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Partial Prime Exposure Attack on the Cubic Pell RSA Cryptosystem

Mostafa Chaker, Mohammed Rahmani, Mhammed Ziane and Siham Ezzouak

ABSTRACT: A recent contribution by Rahmani and Nitaj (AfricaCrypt 2025) investigates the cryptanalysis of
an RSA-inspired scheme derived from the cubic Pell curve t? +ft% +f2tg —3ftitats =1 (mod N), where N = pq
is a standard RSA modulus and the public—private exponent pair satisfies ed — 1 =0 (mod (p — 1)2(q — 1)?).
In this paper, we revisit their attack showing that when an approximation of one prime factor is known, the
scheme becomes significantly more vulnerable. Using a variant of Coppersmith’s method, one can factor N in
polynomial time under explicit bounds, which improve previous results.
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1. Introduction

The RSA scheme [21] stands as one of the most influential public-key cryptosystems, having pro-
foundly shaped modern cryptography. It remains a fundamental tool in asymmetric cryptography, widely
applied to ensure secure communications, authenticate users, and safeguard confidential data. The se-
curity of RSA relies on the computational difficulty of factoring a large modulus of the form N = pq,
with primes of comparable size. To encrypt a plaintext m, one generates in a random way an integer
e > 0 that is coprime with ¢(N) = (p — 1)(q — 1) and computes ¢ = m® (mod N). Decryption reverses the
process using the modular inverse d of e modulo (N) through m = ¢? (mod N). The exponents e and d
are referred to as the encryption and decryption exponents.

In practical deployments, both encryption and decryption operations may impose significant com-
putational overhead. To mitigate this, a common optimization is to employ a small private exponent
to expedite the decryption process. However, Wiener [25] proved in 1990 that RSA loses its security
when the decryption exponent is too small, namely when d < %NO'%. This limitation was subsequently
confirmed by Boneh and Durfee [1], who expanded the applicability of the attack to the broader range
d < N%292_ Such vulnerabilities have spurred extensive investigations into reinforcing the security of
RSA without sacrificing computational efficiency, resulting in the proposal of numerous alternative con-
structions. Notable instances include CRT-RSA [18] and related constructions [25,8], which preserve the
traditional modulus form N = pq. In contrast, schemes such as Prime-Power RSA [23] and its subsequent
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extensions [24,2] modify the underlying modulus to investigate alternative structural designs. Further-
more, some variants replace the traditional Euler totient function with distinct arithmetic formulations
to achieve improved performance or security characteristics.

In later work, Murru and Saettone [13] introduced a novel RSA-inspired scheme arising from the
cubic Pell relation

54+ f3 + f213 — 3ftatats = 1,

where f is an element whose cube is congruent to an integer modulo N. In this setting, the modulus
retains the standard form N = pq, while the exponents ¢ and d are linked through

ed—1=0 (mod (p> +p+1)(q®+q+1)).

This variant was also cryptanalyzed, as noted in [5,19].
Recently, Nitaj and Seck [16] proposed a novel scheme by combining encoding functions together with
the cubic Pell curve:
3+ ft3 + f23 — 3ftitat3 =1 (mod N).

The modulus here is chosen of the form N = p”q®, and the exponents e and d are constrained by
ed—1=0 (mod p>" Vg2t (p - 1)%(q—1)?).

Beyond the well-known attacks of Wiener and their improvement by Boneh and Durfee, several
cryptanalytic approaches have been developed against various RSA-type schemes, as discussed in [15,26,
22,5]. In the same study, Nitaj and Seck [16] introduced an attack on the above variant. Their analysis

establishes that for moduli N = p"q®, polynomial-time factorization is achievable whenever the secret
_ 2(3r+s)
exponent d is bounded by =L

We note that the Nitaj—Seck attack [16] provides a very weak bound to attack the scheme in the
classical RSA setting N = pq (i.e., r = s = 1), since the former bound tends to be 0. This limitation was
later addressed by Rahmani and Nitaj [20], who bridged the gap by developing a Coppersmith-based
cryptanalytic approach. Specifically, assuming N = pq and e = N¢, they demonstrated that the scheme
becomes insecure whenever N < e < N* and d < N2~V©,

In the presented work, we revisit the Rahmani et Nitaj’s work. More precisely, given a modulus
N = pq and an approximation pg of one of its prime factors, we demonstrate that the Nitaj-Seck scheme
is more vulnerable when the parameters satisfy e = N*, [p—po| < N7, and d < N2-V207 When y = %, our
bound retrieves the bound of Rahmani and Nitaj [20]. For v < %, our method yields improved bounds
compared to theirs.

