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Partial Prime Exposure Attack on the Cubic Pell RSA Cryptosystem

Mostafa Chaker, Mohammed Rahmani, Mhammed Ziane and Siham Ezzouak

abstract: A recent contribution by Rahmani and Nitaj (AfricaCrypt 2025) investigates the cryptanalysis of
an RSA-inspired scheme derived from the cubic Pell curve t31+ft32+f2t33−3ft1t2t3 ≡ 1 (mod N), where N = pq

is a standard RSA modulus and the public–private exponent pair satisfies ed− 1 ≡ 0 (mod (p− 1)2(q− 1)2).
In this paper, we revisit their attack showing that when an approximation of one prime factor is known, the
scheme becomes significantly more vulnerable. Using a variant of Coppersmith’s method, one can factor N in
polynomial time under explicit bounds, which improve previous results.
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1. Introduction

The RSA scheme [21] stands as one of the most influential public-key cryptosystems, having pro-
foundly shaped modern cryptography. It remains a fundamental tool in asymmetric cryptography, widely
applied to ensure secure communications, authenticate users, and safeguard confidential data. The se-
curity of RSA relies on the computational difficulty of factoring a large modulus of the form N = pq,
with primes of comparable size. To encrypt a plaintext m, one generates in a random way an integer
e > 0 that is coprime with φ(N) = (p− 1)(q− 1) and computes c ≡ me (mod N). Decryption reverses the
process using the modular inverse d of e modulo φ(N) through m ≡ cd (mod N). The exponents e and d
are referred to as the encryption and decryption exponents.

In practical deployments, both encryption and decryption operations may impose significant com-
putational overhead. To mitigate this, a common optimization is to employ a small private exponent
to expedite the decryption process. However, Wiener [25] proved in 1990 that RSA loses its security
when the decryption exponent is too small, namely when d < 1

3N
0.25. This limitation was subsequently

confirmed by Boneh and Durfee [1], who expanded the applicability of the attack to the broader range
d < N0.292. Such vulnerabilities have spurred extensive investigations into reinforcing the security of
RSA without sacrificing computational efficiency, resulting in the proposal of numerous alternative con-
structions. Notable instances include CRT-RSA [18] and related constructions [25,8], which preserve the
traditional modulus form N = pq. In contrast, schemes such as Prime-Power RSA [23] and its subsequent
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extensions [24,2] modify the underlying modulus to investigate alternative structural designs. Further-
more, some variants replace the traditional Euler totient function with distinct arithmetic formulations
to achieve improved performance or security characteristics.

In later work, Murru and Saettone [13] introduced a novel RSA-inspired scheme arising from the
cubic Pell relation

t31 + ft32 + f2t33 − 3ft1t2t3 = 1,

where f is an element whose cube is congruent to an integer modulo N. In this setting, the modulus
retains the standard form N = pq, while the exponents e and d are linked through

ed− 1 ≡ 0 (mod (p2 + p+ 1)(q2 + q+ 1)).

This variant was also cryptanalyzed, as noted in [5,19].

Recently, Nitaj and Seck [16] proposed a novel scheme by combining encoding functions together with
the cubic Pell curve:

t31 + ft32 + f2t33 − 3ft1t2t3 ≡ 1 (mod N).

The modulus here is chosen of the form N = prqs, and the exponents e and d are constrained by

ed− 1 ≡ 0 (mod p2(r−1)q2(s−1)(p− 1)2(q− 1)2).

Beyond the well-known attacks of Wiener and their improvement by Boneh and Durfee, several
cryptanalytic approaches have been developed against various RSA-type schemes, as discussed in [15,26,
22,5]. In the same study, Nitaj and Seck [16] introduced an attack on the above variant. Their analysis
establishes that for moduli N = prqs, polynomial-time factorization is achievable whenever the secret

exponent d is bounded by N
2− 2(3r+s)

(r+s)2 .

