theorem
1.4] and another one in 1982 due to Faith [49, Theorem 7.1 and Corollary 7.2], are very
long and complicated.

The importance of the Relative H-LT in investigating the structure of some relevant
classes of modules, including injectives as well as projectives, is revealed in [26] and
[49], where the main body of both these monographs deals with this topic.

Relativization

The Relative H-LT nicely illustrates a general direction in Module Theory, namely
the so called Relativization. Roughly speaking, this topic deals with the following matter:

Given a property P in the lattice L(MR) investigate the property P in
the lattice Satτ (MR).

Since more than forty years module theorists were dealing with the following problem:

Having a theorem T on modules, is its relativization τ -T true?

As we mentioned just after the statement of the Relative H-LT, its known module-
theoretical proofs are very long and complicated; so, the relativization of a result on
modules is not always a simple job, and as this will become clear with the next statement,
sometimes it may be even impossible.

Metatheorem. The relativization T τ -T of a theorem T in Module Theory is
not always true/possible.

Proof. Consider the following nice theorem of Lenagan [60, Theorem 3.2]:

T : If R has right Krull dimension then its prime radical N(R) is nilpotent.

The relativization of T is the following:
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τ -T: If R has right τ -Krull dimension then its τ -prime radical Nτ (R) is
τ -nilpotent.

Recall that Nτ (R) is the intersection of all τ -saturated two-sided prime ideals of R, and
a right ideal I of R is said to be τ -nilpotent if In ∈ T for some integer n > 0.

The truth of the relativization τ -T of T has been asked by Albu and Smith [28,
Problem 4.3]. Surprisingly, the answer is “no” in general, even if R is (left and right)
Noetherian, by [22, Example 3.1]. This proves our Metatheorem.

However, τ -T is true for any ring R and any ideal invariant hereditary torsion
theory τ , including any commutative ring R and any τ (see [22, Section 6]). �

The Absolute Hopkins-Levitzki Theorem

The next result is due to Năstăsescu, who actually gave two different short nice
proofs: [70, Corollaire 1.3] in 1979, based on the Loewy length, and [71, Corollaire 2]
in 1980, based on the length of a composition series.

Theorem 4.2.2. (Absolute H-LT). Let G be a Grothendieck category having an
Artinian generator. Then any Artinian object of G is Noetherian. �

Recall that a Grothendieck category is an Abelian category G satisfying the axiom
AB5 of Grothendieck and having a generator G (this means that for every object X
of G there exist a set I and an epimorphism G(I) ։ X). A family (Uj)j∈J of objects
of G is said to be a family of generators of G if

⊕

j∈J Uj is a generator of G (see
Proposition 3.1.3 for equivalent definitions of a family of generators in a category). The
Grothendieck category G is called locally Noetherian (respectively, locally Artinian) if
it has a family of Noetherian (respectively, Artinian) generators. Also, recall that an
object X ∈ G is said to be Noetherian (respectively, Artinian) if the lattice L(X) of
all subobjects of X is Noetherian (respectively, Artinian).

Note that J.E. Roos [82] has produced in 1969 an example of a locally Artinian
Grothendieck category C which is not locally Noetherian; thus, the so called Locally
Absolute H-LT fails. Even if a locally Artinian Grothendieck category C has a family
of projective Artinian generators, then it is not necessarily locally Noetherian, as an
example in [63] shows. However, the Locally Absolute H-LT is true if the family of
Artinian generators of C is finite (because in this case C has an Artinian generator),
as well as, by [25, Corollaire 4.38], if the Grothendieck category C is commutative (see
the subsection on Absolute and Relative Dual H-LT in Section 4.4 for the definition of
a commutative Grothendieck category).

Absolutization

The Absolute H-LT illustrates another general direction in Module Theory, namely
the so called Absolutization. Roughly speaking, this topic deals with the following
matter:

Given a property P on modules, investigate the property P on objects of
a Grothendieck category.

As for relativization, the following problem naturally arises:

Having a theorem T on modules, is its absolutization abs-T true?



82 Chapter 4

For example, the absolutization of the H-LT is true by Theorem 4.2.2, but, as we
have seen at the end of Section 3.2, the absolutization of the property that any non-zero
module has a simple factor module is not true.

We shall discuss now the interplay Relativization←→ Absolutization. Let τ = (T, F)
be a hereditary torsion theory on Mod-R. Then, because T is a localizing subcategory
of Mod-R, one can form the quotient category Mod-R/T, and denote by

Tτ : Mod-R −→ Mod-R/T

the canonical functor from the category Mod-R to its quotient category Mod-R/T.

Proposition 4.2.3. With the notation above, for every module MR there exists a
lattice isomorphism

Satτ (M)
∼
−→ L(Tτ (M)).

In particular, M is a τ -Noetherian (respectively, τ -Artinian) module if and only if
Tτ (M) is a Noetherian (respectively, Artinian) object of Mod-R/T.

Proof. See [26, Proposition 7.10]. �

We may also think that Absolutization is a technique to pass from τ -relative results
in Mod-R to absolute properties in the quotient category Mod-R/T via the canonical
functor Tτ : Mod-R −→ Mod-R/T. This technique is, in a certain sense, opposite to
Relativization, meaning that absolute results in a Grothendieck category G can be trans-
lated, via the Gabriel-Popescu Theorem, into τ -relative results in Mod-R as follows.

Let U be any generator of the Grothendieck category G, and let RU be the ring
EndG(U) of endomorphims of U . As we have mentioned just after Theorem 3.3.3,
if SU : G −→ Mod-RU is the functor HomG(U,−), then SU has a left adjoint TU ,
TU ◦SU ≃ 1G, and Ker(TU) := {M ∈ Mod-RU | TU(M) = 0 } is a localizing subcategory
of Mod-RU . Let now τU be the hereditary torsion theory (uniquely) determined by the
localizing subcategory Ker(TU) of Mod-RU . Many properties of an object X ∈ G can
now be translated into relative τU -properties of the right RU -module SU(X); e.g., X ∈ G

is an Artinian (respectively, Noetherian) object if and only if SU(X) is a τU -Artinian
(respectively, τU -Noetherian) right RU -module.

As mentioned before, the two module-theoretical proofs available in the literature
of the Relative H-LT due to Miller and Teply [66] and Faith [49], are very long and
complicated. On the contrary, the two categorical proofs of the Absolute H-LT due
to Năstăsescu [70], [71] are very short and simple. We shall prove in Section 4.4 that
Relative H-LT ⇐⇒ Absolute H-LT ; this means exactly that any of this theorems can
be deduced from the other one. In this way we can obtain two short categorical proofs
of the Relative H-LT.

However, some module theorists are not so comfortable with categorical proofs of
module-theoretical theorems. Moreover, as we shall see in Section 5.3, statements like
“basically the same proof for modules works in the categorical setting” may lead some-
times to wrong statements and results.

There exists an alternative for those people, namely the latticial setting. Indeed, if
τ is a hereditary torsion theory on Mod-R and MR is any module then Satτ (M) is
an upper continuous modular lattice, and if G is a Grothendieck category and X is
any object of G then L(X) is also an upper continuous modular lattice. Therefore, a
strong reason to study such kinds of lattices exists.
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A latticial strategy

Let P be a problem, involving subobjects or submodules, to be investigated in
Grothendieck categories or in module categories with respect to hereditary torsion the-
ories. Our main strategy in this direction since more than thirty years, we call latticiza-
tion, consists of the following three steps:

I. Translate/formulate, if possible, the problem P into a latticial setting.
II. Investigate the obtained problem P in this latticial frame.

III. Back to basics, i.e., to Grothendieck categories and module categories equipped
with hereditary torsion theories.

The advantage to deal in such a way is, in our opinion, that this is the most natural
and simple approach as well, because we ignore the specific context of Grothendieck
categories and module categories equipped with hereditary torsion theories, focussing
only on those latticial properties which are relevant in our given specific categorical
or relative module-theoretical problem P. The best illustration of this approach is, as
we shall see in Section 4.4, that both the Relative H-LT and the Absolute H-LT are
immediate consequences of the so called Latticial H-LT , which will be amply discussed
in the next section.

4.3. The Latticial Hopkins-Levitzki Theorem

The Classical/Relative/Absolute H-LT asks when a particular Artinian lattice
L(MR)/Satτ (MR)/L(X) is Noetherian. Our contention is that the natural setting for
the H-LT and its various extensions is Lattice Theory , being concerned as it is with
descending and ascending chains in certain lattices. Therefore we shall present in this
section the Latticial H-LT which gives an exhaustive answer to the following more gen-
eral question:

When an arbitrary Artinian modular lattice with 0 is Noetherian?

The condition (E)

We are interested in the following property that a lattice L may have (“E” for Es-
sential):

(E) For all a 6 b in L there exists c ∈ L such that b∧ c = a and b∨ c
is an essential element of [a).

Recall from Section 1.2 that a lattice L ∈M0 is called E-complemented if for each
b ∈ L there exists c ∈ L such that b∧ c = 0 and b∨ c is essential in L, and completely
E-complemented if [a) is E-complemented for all a ∈ L. So, condition (E) means
exactly that the lattice L is completely E-complemented. It is not clear whether the
condition (E) for a lattice L is equivalent or not with that of being E-complemented.

Lemma 4.3.1. Any QFD lattice L ∈M0 satisfies (E).

Proof. By Corollary 2.2.6, any lattice with finite Goldie dimension is E-comple-
mented, so the result follows because the condition (E) for L means exactly that the
lattice [a) is E-complemented for all a ∈ L. �
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Examples 4.3.2. (1) Noetherian lattices satisfy (E) by Lemma 4.3.1 and Corollary
2.2.11(1).

(2) Any upper continuous modular lattice L satisfies (E). Indeed, for any a ∈ L,
the interval 1/a of L is upper continuous, so strongly pseudo-complemented, and then,
also E-complemented. Thus, L is completely E-complemented, i.e., satisfies (E).

(3) The set N of all natural numbers ordered by the usual divisibility is an Artinian
modular lattice (even distributive), which does not satisfy (E).

(4) Denote by K the lattice of all ideals of the subring R of Q consisting of all
fractions a/b with a, b ∈ Z , b 6= 0 , 2 ∤ b and 3 ∤ b. Then Ko is an Artinian lattice, it
satisfies (E) but is not pseudo-complemented. �

When an arbitrary Artinian modular lattice is Noetherian?

Lemma 4.3.3. The following statements are equivalent for a complemented modular
lattice L.

(1) L is Noetherian.
(2) L is Artinian.
(3) L has finite Goldie dimension.
(4) 1 is a finite join of atoms of L.
(5) 1 =

∨

A for some finite independent set A of atoms of L.

Proof. (1) =⇒ (3) by Corollary 2.2.11(1).

(2) =⇒ (3) by Proposition 1.2.18(1) and Theorem 2.2.16.

(3) =⇒ (5) There exists a finite independent subset S of uniform elements of L such
that e :=

∨

S ∈ E(L). Since L is complemented it is clear that e = 1. Also, if u is
a uniform element of L, then u/0 is a complemented lattice by Proposition 1.1.5, and
hence u is an atom.

(5) =⇒ (4) is clear.

(4) =⇒ (1) and (4) =⇒ (2) by Corollary 2.1.3. �

Lemma 4.3.4. Let L ∈ M0 be an E-complemented Artinian lattice. Then there
exists an essential element e of L such that e/0 is a complemented Noetherian lattice.

