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abstract: Cryptographic key-exchange protocols are fundamental tools for securing modern communica-
tion systems. The classical Diffie–Hellman protocol constitutes the reference model, relying on the hardness
of the discrete logarithm problem in finite groups. Parallel to this line, Chebyshev polynomials have attracted
attention due to their remarkable commutative property, Tm(Tn(x)) = Tn(Tm(x)) = Tmn(x), suggesting in-
teresting analogies with modular exponentiation. However, most existing Chebyshev-based schemes depend
on recursive evaluation, which is computationally expensive and difficult to adapt reliably to finite fields. In
this work, we present a significant development in Chebyshev-based cryptography. We introduce new alge-
braic formulas together with a matrix-based formulation that allows Chebyshev polynomials to be computed
efficiently using fast exponentiation. This framework eliminates recursion, improves stability, and provides
exact evaluation over finite fields. We then integrate this formulation into a key-exchange construction and
compare it to the classical Diffie–Hellman scheme. Our results show that the proposed matrix formulation
evaluates Tn(x) in O(logn) operations while preserving the structural properties required for key exchange.
Although Diffie–Hellman remains more suitable for real-world deployment, our contribution offers a power-
ful and scalable alternative framework. These findings extend the current state of research on Chebyshev
polynomials and highlight their potential for developing diversified cryptographic mechanisms.

Keywords:Diffie-Hellman, discrete logarithm problem, Chebyshev polynomials, Chebyshev-based
cryptographic protocols, cryptographic performance.
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1. Introduction

Key exchange is one of the fundamental building blocks of modern cryptography. Its purpose is to
allow two communicating parties to establish a shared secret key over an insecure public channel, even
in the presence of an adversary capable of observing all transmitted information. Once established, this
shared key is typically employed to ensure confidentiality and integrity through symmetric encryption
mechanisms. The essential security requirement is that the derived secret must remain computationally
infeasible to reconstruct from the publicly exchanged data, an assumption grounded in the hardness of
well-defined mathematical problems.
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The Diffie–Hellman protocol, introduced in the seminal work of Diffie and Hellman, constitutes the
first practical realization of public-key cryptography and remains one of its most influential constructions.
Its security relies on the presumed intractability of the discrete logarithm problem in finite cyclic groups,
a problem that has been extensively analyzed and optimized over the past decades. Numerous algorithmic
and implementation improvements, together with well-standardized parameters and widespread software
and hardware support, have contributed to the maturity and efficiency of Diffie–Hellman and its elliptic-
curve variant.

Despite this success, the emergence of quantum computing has raised serious concerns. Shor’s al-
gorithm shows that both integer factorization and discrete logarithms could be solved efficiently on a
sufficiently powerful quantum computer, motivating the exploration of cryptographic constructions based
on alternative algebraic structures.

In this context, Chebyshev polynomials have attracted growing interest. Their remarkable composition
property,

Tn(Tm(x)) = Tnm(x),

which closely parallels the commutative property of exponentiation underlying the Diffie–Hellman
protocol,

(ga)b = (gb)a = gab.

This structural analogy enables the construction of key exchange protocols based on polynomial
composition rather than modular exponentiation, as initially proposed in polynomial-based cryptographic
schemes [4,6]. Such approaches rely on the computational hardness of the Chebyshev Polynomial Discrete
Logarithm Problem (CP-DLP), providing an alternative algebraic foundation for public-key cryptography.

However, in contrast to Diffie–Hellman, Chebyshev-based cryptographic protocols remain relatively
immature. They suffer from limited optimized implementations, lack of widely adopted software li-
braries, absence of dedicated hardware acceleration, and increased computational cost when relying on
naive recursive evaluations for large polynomial degrees. These limitations have hindered their practical
deployment despite their theoretical appeal. It is worth noting that matrix-based computations have been
used in cryptography since early algebraic ciphers such as the Hill cipher [9]. In this work, matrices are
not employed for direct encryption, but rather as an efficient computational tool to evaluate Chebyshev
polynomials over finite fields via fast matrix exponentiation.

