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Integral Kannappan-Cosine Addition Law on Semigroups

Ajebbar Omar*, Elqorachi Elhoucien and Jafar Ahmed

ABSTRACT: Let S be a semigroup, o : S — S be an involutive automorphism, p be a complex measure
that is a linear combination of Dirac measures and a € C. We determine the complex-valued solutions of the
following integral Kannappan-cosine addition law with an additional term

/S o(wo)t)du(t) = g(@)gw) - F@)f () +a /S Fao(@)t)du(t), 7.y € .

As application we solve two functional equations that have not been studied until now. The continuous
solutions on topological semigroups are found.
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1. Introduction

In [15] Stetkaer introduced and solved the cosine addition law with an additional term

g(zy) = g(x)g(y) — f(x)f(y) + af(zy), =,y €S (1.1)

He expressed the solutions of (1.1) in terms of exponentials and the solutions of the following special sine
addition law

Oy (2y) = O (@)x(y) + x(2) Py (y), =,y €S, (1.2)

)
where x : § — C is an exponential. The work in [15] about (1.1) was generalized by Asserar and
Elgorachi [4], by solving the functional equation

g9(za(y)) = 9(x)g(y) — f(2)f(y) + af(xa(y)), =yeS. (1.3)
The special case of (1.3) in which & = 0 and f = ih is the cosine subtraction law
g(za(y)) = g(x)g(y) + h(z)h(y), =,y €S, (1.4)

of wich the most current results about on semigroups were given in [5, Theorem 3.3] and [8, Theorem
4.2]. For additional discussions about (1.4) see [1, Theorem 4.3], [8, Theorem 4.1], [14, Theorem 4.16]
and their references.

In [10, Theorem 3.3], Elqorachi and Redouani determined the continuous and bounded solutions of
the functional equation

/Gf(xta(y))du(t) =9(@)g(y) + f(@)f(y), =,y€q, (1.5)
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where G is a locally compact group. They expressed the solutions by means of p-spherical functions:

fG P(xty)dp(t) = ¥(z)(y) and solutions of the functional equation fG flaty)du(t) = f(x)v(y) +
V() f(y), z,y€G.

In [13, Theorem 3.1], Kabbaj et al. determined the solutions of the integral cosine addition law

/G Flayt)dpu(t) = g(@)g(y) — F@) [ W), z.y € G, (1.6)

where G is a locally compact Hausdorff group.
In [2] Ajebbar et al. solved the integral Kannappan-sine addition and subtraction laws

/S fao(m)du(t) = F@)gw) + fWg(), z.y €S, (L.7)

/S fao(m)du(t) = F@)gw) - fWg(@), =,y €S, (18)

where S is a semigroup. They expressed the solutions in terms of exponentials, the solution of (1.2) and
the solutions of the following special integral Kannappan-sine addition law

/ Fao(y)t)du(t) = f(@)x(w) / X(B)dp(t) + F()x(x) / X(B)dp(t), 2.y € S, (1.9)
S S S

where x : § — C is an exponential such that [¢ x(t)du(t) # 0.
For further details we refer to [3] and [9].

The aim of this paper is to solve the following integral Kannappan-cosine addition law with an
additional term

/S a(zo())dut) = g(@)a(y) — @) [ () + o /S o (y)t)du(t), =y € S, (1.10)

where S is a semigroup, for unknown functions f,g: S — C.
For a =0, 0 = Id and p = 6., (1.10) reduces to the Kannappan-cosine functional equation

g(wyzo) = g(x)g(y) — f(x)f(y), =,y €S, (1.11)

which has been solved recently by Jafar et al. [11, Theorem 4.1].
For @ = 0 and f = 0 we get the integral Kannappan-Cauchy multiplicative equation

/S g(zo(y)t)du(t) = g(2)g(y), 2.y € S, (1.12)

which has been solved in [2, Proposition 3.1].
To solve the functional equation (1.10), we relate it to the functional equations (1.3), (1.4) and (1.12).
We express the solutions of (1.10) in terms of exponentials, the solution of (1.2) and the solutions of (1.9).

As an application of our main result we solve the integral Kannappan-cosine functional equation

/Sg(fw(y)t)du(t) =9(@)g(y) — f(@)f(y) z,y €S, (1.13)
and the following Kannappan-cosine addition law with an additional term

9(xo(y)zo) = 9(x)g(y) — f(2)f(y) + af(zo(y)z0), z,y € S. (1.14)
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2. Setup, notation and terminology

Throughout this paper S is a semigroup (i.e., a set with an associative composition rule), z is a fixed
element in S, a € C, §,, is a Dirac measure concentrated at zp, p is complex measure that is a linear
combinations of Dirac measures and o : S — S is an involutive automorphism. That is ¢ is involutive
means o o o(x) =z for all x € S.

A map A: S — C is said to be additive if A(xy) = A(z) + A(y) for all z,y € S, and a function
X : S — C is multiplicative if x(zy) = x(x)x(y) for all z,y € S. If x is multiplicative and x # 0 then
we call x an exponential. For an exponential x we define the null space I, by I, := {z € S| x(z) = 0}.
Then I, is either empty or a proper subset of S and I, is a two sided ideal in S if not empty and S\ I,
is a subsemigroup of S.

If X is a topological space we denote by C'(X) the algebra of continuous functions from X to the field
of complex numbers C. Let C* := C\ {0}.