We note that the Nitaj–Seck attack [16] provides a very weak bound to attack the scheme in the
classical RSA setting N = pq (i.e., r = s = 1), since the former bound tends to be 0. This limitation was
later addressed by Rahmani and Nitaj [20], who bridged the gap by developing a Coppersmith-based
cryptanalytic approach. Specifically, assuming N = pq and e = Nα, they demonstrated that the scheme
becomes insecure whenever N < e < N4 and d < N2−

√
α.

In the presented work, we revisit the Rahmani et Nitaj’s work. More precisely, given a modulus
N = pq and an approximation p0 of one of its prime factors, we demonstrate that the Nitaj–Seck scheme
is more vulnerable when the parameters satisfy e = Nα, |p−p0| ≤ Nγ , and d < N2−

√
2αγ . When γ = 1

2 , our
bound retrieves the bound of Rahmani and Nitaj [20]. For γ < 1

2 , our method yields improved bounds
compared to theirs.

The sequel of this article is structured as follows. Section 2 provides the necessary background.
Section 3 applies a variant of Coppersmith’s method to analyze and attack the Nitaj–Seck scheme.
Section 4 provides a detailed numerical example validating the effectiveness of the proposed attack, while
Section 5 presents the conclusion of the paper.

2. Preliminaries

2.1. Preliminary lemmas

Under the assumption that prime factors have equal bit-length, the result from [14] establishes con-
crete bounds on the prime factors p and q relative to the modulus N.

Lemma 2.1. Any pair of prime numbers of equal bit-length forming N = pq lies within the range

20.5

2
N0.5 < q < N0.5 < p < 20.5 N0.5.

The result below establishes that, from a known approximation of p, both q and p+ q can be approx-
imated (see [5]).



Partial Prime Exposure Attack on the Cubic Pell RSA Cryptosystem 3

Lemma 2.2. If N = pq is a modulus with q < p < 2q, and p0 is an approximation of p with the error
|p− p0| = Nλ. Then defining q0 = ⌊N/p0⌋ provides an approximation of q from which

|q− q0| < Nγ , |p+ q− p0 − q0| < 2Nγ .

The result that follows demonstrates that the quantity (p − 1)2(q − 1)2 can be bounded from below
in terms of the modulus N (see [20]).

Lemma 2.3. For each pair of primes of equal bit-length forming N = pq, we have

N2

4
< (p− 1)2(q− 1)2.

2.2. The scheme of Nitaj and Seck

The cryptographic scheme proposed by Nitaj and Seck [16] is defined over the curve

Cf (N) : t31 + ft32 + f2t33 − 3ft1t2t3 ≡ 1 (mod N),

where f is a cubic residue modulo N. In both the encryption and decryption procedures, an encoding
function E is employed to map

(mt1 ,mt2) ∈ Z/NZ× Z/NZ

to
E
(
(mt1 ,mt2), g, N

)
= (t1, t2, t3) ∈ Cf (N),

where f satisfies f ≡ g3 (mod N).
Conversely, a decoding function D is used to invert the mapping from (t1, t2, t3) ∈ Cf (N), under the

same condition f ≡ g3 (mod N), via

D
(
(t1, t2, t3), g, N

)
= (mt1 ,mt2) ∈ Z/NZ× Z/NZ.

The cryptosystem is specified as follows.

Key generation

1. Define three parameters: a security parameter ρ and two small integers r and s.

2. Pick two primes p and q randomly, each having ρ bits, with the condition p ≡ q ≡ 1 (mod 3).

3. Construct the RSA-like modulus
N = prqs

and compute the cubic totient

ψ(r, s, N) = p2(r−1)q2(s−1)(p− 1)2(q− 1)2.

4. Pick an integer g randomly from {1, . . . , N− 1} and set

f ≡ g3 (mod N),

with f required to be a nonzero cubic residue modulo both p and q.