In this work, we revisit this research direction from a new perspective. We propose a matrix-based
formulation that enables exact computation of Chebyshev polynomials over finite fields using fast matrix
exponentiation. By reformulating the recurrence relation as an exponentiation problem, the complexity
of evaluating

Tn(x) mod p

is reduced from linear to logarithmic time, significantly improving scalability. This approach draws
inspiration from matrix techniques historically used in classical ciphers, not for encryption itself, but as
an efficient computational tool.

Our objective is to provide a rigorous and balanced comparison between Chebyshev-based key ex-
change and the classical Diffie–Hellman protocol. We demonstrate that the proposed matrix formulation
not only overcomes several performance limitations of traditional implementations, but also contributes
to reopening and advancing the study of polynomial-based cryptography as a complementary research
avenue rather than a direct replacement for established standards.

The remainder of this paper is organized as follows. Section 2 presents the mathematical foundations
required for this work. It first reviews the discrete logarithm problem and its role in cryptographic se-
curity, then introduces a matrix-based formulation of Chebyshev polynomials and discusses its algebraic
properties. Section 3 focuses on key exchange protocols. It begins with a brief overview of the clas-
sical Diffie–Hellman protocol, followed by a detailed description of the Chebyshev-based key exchange
scheme and its underlying principles. Section 4 is devoted to the experimental evaluation of the proposed
approach. This section includes a performance comparison between matrix-based and traditional Cheby-
shev polynomial computations, an analysis of key exchange protocols based on Chebyshev polynomials
versus Diffie–Hellman, and a discussion of the obtained results.Finally, Section 5 concludes the paper by
summarizing the main contributions and outlining potential directions for future research.



Matrix-Based Chebyshev Key Exchange Performance 3

2. Mathematical Foundations

2.1. Discrete Logarithm Problem

The Diffie-Hellman (DH) protocol operates in a finite multiplicative group, typically the cyclic group
F×
p = Z∗

p, where p is a prime number, and Z∗
p denotes the set of integers invertible modulo p.

Modular Exponentiation. The core function of the protocol is modular exponentiation:

Expg(a) = ga mod p

where g ∈ Z∗
p is a generator of the group (also called a primitive element), whose successive powers

generate all elements of the group.
Modular exponentiation can be computed efficiently using algorithms such as fast exponentiation

(square-and-multiply method), with complexity O(log a) multiplications.

Discrete Logarithm Problem. The security of the protocol relies on the computational hardness of
the Discrete Logarithm Problem (DLP): given g and A = ga mod p, determining a is computationally
infeasible for sufficiently large parameters (e.g., p > 22048).

This problem is considered hard for classical computers but vulnerable to quantum attacks via Shor’s
algorithm.

Commutativity Property. The exchange relies on the fundamental property of exponentiation com-
mutativity in abelian groups:

(ga)b = gab = gba = (gb)a

This property ensures that both parties obtain the same key value without ever exchanging their secret
exponents a and b.

2.2. Matrix-Based Formulation of Chebyshev Polynomials

Definition and Fundamental Properties. Chebyshev polynomials form a family of polynomials of
major importance in mathematics, particularly in approximation theory, numerical analysis, and more
recently in cryptography. While several types exist, cryptographic applications primarily use those of the
first kind, denoted Tn(x), defined by the recurrence relation:

T0(x) = 1, T1(x) = x, Tn+1(x) = 2x · Tn(x)− Tn−1(x).

These polynomials are of degree n and possess remarkable composition properties that make them inter-
esting for cryptographic applications.

Composition Property: Tn ◦ Tm = Tnm. An essential property of Chebyshev polynomials is their
commutativity under composition:

Tn(Tm(x)) = Tm(Tn(x)) = Tnm(x),

which means that composing two Chebyshev polynomials is equivalent to applying a single polynomial
with the product index.

This property is completely analogous to that of modular exponentiation used in the Diffie-Hellman
protocol:

(ga)b = (gb)a = gab.

