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Infinite Families of Sextic Number Fields with all Possible Indices
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ABSTRACT: For each rational prime p € {2,3,5}, we construct infinite families of sextic number fields K
such that the p-adic valuation of the index i(K) satisfies vy (i(K)) = vp, for every possible positive integer vp.
We illustrate our results by some computational examples.
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1. Introduction

Let K = Q(«) be a number field of degree n, where « is a primitive integer of K, and let Zx denotes
the ring of integers of K. The index of «, denoted by (Zx : Z[a]), is the index of the Abelian group Z[a]
in Zgk. A well-known formula linking this index with the discriminants is given by:

Ala) = (Zx : Z]a))? - dx, (1.1)

where dk is the absolute discriminant of K and A(«) is the discriminant of the minimal polynomial of
a over Q. The index of K, denoted by i(K), is defined as the greatest common divisor of the indices of
all primitive integers of K. That is, i(K) = ged {(Zxk : Z[0]) | K = Q(0) and 6 € Z }. Tt is well known
that if K is monogenic, then its index is trivial; i(K) = 1. Therefore, a number field with non-trivial
index is not monogenic. Dedekind was the first to discover a number field with non-trivial index ([3]).
In 1930, for every number field K of degree n < 7 and every rational prime p, Engstrom established a
connection between the prime ideal factorization of pZy and v, (i(K)). This motivated a very important
question, stated as problem 22 in Narkiewicz’s book ([19]), which asks for an explicit formula of the
highest power v,(i(K)) for a given rational prime p dividing i(K). In [24], Sliwa extended Engstrom’s
results to number fields up to degree 12, under the condition that p is unramified in K. These results were
further generalized by Nart ([20]), who developed a p-adic characterization of the index of a number field.
In [18], Nakahara studied the indices of non-cyclic but abelian biquadratic number fields. In [8], Funakura
showed that i(K) =1 or 2 for every pure quartic number field K. In [10], Gadl et al. characterized the
field indices of biquadratic number fields. In [25], Spearman and Williams characterized the indices of
cyclic quartic number fields. In [23], Pethé and Pohst studied the index divisors of multiquadratic number
fields. Recently, many authors are interested in the characterization of the prime power decomposition of
the indices of number fields, especially those defined by trinomials and quadrinomials of fixed degrees (see
[2,7,4,5,6,8,10,15,16,17,18,23,25]). In all the former papers, for a given number field K, the authors try
to calculate the index i(K). In contrast, the present paper introduces a new approach. Namely, for each
rational prime p € {2,3,5} and every possible natural integer v, we construct infinite families of sextic
number fields, with p-indices v, where the p-index of a number field K is defined as the p-valuation of
its index. Namely, v, = v,(i(K)). According to Engstrom’s results ([?]), the index of any sextic number
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field K is of the form ¢(K) = 2¥2 - 3¥3 . 55 where vy € {0,1,2,3,4,8}, v3 € {0,1,2,3} and v5 € {0,1}.
These results exhibit infinite families of sextic number fields for each of the possible non-trivial index
values.

2. Main Results

Given that the index of sextic number field is of the form 7 = 22 - 33 . 5¥5 where v5 € {0,1,2, 3,4, 8},
v3 € {0,1,2,3} and v5 € {0, 1}, in the remainder, for any rational prime p € {2,3,5}, we provide infinite
families of sextic number fields with p-indices v, where 1o € {1,2,3,4,8}, v3 € {1,2,3} and v5 = 1.

In the reminder, K = Q(«) is a sextic number field generated by a root 6 of a monic irreducible
polynomial, F(z) = 2% 4+ aza® + as2* + a3z® + a2 + a12 + ag € Z[z].
For p = 2 and vy = 1, Theorem 2.1 provides sufficient conditions on F'(x), which guarantee that each
sextic number field of these infinite families has 2-index vy = 1.

Theorem 2.1 Suppose that for every i = 0,...,5, va(a;) > 1. Then each of the following conditions
guarantees that vo(i(K)) = 1.

1. as = 2 (mod 4), Ao = 0 (mod 4), l/g(ao) < 2V2(CL1) — Vg(a,g), I/Q(Clo) > 31/2(a2) — 2 and Z/Q(Clo) 7_é
va(az) (mod 2).

2. ag =2 (mod 4), as =0 (mod 4), az =4 (mod 8), a1 =0 (mod 8) and va(ag) = 2v2(ar) — 2.

Example 2.1 Let K be a sextic number field defined by the monic irreducible polynomial F(x) =
2% + 122% + 142 + 1222 + 482 + 32. Since a3 = 2 (mod 4), as = 4 (mod 8), a; = 16 (mod 32) and
ag = 32 (mod 64), by Theorem 2.1 (1), we conclude that v (i(K)) = 1.

Recall that, for every rational integer z € Z, the (z — z)-Taylor expansion of every polynomial F(z) of
degree 6 is given by the following:

6
F®) ()
F(r) = Z i (x — 2)k.
k=0 )
. F) ()
In the remainder, we shall denote Ag(z) = 0

The following theorem provides infinite family of sextic number fields with 2-indices v = 2.

