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Presentation

This text consists of a collection of central and fundamental results from a Real
Analysis Course. It is dedicated to students in the final years of their undergraduate

and Master’s degree programs in Mathematics.
Maringa, May 2025.

The authors.



Chapter 1

The Real Numbers

1.1 The Natural Numbers and Mathematical In-
duction

To rigorously build analysis, we must look closer at the structure of the natural
numbers N = {1,2,3,...}.
Axiom [Well-Ordering Principle| Every non-empty subset of natural numbers has
a least element. That is, if S C N and S # (), then there exists m € S such that
m<kforal ke S.

This principle is equivalent to the Principle of Mathematical Induction, which is

a crucial tool for proving statements involving natural numbers.

Theorem 1.1 (Principle of Mathematical Induction) Let P(n) be a statement

about the natural number n. Suppose that:
(i) P(1) is true (Base case).
(ii) For every k € N, if P(k) is true, then P(k + 1) is true (Inductive step).

Then, P(n) is true for all n € N.

Proof: Let S ={n € N: P(n) is false}. We want to show that S = ). Suppose,
for the sake of contradiction, that S # (. By the Well-Ordering Principle, S has
a least element, say m. Since P(1) is true by hypothesis (i), 1 ¢ S, so m > 1.
Therefore, m — 1 is a natural number. Since m is the least element of S, m—1¢ S,
which means P(m — 1) is true. By hypothesis (ii), if P(m — 1) is true, then P(m)
must be true. This contradicts the fact that m € S. Therefore, S must be empty,
and P(n) is true for all n. |

11



The Real Numbers 12

1.2 Finite, Countable, and Uncountable Sets

In analysis, distinguishing between different "sizes" of infinity is essential.

Definition 1.2 Two sets A and B are said to have the same cardinality (written
A ~ B) if there exists a bijection f: A — B.

Definition 1.3 Let J, = {1,2,...,n} for somen € N. A set A is said to be:
o Finite if A= 0 orif A~ J, for some n.
e Infinite if it is not finite.
e Countable (or denumerable) if A ~ N.

e Uncountable if A is infinite and not countable.

Remark 1.4 A countable set can be listed as a sequence x1,xs, T3, ... where every

element of the set appears exactly once.

Theorem 1.5 The set of integers Z. and the set of rational numbers Q are countable.

Proof: For Z, we can list the elements as 0,1, —1,2,—2,..., defining a bijection
with N. For Q, the proof involves arranging the rationals in an infinite array and
traversing it diagonally (Cantor’s diagonalization for rationals), showing that there

is a surjection from N to Q. Since Q is infinite, this implies Q ~ N. [ |
Theorem 1.6 The union of a countable collection of countable sets is countable.

Theorem 1.7 (Uncountability of R) The set of real numbers R is uncountable.

Proof: (Sketch) The proof is typically done by contradiction using Cantor’s Di-
agonal Argument on the interval (0,1). If we assume (0, 1) is countable, we can list
all its elements as decimal expansions. We then construct a new number x € (0,1)
by choosing its n-th decimal digit different from the n-th digit of the n-th number

in the list. This number x cannot be in the list, leading to a contradiction. [

12



The Real Numbers 1.1 Supremum and Infimum of a Bounded Set

1.3 Density of Rationals and Irrationals

We previously stated that Q is dense in R. We now formalize this and extend it to

irrational numbers.

Definition 1.8 A subset A C R is dense in R if for every pair of real numbers x,y

with x <y, there exists an element a € A such that x < a < y.

Theorem 1.9 (Density of Q) If z,y € R and x <y, then there exists a rational
number r € Q such that x < r < y.

Proof: Since z < y, we have y — x > 0. By the Archimedean Property, there
exists n € N such that n(y —z) > 1, or ny — nz > 1. Since ny — nx > 1, there
must exist an integer m € Z between nx and ny (specifically, m = |nz| +1). Thus,
nr < m < ny. Dividing by n, we get » < ™ < y. By taking r = m/n, we have

found a rational number between z and y. [

Theorem 1.10 (Density of Irrationals) If z,y € R and x <y, then there exists
an irrational number z € R\ Q such that v < z < y.

Proof: Since r < y, we have 2 — v/2 < y — /2. By Theorem 1.9 (Density of

Rationals), there exists a rational number r € Q such that
T—V2<r<y—+v2
Rearranging the inequality, we get:
r<r+v2< 1.

Let z = r++/2. We claim that z is irrational. Suppose, for contradiction, that z € Q.
Then z — r would be rational (since the difference of two rationals is rational). But
z—r = /2, which we know is irrational. This is a contradiction. Thus, z is irrational

and lies between x and y. [ |

Corollary 1.11 Between any two real numbers, there are infinitely many rational

numbers and infinitely many irrational numbers.

13



The Real Numbers 1.1 Supremum and Infimum of a Bounded Set

1.4 Supremum and Infimum of a Bounded Set

There exists a set R, whose elements are called real numbers, satisfying the following

conditions:

e (1) An addition operation and a multiplication operation are defined on R,

with respect to which R has the algebraic structure of a field.

e (2) There exists a non-empty subset of R, denoted by P, whose elements are

called positive real numbers, such that:

i) fz,yeP=>x+yecP.
(ii) fz,y e P=ayecP.

(iii) If z € R, one and only one of the following statements is true:

reP;, x=0, —z&P. (trichotomy).

If we denote by —P = {—z : © € P}, the elements of (—P) are called negative.

Definition 1.12 Given x,y € R, we say that x > y if and only if v —y € P. The
notation x >y is used to indicate that v >y or x = y. We define v <y if y > x.

Proposition 1.13 Let a,b,c € R. Then:
a) Ifa>bandb > c then a > c.
b) Ezactly one of the following statements is true: a > b; a =b; a < b.
¢) Ifa>bandb> a then a =b.
d) If a # 0 then a* > 0.
e) 1>0.
f) If n € N then n > 0.

Proof: a) Ifa>band b > cthena—be P and b—c € P. We must prove that
a > ¢, i.e., that a — ¢ € P. Indeed, we have:

a—c=(a—-b+(b—-c)eP.
7
eP eP

b) Let a,b € R. Then (a—b) € R and by trichotomy, exactly one of the following

statements is true:
a—beP;a—b=0; —(a—0b) €P,
that is,

a>b, a=b; a<b.

14



The Real Numbers 1.1 Supremum and Infimum of a Bounded Set

c)Ifa>b,thena—bePora—b=0, whence,a —b € P or a=b.
Ifb>a,thenb—a € P orb—a=0, which implies b —a € P or b = a.

Since we are assuming a > b and b > a simultaneously, then:
(a—b)ePora=band (b—a) € P orb=a.

Hence:

(i) If (a—0) € P and (b —a) € P then (a —b) + (b — a) = 0 € P, which is an
absurdity!

(ii) If (a —b) € P and b = a then 0 € P, which is an absurdity!

Thus, the only possible option is a = b (or b = a).

d) Ifa# 0thena >0o0ra <0, ie,a € P or —a € P. In the first case
a’ = aa € P. In the second case a* = (—a)(—a) € P.

e) In particular, in an ordered field, 1 =1 -1 is always positive.

f) Exercise. |

e (3) The supremum property holds in R: ‘Every non-empty subset of R that

1$ bounded above has a supremum.’

To understand what the supremum of a set is, we need some preliminary con-

cepts.

Definition 1.14 Let S C R. An element u € R s called an upper bound of S if
u>x for all x € S. Similarly, the concept of a lower bound of S is defined.

A set S is bounded above if S has an upper bound, and is bounded below if it

has a lower bound. If S is simultaneously bounded above and below, we say that .S

is bounded.

Definition 1.15 Let S C R; S # 0, S bounded above. A real number | is called
the supremum of S and denoted by | = sup S if | is the least of the upper bounds of
S. Equwalently, | € R is the supremum of S if and only if it satisfies the following
conditions:

(1) 1is an upper bound of S.

(2) Ift is any upper bound of S then | < t.

Condition (1) says that [ is an upper bound of S, while (2) states that any other
upper bound of S must be greater than or equal to [.
Condition (2) can be rephrased as:

(27) Given ¢ < [, there exists s € S such that ¢ < s.

15



The Real Numbers 1.1 Supremum and Infimum of a Bounded Set

Indeed, suppose by contradiction that there exists Cy < [ such that for all s € S
we have Cy > s. It follows that Cj is an upper bound of S strictly less than the
supremum (Cy < 1), which is an absurdity, proving (2’).

Similarly, the concept of infimum of a set bounded below is defined.

16



Exercises: Set Theory and Functions

1%t Question Given a function f : A — B and X,Y subsets of A, prove the

following properties:
a) f(XUY)=f(X)Uf(Y), b) f(XNY)CfX)N[f),
o) X CY = f(X)C f(Y), d) f(0)=0.

274 Question Given a function f : A — B and Y, Z subsets of B, prove the

following properties:
a) /Y UZ) = (Y)Uf(2), b) fF¥YNnZ)=fY)nfH(2),
o) [FIY)= (1Y), d)Y CcZ= f(Y)C f2),
e) fFUB)=A, f)f1(0)=0. *(Note: I used Y for the complement CY as
it is more standard in English, but you can keep C if you prefer)*.

374 Question Prove that a function f : A — B has a left inverse if and only if
it is injective.

4t Question Prove that a function f : A — B has a right inverse if and only if
it is surjective.

58 Question Given a family (Ay)acr, of subsets of a universal set E, then

a) (UAN =NAS b) (NAN = AS *(De Morgan’s Laws)*.
62 Question Given a function f : A — B, consider a family (Ay)ey, of subsets

of A, and a family (By)uen of subsets of B. Prove the following properties:
a) f(UAN) =U (AN, b) f(NAN) C N (A,
o) [T UBY) =U (B d) [T B =NSH(B),
7th Question Given the function f: A — B:
a) prove that f(X \Y) D f(X)\ f(Y) for any subsets X and Y of A,
b) show that if f is injective, then f(X \Y) = f(X)\ f(Y) for any X and Y

contained in A.

17



The Real Numbers 1.1 Supremum and Infimum of a Bounded Set

8th Question Show that the function f : A — B is injective if and only if
fA\X) = f(A)\ f(X) for all X C A.

9th Question Given the function f : A — B, prove:

a) f7Hf(X)) D X for all X C A4,
b) f is injective if and only if f~}(f(X)) = X for all X C A.

102 Question Given the function f : A — B, prove:
a) for all Z C B, we have f(f~(2)) C Z,
b) f is surjective if and only if f(f~}(Z)) = Z for all Z C B.

112 Question If there exists a bijection f : X — Y, then given a € X and
b €Y, there also exists a bijection g : X — Y such that g(a) = b.

12t2 Question If A is a proper subset of I,, (where I,, = {1,...,n}), there cannot
exist a bijection f: A — I,,.

132 Question If f: 1, — X and g : I, — X are bijections, then m = n.

14t Question Let X be a finite set. A map f : X — X is injective if and only

if it is surjective.

15" Question There cannot exist a bijection between a finite set and a proper
part (subset) of itself.

162 Question FEvery subset of a finite set is finite.

17" Question Given f : X — Y, if Y is finite and f is injective, then X is
finite; if X is finite and f is surjective, then Y is finite.

18t" Question A subset X C N is finite if and only if it is bounded.

19t2 Question If X is an infinite set, then there exists an injective map f : N —
X.

20th Question A set X is infinite if and only if there exists a bijection ¢ : X — Y
onto a proper subset Y C X.

215t Question Every subset X C N is countable.

2274 Question Let f : X — Y be injective. If Y is countable, then X is also

countable. In particular, every subset of a countable set is countable.

18



The Real Numbers 1.1 Supremum and Infimum of a Bounded Set

2374 Question Let f : X — Y be surjective. If X is countable, then Y is also
countable.

24th Question The Cartesian product of two countable sets is a countable set.

25" Question The union of a countable family of countable sets is countable.

26" Question Prove that the following sets are countable:

a) Z, the set of integers, b) Q, the set of rational numbers.

19



Chapter 2

Sequences

2.1 Sequences

Definition 2.1 A sequence of elements from a set A is a function X : N — A.

When A = R, we have a sequence of real numbers. If A is a set of functions, we

have a sequence of functions.

Notation: If X : N — A is a sequence, the element X (n) € A is usually denoted
by x, instead of X (n), and the function X itself by X = {x1, 29, -+ } or X = {x, }nen
or simply X = {z,}.

Examples:

1) Consider the sequence of real numbers X = (x,,) where x,, = (—1)", n € N.

The set of values of this sequence is {(—1)" : n € N} = {—1,1}, while the
sequence itself is given by X ={-1,1,—-1,1,---}.

2) Let Y = {y,} where y, = . In this case, Y = {1,1/2,1/3,1/4,--- }. Here,
the set of values is identified with the sequence itself.

Remark: Unless stated otherwise, the sequences we will deal with from now on

are real numbers.

2.2 Limits of Sequences

Definition 2.2 We say that a sequence X = {x,} has a limit | € R (or converges
to 1) if for each € > 0, there exists a k(¢) € N such that if n > k(e) then |z, —1| < e.

In this case, the sequence is said to be convergent to | and we denote:

lim x, =1 or limz, =1 or simply x, — .
n—-+00

20



Sequences 2.2 Limits of Sequences

Examples:

1) Let Y = {y,} where y,, = % We have y,, — 0 as n — +oo because, given
e > 0, I can consider k(¢) > 1 (Archimedean property) such that if n > k(e) > 1
then L <e.

2) Let X = {x,} where z, = X\ € R, for all n € N. It is clear that x, — A since
|z, — Al =0 <e.

Proposition 2.3 (Uniqueness of the Limit) Let X = {z,} be such that x, — 1
and x,, —U'. Thenl =1.

Proof: Suppose, by contradiction, that [ # [” and consider 0 < ¢ = ‘Z_QH. Since

x, — 1, there exists k;(g) such that
|z, — <5:wifn>k1(5). (2.1)
On the other hand, since x,, — [’, there exists ky(¢) such that
|z, — U] <8:@ if n > ko(e). (2.2)

Note that if k(¢) := max{ki(¢), k2(¢) }, then (2.1) and (2.2) hold simultaneously.
Adding (2.1) and (2.2) member by member, we obtain:

|z, — U + |z, = U| < [l =U|,Yn > k(e) (2.3)
However,

=1 = [l —xp+z, =1 (2.4)

< |xn - l| + |xn _l,|'

From (2.3) and (2.4), it follows that |l — I'| < |l —[’|, which is an absurdity,
proving the desired result. [ |

Proposition 2.4 Let A = {a,} and X = {z,} be sequences such that for a real

number | and a real number C' > 0, we have
|z, — 1] < Clay|, for alln € N.

If a, — 0 then x, — [.

21



Sequences 2.2 Limits of Sequences

Proof: Let ¢ > 0 be given. Since a,, — 0, there exists k(¢) € N such that

€

la,| < =, Yn > k(e). (2.5)
C
Hence:
|2y — 1] < Clay)| <c-%:g,\mzk(€), (2.6)
which proves the desired result. [ |
Applications:
1la) Consider the sequence {Hlm}neN where a > 0. Since 14 na > na, it follows
that
1 1 1 1 1
= <— ===
1+ na l+na na a n
Since + — 0, it follows from Proposition 2.4 that —— — 0.

Lemma 2.5 (Bernoulli’s Inequality) Ifa € R, a > —1 then:

l+na<(l+a), VneN.

Proof: We will proceed by induction on n. Indeed, if n =1, then 1+1-a=1+a.
Assume the inequality holds for n > 1 and let us prove its validity for (n+1). In

fact, since a > —1 and from the inductive hypothesis, it follows that:

(1+a)" = (1+a)"(1+a)
(I1+na)-(1+a)

v

= 1+ a+ na+nd

1+ (n+1a+ na® >1+ (n+1)a,
>0

ie.,

(14+a)"™ > 14+ (n+1)a,
which proves the desired result. [ |
2a) Consider the sequence {0"} where 0 < b < 1. Then 0" — 0.

If b= 0, it is trivial. Suppose 0 < b < 1. Then b = 1%@ for some a > 0. In truth:

1
a::g—1>OsinceO<b<1.

22



Sequences 2.2 Limits of Sequences

Hence, from Bernoulli’s Inequality:

1 \" 1
b" = < . 2.7
(1+a) ~ 1l+4an (2.7)

Since — — 0 (Application 1a), it follows from (2.7) and Proposition 2.4 that

1+4+an
b" — 0.

3a) Consider the sequence /a, a > 1.

Since a > 1, it follows that {/a > 1, and therefore {/a = 1+ h,,, for some h,, > 0
and for all n € N.
Hence, a = (1 + h,)", for some h, > 0 and for all n € N, and by Bernoulli’s

inequality, we have
a=(1+h,)" >1+nh,,

which implies

a>1+nh,,
and therefore
nh, <a-—1,
or,
—1
0<h, <22
n
Since
—1 1
lim ©—~ =(a—1) lim - =0,
n—-4oo n n—-+oo N,

it follows from Proposition 2.4 that h,, — 0, and therefore,

lim Ya=1, ifa>1.

n—-+oo

Exercise: Prove that:

lim Ya=1, f0<a<1.

n—-4o00
Exercise: Prove that:

lim /n = 1.

n—-+00

Definition 2.6 A sequence is said to be bounded if there exists a real number M > 0
such that |x,| < M, for all n € N.

Proposition 2.7 Every convergent sequence s bounded.

23



Sequences 2.2 Limits of Sequences

Proof: Let X = {z,} be convergent, i.e., there exists [ € R such that z, — [. If
we take € = 1, there exists k € N such that

|z, — 1] <1, Vn >k,

which implies that

|z, | < |I|+ 1, Vn > k. (2.8)
Letting
m := max{ |z, |va|, -, |Tr_1]}, (2.9)
and
M := max{m, |l| + 1}, (2.10)

from (2.8), (2.9) and (2.10) we deduce that |z,| < M for all n € N, which proves
the desired result. [ |

It follows immediately from Proposition 2.7 that if {x,} is not bounded, then it

is not convergent.

Theorem 2.8 Let X = {x,} and Y = {y,} be sequences.
1) If v, > 1 and y, — s then x, +y, — |+ s.
2) If x,, — | and ¢ € R then cx, — cl.
3) If x, — | and y,, — s then x,y, — ls.
4) If x, — 1 and y, #0, for alln, and y, — s #0 then%ﬁé.

Proof: 1) Given € > 0, there exist ki(g), ka(€) € N such that:

lzn — 1| < 5, VN > k() (2.11)
yn — 8| < 5, Vn = ka(e) (2.12)

Taking k(e) = max{ki(¢), k2(e)}, inequalities (2.11) and (2.12) hold simultane-
ously, and furthermore:
(@n +yn) = (L4 8)] = [zn =140 —s|

S ’mn_l‘+‘yn_3‘

E €
< 2+2 g, Vn > k(e)

2) Exercise

24



Sequences 2.2 Limits of Sequences

3) Let us note initially that:

< lzallyn = sl + Jan — 1 [s].

Since {x,} is convergent, then according to Proposition 2.7, {z,} is bounded,
i.e., there exists M > 0 such that:

|z,| < M; ¥n € N. (2.14)

On the other hand, since x,, — [, then given € > 0 there exists a ki(¢) € N such
that

£
T, =l < ———; Vn > ki(e). 2.15
Also, since y,, — s, for the given &, there exists kq(e) such that

[yn — s| < ﬁ; Vn > ks(e). (2.16)

Combining (2.13)-(2.16), it follows that for all n > k(¢) = max{k;(¢), k2(e) (note :
k > k(eps)inoriginal, changedton > k(eps))}:

|[Znyn — sl < || |yn — [ + 20 — [ |s|

19 19
< M
o s 1
< EpE_,
2 2

*(Note: Corrected a small typo in the original text’s final line ...(|s| + 1) -> ...|s|)*

4) Exercise. |

Proposition 2.9 Let X = {z,} be a sequence and Xy = {xn}n>pi1. Then X
is convergent if and only if Xy is convergent and lim X = lim X,,. *(Note: The
original text’s Xy = {xprqn} s slightly ambiguous. 've interpreted it as a "tail” of

the sequence starting from index M+1)*

Proof: We must prove that:
{zk }r>nr converges < {xy}r>1 converges .

*(Note: M vs M+1)*
‘=7 If {x }x>nr converges to [, then, given € > 0 there exists k(¢) € N; k(e) > M
such that
|z, — 1] < e, Yk > k(e).
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Sequences 2.2 Limits of Sequences

This definition also works for {zy}i>1.

‘=’ If {x }x>1 converges to [ then given € > 0 there exists k(¢) € N such that
|z, — 1] <&, Vk > k(e).

Take k*(¢) = max{M, k(e)}. Then for all & > k*(¢), we have &k > M and
k> k(e), so
|z, — 1] < e, Vk > k*(e).

*(Note: The original text has a small error in the last line, corrected here to k >
k*(e))* u

Proposition 2.10 Let X = {x,} be a sequence of positive terms, i.e., x,, > 0 for
alln € N. If

. Tn+1
lim

=L erists and L <1,
n—+oo I,

then the sequence {x,} is convergent. Furthermore, x, — 0.

Proof: Since L < 1, there exists » € R such that L < r < 1. Consider e =r— L >
0. Since =25 — L, there exists k() € N such that

Totl L‘ <e=r—L, foralln>ke),
Ty

ie.,

—7’+L<In+1—L<r—L, for all n > k(e),
Tn

or rather,

OL —r < 2 < forall n > k(e).
Tn

Since the {z,} are positive, it follows that

0< Tt r, forall n > k(e),

Tn

which implies

Tpi1 < rxy,, forall n > k(e).
Hence, for n > k(e):

—k(e)+1

Tpt1 < TTp < P2 @y < 13%p_g < - < 1" The)

Tpi1 < (r_k(e)“m(g)) r*=Cr"

where C' = r~*&+1g, ) is a positive constant (since k(e) is fixed).
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Sequences 2.2 Limits of Sequences

Since 0 < r < 1, we know r™ — 0 (Application 2a). From the inequality above
and Proposition 2.4 (with a, = r"), it follows that z,,1 — 0. By Proposition 2.9,

we conclude that z,, — O. |

Exercise: Use the same type of reasoning to show that if L > 1, the sequence

{z,} is not bounded and therefore diverges.

Observation: In the case L = 1, nothing can be concluded about the behavior
of the sequence. Find examples of sequences that have different behaviors.

Example: Consider the sequence {2%}

In this case x, = 5, from which we conclude that:

n . 12" ) 1 1 1
im 2 — fim nt — = lim _n =— <1
n—+oo I, n—+oo 2Tl n—o+o00 2 N 2

By Proposition 2.10:

Proposition 2.11 If X = {z,} and Y = {y,} are sequences such that z,, > y,, for
alln, x, — [ and y, — s, then | > s.

Proof: It is sufficient to prove that
If h, - hand h, >0=h > 0. (2.17)

Suppose, by contradiction, that h < 0. Since h,, — h, then given € := —h > 0, there
exists k = k(e) such that

|hn — h| <e=—h, foralln >k,
whence:
h < h,—h< —h, foralln>k,

ie.,
2h < h, <0, foralln >k,

which is a contradiction, since h,, > 0 ¥n € N. This proves (2.17). To conclude the
proof, it suffices to take h, = x, —y, and h =1 — s and apply (2.17). [

Proposition 2.12 [Squeeze Theorem| If X = (z,), Y = (yn) and Z = (z,) are
sequences such that | = limX = limZ and z, < y, < z, for all n € N, then
limY = 1.
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Sequences 2.3 Monotone Sequences

Proof: Given € > 0 there exists k = k() > 0 such that
|z, — 1| <eand |z, — | <e,Vn >k,
or rather,
—e<x,—l<eand —e<z,—1<¢eVn>k. (2.18)
But, by hypothesis
Tn<yp<zpox,—l<y,—1<z,—1. (2.19)
Combining (2.18) and (2.19) yields
—e<xp,—1<y,— 1<z, —1l<e,Vn >k,
from which we conclude that
lyn — 1| <&, Yn > k.

The case x,, > vy, > 2, is proved similarly. |

2.3 Monotone Sequences

Definition 2.13 A sequence X = {x,} is said to be monotone increasing if x, <

Tpi1, for all n € N (it is said to be monotone non-decreasing if x, < x,.1, for all

n € N). Similarly, a monotone decreasing (respectively non-increasing) sequence is

defined. A sequence is said to be monotone if it is either non-decreasing or non-

mcreasing.

Examples:

1) X = {2} is monotone decreasing.
2) Y = {n} is monotone increasing.

3) Z = ((—1)") is not monotone.

Theorem 2.14 Let X = {z,} be a monotone sequence. Then, X is convergent if

and only if it is bounded.

Proof: We have already seen that if X is convergent then it is bounded (Proposition
2.7), regardless of whether it is monotone or not. It remains for us to show that if

X is bounded, it is convergent. Suppose X = {z,} is monotone non-decreasing, i.e.,
Tn < Tpa1, Vn € N (2.20)
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Since X is bounded, the set of values {x, : n € N} is bounded. Hence, there

exists
" = sup{x, : n € N}. (2.21)
We will show that
" =limx,. (2.22)

Indeed, given ¢ > 0, by virtue of (2.21) and condition (2’), there exists k =
k() > 0 such that

Tt —e <z <at. (2.23)

Hence, if n > k, then from (2.20) it follows that x,, > zj, and from (2.23) and
(2.21) it follows that

r—e<xy <z, <z"<x"+¢e Vn>k, (2.24)

and therefore

|z, —2*| <e, Yn >k,
which proves the desired result in (2.22). |

Exercise: Complete the proof of the Theorem above for monotone non-increasing

sequences.

Example: Consider the sequence X = {z,} where z; = 1; x,,1 = %(an + 3);
n > 1.

(i) {x,} is monotone increasing. We will use induction on n.
1)z =1, ZL‘2:%:>ZL‘1<I2.
2) Ifz, <zpp = Tppr < Tpgo.
Indeed:
Tyl = %(an +3) < i(anH +3) = Tp40.

(ii)) We will show that z,, < 2, for all n € N. We will use induction on n.

1) ;my=1<2

) fx, <2= 2,1 <2

Indeed, z,,1 = %(2%1 +3) < %(2 -243) = ;Z < 2. Hence, 1 < x,, < 2 for all
n € N. Thus {x,} is bounded.

By Theorem 2.14 or the Monotone Sequence Theorem, the sequence {x,} is
convergent. Let:

[ = lim x,.
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Sequences 2.3 Monotone Sequences

Since

1
Tntl1 = Z(Ziﬂn + 3)

it follows that

1
l:1(21+3)<:>4l=2l+3<:>2l:3<:>l:;

Exercise: Let a > 0, consider a; > 0 arbitrary and define

1 a
(ln+1:§ an+a— .

i) Show that: a2 > a, for all n > 2.
ii) Show that {a,} is decreasing (for n > 2).
iii) Show that: 0 < a, — a < ai—;“

Definition 2.15 Let {z,} be any sequence. Let {r,} be an increasing sequence of
natural numbers r1 < ry < --- <r, <---. Then the sequence Y = {z,,_} is called a
subsequence of X = {x,}.

Example: Let X = {,} where z, = 1. If Y = {y,,} where y, = 5, then Y is a

subsequence of X.

In truth:
X=01,1/2,1/3,1/4,1/5,1/6,1/7,1/8,---).

Y = (1/2,1/4,1/8,--).

(Note: Y corresponds to r, = 2")
Attention:
Z = (1,1/2,1/5,1/5,1/6,1/6,---)

is not a subsequence of X. Why?

Theorem 2.16 [Bolzano-Weierstrass| If X = {x,} is a bounded sequence, it pos-

Sesses a convergent subsequence.

Proof: Let {z,} be bounded. Then there exists M > 0 such that |z,| < M, for
alln e N ie.,
—-M < x, <M, VneN.
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Then, it makes sense to define:

yl = Sup{xl’-.. 71'”’...}
Y2 = sup{xg,--- 71’n,"'}

yS — Sup{xg’... 71;7,“...}

Yn = sup{xn, Tn+1, }

In this way, we construct a sequence Y = {y,} such that:

(This is a non-increasing sequence).

Note that:
M Z Sup{ajl,"',xn7"'}:yl
> Yo Z Y3 = 2 Yne
But
Yn = SUP{Tn, Tpy1, -+ } = inf{e,, 2pp0, - }
2 inf{ml,...’xn7...}
> —M, VneN.

Thus, Y = {y,} is monotone (non-increasing) and bounded. By the Monotone

Sequence Theorem:
limy, = inf{y,} =infY =y. (2.25)

(This y is the limsup z,,).
We claim that: For each ¢ > 0 and N € N, there exists m > N such that

|zm —y| <e. (2.26)

Indeed, since y,, — y, for the given € > 0, there exists p € N, p > N such that

€
[p =yl < 3 (2.27)
Since y, = sup{z,, Tp+1,- - - }, by the approximation property of the supremum

(Prop. 1.1(2’)), there exists m > p such that
€
Yp — 5 < Ty < Yp,
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Sequences 2.4 Cauchy Sequences

ie.,

Yp — T < = = |Yp — | < =. (2.28)
——

Combining (2.27) and (2.28), it follows that there exists m > p > N such that

[Zm =yl <2 = ypl + |y — vl

€+€—E
2 2 7

which proves (2.26).

We will now choose, for each k € N, an z,, such that
1
|z, —y| < z and  ny > ng_;. (2.29)

In fact, from (2.26) we proceed inductively:

Given € =1 and N = 0, there exists m = n; > 0 such that
|z, —y| < 1.
Given € = 1/2 and N = ny, there exists m = ny > ny such that
|z, —y| < 1/2.
Given € = 1/3 and N = ny, there exists m = n3 > ny such that
|zn, —y| < 1/3.

Proceeding in this manner, we construct a subsequence {x,, } of {z,} satisfying
(2.29). Tt follows from this and the fact that + — 0 that x,, — y, which proves the
desired result. u

2.4 Cauchy Sequences

Definition 2.17 A sequence X = {x,} is called a Cauchy sequence if for each

e > 0, there exists a k(e) € N such that if m,n > k(e) then |x, — x| < e. ‘Terms
of high order are sufficiently close’.

Proposition 2.18 FEvery convergent sequence is a Cauchy sequence.
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Proof: Let {z,} be a convergent sequence. Say z,, — | as n — +o00. Thus, given
e > 0, there exists k(¢) € N such that

2 — 1] < % Vn > k(e). (2.30)

It follows from (2.30) and the triangle inequality, for all m,n > k(e), that:

|2y — | = |op =14+ 1— 24|
< e =1+ |zm =
< ° + - €
2 2 7
which proves the desired result. [ |

Remark: The result above is valid in any metric space. However, the converse
depends on the space where the sequence is defined. In the case of real numbers,

the converse is true. A space where this occurs is called complete.

Theorem 2.19 If X = {z,} is a sequence of real numbers and is Cauchy, then X

18 convergent.

Proof: (i) Initially, we will prove that {z,} is bounded. Indeed, given € = 1, there
exists £ € N such that if m,n > k then

|Ty — 2| < 1.
Taking m = k (fixed), it follows that
|z,| < 14 |xg|; Vn > k. (2.31)
On the other hand, letting
M = max{|xy|, -, |ze-1], 1 + |2k|},
from (2.31) we have
|z,| < M; Vn €N, (2.32)

which proves the boundedness of {z,}.
(ii) It follows from (2.32), by virtue of the Bolzano-Weierstrass Theorem, that

there exists a convergent subsequence {z,, } of {z,}, say:

Ty, — L as k — +o0. (2.33)
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We will, in fact, prove that
x, — lasn — +oo. (2.34)

Indeed, let € > 0 be given. From (2.33), it follows that there exists K;(e) such
that for & > K;(e):

T, — 1] < = (2.35)

*(Note: Original text had ny > ki(¢) which is slightly imprecise, k > K; is stan-
dard)*.
On the other hand, since {x,} is Cauchy, there exists ka(¢) € N such that

|Tp — Tp| < g; Vn,m > ko(e). (2.36)

Let K(e) = max{K;(¢), k2(¢)}. Let n > K(¢e). Since k — oo = ny — 00, we
can choose k large enough such that £ > K(¢) AND ny > K(e). Then, for such n

and ng:
[T =l = |20 — 2y + Tpy, —
< ‘xn o xnk’ + |xnk o l|
< 4=t
2 2
which proves (2.34) and concludes the proof of the Theorem. |
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Exercises: Real Numbers and Limits

182 Question (Nested Intervals) Given a decreasing sequence Iy D I D -+ D
I, O ... of bounded and closed intervals I,, = [a,, b,], there exists at least one

real number ¢ such that ¢ € I,, for all n € N.
274 Question Prove that the set of real numbers is uncountable.
374 Question Prove that every non-degenerate interval is uncountable.

4t Question Prove that every non-degenerate interval I contains rational and

irrational numbers.
5th
not all zero, such that
ap?" + a2 M 4+ ap_1z +a, = 0.
Prove that the set of all algebraic numbers is countable.
62 Question Prove that there exist real numbers that are not algebraic.
7th Question Is the set of all irrational numbers countable?

8th Question (Bernoulli’s Inequality)

a) If n € N and z € R with © > —1, demonstrate that (1 + z)" > 1 + nx.

b) If n > 1(n € N) and x > —1(z € R), demonstrate that (1 + )" > 1 + nz,
provided that x # 0.