The following lemma will be used in the proof of our main result.

Lemma 2.1 Letn € N, and let x1, X2, -, Xn : S — C be different exponentials. Then

(a) {x1,X2:" " s Xn} 1 linearly independent.

(b) If x : S — C is an exponential and ¢, is a solution of (1.2), then the set {¢y,x} is linearly
independent.

(c) Let a1, a9, ...,a, € C. If S is a topological semigroup and the function a;x1 + asx2 + - + anXn 18
continuous on S then each of the functions ai1x1, a2X2, " > GnXn 1S continuous.

Proof: (a) and (c): See [14, Theorem 3.18]. (b): See [7, Lemma 5.1]. O

For convenience we introduce the following notations:

Let ¢y : S — C denote a function of the form of [7, Theorem 3.1 (B)]. Notice that the function ¢,
defined above is a solution of (1.2).

Let ®, : S — C denote the solution of the special case of the integral Kannappan-sine addition law
(1.9), where x : S — C is an exponential such that [¢ x(t)du(t) # 0.

3. Preparatory work

This section is devoted to prove some useful results to solve the functional equation (1.10). Throughout
this paper, for a solution f,g:S — C of (1.10) we define h := f — ag.

Lemma 3. 1 Let fig: S — C be a solution of (1.10). Then we have the following.
(a) If [4h( ) =0 then we have for all x,y € S

g(zo(y / / (s)du(t) (3.1)

= lo@)al) = F@1W)] [ adu(t) + far(y) / [ 1 Odnts)ante

(b) If fs t) # 0 then there exists a constant w € C such that for all x,y € S we have
/Sh(w(y)t)du(t) = g(x)h(y) + g(y)h(z) + [(1 — a®)w + a]h(z)h(y). (3.2)

Proof: Let z,y,z,s € S be arbitrary. (a) Assume that fs t)du(t) = 0. Making the substitutions
(zo(yz),s) and (zo(y),zs) in (1.10) and then integrating with respect to s we get receptively

| | staotua)a@ndnerints) = a(eov2)) [ ats)dnts

— fzo(y)) /S F(8)du(s) + o /S /S f (o (y2)o ()t du(t)du(s),
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/ | stasty u(t)dpu(s) = g(zo(y)) /ﬂ 9(z5)d(s)
flzo(y /fzsdu +a//f5w w(t)du(s).

Since g(zo(y)o(zs)t) = g(xo(yz)o(s)t) we get from the previous identities that

and

o(zo(y2)) / g(8)dp(s) — f(zo(y2)) /S £(5)dp(s)

S

=g($0(y))/Sg(Z8)du(S)—f(xo(y))/sf(%)du(ﬂ

Now, by putting z = o(t), integrating the result obtained with respect to ¢, using (1.10) and taking into
account that [¢ h(s)du(s) =0, we obtain

9(zo(y) /S [5 o(o(t)8)du(s)du(t) — f(zo () /S /S F(o()s)dpu(s)du(t)
- [3 o(s)dp(s) /S oo ()t du(t) — /S F(5)du(s) /S F (o (y)t)du(t)

= {g(fﬂ)g(y)f(x)f(y)+04/5f(930(y)t)dﬂ(t)] /Sg(S)du(S)

- / f(zo(y)t)du(t) / £(5)du(s)
S S

9(@)9w) — F@)fW)] / o(t)du(t)

/h Ydu(s /fa:a t)du(t)

9(@)9w) — F@)fW)] /S a(t)du(t),

which proves (3.1).
(b) Assume that [ h(t)du(t) # 0. By applying (1.10) to the pairs (z,yzs) and (zo(yz), s) we obtain

// g(zo(yzs)t)du(t)du(s) = ()/ (yzs)dpu(s /fyzsdu

+oz/s/sf xo(yzs)t)du(t)du(s)

and
| [Lataotua)andntrints) = a(wo(y2) / g(t)du(t)
~ flao(y2)) /f Ydu(s +a//fzayz u(6)du(s).
So that
g()/s (yzs)dp(s /fyzsdp

= g(ao(y2)) / o(t)du(t) - flzo(yz) /S F(0)dult)

S
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Setting z = o(t) in the last identity and then integrating the result obtained with respect to ¢ we get, by
using (1.10), that

o(2)g(®) / o(t)dpu(t) - / F(0)du(t) + agla / £ (g (£)s)dpu(s)du(2)

//fyo s)dp(s)dp(t)

— g(2)9() / o(du(t) — f(2)f () / o(t)dp(t)

S

+a/ (t)du(t) /fxa )t)dp(t) /f:ra Vt)dp(t) /f (t)du(t)

from which we derive, by using h = f — ag, that

| ittt [ [ Haotau) - g<x>f<y>] (33)
)| [ [ stwo@s)auts)antt) - 1) [ attanco)].

