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abstract: For each rational prime p ∈ {2, 3, 5}, we construct infinite families of sextic number fields K
such that the p-adic valuation of the index i(K) satisfies νp(i(K)) = νp, for every possible positive integer νp.
We illustrate our results by some computational examples.
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1. Introduction

Let K = Q(α) be a number field of degree n, where α is a primitive integer of K, and let ZK denotes
the ring of integers of K. The index of α, denoted by (ZK : Z[α]), is the index of the Abelian group Z[α]
in ZK . A well-known formula linking this index with the discriminants is given by:

∆(α) = (ZK : Z[α])2 · dK , (1.1)

where dK is the absolute discriminant of K and ∆(α) is the discriminant of the minimal polynomial of
α over Q. The index of K, denoted by i(K), is defined as the greatest common divisor of the indices of
all primitive integers of K. That is, i(K) = gcd {(ZK : Z[θ]) |K = Q(θ) and θ ∈ ZK}. It is well known
that if K is monogenic, then its index is trivial; i(K) = 1. Therefore, a number field with non-trivial
index is not monogenic. Dedekind was the first to discover a number field with non-trivial index ( [3]).
In 1930, for every number field K of degree n ≤ 7 and every rational prime p, Engstrom established a
connection between the prime ideal factorization of pZK and νp(i(K)). This motivated a very important
question, stated as problem 22 in Narkiewicz’s book ( [19]), which asks for an explicit formula of the
highest power νp(i(K)) for a given rational prime p dividing i(K). In [24], Śliwa extended Engstrom’s
results to number fields up to degree 12, under the condition that p is unramified in K. These results were
further generalized by Nart ( [20]), who developed a p-adic characterization of the index of a number field.
In [18], Nakahara studied the indices of non-cyclic but abelian biquadratic number fields. In [8], Funakura
showed that i(K) = 1 or 2 for every pure quartic number field K. In [10], Gaál et al. characterized the
field indices of biquadratic number fields. In [25], Spearman and Williams characterized the indices of
cyclic quartic number fields. In [23], Pethö and Pohst studied the index divisors of multiquadratic number
fields. Recently, many authors are interested in the characterization of the prime power decomposition of
the indices of number fields, especially those defined by trinomials and quadrinomials of fixed degrees (see
[2,?,4,5,6,8,10,15,16,17,18,23,25]). In all the former papers, for a given number field K, the authors try
to calculate the index i(K). In contrast, the present paper introduces a new approach. Namely, for each
rational prime p ∈ {2, 3, 5} and every possible natural integer νp, we construct infinite families of sextic
number fields, with p-indices νp, where the p-index of a number field K is defined as the p-valuation of
its index. Namely, νp = νp(i(K)). According to Engstrom’s results ( [?]), the index of any sextic number
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field K is of the form i(K) = 2ν2 · 3ν3 · 5ν5 , where ν2 ∈ {0, 1, 2, 3, 4, 8}, ν3 ∈ {0, 1, 2, 3} and ν5 ∈ {0, 1}.
These results exhibit infinite families of sextic number fields for each of the possible non-trivial index
values.

2. Main Results

Given that the index of sextic number field is of the form i = 2ν2 · 3ν3 · 5ν5 , where ν2 ∈ {0, 1, 2, 3, 4, 8},
ν3 ∈ {0, 1, 2, 3} and ν5 ∈ {0, 1}, in the remainder, for any rational prime p ∈ {2, 3, 5}, we provide infinite
families of sextic number fields with p-indices νp, where ν2 ∈ {1, 2, 3, 4, 8}, ν3 ∈ {1, 2, 3} and ν5 = 1.

In the reminder, K = Q(α) is a sextic number field generated by a root θ of a monic irreducible
polynomial, F (x) = x6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 ∈ Z[x].

For p = 2 and ν2 = 1, Theorem 2.1 provides sufficient conditions on F (x), which guarantee that each
sextic number field of these infinite families has 2-index ν2 = 1.

Theorem 2.1 Suppose that for every i = 0, . . . , 5, ν2(ai) ≥ 1. Then each of the following conditions
guarantees that ν2(i(K)) = 1.

1. a3 ≡ 2 (mod 4), a2 ≡ 0 (mod 4), ν2(a0) < 2ν2(a1) − ν2(a2), ν2(a0) > 3ν2(a2) − 2 and ν2(a0) ̸≡
ν2(a2) (mod 2).

2. a4 ≡ 2 (mod 4), a3 ≡ 0 (mod 4), a2 ≡ 4 (mod 8), a1 ≡ 0 (mod 8) and ν2(a0) = 2ν2(a1)− 2.

Example 2.1 Let K be a sextic number field defined by the monic irreducible polynomial F (x) =
x6 + 12x4 + 14x3 + 12x2 + 48x + 32. Since a3 ≡ 2 (mod 4), a2 ≡ 4 (mod 8), a1 ≡ 16 (mod 32) and
a0 ≡ 32 (mod 64), by Theorem 2.1 (1), we conclude that ν2(i(K)) = 1.

Recall that, for every rational integer z ∈ Z, the (x − z)-Taylor expansion of every polynomial F (x) of
degree 6 is given by the following:

F (x) =

6∑
k=0

F (k)(z)

k!
(x− z)k.

In the remainder, we shall denote Ak(z) =
F (k)(z)

k!
.

The following theorem provides infinite family of sextic number fields with 2-indices ν2 = 2.

Theorem 2.2 Suppose that ν2(a4) = 0, ν2(ai) ≥ 1 for every i ̸= 4 and ν2(A0(1)) = 2ν2(A1(1)). Then
each of the following conditions guarantees that ν2(i(K)) = 2.

1. ν2(a0) >
4

3
ν2(a1), ν2(a1) >

3

2
ν2(a2), ν2(a1) > 3ν2(a3) and ν2(a1) ≡ 0 (mod 3).