Theorem 2.2 Suppose that va(as) = 0, va(a;) > 1 for every i # 4 and v2(Ao(1)) = 2v2(A1(1)). Then
each of the following conditions guarantees that ve(i(K)) = 2.

1. va(ag) > gyg(al), va(ay) > gyg(ag), va(a1) > 3va(as) and v2(ar) =0 (mod 3).

2. If a3 =2 (mod 4), az =4 (mod 8), a1 =0 (mod 16) and v2(ag) = 2v2(ay) — 2.

Example 2.2 Let K be a sextic number field defined by the monic irreducible polynomial F(z) =
2% + 512* + 4823 + 9622 + 242 + 384. Since ap = 0 (mod 128), a; = 8 (mod 16), az = az = 0 (mod 16),
aq is odd, Ap(1) = 604 =4 (mod 8) and A;(1) = 570 = 2 (mod 4), then by Theorem 2.2 (1), we obtain
v (i(K)) = 2.

In the next theorem, we provide infinite family of sextic number fields with 2-indices v = 3.

Theorem 2.3 Suppose that vy(as) = 0 and va(a;) > 1 for every i # 4. Then the following conditions
guarantee that vo(i(K)) = 3.
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1. v5(Ap(1)) < 2v5(A1(1)) and va(Ao(1)) is odd.

2. va(az) < 2v2(as), va(az) is odd, va(ar) > va(az) + v2(as), 2va(az) < va(ao) < 2va(ar) — va2(az) and
va(ag) is even.

Example 2.3 Let K be a sextic number field defined by the monic irreducible polynomial F(z) =
2% + 321 + 1022 + 242 + 16. Since ap = 16 (mod 32), a; = 8 (mod 16), az = 2 (mod 4), a4 is odd. On
the other hand, Ag(1) =54 = 2 (mod 4). Therefore, by Theorem 2.3, we obtain v5(i(K)) = 3.

Theorems 2.4 and 2.5 provide sufficient conditions on F(x), which guarantee that each sextic number
field of these infinite families has 2-index vy = 4.

Theorem 2.4 Suppose that 2 does not divide ay and va(a;) > 1 for every i # 4. Then the following
conditions guarantee that v(i(K)) = 4.

1. v5(Ap(1)) < 2v2(A1(1)) and va(Ag(1)) is odd.

2. va(a;—1) > 2vs(a;) — v(aiy1) for everyi=1,2,3.

Theorem 2.5 Suppose that 2 does not divide ay and va(a;) > 1 for every i # 4. Then the following
conditions guarantee that vo(i(K)) = 4.

1. Z/Q(Ao(l)) > 2V2(A1(1))

2. va(az) < 2v2(as), va(az) is odd, va(ar) > vo(az) + va(as) and va(ag) > 2v2(ar).

Example 2.4 Let K be a sextic number field defined by the monic irreducible polynomial F(z) =
28 +122° + 321 + 623 + 222 + 8z + 128. Since ag = 128 (mod 256), a; = 8 (mod 16), az = 2 (mod 4)
aq is odd, Ag(1) = 160 = 32 (mod 64) and A;(1) = 108 = 4 (mod 8), by theorem 2.5, we conclude that
va(i(K)) = 4.

The following theorem provides infinite families of sextic number fields with 2-indices v = 8.
Theorem 2.6 Each one of the following conditions guarantee that vo(i(K)) = 8.

1. va(ag) = 0, va(a;) > 1 for every i # 2, va(ag) > 2va(ar) and ve(Ai—1) > 2v9(A4;) — va(Airq) for
every i =1,2,3.

2. va(a;) > 1 fori=10,1,2, va(a;) =0 fori=3,4,5, va(a;—1) > 2va(a;) — ve(a;t+1) and va(A4;—1) >
2v5(A;) — va(Ait1) for everyi=1,2.

3. va(aq) =0, va(a;) > 1 for every i # 4, va(Ao(1)) > 2v5(A1(1)) and va(ai—1) > 2va(a;) — va(aiy1)
for everyi=1,2,3.

Example 2.5 Let K be a sextic number field defined by the monic irreducible polynomial F(x) =
28 + 2% 4+ 2* + 723 + 1422 + 402 + 64. Since as, a4, as are odd, ag = 64 (mod 128), a; = 8 (mod 16),
az =2 (mod 4), Ap(1) =128, A;(1) =104 = 8 (mod 16) and A3(1) = 66 = 2 (mod 4), then by Theorem
2.6 (2), we conclude that v, (i(K)) = 8.

For p = 3 and v3 = 1, Theorems 2.7 and 2.8 provide sufficient conditions on F(z), which guarantee that
each sextic number field of these infinite families has 3-index v3 = 1.

Theorem 2.7 Suppose that as = (mod 3) and vs(a;) > 1 for every i # 4. Then the following

-1
conditions guarantee that vs(i(K)) = 1.
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1. v3(a1) < wvs(a;) for every i =2,3.

2. v3(ay) £ 0 (mod 3) and vs(ag) > gyg(al).