5. Select an integer e satisfying 1 ≤ e < N and

gcd
(
e, pq(p− 1)(q− 1)

)
= 1.

6. Compute the modular inverse
d ≡ e−1 (mod ψ(r, s, N)).

7. The key pair is then (N, g, e) for the public key and (N, g, d) for the private key.
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Encryption

1. Represent the plaintext as M = (xM , yM ) in Z/NZ× Z/NZ.

2. Compute f ≡ g3 (mod N).

3. Obtain the triplet (t1, t2, t3) by applying the encoding function E to (xM , yM ) with parameters g
and N.

4. Compute C = (xC , yC , zC) by exponentiating (t1, t2, t3) to the power e on the curve Cf (N).

5. Define the ciphertext as
(ct1 , ct2) = D(C, g, N).

Decryption
Follow these steps to recover the plaintext:

1. Interpret the ciphertext as an ordered pair (ct1 , ct2) in Z/NZ× Z/NZ.

2. Calculate f ≡ g3 (mod N).

3. Evaluate the triplet (xC , yC , zC) by applying the encoding function E to (ct1 , ct2) with parameters
g and N.

4. Compute (t1, t2, t3) by raising (xC , yC , zC) to the exponent d on the curve Cf (N).

5. Recover the plaintext (xM , yM ) by applying the function D to (t1, t2, t3) :

(xM , yM ) = D
(
(t1, t2, t3), g, N

)
.

2.3. Euclidean Lattices

We begin by recalling basic definitions related to Euclidean lattices [11]. A Euclidean lattice is a
discrete subgroup of Rn. Equivalently, let n ≥ ω > 0, and let ϑ1, . . . , ϑω be a basis of Rω. The lattice
spanned by these vectors is given by

L =
∑

1≤l≤ω

Z · ϑl =

 ∑
1≤l≤ω

xlϑl : xl ∈ Z for all l

 .

In the special case where ω = n, the lattice is referred to as full. If the lattice is contained in Zn, it is
called integer. A canonical example is the integer lattice Zn itself. It is spanned by the standard basis
vectors

ϑl = (0, . . . , 0, 1, 0, . . . , 0)T , l ∈ {1, . . . , n},
where the entry 1 appears in the l-th position.

The matrix M , whose rows consist of the vectors ϑ1, ϑ2, . . . , ϑω, represents the lattice, and its deter-
minant is given by

det(L) =
√
det(MMT ).

In the full-rank case, this expression simplifies to

det(L) = | det(M)|.

For lattices of rank ω ≥ 2, there exist infinitely many distinct bases. Nevertheless, all bases share the
same cardinality and determinant. Constructing a basis of short vectors is an increasingly demanding
task as the dimension rises. To overcome the computational difficulty of finding short vectors, the LLL
algorithm was proposed by Lenstra, Lenstra, and Lovász [10] in 1982, providing a polynomial-time
method to obtain a near-optimal basis. A famous property from [12] in the field of cryptanalysis is the
following one.

Theorem 2.1. Reducing a lattice with an initial basis {ϑ1, . . . , ϑω} produces a newly obtained basis
{ϑ∗1, . . . , ϑ∗ω} which meets the following inequalities:

∥ϑ∗1∥ ≤ · · · ≤ ∥ϑ∗i ∥ ≤ 2
ω(ω−1)

4(ω+1−l) det(L)
1

ω+1−l , for l = 1, . . . , ω.
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2.4. Finding modular roots

Coppersmith [3] proposed in 1996 a powerful lattice-based approach to compute modular roots of
equations of the type

S(t) ≡ 0 (mod A),

even if A has unknown factors. The method has since been broadened to address polynomials with the
structure

S(t1, t2, . . . , tn) =
∑

i1,i2,...,in

ni1,i2,...,int
i1
1 t

i2
2 · · · tinn ,

with ni1,i2,...,in ∈ Z. The norm associated with such polynomials is

∥S(t1, t2, . . . , tn)∥ =
√∑

n2i1,i2,...,in .