2. If a3 ≡ 2 (mod 4), a2 ≡ 4 (mod 8), a1 ≡ 0 (mod 16) and ν2(a0) = 2ν2(a1)− 2.

Example 2.2 Let K be a sextic number field defined by the monic irreducible polynomial F (x) =
x6 + 51x4 + 48x3 + 96x2 + 24x+ 384. Since a0 ≡ 0 (mod 128), a1 ≡ 8 (mod 16), a2 ≡ a3 ≡ 0 (mod 16),
a4 is odd, A0(1) = 604 ≡ 4 (mod 8) and A1(1) = 570 ≡ 2 (mod 4), then by Theorem 2.2 (1), we obtain
ν2(i(K)) = 2.

In the next theorem, we provide infinite family of sextic number fields with 2-indices ν2 = 3.

Theorem 2.3 Suppose that ν2(a4) = 0 and ν2(ai) ≥ 1 for every i ̸= 4. Then the following conditions
guarantee that ν2(i(K)) = 3.
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1. ν2(A0(1)) < 2ν2(A1(1)) and ν2(A0(1)) is odd.

2. ν2(a2) < 2ν2(a3), ν2(a2) is odd, ν2(a1) > ν2(a2) + ν2(a3), 2ν2(a2) < ν2(a0) < 2ν2(a1)− ν2(a2) and
ν2(a0) is even.

Example 2.3 Let K be a sextic number field defined by the monic irreducible polynomial F (x) =
x6 + 3x4 + 10x2 + 24x + 16. Since a0 ≡ 16 (mod 32), a1 ≡ 8 (mod 16), a2 ≡ 2 (mod 4), a4 is odd. On
the other hand, A0(1) = 54 ≡ 2 (mod 4). Therefore, by Theorem 2.3, we obtain ν2(i(K)) = 3.

Theorems 2.4 and 2.5 provide sufficient conditions on F (x), which guarantee that each sextic number
field of these infinite families has 2-index ν2 = 4.

Theorem 2.4 Suppose that 2 does not divide a4 and ν2(ai) ≥ 1 for every i ̸= 4. Then the following
conditions guarantee that ν2(i(K)) = 4.

1. ν2(A0(1)) < 2ν2(A1(1)) and ν2(A0(1)) is odd.

2. ν2(ai−1) > 2ν2(ai)− ν(ai+1) for every i = 1, 2, 3.

Theorem 2.5 Suppose that 2 does not divide a4 and ν2(ai) ≥ 1 for every i ̸= 4. Then the following
conditions guarantee that ν2(i(K)) = 4.

1. ν2(A0(1)) > 2ν2(A1(1)).

2. ν2(a2) < 2ν2(a3), ν2(a2) is odd, ν2(a1) > ν2(a2) + ν2(a3) and ν2(a0) > 2ν2(a1).

Example 2.4 Let K be a sextic number field defined by the monic irreducible polynomial F (x) =
x6 + 12x5 + 3x4 + 6x3 + 2x2 + 8x + 128. Since a0 ≡ 128 (mod 256), a1 ≡ 8 (mod 16), a2 ≡ 2 (mod 4)
a4 is odd, A0(1) = 160 ≡ 32 (mod 64) and A1(1) = 108 ≡ 4 (mod 8), by theorem 2.5, we conclude that
ν2(i(K)) = 4.

The following theorem provides infinite families of sextic number fields with 2-indices ν2 = 8.

Theorem 2.6 Each one of the following conditions guarantee that ν2(i(K)) = 8.

1. ν2(a2) = 0, ν2(ai) ≥ 1 for every i ̸= 2, ν2(a0) > 2ν2(a1) and ν2(Ai−1) > 2ν2(Ai) − ν2(Ai+1) for
every i = 1, 2, 3.

2. ν2(ai) ≥ 1 for i = 0, 1, 2, ν2(ai) = 0 for i = 3, 4, 5, ν2(ai−1) > 2ν2(ai) − ν2(ai+1) and ν2(Ai−1) >
2ν2(Ai)− ν2(Ai+1) for every i = 1, 2.

3. ν2(a4) = 0, ν2(ai) ≥ 1 for every i ̸= 4, ν2(A0(1)) ≥ 2ν2(A1(1)) and ν2(ai−1) > 2ν2(ai) − ν2(ai+1)
for every i = 1, 2, 3.

Example 2.5 Let K be a sextic number field defined by the monic irreducible polynomial F (x) =
x6 + x5 + x4 + 7x3 + 14x2 + 40x + 64. Since a3, a4, a5 are odd, a0 ≡ 64 (mod 128), a1 ≡ 8 (mod 16),
a2 ≡ 2 (mod 4), A0(1) = 128, A1(1) = 104 ≡ 8 (mod 16) and A2(1) = 66 ≡ 2 (mod 4), then by Theorem
2.6 (2), we conclude that ν2(i(K)) = 8.

For p = 3 and ν3 = 1, Theorems 2.7 and 2.8 provide sufficient conditions on F (x), which guarantee that
each sextic number field of these infinite families has 3-index ν3 = 1.

Theorem 2.7 Suppose that a4 ≡ −1 (mod 3) and ν3(ai) ≥ 1 for every i ̸= 4. Then the following
conditions guarantee that ν3(i(K)) = 1.
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1. ν3(a1) ≤ ν3(ai) for every i = 2, 3.

2. ν3(a1) ̸≡ 0 (mod 3) and ν3(a0) >
3

2
ν3(a1).

Example 2.6 Let K be a sextic number field defined by the monic irreducible polynomial F (x) =
x6 + 12x5 − x4 + 9x3 + 27x2 + 24x+ 18. Since a4 ≡ −1 (mod 3), ν3(a0) = 2, ν3(a1) = 1. ν3(a2) = 3 and
ν(a3) = 2, by Theorem 2.7, we conclude that ν3(i(K)) = 1.