Example 2.6 Let K be a sextic number field defined by the monic irreducible polynomial F(x) =
28 +122° — 2% 4 923 + 2722 + 24 + 18. Since ay = —1 (mod 3), v3(ag) = 2, v3(a1) = 1. v3(az) = 3 and
v(as) = 2, by Theorem 2.7, we conclude that v3(i(K)) = 1.

In the remainder of this section, for every rational prime p € {3,5} and every, we shall denote (a;), =

Q;

@ for every rational integer a; € Z.
prrit

Theorem 2.8 Suppose that a3 = —1 (mod 3) and a; =0 (mod 3) for every i # 3. Then each one of the
following conditions guarantees that vs(i(K)) = 1.

1. Vg(al) < 21/3(a2), 1/3(0(]) > 2V3((L1), 1/3(@1) 7_é 0 (mod 2), 1/3(A1(1)) < 21/3(142(1)), I/g(Al(].)) 7_é
0 (mod 2) and v5(Ap(1)) > 2v5(A1(1)).

2. I/3(Cl1) > 21/3((12), Vg(ao) > 21/3((11) — 1/3(0,2), V3(A0(1)) < %Vg(Al(l)), Vg(AQ(l)) < 31/3(142(1)) and
v3(Ao(1)) # 0 (mod 3).

3. v3(a1) < 2v3(az), vs(ar) is even, (a1)s = —1 (mod 3), v3(ag) > ;yg(al), v3(A1(1)) > 2v3(A2(1))
and v3(Ao(1)) > 2v3(A1(1)) — v3(A2(1)).

Example 2.7 Let K be a sextic number field defined by the monic irreducible polynomial F(x) =
28 + 122% 4 82% + 322 + 32 + 27. Since v3(ag) = 3, vz(a1) = 1, v3(az) = 1, a3 = —1 (mod 3),
Ap(l) = 54 = 54 (mod 81) and A;(1) = 87 = —3 (mod 9), then by Theorem 2.8 (1), we conclude
v3(i(K)) = 1.

The following theorem provides infinite families of sextic number fields with 3-indices v3 = 2.

Theorem 2.9 Suppose that ay = —1 (mod 3) and vs(a;) > 1 for every i # 4. Then the following

conditions guarantee that v3(i(K)) = 2.
1. v3(az) < 2vs(as) and vs(az) is odd.

GQ)
2. v3(a1) > 2v3(az) and vs(ap) > 2vs(ay).

Example 2.8 Let K be a sextic number field defined by the monic irreducible polynomial F(z) =
20 +22% + 623 + 1222 + 542 + 2187. Since v3(ag) = 7, v3(a1) = 3, v3(az) = 1 and v3(az) = 1. By theorem
2.9, we get v3(i(K)) = 2.

In the next theorem, we provide infinite families of sextic number fields with 3-indices v3 = 3.

Theorem 2.10 Suppose that a3 = —1 (mod 3) and a; = 0 (mod 3) for every i # 3. Then each one of
the following conditions guarantees that vs(i(K)) = 3.

1. v3(a;—1) > 2v3(a;) — v3(a1) and v3(A;—1(1)) > 2v5(A4;(1)) — v3(A;41(1)) for every i =1,2.

2. v3(a1) < 2v3(ag), vs(ay) is even, (a1)s = 1 (mod 3), vs(ag) > 2v3(a1), vs(A1(1)) < 2v5(A42(1)),
v3(A1(1)) is even, (A1(1))s =1 (mod 3) and v3(Ag(1)) > 2v3(A1(1)).
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Example 2.9 Let K be a sextic number field defined by the monic irreducible polynomial F(z) =
28 + 5022 + 322 + 6752 + 729. Since v3(ag) = 6, v3(ar) = 3, v3(az) = 1, v3(A4e(1)) = 6, v3(A1(1)) =3
and v53(A3(1)) = 1, then by theorem 2.5 (1), we conclude v53(i(K)) = 3.

For p = 5 and v5 = 1, Theorem 2.11 provides sufficient conditions on F'(z), which guarantee that each
sextic number field of these infinite families has 5-index v5 = 1.

Theorem 2.11 Suppose that ay = —1 (mod 5) and a; = 0 (mod 5) for every i # 2. Then each one of
the following conditions guarantees that vs(i(K)) = 1.

1. 1/5(Cl0) > 21/5(&1).
2. vs(ag) = 2v5(ar) and ((ao)s, (a1)s) € {(2,1),(2,4)(3,2),(3,3)} (mod 5).

3. vs(ag) < 2vs(a1), vs(ag) even, vs(ag) < vs(ar) and (ag)s = +1 (mod 5).

Example 2.10 Let K be a sextic number field defined by the monic irreducible polynomial F(z) =
2% + 102* — 22 4+ 5002 + 25. Since vs(ag) = 2, vs(a;) = 3 and (ag)s = 1 (mod 5), by Theorem 2.11 (3),
we conclude v5(i(K)) = 1.

The following example provides a sextic number field with index i(K) = 240.