In 1997, Howgrave-Graham [6] enhanced and simplified the original Coppersmith approach, yielding the
following criterion for finding small modular roots.

Theorem 2.2 (Howgrave-Graham). Let S(t1, t2, . . . , tn) ∈ Z[t1, t2, . . . , tn] be a polynomial with no more
than ω monomial terms, and A ≥ 0 an integer. Under the following three statements

1. S(χ1, χ2, . . . , χn) ≡ 0 (mod A),

2. ∥S(t1Y1, t2Y2, . . . , tnYn)∥ < A√
ω
,

3. For 1 ≤ i ≤ n, |χi| < Yi,

one has S(χ1, χ2, . . . , χn) = 0 in Z.

As the number of variables increases, Coppersmith-based methods generally rely on heuristic reason-
ing. We adopt the heuristic assumption [1,7,17,26] stated below.

Assumption 1. The polynomials Γ1, . . . ,Γω generated by the LLL algorithm form an algebraically
independent set. That is, any polynomial Q with integer coefficients satisfying Q(Γ1, . . . ,Γω) = 0 must
be identically zero.

Given this assumption, the root (χ1, χ2, . . . , χn) of the equations

Γi(χ1, χ2, . . . , χn) = 0, i = 1, . . . , ω,

can be extracted employing Gröbner basis computations or resultants.

3. The main results

A cryptanalytic approach for the Nitaj–Seck scheme is proposed in this section, exploiting the avail-
ability of an approximation to one RSA prime factor.

Theorem 3.1. Let N denote an RSA modulus composed of two primes p and q having identical bit-
lengths, and let e = Nα be an encryption exponent. Suppose that we known an approximation p0 of p
with error |p − p0| ≤ Nγ , and the decryption exponent d is such that ed − kΨ(N) = 1 with k ∈ Z, where
Ψ(N) = (p− 1)2(q− 1)2. Then, under the following constraints

0 ≤ γ ≤ 1

2
, 2γ < α <

2

γ
, and δ < 2−

√
2αγ,

the factor pair (p, q) can be efficiently obtained in polynomial time.

Proof:
The identity ed− kΨ(N) = 1 can be reformulated as

fe(t1, t2) = t1t
2
2 − 2bt1t2 + b2t1 + 1 ≡ 0 (mod e),
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for Ψ(N) = t22 − 2bt2 + b2, t1 = k, t2 = p+ q− p0 − q0, and

b = N− p0 − q0 + 1.

To identify small modular roots of fe(t1, t2) ≡ 0 (mod e), we rely on Coppersmith’s method. For this
purpose, we introduce an auxiliary variable t3 = t1t

2
2 + 1, which allows us to rewrite the polynomial as

fe(t1, t2) = Fe(t1, t2, t3), where
Fe(t1, t2, t3) = t3 − 2bt1t2 + b2t1.

Next, for a parameter t > 0 to be optimized later, we consider an integer κ ≥ 0 and the following list of
trivariate polynomial equations:

F (e)
ϵ1,ϵ2,ϵ3(t1, t2, t3) = tϵ21 t

ϵ3
2 Fe(t1, t2, t3)

ϵ1eκ−ϵ1 , (ϵ1, ϵ2, ϵ3) ∈ I ∪ J ,

with

I = {(ϵ1, ϵ2, ϵ3) | ϵ3 = 0, 1, ϵ1 = 0, . . . , κ, ϵ2 = 1, . . . , κ− ϵ1} ,

J =
{
(ϵ1, ϵ2, ϵ3)

∣∣∣ ϵ3 = 0, . . . , ⌊t⌋, ϵ1 =
⌊κ
t

⌋
ϵ3, . . . , κ, ϵ2 = 0

}
,

together with the replacement of t1t
2
2 by t3 − 1.