In the remainder of this section, for every rational prime p ∈ {3, 5} and every, we shall denote (ai)p =
ai

pνp(ai)
for every rational integer ai ∈ Z.

Theorem 2.8 Suppose that a3 ≡ −1 (mod 3) and ai ≡ 0 (mod 3) for every i ̸= 3. Then each one of the
following conditions guarantees that ν3(i(K)) = 1.

1. ν3(a1) < 2ν3(a2), ν3(a0) > 2ν3(a1), ν3(a1) ̸≡ 0 (mod 2), ν3(A1(1)) < 2ν3(A2(1)), ν3(A1(1)) ̸≡
0 (mod 2) and ν3(A0(1)) > 2ν3(A1(1)).

2. ν3(a1) > 2ν3(a2), ν3(a0) > 2ν3(a1)− ν3(a2), ν3(A0(1)) <
3

2
ν3(A1(1)), ν3(A0(1)) < 3ν3(A2(1)) and

ν3(A0(1)) ̸≡ 0 (mod 3).

3. ν3(a1) < 2ν3(a2), ν3(a1) is even, (a1)3 ≡ −1 (mod 3), ν3(a0) >
3

2
ν3(a1), ν3(A1(1)) > 2ν3(A2(1))

and ν3(A0(1)) > 2ν3(A1(1))− ν3(A2(1)).

Example 2.7 Let K be a sextic number field defined by the monic irreducible polynomial F (x) =
x6 + 12x4 + 8x3 + 3x2 + 3x + 27. Since ν3(a0) = 3, ν3(a1) = 1, ν3(a2) = 1, a3 ≡ −1 (mod 3),
A0(1) = 54 ≡ 54 (mod 81) and A1(1) = 87 ≡ −3 (mod 9), then by Theorem 2.8 (1), we conclude
ν3(i(K)) = 1.

The following theorem provides infinite families of sextic number fields with 3-indices ν3 = 2.

Theorem 2.9 Suppose that a4 ≡ −1 (mod 3) and ν3(ai) ≥ 1 for every i ̸= 4. Then the following
conditions guarantee that ν3(i(K)) = 2.

1. ν3(a2) < 2ν3(a3) and ν3(a2) is odd.

2. ν3(a1) > 2ν3(a2) and ν3(a0) > 2ν3(a1).

Example 2.8 Let K be a sextic number field defined by the monic irreducible polynomial F (x) =
x6+2x4+6x3+12x2+54x+2187. Since ν3(a0) = 7, ν3(a1) = 3, ν3(a2) = 1 and ν3(a3) = 1. By theorem
2.9, we get ν3(i(K)) = 2.

In the next theorem, we provide infinite families of sextic number fields with 3-indices ν3 = 3.

Theorem 2.10 Suppose that a3 ≡ −1 (mod 3) and ai ≡ 0 (mod 3) for every i ̸= 3. Then each one of
the following conditions guarantees that ν3(i(K)) = 3.

1. ν3(ai−1) > 2ν3(ai)− ν3(ai+1) and ν3(Ai−1(1)) > 2ν3(Ai(1))− ν3(Ai+1(1)) for every i = 1, 2.

2. ν3(a1) < 2ν3(a2), ν3(a1) is even, (a1)3 ≡ 1 (mod 3), ν3(a0) > 2ν3(a1), ν3(A1(1)) < 2ν3(A2(1)),
ν3(A1(1)) is even, (A1(1))3 ≡ 1 (mod 3) and ν3(A0(1)) > 2ν3(A1(1)).
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Example 2.9 Let K be a sextic number field defined by the monic irreducible polynomial F (x) =
x6 + 50x3 + 3x2 + 675x + 729. Since ν3(a0) = 6, ν3(a1) = 3, ν3(a2) = 1, ν3(A0(1)) = 6, ν3(A1(1)) = 3
and ν3(A2(1)) = 1, then by theorem 2.5 (1), we conclude ν3(i(K)) = 3.

For p = 5 and ν5 = 1, Theorem 2.11 provides sufficient conditions on F (x), which guarantee that each
sextic number field of these infinite families has 5-index ν5 = 1.

Theorem 2.11 Suppose that a2 ≡ −1 (mod 5) and ai ≡ 0 (mod 5) for every i ̸= 2. Then each one of
the following conditions guarantees that ν5(i(K)) = 1.

1. ν5(a0) > 2ν5(a1).

2. ν5(a0) = 2ν5(a1) and ((a0)5, (a1)5) ∈ {(2, 1), (2, 4)(3, 2), (3, 3)} (mod 5).

3. ν5(a0) < 2ν5(a1), ν5(a0) even, ν5(a0) < ν5(a1) and (a0)5 ≡ ±1 (mod 5).

Example 2.10 Let K be a sextic number field defined by the monic irreducible polynomial F (x) =
x6 + 10x4 − x2 + 500x+ 25. Since ν5(a0) = 2, ν5(a1) = 3 and (a0)5 ≡ 1 (mod 5), by Theorem 2.11 (3),
we conclude ν5(i(K)) = 1.

The following example provides a sextic number field with index i(K) = 240.

Example 2.11 Let K be a sextic number field defined by the monic irreducible polynomial F (x) =
x6 + 2x5 + 5x4 + 6x3 + 24x2 + 1920x+ 4608000.

1. For p = 2, since a4 is odd, a0 ≡ 4096 (mod 8192), a1 ≡ 128 (mod 256), a2 ≡ 8 (mod 16), A0(1) =
4609958 ≡ 2 (mod 4) and A1(1) = 2022 ≡ 2 (mod 4). Then by theorem 2.4, we get ν2(i(K)) = 4.