The sequel of this article is structured as follows. Section 2 provides the necessary background.
Section 3 applies a variant of Coppersmith’s method to analyze and attack the Nitaj—Seck scheme.
Section 4 provides a detailed numerical example validating the effectiveness of the proposed attack, while
Section 5 presents the conclusion of the paper.

2. Preliminaries
2.1. Preliminary lemmas

Under the assumption that prime factors have equal bit-length, the result from [14] establishes con-
crete bounds on the prime factors p and q relative to the modulus N.

Lemma 2.1. Any pair of prime numbers of equal bit-length forming N = pq lies within the range

20.5

5 N0.5 <q<NO.5 <p< 20.5 N0'5.

The result below establishes that, from a known approximation of p, both q and p + q can be approx-
imated (see [5]).
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Lemma 2.2. If N = pq is a modulus with q < p < 2q, and py is an approximation of p with the error
|p — po| = N*. Then defining qo = |N/po| provides an approzimation of q from which

| —qol <N?, [p+q—po—qo| <2N7.

The result that follows demonstrates that the quantity (p — 1)2(q — 1)? can be bounded from below
in terms of the modulus N (see [20]).

Lemma 2.3. For each pair of primes of equal bit-length forming N = pq, we have

< - 12a- 12

2.2. The scheme of Nitaj and Seck
The cryptographic scheme proposed by Nitaj and Seck [16] is defined over the curve
Cr(N): &8+ fta + f23 — 3ftitat3 =1  (mod N),

where f is a cubic residue modulo N. In both the encryption and decryption procedures, an encoding
function &€ is employed to map
(mtl,th) S Z/NZ X Z/NZ

to
g((mt17mt2)7ng) = (t17t27t3) € Cf(N)7

where f satisfies f = ¢® (mod N).
Conversely, a decoding function D is used to invert the mapping from (t1,%2,t3) € C;(N), under the
same condition f = ¢® (mod N), via

D((t1,t2,t3),9,N) = (my,,m4,) € Z/NZ x Z/NZ.
The cryptosystem is specified as follows.
Key generation
1. Define three parameters: a security parameter p and two small integers r and s.
2. Pick two primes p and q randomly, each having p bits, with the condition p =q =1 (mod 3).

3. Construct the RSA-like modulus
N — pT‘qS
and compute the cubic totient
Y(r,s,N) =p* VP (p — 1)*(q - 1),
4. Pick an integer g randomly from {1,...,N — 1} and set
f=g° (modN),
with f required to be a nonzero cubic residue modulo both p and q.

5. Select an integer e satisfying 1 < e < N and
ged(e,pa(p —1)(q— 1)) = L.

6. Compute the modular inverse
d=e ' (mod (r,s,N)).

7. The key pair is then (N, g,e) for the public key and (N, g, d) for the private key.
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Encryption
1. Represent the plaintext as M = (s, yar) in Z/NZ x Z/NZ.

2. Compute f = ¢g® (mod N).

3. Obtain the triplet (¢1,t2,t3) by applying the encoding function &£ to (xps,ya) with parameters g
and N.

4. Compute C = (z¢,yc, 2c) by exponentiating (t1,t2,t3) to the power e on the curve C¢(N).

5. Define the ciphertext as
(Ctl ) ctz) = D(C7 9, N)'
Decryption

Follow these steps to recover the plaintext:

1. Interpret the ciphertext as an ordered pair (¢, ¢y, ) in Z/NZ x Z/NZ.
2. Calculate f = ¢® (mod N).

3. Evaluate the triplet (z¢, yo, 2¢) by applying the encoding function & to (¢, ¢t,) with parameters
g and N.

4. Compute (t1,12,t3) by raising (z¢c, yc, zc) to the exponent d on the curve Cs(N).
5. Recover the plaintext (27, yar) by applying the function D to (ty, ta, t3) :
(zar,ynm) = D((t1, b2, t3), 9, N).
2.3. Euclidean Lattices

We begin by recalling basic definitions related to Euclidean lattices [11]. A Euclidean lattice is a
discrete subgroup of R”. Equivalently, let n > w > 0, and let 94,...,9, be a basis of R“. The lattice
spanned by these vectors is given by

L= ZZ'ﬁl: Za’:lﬁltl‘lEZforaHl

1<i<w 1<i<w

In the special case where w = n, the lattice is referred to as full. If the lattice is contained in Z", it is
called integer. A canonical example is the integer lattice Z" itself. It is spanned by the standard basis
vectors
9, =(0,...,0,1,0,...,00", 1e{1,...,n},
where the entry 1 appears in the [-th position.
The matrix M, whose rows consist of the vectors 91,95, ..., 1Y, represents the lattice, and its deter-

minant is given by
det(L) = \/det(MMT).