Proof. Clearly, we may assume that L 6= {0}. Let e ∈ L be chosen minimal in
the set E(L) of all essential elements of L. Then e 6= 0. Let 0 < a 6 e. There exists
b ∈ L such that a ∧ b = 0 and a ∨ b ∈ E(L). Since e ∧ (a ∨ b) ∈ E(L), by the choice
of e we have

e = e ∧ (a ∨ b) = a ∨ (e ∧ b).

Thus e/0 is an Artinian complemented lattice. By Lemma 4.3.3, e/0 is also Noetherian,
and we are done. �

In order to characterize Artinian lattices which are Noetherian, we introduce the
following condition (“BL” for Bounded Length) for lattices with a least element:

(BL) There exists n ∈ N such that for all x < y in L with y/0 having
a composition series there exists cxy ∈ L such that cxy 6 y, cxy 66 x, and
ℓ(cxy/0) 6 n.
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The next result is the Hopkins-Levitzki Theorem for an arbitrary modular lattice
with least element, that will be used in the next section to provide very short proofs of
the absolute (or categorical) and relative counterparts of the Classical Hopkins-Levitzki
Theorem.

Theorem 4.3.5. (Latticial H-LT). Let L ∈M0 be an Artinian lattice. Then L
is Noetherian if and only if L satisfies both conditions (E) and (BL).

Proof. If L is Noetherian, then take cxy = y for all x < y in L. Observe that
ℓ(y/0) 6 ℓ(L), hence L satisfies (BL), and by Examples 4.3.2(1), it also satisfies (E).

Conversely, suppose that L satisfies both (E) and (BL). We can obviously suppose
that L 6= {0}, for otherwise it is nothing to prove. By Lemma 4.3.4, the condition (E)
ensures the existence of an ascending chain

0 = e0 < e1 6 e2 6 . . .

of elements of L such that ei/ei−1 is Noetherian and ei ∈ E([ei−1)) for all i > 1.
Suppose that n is the positive integer in the (BL) condition for L. If L 6= (en] then
en < en+1. According to the condition (BL), there exists c ∈ L such that

c 6 en+1, c 66 en, and ℓ(c/0) 6 n.

Now
0 = c ∧ e0 6 c ∧ e1 6 . . . 6 c ∧ en−1 6 c ∧ en < c.

Suppose that c ∧ ei = c ∧ ei−1 for some 1 6 i 6 n. Then

(c ∨ ei−1) ∧ ei = (c ∧ ei) ∨ ei−1 = (c ∧ ei−1) ∨ ei−1 = ei−1

implies that c ∨ ei−1 = ei−1 since ei ∈ E([ei−1)), and then c 6 ei−1 6 en, which is a
contradiction. Thus

0 = c ∧ e0 < c ∧ e1 . . . < c ∧ en−1 < c ∧ en < c,

so that ℓ(c/0) > n + 1, which is again a contradiction. It follows that L = (en ], and
hence L is Noetherian, as desired. �

Observe that if e is an element as in Lemma 4.3.4 and L 6= {0}, then there exists a
positive integer n and a finite independent set {a1, . . . , an} of atoms of L such that
e =

∨

16i6n ai. Further, for each atom a of L we have a ∧ e 6= 0, hence a 6 e , and
consequently e is exactly the socle Soc(L) of L, i.e., the join of all atoms of L. Note
that the given E-complemented Artinian lattice L need not be complete. Thus, the
chain

0 = e0 6 e1 6 e2 6 . . .

defined in the proof of Theorem 4.3.5 is nothing other than the so called Loewy series
of L which is defined similarly as for modules, but, in our special setting, without using
the upper continuity of L, as it is usually done.

Lattice generation

We now exhibit a natural situation, involving the concept of “lattice generation”,
where the condition (BL) occurs. In order to define it, first recall some definitions
and facts on module generation. If R is a unital ring and M, U are two unital right
R-modules, then M is said to be U -generated if there exist a set I and an epimorphism
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U (I) ։ M . The fact that M is U -generated can be equivalently expressed as follows:
for every proper submodule N of M there exists a submodule P of M which is not
contained in N , such that P is isomorphic to a quotient of the module U . Further,
M is said to be strongly U-generated if every submodule of M is U -generated. These
concepts can be naturally extended to arbitrary lattices as follows:

Definitions. We say that a lattice L ∈ L1 is generated by a lattice G ∈ L1 (or
is G-generated) if for every a 6= 1 in L there exist c ∈ L and g ∈ G such that c 66 a
and (c ] ≃ 1/g. A lattice L ∈ L is called strongly generated by a lattice G ∈ L1 (or
strongly G-generated) if for every b ∈ L, the interval (b ] is G-generated, i.e., for all
a < b in L, there exist c ∈ L and g ∈ G such that c 6 b, c 66 a, and (c ] ≃ 1/g. �

Recall from Section 1.1 that we have denoted by L (respectively, L0, L1) the class
of all lattices (respectively, lattices with least element 0, lattices with greatest element
1). Every lattice G ∈ L1 is G-generated (take c = 1 and g = 0 in the definition
above), and the zero lattice 0 is also G-generated for any G ∈ L1. Of course, as in [7],
the above definitions can be obviously further extended from lattices to posets.

Clearly, if the R-module M is (strongly) U -generated, then the lattice L(MR) is
(strongly) L(UR)-generated, but not conversely.

Lemma 4.3.6. Let L ∈M1 be an Artinian lattice. Then, the set

N = { a | 1/a is Noetherian }

has a (unique) least element a∗.

Proof. Clearly 1 ∈ N . Let a∗ be a minimal element of N , and let b be an arbitrary
element of N . Then 1/(a∗ ∧ b) is Noetherian by Corollary 2.1.3(1), i.e., a∗ ∧ b ∈ N ,
and so a∗ ∧ b = a∗ by the minimality of a∗. Consequently a∗ 6 b, which proves that
a∗ is the (unique) least element of N . �

For any Artinian lattice L ∈ M1 we shall denote by ℓ∗(L) := ℓ(1/a∗), with a∗ as
in Lemma 4.3.6, the so called reduced length of L, Observe that a∗ is the least element
of L such that 1/a∗ is a lattice of finite length.

Proposition 4.3.7. Let L ∈M0 be such that L is strongly generated by an Artinian
lattice G ∈M1. Then L satisfies the condition (BL).

Proof. Let n = ℓ∗(G), and let x < y in L be such that y/0 has a composition
series. There exist elements z ∈ L, g ∈ G such that z 6 y, z 66 x, and z/0 ≃ 1/g, so
1/g is Noetherian. By Lemma 4.3.6, a∗ 6 g, and then 1/g ⊆ 1/a∗. This implies that
ℓ(z/0) = ℓ(1/g) 6 ℓ(1/a∗) = ℓ∗(G) = n. It follows that L satisfies (BL). �

Combining Theorem 4.3.5 and Proposition 4.3.7 we have at once:

Theorem 4.3.8. Let L ∈M0 be an Artinian lattice which is strongly generated by an
Artinian lattice G ∈M1. Then L is Noetherian if and only if L satisfies the condition
(E). In particular, if additionally L is upper continuous, then L is Noetherian. �
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When an arbitrary Noetherian modular lattice is Artinian?

The results of the previous subsection can be easily dualized by asking when a
Noetherian lattice is Artinian. From now on, L will denote a modular lattice with a
greatest element, i.e., L ∈M1.

The dual properties of (E) and (BL) for a lattice L ∈M1 are the following:

(Eo) For all a 6 b in L there exists c ∈ L such that a ∨ c = b and
a ∧ c is a superfluous element of ( b ].

and

(BL
o) There exists n ∈ N such that for all x < y in L with 1/x having

a composition series there exists cxy in L such that x 6 cxy, y 66 cxy, and
ℓ(1/cxy) 6 n.

Examples of modular lattices that satisfy or not the condition (Eo) can be easily
obtained by taking the opposites of the lattices discussed in Examples 4.3.2; e.g., the op-
posite lattice No of the lattice N of all natural numbers ordered by the usual divisibility
is Noetherian and does not satisfy (Eo).

Theorem 4.3.9. (Latticial Dual H-LT). Let L ∈ M1 be a Noetherian lattice.
Then L is Artinian if and only if L satisfies both conditions (Eo) and (BLo).

Proof. Observe that the opposite of a modular lattice (respectively, lattice of finite
length) is also a modular lattice (respectively, lattice of finite length). Also

L ∈M1 satisfies (Eo) ⇐⇒ Lo ∈M0 satisfies (E),

and

L ∈M1 satisfies (BL
o) ⇐⇒ Lo ∈M0 satisfies (BL).

Now, the result follows immediately from Theorem 4.3.5. �

Lattice cogeneration

Recall that if R is a unital ring and M, U are two unital right R-modules, then M
is said to be U -cogenerated if there exist a set I and a monomorphism M ֌ U I . The
fact that M is U -cogenerated can be equivalently expressed as follows: for any non-zero
submodule N of M there exist a submodule P of M and a submodule U ′ of U such that
N 6⊆ P and M/P ≃ U ′. Further, we say that a module M is strongly U-cogenerated
in case any quotient module of M is U -cogenerated. These concepts can be naturally
extended to arbitrary lattices as follows:

Definitions. A lattice L ∈ L0 is said to be cogenerated by a lattice C ∈ L0 or
C-cogenerated if for any x 6= 0 in L there exist z ∈ L and c ∈ C with x 66 z and
[z) ≃ c/0. A lattice L ∈ L is called strongly cogenerated by a lattice C ∈ L0 or
strongly C-cogenerated if for any y ∈ L, the interval [y) is C-cogenerated, that is, for
any y < x in L there exist z ∈ L and c ∈ C such that y 6 z , x 66 z, and [z) ≃ c/0.

�

Of course, the above definitions can be obviously further extended from lattices to
posets. Observe that C-cogeneration is dual to G-generation:

L is C-cogenerated ⇐⇒ Lo is Co-generated.
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The dual statements of Proposition 4.3.7 and Theorem 4.3.8 are the following:

Proposition 4.3.10. Let L ∈ M1 be such that L is strongly cogenerated by a
Noetherian lattice G ∈M0. Then L satisfies the condition (BLo). �

Theorem 4.3.11. Let L ∈M1 be a Noetherian lattice which is strongly cogenerated
by a Noetherian lattice G ∈ M0. Then L is Artinian if and only if L satisfies the
condition (Eo). �

Theorems 4.3.5 and 4.3.9 have the following consequence:

Corollary 4.3.12. The following statements are equivalent for a lattice L ∈M0,1.
(1) L has a composition series.
(2) L is Artinian, satisfies (BL), and 1/a has finite Goldie dimension for all

a ∈ L.
(3) L is Artinian, satisfies (BL), and is upper continuous.
(4) L is Artinian and satisfies both (BL) and (E).
(5) L is Noetherian, satisfies (BLo), and a/0 has finite dual Goldie dimension for

all a ∈ L.
(6) L is Noetherian, satisfies (BLo), and is lower continuous.
(7) L is Noetherian and satisfies both (BLo) and (Eo).