2. For p = 3, a4 ≡ −1 (mod 3), ν3(a0) = 2, ν3(a1) = 1. ν3(a2) = 3 and ν(a3) = 2. By Theorem 2.7,
we get ν3(i(K)) = 1.

3. Finally, for p = 5, we have ν5(a0) = 3 and ν5(a1) = 1. Then by theorem 2.11 (1), we get
ν5(i(K)) = 1.

We conclude that i(K) = 240.

3. Preliminaries

Our proofs are based on Newton polygon techniques applied on prime ideal factorization, which is
rather technical but very efficient to apply. We have introduced the corresponding concepts in several
former papers. Here we only give the theorem of index of Ore which plays a key role for proving our
main results. For more details, we refer to [7] and [12].

Let K = Q(α) be a number field generated by a complex root α of a monic irreducible polynomial
F (x) ∈ Z[x]. We shall use Dedekind’s theorem [21, Chapter I, Proposition 8.3] and Dedekind’s criterion
[1, Theorem 6.1.4]. Let ϕ ∈ Zp[x] be a monic lift to an irreducible factor of F (x) modulo p, F (x) =
a0(x)+a1(x)ϕ(x)+ · · ·+ak(x)ϕ(x)k the ϕ-expansion of F (x) and N+

ϕ (F ) the principal ϕ-Newton polygon
of F (x), which can be obtained only by considering the principal ϕ-expansion of F (x). As defined in
[7, Def. 1.3], the ϕ-index of F (x), denoted indϕ(F ), is deg(ϕ) multiplied by the number of points with
natural integer coordinates that lie below or on the polygon N+

ϕ (F ), strictly above the horizontal axis

and strictly beyond the vertical axis. Let Fϕ be the field Fp[x]/(ϕ) and ui = νp(ai(x)), then to every side
S of N+

ϕ (F ) with initial point (i, ui), length l = l(S) and every i = 0, . . . , l, let the residue coefficient
ci ∈ Fϕ defined as follows:

ci =

 0, if (s+ i, us+i) lies strictly above S,(
as+i(x)

pus+i

)
mod (p, ϕ(x)), if (s+ i, us+i) lies on S.
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Let −λ = −h/e be the slope of S, where h and e are two positive coprime integers and l = l(S) its length.
Then d = l/e is the degree of S. Hence, if i is not a multiple of e, then (s + i, us+i) does not lie on S
and ci = 0. Let Rλ(F )(y) = tdy

d + td−1y
d−1 + · · ·+ t1y + t0 ∈ Fϕ[y] be the residual polynomial of F (x)

associated to the side S, where for every i = 0, . . . , d, ti = cs+ie. If Rλ(F )(y) is square-free for each side
of the polygon N+

ϕ (F ), then we say that F (x) is ϕ-regular.

Let F (x) =
∏r

i=1 ϕi
ki

be the factorization of F (x) into powers of monic irreducible coprime polynomials

over Fp, we say that the polynomial F (x) is p-regular if F (x) is a ϕi-regular polynomial with respect to
p for every i = 1, . . . , r. Let N+

ϕi
(F ) = Si1 + · · ·+ Siri be the ϕi-principal Newton polygon of F (x) with

respect to p. For every j = 1, . . . , ri, let Rλij
(F )(y) =

∏sij
s=1 ψ

aijs

ijs (y) be the factorization of Rλij
(F )(y)

in Fϕi
[y]. Then we have the following theorem of index of Ore:

Theorem 3.1 ( [7, Theorem 1.7 and Theorem 1.9])
Under the above hypothesis, we have the following:

1.

νp((ZK : Z[α])) ≥
r∑

i=1

indϕi
(F ).

The equality holds if F (x) is p-regular.

2. If F (x) is p-regular, then

pZK =

r∏
i=1

ri∏
j=1

sij∏
s=1

p
eij
ijs

is the factorization of pZK into powers of prime ideals of ZK , where eij is the smallest positive
integer satisfying eijλij ∈ Z and the residue degree of pijs over p is given by fijs = deg(ϕi)·deg(ψijs)
for every (i, j, s).

For the proof of our results, we need the following lemma, which characterizes the prime divisors of i(K).

Lemma 3.1 ( [?])
Let p be a rational prime and K a number field. For every positive integer f , let Pf be the number of
distinct prime ideals of ZK lying above p with residue degree f and Nf the number of monic irreducible
polynomials of Fp[x] of degree f . Then p divides the index i(K) if and only if Pf > Nf for some positive
integer f .

For every number field of degree n ≤ 7 and every rational prime p, Engstrom established a connection
between νp = νp(i(K)) and the prime ideal factorization of pZK . That is, from the factorization of pZK ,
one can determine explicitly νp (for more details, see [?]).

4. Proofs of Main Results

Recall that, according to the factorization given in Theorem 3.1, we use the triple indices in the
factorization of pZK . Namely pZK =

∏r
i=1

∏ri
j=1

∏sij
s=1 p

eij
ijs. Here eij is the ramification index of pijs and

fijs = deg(ϕi) · deg(ψijs) is its residue degree for every (i, j, s).

Proof of Theorem 2.1.
Since for every i = 1, . . . , 6, ν2(ai) ≥ 1, then F (x) ≡ x6. Let ϕ1 = x. Then

F (x) = ϕ61 + a5ϕ
5
1 + · · ·+ a1ϕ1 + a0.