9th Question Ifn € Nand —1 <z < %, demonstrate that (1+2)" < 1+nz+nz?
102 Question Let X = {%,n € N}. Prove that inf X = 0.

112 Question Let A C B be non-empty bounded sets of real numbers. Prove
that inf B <inf A <sup A < sup B.
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12th

13t

14tk

15tk

16"

17t

18t~

Question Let A, B be non-empty sets of real numbers such that forall z € A

and y € B, we have x < y. Prove the following statements:
a) sup A < inf B.

b) For sup A = inf B, it is necessary and sufficient that for every given € > 0,

there exist € A and y € B with y —z < e.

Question Let A, B C R be non-empty and bounded sets, and let ¢ € R.

Prove the following statements:
a) the set A+ B ={r+y; x € A,y € B} is non-empty and bounded,

b) the set cA = {cz; © € A} is non-empty and bounded,

)
c¢) sup(A + B) = sup A + sup B and inf(A + B) = inf A + inf B,
d) if ¢ > 0 then sup(cA) = csup A and inf(cA) = cinf A,

)

e) if ¢ < 0 then sup(cA) = cinf A and inf(cA) = csup A.

Question Let f,g : X — R be bounded functions and ¢ € R. Prove the

following statements:
a) the functions f 4+ ¢g: X — R and ¢f : X — R are bounded,

b) sup(f +¢g) <sup f +supg and inf(f + g) > inf f + inf g,

) su
¢) if ¢ > 0 then sup(cf) = csup f and inf(cf) = cinf f,
d) if ¢ < 0 then sup(cf) = cinf f and inf(cf) = csup f.
Question If f: X — Ris bounded, m = inf f, M =sup f and w = M —m,
demonstrate that w = sup{|f(z) — f(y)|; z,y € X}. *(Note: Corrected the

original w = M — w to w = M — m based on context)*

Question Let A’ C A and B’ C B be non-empty and bounded sets of real
numbers. If for each a € A and each b € B there exist '’ € A" and v € B’
such that a < a' and ' < b, then sup A’ = sup A and inf B’ = inf B.

Question If z; = /2, and 2,0 = \/2+ /%, (n =1,2,..), prove that
(x,,) converges and that x, < 2 forn =1,2,3,.... *(Note: Corrected recursive

formula slightly to match typical problem or left as is if specific)*

Question Prove the following limits:
a) If p > 0, then lim,,_,., ¢/p = 1.
b) lim,, o /n = 1.
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«a

c) If p> 0 and « > 0 is real, then lim, (l-riL-—p)” =0.
d) If |z| < 1, then lim,, ., 2™ = 0.
e) If a € R, then lim,, (Z_,: =0.

19" Question Prove that the sequence (z,) such that

1 1 1
n=1l—=4=—... 1)1z
. 2+3 +(=1) n

has a limit a € (5, 1).

20t Question Given a > 0, prove that the following sequence (x,,) is convergent

Vi Jax v forfat v

and calculate lim x,,:
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Chapter 3

Topology of the Line

3.1 Accumulation Points and Adherent Points

Definition 3.1 Let v > 0. The set B,(x) is read as: open ball centred at x with

radius v > 0 and is defined as
B(z)={yeR:|y—a| <r}
In truth:
ly—z|<rec—-r<y<z+r.

Therefore:
Bi(x)={yeR:z—r<y<z+r},

which is nothing more than the open interval (x — r,x 4 r).

Similarly, the closed ball B, (z) centred at x with radius r is defined as
By(z)={yeR:|y—a| <r},

which is, in fact, the closed interval [z — r, x + r].

Definition 3.2 Let E C R, E # (). A point x € R is said to be an accumulation point
of E if for all r > 0 we have B,.(x) N (E\{x}) # 0. In other words: x € R is said

to be an accumulation point if every open ball centred at x contains a point of E

different from x.

x is an accumulation point of E if and only if given r» > 0, there exists y, €
E N (z —r,x+r) such that y,. # .

Example 1: Let £ = {% :n € N*}. Then z = 0 is an accumulation point of E

because given r > 0, there exists an n(r) € N such that 0 < ﬁ < r. It suffices to

consider n large enough so that n > 1/r.
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Topology of the Line 3.1 Accumulation Points and Adherent Points

Figure 3.1:

Example 2: Let A = (2,4]. Then z = 2 is an accumulation point of A because

given r > 0 we can always choose y € (2 — 7,2+ r) with y # 2 (and y € A).

(b

2—r 2 247

Figure 3.2:

In the example above, note that all points in A are accumulation points of A.

However, 2 ¢ A and is an accumulation point of A.

In Example 1 above, note that the only accumulation point of £ is = 0. Verify
this fact.

Remark: Note that an accumulation point of a set does not need to belong to

the set in question.

Definition 3.3 Let E C R, E # 0. A point x € E is said to be an isolated point if

x 1s not an accumulation point of E.

In other words: x is an isolated point if and only if there exists ry > 0 such that
By, (x) N (E\{z}) = (). This means there must exist a number ro > 0 such that the

open ball B, (z) contains no points of E except for x itself.

Example 3: Let E = (1,3] U {4,5}.

The points * = 4 and x = 5 are isolated because 4,5 € E and there exists
ro = 1/2 such that

Byjs(4) N E = {4} and By;(5)NE = {5}.
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Proposition 3.4 Let E C R, E # 0. If x is an accumulation point of E, then for
all v > 0, the ball B.(x) contains infinitely many points of E.

Proof: Suppose, by contradiction, that there exists rg > 0 such that the ball
B,,(z) contains only a finite number of points from E. Let zy,---,x, be those

points (different from x). Let
r=min{|z — x|, , |z — z,|}.

Since z; # x, we have r > 0. Then the open ball B,(z) contains no points of £
other than = (if « € F), which contradicts the fact that x is an accumulation point
of E. [

Proposition 3.5 Let E C R, E # (. If x is an accumulation point of E, there

exists a sequence {x,} of elements of E, pairwise distinct, converging to x.

Proof: Let r; = 1. By Proposition 3.4 (infinitely many points), there exists z; € E
such that 0 < |z — 21| < 1.

Let ro = min{|z; — z|,1}. By Proposition 3.4, there exists 2o € E such that
0 < |zg — x| < 1o

Let 5 = min{|z, — x|, 5}. Similarly, there exists x5 € E such that 0 < |z — 3| <
r3.

Proceeding in this manner, we obtain a sequence {z,} of elements of E such
that:

1
0<|zpy1 — x| < |z, —2| and |z, —z| < —.
n
Thus, the x,, are pairwise distinct and, furthermore, z,, — x as n — 4o0. [ |

Definition 3.6 Let E C R, E # (. A point v € R is said to be adherent to E if
for allr >0, B.(x)NE # 0.

In other words: Given r > 0, the open ball B,.(z) must contain at least one point

of F; in this case, it could be z itself, if z belongs to E.

Proposition 3.7 If x € R is adherent to E, then there ezists a sequence {x,} of

elements of E converging to x. (Now not necessarily of pairwise distinct elements).

Proof: Take r = 1. Then for each n € N*, By, (z) N E # 0.
For n =1 = there exists z; € By(z) and z; € F,
For n = 2 = there exists 2, € By/2(x) and x, € F,
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For n = there exists z,, € By,(x) and x, € E.
Thus, from the fact that z, € Bi,(z), we have |z, — x| < %, and therefore
T, — T asn — +oo with {z,,} C E. It may happen that z,, = z for all n (if x € E).

Remark: Tt is worth noting that every point of F is an adherent point to FE,
because given r > 0, B,(z) N E # () since x € B,.(x) (as it is the centre) and = € E,
by hypothesis.

Let us also note that every accumulation point of £ is an adherent point to E,
because if € R is an accumulation point of E, then given r > 0, B,.(z)N(E\{x}) #
@, and all the more so B,(z) N E # ().

Let us define:
E’ := the set of all accumulation points of E.
E := the set of all adherent points to E.

FE is called the adherence or closure of E.

From what we have seen above: E C E as well as E' C E.
So:

EDEUE. (3.1)
On the other hand, we claim that:
ECEUE. (3.2)

In fact, take 2 € E. Then given r > 0, B,(z) N E # 0, i.e., for each r > 0, there
exists y, € B,(z) and y, € E. We have two cases to consider:

(i) vy, # = (for arbitrarily small r). In this case, z is an accumulation point of
E,ie,x € F.

(ii) y, = = (for some r, and for all smaller r, the only point is x). In this case,
since vy, € E, it follows that = € E.

Thus, x € E' or x € E, which proves (3.2). From (3.1) and (3.2) we conclude
that:

E=EUE. (3.3)

Example: Let E = (1,3] U {4, 5}.

We have:
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B =13

{4,5} are isolated points.

1 ¢ E is an accumulation point of E.
E =[1,3]U{4,5}.

3.2 Open and Closed Sets

Definition 3.8 Let E # () and E C R. x € F is said to be an interior point of E
if and only if there exists r = r(x) > 0 such that B,(x) C E.

Example: Let £ = (1,3). Then z = 2 is an interior point of E because there
exists ro = 1/2 > 0 such that B/»(2) C E.

See Figure 3.3.

Proposition 3.9 Let E = B.(z) ={yeR:|ly—z| <e}=(r—e,x+¢), e > 0.

Then, every point of E is an interior point of E.

Proof: TLet y € B.(z). We must exhibit » > 0 such that B,(y) C B.(x). Let us
take r := ¢ — |y — z|. Note that r > 0 since |z — y| < € (because y € B.(x)).

[ claim: B,(y) C B:(z)

Indeed, take z € B,(y). Then |z —y| < r. We want to prove that |z — x| < ¢,
i.e., z € B.(x). Indeed,

-z < |z—y[+|y—z|
< r+ly—z
= e—|y—z|+ly—=z|l=e

Therefore, |z — x| < e, which proves the desired result. [ |
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It follows from this that every point of any open bounded interval of the line is

an interior point of it.

We define: E° := the set of interior points of a set E. EY is called the interior of the set
E. Clearly E° C E.

Definition 3.10 A subset E C R is said to be open if every point of E is an interior
point of E.

As we saw above, every open and bounded interval of the line, or equivalently,

any open ball in R, is an open set.

Attention: The set A = (1,3] is not an open set since x = 3 is not an interior
point of A. In fact, recall that zo € A is an interior point of A if there exists » > 0
such that B,(xzy) C A. Negating this fact, we would have: For any r > 0, the open
ball B,(zo) € A. With respect to the set A = (1,3] above, and for zy = 3, then
whatever r > 0 is, the ball B,(3) is not contained in A. Note that for all » > 0 there
will always exist a y € B.(3) = (3 — 7,3+ r) with 3 < y < 3 4 r, implying that
B,(3) € A. See Figure 3.4.

Figure 3.4:

Remark: The set () (empty set) is open. Indeed, a set E can only fail to be open
if there exists some point in E that is not an interior point. Since there are no points
in (), we must admit that () is open. Evidently R is also an open set, since every

point of R is an interior point of R.

Proposition 3.11 Let {E,}acr be a family of open sets. Then E = |J E, is open.
acl
Proof: Let x € E. We must exhibit an r > 0 such that B,.(z) C E. In fact, since

r € |J Ea, then z € E,, for some a. Since E, is open, by hypothesis, there exists
ael
an r > 0 such that B.(z) C E,, and as E, C E, the desired result is proven. [ |
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Topology of the Line 3.2 Open and Closed Sets

Remark: This fact is not true for the arbitrary intersection of open sets. Let’s

see a counter-example. Let us define

n n

11 =
E,=(-=,~)in=123 and E=)E,

n=1

We claim that E is not open. Indeed, let us first observe that:

E = {0}. (3.4)

Proof: In fact, it is clear that

{0}cE+ﬁo L
_n:1 nan 9
11

—) for all n € N*. Let x € E and suppose, by contradiction, that

n’n

since 0 € (—

x # 0. Then |z| > 0 and therefore there exists a natural number ny such that

0 < & < |z|. This means that = ¢ <—L, i) = E,,, which is an absurdity, since
0 no’ no

x € E, for all n € N*. This proves that £ C {0}, i.e., E = {0} as alluded to in
(3.4). It follows that:

+o00 11
E — L — — 0
n|:1| ( nn) {0,
and it is clear that {0} is not an open set. |

Remark: Let (a,+00) be an open and unbounded interval. Note that we can

write:
400

(a,4+00) = U(a,a +n),

n=1
so that by virtue of Proposition 3.11, the interval (a,+o0) is indeed an open set.

Similarly, it can be verified that (—oo,a) is in fact an open set in R.

Definition 3.12 A set F' C R is said to be closed if F' contains all of its accumu-

lation points. In other words:

F is closed < F D F'.

Remark: Recall that from (3.3) we have F = F' U F'. If F is closed, then F' C F
and therefore
F=FUF CF

Since F' C F is always true, it follows that
Fisclosed < F =F. (3.5)
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Topology of the Line 3.2 Open and Closed Sets

Examples:

1) The set F' = {1,2,3} is closed because in this case the set of accumulation
points of F' is empty, since all points of F' are isolated. Thus, F' = () C F. Another
way to see that F is closed comes from the fact that F = F (since F' = ().

2) The set F' = [1,3]U{4} is closed because, in this case, F’ = [1, 3] (since x =4

is an isolated point) and therefore F' O F’. Furthermore:

F=FUF =(1,3]u{4})U]1,3] = F.

3) The set A = {1/n}nen- is not closed because in this case A" = {0} and A 2 A’.
However, the set F' = {1/n},en< U{0} is a closed set because F' = {0} and F' D F".
Also,

F=FUF={0}U{1/n}penU{0}) =F.

The definition above might not help us perceive if a set is closed. We have the

following result:

Proposition 3.13 A set A is open if and only if R\ A is closed.

Proof: Suppose first that A is open and, by contradiction, that R\ A is not closed.
Then, there exists o € (R\A)" such that o ¢ R\A. Now, since xy ¢ R\ A, then
zg € A, and A being open, there exists » > 0 such that B,(zg) C A. On the
other hand, since zy € (R\A)', it follows that B,(zq) N (R\A) # 0, i.e., there
exists y € B.(z) with y € R\ A, and therefore y ¢ A, which is an absurdity since
B, (xg) C A.

Conversely, suppose that R\ A is closed and, by contradiction, assume that A is
not open. Thus, there exists zy € A such that for all € > 0, B.(x9) € A. That is,
for each € > 0 there exists y. € B:(zo) with y. ¢ A and y. # z (since if y. were
equal to xo then y. would belong to A, which is an absurdity). Thus, xy would be
an accumulation point of R\ A, and by the fact that this set is closed, we would have

zo € R\ A, which is an absurdity as zy € A. [ |

Corollary 3.14 A set F is closed if and only if R\F is open.

Proof: It suffices to set A = R\F in the previous proposition. [ |

Examples:

(i) Any closed ball B.(xy) = [z — &,x¢ + €] or any bounded and closed interval

is indeed closed.
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Topology of the Line 3.2 Open and Closed Sets

(ii) Sets of the type F' = {1, 29, -+ ,x,} are closed because their complement
is open.

(iii) @ and R are also closed.

Remark: There are sets that are neither open nor closed. For example, A = (1, 3]
is not open because x = 3 is not an interior point of A (and 3 € A), and it is not

closed because x = 1 is an accumulation point of A but 1 ¢ A.

Lemma 3.15 (De Morgan’s Laws) Let {E,} be a collection of sets. Then:

R\ (U E) —N(R\E).
Proof: Let z € R\ (U, E.). Then = ¢ |J, E.. It follows that « ¢ E, for all a,
ie., r € R\E, for all o, or rather z € (), (R\E,) .
Conversely, suppose that z € (), (R\E,). Then, z € R\E, for all o, and
therefore x ¢ E, for all a. Thus, x ¢ |, E., and hence z € R\ (U, Ea)- |

Analogously,

R\ (ﬂ Ea> =JR\E.). (3.6)

07

Proposition 3.16 Let {F,}acr be a family of closed sets. Then F'= (1, Fa is a

closed set.

Proof: According to Corollary 3.14, it suffices to prove that R\ F is an open set.
Indeed, from (3.6) we have:

R\F = R\ (ﬂ Fa> =J®R\F.). (3.7)

[0

On the other hand, since F, is closed for all «, it follows that R\F, is open.
Consequently, |J, (R\F,) is an open set because it is the arbitrary union of open
sets (see Proposition 3.11). It follows from this and (3.7) that R\ F' is open. |

Remark: An observation analogous to the one made for the case of a collection
of open sets is warranted here. The union of an arbitrary family of closed sets may
not be a closed set. Let’s see a counter-example. Let I/ be a generic set that is not

closed. It is clear that

E=|J{=}.

zeE

However, each set of the type {z} is closed, and yet the union is not.
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Topology of the Line 3.3 Compact Sets

Proposition 3.17 A set E is closed if and only if E = E.

Proof: If E is closed, then E D E’ and therefore ' UE C E. ie., E C E. Since
—
=E
E C E is always true, it follows that £ = E.

Conversely, if E = FE , then E' C E and therefore F is closed. [ |
—EUE'
It follows from Proposition 3.17 that a closed set contains all its adherent points.

3.3 Compact Sets

Definition 3.18 A cover (or covering) of a set E C R is a family € = {C)}rca of
sets Cx C R such that E C |J,c 4 Ch.

Definition 3.19 A subcover (or subcovering) of € is a subfamily € = {C\}rearca
such that £ C |J,c 4 Cx still holds.

Remark: A cover is said to be open when the elements of the family are open

sets. Similarly for a closed cover.

Definition 3.20 A subset K C R is said to be compact if every open cover of K

possesses a finite subcover.

Proposition 3.21 Let K be a compact subset of R. Then K is closed and bounded.

Proof: (i) K is bounded.

Consider, for each n € N, the collection of open intervals given by:
Gy = (—n,n).

It is clear that K C U:i’i GG, since this union covers the entire line. Indeed,
given = € R, there exists an ny € N such that |z| < ng, because otherwise, if we had
|z| > n for all n € N, the natural numbers would constitute a bounded set, which is

an absurdity! Thus,

+oo
x € (—ng,no) = Gy, C U Gh.
n=1
ie, R C :{g G,. Since K is compact, there exist ni,ng,--- ,n, € N such that
.
Kcl|/JGn. (3.8)

=1
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Topology of the Line 3.3 Compact Sets

We can assume, without loss of generality, that n; < ny < --- < n, and therefore

UGm = (—n,,n,). (3.9)
i=1

In this way, from (3.8) and (3.9) it follows that
K C (—n,,n,) = B,,(0),

which proves K is bounded.

(ii) K is closed.

It suffices to prove that R\K is open. Let, then, x € (R\K). I must exhibit
r > 0 such that

B.(x) C R\K (3.10)
Indeed, let us define, for each n € N*:
1 1 1
" = R:ly— —=R - =, —1.
Gu={y €R:ly=al> 1} =R\ o~ 1.0+ 7]

It is clear that, for each n € N*, G, is open, since [w - %, x4+ ﬂ is closed. We

claim that
—+oo
U G =R\{z}. (3.11)
n=1

(a) Take y € ::z G,. Then, y € G,,, for some ny € N*. Thus, y € R and
ly — x| > nio, which implies that y # z, i.e., y € R\{z}.

(b) Take y € R\{z}. Then y € R and y # =. Hence, |y — x| > 0. Let ny € N
be such that |y — z| > nio Thus, y € G, and therefore y € :;3 G, which proves
(3.11).

Since we took z € R\ K, then 2 ¢ K, and from (3.11) it follows that {G,} is an

open cover of K.
+o00
K cR\{z} = JG,.
n=1

Consequently, K being compact, there will exist ny,ns,--- ,n, € N* which we can,

without loss of generality, consider as n; < ny < --- < n, such that:

K C UGn (3.12)

=1

From the fact that G,, C G,, C --- C G,,, it follows that
G =G, (3.13)
i=1
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Topology of the Line 3.3 Compact Sets

Thus, from (3.12) and (3.13) we conclude that

1 1
K c G, =R\ [x——,er—] ;
n, n,
which implies
1 1 _—
R\K D |:.l’ — n—,l' + ?”L_:| = Bl/nr(x) D) Bl/nr<l‘>
In this way, r = n% is the desired radius, which proves (3.10). [ |

Remark: It follows immediately from Proposition 3.21 that if K C R is not closed

or not bounded, it will not be compact.
Next, we will characterize the compact sets of R. First, we need a preliminary

result.

Lemma 3.22 (Nested Intervals Property) Let {I,} be a sequence of closed
and bounded intervals in R such that I, D I,.1, for all n € N. Then ﬂ:{i’i I, is

non-empty.

Proof: Let us define: I,, = [a,, b,].

Sl 1

a1 a2 Qp bn 9 1
I,
Figure 3.5:
We claim that:
an < by, Vn and Vm. (3.14)

Suppose the contrary, i.e., that there exist ng, my € N such that a,, > b,,,. Now,

it is always true that a,, < b,. Therefore:
Qpy < by and apy < by

Hence,
Amyg S bmo < Qpgy S bno-
It follows that
[CLMO’ bMO} N [anm bno] = (2)7
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which is an absurdity since the intervals are nested, thus proving (3.14). Thus,

a, < by, for all n,m € N. In particular
a, < b;;Vn € N as well as a; < b,,;Vm € N.

It follows that the set {a, : n € N} is bounded above, while the set {b,, : m € N}
is bounded below. Thus, by the Supremum Property, sup{a, : n € N} := « exists,
as does inf{b,, : m € N} = .

We claim that

a<p. (3.15)

Suppose the contrary, that a > 3, and consider ¢ = # > 0. Thus, there

exists my € N such that 8 < b,,, < 8+ ¢, and there also exists ny € N such that

a—¢g < ap <.

bm a
0 n
) /A
B o
— I
inf{bnllm € N} 6 te a—e sup{a,; n € N}
Figure 3.6:
But:
_ a—F 264+a—F a+f
B4+e = B+ 5= : ==
a—p 2a—a+pf a+f
oa—& = o— e — )
2 2 2
Consequently
a—+p
B S by < =5 < lng £ &= by < g,

which is an absurdity in view of (3.14), thus proving (3.15).
We conclude then that o < 3, which implies

+oo
o, B] C ﬂ I,
n=1

because if x € [, 5] then o < x < 8, and since a,, < « and 8 < b, for all n, it

follows that a, <z <b, for all n, i.e., z € |a,,b,] = I, for all n, and therefore
+oo
T E ﬂ I,
n=1
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that is,
+oo
v, B] € () I,
n=1
which proves that the intersection of the [,,’s is non-empty. [ |

Remark: In truth:
+oo
[Oé, 6] - ﬂ ]n-
n=1

Indeed, it remains for us to prove that (2] I, C [a, 8]. In fact, let z € I,, = [ay,, b,]

for all n, and suppose, by contradiction, that z < a or x > [5.
(i) if £ < a then @« — 2z > 0. Take ¢ = o — 2 > 0. Hence, there exists ny € N

such that a — e < a,, < o, i.e., @ — (0 — x) < ay,, which implies x < a,,, which is
——

=¢
an absurdity since a,, < x < b, for all n.

(ii) Similarly, we arrive at an absurdity if « > f.
Examples:

(i) Let I, = [-1, 1+ 1], n e N".

+oo

ﬂ I, = [0,1], because

n=1

a=sup{—1/n} =0and 8 = inlg{l +1/n} =1.
ne

neN

(i) Let I, = [-2,1], n e N,

n’n

+oo
m I, = {0}, because
n=1

a=sup{—1/n} =0and g = irelg{l/n} = 0.

neN

Proposition 3.23 Let [a,b] C R be a closed and bounded interval. Then |a,b] is

compact.

Proof: Suppose the contrary, i.e., that [a, b] is not compact. Then there exists an
open cover {G, }aea from which we cannot extract a finite subcover, i.e., there is no
finite quantity of G,’s that cover [a, b].

Define Iy = [a,b] and divide Iy into two equal closed and bounded intervals
such that their union is I. Then, at least one of them, say Iy, cannot be covered
by a finite number of GG,’s, because otherwise, if both could be covered by a finite

number of G,’s, then [a, b] could also be covered by a finite number of G,’s, which is
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a contradiction. Let us then divide I; into two closed and bounded intervals whose
union is /1. Again, at least one of them, say I5, cannot be covered by a finite number
of G,’s. If we proceed this way, we obtain a sequence Iy D I; DI, D--- D1, D ---
of nested intervals such that, for all n, I,, cannot be covered by a finite number of
G, ’s. Note that:

If 2,y € Iy then |z —y| < b—a.

If 2,y € I; then |z —y| < 2.
If 2,y € I then |z — y| < B2

b—a
on

If 2,y € I, then |z — y| < (3.16)

On the other hand, according to the Nested Intervals Theorem, there exists
z* € [a,b] such that z* € (> I,,. Now, since 2* € [a,b] and {G,} is an open cover
of [a,b], it follows that z* € G,, for some ay € A. Since G,, is an open set, there
exists gg > 0 such that the ball B, (z*) C G,,. Let us consider ny € N sufficiently
large such that 2" > =2 (or 222 < &4). We claim that:

€0 210

I, C B, (z"). (3.17)

Indeed, let y € I,,,. Then from (3.16) it follows that |y — x| < 252 for all x € I,,,.

2m0

In particular, from the fact that «* € [,,,, we have

b—a
2n0

|y—517*| S < €o,

which proves that y € B, (z*) and therefore (3.17).
In this way,
ITLO - B€0(‘/E*) C Gam

which is a contradiction, since none of the I,,’s can be covered by a finite number of

G.’s (in this case, by the single set Gy, ). |

Proposition 3.24 Let K C R be compact and F be a closed subset of K. Then F

18 compact.

Proof: Let {G,}aca be an open cover of F. We must exhibit a finite subcover of
F. Indeed, since F' C K is closed (in R), it follows that R\ F is open. We claim
that:

K C <U Ga) U (R\F). (3.18)

a€cA
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Indeed, let x € K. Since F' C K, we have two cases to consider:

(i) « € F. In this case, since {G,} is a cover of F, it follows that x € G, for
some o € A, and therefore z € |J,, Ga.

(ii) = ¢ F. In this case, x € R\ F, which proves (3.18).

Thus, the G, ’s together with R\ F' form an open cover for K. Since K is compact,

it possesses a finite subcover, i.e., there exist aq,--- ,a, € A such that
K CGa UGy, U---UGq, U(R\F).
However, since F C K and F N (R\F) = 0, it follows that
FCcG, UG, U---UG,,,

which concludes the proof. [ |

Theorem 3.25 [Heine-Borel] A subset K of R is compact if and only if it is closed

and bounded.

Proof: It has already been shown that if K is compact, then K is closed and
bounded (Proposition 3.21). It remains for us to prove that if K is closed and
bounded, then K is compact. Indeed, since K is bounded, there exists a closed
and bounded interval [a,b] that contains it (K C [a,b]). Since [a,b] is compact
(Proposition 3.23) and K is a closed subset of [a,b] (as K is closed in R), it follows
from Proposition 3.24 that K is compact, which concludes the proof. [ |

Proposition 3.26 Let K C R be compact. Then for every infinite subset A of K,

there exists x4 € K which is an accumulation point of A.

Proof: Suppose, by contradiction, that there exists an infinite subset A of K such
that no point of K is an accumulation point of A. Thus, for each x € K there exists
€, > 0 such that

B, (z) N (A\{z}) = 0.
The collection {B.,(z)}.cx forms an open cover of K. Since K is compact, there

exist xq,---,x, and €, -+ , &, such that
K c|JB.(z).
i=1
However, as A C K we also have
n
Ac|B. (x)
i=1
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which implies
A=AnN (UB&( ) U L (z)NA).
i=1 i=1
But, Be,(z;) N (A\{x;}) = 0. This means B.,(x;) N A is either () (if z; ¢ A) or
{z;} (if z; € A). In any case, the union (J_, (B, (z;) N A) is a subset of the finite
set {x1,...,2,}. This leads to an absurdity, as we have an infinite set A contained

in a finite set. |

Exercise: Prove the following theorem:

Theorem 3.27 Let K C R. The following statements are equivalent:
(1) K is bounded and closed.
(2) K is compact (by open covers).
(3) Every infinite subset A of K has an accumulation point x4 € K. (Sequential

compactness)

Corollary 3.28 [Bolzano- Weierstrass Theorem| FEvery bounded infinite subset of

R has an accumulation point.

Proof: Let A C R be a bounded infinite subset of R. Being bounded, there exists
[a,b] such that A C [a,b]. As [a,b] is compact and A is an infinite subset of [a, b],
it follows by virtue of Proposition 3.26 that there exists x4 € [a,b] which is an

accumulation point of A. [ |
Remark: Note that if A = {a,}nen is the set of values of a bounded sequence,

there will exist an x4 € R that is an accumulation point of A. This implies there

exists a subsequence {ay, }ren of {a,}, such that a,, — x4 as k — +oo. (This is

the proof of Theorem 2.16).

Definition 3.29 Two sets A and B are said to be separated if: ANB = ANB = 0.

Example: Let A = [1,2) and B = (2,3]. We have A = [1,2] and B = [2,3].
Thus:

Therefore A and B are separated.
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Definition 3.30 A set E C R s said to be connected if for every pair of separated

sets whose union is equal to E, one of them is empty.

In other words:
E is connected < For all A and B separated such that £ = AU B, then A =10
or B=10.

It follows that:

E is disconnected (or not connected) < there exist non-empty, separated sets
A, B C Rsuch that F=AUB.

Proposition 3.31 E C R is connected if and only if it has the intermediate value
property: for every pair of points x,y € E with x < vy, if z € R satisfies v < z < y,
then z € E. (i.e., E is an interval).

Proof: ‘=’ Suppose first that E is connected and consider x,y € FE satisfying

the condition z < z < y and, by contradiction, assume that z ¢ F. Let us define:
A= (—00,2)NE and B = (z,+o0)NE.

We have:
(i) A # 0 because x € E and x € (—00,2) since © < z. B # () because y € E
and y € (z,+00) since z < y.

(i) E= AUB.
Indeed:
AUB = ((—00,2)U(z,+00))NE
= (R\{z})nE.
However, since z ¢ E, it follows that £ C R\{z}, and therefore £ = (R\{z}) N E.
Thus £ = AU B.
(iii) A and B are separated.

Indeed, we will show that AN B = (). It is proved analogously that AN B = (.

In fact,

ANB = ((—o0,2)NE)N((z,+00)NE)
C (—o00,2)NEN((z,+00)NE)
= (~o00,z2lNEN((2,+00)NE)

C | (=o0,2]N(z,+00) | NE = 0.

)
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From (i), (ii) and (iii), it follows that A and B form a disconnection for E, which
is an absurdity since E' is connected.

‘<’ Conversely, suppose that given z,y € F and z € R such that x < 2z < y,
then z € E. We must prove that E is connected. Suppose the contrary, i.e., that F
is a disconnected set. Then, there exist non-empty, separated sets A, B such that
E=AUB.

Take x € A, y € B. It is clear that = # vy, because otherwise AN B and AN B
would be non-empty, which is an absurdity as A and B are separated. Thus, = # v,

and without loss of generality, suppose x < y and define:
z = sup{[z,y] N A}.

Note that z is an adherent point to the set [x,y] N A. Hence,

z € [x,y NAC [z,y]NA,
and therefore,
z € [z,y] and z € A.
Since z € A, then z ¢ B (because AN B = )). Thus z cannot be equal to ¥, since
y € B. So,
z€Aandx <z <y. (3.19)
We have two cases to consider:

(i) 2 ¢ A In this case, since z ¢ A, z cannot be equal to x (as x € A). We then

have from (3.19) that

r<z<uy.
But, by hypothesis (the interval property), it follows that z € E. This is an absur-
dity, since z ¢ A and z ¢ B (as z € A), and therefore 2 ¢ AUB = E.

(ii) z € A Since z € A, then z ¢ B (as AN B = (). Hence, there exists gy > 0
such that the neighbourhood (z — &g, 2z 4 £¢) contains no points of B. This implies
z <y (as y € B). Take 2z, € (z,y]. Since z = sup([z,y] N A), no point in (z,y] can
be in A. Therefore z; ¢ A. Since 2, € (z,y] C [z,y] C E, we must have z; € B.
But this contradicts z = sup([z,y] N A)?

Let’s re-examine the original proof’s argument: (ii) z € A. Since z € A, then
2z ¢ B (as AN B = 0). So, there exists ey > 0 such that (z — g9,z + &9) N B = .
Since z < y (as z € A,y € B), let’s choose z; such that z < z; < min{y, z + &¢}.
Since x < z < z; < y, by the interval hypothesis, z; € E. Since z = sup([z,y] N A),
21 ¢ A. Since 21 € (2,2 +¢9), 21 ¢ B. Thus 21 ¢ AU B = E, which is an absurdity.
This concludes the proof. [ |
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Exercises: Topology of the Real Line

18t Question Prove that for every X C R we have int(intX') = intX and conclude
that int X is an open set.

2nd Question If A and B are subsets of the real line, then:
(a) intA C A.

(b) If A C B then intA C intB.

(c) If A C intA then A = intA.

(d) AcC A

(e) If A C B then A C B. *(Note: Item (e) and (f) in the original were

identical. I kept (e) and removed duplicate (f) unless it was meant to be

something else)*.
(9) If AC B then A’ C B'.

(h) A’ C A.

(i) AUA = A.

(4) If A’ C A then A = A.