In the full-rank case, this expression simplifies to
det(L£) = | det(M)].

For lattices of rank w > 2, there exist infinitely many distinct bases. Nevertheless, all bases share the
same cardinality and determinant. Constructing a basis of short vectors is an increasingly demanding
task as the dimension rises. To overcome the computational difficulty of finding short vectors, the LLL
algorithm was proposed by Lenstra, Lenstra, and Lovdsz [10] in 1982, providing a polynomial-time
method to obtain a near-optimal basis. A famous property from [12] in the field of cryptanalysis is the
following one.

Theorem 2.1. Reducing a lattice with an initial basis {U1,...,9,} produces a newly obtained basis
{95, ...,9%} which meets the following inequalities:

w(w—1)
95| < -+ < ||97]| < 270 det(L)=717, forl=1,...,w.
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2.4. Finding modular roots

Coppersmith [3] proposed in 1996 a powerful lattice-based approach to compute modular roots of
equations of the type
S(t)=0 (mod A),

even if A has unknown factors. The method has since been broadened to address polynomials with the
structure

S(tlvt%-"’tn) = Z ni17i27'~~;intilté2 "'tfzn’

01,82,0-0y0n

with 14, 4,....4, € Z. The norm associated with such polynomials is

.....

||S(t17t27""tn)” = nizl,ig ..... in®

In 1997, Howgrave-Graham [6] enhanced and simplified the original Coppersmith approach, yielding the
following criterion for finding small modular roots.

Theorem 2.2 (Howgrave-Graham). Let S(t1,ta,...,tn) € Z[t1,t2, ..., tn] be a polynomial with no more
than w monomial terms, and A > 0 an integer. Under the following three statements

1. S(x1,X2,--->Xn) =0 (mod A),
2. |\S(t1Y1,t2Y2,~~,tnYn)|| < %,
3. Forl1<i<n,|x| <Y,

one has S(X1,X2y--->Xn) =0 in Z.

As the number of variables increases, Coppersmith-based methods generally rely on heuristic reason-
ing. We adopt the heuristic assumption [1,7,17,26] stated below.

Assumption 1. The polynomials I'y,...,T',, generated by the LLL algorithm form an algebraically
independent set. That is, any polynomial @) with integer coefficients satisfying Q(T'1,...,T) = 0 must
be identically zero.

Given this assumption, the root (x1, X2, ..., Xxn) of the equations

Fi(XlaXQa"'vXn):Oa iil,...,w,
can be extracted employing Grobner basis computations or resultants.

3. The main results

A cryptanalytic approach for the Nitaj—Seck scheme is proposed in this section, exploiting the avail-
ability of an approximation to one RSA prime factor.

Theorem 3.1. Let N denote an RSA modulus composed of two primes p and q having identical bit-
lengths, and let e = N be an encryption exponent. Suppose that we known an approzimation pg of p
with error |p — po| < N7, and the decryption exponent d is such that ed — kW (N) = 1 with k € Z, where
U(N) = (p—1)2(q — 1)2. Then, under the following constraints

2
, 2y <a<—, and §<2—+ay,
v

DO | =

0<y<

the factor pair (p,q) can be efficiently obtained in polynomial time.

Proof:
The identity ed — k¥ (N) = 1 can be reformulated as

fo(ty,ta) = tits — 2bt1ta + %t +1 =0 (mod e),
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for W(N) :t% 72bt2+b2, t1 = k, to :p+q7p0 — q0; and
b=N-—po—qo+1.

To identify small modular roots of f.(t1,t2) = 0 (mod e), we rely on Coppersmith’s method. For this
purpose, we introduce an auxiliary variable t3 = t;t3 + 1, which allows us to rewrite the polynomial as
fe(ti,t2) = Fe(ty,t2,t3), where

Fo(ty,to, t3) = t3 — 2bt1ty + b2ty.