Proof. Clearly (1) =⇒ (2). We have also (1) =⇒ (3) according to Corollary 2.1.15,
(2) =⇒ (4) by Lemma 4.3.1, (3) =⇒ (4) by Examples 4.3.2(2), (4) =⇒ (1) by Theorem
4.3.5, and (1)⇐⇒ (7) by Theorem 4.3.9. The other equivalences follow by considering
the dual lattice Lo of L. �

4.4. Other aspects of the Hopkins-Levitzki Theorem

The aim of this section is two-fold: firstly, to discuss all the connections between the
Classical, Relative, Absolute, and Latticial H-LT, and secondly, to present other aspects
of the H-LT including the Faith’s ∆-Σ and counter versions of the Relative H-LT, the
Dual H-LT, as well as a Krull dimension-like H-LT. In particular, we show in a unified
manner that both the Relative H-LT and Absolute H-LT are immediate consequences
of the Latticial H-LT.

Latticial H-LT =⇒ Relative H-LT

As mentioned above, the module-theoretical proofs available in the literature of the
Relative H-LT are very long and complicated. We present below a very short proof of
it based on the Latticial H-LT.

So, let τ = (T, F) be a hereditary torsion theory on Mod-R. Assume that R is
τ -Artinian, and let MR be a τ -Artinian module. The Relative H-LT states that MR is
a τ -Noetherian module.

Set G := Satτ (RR) and L := Satτ (MR). Then G and L are Artinian upper con-
tinuous modular lattices. We have to prove that MR is a τ -Noetherian module, i.e., L
is a Noetherian lattice. By Theorem 4.3.8, it is sufficient to check that L is strongly
G-generated, i.e., for every a < b in L, there exist c ∈ L and g ∈ G such that
c 6 b, c 66 a, and c/0 ≃ 1/g.
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Since Satτ (M) ≃ Satτ (M/τ(M)) by Lemma 3.4.2, we may assume, without loss of
generality, that M ∈ F. Let a = A < B = b in L = Satτ (MR). Then, there exists
x ∈ B \ A. Set C := xR and I := AnnR(x). We have R/I ≃ xR 6 M ∈ F, so
R/I ∈ F, i.e., I ∈ Satτ (RR) = G. By Lemma 3.4.4, we deduce that

[ I, R ] ≃ Satτ (R/I ) ≃ Satτ (xR ) ≃ Satτ (xR ) = Satτ (C) = [ 0, C ],

where the intervals [ I, R ] and [ 0, C ] are considered in the lattices G and L, respec-
tively. Then, if we denote c = C and g = I, we have c ∈ L, g ∈ G, c 6 b, c 66 a, and
c/0 ≃ 1/g, which shows that L is strongly G-generated, as desired.

Latticial H-LT =⇒ Absolute H-LT

We show how the Absolute H-LT is an immediate consequence of the Latticial H-LT.
Let G be a Grothendieck category, and let U, X be Artinian objects of G such that
X is strongly U -generated (this means that each subobject of X is U -generated). We
are going to prove that X is Noetherian.

Set G := L(U) and L := L(X). Then G and L are both Artinian upper continuous
modular lattice. We have to prove that L is a Noetherian lattice. By Theorem 4.3.8,
it is sufficient to check that L is strongly G-generated. To do that, let a = A < B = b
in L = L(X). Because B is U -generated by hypothesis, there exists a morphism
α : U −→ B in G such that Im (α) 66 A. But Im (α) ≃ U/Ker (α), so, if we set
c := Im (α) and k := Ker (α), then we have c 6 b, c 66 a, and c/0 ≃ 1/k, which shows
exactly that the lattice L is strongly G-generated.

In particular if U is an Artinian generator of G, then any Artinian object X ∈ G

is Noetherian, which is exactly the Absolute H-LT

Absolute H-LT =⇒ Relative H-LT

We are going to show how the Relative H-LT can be deduced from the Absolute H-LT.
Let τ = (T, F) be a hereditary torsion theory on Mod-R. Assume that R is τ -Artinian
ring, and let MR be a τ -Artinian module. We pass from Mod-R to the Grothendieck
category Mod-R/T with the use of the canonical functor Tτ : Mod-R −→ Mod-R/T.
Since RR is a generator of Mod-R and Tτ is an exact functor that commutes with direct
sums we deduce that Tτ (R) is a generator of Mod-R/T, which is Artinian by Proposition
4.2.3. Now, again by Proposition 4.2.3, Tτ (M) is an Artinian object of Mod-R/T, so,
it is also Noetherian by the Absolute H-LT, i.e., M is τ -Noetherian, and we are done.

Relative H-LT =⇒ Absolute H-LT

We prove that the Absolute H-LT is a consequence of the Relative H-LT. Let G be
a Grothendieck category having an Artinian generator U . Set RU := EndG(U), and let

SU = HomG(U,−) : G −→ Mod-RU and TU : Mod-RU −→ G

be the pair of functors from the Gabriel-Popescu Theorem setting, described in Section
3.3 just after Theorem 3.3.3. Then TU ◦ SU ≃ 1G and

Ker(TU) := {M ∈ Mod-RU | TU(M) = 0}

is a localizing subcategory of Mod-RU . Let τU be the hereditary torsion theory
(uniquely) determined by the localizing subcategory TU := Ker(TU) of Mod-RU . By
the Gabriel-Popescu Theorem we have

G ≃ Mod-RU/TU and U ≃ (TU ◦ SU)(U) = TU(SU(U)) = TU(RU).
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Since U is an Artinian object of G, so is also TU(RU), which implies, by Proposition
4.2.3, that RU is a τU -Artinian ring.

Now, let X ∈ G be an Artinian object of G. Then, there exists a right RU -module
M such that X ≃ TU (M), so TU(M) is an Artinian object of G, i.e., M is a τU -Artinian
module. By the Relative H-LT, M is τU -Noetherian, so, again by Proposition 4.2.3,
X ≃ TU(M) is a Noetherian object of G, as desired.

The Faith’s ∆-Σ version of the Relative H-LT

Recall that an injective module QR is said to be Σ-injective if any direct sum of
copies of Q is injective. This concept is related with the concept of a τ -Noetherian
module as follows.

Let QR be an injective module, and denote TQ := {MR |HomR(M,Q) = 0}. Then
TQ is a localizing subcategory of Mod-R, and let τQ be the hereditary torsion theory
on Mod-R (uniquely) determined by TQ. Note that for any hereditary torsion theory τ
on Mod-R there exists an injective module QR such that τ = τQ.

A renowned theorem of Faith (1966) says that an injective module QR is Σ-injective
if and only if RR is τQ-Noetherian, or equivalently, if R satisfies the ACC on annihilators
of subsets of Q. In order to uniformize the notation, Faith [49] introduced the concept
of a ∆-injective module as being an injective module Q such that RR is τQ-Artinian,
or equivalently, R satisfies the DCC on annihilators of subsets of Q. Thus, the Relative
H-LT is equivalent with the following Faith’s ∆-Σ version of it.

Theorem 4.4.1. Any ∆-injective module is Σ-injective.

Proof. See [49, p. 3]. �

The Faith’s counter version of the Relative H-LT

Let MR be a module, and let S := EndR(M). Then M becomes a left S-module,
and the module SM is called the counter module of MR. We say that MR is counter-
Noetherian (respectively, counter-Artinian) if SM is a Noetherian (respectively, Ar-
tinian) module.

The next result is an equivalent version, in terms of counter modules, of the Relative
H-LT.

Theorem 4.4.2. If QR is an injective module which is counter-Noetherian, then
QR is counter-Artinian.

Proof. See [49, Theorem 7.1]. �

Absolute H-LT ⇐⇒ Classical H-LT

Grothendieck categories having an Artinian generator are very special in view of the
following surprising result of Năstăsescu.

Theorem 4.4.3. A Grothendieck category G has an Artinian generator if and only
if G ≃ Mod-A, with A a right Artinian ring with identity.

Proof. See [73, Théorème 3.3]. �
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Note that a heavy artillery has been used in the original proof of Theorem 4.4.3,
namely: the Gabriel-Popescu Theorem, the Relative H-LT, as well as structure theo-
rems for ∆-injective and ∆∗-projective modules. The Σ∗-projective and ∆∗-projective
modules, introduced and investigated in [72], [73], are in a certain sense dual to the
notions of Σ-injective and ∆-injective modules.

A more general result whose original proof is direct, without involving the many
facts listed above, is the following.

Theorem 4.4.4. Let G be a Grothendieck category having a (finitely generated ) gen-
erator U such that EndG(U) is a right perfect ring. Then G has a (finitely generated )
projective generator.

Proof. See [38, Theorem 2.2]. �

Observe now that if G has an Artinian generator U , then, by the Absolute H-LT, U
is also Noetherian, so, an object of finite length. Then S = EndG(U) is a semiprimary
ring, in particular it is right perfect. Now, by Theorem 4.4.4, G has a finitely generated
projective generator, say P . If A = EndG(P ) then A is a right Artinian ring, and
G ≃ Mod-A, which shows how Theorem 4.4.3 is an immediate consequence of Theorem
4.4.4.

Remark. If G is a Grothendieck category having an Artinian generator U , then
the right Artinian ring A in Theorem 4.4.3 for which G ≃ Mod-A is far from being
the endomorphism ring of U , and does not seem to be canonically associated with
G. The existence of a right Artinian ring B, canonically associated with G and such
that G ≃ Mod-B, is an easy consequence of a more general and more sophisticated
construction in [64] of the basic ring of an arbitrary locally Artinian Grothendieck
category. �

Clearly Relative H-LT =⇒ Classical H-LT by taking as τ the hereditary torsion
theory (0, Mod-R) on Mod-R, and Absolute H-LT =⇒ Classical H-LT by taking as G

the category Mod-R.

We conclude that the following implications between the various aspects of the H-LT
discussed so far hold:

Latticial H-LT =⇒ Relative H-LT ⇐⇒ Absolute H-LT ⇐⇒ Classical H-LT

Faith’s ∆-Σ Theorem ⇐⇒ Relative H-LT ⇐⇒ Faith’s counter Theorem

The Absolute and Relative Dual H-LT

Remember that the Absolute H-LT states that if G is a Grothendieck category with
an Artinian generator, then any Artinian object of G is necessarily Noetherian, so it is
natural to ask whether its dual holds, that is:

Problem. (Absolute Dual H-LT). If G is a Grothendieck category having a
Noetherian cogenerator, then does it follow that any Noetherian object of G is Artinian?

�
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Note that the Absolute Dual H-LT fails even for a module category Mod-R. To see
this, let k be a universal differential field of characteristic zero with derivation D; then,
the Cozzens domain R = k[y,D] of differential polynomials over k in the derivation
D is a principal right ideal domain which has a simple injective cogenerator S. So,
C = R⊕ S is both a Noetherian generator and cogenerator of Mod-R, which is clearly
not Artinian (see [2, Section 4]).

However the Absolute Dual H-LT holds for large classes of Grothendieck categories,
namely for the so called commutative Grothendieck categories, introduced in [24]. A
Grothendieck category C is said to be commutative if there exists a commutative ring
A with identity such that G ≃ Mod-A/T for some localizing subcategory T of Mod-A.
These are exactly those Grothendieck categories G having at least a generator U with
a commutative ring of endomorphisms.

Recall that an object G of a Grothendieck category G is a generator of G if every
object X of G is an epimorphic image G(I) ։ X of a direct sum of copies of G for
some set I. Dually, an object C ∈ G is said to be a cogenerator of G if every object X
of G can be embedded X ֌ CI into a direct product of copies of C for some set I (see
also Section 3.1 for the concepts of generator and cogenerator in an arbitrary category).