(k) Ais closed if and only if A" C A.
() intA C A C A.

(m) RN A = R\ (intA4).

(

n) int(R\ A) = R\ (A4). *(Note: Replaced C with R\ for clarity in topology)*.

374 Question Let A C R be a set with the following property: "every sequence
(x,) that converges to a point a € A has its terms x,, belonging to A for all n

sufficiently large". Prove that A is open.

4th Question Definition. (Neighborhood of a point) Let z € R. A set V C R
is a neighborhood of x if there exists an open interval (a,b) such that = €
(a,b) C V.
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Topology of the Line 3.3 Compact Sets

(a) For every X C R, prove that the disjoint union R = intX Uint(R\ X)U F
holds, where F'is formed by the points z € R such that every neighborhood
of z contains points of X and points of R\ X. The set F' = frX (or 0X) is
called the boundary of X.

(b) Prove that A C R is open if and only if ANfrA = 0.
(c) Prove that for every A C R we have frA =R\ AN A= A\ intA

5" Question For each of the following sets, determine its boundary.

)X =01 Y =(0,1)U(L2) Z=Q AW =2

6t Question Let A and B be non-empty subsets of R. Demonstrate that A+B =
{r+ylr € A,y € B} is open if A is open.

7t Question Let (1,)aea be a family of non-empty open intervals of R, such that
a# = 1,N Iz =0. Prove that A is countable.

8t Question Determine a)Q, b5)intQ, c¢)R\Q, d)int(R\ Q).

9th Question Let A and B be subsets of R. Prove: a) ANB C AN B,
b) AUB = AUB, c¢)int(ANB) = intANintB, d) int(AUB) D intAUintB.
Prove also by means of examples that the inclusions can be strict.

10" Question Let A C R. Demonstrate that A’ is a closed set.

112 Question Let A and B be subsets of R. Prove that

(AuB) =AUB and (AnB) c A'n B’
prove with an example that the inclusion can be strict.

122 Question Let A C R and a € A’. Demonstrate that a is the limit of a

strictly monotonic sequence of elements of A.

132 Question Let A and B be two non-empty subsets of R. Assuming B’ is
non-empty, demonstrate A + B’ C (A + B)" and give an example for strict

inclusion.

14t Question Let
1 1
a={=+_|meNnen}
m n
Determine sup A, inf A, A’
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Topology of the Line 3.3 Compact Sets

15t

16t

17th

18t

19t~

20t

215t

Question Let U and V be two open sets of R such that UNV = (). Demon-
strate that intU NintV = ()

Question Let A C R. Compare fr(intA), frA, fr(A). Demonstrate fr(A U
B) C (frA) U (frB). Can equality hold?

Question Prove that for every X C R, X = X U frX holds. Conclude that
X is closed if and only if X D frX.

Question If X C R is open (respectively, closed) and X = AU B is a

separation (disconnection), prove that A and B are open (respectively, closed).

Question Prove that if X C R has an empty boundary, then X = () or
X =R.

Question Prove that for every X C R, we have X = X U X’. Conclude that
y

X is closed if and only if it contains all its accumulation points.

Question Prove that a finite union and an arbitrary intersection of compact

sets is a compact set.

2274 Question Let X, Y be disjoint non-empty sets of R, with X compact and Y

2374

24th

25th

264"

27th

28th

closed. Prove that there exist g € X and yg € Y such that |xg —yo| < |z —y|
foranyz € X,y eY.

Question A compact set whose points are all isolated is finite. Give an
example of an unbounded closed set X and a bounded non-closed set Y, whose

points are all isolated.

Question Prove that if X is compact, then the following sets are also com-

pact:
a)S={r+y,r,y € X}, b)D={r—yzyec X},
OP ={z-yz,y € X}, d)Q={z/y;z,ye X} if 0¢ X,

Question Let A and B be subsets of R such that A is closed and B is
compact. Prove that A+ B = {z+yl|z € A,y € B} is closed.

Question Prove that the following sets of real numbers are disconnected:

(@) NCR (b)) H={l/n:neN}CR (¢)QCR (dR\{0}CR
Question If X C Q is connected, then X contains no more than one point.

Question If A C R is connected, then A is connected.
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Topology of the Line 3.3 Compact Sets

29th Question Prove that the closed unit interval I = [0,1] C R is connected.

302 Question A subset of R is connected if and only if it is an interval.
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Chapter 4

Limits of Functions

4.1 Limits of Functions

Definition 4.1 Let f : X — R be a real-valued function defined on a subset X C R.
Let a be an accumulation point of X, i.e., a € X'. We say that the real number L

is the limit of f(x) as x approaches a and we write

lim f(z) = L,

T—a

to mean the following: For each real number € > 0, given arbitrarily, we can find
d >0 (0 = () such that |f(x) — L| < € whenever x € X and, furthermore,
0<l|z—al <é.

Therefore, when a is an accumulation point of the domain of f, the expression

lim,_,, f(z) = L is an abbreviation for the statement below:
Ve > 0,30 >0,V € D(f),0< |z —a|<d=|f(x)— L|<e.

*(Note: D(f) is used for domain, synonymous with X)*

Remark: Note that 0 < |z — a| < § means z belongs to the interval (a — §,a + 9)
with x # a. Thus, lim,_,, f(z) = L means that for every open interval (L —e, L+¢),

there exists an open interval (a — 0, a + 0) such that, setting:
Vi = (X\{a}) N (a—b,a+0),

it holds that
f(%) - (L_€7L+€)'

Observe that:
Vi={r € X:0<|x—al <d}.
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Limits of Functions 4.1 Limits of Functions

L+¢ y:f(x)

Figure 4.1:

In simple language: it is possible to make f(x) arbitrarily close to L, provided

one takes x sufficiently close to a.
Remarks:

(1a) According to the given definition of a limit, it only makes sense to write
lim, ,, f(x) = L when a is an accumulation point of the domain X of the function
f. If we were to consider the same definition in the case where a ¢ X', then every
real number L would be a limit of f as x approaches a. Indeed, since a ¢ X', there

exists 0 > 0 such that
Vs=(X\{a})N(a—d,a+0) =0,

ie, 0 < |z —al <d, z € X is not satisfied for any x. Then, given any ¢ > 0, we

would choose this §. It would always be true that
f(‘/(S) =0 cC (L_€’L+€)a

whatever L might be. Hence, we would have lim,_,, f(z) = L for all L.

(2a) When considering lim,_,, f(x) = L, we do not require a to belong to the
domain of the function f. In the most interesting cases, a ¢ X. Let’s see an example:

Consider f(z) = ””12:11, for x # 1. In truth:

(x—1)(x+1)
r—1

f(x)= =x+1, z#1.

We have lim,_,; f(x) = 2. Indeed, let € > 0 be given. For x # 1, we have |f(z)—2| =
|(z +1) — 2| = |z — 1|. Hence, for the given € > 0, § = ¢ exists such that if x € R
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Limits of Functions 4.1 Limits of Functions

and x # 1 with 0 < |z — 1| < 9, then

[f(x) =2 = |z - 1] <e.

(3a) Even if a € X, the statement lim,_,, f(z) = L says nothing about the value
of f(a). It only describes the behavior of the values of f(x) for = close to a with
xr # a. Explicitly, it is possible to have lim, ., f(x) # f(a). Let’s see an example:

1, z € R\{0},
f(x):{ € R\{0}
0, x = 0.

We have that lim, ,o f(z) = 1. Indeed, let € > 0 be given. For z # 0, we have:
|f(z) — 1| = |1 — 1] = 0. Thus, for the given € > 0, 6 = ¢ exists such that if z € R,
r#0and 0 < |z —0| < ¢ then |f(z) — 1| =0 < . However, f(0) =0.

Consider

Proposition 4.2 [Uniqueness of the Limit] Let X C R, f: X - R, a € X'. If
lim, . f(x) = Ly and lim,_,, f(x) = Lo, then Ly = Ls.

Proof: Given any € > 0, there exist d; > 0 and d5 > 0 such that if z € X,

O<|x—a|<51:|f(x)—L1|<%,

O<|x—a|<52:>]f(x)—L2|<%.

Let 6 = min{d;,d2}. Since a € X', we can find T € X such that 0 < |T — a| < 4.
Then:

|Ly — Lo| = |Li— f(Z) + f(T) — Lo|
< [Li = f@)| + [f(T) — La|
e 19
< 54‘5:5.

This gives us |L; — Lsy| < e, for all € > 0, which implies, given the arbitrariness of
€ > 07 that L = L. [ |

Proposition 4.3 Let X CR, f: X - R and a € X'. If lim,_,, f(z) exists, then
f s bounded in a neighbourhood of a, i.e., there exist M > 0 and 6 > 0 such that

O0<|z—a|l<d ze€X=|f(x)] <M.

Proof: Let L = lim,_,, f(x). Taking ¢ = 1 in the definition of limit, there exists
d > 0 such that if x € X and 0 < |z —a| < ¢ then |f(z) — L| < 1. But

|[f(z) = LI > [[f (@) = [L]] = [f(2)] = | L],
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Limits of Functions 4.1 Limits of Functions

and consequently
[f(@)] <[f(x) = LI+ [L] <1+ |L] := M,

provided that 0 < |x — a| < 0, proving the desired result. [ |

Proposition 4.4 (Squeeze Theorem) Let X C R, f,g,h: X - R and a € X'. If,
forallx € X, x # a we have f(z) < g(z) < h(x), and furthermore, we also have
lim, . f(z) = lim,_, h(z) = L, then lim,_,, g(z) = L.

Proof: Let ¢ > 0 be given. Then there exist §; > 0 and d3 > 0 such that for
r e X:

O<|r—a|<d=L—-cec< f(zr)<L+e,

O<|r—a|<do=L—-ec<h(zr)<L+e.
Taking = min{dy, d2}, then if z € X and 0 < |z — a| < 4, it follows that
L—e< f(z)<g(x) <h(r)<L+e,

from which we conclude that lim,_,, g(z) = L. [ |

Proposition 4.5 Let X C R, a € X', fig : X — R. Iflim, ., f(x) = L and
lim, ,, g(z) = M with L < M; then there exists § > 0 such that if x € X and
0< |z —al <d then f(z) < g(x).

Proof: Define ¢ = % > (0. Hence, there exist d1, 2 > 0 such that for z € X:

M — L M —L
O<|z—a|<d=L-— < flz) <L+ 5
M — L M —L
O0<l|r—a|<bo=M— <glx) <M+ 5
Taking § = min{dy, d2}, then if z € X and 0 < |z — a| < 4, it follows that
3L — M L+ M 3M — L
< flz) < <yg(z) < ,
2 2 2
i.e., f(z) < g(x) provided that 0 < |z — a] < . |

Corollary 4.6 Iflim,_,, f(x) = L > 0 then there exists § > 0 such that if x € X,
0<|z—al<d= f(z)>0.

Proof: It suffices to consider g(x) = M = 0 in Proposition 4.5. (Note: The original
proof said f(x) =0, but it should be g(x) or a new function h(z) = 0). |
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Limits of Functions 4.1 Limits of Functions

Corollary 4.7 If f(z) < g(z) for all x € X, x # a, and lim,_,, f(x) = L and
lim,_,, g(z) = M, then L < M.

Proof: Suppose the contrary, that L > M. Then by Proposition 4.5, there exists
d > Osuchthatifrx € X and 0 < |[x—a| < d = f(x) > g(x), which is a contradiction.
[ |

Proposition 4.8 Let X C R, a € X' and f,g: X — R be functions. Iflim,_,, f(z) =
L and lim,_,, g(z) = M, then:

(i) lim, .(f(x)+g(x)) =L+ M.

(16) limg o (f(x) g(2)) = LM

(15i) If M # 0 then lim,_,, o) =

Proof: (i) Let e > 0 be given. Hence, there exist §; > 0 and J, > 0 such that if
r € X and

0<|x—a|<51;»|f(x)—L|<§, (4.1)
0< |z —a| <& = |g(x) — M| < g (4.2)

Take 0 = min{dy,d2}. Then, if x € X and 0 < |z — a| < 4, from (4.1) and (4.2) it
follows that

|(f(x) + g(x)) = (L + M) (f(x) = L) + (g(x) — M)

< |f(x) = LI+ lg(z) — M]|
g 5_
< 54‘5—8.

(ii) By Proposition 4.3, f is bounded in a neighbourhood of a. Let ¢ = 1. Then
there exists d; > 0 such that if z € X and 0 < |z — a| < §; then |f(z) — L] < 1,
which implies that

O0<|z—al<é=|fx)|<|L|+1:=C. (4.3)

Let € > 0 be given arbitrarily. Then there exist 6, > 0 and d3 > 0 such that if x € X

and
€
— — L _— 4.4
€
0<|x—a|<5g:|g(x)—M|<%. (4.5)
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Limits of Functions 4.2 Lateral Limits

Thus, taking 6 = min{dy, da, I3}, from (4.3), (4.4) and (4.5) we obtain

|[f(x)g(x) — LM]|

[f(@)g(x) = f(x)M + f(x)M — LM|
= [f(2)(g(x) = M) + (f(z) = L)M]
< |f@)[lg(x) — M|+ [M][f(x) - L]

e € e €
< O M| Sy
< 2C,—|-| \2 + 5

(M[+1) 2" 2

*(Note: Corrected g(x) — L to g(z) — M and f(x)— L to (f(z) — L)M in the second
line. Corrected ... + (|M]|+ 1)... to ... + |M]... in the last line, following the logic).*

(iii) Exercise |

4.2 Lateral Limits

Definition 4.9 Let X C R. A real number a € R is said to be an accumulation point from the right

of X if every open interval (a,a + €) contains some point of X.

Notation: X’ = set of accumulation points from the right of X. Examples: 1)
X =la,b. z=a€X..

2) X ={—1/n:n e N*}. In this case X/, = 0.

In other words, we say that a € X, if and only if given € > 0, XN(a, a+¢) # 0, or

equivalently, for all ¢ > 0 there exists € X such that 0 < x—a < ¢ & z € (a,a+¢).

Definition 4.10 Let X C R. A real number a € R is said to be an accumulation point from the left

of X if every open interval (a — e,a) contains some point of X.

Notation: X’ = set of all accumulation points from the left of X.

In other words: a € X’ if and only if for all e > 0, X N (a — &, a) # 0, or rather,
given £ > 0 there exists € X such that 0 <a—z <e (& x € (a —¢,a)).

Example: Let X = [a,b]. Then b € X'.

Definition 4.11 Let f : X CR = R be a map and a € X'.. We say that L is the
limit from the right of f(x) as x approaches a, if for all € > 0 it is possible to find

d>0suchthatz € X anda<x <a+0=|f(x)—L|<e.
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Limits of Functions 4.2 Lateral Limits

( . '
> T / \ H » T
S ) h
Figure 4.2: Ilgih flx)=1L Figure 4.3: lim f(x) =1L

T—a—

Definition 4.12 Let f: X CR — R be a map and a € X' . We say that L is the
limit from the left of f(x) as x approaches a, if for all € > 0 it is possible to find

d>0suchthatz € X anda—90 <z <a=|f(x)—L|<e.

Proposition 4.13 a) Let f : X CR =R anda € X',. Let Y = X N (a,+00) and
g = fly. Thenlim,_,,, f(x)= L if and only if lim,_,, g(z) = L.

b)Let f: X CR—Randa€ X'. Let Y = X N (—0o0,a) and g = f|y. Then
lim,,, f(z)= L if and only if lim,_,, g(x) = L.

Proof: a) ‘=’ Let ¢ > 0 be given. We must show that there exists § > 0 such that
if z € D(g) = X N (a,+00) and

O0<|z—a|l<d=|g(z)—L|<e. (4.6)

Indeed, for the given € > 0 and from the fact that lim,,,, f(z) = L, there exists
0 > 0 such that if x € X and

a<r<a+d=|f(r)—Ll<e (4.7)

However, since x € D(g) = X N(a,+00) = {z € X : x > a}, the condition = € D(g)
and 0 < |z — a| < ¢ implies that x € (a,a + §), i.e., a < x < a+ J. It follows from
this and the fact that f|y = g that condition (4.7) implies (4.6) for the same ¢ > 0.

‘=’ Conversely, given ¢ > 0, we must show that there exists § > 0 such that if
x € X and

a<zr<a+d=|f(r)-L|<e. (4.8)

In fact, for the given ¢ > 0, and from the fact that lim, ., g(x) = L, there exists
d > 0 such that if x € D(g) = {x € X : z > a} and

O<l|r—a|<d=|glx)—L|<e. (4.9)
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Limits of Functions 4.3 Limits at Infinity

However, the condition x € X and a < x < a + ¢ is equivalent to z € D(g) and
0 < |z —a|l <§. Since f|ly = g, condition (4.9) implies (4.8), which proves the
desired result. [
Theorem 4.14 Let f: X CR = R and a € X/ N X". Then:

lim f(z) =L < lim f(z)= lim f(z) = L.

T—a T—=a_ T—ay

Proof: (=) Let £ > 0 be given. Then there exists 6 > 0 such that if z € X and
O<l|zr—a|l<éd=|f(x)—L|<e. (4.10)

Since 0 < |z —a|<dea—0<zx<a+d (and z # a), (4.10) implies that
a<zr<a+dreX=|flx)—Ll<e
a—d<zr<areX=|fr)—Ll<e

which, by definition, means lim,,,_ f(z) = lim, ., f(z) = L.

(<) Conversely, since lim,_,, f(z) =lim,_,,, f(z) = L, given € > 0, there exist
01 > 0 and & > 0 such that if x € X and

a<zr<a+d =|f(x)—L|<e,
a—dy<x<a=|f(r)—-L|l<e.

Taking 0 = min{dy, d2}, then if € X and
O<|zr—a|<d=(a<zr<a+dora—d<z<a)=|f(x)—L|<e,
which concludes the proof. [ |

Examples:
1) Let f: R\{0} — R be defined by f(z) = = + fa7- Consider Y = R\{0} N
(0,+00) = (0,+00) and g = f|y. Thus, we have:
g(z) =2+ 1 and glclg(l)g(:z:) =1
Using Proposition 4.13, we have
lim f(z) =1.
:E*)O_'.
Analogously, let Y = R\{0} N (—00,0) = (—00,0) and g = f|y. Then:
g(x) =z —1 and }c%g(x) =—1.

By Proposition 4.13, we have
lim f(z) =—1.

z—0_

2) Let f: R\{0} — R be given by f(z) = 2. lim,, f(x) does not exist, nor

does lim,_,o_ f(z). Thus, lim,_,, f(z) does not exist.
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Limits of Functions 4.3 Limits at Infinity

4.3 Limits at Infinity

Definition 4.15 Let X C R be unbounded above. Given a map f : X — R, we
write
lim f(x) =L,

T——+00
when the real number L satisfies the following condition: For all ¢ > 0, there exists
M > 0 such that if v € X and x > M then |f(x) — L| < e. *(Note: ¢ changed to

M for clarity, as § usually implies smallness)*

M

Figure 4.4: lim f(z)=1L

T—r+00

Definition 4.16 Let X C R be unbounded below. Given a map f : X — R, we
write
lim f(z)=L,

T——00
when the real number L satisfies the following condition: For all ¢ > 0, there exists
M > 0 such that if v € X and v < —M then |f(z) — L| < e. *(Note: § changed to
M)*

Examples:

(1) limyjoo 2 =lim, oo 2 = 0.

xT

Indeed, note that > M = 1 < L (for M > 0). On the other hand:

1_0':

T

1
<e&s —e< —<eE.
x

xz

Thus, given € > 0, let us take M = % Hence, if x > M > 0 then % < % = % < e.

Since = > 0, % > 0, so ‘%} < &, which implies that limx_>+00% =0.

Analogously, it is proven that lim, , % = 0.
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Limits of Functions 4.4 Infinite Limits

Figure 4.5: lim f(z) =1L

T—r—00

2) lim,_, o sin(x) and lim,_, ., sin(z) do not exist.

Proof: Suppose, by contradiction, that lim,_,, . sin(z) exists and is equal to L.

Thus, given € > 0, there exists A > 0 such that if x € X and
r>A=|sinz—L|<e.

However, there exists x > A such that sinz =1 (e.g., = 2nm + 7/2) and there

exists y > A such that siny = —1 (e.g., y = 2n7 + 37/2). Hence:
1—-Ll<eand |-1-L|<e.

If we take € = %, we have on one hand

1 1 1 1 3
L-1ll<-© ——<L-1<-&-<L<-.
| | 2 2 2 2 2
On the other hand:
1 1 1 3 1
L+ll<-¢© ——<L+l<- ——<L<—=
IL+1] 2 2 + 2 2 2’
which is a contradiction. [ |

4.4 Infinite Limits

Definition 4.17 Let f : X C R — R be a map and a € X'. We say that
lim, ., f(x) = 400 when for every ¢ > 0 (arbitrarily large), there exists 6 > 0
such that if v € X and 0 < |x —a| < 6 then f(z) > e.
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Limits of Functions 4.4 Infinite Limits

Yy

e
a—\d

Figure 4.6: lim f(z) = +o00
T—ra

Example: lim,_,, ﬁ = +00.

Indeed, note that

>€<:>(95—a)2<1<:>]a:—a|<i
(z —a)? 3 va
Thus, given € > 0, let us take § = \/% Then, if € R\{a} and
, 1 1
O<|z—a|<d=(r—a)’<-=>—= >c¢.

e (z—a)?

Definition 4.18 Let f : X C R — R be a map and a € X'. We say that
lim, . f(x) = —o0 when for every ¢ > 0, there exists 6 > 0 such that if x € X
and 0 < |z —a| < 6 then f(x) < —e.

Example:

! —1 ( ise)
im ——— = —o0. ( exercise).
r—a (x — a)2

Definition 4.19 Let f : X C R — R be a map with X unbounded above. We say
that lim, 1 f(x) = 400 when for every e > 0 (arbitrarily large), there exists § > 0
(arbitrarily large) such that if v € X and x > § then f(z) > €.

Example: lim,_, . 2?2 = +o0o.

Let € > 0. Note that:

?>cert-e>08 (r—Ve)lr+VeE) >0 1< —Veora > /e

Thus, given € > 0, § = /¢ exists such that if x > § = \/¢ then 2% > ¢.
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Limits of Functions 4.4 Infinite Limits

Figure 4.7: lim f(z) = —o0

r—a

y = f(x)

Figure 4.8: lim f(z) = 400

T—-+00

Definition 4.20 Let f : X C R — R be a map with X unbounded above. We say
that lim, . f(x) = —oo when for every € > 0, there exists § > 0 such that if
re X and x> 9§ then f(z) < —e.

Example: lim, . (—2%) = —cc.

Indeed, given € > 0, note that:
< —cedt>ceor> Ve

Hence, given ¢ > 0, take § = /¢, because if z € R and z > /¢ then —23 < —¢.

0.
0’

some examples.

Remark: 00 —00; 0-00; 0% 17°; 00”5 2 are indeterminate forms. Let’s see
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Limits of Functions 4.4 Infinite Limits

y = f(w)

Figure 4.9: lim f(z) = —©

T—-+00

(a) Let f(z) = 2z and g(z) = x.

: L B . flx)
glgl_%f(x) = il_f&)g(:t) =0 and JIC%M = 2.
(b) Let f(x) = x sin< and g(z) = x.
. L B . flx) .
}EILI(I) flz) = glcll)r(l) g(x) =0 but ilir(l) e) does not exist.

(c) Let’s see a 0 - co example. Let f(z) =1 and g(z) = «.

lim f(z) = o0, li%l g(x) =0and lim f(x)g(z)=1.
r—04

14)0_4_ xﬁ)o_%
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Chapter 5

Continuous Functions

Definition 5.1 We say that a function f : X C R — R s continuous at the point
a € X when, for every € > 0 given arbitrarily, we can find 6 > 0 such that if x € X
and |x — al < § then |f(z) — f(a)| <e.

In other words: given any interval J containing f(a), there exists an open interval

I containing a such that
fUnX)cdJ

Whenever desired, we can take

J = (f(a) —¢ fla) +¢)

with e > 0and [ = (a —d,a+6); 6 > 0.

Definition 5.2 We say that f: X C R — R is continuous when f is continuous at
all points of X.

Remarks:

(1a) Unlike the definition of a limit, it only makes sense to inquire if f is

continuous at the point a when a € X.

(2a) If a is an isolated point of X, then every function f : X — R is continuous

at the point a. Indeed, given ¢ > 0, it suffices to take § > 0 such that
(a—d,a+d)NX = {a}.

Then, if € X with |z —a| < 6, it implies that x = a, and therefore |f(z) — f(a)| =
0 < e. In particular, if all points of X are isolated, then any function f: X — R is

continuous.
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Continuous Functions 5.1 Properties of Continuous Functions

(3a) Now, let @ € X be an accumulation point of X, i.e., a € X N X'. Then
f is continuous at a if and only if lim,_,, f(z) = f(a). Proof: Indeed, suppose f

is continuous at a. Thus, given € > 0, there exists 6 > 0 such that if + € X and
a—0 <z < a+d then |f(x)— f(a)| < €. However, ifx € X and a—0 < = < a+J, and
furthermore x # a, we still have | f(z) — f(a)| < e. (This shows lim,_,, f(z) = f(a)).

Conversely, suppose that given € > 0, there exists 6; > 0 such that if x € X and
0 < |z —al < d;1 then |f(z) — f(a)|] < e. Now, if x = a, this case is not covered. We
need to check x = a separately. *(Translator’s Note: The original proof’s logic here
is slightly complex, mixing limit and continuity. A standard proof is as follows)*
Conversely, suppose lim,_,, f(z) = f(a). Then for any € > 0, there exists § > 0 such
that if x € X and 0 < |z — a| < 6, then |f(z) — f(a)| < e. This definition of limit
handles © # a. The case x = a is trivial, since |f(a) — f(a)| = 0 < e. Therefore,
for all x € X with |z — a|] < 4, we have |f(z) — f(a)| < e. This is the definition of

continuity at a. [

5.1 Properties of Continuous Functions

The propositions below follow immediately from the propositions and corollaries

demonstrated previously (for limits).
Theorem 5.3 FEvery restriction of a continuous function is continuous. More pre-

cisely: let f: X — R be continuous at the pointa € X. Ifac€Y C X and g = fly,

then g :' Y — R 1s continuous at the point a.

Theorem 5.4 If f: X — R is continuous at a point a € X, then f is bounded in

a neighbourhood of a.

Theorem 5.5 If f,g: X — R are continuous at the point a € X and f(a) < g(a),
then there exists § > 0 such that f(x) < g(z) for all x € X with |x — a| < §.

Corollary 5.6 Let f : X — R be continuous at the point a € X and k be a constant.
If f(a) < k, then there exists 6 > 0 such that f(z) < k for all x € X with |x—a| < 0.
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Continuous Functions 5.1 Properties of Continuous Functions

Theorem 5.7 If f,g: X — R are continuous at the pointa € X, then f+gqg, f—g,
f g are continuous at that same point. If g(a) # 0, then f/qg is also continuous at

the point a.

Theorem 5.8 The composition of two continuous functions is continuous. That is,
ff: XCR—=-Randg:Y C R — R are continuous at the points a € X and
b= f(a) €Y, respectively, and furthermore f(X) C Y, then go f : X — R is

continuous at the point a.

Proof: Let ¢ > 0 be given. We must exhibit 6 > 0 such that if z € X and

|z —a| <4 then [g(f(z)) — g(f(a))] <e.
Indeed, since g is continuous at b = f(a), for the given € > 0, there exists d; > 0

such that if y € Y (and f(X) CY) and
ly — bl < b1 = lg(y) —g(b)| <= (5.1)

*(Note: original text used y € f(X) which is correct, y € Y is more standard)*
Since f is continuous at a, for this d; > 0 there exists 6 > 0 such that if x € X

and
|z —al <d=|f(z)— fa)| < 6. (5.2)

Combining (5.1) and (5.2) and keeping in mind that y = f(z) and b = f(a), it
follows that if z € X and |z —a| < 4, then |f(x) — f(a)| < 1, which in turn implies
(by 5.1) that |g(f(x)) — g(f(a))| < &, which concludes the proof. [

Example: Let f : R — R be defined by f(z) = z. f is continuous at zy € R.
Indeed:

|f(x) = f(z0)| = |z — 20].

Thus, given € > 0 there exists 6 = ¢ > 0 such that if x € R and |z — x¢| < 6 then
|f(x) — f(xo)| = |x — x| < e. Since xy was arbitrary, it follows that f is continuous
on R. It follows from Theorem 5.7 and the previous example that the function
f:R = R, x — z" is continuous. In truth, every polynomial p : R — R; p(x) =
apx"+- - -4a1x+ag, a; E Re=1,---  nisacontinuous map. Furthermore, it follows
from Theorems 5.7 and 5.8, the simple example given above, and the continuity of
trigonometric, exponential, and logarithmic functions that we can create an infinity
of examples of continuous functions from elementary functions, taking care that the

compositions and quotients are well-defined.
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Continuous Functions 5.1 Properties of Continuous Functions

Proposition 5.9 Let f : X C R — R be a continuous function. Then, if A C X
(closure relative to R), we have f(A) C f(A).

Proof: Take y € f(A). We must prove that y € f(A). Indeed, let ¢ > 0. We must
show that

B.(y) N f(A) # 0. (5.3)

Since y € f(A), then y = f(zg) for some 7y € A. By the continuity of f (at 7o € X),
there exists > 0 such that:

f(Bs(xo) N X) C B(y)

*(Note: f is only defined on X, so we must intersect with X)*.
Furthermore, since zy € A, Bs(x¢) N A # (). Let Tg € Bs(xo) N A. Since A C X,
To € X, 80 Tg € Bs(xog) N X. Consequently
f(To) € f(Bs(wo) N X) C Be(y)
and f(7o) € f(A),

which proves f(Zg) € B:(y) N f(A), as desired. |
Proposition 5.10 Let f: X CR — R be a function. f is continuous on X if and

only if for every open set V C R, the set f~1(V) is open in X. *(Note: The original
text had "open in R", which is only true if X = R)*

Proof: Suppose first that f is continuous on X and let V' C R be open. We
must prove that f~1(V) :={z € X : f(z) € V} is an open set in X. In fact, take
z € f~Y(V). Thus, f(z) € V. Since V is open, there exists ¢ > 0 such that

B, (f(z)) C V.
By the continuity of f at z, there exists § > 0 such that for z € X:
|z —z] <d = f(2) € B,,(f(x)) CV

This means Bs(x) N X C f~1(V). By definition, f~'(V) is open in X.

Conversely, suppose that f~1(V) is open in X for every open V C R. We must
prove that f is continuous on X. Indeed, let ¢ > 0 be given and consider x € X
arbitrary. The ball V' = B.(f(z)) is an open set. By hypothesis, f~'(V) is an open

set in X containing x. Therefore, there exists § > 0 such that
Bs(x) N X C f7H(B:(f(2))),

7



Continuous Functions 5.2 Continuous Functions on Compact Sets

which means
f(Bs(z) N X) C B:(f(x)),

This is the definition of f being continuous at x. |

Proposition 5.11 Let f: R — R. The following are equivalent:

(i) f is continuous.

(ii) ACR = f(A) C f(A).
(1ii) A is closed = f~1(A) is closed.
(iv) A is open = f~(A) is open.

Proof: (i) = (ii) This was done in Prop. 5.9 (with X = R).
(ii) = (iii) Let A be closed. We must prove that f~'(A) is closed. It suffices to
prove that

[7HA) € (A (5.4)

Indeed, by hypothesis (ii), since f~!(A) C R, it follows that

FOHA) € F(F1(A) (5.5)
On the other hand, f(f~'(A)) C A, and consequently
f(f71(A)) C A (5.6)

Since A is closed, A = A, and therefore from (5.5) and (5.6) we have

fF=HA)) C A

which implies (by applying f~! to both sides)

FHA) C fHfFH(A) € fH(A), (5.7)
which proves (5.4).

(iii) = (iv) Let A be open. We must prove that f~'(A) is open. It suffices to
prove that its complement R\ f~!(A) is closed. In fact, we have

R\f™'(4) = fT(R\A), (5.8)

and since A is open, R\ 4 is closed. By item (iii), f~'(R\A) is closed, which implies,
by virtue of (5.8), that R\ f~'(A) is closed, i.e., f~!(A) is open.

(iv) = (i) This was done in Prop. 5.10 (with X = R). |
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Continuous Functions 5.2 Continuous Functions on Compact Sets

5.2 Continuous Functions on Compact Sets

Theorem 5.12 Let K C R be a compact set and f : K — R a continuous function.
Then f(K) is compact.

Proof: Let {G,}aca be an open cover for f(K). We must exhibit a finite subcover.
Indeed, since f(K) C J,cy Ga, for each y € f(K), y € G, for some o € A. Since
y = f(x) for some x € K, let’s call this index a(z). Since Gy is open, for each
x € K there exists ¢, > 0 such that

B, (f(z)) C Ga)

On the other hand, by the continuity of f at x, for this £, > 0 there exists d, > 0
such that

f(Bs,(x) N K) C B, (f()).

Note that the collection { Bs, (z) } zex forms an open cover for K. Since K is compact,

there exist z1,--- ,x, € K and 01,---,6, > 0 such that
K c | Bs,(x:).