1. If a3 ≡ 2 (mod 4), a2 ≡ 0 (mod 4), ν2(a1) > ν2(a2) + 1 and ν2(a0) > ν2(a2) + 2, then N+
ϕ1
(F ) =

S11+S12+S13 has three sides joining (0, ν2(a0)), (2, ν2(a2)), (3, 1) and (6, 0) with d(S2) = d(S3) = 1.
Since ν2(a0) ̸≡ ν2(a2) (mod 2), then d(S1) = 1 also. By Theorem 3.1, 2ZK = p2111p121p

3
131 with

residue degree 1 each ideal. By Lemma 3.1, 2 divides i(K). Applying Engstrom’s results [?], we
obtain ν2(i(K)) = 1.
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2. If a4 ≡ 2 (mod 4), a3 ≡ 0 (mod 4), a2 ≡ 4 (mod 8), a1 ≡ 0 (mod 8) and ν2(a0) = 2ν2(a1) − 2,
then N+

ϕ1
(F ) = S11+S12 has two sides joining (0, ν2(a0)), (2, 2) and (6, 0). Thus the degree of each

side of N+
ϕ1
(F ) is 2 (see Figure 1). Therefore Rλ11

(F )(y) = Rλ21
(F )(y) = y2 + y + 1, which are

irreducible over Fϕ1
. By Theorem 3.1, 2ZK = p111p

2
211 with residue degree 2 each ideal. By Lemma

3.1, 2 divides i(K). Applying Engstrom’s results [?], we obtain ν2(i(K)) = 1.

0 1 2 3 4 5 6

1

2

ν2(a1)

ν2(a0)

p p p p p p
−
−
−
−

S11

S12

•
•

•

•

Figure 1: N+
ϕ1
(F )

□

Proof of Theorem 2.2.
Since ν2(a4) = 0 and ν2(ai) ≥ 1 for every i ̸= 4. Then F (x) ≡ x4(x − 1)2 (mod 2). Let ϕ1 = x and
ϕ2 = x− 1. Then

F (x) = · · ·+ a4ϕ
4
1 + a3ϕ

3
1 + a2ϕ

2
1 + a1ϕ1 + a0,

= · · ·+A1(1)ϕ2 +A0(1).

Since ν2(A0(1)) = 2ν2(A1(1)), then N+
ϕ2
(F ) = S21 has a single side of degree 2 with Rλ21

(F )(y) =

y2 + y + 1, which is irreducible over Fϕ2 . Hence ϕ2 provides a unique prime ideal of ZK lying above 2
with residue degree 2. For ϕ1, we have the following:

1. If ν2(a0) >
4

3
ν2(a1), ν2(a1) >

3

2
ν2(a2) and ν2(a1) > 3ν2(a3), then N

+
ϕ1
(F ) = S11+S12 has two sides

joining (0, ν2(a0)), (1, ν2(a1)) and (4, 0) with d(S11) = 1 (see Figure 2). Since ν2(a1) ≡ 0 (mod 3),
then d(S12) = 3 with Rλ12

(F )(y) = y3+1 = (y+1)(y2+y+1) ∈ F2[y]. Thus 2ZK = p111p121p122p211
with f111 = f122 = 1 and f121 = f211 = 2. Hence 2 divides i(K). Applying Engstrom’s results [?],
we obtain ν2(i(K)) = 2.

0 1 2 3 4

1

2

ν2(a1)

ν2(a0)

p p p p
−
−
−

−
S11

S12

•

•

Figure 2: N+
ϕ1
(F )

2. If a3 ≡ 2 (mod 4), a2 ≡ 4 (mod 8), a1 ≡ 0 (mod 16) and ν2(a0) = 2ν2(a1)−2, then N+
ϕ1
(F ) = S11+

S12 has two sides joining (0, ν2(a0)), (2, 2) and (4, 0) with d(S11) = d(S12) = 2 and Rλ11(F )(y) =
Rλ12(F )(y) = y2 + y + 1 which are irreducible over Fϕ1 (see Figure 3). Thus 2ZK = p111p121p211,
with residue degree 2 each prime ideal. Hence 2 divides i(K). Applying Engstrom’s results [?], we
obain ν2(i(K)) = 2.



8 H. Bouaouina, L. EL Fadil, O. Kchit and B. Sodäıgui

•

•

0 1 2 3 4

1

2

ν2(a1)

ν2(a0)

p p p p
−
−

−
S11

S12

•

•

Figure 3: N+
ϕ1
(F )

□

Proof of Theorem 2.3.
Since ν2(a4) = 0 and ν2(ai) ≥ 1 for every i ̸= 4, then F (x) ≡ x4(x − 1)2 (mod 2). Let ϕ1 = x and
ϕ2 = x− 1. Then

F (x) = · · ·+ a4ϕ
4
1 + a3ϕ

3
1 + a2ϕ

2
1 + a1ϕ1 + a0

= · · ·+A1(1)ϕ2 +A0(1).

Since ν2(A0(1)) < 2ν2(A1(1)) and ν2(A0(1)) is odd, then N+
ϕ2
(F ) = S21 has a single side joining

(0, ν2(A0(1)) and (2, ν2(A1(1)) with d(S21) = 1. For ϕ1, since ν2(a2) < 2ν2(a3), ν2(a2) is odd, ν2(a1) >
ν2(a2) + ν2(a3), 2ν2(a2) < ν2(a0) < 2ν2(a1) − ν2(a2) and ν2(a0) is even, then N+

ϕ1
(F ) = S11 + S12 has

two sides joining (0, ν2(a0)), (2, ν2(a2)) and (4, 0) and the degree of each side of N+
ϕ1
(F ) is 1 (see Figure

4). Thus 2ZK = p2111p
2
121p

2
211, with residue degree 1 each ideal. By Lemma 3.1, 2 divides i(K). Applying

Engstrom’s results [?], we obtain ν2(i(K)) = 3.

0 1 2 3 4

1

2

ν2(a2)

ν2(a0)

p p p p
−
−
−

−•

•

S11

S12

Figure 4: N+
ϕ1
(F )

□

Proof of Theorem 2.4.
Since ν2(a4) = 0 and ν2(ai) ≥ 1 for every i ̸= 4, then F (x) ≡ x4(x − 1)2 (mod 2). Let ϕ1 = x and
ϕ2 = x− 1. Then

F (x) = · · ·+ a4ϕ
4
1 + a3ϕ

3
1 + a2ϕ

2
1 + a1ϕ1 + a0

= · · ·+A1(1)ϕ2 +A0(1).