Thus, this commutative algebraic structure enables the construction of an alternative key exchange
protocol where exponentiation is replaced by polynomial composition.

Definition over Finite Fields. In a cryptographic context, Chebyshev polynomials can be defined over
a finite field Fq where q is a prime power ( q = pr, r ∈ N∗). One can then consider the reduction modulo
q of each polynomial coefficient.

For example, considering Tn(x) over F5, we obtain:

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1 ≡ 2x2 + 4 (mod 5).
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These polynomials remain deterministic and recursive, enabling efficient implementation even over
finite fields. They can therefore be used to simulate a key exchange protocol similar to Diffie-Hellman,
but within a polynomial framework.

However, over finite fields, careful attention must be paid to the non-injectivity of certain polynomials
and the limited domain cardinality, which can pose security problems if parameters are not properly
chosen.

Chebyshev polynomials have remained largely theoretical, facing challenges such as high computa-
tional cost, lack of optimized implementations, and numerical instabilities over real numbers. Our matrix-
based formulation offers the advantage of reducing memory consumption and accelerating computations,
as demonstrated by the experimental results in the table (see Table 1).

Algebraic Representation via Matrix Recurrence. The Chebyshev polynomials Tn(x) satisfy:

Tn(x) = 2xTn−1(x)− Tn−2(x), T0(x) = 1, T1(x) = x, (n ≥ 2).

Define for (n ≥ 1):

e =

(
1
0

)
, vn(x) =

(
Tn(x)

Tn−1(x)

)
, M(x) =

(
2x −1
1 0

)
.

Then:

vn(x) = M(x)vn−1(x), v1(x) =

(
x
1

)
.

Thus:
vn(x) = M(x)n−1v1(x) .

Implies: (
Tn(x)

Tn−1(x)

)
=

(
2x −1
1 0

)n−1 (
x
1

)
.

Extracting Tn(x):

Tn(x) = etrvn(x) =
(
1 0

)( Tn(x)
Tn−1(x)

)

Tn(x) =
(
1 0

)(2x −1
1 0

)n−1 (
x
1

)
Note: All operations are performed in the finite field Fq, i.e., modulo q.

3. Cryptographic Background

Key exchange constitutes a fundamental primitive in modern cryptography, enabling two communicat-
ing parties to establish a shared secret key over an insecure public channel. In the classical communication
model, two entities, commonly denoted as Alice and Bob, seek to derive a common secret while an adver-
sarial party (Eve) may observe all exchanged public information. The resulting shared key is subsequently
used to ensure confidentiality and integrity through symmetric encryption mechanisms.

The essential security requirement of any key exchange protocol is that the derived secret remains
computationally infeasible for an adversary to recover, even with full knowledge of the public parameters
exchanged during the protocol execution. This security property relies on the hardness of well-defined
mathematical problems and is commonly referred to as computational security.

3.1. Classical Diffie-Hellman Protocol

The Diffie–Hellman key exchange protocol, introduced by Diffie and Hellman in their seminal work [1],
represents the first practical realization of public-key cryptography. Its security is based on the assumed
intractability of the Discrete Logarithm Problem (DLP) in finite cyclic groups, which has led to extensive
research and widespread adoption of number-theoretic cryptographic constructions.
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Protocol Execution.

1. Alice and Bob publicly agree on a prime number p and a generator g ∈ Z∗
p.

2. Alice chooses a secret integer a, computes A = ga mod p and sends A to Bob.

3. Bob chooses a secret integer b, computes B = gb mod p and sends B to Alice.

4. Each party computes the shared key:

K = Ba mod p = (gb)a mod p = gab mod p (Alice)

K = Ab mod p = (ga)b mod p = gab mod p (Bob)

Extension to Elliptic Curves: ECDH. The Diffie-Hellman protocol can be generalized to operate
over elliptic curve groups, giving rise to the Elliptic Curve Diffie-Hellman (ECDH) protocol [8,10]. Let E
be an elliptic curve defined over a finite field Fq, and G ∈ E(Fq) a point of prime order n.