Next, for a parameter ¢ > 0 to be optimized later, we consider an integer x > 0 and the following list of
trivariate polynomial equations:

FO, o (tita,ts) = tPtP Fu(ty, ta,t3) ", (e1,e2,63) €ETUJ,
with
T ={(e1,€2,€3) | e3=0,1, € =0,...,K, ea=1,...,6 — €1},

j:{(61,62,63) e3=0,...,[t], &1 = [%J €3,. .., K, 62:0},

together with the replacement of ¢1¢3 by t3 — 1.
Since (t1,t2) is a solution of f.(t1,t2) =0 (mod e), the triple (¢1,t2,t3) also satisfies Fi(t1,ta,t3) =0
(mod e), and therefore
F©)  (t1,t2,t3) =0 (mod €"),

€1,€2,€3

for every (e1,€2,€3) in ZU J.
Following Coppersmith’s technique, we search suitable bounds 77, T5 and T3 such that

[t1| <T1, |t2| < Ty, |t3| <T3.
From Lemma 2.3, we get ¥(N) > ¥, This implies that

ed —1
w(N)

On the other hand, according to Lemma 2.2, we get

t1] =

‘ < dedN~2 < 4N“HI-2 =T,

[tal = [p+q—po—qo| <2N7 =T5.

So a bound for t3 = #1t3 + 1 can be set as T} T%.
We next associate a lattice £ with a basis matrix B, whose rows are formed from the coefficient vectors

of the scaled polynomial Fe(f ,)52,63 (T1t1, Toto, Tsts). The rows are arranged lexicographically, that is
F©) (Tity, Tota, Tytz) < Fj,f}eéyeé (Tyt1, Tots, Tsts),
ife; < €,orife =¢€) and e3 < €, or if €1 = €], €2 = €, and €3 < €. Similarly for the columns
represented by t2t53t5', we have
LR < LRt

if eg <€j,orife; =€) and e5 < €, or if €] = €], €3 = €}, and €3 < €.

For instance, the matrix B for Kk = 2, t = 1 can be illustrated in Table 1, for which x represents
non-zero entries.

In Coppermith’s framework, the lattice is designed so that its basis matrix becomes lower triangular,

where each diagonal entry is expressed as T727T5T5 e~ for some triplet (€1, €2, €3) belonging to ZU J.
Consequently, the determinant of the constructed lattice can be written as

det(£) = TV Ty T2 T 0 (3.1)
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e 2 2 2 2
FE(I?EQ,gg 1 t1 tito t? t2ty tg titg titoty t3 ot}

e 2

F510,0 e 0 0 0 0 0 0 0 0 0

rle) 0 e2r 0 0 0 0 0 0 0 0
0,1,0 -1
(e) 2

Foia 0 0 Tito 0 0 0 0 0 0 0
(e) 2

F3% o 0 0 0 e2T7 0 0 0 0 0 0
(e) 2

Fyig1 0 0 0 0 e2T{ Ty 0 0 0 0 0

(€ 0 x x 0 0 eT: 0 0 0 0

0,0 3
r(€) 0 0 0 * * 0  eTyT: 0 0 0
1,0 173

r(€) 0 * 0 0 * 0 * eT1 T T: 0 0
1,1,1 1T2T3

F(C) 0 * 0 * * 0 * * T2 0
2,0,0 3

F(e) 0 * * 0 * * * * * ToT.
2,0,1 273

Table 1: The lattice basis matrix associated with x = 2 and ¢ = 1.

with 07, = C(ez2), 01, = C(es3), O, = C(€1), 8. = C(k — €1), and

K K—€1 |t] K
=530 30 TS DI b o1
e3=0€1=0€2=1 €z= ()Fl_l- JEJEQ =0

To simplify the forthcoming analysis, we take the approximations [t| ~ ¢ and HJ ~ §. Letting ¢t = k7
for some 7 > 0, the dominant terms of the exponents 8r,, 0r,, 0r,, 6., together with the dimension
D = C(1), satisty

1
Or, = gﬁs + o(x®)

1
O, = 672/13 + 0(/@3)

Or, = %(T + )&% + o(k?) (3.2)
0. = é(r +4)K3 + o(k?)

1
D= 5(7’ + 2)k% + o(k?).

The matrix B is subsequently subjected to LLL reduction, producing a new matrix C while leaving
the determinant unchanged. From the LLL-reduced basis, one derives D polynomials T';(¢1,ts,t3), for
i=1,...,D, each of which satisfies the modular relation

Fi(h,tg,tg) =0 (HlOd e“).