Since ν2(A0(1)) < 2ν2(A1(1)), then N+
ϕ2
(F ) = S21 has single side of degree 1. Thus ϕ2 provides a

unique prime ideal of ZK lying above 2 with residue degree 1. On the other hand, since ν2(ai−1) >
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2ν2(ai) − ν(ai+1) for every i = 1, 2, 3, then N+
ϕ1
(F ) = S11 + S12 + S13 + S14 has four sides joining

(0, ν2(a0)), (1, ν2(a1)), (2, ν2(a2)), (3, ν2(a3)) and (4, 0). Thus the degree of each side of N+
ϕ1
(F ) is 1.

Hence 2ZK = p111p121p131p141p
2
211, with residue degree 1 each ideal. Applying Engstrom’s results [?], we

obtain ν2(i(K)) = 4.

□

Proof of Theorem 2.5.
Since ν2(a4) = 0 and ν2(ai) ≥ 1 for every i ̸= 4, F (x) ≡ x4(x− 1)2 (mod 2). Let ϕ1 = x and ϕ2 = x− 1.
Then

F (x) = · · ·+A1(1)ϕ2 +A0(1),
= · · ·+ a4x

4 + a3x
3 + a2x

2 + a1x+ a0.

Since ν2(A0(1)) > 2ν2(A1(1)), then N+
ϕ2
(F ) = S21 + S22 has two sides of degree 1 each side. Thus ϕ2

provides two prime ideals of ZK lying above 2 with residue degree 1 each prime ideal factor. On the
other hand, since ν2(a2) < 2ν2(a3), ν2(a2) is odd, ν2(a1) > ν2(a2) + ν2(a3) and ν2(a0) ≥ 2ν2(a1), then
N+

ϕ1
(F ) = S11 + S12 + S13 has three sides joining (0, ν2(a0)), (2, ν2(a2)), (3, ν2(a3)) and (4, 0). Thus the

degree of each side of N+
ϕ1
(F ) is 1. So, 2ZK = p111p121p

2
131p211p221, with residue degree 1 each ideal.

Applying Engstrom’s results [?], we obtain ν2(i(K)) = 4.

□

Proof of Theorem 2.6.

1. Since 2 does not divide a2 and ν2(ai) ≥ 1 for every i ̸= 2? then F (x) ≡ x2(x − 1)4 (mod 2). Let
ϕ1 = x and ϕ2 = x− 1. Then

F (x) = · · ·+ a2ϕ
2
1 + a1ϕ1 + a0,

= · · ·+A4(1)ϕ
4
2 +A3(1)ϕ

3
2 +A2(1)ϕ

2
2 +A1(1)ϕ2 +A0(1).

If ν2(a0) > 2ν2(a1), then N
+
ϕ1
(F ) = S11+S12 has two sides of degree 1 each. Hence ϕ1 provides two

prime ideals of ZK lying above 2 with residue degree 1 each prime ideal factor. On the other hand,
since ν2(Ai−1) > 2ν2(Ai) − ν2(Ai+1) for every i = 1, 2, 3, then N+

ϕ2
(F ) = S21 + S22 + S23 + S24

has four sides joining (0, ν2(A0(1)), (1, ν2(A1(1)), (2, ν2(A2(1)), (3, ν2(A3(1)) and (4, 0). Thus the
degree of each side of N+

ϕ2
(F ) is 1. By Theorem 3.1, we obtain 2ZK = p111p121p211p221p231p241,

with residue degree 1 each ideal factor. By Lemma 3.1, 2 divide i(K). Using Engstrom’s results
[?], we obtain ν2(i(K)) = 8.

2. Since ν2(a3) = ν2(a4) = ν2(a5) = 0 and ν2(ai) ≥ 1 for every i ∈ {0, 1, 2}. Then F (x) ≡ x3(x −
1)3 (mod 2). Let ϕ1 = x and ϕ2 = x− 1. Then

F (x) = · · ·+ a3ϕ
3
1 + a2ϕ

2
1 + a1ϕ1 + a0,

= · · ·+A3(1)ϕ
3
2 +A2(1)ϕ

2
2 +A1(1)ϕ2 +A0(1).

If ν2(ai−1) > 2ν2(ai) − ν2(ai+1) for every i = 1, 2, then N+
ϕ1
(F ) = S11 + S12 + S13 has three sides

joining (0, ν2(a0)), (1, ν2(a1)), (2, ν2(a2)) and (3, 0). Thus the degree of each side of N+
ϕ1
(F ) is

1. On the other hand, since ν2(Ai−1) > 2ν2(Ai) − ν2(Ai+1) for every i = 1, 2. Then N+
ϕ2
(F ) =

S21 + S22 + S23 has three sides joining (0, ν2(A0(1)), (1, ν2(A1(1)), (2, ν2(A2(1)) and (3, 0). Thus
the degree of each side of N+

ϕ2
(F ) is 1. By Theorem 3.1, the rational prime 2 splits completely in

K. Applying Engstrom’s [?] results, we obtain ν2(i(K)) = 8.

3. Since ν2(a4) = 0 and ν2(ai) ≥ 1 for every i ̸= 4. Then F (x) ≡ x4(x− 1)2 (mod 2). Let ϕ1 = x and
ϕ2 = x− 1. Then

F (x) = · · ·+ a4x
4 + a3x

3 + a2x
2 + a1x+ a0,

= · · ·+A1(1)ϕ2 +A0(1).
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Since ν2(A0(1) > 2ν2(A1(1)), then N
+
ϕ2
(F ) = S21+S22 has two sides of degree 1 each side. Thus ϕ2

provides two prime ideals of ZK lying above 2 with residue degree 1 each ideal factor. On the other
hand, since ν2(ai−1) > 2ν2(ai)− ν2(ai+1) for every i = 1, 2, 3, then N+

ϕ1
(F ) = S11 +S12 +S13 +S14

has four sides joining (0, ν2(a0)), (1, ν2(a1)), (2, ν2(a2)), (3, ν2(a3)) and (4, 0). Thus the degree of
each side of N+

ϕ1
(F ) is 1. By Theorem 3.1, the rational prime 2 splits completely in K. By Lemma

3.1, 2 divide i(K). Applying Engstrom’s results [?], we conclude that ν2(i(K)) = 8.