Theorem 4.4.5. The following assertions are equivalent for a commutative Gro-
thendieck category G.

(1) G has a Noetherian cogenerator.
(2) G has an Artinian generator.
(3) G ≃ Mod-A for some commutative Artinian ring with identity.

Proof. See [2, Theorem 3.2]. �

An immediate consequence of Theorem 4.4.5 is the following.

Theorem 4.4.6. (Absolute Dual HL-T). If G is any commutative Grothendieck
category having a Noetherian cogenerator, then every Noetherian object of G is Artinian.

�

If τ = (T, F) is a hereditary torsion theory on Mod-R, then a module CR is said
to be a τ -cogenerator of Mod-R if C ∈ F and every module in F is cogenerated by
C. The next result is the relative version of the Absolute Dual H-LT.

Theorem 4.4.7. (Relative Dual HL-T). Let R be a commutative ring with iden-
tity, and let τ be a hereditary torsion theory on Mod-R such that Mod-R has a τ -
Noetherian τ -cogenerator. Then every τ -Noetherian R-module is τ -Artinian. �

A Krull dimension-like extension of the Absolute H-LT

If G is a Grothendieck category and X is an object of G, then recall that the Krull
dimension of X, denoted by k(X), is defined as k(X) := k(L(X)), where L(X) is the
lattice of all subobjects of X.

The definition of the Krull dimension of an object in a Grothendieck category G

can also be given using a transfinite sequence of Serre subcategories of G and suitable
quotient categories of G (see [55, Proposition 1.5]). Using this approach, the following
extension of the Absolute H-LT has been proved:
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Theorem 4.4.8. Let G be a Grothendieck category, and let U be a generator of G

such that k(U) = α+1 for some ordinal α > −1. Then, for every object X of G having
Krull dimension and for every ascending chain

X1 6 X2 6 . . . 6 Xn 6 . . .

of subobjects of X , ∃m ∈ N such that k(Xi+1/Xi) 6 α, ∀ i > m.

Proof. See [23, Theorem 3.1]. �

Note that for α = −1 we obtain exactly the Absolute H-LT, because in this case,
X ∈ G has Krull dimension if and only if k(X) 6 0, i.e., if and only if X is Artinian.

It seems that the above result is really a categorical property of Grothendieck cat-
egories. As we already stressed before, the natural frame for the H-LT and its various
extensions is Lattice Theory , being concerned as it is with descending and ascending
chains in certain lattices, and therefore we shall present in the next subsection a very
general version of Theorem 4.4.8 for upper continuous modular lattices.

A Krull dimension-like extension of the Latticial H-LT

In order to present an extension of Theorem 4.4.8 to lattices, which, on one hand,
is interesting in its own right, and, on the other hand, provides another proof of it,
avoiding the use of quotient categories, we need first a latticial substitute for the notion
of generator of a Grothendieck category, which has been already presented in Section
4.3.

Theorem 4.4.9. Let L and G be upper continuous modular lattices. Suppose that
k(G) = α + 1 for some ordinal α > −1 and L is strongly generated by G. If L has
Krull dimension, then k(L) 6 α+ 1, and for every ascending chain

x1 6 x2 6 . . . 6 xn 6 . . .

of elements of L, ∃m ∈ N such that k(xi+1/xi) 6 α, ∀ i > m.

Proof. See [30, Theorem 3.16] for a thorough proof and [10] for a sketch of it. �

Two main ingredients are used in the proof of Theorem 4.4.9, namely the Latticial
H-LT and a localization technique for modular lattices developed in [30] analogously
with that for Grothendieck categories. In the next subsection we shall briefly discuss
this technique.

Localization of modular lattices

The terminology and notation below are taken from the localization theory in Gro-
thendieck categories. First, in analogy with the notion of a Serre subcategory of an
Abelian category, we present below, as in [29], the notion of a Serre class of lattices.

Definition. By an abstract class of lattices we mean a non-empty subclass X of
the class M0,1 of all modular lattices with 0 and 1, which is closed under lattice iso-
morphisms (i.e., if L, K ∈M0,1, K ≃ L and L ∈ X, then K ∈ X ).

We say that a subclass X of M0,1 is a Serre class for L ∈M0,1 if X is an abstract
class of lattices, and for all a 6 b 6 c in L, c/a ∈ X if and only if b/a ∈ X and
c/b ∈ X. A Serre class of lattices is an abstract class of lattices which is a Serre class
for all lattices L ∈M0,1. �
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Let X be an arbitrary non-empty subclass of M0,1 and let L ∈ M0,1 be a lattice.
Define a relation ∼X on L by:

a ∼X b ⇐⇒ (a ∨ b)/(a ∧ b) ∈ X.

Then ∼X is a congruence on L if and only if X is a Serre class for L. Recall
that a congruence on a lattice L is an equivalence relation ∼ on L such that for all
a, b, c ∈ L, a ∼ b implies a∨ c ∼ b∨ c and a∧ c ∼ b∧ c. It is well-known that in this
case the quotient set L/∼ has a natural lattice structure, and the canonical mapping
L −→ L/∼ is a lattice morphism. If X is a Serre class for L ∈ M0,1, then the lattice
L/∼X is called the quotient lattice of L by (or modulo) X.

We define now for any non-empty subclass X of M0,1 and for any lattice L, a
certain subset SatX(L) of L, called the X-saturation of L:

SatX(L) := { x ∈ L | x 6 y ∈ L, y/x ∈ X =⇒ x = y }.

This is the precise analogue of the subset Satτ (M) = {N 6 MR |M/N ∈ F } of
the lattice L(MR) of all submodules of a given module MR, where τ = (T, F) is a
hereditary torsion theory on Mod-R.

Definition. Let X be an arbitrary non-empty subclass of M0,1. We say that a
lattice L ∈M0,1 has an X-saturation if there exists a mapping, called the X-saturation
of L

L −→ Sat X(L) , x 7−→ x,

satisfying the following two conditions:
(1) x 6 x and x/x ∈ X for all x ∈ L.
(2) x 6 y in L =⇒ x 6 y. �

If X is a Serre class for L ∈M0,1 such that L has an X-saturation x 7−→ x, and if
we define

x∨y := x ∨ y, ∀ x, y ∈ Sat X(L),

then the reader can easily check that SatX(L) becomes a modular lattice with respect
to 6 , ∧, ∨, 0, 1.

By Proposition 4.2.3, for any hereditary torsion theory τ = (T, F) on Mod-R and any
module MR, the lattice Satτ (M) is isomorphic to the lattice L(Tτ (M)) of all subobjects
of the object Tτ (M) in the quotient category Mod-R/T, where

Tτ : Mod-R −→ Mod-R/T
is the canonical functor. The same happens also in our latticial frame: if X is a Serre
class for L ∈M0,1 such that L has an X-saturation, then

L/∼X ≃ Sat X(L).

Consequently, the lattice L is X-Noetherian (respectively, X-Artinian) ⇐⇒ the lattice
SatX(L) is Noetherian (respectively, Artinian) ⇐⇒ the lattice L/∼ X is Noetherian
(respectively, Artinian).

If X is a Serre class of lattices for a lattice L, one may define as in [29] the relative
conditions (E)X and (BL)X in order to prove the following Latticial H-LT relative to X.

Theorem 4.4.10. (Relative Latticial H-LT). Let X ⊆ M0,1 be a Serre class
for a lattice L ∈M0,1 such that L has an X-saturation and L is X-Artinian. Then L
is X-Noetherian if and only if L satisfies both conditions (E)X and (BL)X.
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Proof. See [29, Theorem 4.9] �

Serre classes of lattices which are closed under taking arbitrary joins, we next in-
troduce, are called localizing classes of lattices and they play the same role as that of
localizing subcategories in the setting of Grothendieck categories. More precisely, we
have the following:

Definition. Let X be a non-empty subclass of M0,1 and let L be a complete
modular lattice. We say that X is a localizing class for L if X is a Serre class for L,
and for any x ∈ L and for any family (xi)i∈I of elements of 1/x such that xi/x ∈ X

for all i ∈ I, we have (
∨

i∈I xi)/x ∈ X. By a localizing class of lattices we mean a Serre
class of lattices which is a localizing class for every complete modular lattice. �

Note that if X is a localizing class for a complete modular lattice L then L has an
X-saturation, which is uniquely determined. For more details on localization of modular
lattices, the reader is referred to [29], [30], and [32].

Three open questions

(1) If R is any ring with right Krull dimension, is it true that k0(R) 6 k(R)?

This question has been raised by Albu and Smith in 1991, and also mentioned in [31,
Question 1]. Observe that the answer is yes for k(R) = 0, which is exactly the Classical
H-LT. Other cases when the answer is yes, according to [31], are when R is one of the
following types of rings:

• a commutative Noetherian ring, or
• a commutative ring with Krull dimension 1, or
• a commutative domain with Krull dimension 2, or
• a valuation domain with Krull dimension, or
• a right Noetherian right V -ring.

(2) Similarly with the right global homological dimension of a ring R, two kinds of
“global dimension” related to the Krull dimension and dual Krull dimension of a ring R
have been defined in [31]: the right global Krull dimension r.gl.k(R) and the right global
dual Krull dimension r.gl.k0(R) of a ring, as being the supremum of k(MR) and k0(MR),
respectively, when MR is running in the class of all modules having Krull dimension.
Similarly with Question 1, one may ask:

What is the order relation between r.gl.k(R) and r.gl.k0(R)?

Note that, though according to [36, Corollary 1.3], k0(R) 6 k(R) for any valua-
tion ring R having Krull dimension, unexpectedly one has the opposite order relation
r.gl.k(R) 6 r.gl.k0(R) for any such ring R by [36, Theorem 2.4]. Recall that a valuation
ring is a commutative ring with identity whose ideals are totally ordered by inclusion.

(3) Does the result of Theorem 4.4.9 fail when k(G) is a limit ordinal?
We suspect that the answer is yes, even in the module case.





CHAPTER 5

THE OSOFSKY-SMITH THEOREM

In this chapter we discuss various aspects of the following renowned result of Module
Theory giving sufficient conditions for a finitely generated (respectively, cyclic) module
to be a finite direct sum of uniform submodules.

The Osofsky-Smith Theorem (O-ST). ([79, Theorem 1]). A finitely generated
(respectively, cyclic) right R-module such that all of its finitely generated (respectively,
cyclic) subfactors are CS modules is a finite direct sum of uniform submodules. �

Recall that a module M is said to be CS (or extending) if every submodule of M
is essential in a direct summand of M , or, equivalently, any complement submodule of
M is a direct summand of M . By subfactor of M one understands any submodule of
a factor module of M . Recall that in Module Theory one says that a submodule N of
M is a complement if there exists a submodule L of M such that N ∩ L = 0 and N is
maximal in the set of all submodules P of M such that P ∩L = 0, i.e., the element N of
the lattice L(M) of all submodules of M is a pseudo-complement element in this lattice.
The name CS is an acronym for C omplements submodules are direct Summands. More
about CS modules can be found in the monograph [48], entirely devoted to them.

Though the Osofsky-Smith Theorem is a module-theoretical result, our contention
is that it is a result of a strong latticial nature. In this chapter a latticial version of this
theorem is presented, and applications to Grothendieck categories and module categories
equipped with a torsion theory are given.