Since (t1, t2) is a solution of fe(t1, t2) ≡ 0 (mod e), the triple (t1, t2, t3) also satisfies Fe(t1, t2, t3) ≡ 0
(mod e), and therefore

F (e)
ϵ1,ϵ2,ϵ3(t1, t2, t3) ≡ 0 (mod eκ),

for every (ϵ1, ϵ2, ϵ3) in I ∪ J .
Following Coppersmith’s technique, we search suitable bounds T1, T2 and T3 such that

|t1| ≤ T1, |t2| ≤ T2, |t3| ≤ T3.

From Lemma 2.3, we get Ψ(N) > N2

4 . This implies that

|t1| =
∣∣∣∣ed− 1

Ψ(N)

∣∣∣∣ < 4edN−2 ≤ 4Nα+δ−2 = T1.

On the other hand, according to Lemma 2.2, we get

|t2| = |p+ q− p0 − q0| < 2Nγ = T2.

So a bound for t3 = t1t
2
2 + 1 can be set as T1T

2
2 .

We next associate a lattice L with a basis matrix B, whose rows are formed from the coefficient vectors

of the scaled polynomial F
(e)
ϵ1,ϵ2,ϵ3(T1t1, T2t2, T3t3). The rows are arranged lexicographically, that is

F (e)
ϵ1,ϵ2,ϵ3(T1t1, T2t2, T3t3) ≺ F

(e)
ϵ′1,ϵ

′
2,ϵ

′
3
(T1t1, T2t2, T3t3),

if ϵ1 < ϵ′1, or if ϵ1 = ϵ′1 and ϵ2 < ϵ′2, or if ϵ1 = ϵ′1, ϵ2 = ϵ′2, and ϵ3 < ϵ′3. Similarly for the columns
represented by tϵ21 t

ϵ3
2 t

ϵ1
3 , we have

tϵ21 t
ϵ3
2 t

ϵ1
3 ≺ t

ϵ′2
1 t

ϵ′3
2 t

ϵ′1
3 ,

if ϵ1 < ϵ′1, or if ϵ1 = ϵ′1 and ϵ2 < ϵ′2, or if ϵ1 = ϵ′1, ϵ2 = ϵ′2, and ϵ3 < ϵ′3.
For instance, the matrix B for κ = 2, t = 1 can be illustrated in Table 1, for which ⋆ represents

non-zero entries.
In Coppermith’s framework, the lattice is designed so that its basis matrix becomes lower triangular,

where each diagonal entry is expressed as T ϵ2
1 T ϵ3

2 T ϵ1
3 eκ−ϵ1 for some triplet (ϵ1, ϵ2, ϵ3) belonging to I ∪J .

Consequently, the determinant of the constructed lattice can be written as

det(L) = T
θT1
1 T

θT2
2 T

θT3
3 eθe , (3.1)
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F
(e)
ϵ1,ϵ2,ϵ3

1 t1 t1t2 t21 t21t2 t3 t1t3 t1t2t3 t23 t2t23

F
(e)
0,0,0 e2 0 0 0 0 0 0 0 0 0

F
(e)
0,1,0 0 e2T1 0 0 0 0 0 0 0 0

F
(e)
0,1,1 0 0 e2T1t2 0 0 0 0 0 0 0

F
(e)
0,2,0 0 0 0 e2T2

1 0 0 0 0 0 0

F
(e)
0,2,1 0 0 0 0 e2T2

1 T2 0 0 0 0 0

F
(e)
1,0,0 0 ⋆ ⋆ 0 0 eT3 0 0 0 0

F
(e)
1,1,0 0 0 0 ⋆ ⋆ 0 eT1T3 0 0 0

F
(e)
1,1,1 0 ⋆ 0 0 ⋆ 0 ⋆ eT1T2T3 0 0

F
(e)
2,0,0 0 ⋆ 0 ⋆ ⋆ 0 ⋆ ⋆ T2

3 0

F
(e)
2,0,1 0 ⋆ ⋆ 0 ⋆ ⋆ ⋆ ⋆ ⋆ T2T2

3

Table 1: The lattice basis matrix associated with κ = 2 and t = 1.