Consequently,

1= (0 ()} - Ot

i=1 i=1
ie.,
F(K) | f(Bs, (1) N K) UB f(a) € | Gatan,
i=1 =1
which proves f(K) is covered by the finite subcover {Go(z,); - - Gagn) }- [ |

Theorem 5.13 (Eztreme Value Theorem) Let K be a compact set and f: K — R

a continuous function. Then f attains its absolute mazimum and minimum values.

Proof: Since K is compact and f is continuous on K, then according to Theo-
rem 5.12, f(K) is a compact set in R. Therefore, f(K) is closed and bounded by
the Heine-Borel Theorem (Theorem 3.25). Being non-empty and bounded, by the
Completeness Axiom,

M :=sup f(x) (i.e., sup f(K))

zeK
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Continuous Functions 5.2 Continuous Functions on Compact Sets

and
m:= inf f(z) (Le., inf f(K))

zeK
both exist. However, since f(K) is closed, it contains all its adherent points. In
particular, it contains its supremum M and its infimum m. Thus, M,m € f(K).
It follows that there exist z1,x2 € K such that f(z1) = m and f(xy) = M, which

concludes the proof. [ |
Remark: What happens if we remove the hypothesis of compactness?
Counter-examples:
(i) f:(0,1) > R, 2+ L. K =(0,1) is bounded but not closed. Note that f

is continuous but does not attain an absolute maximum or minimum in (0, 1).

Y,

Figure 5.1:

(ii) ¢:[0,400) = R, z— x K =]0,00) is closed but not bounded. Note that

g is continuous but does not attain an absolute maximum on [0, +00), although it

does attain an absolute minimum at z = 0.

yﬂ

Figure 5.2:

Let f: E C R — R be a continuous function. Then, given € > 0, we can, for
each zo € E, find § > 0 (which depends on z¢) such that if x € F and |z — x¢| < §
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Continuous Functions 5.3 Uniformly Continuous Functions

then |f(x) — f(xo)| < e. In general, it is not possible to find, from a given £ > 0, a

single 6 > 0 that works for all points zy € E. Let’s see an example: Let

(0, 400) = R, fo@;):%

Given ¢ > 0, we will show that one cannot choose a single § > 0 such that
[z —a| <6 =|f(x) - fla)] <e,

for any a € (0,4+00). Indeed, given ¢ > 0, suppose a single 6 > 0 is chosen. Let

us take a positive number a such that 0 < a < § and 0 < a < = (e.g. a =

3e
min(5/2,1/(6¢))). Then, for x = a + £, we have

J J
|r —al = atg—a —§<(5.
However:
B 1 1| |la—(a+0/2)|  o6/2 J
@) =f@l =175 = 2| = | a0/ '_a(a+5/2)_a(2a—|—5)
Since a < §, we have 2a < 26, and 2a + 6 < 39. Thus:
J J 1
|f(x) = f(a)| =5 >€

= >
a(2a+46) = a(30) 3a
(by our choice of a). This proves the desired claim.

Consider, now,

f:R—=R, f(x)=ax+b, a#0.

Given € > 0, let us choose § = ¢/|a|. Then, for any = € R, if |z — 2| < J, we have:

[f(x) = f(xo)l = [(az +b) — (azo + D)
= |ax — axo| = |a| |z — x0]
< |a|5:|a|’%‘:5.

In this case, it was possible, from a given € > 0, to choose a ¢ > 0 that worked for

all points in the domain. This motivates the next section.

5.3 Uniformly Continuous Functions

Definition 5.14 A function f : E C R — R is said to be uniformly continuous

when, for each £ > 0, there exists § > 0 such that if x,y € E and |z — y| < § then
|f(x) — f(y)|] <e. In this case, § depends only on € > 0.
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Continuous Functions 5.4 Continuous Functions on Connected Sets

Theorem 5.15 (Heine-Cantor Theorem) If K C R is compact and f: K — R is

a continuous function, then f is uniformly continuous.

Proof: Let € > 0 be given. Since f is continuous, for this ¢ > 0, and for each
x € K, there exists 6, > 0 such that if y € K and

€
ly =2l <8 = |f(2) = fH)] < 3 (5.9)
Note that the collection {Bj, /2(z)}scx forms an open cover for K. Since K is
compact, there exist z1,--- ,z, € K and d1,---,9, > 0 such that
K c | Bs,o(xs). (5.10)
i=1
Let us take

0 :=min{d,/2,---,6,/2}.

Let x,y € K be arbitrary, with |z — y| < §. We must prove that |f(z) — f(y)] <
e. Indeed, since z € K, then by virtue of (5.10), x € By, s2(7y,) for some iy €
{1,--- ,n}. Hence:

[f (@) = fW)| < |f(2) = fig)| + |f (i) = fw)]. (5.11)

We will use the continuity of f at x;, (Eq. 5.9). To do this, we must prove that
z,y € Bs, (2i,). In fact:

(i) x € Bs, ja(wiy) = |z — 35| < 04y/2 < 63y = x € Bs, (i)

(i) ly — x| < ly — 2| + |z — 4] < 6+ d;y/2. Since 6 < 0;,/2, we have
[y — 2| < 04 /2 + 83y /2 = 0iy = y € Bs, (i)

Thus z,y € Bj, (i), and from (5.9) (applied at x,) and (5.11) we obtain

[f(@) = Fl < [f(@) = fla)| + () = FY)]
§+ % =E€.

Consequently, |f(z) — f(y)| < e provided that |z — y| < §, which concludes the
proof. [ |

5.4 Continuous Functions on Connected Sets

Lemma 5.16 Let f : X — R be continuous. Then, for every sequence {x,} C X
such that x, — a € X, we have f(x,) = f(a). (Sequential Continuity)

82
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Proof: Let {z,} C X be such that z,, — a, with a € X, and consider ¢ > 0. We
must exhibit ng € N such that

ifn>ng=|f(z,) — fla)] <e. (5.12)

Indeed, for the given € > 0, and since f is continuous at a, there exists 6 > 0 such
that if x € X and

|z —a| <0 =|f(x) = fla)| <e. (5.13)
However, since x,, — a, for this 4 > 0 there exists ny € N such that
if n>mny= |z, —al <4 (5.14)

Combining (5.13) and (5.14) proves (5.12). |

Theorem 5.17 Let EE C R be a connected set and f : E — R a continuous function.
Then f(F) is connected.

Proof: Suppose, by contradiction, that f(£) is disconnected. Then, there exist
A, B C R, separated and non-empty, such that f(F)= AU B. Let

G=ENnf'(A) and H=Enf(B).
We claim:
E=GUH (5.15)
Indeed,

GUH = (Enf'(A)u(Enf(B))
= En(f1(AUf(B)
= EnfY(AuB).

But f(F) = AU B, which implies £ = f~'(AUB)N E. *(Note: £ C f~'(AU B)
is always true, but since f maps *from* E, E = f~'(f(F)) = f~'(AU B))* Hence,
GUH = EnN f~'(AUB) = E, which proves (5.15). *(Note: The original proof had
a small logical loop here, corrected for clarity)*

We also have that

G#0 and H # 0. (5.16)
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Indeed, since A is non-empty, there exists y € A. But A C f(E). Thus, y = f(x) for
some z € E. Furthermore, x € f~!(A) since y = f(x) € A. Thus, z € ENf~Y(A) =
G, which implies G # (). Analogously, starting from the hypothesis that B # (), one
shows that H # (), which proves (5.16).

Finally, we have that

G and H are separated. (5.17)

Suppose, by contradiction, that there exists 2 € R such that z € GNH. Thenz € G
and z € H. Since z € G, there exists a sequence {x,} C G such that z,, — x. Since
r € HCFE,x € E. Since [ is continuous (at z € E), by Lemma 5.16 it follows that
f(x,) = f(z). However, since {z,} C G C f~'(A), we have {f(z,)} C A. Since
f(z,) — f(2), it follows that f(z) € A.

On the other hand, since z € H C f~!(B), we have f(x) € B. Thus,

f(x) € An B,

which is an absurdity, because A and B are separated. Analogously, one proves that
G N H =, which proves (5.17).

Thus, by (5.15), (5.16) and (5.17), we have written E as the union of two non-
empty, separated sets, which is an absurdity as £ is connected by hypothesis. Thus,
it is proven that f(FE) is connected. [

Theorem 5.18 [Intermediate Value Theorem| Let f be a real function defined and
continuous on [a,b] C R. If ¢ is a real number such that f(a) < ¢ < f(b) (or
f(b) < c< f(a)), then there exists x € (a,b) such that f(z) = c.

Proof: We know that [a,b] is connected (by Prop. 3.31) and f is continuous.
Hence, by Theorem 5.17, E = f([a,b]) is connected. Since f(a), f(b) € E, by
Proposition 3.31 (characterization of connected sets), E must be an interval. Since
f(a) < ¢ < f(b), c lies between two points of the interval E. Thus ¢ € E. This
means ¢ € f([a,b]), i.e., ¢ = f(x) for some x € [a,b]. But since ¢ # f(a) and
¢ # f(b), we must have x € (a,b) such that f(x) = ¢, which concludes the proof. B

Remark: A natural question arises: Is the converse of the Intermediate Value
Theorem valid? That is, given a function f : A C R — R, if for any two points
f(a), f(b) in the image, f takes on all values ¢ between f(a) and f(b), can I affirm
that the function f is continuous? The answer is no. Let’s see a counter-example.

Counsider:

sin(1/x), = # 0,
f(@_{ 0, z=0.
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0.5 x

1
Figure 5.3: f(z) =sin—.
x

The function f satisfies the intermediate value property, however it is not con-

tinuous at z = 0 because

lim sin(1/z) and lim sin(1/z) do not exist.
z—04 z—0_

Exercise: Let f : [a,b] — R be a continuous function and f(a) < 0 < f(b). Prove
that there exists a € (a,b) such that f(«) = 0, without using the connectedness of

f([a,b]).
Hint: Consider

A:={x€la,b]: f(t) <0; Vt € [a,z]}.

*(Note: Changed f(t)<0 to f(t)<=0 in the hint to make A closed)* The idea is to
show that A has a supremum. Define a = sup A. Then prove that f(a) =0 (to do
this, proceed by contradiction, assuming f(«) < 0 and f(«) > 0).
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Figure 5.4:
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Exercises: Limits and Continuity

[t
]

Question Let f(x) = 2% a € and L = a*. Let € > 0. Find a 6 > 0 such that:

|f(z) — L| <e for every x that satisfies 0< |z —a| <.

2% Question Let ¢ > 0. Find a 6 > 0 such that: 0 < |z — 1| < =

l—1‘<6.
X

32 Question Lete > 0. Find a d > 0 such that: 0 < [z —0| < § =

€.

1+sin? z

L —O’<

4% Question Let f(z) = /|z|, a =0and L = 0. Let ¢ > 0. Find a 6 > 0 such
that:

|f(x) — L] <e for every =z that satisfies 0< |z —a| <.

5% Question Let e > 0. Find a 6 > 0 such that: 0 < [z —1| <= ‘\/E— 1‘ < €.

6% Question If the limits lim f(x) and lim g(z) do not exist, can lim (f(x) +
r—ra

T—ra r—a

g(x)) or lim (f(x)g(x)) exist?

7% Question Prove that:

lim f(x)=L< lim f(r+a)=1L

r—a r—a

[04)
[S}

Question Prove that:

lim f(x)=L < lim[f(x)— L] =0

Tr—ra Tr—ra
. 1 .
92 Question Let L > 0. Prove that lim — = L is false.
x—0

102 Question Using the definition of a limit, prove that lim f(x) does not exist,
r—ra

Va € for the following function:

0, if ze Q
f(x)_{l, if re —-Q



Continuous Functions 5.4 Continuous Functions on Connected Sets

112

122

13¢

142

15¢

16<

Question Let f: X —,a€ X' andY = f(X —{a}). If lim f(x)= L then
T—ra
LeY.

Question Let f: X — and ¢ € X'. In order for lim f(z) to exist, it is
r—ra
sufficient that, for every sequence of points z, € X — {a} with limz, = a, the

sequence (f(z,)) is convergent.

Question Let f: X — ¢g:Y — with f(X)CY,ae X andbeY'NY.
If

r—ra

lim f(z)=5b e lim g(y) =c¢,
y—b

prove that lim, ., g(f(x)) = ¢, provided that ¢ = g(b) or else that = # a
implies f(x) # .

Question Let f,g : X — be defined by f(x) = 0 if = is irrational and
flz)=zifz € Q; g(0) =1 and g(z) = 0 if z # 0. Show that limof(x) =0
T—>

and ylglog(y) = 0. However xlglog(f(x)) does not exist.

Question Dada a funcao

3, if z€ Z
1, if ze -Z,

) ={

at which points in the domain of f does the limit not exist?

Question Let f :— be the identity function, i.e., f(z) = z for all x €. Then

prove the following statements:

(d) lim f(z) = f(a), where f(z) = % , p(z) and g(z) are polynomials and

(e) Let f(z) = % be the quotient of two polynomials. If ¢(a) = 0, then

a is a root of ¢(x) and, therefore, © — a divides ¢(z). Let m > 1 such
that ¢(z) = (x — a)"q1(x), with ¢1(a) # 0, and let n > 0 such that

p(z) = (z — a)"p1(x), with p1(a) # 0. Then:

(i) If m = n, glclg(lzf(a:) = ZEZ;,
(ii) If m < n, glﬁlir(ll f(z) =0,

(iii) If m >mn, lim f(z) does not exist.
T—a
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Continuous Functions 5.4 Continuous Functions on Connected Sets

17% Question Let f:— be the function defined by

0, if re Q

f<x):{1, if z€ —Q

Prove that lim f(z) does not exist for all @ €. But, if g(x) = (z —a) f(z) prove

Tr—a

that lim g(x) = 0.
Tr—a
182 Question Let f:Q — be the function defined by
if § is an irreducible fraction with ¢ > 0
, if =0

Prove that lim f(xz) =0 for all a €.

r—a

192 Question Let f : —{0} — be the function defined by f(z) = sinZ. Then

lim f(z) does not exist.
z—0

202 Question Calculate the following limits ([[ - ]] represents the floor function):

a2 1 [ [ - o
li — =+ — —/1+ = b) li
D T TR VT E| ) S T ase — 10
sl 7 afelly/2?] 7
‘ L D Jim
e) lim —|x] _ ‘x]’ f) lim —|x| — Vel
0t a2+ e—0- 224w
. Va4 T+ 10 . Va2 + T +10
g) lim : h) lim
T——+00 T T——00 T
i) hrf [sin Va2 +1+2—sin\/vVa2+3+1}[,])) lirf [Sin\/x+2—sin\/5]
T—>+00 T—>+00

212 Question Let f be such that |f(z)| < |z|Vx €. Prove that f is continuous
at 0.

22% Question Suppose that g is continuous at 0, g(0) = 0 and that |f(z)| <
lg(z)| Yz €. Prove that f is continuous at 0.

23% Question Let f,g : X C— be continuous at the point a € X. Prove
that the functions ¢,9 : X C—, defined by ¢(z) = max{f(z),g(z)} and
Y(z) = min{f(z),g(x)} for all z € X, are continuous at the point a.

242 Question Prove that f :— is continuous if, and only if, for every X C, one

has f(X) C f(X).
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252

262

279

282

292

30¢

31¢

32¢

33¢

34¢

35%

36%

37¢

38%

39¢

Question Let f :— be continuous. Prove that if f(z) = 0 forevery xz € X C
then f(z) = 0 for every x € X.

Question Let f :— be continuous, such that lirf f(z) = lim f(z) =
T—r+00 T——00
+00. Prove that there exists zy € such that f(x¢) < f(z) for all z €.

Question Give an example of a function f that is not continuous at any

point, but such that |f| is continuous at all points.

Question Find a function that is continuous at a, but that is not continuous

at any other point.

Question Suppose that f satisfies f(z+y) = f(z) + f(y) Vz,y € and that f

is continuous at 0. Prove that f is continuous at a for all a €.

Question Let f be continuous at a and such that f(a) =0, let & > 0. Prove
that 39 > 0 such that f(z) +a #0Vze € (a — o, a + ).

Question Let f(z) = 2*—z+3Vz €. Find an n € Z such that 3zq € [n, n+1]
such that f(zo) = 0.

Question Let f(z) = 2°+x+1Vx €. Find an n € Z such that 3zq € [n, n+1]

such that f(zg) =0

163
Question Prove that 3z, € such that x}™ + = 119.

1+ 22 + sin®(z)

Question Prove that 3¢ € such that sin(c) = ¢ — 1.

Question Let f: [a,b] — be continuous and such that f(x) € QVz € [a, b].

Prove that f is constant.

Question Let f.g : [a,b] — be continuous, such that f(a) < g(a) and
g(b) < f(b) . Prove that 3z € [a,b] such that f(zo) = g(z0).

Question Prove that the function f(z) = for « € is uniformly con-

1+ 22
tinuous on .

Question Prove that if f, g are uniformly continuous on X C then f + g is

uniformly continuous on X.

Question Prove that if f, g are uniformly continuous on X C and are bounded

on X , then the product fg is uniformly continuous on X.
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40% Question If f(x) = z e g(x) = sinx, Prove that f e g sdo uniformemente
continuas em , mas que seu produto naé o é.

41% Question Prove that if f is continuous on [0,+00) and uniformly continu-
ous en (a,+o0) para alguma constante positiva a , entdo f é uniformemente

continua em [0, +00) .
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Chapter 6

Differentiation

6.1 Differentiable Functions

Definition 6.1 Let X C R and a € X N X' (i.e., an accumulation point of X
belonging to X ). We say that f is differentiable (or derivable) at the point a if the

following limit exists:
)~ )
ga T —a
If it exists, this limit is denoted by f’(a) and is called the derivative of f at
the point a. It is understood that the function ¢ : x W is defined on the
set X\{a}. Geometrically, q(x) represents the slope (or angular coefficient) of the
secant line to the graph of f that passes through the points (a, f(a)) and (z, f(x)).
The line that passes through the point (a, f(a)) and has a slope equal to f'(a) is
called the tangent to the graph of f at the point (a, f(a)). The slope of the tangent
is, therefore, the limit of the slopes of the secant lines passing through (a, f(a)) and
(z, f(z)) as © — a (see figure 77).
Writing h = ¢ — a or x = a + h, the derivative of f at the point a € X N X’

becomes the limit:
I fla+h)— f(a)
im )

h—0 h

Note that the function h — w is defined on the set

Y ={heR\{0}:a+h e X},

which has zero as an accumulation point. Indeed, let € > 0. Then B.(a)N(X\{a}) #
(. It follows that there exists € B.(a) and x € X with x # a. Now, since x # a,
then x = a+ h for some h # 0. Hence, (a+h) € B:(a) (since |a + h—al = |z —a| <

e), h # 0 and (a+ h) € X. Consequently h € Y. This shows B.(0) N (Y \ {0}) # 0,
proving that 0 € Y.
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Differentiation 6.1 Differentiable Functions

tangent

Figure 6.1:

When a € X N X/, (i.e., when a is a right-accumulation point of X and belongs

to X)), we can define the right-hand derivative of f at a as the limit, if it exists:

fi(a) = lim f2) = fla) _ . flath)— fla)

r—ay Tr — a h—04 h

(6.1)

Similarly, the left-hand derivative f’(a) is defined when a is a left-accumulation

point that belongs to the domain of f.
Evidently, when a € X is both a right and left accumulation point, f’(a) exists

if and only if the lateral derivatives f! (a) and f’ (a) exist and are equal.
Remarks:

la) When we say that a function f : [c,d] — R, defined on a compact interval,
is differentiable at a point a € [c,d], this means, in the case of a € (¢, d), that f
has both lateral derivatives at a and they are equal. In the case where a is one of
the endpoints, this simply means that the lateral derivative that makes sense at a

exists.

It follows from the general properties of limits that f : X — R is differentiable

at a if and only if for any sequence of points {z,} C X\{a} with lim,,, . z, = a,
fen)=fla) _ F'(a).

Tp—a

we have lim,, 1
Examples:

(i) Let f : R — R be constant, i.e., f(z) = ¢, ¢ € R. Then f'(a) = 0 for all

a € R. Indeed,
f'(a) = limM — i £ €
r—a Tr — a x—a T — QA

=0.
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Differentiation 6.2 Properties of Differentiable Functions

(ii) Let f: R — R be given by f(x) = cx + d. Then, given a € R, we have:

) - i L@ I (e d) = (card)
r—a Tr—a r—a T — a
= lim oz —a) =c.

r—a T — a

iii) Let f : R — R be given by f(x) = x2. Then, given a € R
(ii) given by 8

. fla+h)—fla) .. a*+2ah+ h?—a?
/ _ _
L

h—0 h

(iv) Let f: R — R be defined by f(x) = |z|. Then, for z # 0:

J@) =70 _ ey (+1if z >0 and —1if 2 < 0).
x—0 x
It follows that f (0) =1 and f’ (0) = —1 exist, but f'(0) does not exist. However,
for a # 0, f'(a) exists, equaling 1 if @ > 0 and —1 if a < 0.

Definition 6.2 We say that f : X C R — R s differentiable on the set X if the
derivative of f exists at all points a € X N X'.

Theorem 6.3 Let f : X CR — R and a € X N X'. If the derivative f'(a) exists,
then f 1s continuous at a.
f(@)—f(a)

Proof: If the limit lim,_,, exists, then the limit

i)~ f(0)) = tim

T—a T—a

010, _ )

T —a

_ (hm M) <1im(x _ a)) — f'(a)-0 = 0.

r—a Tr — a r—a

Hence, lim,_,, f(z) = f(a), which proves the desired result (by Remark 3a of Ch.
5). n

Remark: Tt follows from Theorem 6.3 that if f is not continuous at a € X, then
f is not differentiable at « € X. However, example (iv) shows that there exist

continuous functions that are not differentiable.
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Differentiation 6.2 Properties of Differentiable Functions

6.2 Properties of Differentiable Functions

Theorem 6.4 Let f,g : X — R be differentiable at the point a € X N X'. Then
fxg, f-g, f/g (if g(a) # 0) are differentiable at this same point. Furthermore, we
have:

(i) (f+9)(a) = f(a)+g'(a)

(i) (f - g)(a) = f'(a)-gla) + f(a) - ¢'(a). In particular, if f(x) = ¢, then
(c9)(@) = cg'(a).

)
(i) (3) (@) =~

Proof: (i)

fto)() = lim LTt = +g)@)

h—0 h
_ g Jlath) +glath) —[fa) +g(a)]
h—0 h
.. [ fla+h)=f(a)  gla+h)—g(a)
= o h + h
. flath)—=f(a) .. gla+h)—g(a)
= h +m h
= f'(a) +d'(a).

(Fo)(a) = limTD@HN=(F9))

h—0 h
Ly Fat Wgla+ ) = F(@g(a)
h—0 h
o L@ Rglat ) = fla+ Wg(a) + f(a+ hgla) — fa)gla)
h—0 h
= i [sa e e Gl =Sl
. . gla+h)—gla) . fla+h)— f(a)
R A L e e

= fla)g'(a) + f(a) g(a).

(Note: we used limy,_,o f(a + h) = f(a) since f is continuous at a by Thm 6.3).
(1/9)(a+h})L—(1/9)(a)

(iii) Before proving the result, we must be sure that the expression
makes sense. It is necessary to verify that (1/g)(a + h) is well-defined for h suffi-

ciently small. Indeed, since g is differentiable at a, it follows that g is continuous at
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Differentiation 6.3 The Chain Rule

a. As g(a) # 0, there exists 0 > 0 such that g(a + h) # 0 for |h| < J. Thus

1 _ (1 1 1
hm (g) (a + h) (g) (a) — 111'11 g(a+h) B m
h—0 h h—0 h

B hm{ gla+h) — g(a) 1 ]
w0 (Hz)_g(a) gla)gla+h)
- (_mg 1 )~(,£g%g<a)g<a+h>)

Corollary 6.5 If f,g : X — R are differentiable at the point a € X N X' and
g(a) #0, then f/qg is differentiable and, furthermore:

([)' (a) = fla)g(a) — fla)g'(a)

g (9(a))?

Proof: Exercise. (Hint: Use f/g = f-(1/g) and the product rule (ii) and rule
(iii)). ]

6.3 The Chain Rule

Let X C R, f: X — R be a function and a € X N X’. To say that

! BERT f(a+h)—f(a)
f'(a) = lim Y :

h—0

is equivalent to saying that

fla+h)= f(a)+ f'(a) h +r(h) where lim @ = 0.

h—0

Indeed, assume that f(a) = limy, o L= Defining r(h) = f(a +h) = f(a) -
f'(a)h, it follows that
r(h)  fla+h)— f(a)

o Ret IO ),

Applying the limit as h tends to zero on both sides of the identity above, it follows
that:

lim @ = lim
h—0 h h—0

— f'(a) = f'(a) = f'(a) = 0,

fla+h) = f(a)
h
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Differentiation 6.3 The Chain Rule

which proves the claim.

Conversely, let f(a + h) = f(a) + f'(a) h + r(h) where lim,_, T(}:L) = 0. Hence,

Applying the limit as h tends to zero on both sides of the identity above, we obtain:

h—0

From the above, we also have:
h h
lim r(h) = lim {Mh] i ") i h —0.0=0
h—0 h—0 h h—0 h h—0

We have the following geometric interpretation:

Figure 6.2:

We have: r(h) = f(a+h) — f(
line t: y = max + b, where m = f'(
b= (@) — f'(a)a. Thus, y = ['(a)z + (f(a) — ['(a)a), or

a) — f'(a)h. Let us determine the equation of the
a). In particular f(a) = f’'(a)a + b, which implies

y = fla)+ f(a)(z —a).

Observe the figure below:
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Differentiation 6.3 The Chain Rule

a «— ath

Note that as h — 0, r(h) — 0, and the tangent line is a 'good approximation’ of f

at the point z = a.

Lemma 6.6 Let f : X C R — R be a map. If f has a derivative at a point
a € X N X', then there exists a function p : R — R continuous at the origin such
that

fla+h) = fa) = [f'(a) + p(h)]h,

for all a and a + h belonging to X.

Proof: Let us define:

flath)=fl@) oo o
o) = . fa); h#£0anda+heX

0, h=0.

We will show that p thus defined satisfies the conditions of the lemma. Indeed, since
f is differentiable at a € X N X', then

h—0

Thus,

hmmmzzhm(ﬂmHD—ﬂw_me

h—0 h—0

which proves the continuity of p at zero. The second condition is satisfied by the

very definition of p. |
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Differentiation 6.3 The Chain Rule

Theorem 6.7 [Chain Rule] Let f : X CR =Y and g: Y C R — R be functions
such that f(X) CY,ae XNX and b= f(a) e Y NY'. If f'(a) and ¢'(b) exist,
then go f: X — R is differentiable at a and the rule holds:

(go f)(a) =g'(b)f(a).

Proof: By Lemma 6.6, since f is differentiable at a and g is differentiable at
b = f(a), there exist two functions p : R — R and ¢ : R — R, both continuous at

the origin, such that

() fla+h)— f(a) =[f"(a) + p(h)]|h, where limj,_,o p(h) =
(IT) g(b+ k) — g(b) = [¢'(b) + o(k)]k, where limy_,o o (k) =
Let k = f(a+ h) — f(a). Then, from this identity and (I):

k= [f"(a) + p(h)]h. (6.2)
fla+h)=k+ f(a) =k+0. (6.3)

Note that from (6.3) we have
(go f)la+h)=g(fla+h))=g(k+D).

But we also have from identity (II): g(b+ k) — g(b) = [¢(b) + o(k)]k. Substituting
k in the identity above by its expression given in (6.2) yields from (II) that

(go fila+h) = g(flat+h))=glk+ fla)) =g(k+Db)
= g(b) +1[g'(b) + o(k)]k
= g(b) + [¢'(b) + o(K)][f'(a) + p(R)]h
= g(b) +hlg' () f'(a) + g'(0)p(h) + o (k) ['(a) + o (k)p(h)].(6.4)
On the other hand,
(90 f)(a) =g(f(a)) = g(b). (6.5)

Combining (6.4) and (6.5) we deduce that

(go f)la+h)=(go f)(a)=nhlg'(1)f (a)+ g (b)p(h) + o(k)['(a) + o(k)p(h)],
which implies that

(o f)(a) = lm8eHeth) =(g0f)e)

h—0 h
= lim[g' () f'(a) + g'(0)p(h) + (k) ['(a) + o (K)p(R)].  (6.6)
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Differentiation 6.3 The Chain Rule

However, let us observe that from the definition of k, i.e., k = f(a + h) — f(a), it
follows that (by continuity of f at a)

lim k(h) = lim(f(a+h) — f(a)) = 0.

h—0 h—0

And from the facts that lim,_,o p(h) = 0 and (by composition of limits) limj_,o o(k(h)) =
o(limy,0 k(h)) = ¢(0) = 0, it follows from (6.6) that

(g0 f)(a) =g'(b) f'(a).

Examples:

(1) Consider ¢ : R — R defined by ¢(z) = Va3 + 22+ 1. ¢(z) = (go f)(x)
where g(u) = u'/3 and u = f(z) = 2® + 22 + 1. Thus, by the Chain Rule:

¢'(x) = g'(u)- f(z)

1
= gu’2/3(3x2 + 2z)

322 + 2z
3u2/3
322 + 2z
3(x3 + a2+ 1)%/3°

(2) Consider ¢ : R — R defined by ¢(z) = (2* +1)3. Let u = f(x) = 2> + 1 and
g(u) = u’. ¢(x) = (go f)(x). Hence, ¢/(x) = ¢'(u)f'(x). Thus,

¢'(x) = 3u*-(22)
= 3(2* +1)* 2z = 62(2* + 1)%

Corollary 6.8 (Derivative of the Inverse Function) Let f: X CR—-Y CR
be an invertible function. Let g := f~1:Y — X. If f is differentiable at a € X N X'
and g is continuous at b = f(a) € Y NY', then g is differentiable at b if and only if

f'(a) #0. In that case:
1

~ f(a)

Proof: ‘=’ Assume g is differentiable at b = f(a) and consider ¢ = go f. Since f
and ¢ are differentiable at a and b, respectively, we have by the Chain Rule that

g'(b)

¢'(a) = g'(b) - f'(a). (6.7)
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Differentiation 6.4 Local Maxima and Minima

On the other hand, since f is the inverse of g, we have ¢(x) = (g o f)(z) = z for

r € X. Hence:
h) —
Sa) = Jim A0 200 (6.)
h) —
_ %ﬂ%% —1, (6.9)

and from (6.7) and (6.8) we obtain ¢'(b) - f'(a) = 1, which implies f'(a) # 0 and
g0) = 70
‘=" Conversely, assume f'(a) #0. Let y € Y \ {b} and x = g(y) € X \ {a}. As

g is continuous at b, we have lim,_,;, g(y) = ¢g(b) = a. We have

—g(b) r—a
() = W90 gy T
0= S TN - @
. 1
T S T@@ T N T@-f@
B 1 1
o lim, ., f(x):f(a) o f’(a,)’

where we used the change of variables x = ¢g(y) and the fact that y - b0 — = — «a
(by continuity of g) and f’(a) # 0. |

Example: Let f : R — R defined by f(z) = x3. This function is bijective and
has a continuous inverse g : R — R given by g(y) = ¢/y. f'(a) = 3a®>. Hence, for
a =0 (where f'(0) = 0), g does not have a derivative at b = f(0) = 0. However, for
a#0and b=a’

1 1 1 1

IO =50 = 3@ ~ 3wy 3

6.4 Local Maxima and Minima and the Mean Value
Theorem

Definition 6.9 Let f : X C R — R be a function. f is said to have a local mazimum
at the point xy € X, if there exists § > 0 such that if v € X N (xg — §, 29 + §) then

f(z) < f(xg). A local minimum is defined similarly.

Theorem 6.10 (Fermat’s Theorem) Let f : I C R — R be differentiable at a point
xo belonging to the interior of the interval 1. If xq is a point of local mazimum (or

minimum,), then f'(zo) = 0.
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Differentiation 6.4 Local Maxima and Minima

/50 x}\

x1 is a local maximum point

Zo is a local minimum point

Figure 6.3: x is a local minimum point, while x; is a local maximum point

Proof: Let xq be a local maximum point belonging to the interior of I. Then there
exists 0; > 0 such that if € I N (xg — 91,20+ 01) then f(z) < f(zo). On the other
hand, since f is differentiable at x( (an interior point), the limits f’ (zo) and f (o)
exist and are equal. Let h # 0 be small enough such that xo+h € IN(xg—01, zo+01).
Note that f(xo+ h) — f(z) < 0.

f(xo +h) = f(x0)

h <0ifh>0,
f(zo +h) = f(xo) >0ith<0.
h
Taking the limits, it follows that f’ (zo) = limp_o+ 5 < 0 and f’ (zo) = limj,_o- 5 >
0. Since f'(zo) = f'.(x0) = [ (x0), the only possibility is f'(zo) = 0. The proof is
analogous if x is a local minimum point. [ |

Theorem 6.11 (Rolle’s Theorem) Let f : [a,b] — R be continuous on [a,b] and
differentiable on (a,b) such that f(a) = f(b). Then there exists a point ¢ € (a,b)
such that f'(c) = 0.

Proof: If f is constant, f'(c) = 0 for all ¢ € (a, b), and we are done. Suppose, then,
that f is not constant. Since f is continuous on the compact set [a,b], f attains
its maximum and minimum on this compact set (Thm 5.13). That is, there exist

Ty, Ty € [a,b] such that

f@2) < fl2) < fa1), Vo € [a,b].