5.1. CC lattices

The purpose of this section is to discuss CC lattices, introduced in [21] as the latticial
counterparts of CS modules. These are exactly the lattices satisfying the first condition
(C1) from the list below of five conditions (Ci), i = 1, 2, 3, 11, 12. We also present the
concept of a CEK lattice needed in the next section.

Throughout this section L will denote a modular lattice with a least element 0 and
a greatest element 1, i.e., L ∈M0,1.

The conditions (Ci) for lattices

Recall that for any lattice L we introduced in Chapters 1 and 2 the following nota-
tion:

P (L) := the set of all pseudo-complement elements of L (P for “Pseudo”),
E(L) := the set of all essential elements of L (E for “Essential ”),
C(L) := the set of all closed elements of L (C for “Closed ”),
D(L) := the set of all complement elements of L (D for “Direct summand ”),
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K(L) := the set of all compact elements of L (K for “Kompakt”).
We present now five conditions (Ci), i = 1, 2, 3, 11, 12, introduced in [21] as the

latticial counterparts of the well-known corresponding conditions in Module Theory.

Definitions. For a lattice L one may consider the following conditions:
(C1) For every x ∈ L there exists d ∈ D(L) such that x ∈ E(d/0).
(C2) For every x ∈ L such that x/0 ≃ d/0 for some d ∈ D(L), one has x ∈ D(L).
(C3) For every d1, d2 ∈ D(L) with d1 ∧ d2 = 0, one has d1 ∨ d2 ∈ D(L).
(C11) For every x ∈ L there exists a pseudo-complement p of x with p ∈ D(L).
(C12) For every x ∈ L there exist d ∈ D(L), e ∈ E(d/0), and a lattice isomorphism

x/0 ≃ e/0. �

Definitions. A lattice L is called CC or extending if it satisfies (C1), continuous
if it satisfies (C1) and (C2), and quasi-continuous if it satisfies (C1) and (C3). �

CC lattices

We present now some characterizations and basic properties of CC lattices.

Lemma 5.1.1. The following assertions hold for a lattice L.
(1) D(L) ⊆ P (L) ⊆ C(L).
(2) D(L) ∩ (a/0) ⊆ D(a/0) for every a ∈ L.
(3) D(L) ∩ (d/0) = D(d/0) for every d ∈ D(L).

Proof. (1) Let d ∈ D(L). Then there exists c ∈ L with c ∨ d = 1 and c ∧ d = 1.
If c′ ∈ L is such that c 6 c′ and d ∧ c′ = 0, then, by modularity we have

c′ = 1 ∧ c′ = (c ∨ d) ∧ c′ = c ∨ (d ∧ c′) = c ∨ 0 = c,

which proves that d ∈ P (L), and so D(L) ⊆ P (L). The other inclusion P (L) ⊆ C(L)
follows from Proposition 1.2.16.

(2) Let d ∈ D(L)∩(a/0), and let c ∈ L be a complement of d in L. Then 1 = c∨d
and c ∧ d = 0. It follows that (c ∧ a) ∧ d = 0 and (c ∧ a) ∨ d = (c ∨ d) ∧ a = 1 ∧ a = a,
which shows that c ∧ a is a complement of d in a/0, i.e., d ∈ D(a/0).

(3) Let d′ ∈ D(d/0). Then there exists d′′ ∈ L such that d′∧d′′ = 0 and d′∨d′′ = d.
Also, a ∨ d = 1 and a ∧ d = 0 for some a ∈ L. Thus d′ ∨ (d′′ ∨ a) = 1. Now, observe
that a∧ (d′ ∨ d′′) = a∧ d = 0, so we can apply Lemma 1.2.6 to obtain d′∧ (d′′ ∨ a) = 0.
This shows that d′′ ∨ a is a complement of d′ in L, i.e., d′ ∈ D(L). Since d′ 6 d, we
deduce that d′ ∈ D(L)∩ (d/0). So D(d/0) ⊆ D(L)∩ (d/0). The other inclusion follows
from (2). �

The next result explains the term of a CC lattice, acronym for C losed elements are
C omplements.

Proposition 5.1.2. The following statements hold for a lattice L.
(1) L is uniform =⇒ L is CC, and, if additionally L is indecomposable, then the

inverse implication “⇐=” also holds.
(2) If additionally L is essentially closed (in particular, if L is upper continuous)

then
L is CC ⇐⇒ C(L) ⊆ D(L)⇐⇒ C(L) = D(L).
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(3) If additionally L is strongly pseudo-complemented (in particular, if L is upper
continuous) then

L is CC ⇐⇒ C(L) ⊆ D(L)⇐⇒ C(L) = D(L)⇐⇒
⇐⇒ P (L) ⊆ D(L)⇐⇒ P (L) = D(L).

Proof. (1) Assume that L is uniform, and let x ∈ L. If x = 0 then 0 ∈ D(L) and
0 ∈ E(0/0). If x 6= 0 then 1 ∈ D(L) and x ∈ E(1/0) = E(L). So L is CC.

Now assume that L is CC and indecomposable, and let 0 6= x ∈ L. By hypothesis,
x ∈ E(d/0) for some d ∈ D(L) = {0, 1}, so necessarily d = 1, and then x ∈ E(1/0) =
E(L). Hence L is uniform.

(2) Assume that L is CC, and let x ∈ C(L). Then, there exists d ∈ D(L) such that
x ∈ E(d/0), and hence x = d ∈ D(L) because L is essentially closed. So C(L) ⊆ D(L).
Observe that, by Lemma 5.1.1(1), C(L) ⊆ D(L)⇐⇒ C(L) = D(L).

Finally assume that C(L) ⊆ D(L), and let x ∈ L. There exists c ∈ C(L) such that
x ∈ E(c/0). By assumption, c ∈ D(L). It follows that L is CC.

(3) follows at once from (2), Theorem 1.2.24, and Corollary 1.2.17. �

Proposition 5.1.3. Let L be a strongly pseudo-complemented lattice (in particular
an upper continuous lattice). If L is a CC lattice then so is also d/0 for any d ∈ D(L),
in other words, the CC condition is inherited by complement intervals.

Proof. Assume that L is CC, and let c ∈ C(d/0). Since d ∈ D(L) ⊆ C(L) by
Lemma 5.1.1(1), it follows that c ∈ C(L) by Corollary 1.2.14. But C(L) = D(L)
by Proposition 5.1.2, therefore c ∈ D(L) ∩ (d/0) = D(d/0) by Lemma 5.1.1(3). Thus
C(d/0) ⊆ D(d/0). Now, observe that d/0 is strongly pseudo-complemented by Lemma
1.2.20, so we can apply again Proposition 5.1.2(3) to deduce that d/0 is a CC lattice. �

Corollary 5.1.4. Let L be a strongly pseudo-complemented CC lattice. Then L
has finite Goldie dimension if and only if 1 is a finite direct join of uniform elements
of L.

Proof. One implication is clear. For the other one, assume that L has finite
Goldie dimension. Then L contains a uniform element v. Let c ∈ C(L) be such that

v ∈ E(c/0). Then c ∈ D(L) because L is CC, so 1 = c
·
∨ c′, for some c′ ∈ L. It follows

that c′/0 is also CC by Proposition 5.1.3. Now observe that u(c′/0) < u(L) and c′/0
is strongly pseudo-complemented, so the proof proceeds by induction on u(L). �

CEK lattices

We discuss the concept of a CEK lattice, that will be necessary in proving a key
lemma used in the proof of the main result of this chapter.

Definitions. Let L be a lattice.

(1) An element a ∈ L is called essentially compact if E(a/0) ∩ K(L) 6= ∅. We
denote by Ek(L) the set of all essentially compact elements of L.

(2) L is called CEK (for Closed are Essentially Compact) if every closed element
of L is essentially compact, i.e., C(L) ⊆ Ek(L). �

The next result provides large classes of CEK lattices.
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Proposition 5.1.5. Let L be a non-zero complete modular lattice having the fol-
lowing property:

(†) For every 0 6= x ∈ L there exists 0 6= k ∈ K(L) with k 6 x.

In particular, L can be any compactly generated lattice.
Then L has finite Goldie dimension if and only if each element of L is essen-

tially compact, i.e., L = Ek(L). In particular, any modular lattice with finite Goldie
dimension satisfying (†) is CEK.

Proof. Assume that L has finite Goldie dimension, and let a ∈ L. Then the
interval a/0 has also finite Goldie dimension, so there exists an independent family
(ui)16i6n of uniform elements of a/0 such that

∨

16i6n ui ∈ E(a/0). By hypothesis,
for every i, 1 6 i 6 n, there exist 0 6= ki ∈ K(L) with ki 6 ui. Then, if we set
k :=

∨

16i6n ki and u :=
∨

16i6n ui, we have k ∈ E(u/0)∩K(L), so k ∈ E(a/0)∩K(L),
as desired.

Conversely, assume that L has infinite Goldie dimension. Then L \ {0} contains an
infinite independent set { x1, x2, . . . }. Since L is a complete lattice, we may consider
the element x :=

∨

i∈N xi. Then x 6∈ Ek(L), for otherwise, it would exist c 6 x such
that c ∈ E(x/0) ∩K(L). Then c 6

∨

16i6m xi for some m ∈ N, so

c ∧ xm+1 6
(

∨

16i6m

xi
)

∧ xm+1 = 0,

and then, c 6∈ E(x/0), which is a contradiction. This means that x 6∈ Ek(L), and we
are done. �

5.2. The Latticial Osofsky-Smith Theorem

In this section we prove the latticial version of the module-theoretical Osofsky-Smith
Theorem. Our contention is that the natural setting for this theorem and its various
extensions is Lattice Theory, being concerned as it is, with latticial concepts like es-
sential, uniform, complement, pseudo-complements elements, and direct joins in certain
lattices.

Three lemmas

Lemma 5.2.1. Let L be a compact, compactly generated, modular lattice. Assume
that all compact intervals b/a of L are CEK, i.e., every c ∈ C(b/a) is an essentially
compact element of b/a. Then D(L) is a Noetherian poset.

Proof. See [14, Lemma 2.1] for a very technical 6-page proof. �

Observe that he condition that the lattice L is compact is necessary in Lemma 5.2.1.
Indeed, let M be an infinite dimensional vector space over the field F , and let L denote
the lattice L(M) of all submodules of FM . Then all compact intervals b/a of L, i.e.,
all the lattices of all F -submodules of all finite dimensional quotient modules V/W with
W 6 V 6 FM are CEK by Proposition 5.1.5, but D(L) is not Noetherian.
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The next result is the latticial counterpart of a well-known result asserting that a
non-zero module MR satisfying ACC or DCC on direct summands is a finite direct sum
of finitely many indecomposable submodules (see, e.g., [39, Proposition 10.14]).

Lemma 5.2.2. Let 0 6= L ∈ M0,1 and assume that the set D(L) of complement
elements of L is either Noetherian or Artinian. Then 1 is a direct join of finitely many
indecomposable elements of L.

Proof. Deny. Then L is not indecomposable, so we can write

1 = x1
·
∨ y1

with x1, y1 ∈ D(L) \ {0, 1} such that y1 cannot be written as a direct join of finitely
many indecomposable elements of L. Then, we can write

y1 = x2
·
∨ y2

with x2, y2 ∈ D(L) \ {0, 1} such that y2 cannot be written as a direct join of finitely
many indecomposable elements of L, and so on.