□

Proof of Theorem 2.7.
Since a4 ≡ −1 (mod 3) and ν3(ai) ≥ 1 for every i ̸= 4. Then F (x) ≡ x4(x − 1)(x − 2) (mod 3). For
every k = 0, 1, 2, let ϕk = x− k. Then, for every k = 1, 2, ϕk provides a unique prime ideal of ZK lying
above 3 with residue degree 1. For ϕ0 = x, since ν3(a1) ≤ ν3(ai) for every i = 2, 3, ν3(a1) ̸≡ 0 (mod 3)

and ν3(a0) >
3

2
ν3(a1), then N

+
ϕ0
(F ) = S01 + S02 has two sides joining (0, ν3(a0)), (1, ν3(a1)), and (4, 0).

Thus the degree of each side of N+
ϕ0
(F ) is 1. Therefore, 3ZK = p011p

3
021p111p211, with residue degree 1

each ideal factor. Hence 3 divides i(K). Applying Engstrom’s results [?], we obtain ν3(i(K)) = 1.

□

Proof of Theorem 2.8.
Since a3 ≡ −1 (mod 3) and ai ≡ 0 (mod 3) for every i ̸= 3, then F (x) ≡ x3(x− 1)3 (mod 3). Let ϕ1 = x
and ϕ2 = x− 1. Then

F (x) = · · ·+ a3ϕ
3
1 + a2ϕ

2
1 + a1ϕ1 + a0,

= · · ·+A2(1)ϕ
2
2 +A1(1)ϕ2 +A0(1).

1. If ν3(a1) < 2ν3(a2), ν3(a0) ≥ 2ν3(a1) and ν3(a1) ̸≡ 0 (mod 2), then N+
ϕ1

= S11 + S12 has two

sides joining (0, ν3(a0)), (1, ν3(a1)) and (3, 0). Thus the degree of each side of N+
ϕ1
(F ) is 1. On

the other hand, since ν3(A1(1)) < 2ν3(A2(1)), ν3(A1(1)) ̸≡ 0 (mod 2) and ν3(A0(1)) > 2ν3(A1(1)),
then N+

ϕ2
(F ) = S21 + S22 has two sides joining (0, ν3(A0(1))), (1, ν3(A1(1))) and (3, 0). Thus the

degree of each side of N+
ϕ2
(F ) is 1. Hence 3ZK = p111p

2
121p211p

2
221, with residue degree 1 each ideal.

By Lemma 3.1, 3 divides i(K). Applying Engstrom’s results [?], we obtain ν3(i(K)) = 1.

2. If ν3(a1) > 2ν3(a2) and ν3(a0) > 2ν3(a1)− ν3(a2), then N
+
ϕ1
(F ) = S11 + S12 + S13 has three sides

joining (0, ν3(a3)), (1, ν3(a1)), (2, ν3(a2)) and (3, 0). Thus the degree of each side of N+
ϕ1
(F ) is 1. On

the other hand, since ν3(A0(1)) <
3

2
ν3(A1(1)), ν3(A0(1)) < 3ν3(A2(1)) and ν3(A0(1)) ̸≡ 0 (mod 3),

then N+
ϕ2
(F ) = S21 has a single side joining (0, ν3(A0(1))) and (3, 0), with d(S21) = 1. Thus

3ZK = p111p121p131p
3
211, with residue degree 1 each ideal factor. Hence 3 divides i(K). Applying

Engstrom’s results [?], we obtain ν3(i(K)) = 1.

3. If ν3(a1) < 2ν3(a2), ν3(a1) is even, (a1)3 ≡ −1 (mod 3), ν3(a0) >
3

2
ν3(a1), then N

+
ϕ1
(F ) = S11+S12

has two sides joining (0, ν3(a0)), (1, ν3(a1)) and (3, 0), with d(S11) = 1 and Rλ12(F )(y) = −y2 − 1
which is irreducible over Fϕ1

. On the other hand, since ν3(A1(1)) > 2ν3(A2(1)) and ν3(A0(1)) >
2ν3(A1(1)) − ν3(A2(1)). Thus N+

ϕ2
(F ) = S21 + S22 + S23 has three sides joining (0, ν3(A0(1))),

(1, ν3(A1(1))), (2, ν3(A2(1))) and (0, 3). Thus the degree of each side of N+
ϕ2
(F ) is 1. Hence

3ZK = p111p121p211p221p231, where f121 = 2 and f111 = f211 = f221 = f231 = 1. By Lemma 3.1, 3
divides i(K). Using Engstrom’s results [?], we obtain ν3(i(K)) = 1.

□

Proof of Theorem 2.9.
Since a4 ≡ −1 (mod 3) and ν3(ai) ≥ 1 for every i ̸= 4, then F (x) ≡ x4(x− 1)(x− 2) (mod 3). For every
k = 0, 1, 2, let ϕk = x− k. Then, for every k = 1, 2, ϕk provides a unique prime ideal of ZK lying above
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3 with residue degree 1. For ϕ0 = x, since ν3(a2) < 2ν3(a3), ν3(a1) > 2ν3(a2) and ν3(a0) > 2ν3(a1), then
N+

ϕ0
(F ) = S01 + S02 + S03 has three sides joining (0, ν3(a0)), (1, ν3(a1)), (2, ν3(a2)) and (4, 0). Thus the

degree of each side of N+
ϕ0
(F ) is 1. Therefore, 3ZK = p011p021p

2
031p111p211, with residue degree 1 each

prime ideal. Hence 3 divides i(K). Applying Engstrom’s results [?], we obtain ν3(i(K)) = 2.