Example 2.11 Let K be a sextic number field defined by the monic irreducible polynomial F(z) =
29 + 225 + 5a* + 623 + 2422 + 1920z + 4608000.

1. For p = 2, since ay4 is odd, ag = 4096 (mod 8192), a; = 128 (mod 256), az = 8 (mod 16), Ag(1) =
4609958 = 2 (mod 4) and A;(1) = 2022 = 2 (mod 4). Then by theorem 2.4, we get v2(i(K)) = 4.

2. For p =3, ay = —1 (mod 3), v3(ag) = 2, v3(a1) = 1. v3(az) = 3 and v(as) = 2. By Theorem 2.7,
we get v3(i(K)) = 1.

3. Finally, for p = 5, we have v5(ag) = 3 and v5(a;) = 1. Then by theorem 2.11 (1), we get
vs(i(K)) = 1.

We conclude that i(K) = 240.

3. Preliminaries

Our proofs are based on Newton polygon techniques applied on prime ideal factorization, which is
rather technical but very efficient to apply. We have introduced the corresponding concepts in several
former papers. Here we only give the theorem of index of Ore which plays a key role for proving our
main results. For more details, we refer to [7] and [12].

Let K = Q(a) be a number field generated by a complex root a of a monic irreducible polynomial
F(z) € Z[x]. We shall use Dedekind’s theorem [21, Chapter I, Proposition 8.3] and Dedekind’s criterion
[1, Theorem 6.1.4]. Let ¢ € Zp[z] be a monic lift to an irreducible factor of F(z) modulo p, F(z) =
ao(z) +ay(z)d(x)+- - -+ap(z)p(z)* the ¢-expansion of F(z) and N;{ (F) the principal ¢-Newton polygon
of F(x), which can be obtained only by considering the principal ¢-expansion of F(z). As defined in
[7, Def. 1.3], the ¢-index of F(x), denoted ind,(F), is deg(¢) multiplied by the number of points with
natural integer coordinates that lie below or on the polygon NJ(F), strictly above the horizontal axis

and strictly beyond the vertical axis. Let Fy be the field F,,[z]/(¢) and u; = vp(a;(z)), then to every side
S of N;(F) with initial point (4, u;), length { = [(S) and every ¢ = 0,...,[, let the residue coefficient
c¢; € Fy defined as follows:

0, if (s 414, us4;) lies strictly above S,
G = (cw(x)) mod (p,é(x)), if (s+ 1, usy;) lies on S.

pus+z



6 H. BouaouiNa, L. EL Fapir, O. KCcHIT AND B. Sobpaicul

Let —\ = —h/e be the slope of S, where h and e are two positive coprime integers and [ = [(S) its length.
Then d = I/e is the degree of S. Hence, if 7 is not a multiple of e, then (s + ¢, usy;) does not lie on S
and ¢; = 0. Let Ry(F)(y) = tay® +ta_1y* ' + -+ + t1y + to € Fy[y] be the residual polynomial of F(x)
associated to the side S, where for every i = 0,...,d, t; = ¢syie. If Ry(F)(y) is square-free for each side
of the polygon NJ(F), then we say that F(z) is ¢-regular.

Let F(z) =[], %k be the factorization of F(z) into powers of monic irreducible coprime polynomials
over F,,, we say that the polynomial F(x) is p-regular if F(z) is a ¢;-regular polynomial with respect to
p for every i =1,...,7. Let N(;t_ (F)=Si1+ -+ Sir, be the ¢;-principal Newton polygon of F(x) with
respect to p. For every j =1,...,7;, let Ry, (F)(y) = [[.2, Z;(y) be the factorization of Ry, (F)(y)
in Fy, [y]. Then we have the following theorem of index of Ore:

Theorem 3.1 ([7, Theorem 1.7 and Theorem 1.9])

Under the above hypothesis, we have the following:

1.
vo(Zic : Zfa]) = Y ind, (F).
=1

The equality holds if F(x) is p-reqular.
2. If F(x) is p-regular, then

roor; Sij
rZx = [TTT 11 %5
i=1j=1s=1
is the factorization of pZy into powers of prime ideals of Zy, where e;; is the smallest positive
integer satisfying e;; A\i; € Z and the residue degree of p;js over p is given by fijs = deg(¢;)-deg(ij;s)
for every (i,7,s).

For the proof of our results, we need the following lemma, which characterizes the prime divisors of i(K).

Lemma 3.1 (/7))

Let p be a rational prime and K a number field. For every positive integer f, let Py be the number of
distinct prime ideals of Zy lying above p with residue degree f and Ny the number of monic irreducible
polynomials of Fy,[x] of degree f. Then p divides the index i(K) if and only if Py > Ny for some positive
integer f.

For every number field of degree n < 7 and every rational prime p, Engstrom established a connection
between v, = 1, (i(K)) and the prime ideal factorization of pZg. That is, from the factorization of pZg,
one can determine explicitly v, (for more details, see [?]).

4. Proofs of Main Results

Recall that, according to the factorization given in Theorem 3.1, we use the triple indices in the
factorization of pZy. Namely pZx = [],_, H;:1 s, pffs Here ¢;; is the ramification index of p;;s and
fijs = deg(¢;) - deg(vyjs) is its residue degree for every (z, j, s).