Since [ h(t)du(t) # 0, we infer from the last identity that

/ Fao(w))du(t) = g(2)f () + h(2)(), (3.4)

where

5(y) = Is [s flyo(t)s)du(s)du(t) — f(y) [gg(t)du(t)
v T (&) du(t)

Substituting (3.4) in (3.3) and dividing the result obtained by [q h(t)du(t) # 0, and using that h = f—ag,

we obtain
/h ) (1) /f Japu(t) + h(y /6 Jd(t) /()du(t)

— 900 [ (o) + ) | [ 0t - /S o(0)iu0)]

Thus, we conclude that

6(y) = g(y) +wh(y) (3.5)
where I au(t) — |
wu(t) — Jg g
Jo hEdu) 39
From (3.5) and (3.4) we get that
/Sf(iw(y)t)dﬂ(t) = g(x)f(y) + [9(y) + wh(y)]h(z). (3.7)

Next, using (3.7) we get

/ o(zo()dut) = g(@)a(y) — (@) f () + o / F (o (y)t)du(t)
S S

(x)g(y) — f(2)f(y) + alg(z) f(y) + (9(y) + wh(y))h(z)]
(2)g(y) + (aw — 1)h(z)h(y).

g
g
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So, from this and (3.7) we derive that

War)du(t) = [ Feotodu® —a [ ateotaut)

(@) f(y) + lg(y + wh(y)|h(z) — alg(z)g(y) + (aw — 1)h(z)h(y)]
(z)h(y) + g(W)h(z) + [(1 — o*)w + a]h(z)h(y).

This proves (3.2). O

HO;\

g
g

Lemma 3 2 Let f,g : S — C be a solution of (1.10) such that {f,g} is linearly independent and

fs =0. Then we have the following:
(a)

[ stauts) 0
(b)

// s)du(t)du(s —0:>//f du(s) # 0.

Proof: Let x,y,5 € S be arbitrary. (a) Assume that [ g(t)du(t) = 0. By applying (1.10) to the pairs
(zo(y),s) and (x,ys), and integrating with respect to s we obtain

| [ staotus)oduvyiuts
= gleas)) [ alduts) = flaortw) [ F(s)dn(s
+a//fxoys )dja(t)dp(s)
=g()/s (ys)du(s) /fysdu +a//fwoys )dp(t)dp(s),

from which we derive that

() /S o(s)da() = 1(z) [ f(us)du(s) =0 (3.9
because [g f(s) fs ) + o [sg(s)du(s) = 0. Since {f,g} is independent we get from
(3.9) that fsg ys du fs ys d,u (s) = 0 for all y € S. Then by using this and (1.10) we obtain
0 = [y9(za(y)t)d afs y)t)du(t) = g(x)g(y) — ( )f(y), which contradicts that {f, g} is
linearly independent Therefore f s f s flo(t)s)du(t)du(s) # O

4. Main result

Now we are ready to describe the solutions of the functional equation (1.10) on semigroups. The
following theorem is the aim of this paper.

Theorem 4.1 The solutions f,g: S — C of the functional equation (1.10) can be listed as follows:
(1) a = %1, f = +g and g is an arbitrary non-zero function.

(2) a # <1, f = +g and g is an arbitrary non-zero function such that fs g(xyt)du(t) =0 for allz,y € S.
(3) There e:m'st constants q,6 € C and an exponential x = x o o with § := +£y/1+4+¢%>—a? and
Js x(t)du(t) # 0 such that

q+«

£ =155 [ xOautt) and 9= [ xodnto.
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(4) o & {—ic,ic™'}, and there exist constants B € C*,c € C*\ {xi} and two different exponentials
1
Xi=xio0 andxz=xz o0 with JsxiWau(t) = iy and Joxadh) = gr oy such that

= cx1 4+ exe nd g= X1 — X2
B(c™1 +¢) iB(ct+¢)

(5) There exist constants A\,0 € C, ¢ € C\ {Ad}, v € C\ {0}, with § = £/1+¢>— X2, 1+ —
a(A+q)(1 =0 —a(X—q)) #0, and two different exponentials x1 = x1 00 and x2 = X2 © 0 satisfying
1+5—-AA+9q) 1-6=-XA—9q)

t)du(t) = d t)d h that
Jsra®dt) =S5 =ans g s @O0 = Sq 5o gy et e
f:)\X1+X2+qX1_X2 andg:X1+X2+6X1_X2,
2y 2y 2y 2

(6) o # £1, and there emist constants A € C\ {£1}, v € C\ {0}, and an ezponential x # x o o with
A—1 +
t)du(t) = ——— d t)du(t) = —— h that
Js x@)du(t) Ta—1 ™ Jsxoo(t)du(t) Ta i) Such tha

f= ﬂX—ona and g= ﬂx—l—gxoﬁ
2y 2y 2y 2y
(7) o # £1, and there exist a constant 8 € C* and an exponential x # x o o with st Ydu(t) =
m and [gx 0 o(t)du(t) = m such that
f= X+2)éoa and 92%.
(8) o # %1, and there exist a constant € C*, an exponential x = x o 0 and a non-zero even function
by satisfying (1.2) with [ x(t)du(t) = ﬁ and [g ¢y (t)du(t) = —m such that

f=+edy)/B and g=¢,/B.