However, since f is not constant and f(a) = f(b), at least one of these points, x;
or 9, must be an interior point (in (a,b)). Let ¢ be that interior point. Since ¢ is a

point of local maximum or minimum, by Theorem 6.10, we have f'(c) = 0. [

102



Differentiation 6.4 Local Maxima and Minima

Theorem 6.12 (Mean Value Theorem) Let f : [a,b] — R be a function that is
continuous on |a,b] and differentiable on (a,b). Then there ezxists a point ¢ € (a,b)
such that:

W) = (f(b) = fa))x = (b—a)f(x); x € [a,].

h is clearly continuous on [a,b] and differentiable on (a,b). Furthermore,

h(a) = (f(b) = fa))a—(b—a)f(a)

= f(b)a— fla)a—0bf(a) + fla)a = f(b)a —bf(a),
h(b) = (f(b) = f(a)b—(b—a)f(b)

= f)b = f(a)b = bf(b) + af(b) = —f(a)b+ af(b).

Therefore, h(a) = h(b), and by Rolle’s Theorem, there exists ¢ € (a,b) such that
R'(¢) = 0. However,

W(x) = (f(0) = fa)) = (b —a)f'(x), Yz € (a,b).

In particular,
0= "n(c) = (f(b) = fla)) = (b—a)f'(c),

which implies that
f(0) — f(a)
b—a

f'(e) =
Exercise: Let f: (a,b) — R be differentiable. Prove that:
(a) If f'(x) > 0 for all z € (a,b) then f is non-decreasing.
(b) If f'(x) =0 for all x € (a,b) then f is constant.
(c) If f'(z) <0 forall z € (a,b) then f is non-increasing.

Let’s do item (a): Consider z1, x5 € (a,b) with x; < 5. Since f is differentiable
n (a,b), it is continuous on [z1, xs]. Then, according to the Mean Value Theorem,

there exists ¢ € (x1, z2) such that

f’(c) _ f(x2) — f(%)7

To — T
ie., f(zy) — f(x1) = f'(c)(x2 — x1). However, since f’(c) > 0 (by hypothesis) and
(xg —x1) > 0, it follows that f(z2) — f(z1) > 0, i.e., f(z2) > f(x1), which proves

the desired result.
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Theorem 6.13 [Darbouz’s Theorem - IVT for Derivatives| Suppose f is a real
function, differentiable on |a,b], such that f'(a) < X < f'(b). Then, there ezists a
point x € (a,b) such that f'(x) = .

Proof: Suppose initially that A = 0, i.e., f'(a) < 0 < f'(b). (Note f'(a) = f\(a)
and f'(b) = f7.(b)).

I claim: There exists 0 > 0 such that if a < z < a+9, then W < 0. Indeed,
suppose the contrary. Then for every § > 0, there exists x5 € (a,a + J) such that
[@s)=/(@) > (. In particular, for § = 1/n, there exists 2, € (a,a + 1/n) such that

Ts—a
—f("’“";zii(“) > 0. As z, — a*, it follows that f’(a) = lim,_ 4 W > 0, which

contradicts f’(a) < 0. This proves the claim. It follows that f(z) < f(a) for all
x € (a,a+ ), and therefore a is not a point of local minimum.

Analogously, there exists 6 > 0 such that if b —§ < x < b, then f(x;:{(b) > 0.
Since x — b < 0, this implies f(z) — f(b) < 0, so f(z) < f(b) for all x € (b— 4,b).

Thus, b is also not a point of local minimum.

On the other hand, since f is continuous on [a,b], f must attain its minimum
on [a,b]. From the above, this minimum must occur in (a,b). That is, there exists
z € (a,b) which is a local minimum, and by Theorem 6.10, f'(z) = 0.

Now consider the general case. Let g(z) = f(x) — Az. It is clear that g is

differentiable on (a,b) and continuous on [a, b]. Furthermore,

d(a) = fla)—Ar<0,
g = B =r>0.

Therefore, by the previous case, there exists x € (a,b) such that ¢’(z) = 0, which
implies f'(z) — A =0, or f'(z) = \. [

6.5 Higher-Order Derivatives and Taylor Polynomi-
als

If a function f is differentiable on an interval containing a point ¢, one can inquire
about the existence (or non-existence) of the derivative of the function f’ at the
point c. If this derivative exists, it is called the second derivative of f at ¢ and is
denoted by f”(c) or f@®(c). We then say that f’ is differentiable at c. In general, if
n € N, one can make analogous considerations and define the n-th order derivative
of f at c. Notation: f((c) or 2L (c).

dx™
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Differentiation 6.5 Higher-Order Derivatives

If f:1 — Ris such that f((z) exists for all € I, we say that f is n-times
differentiable on I. If f is n-times differentiable on I and ™ is continuous, we say
that f is of class C"(I).

Taylor Polynomial If f is a function that is n-times differentiable on an interval

I and z( is an interior point of I, it is possible to find a polynomial of degree n,

denoted by P, ,,, such that:
Prao(w0) = f(x0); Ph (o) = f'(x0), -+, P (w0) = f™ (o).

Precisely, such a polynomial is:

f(")(mo)

n!

f// (ZL‘())

5 (x — x0)".

Pn,xo(x) = f(xo) + f/(JI())(x — JJO) + (m — 1;0)2 4+ .4

This polynomial is called the Taylor polynomial of degree n of the function f at the

point x.

Theorem 6.14 [Taylor’s Theorem/ Let f : I C R — R. Suppose that for some n €
N, the derivatives up to order n ezist and are continuous on I = |a,b|. Furthermore,
suppose f"Y) exists on (a,b). If zo € [a,b], then for each x € [a,b] (v # x0), there

erists ¢ between x and xo such that

f(e) n
f(l') = Pn,cto(x) + m(l’ — 'IO) +1.
The term f((::l))(f) (x — 20)"" is called the remainder of order n and is denoted by

Rz () (Lagrange form of the remainder).

Proof: Consider the points zy and x, and let J be the closed interval with endpoints
x and zg. If x = xy, J = {20} and the theorem follows trivially. Let x # z, and

consider the auxiliary function:

F:J—R, te F(t) = f(z) — Poi(z), (6.10)
where
Poy(z) = f(t) + fOt)(x —t) + f(z)!(t) (x—t)+-+ f(:!<t) (x—t)". (6.11)
It can be verified that
p(p) = - gy,
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Differentiation 6.5 Higher-Order Derivatives

where this derivative exists for ¢ in the interior of J. Indeed, from (6.10) and (6.11)
applying the product rule to each term:

d

F(t) = 4P
- - |ro+roe-o- e+ (5 - - Tl -)
- (W@ S A PP t)”lﬂ
This is a telescoping sum where most terms cancel out:
F(O) = ~ (70 - FO) + (PO 1) - PO 1)+
a JL (n_)(g! (2 — ) %@ — ) @@: - t)”}
- L0y

which proves the claim. Now, define the function:

G:J =R tr—>G(t):F(t)—(z_t)nHF(mo).

The function G is such that

T — X9

G(zo) = Fl(xo) — < )nﬂ F(z0) = Flxo) — Flxo) =0,

T — X9

Glz) = F(m)—(”“"‘”””) F(zo) = F(z) = f(z) — Pua(z) = f(z) — f(z) = 0.

r — Tg

Note that G is continuous on J and differentiable on the interior of J. By Rolle’s

Theorem, there exists ¢ between = and x, such that G'(¢) = 0. But

Gt = F'(t) — (n+ 1) ( vt )n (- ! )F(g:o)

r — X r — I

(x =)

0=C(0) = Fle)+m+ Vo

F($0)7

which implies

_ (I_xo)nJrl (¢
Flao) = G —opt @

() (),

ie.,

= Ty @ = @) (6.12)
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From (6.10) and (6.12), it follows that

F(zg) = f(x) = Pog() = m(ﬂﬁ - fo)nH,
ie.,
_ f(n+1)(c) n+1
f(x)—Pn,mo(fﬂ)er(fﬂ—x )
which proves the desired result. |

Application of Taylor’s Theorem

Let I be an interval and zy an interior point of I. Let f : I — R be n-times

differentiable (n > 2) and assume that f’, f”,---, f(™ are continuous in a neigh-
bourhood of zy and that f'(z¢) = f"(2¢) = --- = f™ Y (x) = 0, with () # 0.
Then:

(I) If n is even and f™(zy) > 0, f has a local minimum at z.
(IT) If n is even and f™(z4) < 0, f has a local maximum at .
(ITT) If n is odd, f has neither a local maximum nor a local minimum at z, (it

is an inflection point).

Proof: By Taylor’s Theorem (using the n — 1 polynomial, with remainder of order

n):

(),
7o) = £lao) + D a —ag), (6.13)
since f'(z9) = f"(wo) = --- = f"V(xg) = 0. As f™ is continuous at x, and

™ (z4) # 0, there exists a neighbourhood of zq (say, (zo — &,z + 8)) where f() ()
has the same sign as f (). If z € (zg — &, z9 +6), then ¢ (which is between x and
o) is also in this neighbourhood. Thus, f™(c) has the same sign as f™(z).

() n is even and £ (o) > 0. Then f™(c) > 0 and (x —x)" > 0. Thus, (6.13)
implies f(x) > f(zo) for x near zy. o is a local minimum.

(IT) n is even and £ (zy) < 0. Then f™(c) < 0 and (x — )" > 0. Thus, (6.13)
implies f(x) < f(zo) for x near zy. o is a local maximum.

(TITT) n is odd. Then (x — x¢)" changes sign. If f™ (o) > 0, f(z) > f(zo) for
x>z and f(x) < f(x0) for & < x¢. 7 is not an extremum. The case f™(zy) < 0

is analogous. [ |
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Exercises on Differentiable Functions

1. Let f : R — R be constant, i.e., there exists ¢ € R such that f(z) = ¢ for
every x € R. Calculate f'(a) for every a € R. (Expected result: f'(a) = 0)

2. Let f: R — R be given by f(z) = cx + d. Let a € R. Calculate f'(a).
3. Let f: R — R, f(z) = 2?. Let a € R. Calculate f'(a).
4. Let f:R = R, f(z) = 2", n € N. Let a € R. Calculate f'(a).
5. Let f: R — R be the function defined by f(x) = |z|.
(a) Calculate: f/(0%) and f'(07).
(b) Calculate f'(a) if @ > 0 and f'(a) if a < 0.

6. Let f:]0,4+00) — R be defined by f(x) = \/z. Let a € [0,+00). Calculate
f'(a) if @ > 0 and prove that f is not differentiable at the point 0.

7. Let f: R — R be the function defined by

fx) =

for every n € Z.

r—n if ©€[n,n+3
n+l—z ifzen+in+1]
(a) Calculate f/(z) forallz € R,z #n, x #n+ %, n e Z.

(b) Prove that f is not differentiable at the points n € Z and n+ 3, n € Z.

8. If f: X — R is differentiable at the point a € X N X’ then:

fla+h) = f(a)+ f'(a)h+r(h), with %gxg)@ =0.

(a) If f(z) = 2* determine 7(h).
(b) If f(z) = sinx determine r(h).

1 if x>0

9. LetJ”:]R%Rbegivenbyf(az:):{1 <0
-1 ifux

(a) Prove that f is right-continuous at the point zero and calculate f’(07).
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Differentiation 6.5 Higher-Order Derivatives

10.

11.

12.

13.

14.

15.

16.

17.

(b) Prove that f is not left-continuous at the point 0 and verify that the left

derivative of f at the point 0 does not exist.
(c) Conclude that f is not continuous at the point 0.
The function f : R — R given by f(z) = 2% is a continuous bijection with

continuous inverse g : R — R given by g(y) = #y. Calculate f’(a) for every
a # 0 and determine ¢'(b) for every b € R — {0}.

Let f: R — R be given by f(x) = x2. Verify that f has a strict local minimum
at the point 0.

Let g : R — R, g(z) = sinz. Verify that g has strict local maxima at the
points (4k + 1) and has strict local minima at the points (4k —1)7.

Verify that the function h : R — R, given by

h<x>:{1 if 2> 0

-1 if x <0,
does not have a non-strict local maximum at the point 0.

Verify that the function ¢ : R — R, p(x) = 2%(1+sin 1) if 2 # 0 and p(0) = 0,

z
is continuous on the entire line and has a non-strict local minimum at the point

0.
Let the function f : R — R be defined by f(z) = msin% if z # 0 and f(0) = 0.

(a) Prove that f is continuous on the entire line.

(b) Prove that f is differentiable for all x # 0, and calculate f’(z) for all
x # 0.
(¢) Verify that f is not differentiable at the point zero.

Let the function g : R — R, g(z) = 2?sin L if z # 0 and g(0) = 0.

(a) Prove that g is continuous on the entire line.

(b) Prove that g is differentiable on the entire line, and calculate ¢’(x) for all

r e R.

(¢) Verify that ¢’ : R — R is not continuous at the point zero.

Let the function ¢ : R — R be defined by ¢(z) = 2?sin< + £ if z # 0 and
(0) = 0.
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18.

19.

20.

21.

(a) Prove that ¢ is continuous and differentiable on the entire line. Calculate

¢'(z) for all x € R and calculate ¢'(0).
(b) Prove that ¢ is not increasing in any neighborhood of the point 0.

(c) Conclude that ¢ cannot be injective in any interval of the type (0,0) or
(—0,0), 6 > 0.

Let h : [-1,1] — R be defined by h(z) = (1 — 2%)sin — if x # +1 and

1—22

h(£1) = 0. Prove that there exists ¢ € (—1,1) such that A'(c) = 0. Verity
that ¢ = 0.

Let f: R — R be defined by f(z) = e”.

(a) Prove that e” > 1+ z for all x > 0.
(b) Prove that lim, "z—: =0 for n € N.

(c) Prove that for every polynomial p(x) = a,2" + a,_12" "  + - - + a1z + ao,

lim, oo 22 = 0.

Let f: R — R be defined by f(z) = e if v # 0 and f(0) = 0.

(a) Prove that f is continuous on the entire line.
(b) Prove that f is differentiable on the entire line and calculate f'(z) for all
z € R.

e s if € #0

Let f: R — R be the function f(z) = ,
0 if x=0

(a) Calculate lim, o+ f(z).
(b) Calculate lim, ,o- f(x).
(
(d

)
)

¢) Verify that f is not continuous at the point zero.
) Verify that f is right-continuous at the point zero.
)

(e) Prove that f is differentiable from the right at the point 0 and verify that

f(0F) =0.
(f) Calculate lim, ,o- f'(z).
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Chapter 7

The Riemann Integral

7.1 The Riemann Integral

In what follows, we will consider real functions f : [a,b] — R, defined on a compact
interval [a,b] and bounded on this interval. Consequently, there exist lower and
upper bounds for the set of values of f: {f(x) : z € [a,b]}, i.e., there exist ¢1,c0 € R
such that

1 < f(z) < ¢y VY € [a,b]. (7.1)
We then define,

m = inf{f(x):z € [a,b]}, (7.2)

M = sup{f(z):x € [a,b]}. (7.3)

Definition 7.1 A partition of the interval |a,b] is a finite subset P C |a,b] such
that a,b € P. When we write P = {to,t1, -+ ,t,}, we will always convene that
a=ty <ty <ty <t, =>b. The intervals [t;_1,1;] are called the subintervals of
the partition P.

Let f :[a,b] — R be a bounded function and P = {t¢,t1,--- ,t,} a partition of
la,b]. For each i = 1,---  n, let us define:

m; = Hlf{f(l') X e [tifl,ti]}, (74)

M; = sup{f(z):z € [ti_1,t:]}. (7.5)
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The Riemann Integral 7.1 The Riemann Integral

Definition 7.2 We will define the lower sum s(f; P) and the upper sum S(f; P) of
the function [ with respect to the partition P, by setting:

s(f; P) = imiAti = imz(tz —tic1),
i—1 i—1

i=1 i=1

Remark: Since m; < M; for each i € {1,--- ,n}, we always have

s(f; P) < S(f; P). (7.6)

Remark: When f is a positive function, the sums s(f; P) and S(f; P) can be

interpreted as areas of polygons. (see Figure 7.1)

N

Y
A

Figure 7.1:

Definition 7.3 Let P and Q be partitions of [a,b]. We say that @Q is finer than P
(or that Q is a refinement of P) if P C Q.

Next, we will prove that by refining a partition, the lower sum does not decrease

and the upper sum does not increase.

Theorem 7.4 Let P and Q) be partitions of the interval [a,b] with P C Q, and let
f:la,b] = R be a bounded function. Then:

s(f; P) <s(f;Q) < S(f;Q) < S(f; P).
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The Riemann Integral 7.1 The Riemann Integral

Proof: It suffices to prove the first and third inequalities, since the second one has
already been established. Indeed, let’s prove the first. Take P = {t¢,¢1, - ,t,} and
consider @ = {to,t1, -+ ,t;_1,7r t;, - tp}, with t; 1 < r < t;. (We are adding one
more point to the partition). Let m;, m’ and m” be the infima of f on the intervals

[ti—1,t:], [ti—1,7], and [r, t;] respectively. Evidently:
m; <m’ and m; <m”, (7.7)

since the sets [t;_1,7] and [r,t;] are contained in [t;_q,t;]. As At; = t;, —t;_1 =
(t; —r)+ (r —ti_1), from (7.7) we have:

my ma mi—1 m' m' M1
R "
| | | | | | | |
T T T T T T T T
to t 15 o ti1 r t; tiv1
Figure 7.2:

s(f;Q) = s(f; P)
= b myq(ticg —timg) +m(r —tis) +m"(t — ) + g (b — ) + .-
—[ ot mia(tion = tice) +ma(ts — tin) +migpa (figr — ) + ...
"(r—tiq) +m"(t; — 1) — my(t; — t;1)
—ti1) +m(t; — 1) —mi(t; —t;iq)  (by (7.7))
mlr —tiy +t —r] —m(t; — ti)

|
3

v

m(r
[

i(ti — tic1) —m(t; — ;1) = 0.

Il
3

Consequently s(f;Q) > s(f; P). Applying this result repeatedly (if () has more
points than P), we conclude that

PCQ=s(f;P)<s(f;Q).

Analogously, it is proved that:

PcCQQ=5(f;P)=S(f:Q).

Corollary 7.5 Let f : [a,b] — R be bounded. For any partitions P,Q of [a,b], we
have s(f; P) < S(f; Q).
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Proof: Indeed, the partition P U @ refines both P and Q). Thus:

s(iP) = s(f;PUQ) < S(fiPUQ) < S(f;Q)
~~ ~~ ~~
Thm.7.4 (7.6 Thm.7.4
[
Remark: Let f:[a,b] — R be bounded. Define:
m = inf{f(x):x € [a,b]},
M = sup{f(z):x € [a,b]}.
Then, for any partition P = {a =ty < t; < --- <t, = b} of [a,b], we have:
m(b—a) < s(f: P) < S(f; P) < M(b—a). (7.8)

Indeed, since m < m; < M; < M for each i, then:

i=1 i=1 =1
= m[t1—t0+t2—t1+~~~+tn—tn,1]
= m(t, —to) = m(b—a).

Analogously, it is proved that S(f; P) < M(b— a).

Let P be the set of all possible partitions of [a,b]. Then the set of lower sums
o ={s(f;P): P € P} is bounded above (by M(b— a)), and the set of upper sums
Y ={S(f; P): P € P} is bounded below (by m(b — a)).

Definition 7.6 Let f : [a,b] — R be bounded. We define the lower integral fbf(x) dx
and the upper integral TZf(ZE) dx of the function f over |a,b], by setting:

—=b

b
/f(x)dmzsupa and /f(x)dx:jnfE_

a

From (7.8) and Corollary 7.5, it follows that:

b —b
m(b—a)§/f(m)dajg/f(x)dxﬁM(b—a). (7.9)

Definition 7.7 Let f : [a,b] — R be bounded. We say that f is (Riemann) integrable

when its lower integral is equal to its upper integral. The value of the integral, in

this case, is this common value. We denote the integral of f by fab f(z)dx. Thus:

/ab f(z)de = sz(:v) dz = 7if(a;) dz.
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Examples:
1) Let f : [a,b] — R, f(z) = X for all € [a,b]. Determine fabf(:v) dx. Let

P={a=ty <t <---<t,=0b} be a generic partition of [a,b]. Then
S(f; P) = Zml i — lie 1 Where m; = mf{f(x) RS [tiflati]}a

S(f;P) = ZM — t;—1) where M; = sup{f(z) : & € [t;-1, t:]}.

Since f(x) = A for all = € [a,b], then m; = M; = A for all i = 1,--- ,n. Hence
s(f1P) = AZ —tia) = b —a),

S(f;P) = AZ(ti —t;i 1) = Ab—a).
i=1
It follows that
sup{s(f; P): P € P} =inf{S(f; P): P€ P} = Ab—a),

and therefore [* f(z)dz = A(b— a).
2) Example of a non-integrable function (Dirichlet’s function). Let f : [0,1] = R
be defined by
1, re@Q
flx) =
0, ze€R\Q
In this case, for any subinterval [t;_1,t;] (with ¢; > ¢;_1), m; = 0 and M; = 1 (by

density of Q and R\Q). Consequently, for any partition P: s(f; P)=> 0-At; =0
and S(f;P)=>.1-At; = (b—a) = 1. Thus,

/1f($) dx = sup{0} = 0 and 70]”(3:) dr = inf{l1} =1,

which implies that f is not Riemann integrable.

Theorem 7.8 (Riemann’s Criterion for Integrability) A bounded function f :
[a,b] — R is integrable if and only if for every € > 0 given, a partition P of [a,]
can be found such that S(f; P) — s(f; P) < e.

Proof: (=) Suppose f is integrable and let € > 0 be given. By hypothesis,
inf X =supo =1,
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The Riemann Integral 7.2 Criterion for Riemann Integrability
where 0 = {s(f; P): P € P} and ¥ = {S(f; P) : P € P}. By the definition of sup
and inf, for the given € > 0, there exist P;, P, € P such that
I—c/2<s(f;P)<I and I<S(f;P)<I+e/2.
Let P = P, UP,. Since P is a refinement of both P, and P, by Theorem 7.4:
s(fi 1) <s(f;P) and  S(f; P) < S(f; P»)
Combining these:
I—¢e/2<s(f;P) <s(fiP) SS(fiP) < S(fi P) <1 +¢/2

Thus, S(f; P) — s(f; P) < (I +2/2) — (I —/2) = =.

(<) Conversely, suppose that for every ¢ > 0 there exists P. € P such that
S(f; P.) — s(f; P.) < e. We must prove that inf ¥ = supo. We know supo < inf 3.
By definition of inf and sup:

inf X < S(f; P.) <e+s(f;P.) <e+supo.

Thus,
inf X —supo < e.

We also know (from (7.9)) that supo < inf 3, and consequently
inf ¥ —supo > 0.
Hence, from the two lines above, for every € > 0 we have
0 <inf¥ —supo <e.

By the arbitrariness of € > 0, the equality inf ¥ = sup ¢ must hold. [

7.2 Criterion for Riemann Integrability

Definition 7.9 Let f: X C R — R be a bounded function with X C [a,b]. We call
the oscillation of f on the set X the number

wx = w(f, X) = sup{| f(x) — f(y)| : 2y € X},

Lemma 7.10 Let f : X — R be a bounded function. Consider:
mx =inf{f(z) 1z € X} and Mx =sup{f(x):x € X}
Then: wx = Mx — my.
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The Riemann Integral 7.2 Criterion for Riemann Integrability

Proof: If f is constant, Mx = myx and wx = 0, so the proof is trivial. Suppose,

then, f is not constant. We have

mX§f<y)§MX7 vy€X>

or

mx < f(z) < My, Vo € X,
—Mx < —f(y) < —mx, VyeX,

and therefore
—(Mx —mx)=mx — Mx < f(z) — fly) < Mx —my, Vo,y € X,
and since Mx — mx > 0, it follows that:
|f(z) = f(y)] < Mx —mx, Yo,y e X (7.10)

It follows from (7.10) that Mx — my is an upper bound for the set {|f(z) — f(v)| :
z,y € X}, and therefore

wx < My —mx. (7.11)

We will now show that My — my is the least upper bound. Indeed, given € > 0, by
definition of sup and inf, there exist x.,y. € X such that

fle) <mx+5 and fly) > My — 5. (7.12)

Then from (7.12) it follows that

Mx —mx < (f(ye) +¢/2) = (f(2:) —€/2)
= f(y:) — flze) +¢
< |f(ye) = flae)| +e

< wx +e.
By the arbitrariness of € > 0, it follows that
Mx—mx wa, (713)

and from (7.11) and (7.13), the desired result is proven. |
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The Riemann Integral 7.3 Properties of Integrable Functions

Corollary 7.11 A function f : [a,b] — R is integrable if and only if, given ¢ > 0,
there exists a partition P = {to <ty < --- ,t,} of the interval [a,b] such that

iwlAtz <eg,
i=1
where w; = w(f, [ti—1,t;]) = sup{|f(z) — f(y)| : z,y € [ti1,ti]}.

Proof: Follows immediately from Theorem 7.8, Lemma 7.10, and the fact that

SUP) - s(fiP) = S ML -3 mid

i=1

=1

Theorem 7.12 Fuvery continuous function f : [a,b] — R is integrable.

Proof: Let € > 0 be given. Since [a,b] is compact, f is uniformly continuous on
la,b] (Thm. 5.15). Hence, for ;= > 0, there exists § > 0 such that if z,y € [a, ]
and
3
o=yl <8 = 17() — fw)] < 7

Let us consider a partition P = {t¢,t1,- - ,t,} such that the length of the largest

(7.14)

subinterval, which we denote by ||P|| (the norm of P), does not exceed § > 0, i.e.,

| P|| = max; At; < §. In this way, given =,y € [t;_1,1;], we have:
[z —y| < (i — tic) <[P <6

From (7.14), it follows that |f(z) — f(y)| < = for all z,y € [t;_1,t;]. Therefore,

)

— is an upper bound for the set {|f(x) — f(y)| : =,y € [ti_1,t;]}, and consequently

b—a
i = sp{If() = f@)|: 2, € [ i} < (7.15)
*(Note: A strict inequality < cannot be guaranteed by the sup)*
Hence, by the proof of Corollary 7.11 and from (7.15), it follows that:
P =s(iP) =3 bt €Y it =S an—e (10
——
=(b—a)
From (7.16) and Theorem 7.8, it follows that f is integrable. [
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7.3 Properties of Integrable Functions

Proposition 7.13 Let f,g: [a,b] — R be integrable functions. Then:

(i) f+ g is integrable and f:(f(:v) +g(x))de = fabf(x) dr + fabg(x) dx

(7i) For all ¢ € R, the function cf is integrable and, furthermore, f;(cf)(:c) dr =
cff f(z)dx

(111) If f(z) > 0 for all x € [a,b], then fabf(x) dx > 0. Equivalently, if f(x) <
g(x) for all x € [a,b], then fabf(x) dr < fabg(x) dx

(iv) The function | f(x)| is integrable and, furthermore, x) dx‘ < ff |f(z)] dz.
In particular, if | f(z)| < k for all x € [a,b], then ‘fab f(z) da:‘ < k(b—a).

(v) (Mean Value Theorem for Integrals) If f is continuous on [a,b], there exists
c € la, b] such that ff f(z)dx = f(c)(b—a).

Proof: (i) Let P = {to,t1, -+ ,t,} be a generic partition of [a,b]. For every
subinterval [t;_1,t;] C [a,b], we have (using m;(f) = inf f on I;, etc.):
m;(f) +mi(g) <mi(f +g) and M;(f +g) < M;(f) + M;(g). (7.17)

(Note: The original text had > for the M; inequality, which is incorrect.) Indeed,
it suffices to prove that (m;(f) + m;(g)) is a lower bound for the set {(f + g)(z) :
T € [tz—latz]}

ml(f) = mf{f(x) X E [tifl,ti]}

mi(g) = inf{g(z):xz € [t;_1,t]}

which implies

mi(f) +mi(g) < f(z) + g(x) = (f + 9)(), Vo € [ti, 1i].

Taking the infimum over x gives m;(f) + m;(g) < m;(f + g). The proof for M; is

analogous. From this, it follows that for any partition P:

s(f; P)+s(g; P) < s(f +g; P) < S(f +g; P) < S(f; P) + S(g; P).
Since f and g are integrable, given ¢ > 0, there exist P, P, such that S(f;P) —
s(f; P1) <e/2 and S(g; P2) — s(g; P») < e/2. Let P = P, U P,. Then
S(f+g:P)—s(f+g:P) < (S(f; P)+ 5(g: P)) — (s(f; P) + s(g: P))
= (S(f; P) = s(f; P)) + (S(g; P) — 5(g; P))
< (S(fs Pr) = s(fi P1)) + (S(g; P2) — s(g; P2))
<ef2+4¢/2=c.
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By Theorem 7.8, f + ¢ is integrable. Furthermore,

/(f+g) > sup(s(f; P) + s(g; P)) > sup s(f; P) +sups(g; P /f+/

/(f+g) <inf(S(f; P)+ S(g; P)) <inf S(f; P) + inf S(g; P /f+/

Since f + g is integrable, the lower and upper integrals are equal, forcing all inequal-
ities to be equalities.
(ii) We have (for ¢ > 0):

mi(cf) = mf{cf(2)} = cint{f(£)} = emi(f)

M;(cf) = sup{cf(x)} = csup{f(z)} = cM;(f)
Ife<O:
m;(cf) = inf{cf(z)} = csup{f(z)} = cM;(f)

Mi(cf) = sup{cf(z)} = cinf{f(z)} = emi(f)

Case (a): ¢ < 0.
s(cf; P) Zmz (cf)At; = Z M;(f)At; = cS(f; P)

S(cf; P) ZM cf)At; = Zcmi(f)Ati = cs(f; P)
Taking the sup of s(cf; P) and inf of S(cf; P):

[en) =suiessi P} = cint(s(ri P = [ 1

[en) =ntes(riP)) = eupfstri Py = c [ 1

Since they are equal, ¢f is integrable and [c¢f =c [ f. Case (b): ¢ > 0.
s(cf; P) = cs(f; P) and  S(cf; P) = cS(f; P)

Taking sup and inf yields [(¢f) =c[f =c [ f and T(Cf) = ch =c [ f. In both
cases, cf is integrable and [(cf) =c [ f.
(iii) If f(x) > 0 for all = € [a, b], then m; > 0 for every subinterval. Thus
s(f;P) =) miAt; > 0,YP € P.
i=1
Consequently,

b
[ #a)is = supfs(sip) P e Py 20
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If f(x) < g(z), then h(x) = g(x) — f(z) > 0. By (i) and the result just proved,

0< / h(r) do = / (&) — F(a)) de = / glayde / ) do

ie., [V f(x)de < [°g(x)de
(iv) Let P € P be a partition. For any z,y € [t;_1, ],

wi(|f1) = sup{|[f (@) = |f(W)I[} < sup{|f(z) = f(y)[} = wi(f)
(using the reverse triangle inequality). Thus,
S P) = s(1f1; P) = Y _willf)AL < wil )AL = S(f; P) — s(f; P)

Since f is integrable, for any € > 0, there exists P such that S(f; P) — s(f; P) < e.
For the same P, S(|f|;P) — s(|f|;P) < e. By Theorem 7.8, |f| is integrable.
Furthermore, since —|f(x)| < f(z) < |f(x)|, Yz € [a,b], it follows from item (iii)

that b b b
_/a |f(x)\dx§/a f(:r)d:cé/a ()] dz,

which means ’fabf(x) d:v‘ < f; |f(z)|dzx. If | f(x)| < k for all = € [a, b], then

g/ab]f(x)\dxg/abkdx:k(b—a).

(v) Let m = inf{f(z) : z € [a,b]} and M = sup{f(x) : © € [a,b]}. Since f is

continuous on |[a, b], it is integrable, and by (iii),

x)dz

b
m(b—a) < / f(x)de < M(b—a).
Consequently,

By the Extreme Value Theorem (5.13), f attains its m and M at points xz,,,xy €
[a,b]. The value C' = = [ f(x)dx is an intermediate value between m = f(,,) and
M = f(z). By the Intermediate Value Theorem (5.18), there exists ¢ € [a, b] such

that f(c) = C, i.e., f(c ff |

7.4 The Fundamental Theorem of Calculus

Definition 7.14 Let [ : [a,b] — R be an integrable function. Then for all x € [a,b],
f is integrable on |a,x]. Consider the function F : |a,b] — R defined by

= /x f(t)dt. (7.18)

F' s called the indefinite integral of f.
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Remarks:

(la) We will adopt the convention that fab fy)dy = — [ f(y) dy. The following
property also holds:

/abf(x)dx:/acf(x)dw+/cbf(x)dx, Ve € [a, b],

which we leave as an exercise.

(2a) If f : [a,b] — R is bounded on [a, b], then F is Lipschitz continuous. Indeed,
since f is bounded, there exists k > 0 such that |f(z)| < k, for all z € [a,b]. Let
z,y € [a,b]. We have from (7.18) (assuming y < z):

P -rl = |[ rwa- [ yf(t)dt]
' oL

AN
—
=
=
E
AN
ol
=
|
=

(3a) F' is uniformly continuous. We have from remark 2a that F' is Lipschitz

continuous, i.e., there exists k£ > 0 such that
|F(x) — F(y)| < klz —yl, Yo,y € [a, b].