Proof of Theorem 2.1.
Since for every i = 1,...,6, va(a;) > 1, then F(x) = 2% Let ¢ = 2. Then

F(z) = ¢} + as¢i + -+ + a11 + ao.

1. If ag = 2 (mod 4), az = 0 (mod 4), va(a1) > va(az) + 1 and va(ag) > va(az) + 2, then N;Z(F) =
S11+ 512+ 513 has three sides joining (0, v2(ag)), (2, v2(a2)), (3,1) and (6,0) with d(S3) = d(S3) = 1.
Since v2(ag) # v2(az) (mod 2), then d(S;) = 1 also. By Theorem 3.1, 2Zy = p3 ;p121P33; with
residue degree 1 each ideal. By Lemma 3.1, 2 divides i(K). Applying Engstrom’s results [?], we
obtain v (i(K)) = 1.
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2. If ay = 2 (mod 4), a3 = 0 (mod 4), az = 4 (mod 8), a1 = 0 (mod 8) and vy(ag) = 2va(a1) — 2,
then Ngl (F) = S11 + S12 has two sides joining (0, v2(ao)), (2,2) and (6,0). Thus the degree of each
side of qul (F) is 2 (see Figure 1). Therefore Ry,,(F)(y) = Rx,,(F)(y) = y*> +y + 1, which are
irreducible over Fy, . By Theorem 3.1, 2Zg = p111p3,; with residue degree 2 each ideal. By Lemma
3.1, 2 divides i(K). Applying Engstrom’s results [?], we obtain v5(i(K)) = 1.

Figure 1: N(;'l (F)

Proof of Theorem 2.2.
Since v(as) = 0 and vo(a;) > 1 for every i # 4. Then F(x) = a*(x — 1) (mod 2). Let ¢; = x and
¢3 = x — 1. Then
Flz) = -+ ai6] + a3} + a2¢f + a161 + ao,
= o+ AL + Ao(D).

Since v2(Ao(1)) = 2v5(A1(1)), then NJQ(F) = S91 has a single side of degree 2 with Ry, (F)(y) =

y? + y + 1, which is irreducible over Fy4,. Hence ¢2 provides a unique prime ideal of Zg lying above 2
with residue degree 2. For ¢, we have the following:

1. If va(ag) > gyg(al), va(ay) > gl/g(ag) and va(ay) > 3va(ag), then N;Z(F) = 511 + S12 has two sides
joining (0,v2(ao)), (1,v2(a1)) and (4,0) with d(S11) = 1 (see Figure 2). Since v2(a;) =0 (mod 3),
then d(slz) = 3 with R>\12 (F)(y) = y3+1 = (y+1)(y2+y+1) S IFQ[y] Thus QZK = P111P121P122P211
with fi11 = f1220 = 1 and f121 = fa11 = 2. Hence 2 divides i(K). Applying Engstrom’s results [?],
we obtain vo(i(K)) = 2.

Figure 2: N(;'l (F)

2. If a3 = 2 (mod 4), a2 =4 (mod 8), a; = 0 (mod 16) and va(ag) = 2v2(a1) —2, then N;Z(F) =Su+
S12 has two sides joining (0, v2(ag)), (2,2) and (4,0) with d(S11) = d(S12) = 2 and Ry, (F)(y) =
Ry, (F)(y) = y* +y + 1 which are irreducible over Fy, (see Figure 3). Thus 2Zx = p111p121p211,
with residue degree 2 each prime ideal. Hence 2 divides i(K). Applying Engstrom’s results [?], we
obain v5(i(K)) = 2.
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v2(ao) ¢

va(a1)

Figure 3: N¢+1 (F)

Proof of Theorem 2.3.
Since v5(as) = 0 and va(a;) > 1 for every i # 4, then F(z) = 2*(x — 1)? (mod 2). Let ¢; = = and
¢2 =x — 1. Then

Flz) = - +aid] +azdi +a¢? + a1é1 + ag

= -+ A (1)pa + Ag(1).

Since v2(Ap(1)) < 2v2(A;1(1)) and va(Ag(1)) is odd, then NQ;(F) = S5 has a single side joining
(0,2(Ap(1)) and (2,v2(A1(1)) with d(S21) = 1. For ¢, since va(az) < 2v2(ag), va(az) is odd, va(ay) >
va(ag) + va(as), 2ve(as) < va(ag) < 2ve(ay) — va(az) and va(ag) is even, then N(;l (F) = S11 + Si2 has
two sides joining (0,v2(ao)), (2,v2(az)) and (4,0) and the degree of each side of Nq; (F) is 1 (see Figure
4). Thus 2Zx = p31,p321P311, With residue degree 1 each ideal. By Lemma 3.1, 2 divides i(K). Applying
Engstrom’s results [?], we obtain v, (i(K)) = 3.