Thus, we obtain the following infinite chains of elements of D(L):

x1 < x1
·
∨ x2 < . . . and 1 > y1 > y2 > . . . ,

which is a contradiction. �

Lemma 5.2.3. Any modular, upper continuous, compact, CC lattice is CEK.

Proof. We have to show that C(L) ⊆ Ek(L). By Proposition 5.1.2(2), this means
that D(L) ⊆ Ek(L). So, let d ∈ D(L). Then d ∈ E(d/0) ∩ K(L) by Proposition
2.1.18(1), so L is CEK. �

The main result

Theorem 5.2.4. (Latticial O-ST). Let L be a compact, compactly generated,
modular lattice. Assume that all compact subfactors of L are CC. Then 1 is a finite
direct join of uniform elements of L.

Proof. First, observe that the given lattice L being compactly generated, is also
upper continuous. Recall that by a subfactor of L we mean any interval b/a of L.
By assumption, every compact subfactor of L is CC, so CEK by Lemma 5.2.3. Using
now Lemma 5.2.1, we deduce that D(L) is a Noetherian poset, so, by Lemma 5.2.2,

1 =
·
∨

16i6n di is a finite direct join of indecomposable elements di of L. Since L is
CC, so is also any di/0 by Proposition 5.1.3. Finally, every di is uniform by Proposition
5.1.2(1), and we are done. �

Following [47], a right R-module M is said to be CF if every closed submodule of
M is finitely generated, and completely CF provided every quotient of M is also CF.
More generally, we say that a lattice L is CK (acronym for C losed are Kompact) if
every closed element of L is compact, i.e., C(L) ⊆ K(L). Clearly, any CK lattice is also
CEK, so we deduce at once from Lemmas 5.2.1 and 5.2.2 the following result.

Proposition 5.2.5. Let L be a compact, compactly generated, modular lattice. As-
sume that all compact subfactors of L are CK. Then D(L) is a Noetherian poset, in
particular 1 is a finite direct join of indecomposable elements of L. �



102 Chapter 5

We extend now the Latticial O-ST, valid for any compact, compactly generated,
modular lattice having all compact subfactors CC, to more general lattices, so that it
can be also applied to cyclic modules (which have no latticial counterparts).

Denote by K the class of all compact lattices and by U the class of all upper
continuous lattices, and let P be a non-empty subclass of K ∩M ∩ U satisfying the
following three conditions:

(P1) If L ∈ P, L′ ∈ L, and L ≃ L′ then L′ ∈ P.
(P2) If L ∈ P then 1/a ∈ P, ∀ a ∈ L.
(P3) If L ∈ P and b/a ∈ P is a subfactor of L, then ∃ c ∈ L such that c/0 ∈ P

and b = a ∨ c.

Examples of classes P satisfying the conditions (P1)− (P3) above are:

• any ∅ 6= P ⊆ K∩M∩U such that L ∈ P =⇒ (1/a ∈ P & a/0 ∈ P, ∀ a ∈ L);
• the class of all compact, compactly generated, modular lattices;
• the class of all compact, semi-atomic, upper continuous, modular lattices;
• the class of lattices isomorphic to lattices of all submodules of all cyclic right
R-modules.

For any lattice L we set P(L) := { c ∈ L | c/0 ∈ P }. Observe that ∅ 6= P(L) ⊆ K(L)
if L ∈ U.

Theorem 5.2.6. (Latticial P-O-ST). Let ∅ 6= P ⊆ K ∩M ∩ U satisfying the
conditions (P1)− (P3) above, and let L ∈ P. Assume that all subfactors of L in P are
CC. Then 1 is a finite direct join of uniform elements of L.

Proof. See [13, Theorem 3.7]. �

Corollary 5.2.7. Let ∅ 6= P ⊆ K ∩M ∩ U satisfying the conditions (P1) − (P3)
above. Then, the following statements are equivalent for a complete modular lattice L
such that any of its elements is a join of elements of P(L).

(1) L is semi-atomic.
(2) F is CC and K(F ) ⊆ D(F ) for every subfactor F ∈ P of L.

Proof. (1) =⇒ (2) As already mentioned in Section 2.1, any subfactor F of L is
semi-atomic, so complemented. If follows that F is CC and K(F ) ⊆ F = D(F ).

(2) =⇒ (1) Notice that, by hypothesis, L is a compactly generated lattice. Let
c ∈ K(L) with C := c/0 ∈ P, in other words, c ∈ P(L). Then c is a finite direct join
of uniform elements of L by Theorem 5.2.6 applied to C.

Let d 6 c with d ∈ D(C) and d uniform. Then, for every 0 6= d′ 6 d with
d′ ∈ K(d/0) one has d′ ∈ D(d/0) by hypothesis, because, by (P2) and (P1), the subfactor
d/0 of L is in P. Since d is uniform, we deduce that d′ = d, so d ∈ K(d/0). Let
0 6= b 6 d, and let 0 6= b′ 6 b with b′ ∈ K(d/0). It follows that b′ ∈ D(d/0) and
so, d = b′ 6 b 6 d because d is uniform. Thus, for any 0 6= b 6 d, one has b = d.
Consequently, d is an atom of L, which implies that C = c/0 is a semi-atomic lattice.
By hypothesis, 1 is a join of compact elements of L in P(L), so 1 is a join of atoms of
L, i.e.,L is a semi-atomic lattice, as desired. �

Notice that Corollary 5.2.7 is a latticial version of the following module-theoretical
result:
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A right R-module M is semisimple ⇐⇒ every cyclic subfactor of M is M-injective

(see [48, Corollary 7.14]), which, in turn, is a “modularization” of the well-known
Osofsky’s Theorem [78] saying that a ring R is semisimple if and only if every cyclic
right R-module is injective.

Because we do not have in hand a good latticial substitute for the notion of an
injective module, the result above seems to be the best latticial counterpart of the
Osofsky’s Theorem. However, using the concept of a linear morphism of lattices, recently
introduced in [17] and briefly discussed in the next subsection, we expect to provide a
consequence, involving linear injective lattices, of the Latticial Osofsky-Smith Theorem.

Linear lattice morphisms

The concept of a linear morphism of lattices we present below evokes the property
of a linear mapping ϕ : M −→ N between modules MR and NR to have a kernel
Ker (ϕ) and to verify the Fundamental Theorem of Isomorphism M/Ker (ϕ) ≃ Im (ϕ).

Definition. Let f : L −→ L′ be a mapping between the lattice L with least element
0 and last element 1 and the lattice L′ with least element 0′ and last element 1′.

The mapping f is said to be a linear morphism if there exist k ∈ L, called a kernel
of f , and a′ ∈ L′ such that the following two conditions are satisfied.

(1) f(x) = f(x ∨ k), ∀ x ∈ L.
(2) f induces a lattice isomorphism f̄ : 1/k

∼
−→ a′/0′, f̄(x) = f(x), ∀ x ∈ 1/k. �

If ϕ :MR −→ NR is a morphism of modules, then the mapping

f : L(MR) −→ L(NR), f(X) := ϕ(X), ∀X 6 M,

is clearly a linear morphism of lattices with kernel Ker (ϕ).

We present now some of the basic properties of linear morphisms of lattices.

Proposition 5.2.8. Let f : L −→ L′ be a linear morphism of lattices with a kernel
k. Then, the following assertions hold.

(1) For x, y ∈ L, f(x) = f(y) ⇐⇒ x ∨ k = y ∨ k.
(2) f(k) = 0′ and k is the greatest element of L having this property, so, the

kernel of a linear morphism is uniquely determined.
(3) f commutes with arbitrary joins, i.e., f (

∨

i∈I xi) =
∨

i∈I f(xi) for any family
(xi)i∈I of elements of L, provided both joins exist.

(4) f is an increasing mapping.
(5) f preserves intervals, i.e., for any u 6 v in L, one has f(v/u) = f(v)/f(u).

Proof. See [17, Proposition 1.3 and Corollary 1.4] and [18, Lemma 0.6]. �

Proposition 5.2.9. The following statements hold.

(1) The class M0,1 of all bounded modular lattices becomes a category, denoted by
LM, if for any L, L′ ∈ M0,1 one takes as morphisms from L to L′ all the
linear morphisms from L to L′.

(2) The isomorphisms in the category LM are exactly the isomorphisms in the full
category M0,1 of the category L0,1 of all bounded lattices.

(3) The monomorphisms (respectively, epimorphisms) in the category LM are ex-
actly the injective (respectively, surjective) linear morphisms.
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(4) The subobjects of L ∈ LM can be taken as the intervals a/0 for any a ∈ L.

Proof. See [17, Proposition 2.2]. �

According to the terminology in [86], a quasi-frame, or shortly, a qframe is nothing
else than an upper continuous modular lattice, and a qframe morphism is by defini-
tion any mapping between two qframes that commutes with arbitrary joins and pre-
serves intervals, i.e., satisfies the properties (3) and (5) in Proposition 5.2.8, respec-
tively; further, a qframe morphism f : L −→ L′ is said to be algebraic if the re-
striction h : 1/K(f) −→ L′ of f to the interval 1/K(f) of L is injective, where
K(f) :=

∨

f(x)=0′ x. If f : L −→ L′ is any linear morphism between two qframes then,
by Proposition 5.2.8(2), K(f) coincides with its kernel k we defined above.

The connection between the linear morphisms of lattices and qframe morphisms is
established by the next result.

Proposition 5.2.10. The following statements are equivalent for a mapping
f : L −→ L′ between two qframes L and L′.

(1) f is a linear morphism.
(2) f is an algebraic qframe morphism.

Proof. See [18, Proposition 0.8]. �

The example below shows that a qframe morphism is not necessarily algebraic, i.e., a
linear morphism. Consider the four-element lattice L = { 0, a, b, 1} with 0 < a, b < 1
and a, b incomparable. Also, consider L′ = {0′, 1′} with 0′ < 1′. Clearly, L and L′ are
both qframes. Let f : L −→ L′ be the map defined by

f(0) = 0′ and f(a) = f(b) = f(1) = 1′.

Then f is a qframe morphism with K(f) = 0. However, f is not a linear morphism and
so, it is not an algebraic qframe morphism. Indeed, if f would be a linear morphism,
then its kernel as a linear morphism would be k = 0, so L = 1/k ≃ f(L) = L′, which
is a contradiction.

Linear injective lattices

Recall that a module QR is said to be M-injective, where MR is another module,
if for every submodule N of M, every morphism N −→ Q can be extended to a
morphism M −→ Q. If A is a non-empty class of right R-modules, then Q is called
A-injective if it is M-injective for every M ∈ A.

When trying to obtain latticial counterparts of these module-theoretical concepts,
there are at least two options, depending on what kind of morphisms are we taking into
account: usual lattice morphisms or linear morphisms of lattices.

Definitions. Let Q, L ∈ L0,1. The lattice Q is said to be L-injective if for ev-
ery sublattice S of L, every lattice morphism S −→ Q can be extended to a lattice
morphism L −→ Q.

The lattice Q is said to be linear L-injective if for every element a ∈ L, every linear
morphism a/0 −→ Q can be extended to a linear morphism L −→ Q.

If C is a non-empty subclass of L0,1, then Q is said to be C-injective (resp. linear
C-injective) if it is L-injective (resp. linear L-injective) for every L ∈ C.