(9) o # £1, and there exist a constant A # —e, an exponential x = x o o and a non-zero even function
oy satisfying (1.2) with

_ e (A —a)(i+eN)
[ x®dno = 25 and [ o autn = S,

where ¢ = £1, such that
f=0x+9¢y)/v and g=(x —edy)/7-

(10) o # £1, and there exist an exponential x = x o o with fs x(t)du(t) # 0, and non-zero function ®,
satisfying (1.9) such that

1

f= @ +ay /S X®)du(t) and g=

P t)du(t
—— [ xaute),

1+ea
where € = £1.
If S is a topological semigroup and f € C(S) then:
(1) g € C(S) in (1), (2), (4), (6)-(9); (10) if a =0.
(i1) g € C(S) in (10) if o € C(S) for a # 0.
(i1i) g € C(S) in (3) if ¢ # —a.
(iv) g € C(S) in (5) if ¢* # 62.
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Proof: If g = 0 then (1.10) becomes

a /g fao()t)du(t) = F(2)[(y), z.y € 5. (4.1)

For the case f = 0 we get a special case of part (3) corresponding to ¢ = —« and § = —1. Otherwise,
from (4.1) we read that o # 0 and the function f/« satisfies the functional equation (1.12). So, according
to [2, Proposmon 3.1] we get f/a= st x(t)du(t) where x is an exponential on S such that x oo = x
and [ x(t)du(t) # 0. Then we are in part (3) with ¢ = a # 0 and § = —1.

Next, we assume that g # 0. Here we split the proof in two cases according to { f, g} is linearly independent
or not.

Case 1: {f,g} is linearly dependent. Then there exists ¢ € C such that f = cg and therefore the
functional equation (1.10) reduces to

(1 ac) /S g(zo)Ddu(t) = (1 - A)g(@)g(y), 2,y € 5. (4.2)

If ¢ = 1, then f = g and Eq.(4.2) reduces to (1 — a) [y g(xo(y)t)du(t) =0 for all z,y € S. For a =1
we get part (1). For a # 1, then we get [ g(zyt)du(t) = 0 for all z,y € S with g # 0. This gives the
solution part (2).

If ¢ = —1 we proceed as above and then we obtain solution part (1) for &« = —1, and solution part (2)
for ao £ —1.

If ¢ # £1, then from (4.2) we read that 1 —ac # 0, because g # 0. Therefore, by using [2, Proposition
3.1], We get that (1 —¢?)g/(1 — ac) = x [4 x(t)du(t), where x is an exponential such that x = x o o and
Js x()du(t) # 0. So,

_ 2
9=1"2 X/Sx(t)du(t) and f =cg= Cl 7&0{; X/Sx(t)d,u(t).

2
—ac a  c—ac
and 9+t = , and using the same
1—¢? 2 1—¢2
calculations as those in the proof of [15, Lemma 4.3] we get that

F= 220 [ xOaute) and = ZETEZE @ty

Introducing the constants d, q € C such that d :=

2

This solution occurs in part (3).
Case 2: {f,g} 1s 1ndependent Here we discuss according to [ h(t)du(t) =0 or [¢h(t)du(t) # 0.

Case 2.A: [¢ h(t)du(t) = 0. Then from Lemma 3.1 we get the functional equation (3.1) and from Lemma
32()wereadthatfsg ()#O
Case 2.A.1: [ [4g(o(t)s)du(s)du(t) = 0. We infer from Lemma 3.2 (b) that [g [ f(o(t)s)du(s)dpu(t) #
0, so Eq. (3.1) can be reformulated as follows

Bf(xo(y) = B f(2)f(y) + (—iB)*g(x)g(y). .y €S, (4.3)

with 8 := [ g(t)du(t)/ [ [ f(o(t)s)du(s)du(t) is a non-zero complex constant. Now, from (4.3) we read
that the pair (8f, —ifg) satisfies the cosine subtraction law (1.4). So, according to [8, Theorem 4.2] and
using the fact that {f, g} is linearly independent, we discuss the following cases:
(i)
_ XtXxoo X—X°eo
br=" 2i

where x is an exponential on S such that x # x o 0. Then we obtain

and —ifg =

X—XoOo

X+txoo
f= 53

25 and g=
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By using (1.10) we get after some calculations that

[1+B(1—a)/

[ (o) + 1= 801+ a) [ xooWdublx((@y) = o

S

for all z,y € S, and then by using Lemma 2.1 (a) we get that

5(1—@)/5)(00(15)(1;1(1?)—1—1 =0 and 1—5(a+1)/:;x(t)du(t) =0,

from which we read « # +1 (because otherwise we get 1 = 0 which is impossible). So we conclude that

1 1
[ xtointt) = Sy o [ xootautt) - ST

So we are in part (7) of our statement.
(i)
— X2 — X1
5f - C_l + c7
where ¢ € C* \ {£i} and x; and x2 are two different exponentials on S such that x1 o 0 = x; and
X2 ©0 = X2. S0,

cx1 4 exe

P and —1ifg =

_ ¢ Ix1 +exo X1 X2
= YA dg= a1
Blet +c) iBle ! +c)
Using (1.10) we get after some simplifications that
B(c™t +e)(1 —iac™t) fs x1(8)du(t) +i(1 + ¢ 2)]x1(zy)

Hi(1+ ) = e+ 1+ dac) [ xalthdn(®]xalzy) =
S
which implies, by using Lemma 2.1(a), that

Ble +e)(1 —iac™h) /S xi(t)du(t) +i(l+¢7?) =0

and
i(1+ 02) — ﬂ(c_1 +¢)(1 +iac) /S X2 (t)du(t)] = 0.

From the two last identities we read that 1 —iac™! # 0 and 1 + iac # 0, i.e. a & {—ic,ic™'}, because
otherwise we get ¢ = £¢ which contradicts the assumption on c¢. Thus we conclude that

[ xataut - ond [ oty = 5
S s

Bla + ic) Bl —ic™1)

The solution occurs in part (4).