Vz(a0)4

Figure 4: N¢+1 (F)

Proof of Theorem 2.4.
Since v5(as) = 0 and va(a;) > 1 for every i # 4, then F(z) = 2*(x — 1)? (mod 2). Let ¢; = = and
¢o =x — 1. Then
F(z) = -+ a10] + azd} + a20? + a1¢1 + ag
= o+ A1z + Ao(1).

Since v2(Ao(1)) < 212(A1(1)), then N;;(F) = Sy; has single side of degree 1. Thus ¢, provides a
unique prime ideal of Zg lying above 2 with residue degree 1. On the other hand, since vo(a;—1) >
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2v5(a;) — v(ajy1) for every ¢ = 1,2,3, then N(;(F) = S11 + S12 + S13 + S14 has four sides joining
(0,2(ag)), (1,v2(a1)), (2,v2(az2)), (3,v2(as)) and (4,0). Thus the degree of each side of N(;l (F) is 1.

Hence 2Zx = p111P121P131P141P31, With residue degree 1 each ideal. Applying Engstrom’s results [?], we
obtain v, (i(K)) = 4.

O

Proof of Theorem 2.5.
Since v5(ay) = 0 and vo(a;) > 1 for every i # 4, F(z) = 2*(z — 1)? (mod 2). Let ¢; = z and ¢g = z — 1.
Then
F(z) = -+ A1(1)¢2 + Ao(1),
= o+ asrt + a3 + azz? + a1z + ap.

Since v2(Ap(1)) > 2v5(A1(1)), then N;{Q (F) = S91 + Sa2 has two sides of degree 1 each side. Thus ¢
provides two prime ideals of Zy lying above 2 with residue degree 1 each prime ideal factor. On the
other hand, since vo(ag) < 2vs(as), va(ag) is odd, va(ar) > va(as) + va(as) and va(ag) > 2v5(ay), then
N(z_l (F) = Sll + 512 + 513 has three sides jOiHng (0, 1/2(0,0)), (2, Z/Q(CLQ)), (3, Z/Q(Clg)) and (470) Thus the
degree of each side of N;’l (F)is 1. So, 2Zy = p111p121P331P211P221, With residue degree 1 each ideal.
Applying Engstrom’s results [?], we obtain v, (i(K)) = 4.

]

Proof of Theorem 2.6.

1. Since 2 does not divide as and vy(a;) > 1 for every i # 2? then F(x) = 2%(z — 1)* (mod 2). Let
¢1 =z and ¢ = x — 1. Then

F(x) 4 agd? + a1¢r + ao,

s A1) + As(1)¢3 + Aa(1)¢3 + Ar(1)¢2 + Ao (1)

If vo(ag) > 2v2(aq), then Nq; (F) = S11 + S12 has two sides of degree 1 each. Hence ¢; provides two
prime ideals of Zk lying above 2 with residue degree 1 each prime ideal factor. On the other hand,
since vo(A4;-1) > 2va(A;) — va(Aiy1) for every i = 1,2,3, then N(; (F) = Sa1 + Saz + Sa3 + S24
has four sides joining (0, v2(Ao(1)), (1,v2(A41(1)), (2,2(A2(1)), (3,v2(A3(1)) and (4,0). Thus the
degree of each side of N(;_z (F) is 1. By Theorem 31, we obtain 2Z = P111P121P211P221P231P241,
with residue degree 1 each ideal factor. By Lemma 3.1, 2 divide ¢(KX). Using Engstrom’s results
[?], we obtain v, (i(K)) = 8.

2. Since vo(a3) = va(as) = va(as) = 0 and ve(a;) > 1 for every i € {0,1,2}. Then F(z) = 23(z —
1)? (mod 2). Let ¢; = x and ¢ = x — 1. Then

F(z) = -4 a3di + axd? + a1 + ao,
= -+ A3(1)hd + Ax(1)¢3 + A1(1)g + Ao(1).

If va(a;—1) > 2va(a;) — va(a;41) for every i = 1,2, then N(;'l (F) = S11 + S12 + Si3 has three sides
joining (0,v2(ao)), (1,v2(a1)), (2,v2(az2)) and (3,0). Thus the degree of each side of N(;'l (F) is
1. On the other hand, since vo(A4;-1) > 2v2(A;) — va(A;41) for every ¢ = 1,2. Then N;Q (F) =
Sa1 + Sagz + Sog has three sides joining (0, v2(Ag(1)), (1,v2(A41(1)), (2,2(A2(1)) and (3,0). Thus
the degree of each side of N(;; (F) is 1. By Theorem 3.1, the rational prime 2 splits completely in
K. Applying Engstrom’s [?] results, we obtain v2(i(K)) = 8.