□

Proof of Theorem 2.10.
Since a3 ≡ −1 (mod 3) and ai ≡ 0 (mod 3) for every i ̸= 3, then F (x) ≡ x3(x− 1)3 (mod 3). Let ϕ1 = x
and ϕ2 = x− 1. Then

F (x) = · · ·+ a3ϕ
3
1 + a2ϕ

2
1 + a1ϕ1 + a0,

= · · ·+A2(1)ϕ
2
2 +A1(1)ϕ2 +A0(1).

1. If ν3(ai−1) > 2ν3(ai) − ν3(ai+1) for every i = 1, 2, then N+
ϕ1
(F ) = S11 + S12 + S13 has three

sides joining (0, ν3(a0)), (1, ν3(a1)),(2, ν3(a2)) and (3, 0). Thus d(S11) = d(S12) = d(S13) = 1. On
the other hand, since ν3(Ai−1(1)) > 2ν3(Ai(1)) − ν3(Ai+1(1)) for every i = 1, 2, then N+

ϕ2
(F ) =

S21+S22+S23 has three sides joining (0, ν3(A0(1))), (1, ν3(A1(1))), (2, ν3(A2(1))) and (3, 0). Thus
d(S21) = d(S22) = d(S23) = 1. Hence 3ZK = p111p121p131p211p221p231, with residue degree 1 each
ideal. By Lemma 3.1, 3 divides i(K). Applying Engstrom’s results [?], we obtain ν3(i(K)) = 3.

2. If ν3(a1) < 2ν3(a2), ν3(a1) is even, (a1)3 ≡ 1 (mod 3) and ν3(a0) > 2ν3(a1), thenN
+
ϕ1
(F ) = S11+S12

has two sides joining (0, ν3(a0)), (1, ν3(a1)) and (3, 0), with d(S11) = 1 and Rλ12(F )(y) = −y2+1 =
−(y + 1)(y − 1) ∈ Fϕ1

[y]. On the other hand, since ν3(A1(1)) < 2ν3(A2(1)), ν3(A1(1)) is even,
(A1(1))3 ≡ 1 (mod 3) and ν3(A0(1)) > 2ν3(A1(1)). Thus N+

ϕ2
(F ) = S21 + S22 has two sides

joining (0, ν3(A0(1))), (2, ν3(A1(1))) and (3, 0), with d(S21) = 1 and Rλ22
(F )(y) = −y2 + 1 =

−(y + 1)(y − 1) ∈ Fϕ2
[y]. Hence the rational prime 3 splits completely in K. By Lemma 3.1, 3

divides i(K). Using Engstrom’s results [?], we obtain ν3(i(K)) = 3.

□

Proof of Theorem 2.11.
Since a2 ≡ −1 (mod 5) and ai ≡ 0 (mod 5) for every i ̸= 2, then F (x) ≡ x2(x − 1)(x − 2)(x − 3)(x −
4) (mod 5). For every k = 0, 1, . . . , 4, let ϕk = x− k. Then, for every k = 1, . . . , 4, ϕk provides a unique
prime ideal of ZK lying above 5 with residue degree 1. For ϕ0 = x, we have the following:

1. If ν5(a0) > 2ν5(a1), then N+
ϕ0
(F ) = S01 + S02 has two sides joining (0, ν5(a0)), (1, ν5(a1)) and

(2, 0). Thus the degree of each side N+
ϕ0
(F ) is 1. Therefore, 5ZK = p011p021p111p211p311p411, with

residue degree 1 each ideal factor. Hence 5 divides i(K). Using Engstrom’s results [?], we obtain
ν5(i(K)) = 1.

2. If ν5(a0) = 2ν5(a1), then N+
ϕ0
(F ) = S01, where d(S01) = 2. Since a2 ≡ −1 (mod 5) and

((a0)5, (a1)5) ∈ {(2, 1), (2, 4)(3, 2), (3, 3)} (mod 5), then Rλ01
(F )(y) can be factorized in Fϕ0

[y]
by two distinct linear polynomials (see Table 1). In all these cases, the rational prime 5 splits
completely in K. By Lemma 3.1, 5 divides i(K). Applying Engstrom’s results [?], we obtain
ν5(i(K)) = 1.

((a0)5, (a1)5) (mod 5) Rλ01
(F )(y) mod (5, ϕ0)

(2, 1) −(y + 1)(y + 3)
(2, 4) −(y − 1)(y + 2)
(3, 2) −(y + 1)(y + 2)
(3, 3) −(y − 1)(y + 3)

Table 1: Rλ01(F )(y) in Fϕ0 [y]



12 H. Bouaouina, L. EL Fadil, O. Kchit and B. Sodäıgui

3. If ν5(a0) even and ν5(a0) < ν5(a1), then N+
ϕ0
(F ) = S01 where d(S01) = 2. If (a0)5 ≡ 1 (mod 5),

then Rλ01(F )(y) = −(y − 1)(y + 1) and if (a0)5 ≡ −1 (mod 5) ∈ Fϕ0 [y], then Rλ01(F )(y) =
−(y + 2)(y + 3) ∈ Fϕ0 [y]. In both cases, the rational prime 5 splits completely in K. By Lemma
3.1, 5 divides i(K). Using Engstrom’s results [?], we obtain ν5(i(K)) = 1.
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Université Polytechnique Hauts-de-France Ceramaths FR, CNRS 2037F-59313 Valenciennes,

France

E-mail address: bouchaib.sodaigui@uphf.fr


	Introduction
	Main Results
	Preliminaries
	Proofs of Main Results