5.3. The Categorical Osofsky-Smith Theorem 105

The lattice Q is called injective (resp. linear injective) if it is L0,1-injective (resp.
linear L0,1-injective). �

Note that the injective lattices are exactly the injective objects of the category L0,1

of all bounded lattices. If we restrict now our considerations from the class L0,1 to the
subclass M0,1 of all bounded modular lattices, then, in view of Proposition 5.2.9, the
linear injective lattices are precisely the injective objects of the category LM.

By [17, Section 4], there are neither non-zero injective lattices nor non-zero linear
injective lattices, but plenty of C-injective lattices and linear C-injective lattices; also,
there are no connections between C-injective lattices and linear C-injective lattices.

Lattice preradicals

The concept of a linear morphism of lattices is the main ingredient in defining the
latticial counterpart of the module-theoretical concept of preradical.

As in Section 4.4 where we defined the concept of a Serre class of lattices, we say that
a non-empty subclass C of the class M0,1 of all bounded modular lattices is hereditary
if it is an abstract class and for any L ∈ M0,1 and any a 6 b 6 c in L such that
c/a ∈ C, it follows that b/a ∈ C.

For any non-empty subclass C of M0,1 we shall denote by LC the full subcategory
of LM having C as the class of its objects.

Definition. Let C be a hereditary subclass of M0,1. A lattice preradical on C is
any functor r : LC −→ LC satisfying the following two conditions.

(1) r(L) 6 L, (i.e., r(L) is a subobject of L) for any L ∈ LC.
(2) For any morphism f : L −→ L′ in LC, r(f) : r(L) −→ r(L′) is the restriction

and corestriction of f to r(L) and r(L′), respectively.
In other words, a lattice preradical is nothing else than a subfunctor of the identity
functor 1LC of the category LC. �

For example, the assignment L 7→ Soc (L)/0 defines a preradical on the full sub-
category LMu of LM consisting of all upper continuous modular lattices. Lattice
preradicals, introduced in [18], preserve many of the properties of module preradicals;
in particular, they commute with arbitrary direct joins (see [18, Proposition 1.4]).

5.3. The Categorical Osofsky-Smith Theorem

In this section we deal with the absolutization of the module-theoretical O-ST. Thus,
by applying the Latticial O-ST to the specific case of Grothendieck categories we obtain
at once the Categorical or Absolute Osofsky-Smith Theorem.

Throughout this section G will denote a fixed Grothendieck category, and for any
object X ∈ G, L(X) will denote the upper continuous modular lattice of all subobjects
of X. For any subobjects Y and Z of X we denote by Y ∩ Z their meet and by
Y + Z their join in the lattice L(X).

As we already defined in Section 3.2, if P is a property on lattices, an object X ∈ G

is/has P if the lattice L(X) is/has P, and a subobject Y of X is/has P if the
element Y of the lattice L(X) is/has P. As mentioned in Section 3.2, for a complement
(respectively, compact) subobject of an object X ∈ G one uses the well established term
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of a direct summand (respectively, finitely generated subobject) of X; for this reason,
instead of saying that X is a CC object we will say that X is a CS object (acronym for
C losed subobjects are direct Summands).

Recall from Section 3.2 that the category G is called locally finitely generated if it
has a family of finitely generated generators, or equivalently if the lattices L(X) are
compactly generated for all objects X of G. We say that an object X ∈ G is locally
finitely generated if the lattice L(X) is compactly generated.

Theorem 5.3.1. (Categorical O-ST). Let G be a Grothendieck category, and let
X ∈ G be a finitely generated, locally finitely generated object such that every finitely
generated subfactor object of X is CS. Then X is a finite direct sum of uniform objects.

Proof. Apply Theorem 5.2.4 to the lattice L = L(X). �

An object X of a Grothendieck category G is called CF (acronym for C losed are
F initely generated) if every closed subobject of X is finitely generated, and completely
CF if every quotient object of X is CF.

Corollary 5.3.2. Let X be a finitely generated, locally finitely generated object of a
Grothendieck category G such that every finitely generated subobject of X is completely
CF. Then X is a finite direct sum of indecomposable subobjects.

Proof. Specialize Proposition 5.2.5 for the lattice L = L(X). �

Denote by H the class of all finitely generated objects of G, and let A be a subclass
of H satisfying the following three conditions:

(A1) If X ∈ A, X ′ ∈ G, and X ≃ X ′, then X ′ ∈ A.
(A2) If X ∈ A then X/X ′ ∈ A, ∀X ′ ⊆ X.
(A3) If X ∈ A and Z ⊆ Y ⊆ X with Y/Z ∈ A, then ∃U ⊆ X such that U ∈ A

and Y = Z + U .
As we have noticed in Section 3.2, the class H could be empty, and in this case

everything that follows makes no sense.

Theorem 5.3.3. (Categorical A-O-ST). Let A be a class of finitely generated
objects of a Grothendieck category G satisfying the conditions (A1)− (A3) above, and
let X ∈ A. Assume that all subfactors of X in A are CS. Then X is a finite direct
sum of uniform objects of G.

Proof. Specialize Theorem 5.2.6 for the lattice L = L(X). �

We present now a consequence, involving injective objects, of the Categorical O-ST.
Recall that for any Grothendieck category one can define as in Mod-R the concepts of
an M-injective object, self-injective object, simple object, and semisimple object (see,
e.g., [26, p. 9]).

Lemma 5.3.4. Any self-injective object of a Grothendieck category G is a CS object.

Proof. See [14, Lemma 4.13]. �

Proposition 5.3.5. The following assertions are equivalent for a locally finitely
generated object X of a Grothendieck category G.

(1) X is semisimple.
(2) Every finitely generated subfactor of X is X-injective.
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Proof. (1) =⇒ (2) If X is semisimple then so is any subfactor of X, which is
clearly X-injective.

(2) =⇒ (1) Let V = Y/Z, Z ⊆ Y ⊆ X, be a finitely generated subfactor of X. Then
V is X-injective by hypothesis. It follows that V is X/Z-injective, and so, also Y/Z-
injective by the well-known properties of X-injective objects (see, e.g., [26, Proposition
1.11]). Thus, V is self-injective, and consequently CS by Lemma 5.3.4.

Now let F be a finitely generated subobject of X. By Theorem 5.3.1, F is a finite
direct sum of uniform objects. Let U be a uniform direct summand of F . Then, by
hypothesis, any finitely generated subobject U ′ of U is X-injective, so it is a direct
summand of X. Clearly U ′ is also a direct summand of the uniform object U . It
follows that either U ′ = 0 or U ′ = U . Because X has been supposed to be locally
finitely generated, for any 0 6= W ⊆ U , W is the sum of all its non-zero finitely
generated subobjects, all of them being equal to U . Thus, U is a simple object of G,
and consequently F is a semisimple object of G. Using again the fact that X is locally
finitely generated, we conclude that X is a sum of simple objects, i.e., is semisimple. �

A nice result of Okado [77] states that a unital ring R is right Noetherian if and
only if every CS right R-module can be expressed as a direct sum of indecomposable (or
uniform) modules. We guess that the following categorical version of Okado’s Theorem
holds:

A Grothendieck category G is locally Noetherian if and only if every CS object of G

can be expressed as a direct sum of indecomposable (or uniform) objects.
We end this section by mentioning that some statements/results of [79] and [45]

related to the Categorical O-ST saying that “basically the same proof for modules works
in the categorical setting” are not in order (see [14, p. 2670]). Such statements are very
risky and may lead to incorrect results. One reason is that we cannot prove equality
between two subobjects of an object in a category as we do for submodules by taking
elements of them. Notice that the well-hidden errors in the statements/results occur-
ring in the papers mentioned above on the Categorical O-ST could be spotted only by
using our latticial approach of it. So, we do not only correctly absolutize the module-
theoretical O-ST but also provide a correct proof of its categorical extension by passing
first through its latticial counterpart.

5.4. The Relative Osofsky-Smith Theorem

In this section we present the relative version with respect to a hereditary torsion
theory of the module-theoretical Osofsky-Smith Theorem [79, Theorem 1]. Its proofs is
an easy application of the corresponding lattice-theoretical results of Sections 5.1 and
5.2.

Throughout this section R denotes a ring with non-zero identity, τ = (T,F) a fixed
hereditary torsion theory on Mod-R, and τ(M) the τ -torsion submodule of a right
R-module M .

Recall from Section 3.4 some notation and terminology. For any module MR we have
denoted

Satτ (M) := {N |N 6M, M/N ∈ F },
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which is an upper continuous modular lattice. If P is any property on lattices, we
said that a module M is/has P if the lattice Satτ (M) is/has P, and a submodule
N of M is/has P if its τ -saturation N , which is an element of Satτ (M), is/has P.
Thus, a module MR is called τ -CC (or τ -extending) if the lattice Satτ (M) is CC (or
extending). However, in the sequel we shall use the more appropriate term of a τ -CS
module (respectively, τ -direct summand of a module) instead of that of a τ -CC module
(respectively, τ -complement submodule of a module).

Consider the quotient category Mod-R/T of Mod-R modulo its localizing subcat-
egory T, and let

Tτ : Mod-R −→ Mod-R/T

be the canonical functor. We have seen in Proposition 4.2.3 that for any MR, the
mapping

Satτ (M) −→ L(Tτ (M)), N 7→ Tτ (N),

is an isomorphism of lattices, so, for any property P on lattices, the module MR is/has
τ -P if and only if the object Tτ (M) in the quotient Grothendieck category Mod-R/T
is/has P.

We present now intrinsic characterizations, that is, without explicitly referring to
the lattice Satτ (M), of the relative concepts that will appear in the Relative O-ST.

Proposition 5.4.1. The following assertions hold for a module MR and N 6 M .

(1) N is τ -essential in M ⇐⇒ ( ∀P 6 M, P ∩N ∈ T =⇒ P ∈ T ).
(2) M is τ -uniform ⇐⇒ ( ∀P, K 6M, P ∩K ∈ T =⇒ P ∈ T or K ∈ T ).
(3) N is a τ -pseudo-complement in M ⇐⇒ ∃P 6 M such that N ∩ P ∈ T and

N is maximal among the submodules of M having this property; in this case
N ∈ Satτ (M) and N ∩ P = τ(M).

(4) N is τ -closed in M ⇐⇒ ∀P 6 M such that N ⊆ P and N is a τ -essential
submodule of P one has P/N ∈ T. If additionally N ∈ Satτ (M), then N is
τ -closed in M ⇐⇒ N has no proper τ -essential extension in M .

(5) N is a τ -direct summand in M ⇐⇒ ∃P 6 M such that M/(N + P ) ∈ T

& N ∩ P ∈ T.
(6) M is τ -complemented ⇐⇒ ∀N 6 M, ∃P 6 M such that M/(N + P ) ∈ T

& N ∩ P ∈ T.
(7) M is τ -compact ⇐⇒ ∀N 6 M with M/N ∈ T, ∃N ′ 6 N such that N ′ is

finitely generated and M/N ′ ∈ T, in other words, the filter

F (M) := {N 6M |M/N ∈ T }

has a basis consisting of finitely generated submodules.
(8) M is τ -CEK ⇐⇒ any τ -closed submodule of M is a τ -essential submodule of

a τ -compact submodule of M .
(9) M is τ -compactly generated⇐⇒ ∀N 6M, ∃ IN a set and a family (Ci)i∈IN of

τ -compact submodules of M such that
∑

i∈IN
Ci ⊆ N and N/

(
∑

i∈IN
Ci

)

∈ T.