3. Since v5(ay) = 0 and v5(a;) > 1 for every i # 4. Then F(z) = 2*(x — 1)? (mod 2). Let ¢; = x and
¢2 = x — 1. Then
F(r) = - +ax* + az32® + ax2® + a1z + ao,
o+ Ar(1) g2 + Ao(1).
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Since v (Ag(1) > 2v2(A1(1)), then N(;; (F) = Sa1 + S22 has two sides of degree 1 each side. Thus ¢q
provides two prime ideals of Zk lying above 2 with residue degree 1 each ideal factor. On the other
hand, since vo(a;—1) > 2v5(a;) — va(a;41) for every i = 1,2, 3, then N;rl (F) = S11+ S12+ S13+ S14
has four sides joining (0,v2(ao)), (1,v2(a1)), (2,v2(az2)), (3,v2(as)) and (4,0). Thus the degree of
each side of N(;'l (F) is 1. By Theorem 3.1, the rational prime 2 splits completely in K. By Lemma
3.1, 2 divide i(K). Applying Engstrom’s results [?], we conclude that v5(i(K)) = 8.

O

Proof of Theorem 2.7.

Since ay = —1 (mod 3) and v3(a;) > 1 for every i # 4. Then F(z) = 2*(x — 1)(x — 2) (mod 3). For

every k =0,1,2, let ¢ = x — k. Then, for every k = 1,2, ¢, provides a unique prime ideal of Zg lying

above 3 with residue degree 1. For ¢y = x, since v3(a1) < v3(a;) for every i = 2,3, v3(ay) # 0 (mod 3)
3 . o

and vs(ag) > 51/3(&1), then N;ro (F) = So1 + Soz has two sides joining (0, v3(ao)), (1,v3(a1)), and (4,0).

Thus the degree of each side of Ng; (F) is 1. Therefore, 3Zx = po11Pigor1P111P211, With residue degree 1
each ideal factor. Hence 3 divides ¢(K). Applying Engstrom’s results [?], we obtain v3(i(K)) = 1.

O

Proof of Theorem 2.8.
Since az = —1 (mod 3) and a; = 0 (mod 3) for every i # 3, then F(z) = 23(z — 1)3 (mod 3). Let ¢; =
and ¢ = — 1. Then
F(z) = - +a36] +a2¢i +ar¢1 + ao,
= o+ A2 (1)¢F + Ar(1)¢2 + Ao(1).

1. If v3(a1) < 2vs(asz), vs(ag) > 2vs(ar) and vs(ay) # 0 (mod 2), then N¢+1 = S11 + Si2 has two
sides joining (0,v3(ag)), (1,v3(a1)) and (3,0). Thus the degree of each side of NJI(F) is 1. On
the other hand, since v3(A;1(1)) < 2v3(A2(1)), v3(A1(1)) #Z 0 (mod 2) and v3(A(1)) > 2v3(A1(1)),
then N;;(F) = Sa1 + Saz has two sides joining (0,v3(Ap(1))), (1,v5(A41(1))) and (3,0). Thus the
degree of each side of Nt (F)is 1. Hence 3Zg = plup%mpgup%m, with residue degree 1 each ideal.
By Lemma 3.1, 3 divides i(K). Applying Engstrom’s results [?], we obtain v3(i(K)) = 1.

2. If v3(a1) > 2vs(az2) and vs(ag) > 2v3(ar) — v3(az), then N(;;(F) = 511 + Si2 + Si3 has three sides
joining (0, v3(as)), (1,v3(a1)), (2,v5(az)) and (3,0). Thus the degree of each side of N;rl (F)is1. On

3
the other hand, since v3(Ag(1)) < §V3(A1(1)), v3(Ao(1)) < 3v3(A2(1)) and v3(Ap(1)) # 0 (mod 3),
then N;;(F) = S2; has a single side joining (0,v3(Ao(1))) and (3,0), with d(S2;) = 1. Thus

3Zr = Pp111P121P131P311, With residue degree 1 each ideal factor. Hence 3 divides i(K). Applying
Engstrom’s results [?], we obtain v3(i(K)) = 1.

. 3
3. Ifvs(a1) < 2v3(ag), vs(ay) is even, (a1)3 = —1 (mod 3), v3(ag) > §V3(a1), then N;rl (F) = S11+512

has two sides joining (0, v3(ag)), (1,v3(a1)) and (3,0), with d(S11) = 1 and Ry, (F)(y) = —y* — 1
which is irreducible over Fy,. On the other hand, since v3(Aq(1)) > 2v3(A2(1)) and v5(Ag(1)) >
2v3(A1(1)) — v3(A2(1)). Thus N;; (F) = So1 + Sa2 + Sz has three sides joining (0,v3(Ae(1))),
(1,v3(A1(1))), (2,v3(A2(1))) and (0,3). Thus the degree of each side of N;;(F) is 1. Hence

3Zk = p111P121P211P221P231, where fi21 = 2 and fi11 = fo11 = fa21 = foz1 = 1. By Lemma 3.1, 3
divides i(K). Using Engstrom’s results [?], we obtain v5(i(K)) = 1.

]

Proof of Theorem 2.9.
Since ay = —1 (mod 3) and v3(a;) > 1 for every i # 4, then F(z) = 2*(x — 1)(x — 2) (mod 3). For every
k=0,1,2, let ¢y = x — k. Then, for every k = 1,2, ¢ provides a unique prime ideal of Zx lying above
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3 with residue degree 1. For ¢g = x, since v3(az) < 2vs(as), v3(a1) > 2vs(az) and vs(ag) > 2v3(ay), then
N(;ro (F) = So1 + Soz2 + Sos has three sides joining (0,v3(ao)), (1,v3(a1)), (2,v3(az)) and (4,0). Thus the
degree of each side of N(;O (F) is 1. Therefore, 3Zx = poupoglpgglplupgu, with residue degree 1 each
prime ideal. Hence 3 divides i(K). Applying Engstrom’s results [?], we obtain v3(i(K)) = 2.