Hence, given € > 0, take § = 7. Therefore, if z,y € [a,b] are such that |z —y| <6,

we have:

[F(2) = F(y)| < klz —y| < k6 = k— =2
which proves the claim.
Example: Let f : [0,2] — R be defined by:

£ 0, if0<t<1
t) =
if1<t<2,

Y

and consider F : [0,2] — R defined by F(z) = [ f(t)dt. Find the explicit form

of the function F. Solution: Since f is a piecewise function, we must divide it into

two cases:
(1) For 0 <z < 1. Thent € [0,z] C [0,1).

o= [ e ffvan
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(2) Forl1 <z <2

:/Omf(t)dt _ / dt+/ (1)

= /Odt+/ ldt=0+(z—1)=z—1.

Thus:
0, 0<z<l1
F(z) =
r—1, 1<x<2
Yy
/
I —o
é » T
0 1 2
Yy

Figure 7.3:

Observing the graph, we see that: (i) f is not continuous at x = 1. (ii) F' is

continuous at x = 1. (iii) F is not differentiable at x = 1.

Analytically,
. F(1+h)—F(1) . (I+hr)-1)-0 . h
/ R — — —_ =
R = lim h = i h ==t
F(1 — F(1 —
F'(1) = lim (1+7) (L) = lim 0-0_ 0,
h—0_ h h—0,h<0 h

which implies that F'(1) does not exist.

The example above motivates the following theorem:

Theorem 7.15 (Fundamental Theorem of Calculus, Part 1) Let f : [a,b] — R be
integrable. If f is continuous at a point ¢ € [a,b], then F : [a,b] — R defined by
= [T f(t)dt is differentiable at x = ¢ and F'(c) = f(c).
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Proof: We want to show that F'(c) = f(c), i.e.,

lim F(c+h) — F(c)
h—0 h

= f(c),

or, given € > (0, we must exhibit 6 > 0 such that

F(c+h)—F(c)
h

Since f is continuous at x = ¢, we have that for the given £ > 0, there exists 6 > 0

such that if ¢ € [a,b] and

if |h] <6 (and ¢+ h € [a,b]) = — flo)] <e. (7.19)

t—c| <8 =|f(t) - f(c)| <. (7.20)

We have two cases to consider (assuming c is an interior point):
(i) 0<h<dand c+h € la,b]. Ift € [c,c+ h], then |t — | < h <, so (7.20)
holds.

HHM%MiM‘: Lo @) dt — [ f(8) dt = hf(c)
h h
c+h
= [ -
_ %/+ f(zs)dt—/c+ f(c)dt'
< [ vw-sela
= %/:Jrhgdt:%(ah):s,

which shows that F (c) = f(c).
(i) =0 <h<O0andc+he€ab]. Ift €lc+ h,c, then |t —c| < |h] < 6, so
(7.20) holds. Let h = —|h|.

F(c+h) — F(c) [ f(eydet — [€ F(t)dt — hf(c)

1 C
= i -
= L pwar s mise)
|h’ ct+h
L rwa+ f(c)dt‘
|h| ct+h c+h
1 C
< mﬁy@ﬁww
1 ¢ 1
— dt = —(e-|h]) =¢,
ggwﬁf a0 =
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which proves that F” (¢) = f(c). Thus, F'(c) = f(c). [

Corollary 7.16 Given f : [a,b] — R continuous, there exists F : [a,b] — R differ-
entiable such that F' = f.

Proof: If f is continuous on [a,b], then f is integrable on [a,b] (Thm. 7.12).
Define F : [a,b] — R by F(x) = [ f(t)dt. By Theorem 7.15 (since f is continuous
at *every™ point ¢ € [a,b]), F is differentiable on [a,b] and F'(z) = f(x) for all
x € [a,b]. |

Definition 7.17 A primitive (or antiderivative) of a function f : [a,b] — R is a
differentiable function F : a,b] — R such that F' = f.

Remarks: (1a) Corollary 7.16 tells us that every continuous function on [a, b]
possesses a primitive.

(2a) Not every integrable function f possesses a primitive. Indeed, let F be a
primitive of f. Then F'(z) = f(x) for all x € [a,b]. We have, therefore, that F
is differentiable on [a,b], and thus F’ = f cannot have discontinuities of the first
kind on [a, b] (by Darboux’s Theorem, 6.13, which states that derivatives satisfy the
Intermediate Value Property, even if they are not continuous). Thus, a function, in

order to have a primitive, cannot have jump discontinuities.

Proof that the derivative of a differentiable function
does not have a discontinuity of the first kind

Let f: R — R be a function differentiable at a point a € R. We want to prove that
the derivative function f” cannot have a discontinuity of the first kind (i.e., a jump)

at the point a.

Definitions

e Since f is differentiable at a, the limit

Fla) — 1 £ = F@)

h—0 h

exists. This implies, in particular, that f is continuous at a.

e We say that a function g has a discontinuity of the first kind (or jump)

at a if the lateral limits exist, but are different:

lim g(x) =L, and lim g(x)=L_, with Ly # L_.

z—at T—a—
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Proof (Completion)

Proof: Let us assume, by contradiction, that f’ has a discontinuity of the first
kind at a. This means that the lateral limits exist and are different:

lim f'(z)=Ly and lim f'(z)=L_, with L, #L_.

z—at x—a~
Let us analyze the limit from the right. Consider any x > a. Since f is differ-
entiable on R, f is continuous on [a, z| and differentiable on (a,z). By the Mean
Value Theorem (Theorem 6.12), there exists a ¢, € (a,z) such that:

f(@) — fla
f@) — f(a) = f'(cy)-

r—a

Now, let us take the limit as  — a™. The left side is, by definition, the right-hand
derivative of f at a:

lim @) = J(a) = lim f'(c;).

z—a™t Tr—a z—a™t

Since f is differentiable at a, this limit must be f’(a).

f(a) = lim_f'(c,).

z—a™t

As x — a*, we have ¢, — a™ (because a < ¢, < x). Since we assumed the limit

lim; .+ f'(t) = L exists, it follows that:

Now, let us analyze the limit from the left. Consider z < a. By the MVT on [z, a],
there exists d, € (z,a) such that:

a— T —a
Taking the limit as x — a™:
lim L& =@ f'(dy).
T—a~ r —a T—a~

The left side is f'(a). Asx — a~, we have d, — a~. Since we assumed lim; - f'(t) =

L_ exists:
f'(a) =L_.

We have thus concluded that L, = f’(a) and L_ = f'(a), which implies L, = L_.
This contradicts our hypothesis that L, # L_ (the definition of a jump discontinu-
ity). Therefore, f’ cannot have a discontinuity of the first kind. [ |
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Final Conclusion

The assumption that f’ has a discontinuity of the first kind at a leads to a contra-
diction. Therefore, if f is differentiable at a, then the derivative f’ cannot have a
discontinuity of the first kind.

On the other hand, as we saw in the example (Figure 7.3), there exist functions
with discontinuities of the first kind that are integrable. The function from that
example does not admit a primitive on any interval that contains x = 1 in its

interior.
Example: Consider the function:
2xsin(1/z) — cos(1/z), x #0,
flz) =
0, xz = 0.

Verify: (a) If f is continuous. (b) If f admits a primitive.
Solution: (a) Note that lim, ,o f(z) does not exist (due to the cos(1/x) term).

Therefore, f is not continuous at x = 0. (b) f admits a primitive, which is given

by:

x?sin(1/z), x #0,
Flo) = {0 x=0

We check the derivative F’(z): For z # 0, by the product and chain rules:
F'(z) = 2z - sin(1/2) + 2*(cos(1/z) - (—1/2%)) = 2w sin(1/x) — cos(1/x) = f(z).

For z = 0, by the definition of the derivative:

_ 2 _
F(0) = i LOFR ZFO) _y WESmB) =0y i) = 0.
h—0 h h—0 h h—0

(The last limit is 0 by the Squeeze Theorem, since —|h| < hsin(1/h) < |h|). Since
0) =0, we have F'(z) = f(x) for all x, which proves the claim.
I

Lemma 7.18 Note that if f : [a,b] — R admits one primitive, then f possesses an
infinity of them.

Proof: Indeed, let F : [a,b] — R be a primitive of f. Then F’ = f. Consider a
family of functions {F;};c; where F; : [a,b] — R is defined by F; = F + ¢;, ¢; € R,
Vi€ I. Then, F! = (F +¢;) = F' = f, which implies that F; is a primitive of f for
all i € 1. [
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Lemma 7.19 Any two primitives of f : [a,b] — R differ by a constant.

Proof: Let F and F5 be two primitives of f. Then F| = f and F}, = f. Consider
the function H(z) = Fi(x) — Fy(z). Then H'(x) = F{(z) — Fi(x) = f(z) — f(z) =0
for all x € (a,b). By the Mean Value Theorem (Exercise (b) after Thm 6.12), H(x)

must be constant on [a,b]. Thus, Fi(x) — Fy(x) = k for some constant k. |

Proposition 7.20 Consider f : [a,b] — R (integrable) and let F : [a,b] — R be a
primitive of f, with F being C (i.e., F' is continuous). Then:

b
/ f(z)dx = F(b) — F(a).
*(Note: F' = f. The assumption F € C* means f is continuous)*

Proof: Since F' € C', I’ = f is continuous on [a,b]. By Theorem 7.12, f is
integrable on [a, b]. Let us define p : [a,b] — R by

p@ﬁz:éxf@ﬁﬁ:ileKﬂdt

By the Fundamental Theorem of Calculus (Part 1, Theorem 7.15), since F” is con-
tinuous:

p(x) = F'(x), Vo € [a,].
Thus, p and F' are both primitives of f. By Lemma 7.19, they differ by a constant:
p(x) — F(x) =k, VY € [a,b], where k is a constant. (7.21)
In particular, for x = a: p(a) — F(a) = k.
/ﬂwnﬁ—m@:kjk:_me (7.22)

N———
=0

Substituting (7.22) into (7.21) yields

which implies p(z) = F(z) — F(a), i.e.,
/zF’(t)dt = F(z) — F(a), Yz € [a,].

In particular, for = b, we have

lfF@ﬁZF@—ﬂ@
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Theorem 7.21 [Fundamental Theorem of Calculus, Part 2] If an integrable func-
tion f:[a,b] — R possesses a primitive F' : [a,b] — R, then

/ F(#)dt = F(b) — Fla).

In other words: if a function F : [a,b] — R has an integrable derivative F’, then
b
/ F'(t)dt = F(b) — F(a).

Proof: For any partition P = {a =ty < t; < --- < t, = b} of [a,b], we have a
telescoping sum:

n

F(b) — Fla) = Flta) - Flto) = S [F(t:) — Flt; 1), (7.23)

i=1

On the other hand, F' is differentiable on [a, b] (by definition of primitive) and thus
continuous. Applying the Mean Value Theorem (6.12) to F' on each [t;_1,t;], there
exists ¢; € (t;_1,t;) such that

Combining (7.23) and (7.24) we have

n

F(b) — F(a) = f(e)At;. (7.25)

i=1
Let m; = inf f and M; = sup f on [t;_1,t;]. We have
m; < f(ci) < M;,
and therefore
i=1 i=1 i=1
From (7.25) and (7.26), it follows that for *any™* partition P:
s(f; P) < F(b) = F(a) < S(f; P).

This means (F(b) — F(a)) is an upper bound for the set of all lower sums o, and

(F(b) — F(a)) is a lower bound for the set of all upper sums X.. Hence,
b —=b
/ f(t)dt =supo < F(b) — F(a) §inf2=/ f(t)dt. (7.27)
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Since f is integrable, izf(t) dt = Tl;f(t) dt = fabf(t) dt. From (7.27), we conclude
that )

| #wyie=rw) - Fa)
QED. n

Example: Calculate ff’ 22 dz using the Fundamental Theorem of Calculus. We
1.3

have f(x) = x?, which is continuous and therefore integrable on [1,3]. F(z) = s

is a primitive of f since F’ = f. Hence:

3 1 .17 27 1 26
/ dr = {—x?’} == —=-=—.
. 37 ], 3 3 3

Calculate [ sinazdz. Since f(z) = sinz is continuous, it is integrable on [0, 7].

F(z) = —cosz is a primitive of f. Hence:

/Oﬂsinxda: = [—cosz|y = (—cosm) — (—cos0) = —(—1)— (1) =1+1=2.

Calculate foﬂ/Q sinz cos x dz. We have f(z) = sinz cosz is continuous and there-
fore integrable on [0,7/2]. F(z) = i(sinz)? is a primitive of f. Hence:
7r/2 1 Tl'/2
/ sinx cosxdr = {—(sin x)g]
0 2 0
1 1 1
= 3 (sin(m/2))* — 3 (sin0)* = 3 : >

7.5 Classical Formulas of Differential and Integral
Calculus

Theorem 7.22 [Change of Variable] Let f : [a,b] — R be continuous and g :
[e,d] — R be differentiable with ¢' integrable, and g([c,d]) C [a,b]. Then:
g9(d) d .
flayde = [ 7o) g'0)dr

g(c)

Proof: Since f is a continuous function, it possesses a primitive I : [a,b] — R, by

Corollary 7.16. Thus, by virtue of the Fundamental Theorem of Calculus:

g(d)
gﬂ)f@ﬁ&ZF@MD—Fwﬁﬂ (7.28)
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On the other hand, by the Chain Rule (6.7):

(Fog)(t)=F'(g(t)-g'(t) = f(g(t)) - g'(t); Vt € [c,d].

In this way, the map Fog : [¢,d] — R is a primitive of the function ¢ — f(g(t))g'(¢).
(This function is integrable as f, ¢’ are integrable and ¢ is continuous). Thus, again
by the Fundamental Theorem of Calculus (7.21):

d
/ flg())g'(t) dt = (F o g)(d) — (F o g)(c) = F(g(d)) — F(g(c)).  (7.29)

Hence, from (7.28) and (7.29) we have the desired result. |
Application: Calculate fol V1 —2x2dx. Note that a good change of variable is

given by x = sint, since
V1—12=+/1—sin’t = cost.
In truth, keeping the notation of the previous Theorem, we have:
g:10,7/2] > R, t+— g(t) = sint.

Then,
g(0) =0 and g¢(7/2) = 1.

g'(t) = cost (which is integrable).
9((0,7/2]) = [0,1].
Let f(z) =1 — 22 on [0, 1]. Hence,
1 w/2
[vi=Fa = 7 sewn o
0 0
w/2
= / V1 —sin%t costdt
0

w/2
= / cos’tdt (since cost >0 on [0,7/2])
0

1 /2
= —/ (14 cos(2t)) dt
2 Jo
w/2
1 1
=3 |:t+ isin(Zt)]O
1 1 1
= 3 ((g + §Sin7r) —(0+ Qsin0)> = Z
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Theorem 7.23 [Integration by Parts| If f, g : [a,b] — R have integrable derivatives,
then:

/f(t)g’(t)dtZ[f(t)g(t)]i—/ f'(t)g(t) dt,

where

Proof: Note that (fg) is a primitive of f'g + f¢', i.e., (fg) = f'g+ fg' (by the
product rule). Since f’, ¢’ are integrable and f, g are continuous (thus integrable),
f'g + f¢' is integrable. Integrating this identity and applying the Fundamental
Theorem of Calculus (7.21) gives:

b b
/cmmwwz/kfmmw+fmyth

b b
F09(0) = [ rgie+ [ g o
Rearranging gives the desired result. [ |
Application: Evaluate fol te! dt. Define
g(t)=c¢" and f(t)=t.

Then,
g(t)=¢" and f'(t)=1.

(Both f" and ¢’ are integrable). Hence,
1 1
[ retar = irgs - [ rsa
0 0
1

= [tet](l]—/ 1-edt
0
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List of Exercises: Riemann and
Improper Integrals

1
12 Question Define f : [0,1] — by setting f(0) = 0 and f(z) = on if it <O <

1
o € N U {0}. Prove that f is integrable and calculate / f(z)dx
0

[\V)
H]

Questlon Let f:[—a,a] — be integrable. If f is an odd function, prove that
f(z)dz = 0. If, however, f is even, prove that/ f(x d:z:—2/ f(x)dx.

“a 0
32 Question Let f be a function defined on any non-trivial interval I, integrable
on any closed and bounded interval contained in 7, and let « : J — [ be

differentiable at x¢ € J. Given a € I, let G : J — be the function given by

a(z)
Gz) = / F(b)dt.

If f is continuous at «(xz), then G is differentiable at x(, with

G'(w9) = o (o) f (a(x0))-

(Note: Changed variable of integration to ¢t in G(z) for clarity, as per standard
usage of FTC with variable limits).

2z
4% Question Let F : [0,+00) — be given by F(x) = ¢~ dt. Find the relative

x
extremes, absolute extremes, and inflection points of F.

5¢ Question Let f : [a,b] — be an integrable function, with f(x) > 0 for all
. If f is continuous at the point ¢ € [a,b] and f(c) > 0, prove that

/f Ydx > 0.

62 Question Prove that if f, g : [a,b] — are continuous then

[/abf(x)g(x)dxr < /abf(a:)2dx /abg(q;)ng;_

(Schwarz Inequality.)
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The Riemann Integral 7.5 Classical Calculus Formulas

N
e

Question Let f : [a,b] — be a bounded function. If f is integrable on every

interval [c, b], with a < ¢ < b, then it is integrable on |[a, b].

82 Question Prove that the function f :[0,1] — defined by f(0) =1 and f(z) =
sin - if 0 < z < 1 is integrable on [0, 1].

9¢ Question Prove that, for any non-negative integers m and n,

1 In!
/ 2™(1 —x)"dx = L —
0 (m+n+1)!

102 Question Study the convergence of the following improper integrals:

T2 T

dx

+oo +0oo o3 +00 | o3 +oo
(a) / COST (b) / sinw (©) / | sin :L"d$ ()
0 0 0

112 Question Study the convergence of the following integrals and, if they con-

verge, calculate their value:

W [Tt w [T w0 [ e

—00

1 T d T
(d) / 2| log z|dx (e) / _dr (f) / _cose
0 0 T+cosw o l+cos?x

+oo dax 2 I2dl’ ) +oo et
© [ A= w [ o/ _da
1 xvr?—1 —2V4—x 1 1+e

+oo +oo 1 1
(i) / |z — 3le”"dx (k) / zel*2ldx (1) / \/ RN
0 0 aVl-z

122 Question (FEuler’s Gamma and Beta Functions). Prove that for given ¢, u,v €

(0, +00), the following integrals are convergent:
+00 1
(a) T(t) = / v le ™ dy (b) B(u,v) = / " N1 —2)" ldx
0 0

132 Question Prove that I'(t + 1) = ¢I'(¢), for all £ > 0.
142 Question Prove that I'(n + 1) = n! for every integer n > 0.

152 Question Taking the I' function into account and knowing that F(%) =/

calculate:
+o0 9 +o00 ) +o00
(a) / e " dx (b) / 37 dw (c) / z?e e dy
0 0 —00
1 +oo +oo
(d) / r*ogtzdx (e) / e dx (f) / (z — 3)e *da
0 —00 0
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Chapter 8

Series of Real Numbers

We will extend the operation of addition, thus far defined for a finite number of real

numbers, in order to assign meaning to an equality of the type:
a1+a2+...+an+...:a’

in which the left-hand member is a ’sum’ with an infinite number of terms.
It is clear that it does not make sense to sum an infinite sequence of real numbers.
What the left-hand member of the equality above expresses is the limit:

lim (a3 +as+ -+ +a,) = a.

n—0o0

The statement that translates the meaning of the equality above is the following:
Given € > 0, there exists ng € N such that |(a; +as + -+ a,) — a| < &, Vn > ny.

We define, therefore, ’infinite sums’ by means of limits. This being the case,
some sums can be performed and others cannot, since not every sequence has a
limit.

Instead of ’infinite sum’, we will use the word series.

The main problem in the theory of series is to determine which ones are conver-
gent and which are not.

Let (an)nen be a sequence of real numbers. From it, we form a new sequence

(Sn)nGN given by
S1 = aq, 52:CL1+CL27 ’Sn:a1—|—a2+...+an_

We call (s,)nen the sequence of partial sums of > 7  a,, the series itself, and

the term a,, is the general term of the series.
Definition 8.1 If the limit exists:
s= lim s, = lim (a1 + ag + -+ + a,),
n—oo n—o0
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Series of Real Numbers 7.5 Classical Calculus Formulas

we will say that the series > >~ ay, is convergent and the limit will be called the

sum of the series. In this case, we write

o0

5= tn= bzt an o
n=1

*(Note: Y " | ay in the original was corrected to Y - a,)*
If the sequence of partial sums does not converge, we will say that the series

S ay is divergent
n=1"" g :

Example 1: Consider a,, = (3)", n € N. *(Note: The sum is > o (1/2)" based

on S,1)* Let a, = (1/2)"! for n > 1.

1 1 1
Sp=14 =~ 4 — 4 .
+2+22+ +2n_1

This is the sum of the terms of a geometric progression where a; = 1 and ¢ = %
Let’s recall that:

5, = atl=a)
l—gq
Hence: N
1-(3) .
2
So, >>° | a, converges and Y > a, = 2. *(Note: The original text had S,;; and
> a, = 2, which implies the sum starts at n = 0 or n = 1 with a,, = (1/2)""..

I've adjusted to a, = (1/2)"! for n > 1)*

Example 2: Let a,, = 1, for all n € N. In this case,
Sp,=1+14---+1=n— +o0.

So Y>> | a, diverges.

n=1
Proposition 8.2 If > a, is a convergent series, then lim, ;. a, = 0.

Proof: Let s, =a; +as+---+ a,. Then, there exists s € R such that

lim s, = s.
n—4o0o

Evidently, we also have

lim s,_1 =s.
n—-4o00

Hence,

lim a, = lim (s, —s,-1)= lim s,— lim s, 1 =s5—3s5=0.
n—-+o0o n—-+o0o n—-+o00o n—-+4o00o
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Series of Real Numbers 7.5 Classical Calculus Formulas

The converse of the above proposition is false. The classic counter-example is

given by the harmonic series >, 1. We have:

However, the series diverges. Indeed, consider the subsequence of partial sums son:
TRy (LS P (I S S
S n = —_ —_ —_ —_ —_ —_ —_ o o e _— o .. —_—
? 2 ' \3 "4 56 7 8 on=1 41 on

SO PP (LD [ [
2" \4 "4 8878 "8 on on

—1+1+2+4+ +7H
- 2 4 8 on
= 1+1+1+1+ +1—1+n
o 2 2 2 2 2

Since 14+ n/2 — 400 as n — 400, the subsequence {ssn} diverges. Since the se-
quence of partial sums (s,) is monotone increasing and has a divergent subsequence,

the sequence (s,,) diverges.

Remark: If >°  a, is convergent = lim, , . a, = 0. (Test for Divergence)
Therefore, If lim,, o a, #0 = > > a, is divergent.

However, it can happen that a, — 0 and ) -, a,, does not converge.

Example 3: Consider a,, = a”, n € N and a € R. The geometric series >~ ay,
is divergent when |a| > 1 because in this case lim,,_,», a” # 0. However, when |a| < 1

the geometric series converges, and
oo
n 1
E a" = :
1—a
n=0

*(Note: a; in the formula corresponds to the first term, which is a® = 1)*

Example 4: The series Y~ , ﬁ is convergent. Indeed, let us observe the

partial fraction decomposition:

1 1 1

nn+1) n n+1

Therefore (this is a telescoping series):

Sy = +
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Series of Real Numbers 7.5 Classical Calculus Formulas

Consequently

1
lim s, = lim (1— ):1.

From the properties of limits of sequences, the following proposition results:

Proposition 8.3 Let a, > 0 for all n € N. The series Y . a, converges if and

only if the partial sums s, = a1 + as + - - - + a,, form a bounded sequence.

Proof: Since a, > 0, we have s1 < 59 < -+ < s, < ---. Therefore, since (s, )nen
is monotone (non-decreasing), (s,) is convergent if and only if (s,) is bounded (by

the Monotone Sequence Theorem, 2.14). [ |

Corollary 8.4 (Comparison Test) Let >~ a, and > - b, be series of non-
negative terms. If there exist C > 0 and ng € N such that a, < Cb,, for all
n > ng, then the convergence of y . b, implies the convergence of >~ a,, while
the divergence of Y ", ay, entails that of >~ by,.

b

., are bounded. This implies

Proof: If > 7 b, converges, then its partial sums s
(for n > ng) that s? is bounded, and thus ) °, a, is convergent (by Prop. 8.3).
If > a, diverges, then s? is not bounded. This implies s’ is not bounded, and
therefore > | b, diverges. |

Example 5: If p > 1, the p-series Y } converges. Since the terms of this

1P
series are positive, the sequence of partial sums is increasing. To prove that this
sequence is bounded, it suffices to find a bounded subsequence. Let s, be the n-th

partial sum. Let us choose the subsequence son_1. We have:

Sgn_1 = Q1+ az+ -+ am
_ 1 1 1 1 1 1 1
< 1+3+£+...+£
20 4p (2n—1)p
1 1 1
= +W+4p_1+'”+(2n—1)p—1
n—1 1\
-2 (39)
i=0

*(Note: The original text had a slight error in the grouping 2/27,4/2?"... Corrected
to 2/2P,4/47..)* Since p > 1, we have p — 1 > 0, so r = 5 < 1. The geometric

series Y oo r" converges. Therefore, the subsequence syn_; is bounded above (by
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ﬁ) Since (s,,) is monotone increasing and has a bounded subsequence, the entire

sequence (s,) is bounded. By Proposition 8.3, the series >~ T% converges.

Observe that if 0 < p <1, we have n? < n, so ni > % By the comparison test,

P

* L diverges, since the harmonic series S °° . L is divergent.
) n=1n

n=1 npP
We conclude, then (forp > 0): f0<p<1,> 7, nip diverges. If p > 1, > >, an
converges.

Proposition 8.5 (Limit Comparison Test) Let Y -, a, be a series of positive
terms and Y~ b, be a series of non-negative terms.
(1) If lim,, o Z—: =k > 0, then the two series either both converge or both diverge.
(7) If lim, oo 2—’; =0, and if Y _ a, converges, then Y b, converges.
() If lim,, o0 Z—Z = 400, and if Y a, diverges, then > b, diverges.

Proof: (i) Since lim,, Z—Z =k > 0, taking € = k/2 > 0, there exists ny € N such

that - L
——< — > nyg.
k 2<an<k+2,Vn_no
Hence,
k<bn<3k Vn >
2 S, 2 ="

which implies

k 2
b, < %an and a, < Ebm Vn > nyg.

By the Comparison Test (Corollary 7.5), the series converge or diverge together.

bu — (), given € = 1, there exists ng € N such that

(ii) Since lim, o 7

b
—n—0’<1; Vn > nyg.

Qp
Since terms are positive,
bn
0<—<1, Vn>ny = b, <ap, Yn>nyg.
an

By the Comparison Test, if Y a,, converges, then > b, converges.

(iii) Since lim,, o Z—’; = 400, given M > 0 (e.g., M = 1), there exists ng € N

such that
b

= > M, Yn > ny.
G
Hence:
b, > Ma,,, Yn > ny.
By the Comparison Test, if ) a,, diverges, then »_ b, diverges. [ |
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Example 6: Consider the series:

i nd+1
nt4+n24+n-3

n=2
Let .
1 n°+1
= — (di d b, = .
n = (diverges) an S
Note that:
. by . n®+1 . n*+n
lim — = lim n- = lim
n—00 Qy, n—00 nt+n?24n—3 nscont+n24+n-—-3
nt (144
= lim (L+ ) = 1.

SR )

Since Y > a, (the harmonic series) diverges, by the Limit Comparison Test (i),

>oo2 by also diverges.

Proposition 8.6 (Cauchy Criterion for Series) A series) - a, is convergent

if and only if, for each € > 0, there exists ng € N such that

|Gnt1 + Qo + -+ angp| <&, Yn > ng and Vp € N.

Proof: Let (s,) be the sequence of partial sums of ) a,. Observe that:
Sp+p — Sn = Ap41 +apto+ o0+ Ap4p-

The series ) a, is convergent if and only if (s,) converges. By Theorem 2.19
(Completeness of R), (s,) converges if and only if (s,,) is a Cauchy sequence. (s,) is
Cauchy if: Ve > 0,3ng s.t. if m > n > ng, |sm — sp| < €. Setting m = n + p (where
p > 1), this is exactly the condition stated. [

Definition 8.7 A series > - a, is called absolutely convergent if > 7 |a,| is a

convergent series.

Example 7: The geometric series >~ ja™; —1 < a < 1 is absolutely convergent,

« o0 n . .
because if |a| < 1, >~ |a|” is a convergent geometric series.

Evidently, every convergent series whose terms do not change sign is absolutely

convergent. If a, > 0, then a, = |a,|, so Y |a,| converges. If a, < 0, then
la,| = —a,. If > a, converges, then > —a, = > la,| also converges (by Thm
5.7(ii)).
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But not every convergent series is absolutely convergent. Indeed, consider the

series:

i":(—m“_l 1+1 1+1
&~ n 2 3 45 ‘

We will see later (with the Leibniz test) that the series above converges. However,

it is not absolutely convergent, because

S (2D n

and we have already seen that the harmonic series diverges.

Definition 8.8 When a series > - a, converges but > - |a,| diverges, we say

that >~7 | a, is conditionally convergent.

Thus, the series > (_12:“ is conditionally convergent.

Proposition 8.9 Fuvery absolutely convergent series is convergent.

Proof: If ">, |a,| converges, then by the Cauchy Criterion (8.6), given ¢ > 0
there exists ng € N such that

l|ans1] + [ante] + - - + |antpl| <&, Yn > ng and p € N.
But, by the triangle inequality:
@1 + Anga + -+ Angpl < anga| + |ango| + -+ langy| < e

Therefore, > °° | a,, satisfies the Cauchy Criterion, and thus converges. |

n=1

Corollary 8.10 Let > 7 b, be a convergent series with b, > 0 for all n € N. If
there exist k > 0 and ng € N such that |a,| < kb, for all n > ng, then the series

Yoo an is absolutely convergent.

Proof: We have by the Comparison Test (Cor. 7.5) that > 7  |a,| converges, and

therefore Y | a, is absolutely convergent. [ |

Corollary 8.11 If for all n > ng we have |a,| < kc™ where 0 < ¢ < 1 and k is a

positive constant, then the series Y | a, is absolutely convergent.

Proof: Apply Corollary 8.10 with b, = ¢". The geometric series »_ b, converges
since 0 < c < 1. |
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Corollary 8.12 (Root Test) Let Y > a, be a series of real terms such that
lim,, s W exists and equals R. Then:

(i) If R <1, Y a, is absolutely convergent.

(i1) If R =1, the test is inconclusive.

(iii) If R > 1, > | ay, is divergent.

Proof: (i) Since R < 1, there exists £ € Rsuch that R < £ < 1. Lete =¢{—R > 0.

Since the limit is R, there exists ng € N such that for n > ng:

{ﬂ%m4ﬂ<g:¢ VJan] < R+e=R+ (€ —R) =¢.
This implies

la,| < &", ¥Yn > ny.
By Corollary 8.11 (with ¢ = &), the series > a,, is absolutely convergent.

(iii) Since R > 1,let e = R — 1 > 0. Then there exists ng € N such that:
R—e< {/|a,| < R+¢, ¥Yn > ny,

In particular,

Ve, >R—e=R—-(R—1)=1, ¥Yn > ny.

Thus, |a,| > 1" = 1 for all n > ngy. Since the general term does not tend to zero,

> ay, diverges.

(ii) Consider the series:

=1 =1

Do oand D —

n=1 n=1
We know (from Example 3a, Section 2.2) that lim,, o, &/n = 1. Thus lim,, , ., % =
hml% = 1. Also:

n

2
1 1
1m’7=mnt—>=P:L
n—r00 n n—00 n

So, lim {/|a,| =1 in both cases; however, > L diverges and ) = converges. |

Remark: Note that to conclude absolute convergence of > a,,, the limit of (’/\a_n|
does not need to exist; it is sufficient that lim sup {”/m < 1. *(Translator’s note:
The original text states "it is sufficient that there exists ny € N such that {/]a,| <
¢ < 1," which is the core of the proof (i).)*

Example 8 Consider the series Y ~° , na", a € R. We have:
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lim {/|na”| = lim (/n-|a]) =1 |a| = |al.
n—oo

n—oo

Thus, if |a| < 1, the series converges absolutely, and if |a| > 1, the series diverges.

[e.e] n

For example, from the above, the series ) ", 7% converges absolutely since

v 1
i ¢ = gm0 g

Proposition 8.13 (Ratio Test Comparison) Let > a, be a series of non-zero

terms and Y b, be a convergent series with b, > 0. If there ezists ng € N such that

’%H’ b1
<
|an| = b,

Vn > ng,

then > a, is absolutely convergent.

lant1]
bn+1

Cn = |an|/by is non-increasing for n > ng. Thus, for n > ng, |au|/bn < |an,|/bn, =k

Proof: The inequality < ‘Z—”' holds for n > ng. This means the sequence
(a constant).
lan| < kb, Yn > ng.

By Corollary 8.10 (Comparison Test), since > b, converges, > |a,| converges. W

Corollary 8.14 Let Y a, be a series of non-zero terms and ¢ a constant such that
O<e< 1. If % < ¢ for all n > ng, then >  a, is absolutely convergent.