To extract the desired root, we combine the results of Theorem 2.2 and Theorem 2.1, focusing on the
particular case where j = 3. Consequently, we set

el{

D(D-1) 1
240-2) det(L)P2 <

S
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By incorporating equation (3.1), the expression simplifies to
1
- D—2
2252 (/D)

Taking the dominant parts given in (3.2) and their associated bounds

LTy < (D=2 < nD, (3.3)

Ty =4ANOTO0=2 T, = oNY, Ty = 16N“TO2+27 ¢ = §°,
and by neglecting lower-order terms, we deduce that
T2+ 2(6 + 2y — 2)7 + 200+ 46 + 4y — 8 < 0, (3.4)
where the optimal choice of 7 is given by
2—0—2vy
= —

To ensure that 79 remains positive, the parameters must satisfy

70

0<2—27. (3.5)

Substituting 7y into (3.4) yields
—0% 4+ 45 + 2(ya —2) < 0.

Solving the preceding inequality for § gives
0 < 2—+/2va.

Combining this with the condition o > 2y and equation (3.5), we arrive at

0 < min (27 vV 2vo, 2 — 27) =2—+/2va.

Moreover, given that § > 0, the following inequality 2 —+/2va > 0 is fulfilled if a < % Under the specified
assumptions along with Assumption 1, three reduced polynomials I';,T'5,T's in the variables (t1,to,t3)
are selected such that they form an algebraically independent set. By solving the integer system

Fi(tlat2at3) :05 i:17273a
using either Grobner bases or resultants, we can compute

(t1,t2) = (k,;p+9—po — qo)-

In conclusion, using N = pq together with ¢ +pg +qp = p+ q determines the primes p and q, thereby
completing the proof. O

|

A direct consequence of the preceding theorem is that, when the gap |p — ¢| is sufficiently small, the
prime p can be well approximated by v IV, as established in Lemma 2.1. In this setting, our attack is
applicable to small secret exponents and yields improved theoretical bounds compared to those obtained
in [20].

Corollary 3.1. Let N denote an RSA modulus composed of two primes p and q having identical bit-
lengths, and let e = N be an encryption exponent. Suppose that [p — q| < N7 and the decryption
exponent d is such that ed — k¥ (N) = 1 with k € Z, where (N) = (p — 1)%(q — 1)2. Then, under the
following constraints

2
0<~y< =, 2v<a<—, and 0<2—+2av,
Y

the factor pair (p,q) can be efficiently obtained in polynomial time.

N —
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Proof:
It suffices to observe that po = |v/N| can be approximated by
case, we use Lemma 2.1, which yields

N%® when N is large enough. In such a

0<|p—pol=|p—N"° <|p—q| <N

Hence, Theorem 3.1 can be applied to pg = [V/N]| and qg = LP%J with |p — po| < N7. This finishes the
demonstration. o O

4. A numerical example

This section provides a detailed numerical example demonstrating that the proposed method suc-
cessfully breaks a specific RSA variant for which earlier techniques are ineffective. All experiments were
carried out in SageMath 10.4 on a machine running Ubuntu 22.04.3 LTS, equipped with an Intel(R)
Core(TM) 15-4460 CPU @ 3.20GHz x 4 and 8 GB of RAM.

Consider a public key (N, e) a2 (2°12,21923) defined as follows

N =86317658869760976471271890219379926607591245250937647655938441093877939496591279497147\
87412263781518642486847514821644705448125406874401788833416391776457,

e =68194365872587261239268356327595784170382544180868439018345292180187230487876186767461\
55567888969793181828968218823448656710611586971254945864379950851839242075787413026284\
38653275056800439867747945325153349204771479424777182700219167071886348507661798425083\
39435736251298242174937390497869361174457475854101.

From this, we have e = N* with a ~ 1.99975.

Assume that we have 62 bits of the most significant bits of p. Then, we set pg and qp = L%J as

po =111910390438478239186936975298304923371579061126458447581470584901530168590335,
qo =77131049701067173365789658056755204053648229032353055415096289859347725786560,
and write
w(N) = (p—1)*(q—1)" =5 — 2bta + b,
for

to =p+49q—Ppo— do,
b:N—po—qo-l-l.

In particular, we obtain

b =8631765886976097647127189021937992660759124525093764765593844109387793949658938908274\
647866851228792009131787387396417415289313903877834914072538497399563.