(iii) Bf = xti¢y and —ifg = ¢,,, where x is an exponential on S such that yoo = x and ¢, is a non-zero
solution of (1.2) and ¢, o 0 = ¢,. Seeing that i¢, is also a non-zero solution of (1.2) and i¢y o 0 = i,
we get, by writing ¢, instead of i¢,, that

f=+cex)/B and g = ¢y/B,

where ¢ = +1.
When we substitute this in (1.10), we obtain, after some computation, that

0=[(1-a8 /S X(B)dpu(t) + B - ca) /S o (B)d(t))X(v)
(e + B(1 — ca) /S X)) by )X
+ [l + B(1 - ca) / MOt x()]bx

S
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for all y € S, which implies, by using Lemma 2.1 (b), the following identities

1—aﬁ/sx(t)du(t)+6(1—ca)/s¢x(t)du(t) _
and

c+ B(1 — ca) /S x(t)du(t) = 0.

From the identities above we read that 1 —ca # 0 (because otherwise we get ¢ = 0, contradicting that
¢ = =£1). Then we get that

+1 1
[ x®in®) = s and [ o0ant) =~

The solution occurs in part (8)

Case 2.A.2 : Suppose [¢ [5g(o(t)s)du(s)du(t) # 0. Then the functional equation (3.1) can be rewritten
as follows
v9(za(y)) =v’9(@)9(y) — v (@) f(y) + M fzo(y)), =y €S, (4.4)
where
Lo o g 5= ele EQ00)

T T Tsg(o(®)s)du(s)du(n) I ng L5)dp(t)

So, the pair (vg,vf) satisfies (1.3). Now, according to [4, Theorem 3.4] and taking into account that
{f, g} is linearly independent we have only the following possibilities:

(i)

7f:)\Xl;—Xz+q><1;><2 and 7g:Xrng

where ¢ € C and x; and yo are two different exponentials such that y; oo = x; and x3 0 0 = xo.

Introducing § := ++/1 + ¢ — A2, we get that

f:/\X1+X2+qX1*X2 Cmdg:X1+X2+6X1*X2.
2y 2y 2y 2y

X1 — X2
+4/1 — 2022
+q2 5

(4.5)

As x1 + X2, X1 — X2 is linearly independent we get from (4.5), by using the linear] independence of f, g,
that ¢ # aX. On the other hand, by using (1.10) a small computation shows that

(zwl +8)= a0+ 0] [ a@du(®) + O+ - 1+ 6)2) i (aw)
. (2%(1 - 5)-a0 -] [ xadn(t)+ 0~ - (1 - 6)2) Ya(ey)

:O’

and then by Lemma 2.1 (a) we obtain

29[(1+6) —a(A + q)] /le(t)du(t) + A+ = (1+6)*=0 (4.6)

and
[ =6) —a(r—q)] /Sxfz(t)du(t) +(A—g’-(1-d*=0. (4.7)
Moreover, we have
1+0—aA+¢) #0 and 1—6—a(A—q)#0,
Indeed, if 1+ — a(A+¢) =0 then 1+ 6 = ()X + q), and (4.6) implies that (A + ¢)? = (1 + §)2. Hence

A+ ¢)*(a®—=1)=0. Then g = -\ or o = 1.
If ¢ = —X then § = —1. Substituting this in (4.5) we get that f = Ag, which contradicts the fact that f
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and g are linearly independent.

Hence ¢ # —\ and o? = 1. So that (1 +0)? = (X + ¢)2, which implies that 1 + 28 + §% = A\? + 2\q + ¢>.

As 02 = 1+ ¢® — )2 we derive that a(A+¢) = 1+ = A(A + ¢). Then X\ = a because A + ¢ # 0. As

146 = a(A+q) we get that 6 = ag = Aq. Now, multiplying the expression of f in (4.5) by A we get that

g = Af which contradicts the linear independence of f and g. Similarly, we prove that 1—§—a(A—q) # 0.
Therefore from (4.6) and (4.7) we derive

_ (407 -(+9¢?® | 1+5-2A+q)
/Sm(t)du(t) T 2(1+6—alA+q) ~A1+0—a(r+q)

and (1—68)2— (A q)2 1—6—AA—q)
[ xattynte) = 5 e PR

The solution occurs in part (5).
(ii) A # 0, and we have
V=X xa and g = X2,

where x1 and x2 are two different exponentials such that x; o 0 = x1 and x2 0 0 = x2. Then we get
@ 1
f=—x1 and g= —xa. (4.8)
Y Y

A small computation based on (1.10) shows that

(AZ e [ X1(t)du(t)> yilay) + (w [ xattauts - 1) Yolay) =0

for all 2,y € S because v # 0. Then we get, by using Lemma 2.1 (a), that

/S i (du(t) = = and /S xa(Odu(t) =~ (4.9)

ay

From (4.8) and (4.9) we deduce that

f=a /S xa(£)dpu(t)xa and g = /S xa(O)dp(t)xs.