The protocol proceeds as follows:

1. Alice and Bob publicly agree on the curve parameters (E,Fq, G, n).

2. Alice chooses a private key a ∈ [1, n− 1], computes A = a ·G and sends A to Bob.

3. Bob chooses a private key b ∈ [1, n− 1], computes B = b ·G and sends B to Alice.

4. Each party computes the shared secret point:

S = a ·B = a · (b ·G) = ab ·G (Alice)

S = b ·A = b · (a ·G) = ab ·G (Bob)

The security of ECDH relies on the Elliptic Curve Discrete Logarithm Problem (ECDLP): given
points G and A = a ·G, determining a is computationally infeasible. ECDH offers equivalent security to
classical DH with significantly smaller key sizes (e.g., 256-bit ECC vs 3072-bit DH) and is widely used in
modern cryptographic systems such as TLS and SSH.

3.2. Chebyshev-Based Key Exchange Protocol

Key Exchange Protocol. The Chebyshev polynomial-based key exchange protocol operates as follows:

1. Alice and Bob publicly agree on: A finite field Fq and a public parameter x0 ∈ Fq.

2. Alice chooses a private integer n = na, computes A = Tn(x0) mod q, and sends A to Bob.

3. Bob chooses a private integer m = nb, computes B = Tm(x0) mod q, and sends B to Alice.

4. Each party computes the shared secret:

KA = Tn(B) mod q = Tn(Tm(x0)) mod q = Tnm(x0) mod q (Alice)

KB = Tm(A) mod q = Tm(Tn(x0)) mod q = Tmn(x0) mod q (Bob)

By the composition property Tn(Tm(x)) = Tnm(x), both parties obtain the same value KA = KB ,
establishing a shared secret.
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Example: Chebyshev Key Exchange over F11. Consider the finite field F11 with public parameter
x0 = 3.

1. Initialization: Public parameters: F11, x0 = 3

2. Alice’s computation:

• Chooses private degree n = na = 4

• Computes T4(3) over F11:

T0(3) = 1

T1(3) = 3

T2(3) = 2 · 32 − 1 = 18− 1 = 17 ≡ 6 (mod 11)

T3(3) = 2 · 3 · T2(3)− T1(3) = 6 · 6− 3 = 36− 3 = 33 ≡ 0 (mod 11)

T4(3) = 2 · 3 · T3(3)− T2(3) = 6 · 0− 6 = −6 ≡ 5 (mod 11)

• Sends A = 5 to Bob

3. Bob’s computation:

• Chooses private degree m = nb = 7

• Computes T7(3) over F11:

T5(3) = 2 · 3 · T4(3)− T3(3) = 6 · 5− 0 = 30 ≡ 8 (mod 11)

T6(3) = 2 · 3 · T5(3)− T4(3) = 6 · 8− 5 = 48− 5 = 43 ≡ 10 (mod 11)

T7(3) = 2 · 3 · T6(3)− T5(3) = 6 · 10− 8 = 60− 8 = 52 ≡ 8 (mod 11)

• Sends B = 8 to Alice

4. Shared secret computation:

• Alice computes: KA = T4(B) = T4(8)

T0(8) = 1

T1(8) = 8

T2(8) = 2 · 82 − 1 = 128− 1 = 127 ≡ 6 (mod 11)

T3(8) = 2 · 8 · 6− 8 = 96− 8 = 88 ≡ 0 (mod 11)

T4(8) = 2 · 8 · 0− 6 = −6 ≡ 5 (mod 11)

So KA = 5

• Bob computes: KB = T7(A) = T7(5)

T0(5) = 1

T1(5) = 5

T2(5) = 2 · 52 − 1 = 50− 1 = 49 ≡ 5 (mod 11)

T3(5) = 2 · 5 · 5− 5 = 50− 5 = 45 ≡ 1 (mod 11)

T4(5) = 2 · 5 · 1− 5 = 10− 5 = 5 (mod 11)