with θT1
= C(ϵ2), θT2

= C(ϵ3), θT3
= C(ϵ1), θe = C(κ− ϵ1), and

C(u) =
1∑

ϵ3=0

κ∑
ϵ1=0

κ−ϵ1∑
ϵ2=1

u+

⌊t⌋∑
ϵ3=0

κ∑
ϵ1=⌊κ

t ⌋ϵ3

0∑
ϵ2=0

u.

To simplify the forthcoming analysis, we take the approximations ⌊t⌋ ≈ t and
⌊
κ
t

⌋
≈ κ

t . Letting t = κτ
for some τ ≥ 0, the dominant terms of the exponents θT1 , θT2 , θT3 , θe, together with the dimension
D = C(1), satisfy

θT1
=

1

3
κ3 + o(κ3)

θT2
=

1

6
τ2κ3 + o(κ3)

θT3
=

1

3
(τ + 1)κ3 + o(κ3)

θe =
1

6
(τ + 4)κ3 + o(κ3)

D =
1

2
(τ + 2)κ2 + o(κ2).

(3.2)

The matrix B is subsequently subjected to LLL reduction, producing a new matrix C while leaving
the determinant unchanged. From the LLL-reduced basis, one derives D polynomials Γi(t1, t2, t3), for
i = 1, . . . , D, each of which satisfies the modular relation

Γi(t1, t2, t3) ≡ 0 (mod eκ).

To extract the desired root, we combine the results of Theorem 2.2 and Theorem 2.1, focusing on the
particular case where j = 3. Consequently, we set

2
D(D−1)
4(D−2) det(L)

1
D−2 <

eκ√
D
.
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By incorporating equation (3.1), the expression simplifies to

eθeT
θT1
1 T

θT2
2 T

θT3
3 <

1

2
D(D−1)

4

(√
D
)D−2

eκ(D−2) < eκD. (3.3)

Taking the dominant parts given in (3.2) and their associated bounds

T1 = 4Nα+δ−2, T2 = 2Nγ , T3 = 16Nα+δ−2+2γ , e = Nα,

and by neglecting lower-order terms, we deduce that

γτ2 + 2(δ + 2γ − 2)τ + 2α+ 4δ + 4γ − 8 < 0, (3.4)

where the optimal choice of τ is given by

τ0 =
2− δ − 2γ

γ
.

To ensure that τ0 remains positive, the parameters must satisfy

δ < 2− 2γ. (3.5)

Substituting τ0 into (3.4) yields
−δ2 + 4δ + 2(γα− 2) < 0.

Solving the preceding inequality for δ gives

δ < 2−
√
2γα.

Combining this with the condition α > 2γ and equation (3.5), we arrive at

δ < min
(
2−

√
2γα, 2− 2γ

)
= 2−

√
2γα.

Moreover, given that δ > 0, the following inequality 2−
√
2γα > 0 is fulfilled if α < 2

γ . Under the specified

assumptions along with Assumption 1, three reduced polynomials Γ1,Γ2,Γ3 in the variables (t1, t2, t3)
are selected such that they form an algebraically independent set. By solving the integer system

Γi(t1, t2, t3) = 0, i = 1, 2, 3,

using either Gröbner bases or resultants, we can compute

(t1, t2) = (k, p+ q− p0 − q0).

In conclusion, using N = pq together with t2+p0+q0 = p+q determines the primes p and q, thereby
completing the proof. 2

2

A direct consequence of the preceding theorem is that, when the gap |p− q| is sufficiently small, the
prime p can be well approximated by

√
N , as established in Lemma 2.1. In this setting, our attack is

applicable to small secret exponents and yields improved theoretical bounds compared to those obtained
in [20].