So, we get a special case of part (5) corresponding to A = «, (¢,0) = («, —1) and « # 0.
(iii) A # £1, and

14+ A A—1 1+ A 1—A
vf=%x+7xoa and 79=%X+TX00,
where x is an exponential such that x # x o 0. Then we get
14+ A 1—A 14+ A 1—A
= — _— d = — _— .
f 5y X7 gy Xeo and g= Xt oo

By using (1.10) we get that

(w 1)1 a) [ x(Odu(t) + 32 - 1) (o)

" (w -+ a) [ xoattaut + 22 - 1) yooley) =0,

for all z,y € S. This implies by using Lemma 2.1 (a) that

YA+ 1)1 —a) /S x@)du(t) + X2 =1=0
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and
1 =21+ a)/ xoo(t)du(t) +A* —1=0.
s
If @« = +£1 then A = £1 which a contradiction. So, @ # +1 and therefore

I Sl S oo _ At
[ x®int) = Z— and [ xoottant) = =

The solution occurs in part (6).
(iv)vf = Ax + ¢y and vg = x £ ¢, such that x oo = x and ¢, o 0 = ¢,, which gives f = (Ax + &y)/7
and g = (x £ ¢y)/7. For the case g = (x + ¢,)/v we get by using (1.10) that
x(@)[x(y) (v(1 = ) fsx Ydu(t) + (1 — @) [ oy (t)du(t) + A2 — 1)

+ox(y) (v(1 = a) [y x(B)du(t) + X = 1)]

+oy (@) [x(y) (v(1 — @) [ x(@)du(t) + A —1)] =0, for all z,y € S, which gives by using Lemma 2.1
(b) that

71— ad) fo x(diu(t) +7(1 — @) f5 oy (dpu(t) + 3> — 1 =0
and (1 —a) [¢x(t)du(t) + X —1=0.

If « =1 then A = 1 and we get f = g and this contradicts the assumption that {f, g} is linearly
independent. So « # 1 and then we obtain

_A-1 _QA-a)-N
Jxtoantt) = 2= ana [ o(taut .

(a v(a—1)
So we get part (9) for e = —1. The case g = (x — ¢y)/7 can be treated similarly, and we obtain
A+ 1 ( —a)(1+A)
Hdu(t) = —— d "
[ x@du = 255 and [ oaut) = S0

So we get part (9) for e = 1.
Case 2.B: Suppose [g h(t)du(t) # 0. By using the system (3.2) and (3.8) we get for any A € C that

/S (g — Ah)(zo(y)t)du(t) = (g — Ah)(x)(g — AR)(y) + p(MA(2)h(y), =,y €S, (4.10)

where p denotes the second order polynomial
p(A) = -2 —[(1-aPw+a]d+wa—1, NeC, (4.11)

where w is defined in (3.6).
Let Ay and Ay be the roots of the polynomial (4.11). By using [2, Proposition 3.1] we get from (4.10)
that

g—doh =1 /S xi@®)du(t) and g—Ah= s /S X (t)du(t), (4.12)

where y; and xo are two exponentials such that x; oo = x1, X2 00 = Xao, fs x1(t)du(t) # 0 and
Js xa2(t)du(t) # 0, because g — Aih # 0 and g — Agh # 0 since h and g are linearly independent.
If A\; # Xz then from (4.12) we derive that x1 [ x1(t)du(t) # x2 [¢ x2(t)du(t) and therefore

X1 fSX1 du(t) — x2 fSXQ dp(t)

h=
A1 — A2

and
_ A fsxa®dp(t)xa — Aa fg xa(t)du(t)xo
N — A :

and then we deduce that

(14 aX)x1 [ xa(t)du(t) — (14 adz)xe [5 xa(t)du(t )
A1 — Ao

f=h+ag=
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24+ oA + X2)

A1 — Ao
Lemma 4.6] we show that f and g depend on q as follows

Using this and introducing the constant ¢ := € C we proceed as in the proof of [15

=51 [awdnon + 251 [ e
and 1434 -5
=55 [aduon + 252 [ xebdutie,

with § := +4/1 + ¢? — a2. We omit the details. As f and g are linearly independent, fs x1(t)du(t) #0
and [g x2(t)du(t) # 0, we get that (1 —d)(a +¢) — (1 + 9)(a — g) # 0 which reduces to g # ad. The
solution obtained is a special case of part (5) corresponding to A = a.

If A = A2 =: A then we have x1 [¢ x1(t)du(t) = x2 [¢ x2(t)du(t) which gives by Lemma 2.1 (a) that
X1 = X2 ThlS allows us to define y := X1 = x2. Notice that x is also an exponential such that
Js x(t)du(t) # 0, and then g — A\h = st x(t)du(t) from which we derive g = Ah + x [ x(t)du(t) . We
get also from (4.11) and by elementary algebra that 2\ = —[(1 — a?)w + a]. Using this and substituting
the form of ¢ into (3.2) we get

/S h(zo(y)t)du(t) = g(z)h(y) + g(y)h(z) + [(1 — o*)w + a]h(z)h(y)
_ (Ahm o) [ x(t)du(t)) h(y)

+ (Ah(y) +x(y)/sx(t)du(t)> h(z)
+[(1 = a®)w + alh(x)h(y)

= )x() + h)x(@)] [ x(Odu)
+[(1 = a®)w + a + 2\]h(z)h(y)

— [blx)x(w) + by)x(@)] [ X(Odu().