T5(5) = 2 · 5 · 5− 1 = 50− 1 = 49 ≡ 5 (mod 11)

T6(5) = 2 · 5 · 5− 5 = 50− 5 = 45 ≡ 1 (mod 11)

T7(5) = 2 · 5 · 1− 5 = 10− 5 = 5 (mod 11)

So KB = 5

Both parties have successfully established the shared secret K = 5 ∈ F11. This example demonstrates
the practical application of the composition property T4(T7(3)) = T28(3) = T7(T4(3)).
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4. Experimental Evaluation

This section presents three structured experiments designed to evaluate the computation and crypto-
graphic applicability of Chebyshev polynomials over finite fields.

4.1. Performance Comparison: Matrix-Based vs. Traditional Chebyshev Polynomial Com-
putations

Experience I. This experiment aims to evaluate and compare the computational performance of two
different approaches for computing the Chebyshev polynomial Tn(x) mod p: a classical iterative method
and a matrix-based exponential method. The primary objective is to identify the most suitable com-
putational strategy for cryptographic applications that require large operand sizes, high computational
efficiency, predictable execution time, and controlled memory usage.

All experiments were conducted over the finite field Fp, where p is a 256-bit prime constant defined
as

p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc2f,
and where x ∈ Fp is a global constant of 128 bits, defined by x=0xf1e2d3c4b5a6978877665544332211

00.
The implementations were developed using the Python programming language and executed within

the Google Colab environment, which provides a reproducible and controlled computational platform
suitable for performance evaluation.

Two computational methods were evaluated. The first is the classical recurrence-based formulation
of Chebyshev polynomials, which relies on the standard iterative relation. The second is a matrix-based
formulation originally derived by the authors in this work. This formulation is obtained by expressing
the Chebyshev recurrence relation in matrix form, which enables the use of fast matrix exponentiation
techniques and results in a logarithmic-time complexity with respect to the polynomial degree n.

It is important to emphasize that this matrix-based approach is not a standard method commonly
found in the literature for Chebyshev polynomial computation. Rather, it represents an original contribu-
tion of this work, specifically designed to improve scalability and computational efficiency in cryptographic
contexts.

Algorithm. The corresponding implementations of both methods are provided in Listings 1 and 2.

Listing 1: Recurrence-based Chebyshev computation

def t chebyshev recur r ence (x , p , n ) :
i f n == 0 :
return 1 % p
i f n == 1 :
return x % p

T0 , T1 = 1 % p , x % p
for in range (2 , n + 1 ) :
T2 = (2 ∗ x ∗ T1 − T0) % p
T0 , T1 = T1 , T2
return T1

Listing 2: Matrix-based Chebyshev computation

def tchebyshev matr ix (x , p , n ) :
def matmul (A, B) :
a , b , c , d = A
e , f , g , h = B
return (
( a∗e + b∗g ) % p ,
( a∗ f + b∗h) % p ,
( c∗e + d∗g ) % p ,
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( c∗ f + d∗h) % p
)

i f n == 0 :
return 1 % p
i f n == 1 :
return x % p

M = (2∗x % p , p−1, 1 , 0)
R = (1 , 0 , 0 , 1)
k = n − 1

while k > 0 :
i f k & 1 :
R = matmul (R, M)
M = matmul (M, M)
k >>= 1

a , b , , = R
return ( a∗x + b) % p

To assess scalability, the polynomial degree n was varied across 13 representative values ranging from
n = 10 to n = 107. Execution time was measured using the time.perf counter() function, while
peak memory consumption was monitored using Python’s tracemalloc module. Each experiment was
repeated multiple times, yielding consistent and reproducible results.

The numerical results obtained from the Python implementations are summarized in Table 1, while
the execution time and memory consumption trends are illustrated in Figure 1. For small values of n
(typically n ≤ 50), both methods exhibit comparable execution times, with a slight advantage observed
for the iterative method due to its minimal constant overhead.