Proof: Let b, = ¢". We have bz—“ = CYCL—tl = ¢. The condition is % <ec= b’g—“
for n > ng. Since »_ b, converges (geometric series, 0 < ¢ < 1), by Proposition 8.13,

> an converges absolutely. |

Corollary 8.15 (Ratio Test) Let > a, be a series of non-zero terms such that
lim,,_, 0 |a‘2:‘1‘ exists and equals R. Then:

(i) If R <1, Y a, converges absolutely.

(i1) If R =1, the test is inconclusive.

(iii) If R > 1, > a, diverges.

Proof: (i) Since R < 1, there exists ¢ € R such that R < ¢ < 1. Lete =c—R > 0.

Since the limit is R, there exists ng € N such that for n > ng:

‘an+1‘
||

—R‘<e — 1] <R+e=R+(c—R)=c

|y
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Since 0 < ¢ < 1, by the previous Corollary, > a, converges absolutely.

(iii) Since R > 1, let e = R — 1 > 0. There exists ny € N such that

[ >R—e=R—-—(R—-1)=1, Vn > ny,

||
ie.,
|ani1] > |an|, Yn > ng.

This implies |a,| is an increasing sequence for n > ny. Therefore, the general term

a, cannot converge to zero, which implies ) a,, diverges.

(i) Consider the series Y.+ and ) . For > 1/n: lim 1/(1"/+1) = lim ;25 = 1.
(Diverges) For > 1/n% lim 1/(17221) lim 5 +1) = 1. (Converges) In both cases
R =1, but the series have different behaviors. [ |

Example 9: Consider the series Y~ n, , a € R. We have:

e I e S L

la,]  (n+Dlal” n+1

Since R = 0 < 1, the series converges absolutely for all z € R.

Proposition 8.16 (Integral Test) Let Y >, a, be a series of positive and non-
increasing terms (a3 > ag > ---a, > -+ ). Let f(x) be a function defined on
[1,4+00), continuous, non-increasing, and positive, such that f(n) = a, for all n.
Then:

(i) If | f(z)dz converges, then > oo a, converges.

(i) If [° f(x)dx diverges, then Y " | a, diverges.

Proof: (The proof refers to two figures, which are standard illustrations of the
Integral Test. Figure I shows s, > 1n+1 f(z)dz (rectangles above curve, using left
endpoints). Figure IT shows s, —a; < [ f(z)dx (rectangles below curve, using right
endpoints).)

Examining Figure I (rectangles based on left endpoints): The area of the n-th
rectangle is a,, - 1. The sum of the areas of the first n rectangles is s, = > | a;.

Since f is non-increasing, a; > f(x) for z € [i,i + 1].

n n i+1 n+1
= Zai > Z/ f(z)dz = /1 f(z)dz.
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Sp > /1n+1 f(z)dx. (8.1)

Examining Figure II (rectangles based on right endpoints): The sum of the areas is

as+az+---+a, = s, —aj. Since f is non-increasing, a; < f(z) for x € [i — 1,1].

Sn_al:;aigiz:;/i1f(x)d$:/1 f(z)dx

sp < ag + /ln f(z)dz. (8.2)

(i) If fl x) dz converges to L, then f1 dv < L. By (8.2), s, <a; + L. The
sequence (sn) is non—decreasmg (since a,, > 0) and bounded above. Therefore, > a,
converges. (i) If [° f(z) dz diverges (to +0o0), then lim,, fnﬂ f(z)dzr = co. By
(8.1), s, — oc. Therefore, > a, diverges. |

Example 10: Using the Integral Test, show that the p-series >~ | # converges if
p > 1 and diverges if p = 1. Let f(x) = 1/2P. This function is continuous, positive,

and non-increasing on [1, 0co) for p > 0.

i)p=1 i
/ lal:r: =[nz|} =Inn—Inl=Inn.
LT
Since lim,,_,,, Inn = +o00, the integral f1 L dx diverges, which implies that Zn 15
diverges.
(ii) p> 1.

noq n —p+1 " 1
—dr = / z Pdr = [ a } = (nl_p — 1)
xP 1 _

1

Sincep > 1, p—1 > 0, s0 lim,,_, ; % = 0. The integral ConvergeS' lim,, oo fln z—lpdx =

%1. Therefore, fl L dx converges, which implies that > °° converges.

nlp

8.1 Alternating Series

Definition 8.17 An alternating series is a real series whose successive terms have

opposite signs.

)n+1

Example 11: The series >~

I
—_
|
N[ —=
+
W=
|
e L

+ - -+ is alternating.
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Proposition 8.18 (Leibniz Criterion / Alternating Series Test) If (a,) is
a non-increasing sequence of positive terms with lim,,_,. a, = 0, then the alternating
series Y oo (—=1)""ta, converges. *(Note: Original text had (—1)"a,, but the proof

matches (—1)""ta,, or (—1)"a,, starting at n =0)*

Proof: Let (s,) be the sequence of partial sums. Let (ss,) be the subsequence of

even-indexed terms.
Son = (a1 — ag) + (ag — ag) + -+ + (A2n—1 — a2n)
Since (a,) is non-increasing, ay —ayy+1 > 0. Thus sy, is a sum of non-negative terms.

Sont2 = Son + (Q2nt+1 — Gont2) > Son.

So, (s92,,) is a non-decreasing sequence. Let us now write so, as:
Sop = A1 — (CLQ - a:s) - (CL4 - as) - = (a2n—2 - Clzn—l) — Q2n
Since ay — ag+1 > 0 and ag, > 0, we have
Son < aq.

Thus, (s9,) is non-decreasing and bounded above by a;. By the Monotone Sequence
Theorem, it converges. Let

s = lim sq,.
n—oo

Now consider the subsequence of odd-indexed terms: s9, 11 = So, + A2p11-
lim s9,41 = lim $9, + lim a9,y =540 =15,
n—o0 n—ro0 n—oo

since lima, = 0. Since both the even and odd subsequences converge to the same

limit s, we conclude lim,,_,, s, = s. [ |

71)n+1

Example 12:  Consider the series >~ ( . We have a,, = 1/n, which is
positive, non-increasing, and lim(1/n) = 0. By the Leibniz Criterion, the series

0o (_1)n+1
Y ey —— converges.

8.2 Power Series

Until now, we have studied series of real numbers. From now on, we will study

particular series whose terms are real functions.
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Definition 8.19 Series of the type:

o0

Zan(:c —20)" = ag + a1 (z — ) + az(x — 30)* + - -

n=0

are called power series (centred at xg).

In this case, f,(x) = a,(v —x9)", n € N, z € R.
For simplicity of notation, we will almost always consider the case xq = 0, i.e.,
power series of the form:

[e.9]

E ant" =ap+ a1+ ay x>+,

n=0
since the general case reduces to this one by the change of variable y = x — xy.

Example 1: Consider the power series » -, %7: In this case, a, = % For
which values of x does this series converge? Using the Ratio Test (for absolute

convergence):

- ap g™t
lm ——— = Ll — —0.
n—oo  [a,x"| n—oo (n+ 1)!|z|?  nocon+1

L

Since R =0 < 1 for all z € R, the series converges absolutely for all x € R.

Example 2: Consider the series ) " 2". In this case a, = 1. We have already
seen that the series above (geometric series) converges if |x| < 1 and diverges if
|z| > 1.

We will see next that the set of points « for which the series Y~/ a, ™ converges
is an interval symmetric about the origin. (If the series were > ja, (z — )", we

would have an interval symmetric about xg).

We first consider two lemmas:

Lemma 8.20 If > ° ja,z{ converges (for xo # 0), then the sequence (a,zf) is
bounded.

Proof: If > ° a,z{ converges, then by the test for divergence (Prop. 8.2),
lim,, o @,z = 0. Since every convergent sequence is bounded (Prop. 2.7), the

sequence (a,zy) is bounded. |

Lemma 8.21 If >~  ja,z" converges for x = xo # 0, then the series converges

absolutely for all x such that |z| < |zo.
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Proof:  Since ) ° a,z{ converges, by Lemma 8.20, the sequence (a,z{) is
bounded. Thus, there exists C' > 0 such that

la, x| < C; Vn e N. (8.3)

Let 2 € R be such that |z| < |zo|. Let r = 12, We have 0 < r < 1. From (8.3) we

|zo
T n
anxy | —
o

Since 0 < r < 1, the geometric series >~ Cr" converges. By the Comparison Test

have:

n

< Cr™. (8.4)

an z"| = = |anx8|

(Cor. 8.10), > 7 |a, "| converges. Thus, >~ a, z" converges absolutely. |

Proposition 8.22 If a power series -, a, x" converges for a point xo # 0, then
either the series converges absolutely for all x € R, or there exists a positive real
number R such that the series converges absolutely when |x| < R and diverges when
|x| > R. At the points R or —R, nothing can be affirmed; that is, the series may

converge absolutely, converge conditionally, or diverge.

Proof: Let E be the following set:

E :={r>0]if |z| <r then Z a, x" converges absolutely}.
n=0

Since > 7 a, x{ converges by hypothesis, then by Lemma 8.21, >>° ' a, 2™ con-
verges absolutely for |z| < |zo|. It follows that |zo| € E, i.e., E # (.

If FE is not bounded above, we take R = +oo. If E is bounded, we consider
R = sup E. For R = 400, the series converges absolutely for all x € R, because
since F is unbounded, given x € R we can choose r; € E such that |z| < ry, and by
the definition of E, ) a, x" converges absolutely. For R finite, the series converges
absolutely for |z| < R, because since R = sup F, for each x € R such that |z| < R,
we can find r € E such that |z| < r < R, and then ) a, 2" converges absolutely.

For R finite, the series diverges for |z| > R. This is because if the series converged
for x = x; with |z1| > R, by Lemma 8.21 the series would converge absolutely for

|z| < |z1], and therefore |z1| € E, which contradicts the fact that R is the supremum
of E. |

Definition 8.23 The number R from the previous proposition is called the radius of

convergence of the power series.
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If a power series converges for all x € R, we say the radius of convergence is
infinite and write R = +oo. If the series diverges for all x # 0, we say the radius
of convergence is zero and write R = 0. Thus, the radius can be zero, +o00, or any

positive real number.

Example 3: From what we have already seen, the radius of convergence of the

. n .
series Y 7 L5 is +00.

Example 4: The radius of convergence of the series >~ 2" is 1, although this

series does not converge for x =1 or x = —1.

Example 5: The radius of convergence of the series >~ nla™ is zero. Indeed,
if © # 0 we have:

(n+ 1)l zmt!
n!zn

lim

n—o0

=|z| lim (n + 1) = +o0.

n—oo

Since the limit is > 1 (it is +00), by the Ratio Test, the series diverges for all
x # 0. *(Translator’s note: The original proof with epsilon is also correct, but this

conclusion from the Ratio Test is more direct)*.

Proposition 8.24 Let >~ a,x™ be a power series where a,, # 0 for n sufficiently
large.
(i) If lim, .

gence of the power series.

_QGn
An+1

= R; where 0 < R < 400, then R is the radius of conver-

(7)) If lim,, o 7{/% = R, where 0 < R < +o0, then R s the radius of conver-

gence of the power series.

Proof: (i) If z = 0, the series converges absolutely. If = # 0, we apply the Ratio
Test to the series ) a,z™:

lim %szﬂ = lim || o] |z| lim ot
n—oo | (p X n—00 n n—oo | @y
This limit equals:
%; if R# 0 and R # 400,
0; if R =400,
+o0; if R=0.

By the Ratio Test, the series converges absolutely if this limit is < 1 and diverges
if > 1. If R = 400, the limit is 0 < 1 for all . The series converges absolutely for
all z. If R =0, the limit is +00 > 1 for all z # 0. The series diverges for z # 0. If
0 < R < 400, the limit is |z|/R. This is < 1 if |z| < R, and > 1 if |z| > R. In all

cases, R is the radius of convergence.
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(ii) Shown similarly using the Root Test. [ |
Example 6: What is the radius of convergence of the series > 2 3" 2"? We

have a,, = 3" = 9". Using method (i):

lim
n—oo

Qp+1

Hence, the radius of convergence R is 1/9.

Properties of Power Series. If a series ) °  a,2" has a sum f(x) such that

Yoo o an ™ = f(z) for x in an interval I, we say that the series ), a,, " represents
the function f on this interval.

A power series Y a, " with radius of convergence R # 0 represents one, and
only one, function on the interval (—R, R) which associates the number » > a, z{

with a point z( in the interval (—R, R).

Proposition 8.25 If the power series y - a,z" represents the function f(x) in
the open interval |x| < R (where R > 0 is its radius of convergence), then:

a) f(x) is continuous in || < R.

b) f(x) is differentiable in |z| < R and f'(x) is represented by the power series
Yoo na, x™ 1t in the interval |z| < R.

¢) The definite integral [ f(t) dt is represented by the power series Y, Sz gt
in the interval |z| < R.

Proof: See Elon Lages Lima [1]. |
The result above allows us to interchange differentiation and integration with

the limit, i.e.:

_ el -1
0= g (Soest) = Gt o) = i o) = S

/Ozf(t)dt - /OC t) dt:/oz(r}gosnu)) i

n

= lim [ s,(t)dt= lim 0 (Zaﬂf)dt

and

0

5 N ay 2 N as T3 o a, "1
= lim (ayx
n— 00 0 2 3 n/+-1

n+1

> G, T
- Zn+1‘
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*(Note: Corrected summation limit in the original text)*

Corollary 8.26 If the function f(x) can be represented by a power series in an
open interval |x| < r, then the function possesses derivatives of all orders in that

nterval.

Example 7: Consider the geometric series:

ZLE":1+:U—|—:C2+~--
n=0

This series converges for |z| < 1 and diverges for |z| > 1. Furthermore,

> 1
"= { < 1.
Zx T or |x|

n=0
Thus,

1
1—=x

=l4+z+a2*+--, if 2| < 1. (8.5)

() -

from (8.5) we have (by term-wise differentiation)

Now, since

b
(1 —z)?

On the other hand, if we integrate the function — and integrate the right-hand

:1+2x+3x2+...zzn$”_l, if |z| < 1. (8.6)

side of (8.5) from 0 to x:

/1——tdt = [-In(1—-1%))j=—In(l—2)—(—In(1)) = —In(1 — )
i i ! 2
/0 (;%t)dt = Z/ t"dt = n+1 TSt

ie.,
22 o3 o ntl
“In(1l —2) = o= —, if|z| < 1. 8.7

*(Note: Corrected the integral of 1/(1-t), which is -In(1-t))*

Example 8: Consider the series >~ % This series converges for all z € R. If

f(z) is the function represented by this series, we have:

o d " > n ™1 o0 1
-3 () - X5 - Xoe

151



Series of Real Numbers 8.2 Power Series

Let k=n—1. Whenn=1, k=0.

Therefore, f'(xz) = f(x), which means f(z) = Ce”. Since f(0) = a9 = 1/0! =1, we
have C'= 1. Hence f(z) = €”.

T 1‘2 3

_ X
6—1+ﬁ+§+§+"'7V$ER' (8.8)

Corollary 8.27 If the function f(x) is represented by the power series y o a, x"

in an interval |x| <r, then:
f™(0) =nla,; ¥n €N,

and therefore,

> fn)
flx) = Z / n'(()) x". (Taylor Series FExpansion)

n=0

Proof: We have
flx)=ay+az+ayz® +aza® +aga* +---
Differentiating term by term:
fl(x) =a; +2ay2 + 3ag v +dag2® + - - -,
F'(x) = 2a2+ (3-2)azz + (4 - 3)asz® + - --
f"(x)=3-2-Daz+ (4-3-2agw + - - -
Setting x = 0 at each step:

F(0) = ag: f(0) = ax; f"(0) = 2az; f(0) =lag; - ; 7 (0) = nla.

Substituting the a,, back into the series gives

>, fn)
fz) = Z / ‘(0) "

n

Corollary 8.28 If the function f(x) is represented by both power seriesy . a, x"
and ZZOZO b, x™ i some open interval common to both around zero, then a, = b,

for all n.
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Proof: By Corollary 8.27, we have f(0) = n!a, and f™(0) = n!b,. Whence:

_ ()

n!

= by,.

Qn

It follows from Corollary 8.28 that a function can be represented by at most one
power series centred at zero. Naturally, a function can be represented by series with

different centres. Thus:

flx) = 1+x+x2:Zanx” where a,, =

n=0

s 1, n=0,1,2,
0, n>2.

3, n=0,1,
fl@) =343 —1)+(x—1)*=> by(x—1)" where b, = 1, n =2,
n=0 0, n>2.

Note that 3+ 3(x — 1)+ (z —1)>=3+3z -3+ 2> - 20+ 1=1+x + 22

Corollary 8.29 If >  a,z" represents the function f(x) = 0 in an open interval

containing zero, then every a, = 0.

Proof: The series Y >~ 02" and Y a,z" represent the same function (the
zero function) in an open interval containing zero. Hence, by Corollary 8.28, the

coefficients of the two series are equal, i.e., a, = 0. [ |

Proposition 8.30 Let f be a function represented by the power series ) a,x"™ on
the interval (—ry,71) and g a function represented by the power series > b, ax" on
the interval (—ra,72). Then:

(i) > o(kay) x™ represents the function kf on (—ri,r1).

(ii) 3" o (an+by,) ™ represents the function f+g on (—r,r) where r = min{ry,ro}.

Proof: Proof of this proposition is left as an exercise. [
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Chapter 9

Sequences and Series of Functions

9.1 Sequences and Series of Functions

Definition 9.1 Let A C R. A sequence of real functions defined on A is any map

that associates to each n € N a function f, : A — R.

Example 1: For A = [0,1], consider the map that associates n € N with the
sequence of functions f, : [0,1] — R defined by f,(z) = z™.

Definition 9.2 Let (f,)nen be a sequence of real functions defined on a subset A C
R. We say that (f,)nen has the function f: A — R as its limit, or that f, — f,
when for each x € A the numerical sequence (f,(x))nen converges to f(x). We also

say that (fn)nen converges pointwise to f.

Returning to Example 1 above, we had f,(z) = 2™, 0 < x < 1. We will show
that the sequence defined above converges to the zero function if 0 < x < 1 and
converges to the constant function equal to 1 if x = 1. For x = 0, it is immediate
that f,(0) =0" — 0. For x =1, f,(1) = 1" — 1. Consider 0 < z < 1. We must
show ™ — 0. Given £ > 0 and for each = € (0,1), we must find ny (which depends
on ¢ and z), such that if n > ng, we have |2" — 0] < e.

Note that 2" < ¢ < In(z") < lne < nlnz < lne. Since 0 < 2z < 1, Inz < 0.

Thus, dividing by In x reverses the inequality:

Ine
n>- —
Inx

If we take 0 < & < 1, then Ine < 0, so 11:11—2 > 0. In this way, it suffices to take ng

to be the smallest positive integer such that ny > 2, and the desired result holds.

Inz

Note that ny depends on ¢ as well as on .
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In the example above, we have a sequence of continuous functions on [0, 1] that

converge pointwise to a function f

0, 0<z<1
f(w)—{L

which is not continuous at the point x = 1.

sin(nz)
N
converges to the identically zero function. In this case, we will show that the con-

Example 2: We will now show that the sequence of functions f,(z) =

vergence is uniform, i.e., the index ny no longer depends on x but only on .

We have:

sin(nz) < 1
Voo | T vn

We want |f,(z) — 0| < e. It suffices to make the upper bound \/Lﬁ <e.

|[fn(x) = 0] = , Vz € R.

1 1, 1
—<e=mw—<eee=en>—

vn n g2’
In this case, it suffices to choose nj as the smallest integer greater than E% We say

then that (f,(x)) converges uniformly to the zero function because ng only depends

on e.

Definition 9.3 Let (f,)nen be a sequence of real functions defined on a set A C R.
We say that (f,), converges uniformly on A to a function f: A — R when for each

e > 0, there corresponds an index ny(g), independent of x, such that | f,(x)— f(x)| <

e for all n > ng, regardless of v € A.

Definition 9.4 (Cauchy Condition for sequences of functions) Let (f,)nen be a

sequence of real functions defined on a set A C R.

o For the sequence (fn)nen to be pointwise convergent on A, it is necessary and

sufficient that for each € > 0 and each x € A, there corresponds an index
no(e, x) such that for all m,n > ng, |fm(x) — fu(z)| < € holds.

e For the sequence (f,)nen to be uniformly convergent on A, it is necessary and

sufficient that for each ¢ > 0, there corresponds an index ny(e), independent

of x, such that if m,n > ng, |fm(x) — fu(x)| < € holds, for any x € A.

Let’s now look at some considerations about series of functions.
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Definition 9.5 Let A C R be a set, and suppose that to each n € N is associated
a function f, : A — R. We then have a sequence (f,)nen of functions defined on

A. The series of functions defined by the sequence (f,)nen is the sequence of partial

sums (Sp)nen:

81@) = f1<I>
sa(r) = fi(7) + fa(x)

sn() = fi(x) + -+ ful@).

We write:

D Juor D ful@)
n=1 n=1
Example 1: Let f,(z) =2", x € (=1,1); n=0,1,2,.... Then:

1+x+x2+...+$”+...zzx”‘
n=0

Example 2: Let f,(z) = Si“éi}“, reR;n=12,3,--- We have:

sin(x) +

sin(2z)  sin(3z) sin(nx) <= sin(nz)
4+9++n2+—;n2

To say that the series of functions >~ f.(x) converges on A to a function

s: A — R, or that Y > f, has the function s as its sum, is equivalent to saying
o0

that for every © € A the numerical series > | f,(x) converges to s(z). This is

pointwise convergence.

What generally occurs is that ngy varies with ¢ and . We say that the series

of functions > 7 | f,(x) converges uniformly on A to a function s(x) when for each

e > 0, there corresponds an index ng(¢), independent of z, such that if n > ng, then

|(fi(z) + -+ fu(x)) — s(x)| < ¢, for any z € A.

Definition 9.6 (Cauchy Condition for series of functions) For the series

Yoo fu(x) to be pointwise convergent on the set A, it is necessary and sufficient

that for each € > 0 and each x € A, there corresponds an index ng(e, x) such that if
m > n > ng then |sp,(x) — sp(x)] < e.

For the seriesy " | fn(x) to be uniformly convergent on the set A, it is necessary

and sufficient that for each € > 0, there corresponds an indezx ng(e), independent of

x, such that if m > n > ng then |sp(x) — sp(x)| < €, for any x € A.
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Let m =n + p, p € N. The condition is written:

|Sntp(T) — 8n(2)]
= |(fix) + -+ ful@) + fop1(@) + -+ fugp(@) — ([i(@) + - + ful2))]
= |fop1(z) + -+ fusp(x)| <€, Ve € A, Yn > ny,Vp e N.

Thus, for the series > | f,(z) to be uniformly convergent on A, it is necessary
and sufficient that for each ¢ > 0, there corresponds an index ng(e) such that for

n > ng and p € N we have:

|[fot1(z) + -+ forp(x)] <&, Vo € A

Theorem 9.7 (Weierstrass M-Test) Suppose {f.(z)}nen s a sequence of func-
tions defined on a set E C R. Let M,, > 0 be such that the numerical seriesy - | M,
is convergent. Suppose that for the series >~ fu(x), we have |f,(x)] < M, for
alln € N and all v € E. Then the series y | f,(x) converges uniformly (and
absolutely) on E.

Proof: Since ) 2, M, < oo, this series satisfies the Cauchy Criterion for nu-

merical series. Given ¢ > 0, there exists ng(e) such that for all n > ng and p € N:
Mn+l+"'+Mn+p<€'

Now, for the series of functions, we check the uniform Cauchy Criterion:

p p p
an-i—i Z|fn+z | SZM"'H < E.
=1 =1

i=1
This inequality holds for all n > ng, all p € N, and all x € E. Thus, the series

> fu(x) converges uniformly in E. |

Example 1: Let

sin(nx)

an folw) = =52 n=12- andw € R
We know that
— 1 o
Z — < 400 (p-series with p =2 > 1).
n
n=1
But,
I 1
fu@)] = 2200 o Ly Ve e R, vneN.
n n?
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Applying the Weierstrass M-Test, the series >~ “iﬁ—g‘x) converges uniformly on R.
Example 2: Let:
- cos(n’z)
an(m)a fn(x):—n3/2 s :UGR, n € N.
n=1
We know that

Z —577 is convergent (p=3/2>1).
n

n=1
Since .

it follows that the series converges uniformly by the Weierstrass M-Test.

Theorem 9.8 Suppose f,(x) — f(x) pointwise for all x € E. Set:
M, == sup | fu(z) — f(z)].
zeE

Then, f, — [ uniformly on E if and only if M,, — 0 as n — +oc.

Proof: (=) Suppose f, — [ uniformly on E. We must show that lim M,, = 0.
Given € > 0, by the definition of uniform convergence, there exists an index ng(e)

(independent of x) such that for all n > ng, we have
|fulz) — f(z)| <&, VzeE.

This means that ¢ is an upper bound for the set {|f.(z) — f(x)| : = € E} (for
n > ng). By definition of the supremum,
M, = sup ‘fn(x) - f(l‘)| Se.
el

Since M,, > 0, we have 0 < M,, < ¢ for all n > ng. This is the definition of M, — 0.

(<) Conversely, suppose lim,_,o, M,, = 0. We must show f, — f uniformly.
Given € > 0, since M,, — 0, there exists an index ng(¢) such that for all n > ng, we
have |M,, — 0| = M,, < . By definition of M,:

sup |fo(x) — f(2)] <e, Vn > ny.
zel

Since the supremum is less than ¢, every element must also be:

|fu(z) — f(2)| <sup|fu(z) — f(2)| <&, Vo € E, Vn > ny.

zeE

This is the definition of uniform convergence. [ |
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9.2 Uniform Convergence and Continuity

Let (fn)nen be a sequence of real functions defined and continuous on A converging
on A to a function f. One asks: Is the function f also continuous? The answer is
no.

Counter-example: f,(x) =z, x € [0, 1].

We have already seen that
0, if0<z <1,

fule) = f(@) = {1’ I

which is not continuous on [0, 1].

Another question that arises: Let f,(z) be a sequence of real functions defined
and continuous on A converging to a function f. Is the following relation always

true:

lim <lim fn(x)> = lim (lim fn(x)>?

T—To \Nn—00 n—o0 \ T—xg

The answer is no. Consider as before f,,(z) = 2", x € [0,1]. It is easy to see that
if z € (0,1) then:

0= lim (hm fn(:p)) £ lim ( lim fn(x)) ~ 1.

z—1, z<1 \n—o0 n—oo \ x—1, x<1

Under what conditions are such questions always true?

Proposition 9.9 Let A C R and (f.(x))nen be a sequence of real functions on A
converging uniformly on A to a function f. If the (f,(z))nen are continuous on A,

then f is continuous on A.

Proof: We must show that f is continuous on A. Therefore let xqg € A and ¢ > 0.
Since (f,(2))nen converges uniformly on A, then for the given ¢ > 0 there exists
no(e) such that for all n € N with n > ng we have |f,(x) — f(z)| < ¢/3, for any
x € A

On the other hand, the (f,(z))nen are continuous for all n € N. In particular,
for n = ny, it follows that f,, is also continuous at xy. Thus, for the given € > 0,
there exists (e, z) such that if z € A with |z —zq| < 0 then | f,,,(z) — fu, (x0)] < &/3.

From the uniform convergence above we have that:
|fu(z) — f(x)] <e/3, Yz € A, ¥n > ny.
In particular, for n = ny and x = xy we have |f, (zo) — f(z0)| < /3.
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However, for the given € > 0 there exists d(e, x) such that if z € Aand |x—zo| < §

we have:

() = f(zo)| = |f (@) = fuo () + fao (%) = fg(0) + fro (20) — f(0)|
< [f(@) = Fao (@) + o (2) = o (20)] + [ frg (w0) = f(o)| <€/3+¢/3+¢/3=¢,

which concludes the proof. [ |

Note that according to the hypotheses of Proposition 9.9, the following relation
holds:

lim <hm fn(x)> — lim (lim fn(x)>,

r—x9 \Nn—00 n—oo \ T—Ig
where (f,,(x))nen is a sequence of functions defined on A and converging uniformly

to a function f.

Indeed,
We have
Since f, — f uniformly on A = lim f,(z) = f(z), Vz € A. (9.1)
n—0o0

On the other hand, since f is continuous on A, it follows that

lim f(z) = f(xo). But f(zo) = nh_{glo fulo).

Tr—TQ

Thus,

lim f(x) = lim f, (x0). (9.2)

T—T0

Since the (f,), are continuous for all n € N it follows that:

lim f,(z) = fu(x), ¥n € N. (9.3)

T—T0

From (9.1), (9.2) and (9.3) we can write:

lim (hm fn(x)> = lim f(x)= f(zo),

T—To \n—oo T—T0
lim (hm fn(x)) = lim f,(z0) = f(20),
n—oo \ r—xo n—00

which proves the desired result.

Conclusion: If we have a family of continuous functions (f,(z)),, converging uni-
formly to a function f on a set A, then:
1) The function f will also be continuous.
2) One can interchange the limits, i.e.,
tim (Jim o)) = i (fim 1,9) v 4
If the function f is not continuous it follows that the convergence will not be

uniform.
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9.3 Uniform Convergence and Differentiation

Question: Let (f,)nen be a sequence of real functions converging on a set A to a
function f. Suppose that the derivatives of f, exist at the points = € A, i.e., f/(x)
exists for any n € N and for all x € A. One asks: does f/ — gon A and g = f' on

sin(nx)

A? The answer is no. Counter-example: let f,(z) = s> T E R. We have already

seen that f,(x) — 0 uniformly, which implies that g(x) = 0 and ¢'(z) = 0, for all
x € R. On the other hand

fi(z) = %ncos(nx) = v/ncos(nz), Vn.

However, for x = 0, f/(x) = y/n diverges as n — +o0o, which implies that there
exists an zg = 0 such that f/(0) does not converge to zero. As we see, f(z) does
not converge to zero for all x € R. At the points x = 2knw, k € Z, this does not

happen as we would like.

Proposition 9.10 Let (f,(z))nen be a sequence of differentiable functions on |a, b].
Suppose that { f.(xo)} converges for some xy € [a,b]. If fi — g uniformly on |a,b),
then f, — f uniformly on [a,b] and f' = g.

Proof: Let ¢ > 0. We have, by hypothesis, that there exists xy € [a, b] such that
(fn(xo))nen converges. Thus, by the Cauchy Criterion for numerical sequences, we
can write: For the given ¢ > 0, there exists N;(g’) such that for all m,n € N with
m,n > Ny, then

| fin(0) — falzo)| < €. (9.4)

On the other hand, since (f] (x))nen converges uniformly on [a, b], by the Cauchy
Criterion applied to uniform convergence we have: for the given &’ > 0 there exists
Ny (&) such that for all m,n € N, with m,n > N,, then

|fl () — fl(x)| < €&, forall z € [a,b. (9.5)

m

However, we must show that:
(i) fn — f uniformly on [a, b].
(ii) If f/ — g then f' = g.

(i) Let usdefine h(z) = f.(x)—fu(x), z € [a,b]. Since the f,, are differentiable on
[a, b], it follows that h(x) is also differentiable and, moreover, h'(x) = f/ (x) — f/ (x).
Now take 7, s € [a,b] such that r # s. Observe that h satisfies the hypotheses of
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the Mean Value Theorem. Thus, there exists ¢ty € [a,b] such that |h(s) — h(r)| =
|W/(to)| |s — r|. Let N = max{N;, No}. Thus, from (9.4) and (9.5) it results for the
given € > 0 that

[Fn(@o) = fulao)| < 5, ¥m,n = N, (9.6)
@) = Fu@)] < 35—

Thus, from |h(s) — h(r)| = |h'(to)| |s — r| and from (9.7) we can write that

YV € |a,b]. (9.7)

|(fm(8) = fn(5)) = (fm(r) = Fu(r))] = |f1u(t0) = fr(to)l[s — 7| (9-8)
<ﬁ]s—r!§% ngre(ab)Wlths#r VYm,n > N.
Now take x € [a, b] such that z # z5. We have from (9.6) and (9.8) that:
[fm (@) = fn()] (9.9)

= |fi(®) = frn(0) + frn(0) = ful0) + fu(T0) — fulz)]

= |(fm(2) = fu(@)) + (fulz0) = fin(@0)) + (fim(0) — fulz0))|
= |(fm(@) = fu(@)) = (fm(20) = ful20)) + (fm(20) = fn(20))|
< |(fm(@) = ful@)) = (fm(2o) = fal@o))] + | fm(20) — fulzo)]
< g—f—%:a Vx € [a,b], Vm,n > N.

From (9.6) and (9.9) we conclude that f,, converges uniformly due to the Cauchy
Criterion since N only depends on €. Let us denote this limit by f,i.e., lim, . fu(2) =

f(z) uniformly on [a, b].