Proof. Apply Lemmas 3.4.2, 3.4.3, and 3.4.4. Fore more details, see [14, Proposi-
tion 5.3]. �

We are now going to clarify the relations between the concepts of a τ -compact,
τ -compactly generated, and τ -finitely generated module.
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As in [24], a module M is said to be τ -finitely generated if there exists a finitely
generated submodule M ′ of M such that M/M ′ ∈ T. Note that a τ -finitely generated
module is not necessarily τ -compact. To see this, let R be an infinite direct product of
copies of a field, let A be the localizing subcategory of Mod-R consisting of all semi-
Artinian R-modules, and let τ0 be the hereditary torsion theory on Mod-R defined
by A. We have seen at the end of Section 3.2 that the quotient category Mod-R/A
has no simple object, so, in particular Satτ

0
(RR) is not a compact lattice, i.e., RR is

not τ0-compact, though RR is a finitely generated R-module, in particular τ0-finitely
generated.

On the other hand, a τ -compact module M is necessarily τ -finitely generated: in-
deed, M ∈ F (M) because M/M ∈ T, so, by Proposition 5.4.1(7), there exists a finitely
generated submodule M ′ of M such that M/M ′ ∈ T, i.e., M is τ -finitely generated.

A τ -compactly generated module is not necessarily τ -compact: indeed, any module
MR which is not finitely generated is clearly ξ-compactly generated but not ξ-compact,
where ξ = ({0},Mod-R) is the trivial torsion theory on Mod-R. Conversely, we guess
that a τ -compact module is not necessarily τ -compactly generated, but do not have
any counterexample.

We say that a finite family (Ni)16i6n of submodules of a module MR is τ -independent
if Ni 6∈ T for all 1 6 i 6 n, and

Nk+1 ∩
∑

16j6k

Nj ⊆ τ(M), ∀ k, 1 6 k 6 n− 1,

or, equivalently

Nk+1 ∩
∑

16j6k

Nj = Nk+1 ∧
(

∨

16j6k

Nj

)

= τ(M),

in other words, by Lemma 2.2.1, the family
(

Ni

)

16i6n
of elements of the lattice

Satτ (M) is independent. More generally, a family (Ni)i∈I of submodules of M is called
τ -independent if the family

(

Ni

)

i∈I
of elements of the lattice Satτ (M) is independent.

Theorem 5.4.2. (Relative O-ST). Let MR be a τ -compact, τ -compactly gen-
erated module. Assume that all τ -compact subfactors of M are τ -CS. Then there
exists a finite τ -independent family (Ui)16i6n of τ -uniform submodules of M such that
M/(

∑

16i6n Ui) ∈ T.

Proof. Let N/P, P 6 N 6 M, be a τ -compact subfactor of M . Observe that,
in view of Lemma 3.4.4, the interval [P ,N ] of Satτ (M) is isomorphic to the compact
lattice Satτ (N/P ), which, by hypothesis is CC. So, we can specialize the Latticial O-ST
(Theorem 5.2.4) for the compact, compactly generated, modular lattice L = Satτ (M)
to deduce that there exists a finite independent family (Ui)16i6n of uniform elements

of L such that M =
·
∨

16i6n Ui is the direct join in L of the family (Ui)16i6n. Thus,
(Ui)16i6n is a τ -independent family of τ -uniform submodules of M . Since

M =

·
∨

16i6n
Ui =

∑

16i6n

Ui ,

it follows that M/(
∑

16i6n Ui) ∈ T, as desired. �
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We are now going to state a more simplified version of the Relative O-ST in case the
given module MR is τ -torsion-free. To do that, we need the following result.

Lemma 5.4.3. Let MR ∈ F be a module, and let (Ni)i∈I be a family of submodules
of M . Then, the following statements hold.

(1) (Ni)i∈I is an independent family of submodules of M ⇐⇒
(

Ni

)

i∈I
is an

independent family of elements of the lattice Satτ (M).
(2) M is τ -uniform ⇐⇒ M is uniform.

Proof. (1) The implication “⇐= ” is clear. Conversely, let (Ni)i∈I be an indepen-
dent family of submodules of M . In order to prove that

(

Ni

)

i∈I
is an independent

family of elements of the lattice Satτ (M), it is sufficient to assume that I is the finite
set {1, . . . , n} for some n ∈ N, n > 2, because the independence is a property of finitary
character in any upper continuous lattice, as Satτ (M) is. If

∨

and
∧

denote the join
and meet, respectively, in the lattice Satτ (M), then, for each 1 6 k < n, we have

(

∨

16i6k

Ni

)

∧

Nk+1 =
(

∑

16i6k

Ni

)

⋂

Nk+1 =
(

∑

16i6k

Ni

)

⋂

Nk+1 = 0 = τ(M) = 0.

This proves, by Lemma 2.2.1, that
(

Ni

)

16i6n
is an independent family of Satτ (M), as

desired.

(2) Observe that because M ∈ F, for any P 6 M we have P ∈ T ⇐⇒ P = 0; so,
the result follows at once from Proposition 5.4.1(2). �

Theorem 5.4.4. (Torsion-free Relative O-ST). Let MR ∈ F be a τ -compact,
τ -compactly generated module. Assume that all τ -compact subfactors of M are τ -CS.
Then, there exists a finite independent family (Ui)16i6n of uniform submodules of M
such that M/(

∑

16i6n Ui) ∈ T.

Proof. Use Lemma 5.4.3 in Theorem 5.4.2. �

Since M is τ -P if and only if M/τ(M) is so, in view of Theorem 5.4.4 we can of
course formulate the Relative O-ST in terms of essentiality and independence in the
lattice L(M/τ(M)) instead of the relative ones in the lattice L(M):

Theorem 5.4.5. Let MR be a τ -compact, τ -compactly generated module. If all
τ -compact subfactors of M are τ -CS, then there exists a finite family (Ui)16i6n of
submodules of M , all containing τ(M), such that (Ui/τ(M))16i6n is an independent
family of uniform submodules of M/τ(M) and M/(

∑

16i6n Ui) ∈ T. �

Recall that for a hereditary torsion theory τ = (T,F) on Mod-R we have denoted
in Section 3.4 by

Fτ := { I 6 RR | R/I ∈ T}

the Gabriel filter associated with τ . By a basis of the Gabriel filter Fτ we mean a
subset B of Fτ such that every right ideal in Fτ contains some J ∈ B.

Lemma 5.4.6. The following statements hold for a hereditary torsion theory τ on
Mod-R.

(1) The Gabriel filter Fτ has a basis consisting of finitely generated right ideals
if and only if the right module RR is τ -compact, i.e., the lattice Satτ (R) is
compact.
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(2) If R is τ -Noetherian, then Fτ has a basis consisting of finitely generated right
ideals of R.

Proof. (1) is exactly Proposition 5.4.1(7) for M = RR. For (2) see [85, Chapter
XIII, Corollary 2.5]. �

The converse in Lemma 5.4.6(2) is, in general, not true. Indeed, let ξ =
({0},Mod-R) be the trivial torsion theory on Mod-R for any non-Noetherian ring R.
Then, the Gabriel filter Fξ = {R} has the basis B = {R} with a single finitely generated
ideal R, but R is not ξ-Noetherian.

Proposition 5.4.7. The following assertions are equivalent for a Grothendieck cat-
egory G.

(1) G has a finitely generated generator.
(2) There exists a unital ring A and a hereditary torsion theory χ = (H,E) on

Mod-A such that the Gabriel filter Fχ has a basis of finitely generated right
ideals of A and G ≃ Mod-A/H.

(3) There exists a unital ring A and a hereditary torsion theory χ = (H,E) on
Mod-A such that the lattice Satχ(A) is compact and G ≃ Mod-A/H.

Proof. (2)⇐⇒ (3) follows from Lemma 5.4.6(1).

(1) =⇒ (3) Let U be a finitely generated generator of G, let RU be the ring of
endomorphisms of U , and let SU : G −→ Mod-RU be the functor HomG(U,−). Then
SU has a left adjoint TU : Mod-RU −→ G. The Gabriel-Popescu Theorem says that
TU is an exact functor, Ker(TU) := {M ∈ Mod-RU | TU(M) = 0 } is a localizing
subcategory of Mod-RU , TU ◦ SU ≃ 1G, and G ≃ Mod-RU/Ker(TU).

Set A := RU , H := Ker(TU), and χ := (H, E), where

E = { Y ∈ G |HomG(X, Y ) = 0, ∀ X ∈ H }.

Observe that U ≃ (TU ◦ SU)(U) ≃ TU(A), so, by Proposition 4.2.3, the lattices L(U)
and Satχ(A) are isomorphic; since L(U) is compact, so is also Satχ(A).

(3) =⇒ (1) Let H be the composition of the canonical functor Mod-A −→
Mod-A/H with the given equivalence functor Mod-A/H −→ G, and let V := H(AA).
Then V is clearly a generator of G. Since the canonical image of AA in the quotient
category Mod-A/H is finitely generated, so is V . �

Theorem 5.4.8. Let τ = (T,F) be a hereditary torsion theory on Mod-R such that
its Gabriel filter Fτ has a basis consisting of finitely generated right ideals of R (in
particular, this holds when R is τ -Noetherian), and let MR be a τ -compact module. If
all τ -compact subfactors of M are τ -CS, then there exists a finite family (Ui)16i6n of
submodules of M , all containing τ(M), such that (Ui/τ(M))16i6n is an independent
family of uniform submodules of M/τ(M) and M/(

∑

16i6n Ui) ∈ T.

Proof. Since Fτ has a basis consisting of finitely generated right ideals of R,
the Grothendieck category Mod-R/T has a finitely generated generator by Proposition
5.4.7, so it is locally finitely generated. Thus, any module MR is τ -compactly generated.
Therefore, the result follows immediately from Theorem 5.4.5. �
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According to our definitions in Section 3.4 of module-theoretical concepts relative
to a hereditary torsion theory τ , a module UR is said to be τ -simple if the lattice
Satτ (U) is simple, which means that it has exactly two elements, i.e., U 6∈ T and
Satτ (U) = {τ(U), U}. Recall that UR is called τ -cocritical if it is τ -simple and U ∈ F.

The τ -socle of a module MR , denoted by Socτ (M), is defined as the τ -saturation
of the sum of all τ -simple (or τ -cocritical) submodules of M , and M is said to be
τ -semisimple if M = Socτ (M). By [6, Proposition 1.15] or [18, Proposition 6.5(1)],
Socτ (M) is exactly the socle of the lattice Satτ (M), and so, we have

MR is a τ -semisimple module ⇐⇒ Satτ (M) is a semi-atomic lattice ⇐⇒
⇐⇒ Tτ (M) is a semisimple object of the quotient category Mod-R/T.

The next result is a relative version of the well-known Osofsky’s Theorem [78].

Proposition 5.4.9. Let τ = (T,F) be a hereditary torsion theory on Mod-R such
that its Gabriel filter Fτ has a basis consisting of finitely generated right ideals of R
(in particular, this holds when R is τ -Noetherian). Assume that R/I is an injective
R-module for each I ∈ Satτ (R). Then, any right R-module is τ -semisimple.

Proof. See [14, Proposition 5.16]. �
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