Our goal is to determine a small solution to the trivariate polynomial equation
Fe(tl,tg,t;g) = t3 — 2bt1ts + b2t1 =0 (mod 6).

The procedure of Theorem 3.1 can be executed by an adversary lacking knowledge of d, p, and q through
testing different choices of § and ~. For instance, setting (4,7) = (0.63,0.36) satisfies the hypotheses of
Theorem 3.1, namely 2y =0.72 < a < % ~ 5.55 and ¢ < 2 — /2ya = 0.800075.
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We then consider the following bounds:

Ty =[4N*072 | = 349396658849257802787724638763114429112874297090639458727141335448487404389\
18870337195772412428288,

T, =[2N7] = 52242730875960158735365552916830816669130218614487515136,

T3 =Ty T3 = 9536093245121653401853665814868295182192820607778916724197808698121371052443603\
20445252750320405348672792119952905135958784699236519142374124508723135745766444850022\
93722005658477713122895120342678905288654848.

For the lattice construction we fix x = 4 and ¢ = 3 and build £ from the coefficient vectors of the
polynomials F.%, ., (Tit1, Tst2, Tsts), where

F(e) (t1,t2,t3) :t?t;‘q'Fe(tl,tg,t3)€len_€1, (61,62,63) eZTUJ,

€1,€2,€3
with
T ={(e1,€2,€3) | e3=0,1, e, =0,...,k, ea=1,...,k — €1},

J = {(61,62,63) |es=0,...,|t], 1 = {%J €3,...,K, 62:0},

and in every polynomial we substitute the term ¢1¢3 with the expression t3 — 1
In this case, the dimension of the lattice is D = 34. Applying then the LLL algorithm produces

34 polynomials. From these, we choose three using the Groébner basis method and solve them over the

integers, obtaining

t; =134886701233279741286817501560698818545757122643288960919304795140235161135431495912390\
2096594722,

to = — 3557091324921755728066668042210992847724893102905143493,

t3 =170670776585008984319313354107204488410540182309571397692645704725985646124192509115901\
163121638323695197759769111026754351007420263526892080291163537823236542381921079275962\
55946532891107968796334301143379.

Using the known values of t5 + pgo + qo = p + q together with N = pq allows us to determine

p =111910390438478239186925529552912483542794643567052919442759563252655031777413,
q =77131049701067173365797546710822722126704579923716372560959586615119957455989.
Remarkably, the LLL reduction and Grébner basis computations were completed in under four sec-
onds.
The decryption exponent d can be computed as the multiplication inverse of e modulo (p—1)?(q—1)2,
resulting in
d =147373685363820111458424596597177069155815715261810642969170789712224271949682645233153\
2181688893,

and d = N% for §y ~ 0.62472.

5. Comparison with Previous Attacks
Against Nitaj and Seck’s Method.

For the cryptosystem analyzed by Nitaj and Seck [16], where N = p"q® and the private exponent
satisfies d < N% the condition under which their attack succeeds is
2(3r +s)

g <2— .
0<dg < (7“+S)2
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In our case, r = s = 1, so the bound simplifies to

24
R
4 0

demonstrating that their method is ineffective for this particular configuration.
Against Rahmani and Nitaj’s Attack.

In 2025, Rahmani and Nitaj [20] extended the previous result of Nitaj and Seck for r = s = 1,
establishing that if
e=N?, d <N, 1<a<4, §<2—Va,

then the cryptosystem can be broken in polynomial time.

By applying Theorem 3.1 with v = 0.5, we recover these same bounds, indicating that the approach of
Rahmani and Nitaj [20] is a special case of our method. Furthermore, by taking v < 0.5 in our theorem,
the improvement of our bound over theirs can be quantified as

A=(2-/Zva) - (2-va) = va(l - 29) >0,

clearly showing that our result strictly improves upon theirs.
In the numerical example discussed previously, we obtained dg > 2 — \/a = 0.5858, demonstrating
that their attack would not succeed in this instance.

6. Conclusion

We introduced a cryptanalytic attack on the Nitaj—Seck RSA variant when the modulus N = pq and
an approximation of one prime factor p is available. By expressing the relation

ed—k(p—1)*(q—-1)°=1

in a polynomial modular equation, we apply a lattice-based strategy rooted in Coppersmith’s framework
to compute the unknown values. The proposed approach improved upon earlier bounds for breaking the
Nitaj—Seck scheme and permits polynomial-time recovery of the prime factors.
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