
Monograph Series
of the Parana’s Mathematical Society

A Course on Real Analysis

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti and Wellington J.
Corrêa

Universidade Estadual de Maringá and Universidade Tecnológica Federal do
Paraná



Monograph Series of the Parana’s Mathematical Society Monograph 03 (2020).
©SPM – E-ISSN-2175-1188 • ISSN-2446-7146 doi:10.5269/bspm.81129
SPM: www.spm.uem.br/bspm

A Course on Real Analysis

Marcelo M. Cavalcanti1, Valéria N. Domingos
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Department of Mathematics,
Universidade Estadual de Maringá,
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Chapter 1

The Real Numbers

1.1 The Natural Numbers and Mathematical In-

duction

To rigorously build analysis, we must look closer at the structure of the natural

numbers N = {1, 2, 3, . . . }.
Axiom [Well-Ordering Principle] Every non-empty subset of natural numbers has

a least element. That is, if S ⊂ N and S ̸= ∅, then there exists m ∈ S such that

m ≤ k for all k ∈ S.

This principle is equivalent to the Principle of Mathematical Induction, which is

a crucial tool for proving statements involving natural numbers.

Theorem 1.1 (Principle of Mathematical Induction) Let P (n) be a statement

about the natural number n. Suppose that:

(i) P (1) is true (Base case).

(ii) For every k ∈ N, if P (k) is true, then P (k + 1) is true (Inductive step).

Then, P (n) is true for all n ∈ N.

Proof: Let S = {n ∈ N : P (n) is false}. We want to show that S = ∅. Suppose,
for the sake of contradiction, that S ̸= ∅. By the Well-Ordering Principle, S has

a least element, say m. Since P (1) is true by hypothesis (i), 1 /∈ S, so m > 1.

Therefore, m− 1 is a natural number. Since m is the least element of S, m− 1 /∈ S,

which means P (m − 1) is true. By hypothesis (ii), if P (m − 1) is true, then P (m)

must be true. This contradicts the fact that m ∈ S. Therefore, S must be empty,

and P (n) is true for all n. ■

11



The Real Numbers 12

1.2 Finite, Countable, and Uncountable Sets

In analysis, distinguishing between di�erent "sizes" of in�nity is essential.

De�nition 1.2 Two sets A and B are said to have the same cardinality (written

A ∼ B) if there exists a bijection f : A→ B.

De�nition 1.3 Let Jn = {1, 2, . . . , n} for some n ∈ N. A set A is said to be:

� Finite if A = ∅ or if A ∼ Jn for some n.

� In�nite if it is not �nite.

� Countable (or denumerable) if A ∼ N.

� Uncountable if A is in�nite and not countable.

Remark 1.4 A countable set can be listed as a sequence x1, x2, x3, . . . where every

element of the set appears exactly once.

Theorem 1.5 The set of integers Z and the set of rational numbers Q are countable.

Proof: For Z, we can list the elements as 0, 1,−1, 2,−2, . . . , de�ning a bijection

with N. For Q, the proof involves arranging the rationals in an in�nite array and

traversing it diagonally (Cantor's diagonalization for rationals), showing that there

is a surjection from N to Q. Since Q is in�nite, this implies Q ∼ N. ■

Theorem 1.6 The union of a countable collection of countable sets is countable.

Theorem 1.7 (Uncountability of R) The set of real numbers R is uncountable.

Proof: (Sketch) The proof is typically done by contradiction using Cantor's Di-

agonal Argument on the interval (0, 1). If we assume (0, 1) is countable, we can list

all its elements as decimal expansions. We then construct a new number x ∈ (0, 1)

by choosing its n-th decimal digit di�erent from the n-th digit of the n-th number

in the list. This number x cannot be in the list, leading to a contradiction. ■

12



The Real Numbers 1.1 Supremum and In�mum of a Bounded Set

1.3 Density of Rationals and Irrationals

We previously stated that Q is dense in R. We now formalize this and extend it to

irrational numbers.

De�nition 1.8 A subset A ⊂ R is dense in R if for every pair of real numbers x, y

with x < y, there exists an element a ∈ A such that x < a < y.

Theorem 1.9 (Density of Q) If x, y ∈ R and x < y, then there exists a rational

number r ∈ Q such that x < r < y.