As the value of n increases, the iterative method exhibits linear growth in execution time, leading
to a rapid increase in computational cost. In contrast, the proposed matrix-based method demonstrates
logarithmic growth, resulting in substantial performance gains. As shown in Table 1, speedup factors
exceeding 70× are observed for n = 5000, with even greater improvements for larger values of n.

Table 1: Comprehensive Performance Analysis: Tchebyshev Polynomial Computation

n
Time (ms) Memory (KB) Performance Metrics

Recurrence Matrix Recurrence Matrix Speedup Efficiency (%) Memory Saving (%)

10 0.242 0.213 0.520 1.117 1.137 87.970 -1.2e+02
50 0.542 0.369 0.551 1.121 1.469 68.074 -1.0e+02
100 1.516 0.338 0.551 1.141 4.489 22.275 -1.1e+02
500 6.000 0.642 0.582 1.141 9.348 10.698 -9.6e+01
1000 12.206 0.583 0.582 1.160 20.944 4.775 -9.9e+01
5000 61.862 0.616 0.582 1.172 100.488 0.995 -1.0e+02
10000 124.791 1.978 11.476 1.776 63.079 1.585 84.520
50000 652.348 1.149 3.863 1.148 567.928 0.176 70.273
100000 1.3e+03 0.810 3.792 1.148 1.6e+03 0.064 69.714
500000 7.1e+03 1.647 3.795 1.148 4.3e+03 0.023 69.738
1000000 1.5e+04 1.762 3.841 1.148 8.4e+03 0.012 70.099
5000000 6.9e+04 1.106 3.358 1.176 6.3e+04 0.002 64.990
10000000 1.4e+05 1.353 3.841 1.176 1.0e+05 9.7e-04 69.387

Notes:

• Speedup = Time(Recurrence) / Time(Matrix). Values > 1 indicate matrix method is faster.

• Efficiency = (Time(Matrix) / Time(Recurrence)) × 100%.

• Memory Saving = [(Memory(Recurrence) - Memory(Matrix)) / Memory(Recurrence)] × 100%.

• All computations performed modulo p (256-bit prime) with x = 128-bit integer.
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The memory usage analysis further highlights the efficiency of the proposed approach. While the
iterative method shows a gradual increase in memory consumption as n grows, the matrix-based method
maintains a low and stable memory footprint, approximately between 0.6 and 1.2 KB, as illustrated in
Figure 1.

Figure 1: Performance comparison between the two methods

The experimental results clearly reveal two distinct computational regimes. For small polynomial de-
grees, the classical iterative method remains competitive due to its simplicity and low overhead. However,
its linear time complexity O(n) significantly limits its applicability in cryptographic settings involving
large parameters.

In contrast, the matrix-based formulation proposed in this work demonstrates superior scalability,
stable execution time, and predictable memory usage. Although matrix-based evaluation is not tradi-
tionally considered a standard technique for computing Chebyshev polynomials, the results provide strong
experimental evidence of its practical effectiveness and robustness.

These properties are consistent with international cryptographic evaluation principles, such as those
emphasized by NIST and ISO/IEC standards [7], which prioritize efficiency, scalability, and reliability.
Consequently, for cryptographic applications requiring high-degree Chebyshev polynomials, the proposed
matrix-based approach emerges as a reliable and efficient computational strategy, clearly outperforming
the classical iterative method in both performance and resource management.

Experience II. The objective of this experiment is to evaluate the practical efficiency of the matrix-based
Chebyshev polynomial computation in cryptographic environments. The focus is placed on analyzing
execution time behavior, arithmetic complexity, and memory usage under varying polynomial degrees
and operand sizes. This experiment aims to assess whether the proposed method satisfies the practical
requirements of real-world cryptographic systems, including scalability, predictability, and controlled
resource consumption.