S

This shows that the function A is a non-zero solution of the special integral Kannappan-sine addition law
(1.9). Then h =: ®,, # 0, so we get that

g =M+ [ x0au) =30, +x [ xdutr) (4.13)

and
f=ag+h=(ar+1)0, + ax/sx(t)du(t). (4.14)

A short computation based on (1.10) shows that
0= [N = (aA + 1)*|@y () Py (y) = (A(L + ) + DAL — @) = D, () Py ()

for all z,y € S, from which we drive A(1+a)+1 = 0 or A(1—a)—1 = 0 because @, # 0. If A(1+a)+1=0
we get A= —1/(1+ ) and if A(1 — @) —1 = 0 we obtain A = 1/(1 — o). Combining this with (4.13) and

(4.14) we obtain f = o2 <I> x +ax [gx(t)du(t) and g = <I> x + X [g x(t)du(t), where e = +1.

The solution occurs in part (10).

Conversely, if f and g are of the forms (1)-(10) in Theorem 4.1 we check that the pair (g, f) is a
solution of equation (1.10).

Now, suppose that S is a topological semigroup and f € C(S5).

In parts (1)-(2) the continuity of g is evident, because g is proportional to f.

1+e
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In part (3) the continuity of g is also trivial in each cases ¢ # —a, and ¢ = —« and § = —1; but g is
not necessarily continuous if ¢ = —a and § = 1.

In parts (4), (6), (7) and (8) the continuity of ¢ is derived by using Lemma 2.1(c) since ¢ # 0 and
A £ +1.

A+ A — 146 1—
qX1+ qu and g = > X1+

according to Lemma 2.1(c), that the exponentials x; and x2 are continuous. So g is. If ¢ = A the § = £1,

1)
In part (5) we rewrite f = X2. Then, if ¢ # A\? we get,
1 . . . -
then § = 1 because ¢ # A\J, hence f = —x; and g = —x32, so g is not necessarily continuous. Similarly

we check that if ¢ = —\ g is not necessarily continuous.
In part (9) we have f = (Ax + ¢y)/7, then we get for all z,y € S that

Ox(@)x(y) = ox(zy) — dx(y)x(2)
= vf(zy) — Ax(2y) — oy (y)x (@)
= f(zy) — Ax(@y) — [vf(y) — Ax()lx(@)
= vf(zy) —vf(y)x(z).

It follows that x € C(S), because ¢, # 0. Then we get that ¢, € C(S), because x # 0. Thus
= (x £ ox)/7 € C(9).
The part (8) can be treated similarly to (9).
In part (10) we have by (4.14) that ®, = (1 +ea)(f — ax [y x(t)du(t)) and for any z,y € S we get

B (2)x(v) /S x(B)dut)
- / By (2o (y)t)du(t) — By (y)x(x) / x(B)dut)
S

S

= (1<) [ Flar(u)dn(t) a1+ <a) [ xlardutt) [ x(tant)

S

~ (14 ) f () — ax(y) /S X(Odu(t)]x(x) / X(O)du(t).

S

So that

@y ()x(y) /

30t = 1+ c) [ feotnan® - x@irw) [ xOaw). @)
for all x,y € S.

If a = 0 then f = <I> so @, is continuous. Moreover (4.15) reduces to f(y st
Js f( V)du(t) — y) [¢ x(t)du(t). As f # 0 there exists yo € S such that f(yo) ;é O So
by puttlng y = 9o in the last identity and dividing the identity obtained by f(yo) /. S x(t)du(t), since
/. g X(t t) # 0, and seeing that f is continuous and p is a linear combination of Dirac measures we
derlve that X is continuous. So, from (4.13) we deduce that g is continuous.

Now, assume that @ # 0. As @, # 0 there exists a € S such that ®,(a) # 0. Moreover [ x(t)dpu(t) #
0. By putting z = a in the identity above and diving the identity obtalned by [, s X()du(t) @y (a ) we get
that

x(@) = (1 +¢a) ( /S Flao(y)D)du(t) — x(a) () /S x(t)dﬂ(t)) / /S X(B)dp(t) @y (a)

from which we deduce that x € C(S) because o, f € C(S) and p is a linear combination of Dirac measures.
Therefore ®,, is continuous, because x # 0. So, in part (10) g € C(S), because g is a linear combination
of x and ®,. This completes the proof of Theorem 4.1. a
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5. Application

In this section we present two applications of our main result.

If we take @ = 0 in (1.10) we get the integral Kannappan-cosine functional equation (1.13) which has
not been studied until now except for the case o = Id and S is a compact group. The solutions of (1.13)
on semigroups are given in Theorem 5.1, by taking & = 0 in Theorem 4.1.

Theorem 5.1 The solutions f,g: S — C of the functional equation (1.13) can be listed as follows
(1) f = =£g and g is an arbitrary non-zero function such that [¢ g(xyt)du(t) =0 for all z,y € S.

(2) There exist constants q,8 € C and an exponential x = x oo with 6 := £/1+ ¢ and [ x(t)du(t) # 0
such that

q 1446
£ =3 [ xOdu(t) and g=22x [ x(t)duce).
s s
(8) There exist constants B € C*,c € C*\ {£i} and two different exponentials x1 = x100 and x2 = x200

1
with [¢ x1(t)dpu(t) = e and [ x2(t)du(t) = such that

1
—ifc1
f= cxi 4 exe and g = X1 — X2

Blet +¢) iBlct+e)