]

Proof of Theorem 2.10.
Since az = —1 (mod 3) and a; = 0 (mod 3) for every i # 3, then F(x) = 23(z —1)? (mod 3). Let ¢; =z
and ¢o = x — 1. Then
F(z) = -+ a3} + a2t + ar1¢1 + ao,
= -+ Ay(1)e5 + A1 (1) g2 + Ao(1).

1. If vs(a;—1) > 2vs(a;) — vs(a4+1) for every i = 1,2, then N(;'l (F) = S11 + S12 + S13 has three
sides joining (0, v3(ao)), (1,v3(a1)),(2,v3(az)) and (3,0). Thus d(S11) = d(S12) = d(S13) = 1. On
the other hand, since v5(4;-1(1)) > 2v3(A4;(1)) — v3(A4;41(1)) for every i = 1,2, then N(;;(F) =
Sa1 + Saa + S23 has three sides joining (0, v3(A40(1))), (1,v3(A1(1))), (2,v3(A2(1))) and (3,0). Thus
d(SQl) = d(522) = d(Sgg) = 1. Hence 3Zg = P111P121P131P211P221P231, with residue ngI‘CC 1 each
ideal. By Lemma 3.1, 3 divides i(K). Applying Engstrom’s results [?], we obtain v3(i(K)) = 3.

2. Ifvs(ar) < 2v3(az), vs(ar) iseven, (a1)s = 1 (mod 3) and v3(ag) > 2v3(ay), then N;{l (F) = S11+5S12
has two sides joining (0, v3(ag)), (1,v3(a1)) and (3,0), with d(S11) = 1 and Ry,,(F)(y) = —y>+1 =
—(y+ 1)(y — 1) € Fy,[y]. On the other hand, since v3(A:(1)) < 2v3(Aa(1)), v3(A1(1)) is even,
(A1(1))3 = 1 (mod 3) and v3(Ap(1)) > 2v3(A1(1)). Thus N¢+2<F> = S91 + S has two sides
joining (0,v3(A40(1))), (2,v3(A1(1))) and (3,0), with d(S21) = 1 and Ry,,(F)(y) = —y?> +1 =
—(y+1)(y — 1) € Fy,[y]. Hence the rational prime 3 splits completely in K. By Lemma 3.1, 3
divides i(K). Using Engstrom’s results [?], we obtain v5(i(K)) = 3.

O

Proof of Theorem 2.11.

Since az = —1 (mod 5) and a; = 0 (mod 5) for every i # 2, then F(z) = 2%(z — 1)(z — 2)(z — 3)(x —
4) (mod 5). For every k =0,1,...,4, let ¢, =z — k. Then, for every k = 1,...,4, ¢i provides a unique
prime ideal of Zg lying above 5 with residue degree 1. For ¢y = x, we have the following:

1. If vs(ag) > 2v5(az), then N(;O(F) = So1 + So2 has two sides joining (0,v5(ag)), (1,v5(a1)) and
(2,0). Thus the degree of each side N;O (F) is 1. Therefore, 5Zx = po11Po21P111P211P311P411, With

residue degree 1 each ideal factor. Hence 5 divides i(K). Using Engstrom’s results [?], we obtain
vs(i(K)) = 1.

2. If ws(ag) = 2vs(a1), then NJ (F) = So1, where d(Sp1) = 2. Since a; = —1 (mod 5) and
((ao)s, (a1)s) € {(2,1),(2,4)(3,2),(3,3)} (mod 5), then Ry, (F)(y) can be factorized in Fy,[y]
by two distinct linear polynomials (see Table 1). In all these cases, the rational prime 5 splits
completely in K. By Lemma 3.1, 5 divides (K). Applying Engstrom’s results [?], we obtain

vs(i(K)) = 1.
[ ((a0)s, (a1)s5) (mod 5) | Ra,, (F)(y) mod (5, ¢o) |
(2,1) —(y+1(y+3)
(2,4) —(y—1Dy+2)
(3,2) —(y+D(y+2)
(3,3) —(y—1(y+3)

Table 1: Ry, (F)(y) in Fy, [v]
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3. If vs(ap) even and vs(ag) < vs(ay), then N;;(F) = So1 where d(Sp1) = 2. If (ag)s = 1 (mod 5),
then Ry, (F)(y) = —(y — D(y + 1) and if (a0)s = —1 (mod 5) € Fyq[y], then Ry, (F)(y) =
—(y +2)(y+3) € Fg,[y]. In both cases, the rational prime 5 splits completely in K. By Lemma
3.1, 5 divides i(K). Using Engstrom’s results [?], we obtain v5(i(K)) = 1.
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