All computations were conducted over the finite field Fp, where p is a large prime number defined as:

p=0xd6f9639fb4946bd3af99ff7af1c424b6a2e228b366cb5f7ac23b10338f195d9ed684b17294a8b1e9bbea3
20edc4c806cc30ede82d8af38d82c50eae28535115b.
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The experiment was implemented using the Python programming language within the Google Colab
environment, ensuring reproducibility and consistent execution conditions. The computation of Cheby-
shev polynomials relied exclusively on the matrix exponentiation method, which was theoretically derived
and proposed by the authors.

Several experimental parameters were varied to analyze performance behavior. The polynomial degree
n was increased across multiple bit-lengths, while the size of the input value x was also varied. Execu-
tion time was measured using the time.perf counter() function, and memory usage was monitored to
evaluate space efficiency. Additionally, the number of modular multiplications and the average time per
multiplication were recorded to assess arithmetic complexity.

Results: The experimental results are presented through execution time curves, memory usage plots,
arithmetic complexity graphs, and a heatmap representation, as shown in Figure 2. The results demon-
strate that the execution time increases smoothly with respect to the polynomial degree n, confirming
the logarithmic behavior expected from matrix exponentiation.

The analysis also reveals that the execution time remains relatively stable when varying the size of
x, indicating robustness with respect to operand size. The number of modular multiplications grows in
a predictable manner, while the average time per multiplication remains nearly constant across different
configurations.

Memory usage measurements show limited variation and remain within a narrow range, confirming
the low and stable memory footprint of the proposed method. This behavior is particularly advantageous
for cryptographic implementations operating under strict memory constraints.

Figure 2: Matrix Tchebyshev Polynomial Performance

The results of this experiment confirm the practical viability of the matrix-based Chebyshev polyno-
mial computation method. Unlike classical iterative approaches, the proposed method offers predictable
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execution time and controlled arithmetic complexity, both of which are essential properties for secure
cryptographic systems.

The observed stability in memory usage and execution time aligns with international cryptographic
evaluation criteria, such as those recommended by NIST and ISO/IEC, which emphasize efficiency, scal-
ability, and resistance to implementation-level vulnerabilities. These findings demonstrate that the pro-
posed matrix-based method is not only theoretically sound but also practically efficient and suitable for
real-world cryptographic applications.

4.2. Key Exchange Using Chebyshev Polynomials versus Diffie–Hellman

The Diffie–Hellman protocol remains one of the most influential and widely deployed cryptographic
primitives. Its simplicity, strong theoretical foundation, and extensive cryptanalytic study have estab-
lished it as a cornerstone of secure communications. Over several decades, Diffie–Hellman has bene-
fited from numerous optimizations, including fast modular exponentiation techniques such as square-
andmultiply, constant-time implementations, and carefully standardized parameter choices.
The objective of this experiment is to compare the computational performance of a key exchange proto-
col based on Chebyshev polynomials with the classical Diffie–Hellman (DH) key exchange scheme. The
comparison focuses on execution time, scalability with respect to the secret exponent size, and practical
feasibility in cryptographic environments operating over large finite fields.

All experiments were conducted over a large finite field Fp, where the prime modulus p is a 1024-bit
integer defined as follows:

p=0xb6c6ca8b45699aad8df1d6b4d9b1b3a00d00f8ebb14b054374fd2196129def46a0d56efa1a24119294d
b288d5ac8c3c366800e77e3dd233ec32b093302903c1d1c4dbfa15b15f0c045c154643ab92c816818b12380bc90
531834040bf9c281145b29b2e6ec40200a5d1855d7962c6dd5434b21ac3aaee142a51f6e46a58f129d.

A common public base element was selected such that x = g ∈ Fp , where x is also a 1024-bit integer
defined as:

x=g=0x2a6a1dab2a92f2785df07db206733e834362331e86e86492e91cc6dc28ebdda58daf2d7f0965866d7
bb55eb1d9976ab2e67176352112721711b10f78965db9b1c6a2b29b2a89a3fcd97d7a80c856872c83d5c0170e78
71047fc4743b57d27c3afb13959532f3f87dd033b161ca1b54eb039cc5797b66797a046d20bc42a8571.