(4) There exist constants \,6 € C, ¢ € C\ {A\d}, v € C\ {0}, with § = £/1+¢*> — A2 # £1 and
145 -XA+q)

two different exponentials x1 = x1 00 and X2 = X2 © 0 satisfying fS x1(t)du(t) = S +9) and
—6—-AA—q)
t)du(t) = ————————= h that
fisxatat) =~ 25 such tha
f:)\X1+X2 +qX1—X2 and g — X1+ X2 L gXLT Xz
2y 2y 2y 2y
(5) There exist constants A € C\ {1}, v € C\{0} and an exponential x # x oo satisfying [¢ x(t)du(t) =
1—A 1
— and  [¢x(o(t))du(t) = such that
f 1+ A 1-A d 1+ 1—A
= —Y — ——YO P - voO
2’}/X 27)(0'@”9 27X 2,yXU
(6')1 There exist a constant 3 € C* and an exponential x # x o o with [¢x(t)du(t) = — [ x(o(t))du(t) =
3 such that
X+ Xoo0o X—X°e0o
d g=>~—=—"—.
f= o5 9 53

(7) There exist a constant B € C*, an exponential x = x 0 0 and a non-zero function ¢, satisfying (1.2)

1
with [¢ x(t)dp(t) = —% and [ ¢y (t)du(t) = —5 where e = £1, such that

f=+edy)/B and g=¢,/B.

(8) There exist a constant A # —e, an exponential x = x o 0 and a non-zero even function ¢, satisfying

(1.2) with
/ x(B)dp(t) = L1 / Hr(B)dpt) (”“’,
S

where € = £1, such that

F=Ax+éy)/v and g=(x—edy)/7.

(9) There exist an exponential x = x oo with [¢x(t)du(t) # 0, and non-zero function ®, satisfying (1.9)
such that

f=y and 9=+ x [ x(Oult),
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where € = £1.
If S is a topological semigroup and f € C(S) then:
(1) g € C(S) in (1), (3), (5)-(9).
(i) g € C(S) in (2) if ¢ #0.
(iii) g € C(S) in (4) if ¢* # 6.

The following proposition gives the solutions of the functional equation

f(xa(y)zo) = x(20) f (2)x(y) + x(20) f(y)x(2), @,y €S, (5.1)

where x is an exponential such that x(zp) # 0.

Proposition 5.1 Let x : S —— C be an exponential such that x oo = x and x(z0) #0. If f: S— C
is a solution of (5.1) with f # 0, then

f=x + x(20)Al20),

where A : S\ I, — C is an additive function.
Proof: See [12, Proposition 4.3]. 0

In what follows we describe the solutions of the functional equation (1.14) on semigroups.

Theorem 5.2 The solutions f,g: S — C of the functional equation (1.14) can be listed as follows

(1) a = +1, f = +g and g is an arbitrary non-zero function.

(2) a # +1, f = +g and g is an arbitrary non-zero function such that g(S?z) = {0}.

(8) There exist constants q,6 € C and an exponential x = x o 0 with 6 := £1/1+ ¢ — a2 and x(z0) #0

such that N -
q+
f="5"x()x and g=-——x(=0)x

(4) a ¢ {—ic,ic™'}, and there exist constants f € C*,c € C*\ {+i} and two different exponentials

X1 =x100 and x2 = X2 00 with x1(z) = m and x2(20) = m such that
_ cIx1 4 exe X1 X2
[=—= d 9=~
Bt +¢) iB(ct +c)

(5) There exist constants X\,6 € C, ¢ € C\ {Ad}, v € C\ {0}, with § = £/1+¢2— X2, (1+0 —
a(A+q)(1 =86 —a(X—q)) #0, and two different exponentials x1 = x1 0o and X2 = X2 © 0 satisfying
1+6— A\ +q)? 1-6—-A\A—q)

= d = h that
) = S it gy M) = Sa e g e
f:)\Xl + X2 +qX1_X2 and g = X1+ X2 +5)(1—)(2.
2y 2y 2y 2y
(6) o« # £1, and there exist constants A € C\ {£1}, v € C\ {0}, and an exponential x # x o o with
- +
=— d = ————— such that
x(z0) o= 1) and o o(z) Y suc a
14+ A 1-A 14+ A 1-—A
f=—x———x00 and g=—— ——xoo0
2y 2y 2 2
1
(7) a # %1, and there exist a constant B € C* and an exponential x # x o o with x(z) = Ba=1) and

1
xoo(z) = il such that

+1)

X+txoo X—X0O0O
/ 55 nd g 53
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8) a # 1, and there exist a constant B € C*, an exponential x = x o 0 and a non-zero function
X

1
satisfying (1.2) with x(z0) = m and ¢y (z0) = “Bea 12 where € = £1, such that

f=+epy)/B and g=¢\/B.

(9) o # £1, and there exist a constant A # —e, an exponential x = x o 0 and a non-zero even function
oy satisfying (1.2) with

A+te A—a)(1+eN)

o) =g =T

where € = £1, such that

f=Ax+d)/7 and g=(x—¢cdy)/7.
(10) o # £1, and there exist an exponential x = xoo with x(z0) # 0, and non-zero function ®,, satisfying
(1.9) such that

1 —€

f=——, +ax(z)x and g= T ea

= @
1+50¢ X+X(ZO)X7

where € = £1.

If S is a topological semigroup and f € C(S) then:
(1) g € C(S) in (1), (2), (4), (6)-(9); (10) if o =0.
(ii) g € C(S) in (10) if o € C(S) for a # 0.
(i1i) g € C(S) in (3) if ¢ # —a.
(iv) g € C(S) in (5) if ¢* # &%

Proof: By taking i equal to the Dirac measure ¢, in Theorem 4.1.
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