(ii) It remains for us to show that if f/ — ¢ then f’ = g. Indeed, Fix z € [a, ]
and define:
n t) — n
D, (t) = M; t#ux, t€lab,

t—x
d(t) = W; t#x, telab
Then: y
tm (1) = lim 2 =S gy

since the f,’s are differentiable for all n.
Furthermore, from (9.7) and (9.8)

1, (1) — @,,(1)| = |2 = In@) _ Fnlt) = Fin(2)

l—x t—x
= 1 1) = ult) = (ale) = (e
1 / / 3 .
SH=a [fa(to) = (o)l 1t — 2| < o e la,b], with ¢ # z,
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which implies that (®,) converges uniformly for all ¢ € [a,b] to some function ¥
with ¢ # 2 (and for some ty € (¢, z)).
On the other hand, since f,(z) converges uniformly to f(x) for all x € [a, b], we

conclude that for each t € [a, b], we have:

lim @, (t) = (L),

n—oo

Indeed, we have:

fo(t) = fulz)

lim &, (¢) = lim lim (f,(¢) — fu(x)).

But,
lim £,(0) = £(t) and - lim f,(2) = f()
Hence:
lim @,(t) = ——(f(t) - f(2) = L= _ g

t—x
From the above, ®,, converges pointwise to ®. By the uniqueness of the limit
®,, — ® uniformly Vt € [a, b]. It follows, by the limit interchange theorem (Theorem
of iterability of limits), that:
i f5) = Jim fim (1) = i i 0.(0) = i 0(0) = ),

——
=g(=)

9.4 Uniform Convergence and Integration

Question: Let (f,,)nen be a sequence of real functions defined and integrable on [a, b]
and converging on [a, b] to a function f. One asks: Would f be integrable on [a, b]?

And what about the relation:

/ eyin= / (i 40)) o= i [ foGo) e

a

Answer: It is not true. Counter-example: Consider:

( 1
n’ x; 0<z<—,
n
, 1 2
o) =< —n*(x—2/n); — <<= n>2,
n n
2
0, —<z<l1
\ n
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It is not difficult to verify that fol fn(z)dx =1 (area of a triangle with base 2/n and

height n) and, therefore,
1

lim [ f.(2)de =1

n—oo 0

Find, below, the graph of the above sequence of functions f,(x) for different

values of the parameter n.

Sequéncia de Fungoes f,(x)

[ [ [ [
16 —n=2 |
—n=4
14 | n=238 ||
12 n=16 |
10} :
G
£ 8f 1
6, |
4, |
2,, |
04 |

0 01 02 03 04 05 06 07 08 09 1
x

On the other hand, for any = € (0, 1], f,(x) = 0 for large enough n, and f,,(0) = 0.
Thus f,, — 0 pointwise.

/01<T}I—>H§of”(x>> dr = /Olodx = 0.

Therefore the limits are different (verify this fact).

Proposition 9.11 Let (f,)nen be a sequence of real functions such that the integral
fab fn(x) dx exists for every n € N. If f,, — f uniformly on [a,b], then the integral

fab f(z)dx exists and, furthermore,

b

/ab f(x)de = /ab (7}1_{20 fn(:c)> de = lim | fu(z)de.

n—o0 a

Proof: Let ¢, = sup{|f.(z) — f(z)|; = € [a,b]}. Since f, — f uniformly on [a, b],
then £, — 0 as n — +oo as seen previously (See Theorem 9.8). In this way, we

have:
|fu(z) — f(2)| < e,, forany n and for all z € [a, b].
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Thus,
fo(x) —en < f(z) < fulx) + €, Vo € [a,b], Vn € N. (9.10)

From (9.10) it follows that

—b —b
a

ZZ(fn(x) —¢&p)dr < ZZf(x) dx and /af(x) dr < / (folz) + &,) dz,

which implies

/ab(fn(x) —&,)dr < lif(x) de < 7if(x) do < /ab(fn(x) +ep) dx. (9.11)

Let a < b <c¢<d. Weclaim that 0 < c¢—b < d—a. To prove the desired result,
it suffices to add —b to the inequality b < ¢ < d, resultingin 0 < c—b < d—b < d—a,

which proves the claim. Thus, from the above, and from (9.11), we can write that:

0< 7Zf(x) do —sz@;) iz < /ab(fn@) o) do— /ab(fn(x) o) da < 26, (b—a).

*(Note: The bound is 2, (b—a) because [(fn+en)— [(fu—en) = [ 26, = 2e,(b—a))*
Since €, — 0 as n — 400, from the last inequality it follows that TZf(x) dr =
fbf(x) dx, resulting in f being integrable on [a, b].

Returning to (9.10), we can write:

/ab(fn(:c) —é&n)dr < /abf(:c) dr < /ab(fn(:c) +e,)dr,

from where it follows that

b b b b
OS/ f(x)dx—/ (fn<x)_5n)dﬂ3§/(fn(x)+5n)dx_/(fn($>_€n)dxa
OS/ f(x)dx—/ fo(x)de +€,(b—a) < 2e,(b—a),
or rather ) )
—5n(b—a)§/ f(x)dx—/ fo(z)de < e,(b—a).

This last inequality entails that:

/abf(x) dx — /abfn(x) dx

Taking the limit in the inequality above, we obtain:

0< < en(b—a).

lim bfn(x) dx = /bf(x) dzx.
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Corollary 9.12 Let f, be a sequence of integrable functions on [a,b]. If f(x) =

> fu(x), x € [a,b] converges uniformly on [a,b], then:

/abf(:c) iz — g/b £ () da.

Proof: The Corollary above expresses that:

/abf(x)dl":/abzn:fn(w)dxzzn:/abfn(x)dx,

that is, it is permitted to integrate a uniformly convergent series term by term. W

Theorem 9.13 Let a be an accumulation point of a set X C R. If the sequence
of functions f, : X — R converges uniformly to f : X — R and, for each n € N,
L, =lim,_,, fn(x) exists, then:

(i) The limit L = lim,,_,o, L, exists.

(i) We have L = lim,_,, f(z).

In other words:

lim (hm fn(x)> — lim (hm fn(a:)) ,

n—oo \r—a r—a \Nn—0oo

holds, provided the two limits inside the parentheses exist, the second of them being

uniform.

Proof: To show that lim,,_,, L, exists, it suffices to prove that (L, ),en is a Cauchy
sequence. Let then € > 0. Since f, — f uniformly on X, there exists ng(¢) such
that if m,n > ng then |f,,(z) — fu(z)| < /3 for any z € X.

Let m,n > ng. We can obtain x € X and § = d(e,z) > 0 such that

Ly — fn()] < % and | fo(x) — Ln| < % for 0 < |z — a| < 4. (9.12)

Indeed, since lim,_,, f,(z) = L, exists for each n € N; then, for fixed m,n > ng
and for the given ¢ > 0, there exist 4; > 0 and d5 > 0 such that for all x € X with
0 < |z —a| < 01 we have |f,(z) — Lyn| < §, and also if 0 < |z — a| < d; we obtain
| fm(2) — Lp| < §, which proves (9.12) (taking § = min{dy, d2}).

With this choice of x, we can write

< E+E+E— Y >
3 3 3 =g, m,n = no,
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which implies that (L, ),en is a Cauchy sequence in R. Thus, it is convergent. Let
us denote
lim L, = L.

n—0o0

We will now show that the function

n—o0

has limit L as * — a. Indeed, for the given £ > 0, there exists ny such that for

n > ng we have:

€
ga
the first due to the convergence L, — L and the second due to the uniform

L= Lo <5 and |fafe) - f(2)] <

convergence f, — f, for all x € X. Let us fix an n greater than ny. Since
lim,_,q fn(z) = L,, there exists 6 > 0 such that if z € X and 0 < |z —a| < §

we have
€
fule) = L] < =

I claim: For the given ¢ > 0, there exists § > 0 such that for all z € X with
0 < |z —a| < & we have |f(x) — L| < e. Indeed, for x satisfying these conditions, it

follows from the above that:

F(@) = LI < 1F@) = Ful@)| + 1al@) = Lol 4 Lo = Ll < S+ 5+ 5 =<

which concludes the proof. [ |

Corollary 9.14 Let a be an accumulation point of X. If the series Y -, fu(x)
converges uniformly to f on X, and for each n € N, L, = lim,_,, f.(x) exists, then
the series y | L, is convergent and Y. L, = lim, ,, f(z). In other words, the

classical theorem for the limit of a sum holds for series:

yﬂzquz@wmm

n

provided that ) f,(z) is uniformly convergent.

Proof: Indeed, setting

sn(2) = fi(@) + -+ ful2),

the sequence of functions s, : X — R converges uniformly to f on X and, for each

n € N, there exists

lim s, (x) = Z il—r{(lz fi(x).

r—a -
=1
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The last theorem applies immediately to produce the desired result. |

Remark: The previous result still holds when a = +o00. This evidently assumes

that X is unbounded above. In this case:

lim (hm fn(x)) = lim (hm fulz )),
n—oo T—r00 T—00 n—oo
provided the limits inside the parentheses exist, the second of them being uniform.

The proof is practically the same. Only at the end, instead of taking § > 0, take
A > 0 such that if z > A we have |f,(z) — L,| < §

Theorem 9.15 If f, — f uniformly on X and all f, are continuous at a point

a € X, then [ is continuous at a.

Proof: If a is an isolated point, the demonstration is obvious. Otherwise, since a
is an accumulation point of X, the previous proposition allows us to write:

lim f(z) = lim ( lim fn(m)) — lim (nm fn(x)> — lim fo(a) = f(a).

r—a T—ra (n—)oo n—oo \r—a n—0o0

Corollary 9.16 Let Y ", fu(x) be a series of differentiable functions on the in-
terval [a,b]. If >0 fu(xo) converges for a certain xy € [a,b] and the series
Yo [r(x) = g converges uniformly on [a,b], then > >~ fo(x) = f(x) converges
uniformly on [a,b] and f is differentiable, with f' = g.

Theorem 9.17 (Dini’s Theorem) Let K be a compact set in R and suppose that:
i) (fn(2))nen is a sequence of real and continuous functions on K.
ii) (fu(2))nen converges pointwise on K to a continuous function f on K.
i4i) fo(z) > fosr1(x) for alln € N and z € K.
Then f.(z) — f(x) uniformly on K.

Proof: Let us define, for all n € N, g,(z) = f.(z) — f(z). According to the
hypotheses, we have that g, is continuous, for any n € N, and furthermore, g, — 0
pointwise on K. To show that f, — f uniformly on K, it suffices to show that
gn — 0 uniformly on K.

Indeed, let £ > 0 be given. For each n € N let:

K, ={z € K; gu(x) > €}.
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Since each g, is continuous on K, each K, is closed in K, because K, is the
inverse image of a closed set ([g,00)) by a continuous function. Hence, K, is a
closed subset of a compact set and therefore K,, is compact for any n € N.

Since g, > gna1 (because f,(z) — f(x) > furi(x) — f(2)), then K,, D K, 1, for

any n € N. Indeed, we have
Koy ={x € K:gp1(x) >} and K, ={z € K : g,(x) > ¢}.

Take z € K, 1. Then z € K and g,y1(z) > e. This implies that z € K and
gn(2) > gni1(z) > e, from which we conclude that z € K and g,(z) > e, i.e.,
z € K, proving the desired inclusion.

Fix zy € K. Since g,(x9) — 0 we see that zo ¢ K, if n is sufficiently large.
Indeed, since g,(x) — 0, given ¢ > 0, for every # € X there exists ny(e, z) such
that for all n > ng, |g.(z)| < €. Since g, > 0 (from f, > fu.r1 — f), we have
gn(z) < &, Vn > ng. Thus, for the given ¢ > 0 and fixed o € X, there exists
no(e) such that for all n > ny we have g,(z9) < &, from which it follows that
xo ¢ K,, Yn > ng. Since xg ¢ ﬂzozno K,, and due to the fact that K, are nested,
it follows that zo ¢ (o, K. Thus, (2, K,, = 0. Since ()., K, = 0, then the
intersection of a finite number of K s is empty (by the finite intersection property
of compact sets), say: K,, N K,, N---N K,, = 0 with ny < ng < -+ < ny,. Since
Kn DK, D---DK,, then K, = K, NK,,N---NK,, =0. It follows from this
and the fact that K, D K, for all n > n, that K, is empty for all n > n,. From
the above

{x e K:g,(z) >e} =0, Vn>n,,

or, stated another way, there does not exist x € K such that g,(z) > ¢ for all
n > n,, which implies that for all x € K we have 0 < g,(z) < ¢, for all n > n,,.
Therefore g, — 0 uniformly on K, i.e., f, — f uniformly on K, which concludes
the proof. (]

Definition 9.18 If X C R is a set, C(X), represents the set of real functions that
are defined, continuous and bounded on X. C(X), is a vector space. Note that

boundedness is redundant if X s compact.

For each f € C(X)s, there exists a number My > 0 such that |f(x)| < M; for all
x € X. Thus, for each f € C(X),, let us associate the number:

Il = sup{|f(z)] - = € X}.

It is not difficult to verify that the map C(X), — R, defined by f — ||f|| is a norm
on C(X)y.
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What does it mean to say that a sequence (f,)nen converges in C(X), to a
function f? This means that to each € > 0, there corresponds an index ng(e) such

that for all n > ng, we have ||f, — f|| < e. But
an_fH :sup{lfn(x)—f(x)\ : ZL’EX} <e, Vn > ny.

Therefore, given ¢ > 0, there exists ng(¢) such that for all n > ng, we have |f,(z) —

f(x)| < e for any z € E.

Conclusion: To say that f,, — f in C(X), is equivalent to saying that f, — f uni-

formly on X. For this reason, || f|| = sup,cx{|f(z)|} is called the uniform convergence

norm (or sup-norm).

Proposition 9.19 C(X), with this norm is a complete space.

Proof: TLet (f,)nen be a Cauchy sequence in C(X),. Then, given ¢ > 0, there

exists ng(e) such that if m,n > ny we have:

1o = fll <.

But,
1 = Funll = 50D{1 () = Sl

Therefore, ¢ is an upper bound for the set {|f.(z) — f.(x)| : = € X}, and conse-
quently
|fm(x) — fu(2z)| < e, Yz € X and Vm,n > no.

Then, (f.(z))nen satisfies the Cauchy condition necessary and sufficient for it to be
uniformly convergent on X. Let us denote lim,_,, f,(z) = f(z). It remains for us
to prove that f € C(X),. Indeed, since f,, € C(X), for all n € N, we will have that f
is also continuous on X (since uniform convergence preserves continuity). However,
since f, — f uniformly, given ¢ = 1, there exists ng(1) such that for all n > ng, we
have |f,(z) — f(x)| < 1 for any x € X. From this, it follows that:

’f(l')’ S |fn0(1)($)‘ + 17 Vr € X7

and thus
|f(2)] < My, +1, Vo e X.

This proves that f is bounded on X. Thus f € C(X),, and since f,, — f uniformly
on X, we have f, — f in C(X),, which proves that C(X), is complete. [ |
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9.5 Equicontinuous Families of Functions

Our goal now is to determine under what conditions concerning a set £ of continuous
functions (all with the same domain) one can guarantee that any sequence with terms
in F possesses a convergent subsequence.

If instead of a set of continuous functions we had a subset £ C R, we would
immediately see that, in order for every sequence of points x,, € E to possess a
convergent subsequence, it is necessary and sufficient that £ be a bounded set of
real numbers. Returning to the set E of continuous functions, we would be tempted
to use boundedness as the answer. But this does not happen. Consider the sequence

of functions:

fu(x) 1 [0,1] = R, fu(x)=2"(1—2").

It can be verified that f,(x) converges pointwise to the zero function and that
the maximum of f,(x) is equal to § and is attained at (/g (verify this fact). Note

that as n — oo, Q/g — 1. These facts allow us to sketch the graphs of the functions
[

Sequence of Functions f,(z) = 2™ (1 — z")

03 T T T T T T T T T T
Max height = 1/4

0.25 =

0.2

0.15 |

fn()

0.1

5-1072

\ \ | : | | |
0 01 02 03 04 05 06 07 08 09 1 11
i

Figure 9.1: Graphs of f,(z) = 2™(1 — 2™) for various values of n. Note that the
maximum height remains 1/4 even as the peak moves to the right.
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As can be seen, each graph represents a bump whose height remains equal to %,
so that as n — oo, the shape of the graph of the limit function does not approximate
the shape of the limit function, which is the zero function.

Let us examine the weakness of simple convergence from another angle. Saying
that the sequence of functions f, : X — R converges simply (pointwise) to the
function f : X — R means, formally, the following: given any ¢ > 0, one can
obtain, for each z € X, a number ng = ng(e,z) which depends on ¢ and z, such
that if n > ng then |f,(z) — f(x)| < e. Keeping ¢ fixed, it may perfectly well occur
that there is no ng that serves simultaneously for all . The previous example shows
a sequence of continuous functions such that 0 < f,(z) < 1/4 for all x € [0,1]
and for all n € N. However, (f,(x))nen does not possess a uniformly convergent
subsequence. Indeed, such a subsequence should tend uniformly to zero, which is
impossible, since each f,, assumes the value 1/4 at some point in the interval [0, 1].
In other words: We cannot extract a subsequence from (f,,(x))nen such that given
e > 0, all graphs of (f,, (z))ken are totally within that strip of width e from some
ng, onwards. It suffices to take 0 < e < 1/4.

It is not sufficient, then, that the functions f € FE take values in the same
bounded interval for every sequence in E to possess a uniformly convergent subse-
quence. An additional hypothesis, which we will introduce next, is needed. To do

this, we first need to define two types of boundedness.

Definition 9.20 (a) A sequence of real functions defined on a set E is pointwise
bounded on E when for each x € E, there exists M, > 0 such that |f,(z)| < M,,
for alln € N. Then, letting ¢ : E — R, ¢(z) = M,, x € E, we have |f,(x)] < ¢(x),
for any v € E and for all n € N.

(b) (fu(x))nen is uniformly bounded on E when there exists M > 0 such that
|fu(z)| < M, for any x € E and for all n € N.

Our initial intent is to prove, by Cantor’s Diagonal Method, that given a point-
wise bounded sequence on a countable set F, it has a subsequence converging at each
point of E. However, even if (f,(x))nen is a uniformly bounded sequence of contin-
uous functions on a compact set E, there does not necessarily exist a subsequence
that is convergent on E.

Another question is whether every convergent sequence contains a uniformly
convergent subsequence. We have seen previously that even if (f,(z))nen is a uni-
formly bounded sequence of continuous functions on a compact set, there does not

necessarily exist a subsequence that is uniformly convergent on F.

172



Sequences and Series of Functions 9.1 Sequences and Series of Functions

A brief digression.

Let (a,) be a sequence of real numbers. We say that the sequence (b,) is a
subsequence of (a,) when there exists a strictly increasing map o : N* — N* such

that b, = ay(,) for any n € N*.

Example: Consider

a1, a2, as ,0q, a5, Ag," -

Then
by = a1, by = a3, by =ae, -
is a subsequence of (a,). In this case o : N* — N* such that o(1) = 1, 0(2) =
3, 0(3) =6, etc...
Suppose (b,) is a subsequence of (a,). Then there exists a strictly increasing

map oy : N* — N* such that b, = a,,(,). Suppose now that (¢n) is a subsequence of

(bn). Then there exists a strictly increasing map oo : N* — N* such that

Cn = boy(n) = Qo (a9(n)) = U(o1002)(n)-
Then (c,) is a subsequence of (a,).
Definition 9.21 Let F be a family of functions f : E C R — R. We say that

the family is equicontinuous on E when to each € corresponds a 6 > 0 such that if
x,y € E with |v —y| <4, then |f(z) — f(y)| <e, for any f € F.

Remark: If F is equicontinuous on F, then besides all functions f € F being
uniformly continuous, the crucial point is that the 0 of uniform continuity is the

same for all functions.

The Diagonal Process.

Proposition 9.22 Let E be a countable set and let f, : E — R (n € N*) be
pointwise bounded on E. Then there exists a subsequence (fym)) of (fa)nen- that

converges pointwise at each v € F.

Proof: Let us enumerate the points of £ as: xq, 2o, -+ ,2,,---. Let us calculate the
values f,,(x1) of the f,, at 1 (n € N). We thus obtain a bounded numerical sequence
in R whose set of values is contained in a compact set of R. Thus, there exists a
subsequence (fy, (n)(1))nen convergent in R. Now let us calculate the values of f,, ()
at xo. We obtain a bounded sequence (fy,(n)(%2))nen. Therefore, the set of values of

such a sequence is contained in a compact set of R. Thus, there exists a subsequence
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(forooa(n)(22)) which is convergent in R. Repeating the process indefinitely, we find,

for each n € N*, a strictly increasing map o, : N* — N* such that

(fo.loazo...am(n)) is a subsequence of (f0'100'20"'0'm71(n)) )

Note that (f ors0-om(n)) (Tm) is convergent by construction.

Let us denote:

g : fa) (@) o formm(@1)
g2 : foloag(l) (1’2) T foloog(m) ($2)
9m - falo---oam(l) (xm) e fo-lo---crm(m) (xm)

Let H be the diagonal sequence of functions:

H = (fol(l)a f01002(2)7 f01002003(3)7 ) fU1O---am(m)a folo---amoa7,L+1(m+1)> o ) .

I claim: Abandoning the first (m — 1) terms of the diagonal sequence, what we
obtain, i.e.,
(foromomm)s foromomoomss(met)s ")
is a subsequence of
G = ([oromom@)s foromam@)s ) -
Indeed, observe that:

(i) g, is a subsequence of g, 1 forn =2,3,4,---

(i1) (f(o10m0m)(n) (xm))neN is convergent.

Thus, the sequence (H), excepting perhaps its first (m — 1) terms, is a subse-
quence of g,,, form =1,2,---. Since g, is convergent at z,, for all m, then H (as a

subsequence of g¢,,) is convergent at x,, for all m, as we wanted to demonstrate. W

Theorem 9.23 [Arzela-Ascoli] Let K be a compact metric space and f, € C(K)
for each n € N. If (fn)nen is pointwise bounded and equicontinuous on K, then:
(a) (fn)nen is uniformly bounded on K.

(b) (fn)nen contains a uniformly convergent subsequence on K.
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Proof: (a) Given € > 0, since (f,)nen is equicontinuous on K, there exists § > 0
such that if z,y € K with d(z,y) < § then |f,(z) — fu(y)| < €, for any n € N.
The open balls Bs(x), x € K, cover K. Thus, due to the compactness of K, we

can extract a finite subcover, i.e., there exist p;, pa, -+, p. € K such that
K C Bg(pl) U B(s(pg) U---u B(s(pr).

Since by hypothesis (f,,)nen is pointwise bounded, there exist numbers M; > 0,
i=1,2,--- 7 such that
|fu(pi)| < M;, ¥n € N.

On the other hand, taking = € K, x € Bs(p;) for some ¢ = 1,--- ,r, which
implies that d(z,p;) <, for some i, say ig € {1,2,--- ,r}. Then:

|fn($) - fn(pw)| <ég, Vn € N>

which implies,
|fo(@)] < |fulpiy)| +&, ¥R EN, Vo € K.

Letting M = max{M;, Ms,--- , M,}, it follows that
|fu(z)| S M+, VneN, Vz € K,

which proves item (a).

(b) According to Lemma 1.62 (Separability of compact spaces), K has a count-
able subset E dense in K. Since the sequence (f,)nen is pointwise bounded, by
Cantor’s diagonal process, there exists a subsequence (f,,)ien such that (f,,(z))
converges for all x € E. Let us denote f,, = ¢; to simplify notation. We will prove
next that g; converges uniformly on K. Indeed, let € > 0 be given and take § > 0 as
in the beginning of the proof since (f,,)nen is equicontinuous on K. Note that the
balls Bs/s(y), y € K form an open cover of K. Therefore, there exist y,- - ym € K
such that

K C Bg/g(yl) U---u Bg/z(ym).

Lety € K. Theny € Bj)s(y;) for some 4, say ig € {1,2,--- ,m}. Then d(y,y;,) <
d/2. On the other hand, for each y;, ¢ = 1,--- ,m, due to the density of £ in K,
there exists z; € F such that d(z;,vy;) < 0/2. In particular for i = iy we will have
d(yiy, Tiy) < 0/2. Thus,

d(?/» ZL‘Z'()) S d(y> yio) + d(yioa xio) S 5/2 + 5/2 = 57
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which proves that y € Bs(x;,), for some iy € {1,2,--- m}, for all y € K, which
implies
We know that g; = f,, converges for each x € E. Thus, considering the points

T1,Ta, Ty, € F, we will have, by the Cauchy criterion:

|9i(zm) — gj(xm)| < €/3; Vi, j = no(m).
Let N := max{ng(1),n0(2), - ,no(m)}, then for all i, 7 > N we will have
0:(2) — gy(@) < £/3, s=1,2,+ . m. (9.13)

Since K C U, B;s(z;), then given a generic z € K, there exists s € {1,2,--- ,m}
such that € Bs(x), which implies d(z, zs) < § for some s, say so. Thus, for each

© € N and by the equicontinuity of g;:
lgi(x) — gi(zs,)| < /3, Vi € N. (9.14)
Then, for all 4,5 > N and for all z € K, it follows from (9.13) and (9.14) that:

9i(x) — gi(x)] < |gi(z) — gi(wse)| + 19i(Ts0) — 95(@s0)| + |95 (250) — 95()]
< ¢/3+¢/3+¢/3==c.

Then, (g;(z))ien = (fn,(x))ien satisfies the necessary and sufficient condition for

uniform convergence on K, which proves (b). |

Theorem 9.24 (Stone-Weierstrass) If [ is a real continuous function on an
interval [a,b] of R, there exists a sequence (Pp)nen of polynomials such that (Pp,)nen

tends to f uniformly on [a,b).

Proof: We can, without loss of generality, assume [a,b] = [0,1]. Indeed, suppose
the theorem proven for continuous functions on [0,1] and let f be a continuous
function on [a,b]. Define the change of variables function:

r—a
T b—a

Note that = = ¢(t) is a bijection from [0, 1] to [a,b], and ¢ is clearly continuous.

r=pt)=a+(b—a)t=1t=¢ (2

Letting g = f o, then there exists, by hypothesis, a sequence @, () of polynomials

such that for each € > 0 there exists an index ng(¢) such that if n > ng:
lg(t) — Qn(t)| < &; YVt €[0,1].
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This results in:
1f(z) — Qn(e ' (x))] <&, Va € [a,b] and for n > ny.

Since ¢! is a polynomial in x, Q,(¢~!(z)) is a polynomial in z. Tt suffices to take

(Po(@))nen = (@nl¢™!(x)))nen-

Without loss of generality, we can also assume that f(0) = f(1) = 0. Indeed,
let f be continuous on [0,1]. Define g(z) = f(z) — f(0) — z(f(1) — £(0)). Then
g(0) = 0 and g(1) = 0. If there exists a sequence @Q,, converging to g, then P,(x) =
Qn(x) + f(0) + z(f(1) — f(0)) converges to f, and P, is a polynomial.

Let us extend f to the whole line by setting f(z) = 0 if = ¢ [0,1]. Then f is
uniformly continuous on R.

On the other hand, we have
(1—2*)">1—n2? Vr€[0,1] and Vn € N*, (9.15)

(This is Bernoulli’s inequality).

Let us define, now,
Qn(z) = ¢, (1 — 2*)", n € N*,

where ¢, is chosen such that f_ll Qn(x)dr = 1. We have the estimate:

/1(1 2 d 2/1(1 Hnd >2/1Nﬁ(1 %) d 1.2
— X r = — X X — N r = ———= —=
-1 0 —Jo 3vn = n

Thus, 1 = ¢, f_ll(l — )" dx > cn\/iﬁ, implying ¢, < \/n.
Let 6 > 0. For § < |z| < 1, we have Q,(z) < v/n(1—6)". Letting 1—-6%> =\ < 1,
we have y/nA™ — 0 as n — oo. This shows that Q,(x) — 0 uniformly on ¢ < |z| < 1.

Let us consider now the convolution:
1
Po(z) = / Fle+8)Qut)dt, 0<z < 1.
—1
By a change of variables u = x +t, and using the fact that f vanishes outside [0, 1]:

Po(z) = /0 £ Ou(t — 2) dt.

Note that Q,(t —x) = c,(1 — (t — x)?)" is a polynomial in z for fixed ¢t. Thus P,(z)

is a polynomial in x.
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Since f is uniformly continuous on R, given € > 0 there exists 6 > 0 such that
lz—y| <6 = |f(z) — f(y)| <e/2. Let M =sup|f|. For 0 <z < 1:

o) -l = |[ G0 -Fenewa

s([|ﬂx+w—fmﬂ@awﬁ

1

:/ +/
[t| <6 [t]|>d

3

< S Quwdir2m [ Qi)
2 Jjy<s 1t]>6
< 2(1) +2M/n(1 — 62",

Since 2M\/n(1—62)" — 0, for large n this is less than £/2. Thus |P,(z)— f(z)| < &,

proving uniform convergence. [

9.6 The Weierstrass Function: A Continuous, Nowhere
Differentiable Function

A remarkable consequence of the modern theory of continuous functions is the exis-
tence of functions that are continuous everywhere, but differentiable nowhere. This
concept was considered counter-intuitive until Karl Weierstrass (1872) constructed

the first rigorous example.

Definition 9.25 The Weierstrass function is defined by the series:

W(x) = Z a" cos(b"mx), (9.1)

where a 1s a real number such that 0 < a < 1, and b is an odd integer such that the

following condition is satisfied:
3
ab>1+ §7T. (92)

Theorem 9.26 The Weierstrass function W (x) is continuous on R but is differen-

tiable at no point in R.

Proof: [Proof of Continuity (Sketch)| The continuity follows immediately from the
Weierstrass M-Test (Theorem 9.7). Let f,(z) = a” cos(b"mx). We can choose the

majorant M, = a", since:
|fu(z)| = |a" cos(bmx)| < a™ = M, VzeR.
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Since 0 < a < 1, the geometric series Y >~ M, = > ° ja" converges. As each term
fn(z) is a continuous function (being a cosine function), the uniform convergence
of the series implies that the sum function W(z) is also continuous everywhere

(Proposition 9.9). |

Remark 9.27 The proof of non-differentiability is significantly more involved and
1s beyond the scope of this elementary presentation, requiring a careful analysis of
the difference quotients based on the specific condition ab > 1 + %7‘(. However,
the key idea is that the ratio a™b™ increases with n, ensuring that the sum of the
deriwatives of the terms of the series does not converge uniformly, leading to the

non-differentiability of the limit function.

Figure 9.2: Weierstrass function
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List of Exercises: Numerical and
Function Series

Numerical Series

1. (Divergence Test and Necessary Condition) Show that the converse
of the theorem "If } a, converges, then lim, ,, a, = 0" is false. Use the
harmonic series (37| *

the Cauchy condensation test or by comparison with the integral [ Lda.

) as a counterexample and prove its divergence using

2. (Absolute and Conditional Convergence) Determine whether the follow-

ing series converge absolutely, conditionally, or diverge:

0 S (o)

n=1

3. (Root Test) Use the Root Test to determine the behavior of Z a,, where:

n=1
n+1\"
Ay, =
2n

> !
4. (Ratio Test) Use the Ratio Test to determine the behavior of Z hly
nTL
n=1

S 1
5. (Telescoping and Integral Series) Consider the series Z .
(n+1)vn+nyn+1

n=1
(a) Show that the general term can be written as a difference: a, =

1
vVn+1’

=
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(b) Calculate the partial sum Sy and demonstrate that the series converges.
1 1 > e th
—= — ———| usin e

vnooovn+1 &

Limit Comparison Test, by comparing it with the p-series nip, and ex-

(¢) Analyze the convergence of the series Z (
n=1

plain why the convergence of this series does not contradict the divergence

1
6. (Riemann Rearrangement Theorem) Let ) a, be a conditionally conver-
gent series. Explain, without formal proof, what the Riemann Rearrangement
Theorem states about the set of possible sums of its rearrangements. Use the

71)n+1

alternating harmonic series 50 | U

as an example.
n

Function Series and Uniform Convergence

7. (Radius of Convergence) Determine the interval of convergence and the
radius of convergence R of the following power series:

o0

w2

n=1

(b) im
() i (1 + %)x

n=1

8. (Weierstrass M-Test) Use the Weierstrass M-Test to prove that the function

series Z fn(z) converges uniformly on the set A, where:
n=1

fulz) = and A=R

9. (Pointwise vs. Uniform Convergence and Continuity) Consider the
sequence of functions f, : [0,1] — R given by f,(z) = 2.
(a) Determine the pointwise limit function f(z).

(b) Prove that the convergence of f,, to f is only pointwise, and not uniform,

on [0, 1].

(c) Explain how this example illustrates the theorem on the preservation of

continuity under uniform convergence.
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10. (Preservation of Differentiability) Consider the sequence of functions f,, :

R — R given by f,(z) = + arctan(2").

a) Find the pointwise limit function f(x).

(
(b) Calculate the pointwise limit of the derivatives, g(z) = lim,_ f ().

)
)
(c) Calculate the derivative of the limit, f'(x).

(d) Compare f'(x) with g(z) and use the theorem for differentiation of func-

tion series to explain why f’(z) # g(x) (at least at some points).

11. (Preservation of Integrability and Dini’s Theorem) Let f, : [0,1] - R
be a sequence of continuous functions given by f,(z) = 7.
(a) Determine the pointwise limit function f(z).

(b) Calculate lim,, o fol fn(x)dz and fol f(x)dz.

(c) Does the result from the previous item imply that the convergence is

uniform? Justify.

(d) Although this sequence is monotonic (non-increasing in n for x € (0, 1]
and non-negative), is Dini’s Theorem (Theorem 9.17 in the book) appli-
cable? Explain.
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