In both protocols, two communicating parties (Alice and Bob) selected secret exponents na and nb,
which were incrementally increased in order to evaluate scalability.

The Diffie–Hellman protocol relied on classical modular exponentiation, whereas the Chebyshev-
based protocol employed a matrix exponentiation method to compute Tn(x) mod p. This matrix-based
formulation was theoretically derived and proposed by the authors.

All implementations were developed in Python and executed in the Google Colab environment. Ex-
ecution time was measured in milliseconds, and correctness was verified by ensuring that both parties
obtained identical shared keys. The experimental results are summarized in Table 2 and illustrated in
Figure 3.

Results: The experimental results indicate that both protocols successfully achieve correct key agree-
ment for all tested parameter values. However, a clear difference in computational performance is ob-
served.

As shown in Table 2, the Diffie–Hellman protocol consistently exhibits very low execution times, re-
maining below one millisecond for small and moderate secret exponent sizes. In contrast, the Chebyshev-
based key exchange protocol shows a noticeable increase in execution time as the secret exponent size
grows.

The performance curves presented in Figure 3 clearly demonstrate the superior execution-time effi-
ciency of the Diffie–Hellman method. While the matrix-based Chebyshev approach remains stable and
functionally correct, it incurs higher computational costs due to repeated matrix multiplications modulo
a large prime.
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Figure 3: Comparison Key exchange : Matrix Tcheybtshev and DH

This comparative study highlights a fundamental trade-off between computational efficiency and al-
gebraic structure. The Diffie–Hellman protocol remains superior in terms of execution speed, benefiting
from optimized modular exponentiation techniques and decades of cryptographic standardization.

Nevertheless, the Chebyshev-based key exchange method exhibits predictable scaling behavior and
maintains correctness across all tested parameters. Although its execution time increases more rapidly,
this approach benefits from a distinct algebraic foundation and the use of matrix exponentiation with
logarithmic complexity.

From a cryptographic perspective, the proposed Chebyshev-based protocol represents a viable al-
ternative when protocol diversification, algebraic innovation, or resistance to specific attack models is
prioritized over raw computational efficiency. These results confirm that while Diffie–Hellman remains
the most practical solution in terms of performance, the matrix-based Chebyshev key exchange is com-
putationally correct, secure, and implementable over large prime finite fields.

4.3. Results and Analysis

The experimental results provide a comprehensive assessment of the computational efficiency and
practical feasibility of Chebyshev polynomials in cryptographic applications, both at the level of polyno-
mial computation and within key exchange protocols over large finite fields. The proposed matrix-based
exponentiation method demonstrates clear advantages in terms of scalability, numerical stability, and
predictability of resource usage when compared to the classical iterative approach. While the iterative
method remains competitive for small polynomial degrees due to its simplicity and low overhead, its
linear time complexity leads to rapid performance degradation as parameter sizes increase. In contrast,
the matrix-based formulation exhibits logarithmic execution time growth and a stable memory footprint,
even for parameters of up to 1024 bits, which is particularly desirable in cryptographic environments
where controlled execution behavior is essential.



14 K. KHALLOUKI, N. RAFI, K. BOUZKOURA and A. CHILLALI

5. Conclusion

From an applied cryptographic perspective, the comparison with the classical Diffie–Hellman protocol
confirms that Diffie–Hellman remains superior in raw execution speed, benefiting from decades of opti-
mization and widespread support in standard cryptographic libraries. Nevertheless, the Chebyshev-based
key exchange, when implemented using the proposed matrix method, remains computationally correct,
stable, and fully implementable over large prime fields. Although it does not outperform Diffie–Hellman
in terms of speed, it introduces an alternative algebraic structure that may be valuable in contexts pri-
oritizing protocol diversity, structural innovation, or resistance to specific attack classes. Finally, since
the current experiments were conducted in a high-level environment (Python on Google Colab), further
performance gains are expected through low-level optimizations and optimized library implementations,
positioning the matrix-based Chebyshev framework as a promising foundation for future cryptographic
research and deployment.
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