Corollary 3.1. Let N denote an RSA modulus composed of two primes p and q having identical bit-
lengths, and let e = Nα be an encryption exponent. Suppose that |p − q| < Nγ and the decryption
exponent d is such that ed − kΨ(N) = 1 with k ∈ Z, where Ψ(N) = (p − 1)2(q − 1)2. Then, under the
following constraints

0 ≤ γ ≤ 1

2
, 2γ < α <

2

γ
, and δ < 2−

√
2αγ,

the factor pair (p, q) can be efficiently obtained in polynomial time.



Partial Prime Exposure Attack on the Cubic Pell RSA Cryptosystem 9

Proof:
It suffices to observe that p0 = ⌊

√
N⌋ can be approximated by N0.5 when N is large enough. In such a

case, we use Lemma 2.1, which yields

0 < |p− p0| ≈ |p− N0.5| < |p− q| < Nγ .

Hence, Theorem 3.1 can be applied to p0 = ⌊
√
N⌋ and q0 = ⌊ N

p0
⌋ with |p − p0| < Nγ . This finishes the

demonstration. 2 2

4. A numerical example

This section provides a detailed numerical example demonstrating that the proposed method suc-
cessfully breaks a specific RSA variant for which earlier techniques are ineffective. All experiments were
carried out in SageMath 10.4 on a machine running Ubuntu 22.04.3 LTS, equipped with an Intel(R)
Core(TM) i5-4460 CPU @ 3.20GHz × 4 and 8 GB of RAM.

Consider a public key (N, e) ≈ (2512, 21023) defined as follows

N =86317658869760976471271890219379926607591245250937647655938441093877939496591279497147\
87412263781518642486847514821644705448125406874401788833416391776457,

e =68194365872587261239268356327595784170382544180868439018345292180187230487876186767461\
55567888969793181828968218823448656710611586971254945864379950851839242075787413026284\
38653275056800439867747945325153349204771479424777182700219167071886348507661798425083\
39435736251298242174937390497869361174457475854101.

From this, we have e = Nα with α ≈ 1.99975.

Assume that we have 62 bits of the most significant bits of p. Then, we set p0 and q0 =
⌊

N
p0

⌋
as

p0 =111910390438478239186936975298304923371579061126458447581470584901530168590335,

q0 =77131049701067173365789658056755204053648229032353055415096289859347725786560,

and write

Ψ(N) = (p− 1)2(q− 1)2 = t22 − 2bt2 + b2,

for

t2 = p+ q− p0 − q0,

b = N− p0 − q0 + 1.

In particular, we obtain

b =8631765886976097647127189021937992660759124525093764765593844109387793949658938908274\
647866851228792009131787387396417415289313903877834914072538497399563.

Our goal is to determine a small solution to the trivariate polynomial equation

Fe(t1, t2, t3) = t3 − 2bt1t2 + b2t1 ≡ 0 (mod e).

The procedure of Theorem 3.1 can be executed by an adversary lacking knowledge of d, p, and q through
testing different choices of δ and γ. For instance, setting (δ, γ) = (0.63, 0.36) satisfies the hypotheses of
Theorem 3.1, namely 2γ = 0.72 < α < 2

γ ≈ 5.55 and δ < 2−
√
2γα ≈ 0.800075.
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We then consider the following bounds:

T1 =⌊4Nα+δ−2⌋ = 349396658849257802787724638763114429112874297090639458727141335448487404389\
18870337195772412428288,

T2 =⌊2Nγ⌋ = 52242730875960158735365552916830816669130218614487515136,

T3 =T1T
2
2 = 9536093245121653401853665814868295182192820607778916724197808698121371052443603\

20445252750320405348672792119952905135958784699236519142374124508723135745766444850022\
93722005658477713122895120342678905288654848.

For the lattice construction we fix κ = 4 and t = 3 and build L from the coefficient vectors of the
polynomials F

(e)
ϵ1,ϵ2,ϵ3(T1t1, T2t2, T3t3), where

F (e)
ϵ1,ϵ2,ϵ3(t1, t2, t3) = tϵ21 t

ϵ3
2 Fe(t1, t2, t3)

ϵ1eκ−ϵ1 , (ϵ1, ϵ2, ϵ3) ∈ I ∪ J ,

with

I = {(ϵ1, ϵ2, ϵ3) | ϵ3 = 0, 1, ϵ1 = 0, . . . , κ, ϵ2 = 1, . . . , κ− ϵ1} ,

J =
{
(ϵ1, ϵ2, ϵ3) | ϵ3 = 0, . . . , ⌊t⌋, ϵ1 =

⌊κ
t

⌋
ϵ3, . . . , κ, ϵ2 = 0

}
,

and in every polynomial we substitute the term t1t
2
2 with the expression t3 − 1

In this case, the dimension of the lattice is D = 34. Applying then the LLL algorithm produces
34 polynomials. From these, we choose three using the Gröbner basis method and solve them over the
integers, obtaining

t1 =134886701233279741286817501560698818545757122643288960919304795140235161135431495912390\
2096594722,

t2 =− 3557091324921755728066668042210992847724893102905143493,

t3 =170670776585008984319313354107204488410540182309571397692645704725985646124192509115901\
163121638323695197759769111026754351007420263526892080291163537823236542381921079275962\
55946532891107968796334301143379.

Using the known values of t2 + p0 + q0 = p+ q together with N = pq allows us to determine

p =111910390438478239186925529552912483542794643567052919442759563252655031777413,

q =77131049701067173365797546710822722126704579923716372560959586615119957455989.

Remarkably, the LLL reduction and Gröbner basis computations were completed in under four sec-
onds.

The decryption exponent d can be computed as the multiplication inverse of e modulo (p−1)2(q−1)2,
resulting in

d =147373685363820111458424596597177069155815715261810642969170789712224271949682645233153\
2181688893,

and d = Nδ0 for δ0 ≈ 0.62472.

5. Comparison with Previous Attacks

Against Nitaj and Seck’s Method.

For the cryptosystem analyzed by Nitaj and Seck [16], where N = prqs and the private exponent
satisfies d < Nδ0 , the condition under which their attack succeeds is

0 < δ0 < 2− 2(3r + s)

(r + s)2
.
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In our case, r = s = 1, so the bound simplifies to

2− 2 · 4
4

= 0,

demonstrating that their method is ineffective for this particular configuration.

Against Rahmani and Nitaj’s Attack.

In 2025, Rahmani and Nitaj [20] extended the previous result of Nitaj and Seck for r = s = 1,
establishing that if

e = Nα, d < Nδ, 1 < α < 4, δ < 2−
√
α,

then the cryptosystem can be broken in polynomial time.
By applying Theorem 3.1 with γ = 0.5, we recover these same bounds, indicating that the approach of

Rahmani and Nitaj [20] is a special case of our method. Furthermore, by taking γ < 0.5 in our theorem,
the improvement of our bound over theirs can be quantified as

∆ = (2−
√

2γα)− (2−
√
α) =

√
α (1−

√
2γ) > 0,

clearly showing that our result strictly improves upon theirs.
In the numerical example discussed previously, we obtained δ0 > 2 −

√
α ≈ 0.5858, demonstrating

that their attack would not succeed in this instance.

6. Conclusion

We introduced a cryptanalytic attack on the Nitaj–Seck RSA variant when the modulus N = pq and
an approximation of one prime factor p is available. By expressing the relation

ed− k(p− 1)2(q− 1)2 = 1

in a polynomial modular equation, we apply a lattice-based strategy rooted in Coppersmith’s framework
to compute the unknown values. The proposed approach improved upon earlier bounds for breaking the
Nitaj–Seck scheme and permits polynomial-time recovery of the prime factors.
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