Proof: Since x < y, we have y − x > 0. By the Archimedean Property, there

exists n ∈ N such that n(y − x) > 1, or ny − nx > 1. Since ny − nx > 1, there

must exist an integer m ∈ Z between nx and ny (speci�cally, m = ⌊nx⌋+1). Thus,

nx < m < ny. Dividing by n, we get x < m
n
< y. By taking r = m/n, we have

found a rational number between x and y. ■

Theorem 1.10 (Density of Irrationals) If x, y ∈ R and x < y, then there exists

an irrational number z ∈ R \Q such that x < z < y.

Proof: Since x < y, we have x −
√
2 < y −

√
2. By Theorem 1.9 (Density of

Rationals), there exists a rational number r ∈ Q such that

x−
√
2 < r < y −

√
2.

Rearranging the inequality, we get:

x < r +
√
2 < y.

Let z = r+
√
2. We claim that z is irrational. Suppose, for contradiction, that z ∈ Q.

Then z − r would be rational (since the di�erence of two rationals is rational). But

z−r =
√
2, which we know is irrational. This is a contradiction. Thus, z is irrational

and lies between x and y. ■

Corollary 1.11 Between any two real numbers, there are in�nitely many rational

numbers and in�nitely many irrational numbers.

13



The Real Numbers 1.1 Supremum and In�mum of a Bounded Set

1.4 Supremum and In�mum of a Bounded Set

There exists a set R, whose elements are called real numbers, satisfying the following

conditions:

� (1) An addition operation and a multiplication operation are de�ned on R,
with respect to which R has the algebraic structure of a �eld.

� (2) There exists a non-empty subset of R, denoted by P , whose elements are

called positive real numbers, such that:

(i) If x, y ∈ P ⇒ x+ y ∈ P .

(ii) If x, y ∈ P ⇒ xy ∈ P .

(iii) If x ∈ R, one and only one of the following statements is true:

x ∈ P ; x = 0, −x ∈ P . (trichotomy).

If we denote by −P = {−x : x ∈ P}, the elements of (−P) are called negative.

De�nition 1.12 Given x, y ∈ R, we say that x > y if and only if x− y ∈ P. The

notation x ≥ y is used to indicate that x > y or x = y. We de�ne x < y if y > x.

Proposition 1.13 Let a, b, c ∈ R. Then:
a) If a > b and b > c then a > c.

b) Exactly one of the following statements is true: a > b; a = b; a < b.

c) If a ≥ b and b ≥ a then a = b.

d) If a ̸= 0 then a2 > 0.

e) 1 > 0.

f) If n ∈ N then n > 0.

Proof: a) If a > b and b > c then a− b ∈ P and b− c ∈ P . We must prove that

a > c, i.e., that a− c ∈ P . Indeed, we have:

a− c = (a− b)︸ ︷︷ ︸
∈P

+(b− c)︸ ︷︷ ︸
∈P

∈ P .

b) Let a, b ∈ R. Then (a−b) ∈ R and by trichotomy, exactly one of the following

statements is true:

a− b ∈ P ; a− b = 0; −(a− b) ∈ P ,

that is,

a > b; a = b; a < b.

14



The Real Numbers 1.1 Supremum and In�mum of a Bounded Set

c) If a ≥ b, then a− b ∈ P or a− b = 0, whence, a− b ∈ P or a = b.

If b ≥ a, then b− a ∈ P or b− a = 0, which implies b− a ∈ P or b = a.

Since we are assuming a ≥ b and b ≥ a simultaneously, then:

(a− b) ∈ P or a = b and (b− a) ∈ P or b = a.

Hence:

(i) If (a − b) ∈ P and (b − a) ∈ P then (a − b) + (b − a) = 0 ∈ P , which is an

absurdity!

(ii) If (a− b) ∈ P and b = a then 0 ∈ P , which is an absurdity!

Thus, the only possible option is a = b (or b = a).

d) If a ̸= 0 then a > 0 or a < 0, i.e., a ∈ P or −a ∈ P . In the �rst case

a2 = a a ∈ P . In the second case a2 = (−a)(−a) ∈ P .
e) In particular, in an ordered �eld, 1 = 1 · 1 is always positive.

f) Exercise. ■

� (3) The supremum property holds in R: `Every non-empty subset of R that

is bounded above has a supremum.'

To understand what the supremum of a set is, we need some preliminary con-

cepts.

De�nition 1.14 Let S ⊂ R. An element u ∈ R is called an upper bound of S if

u ≥ x for all x ∈ S. Similarly, the concept of a lower bound of S is de�ned.

A set S is bounded above if S has an upper bound, and is bounded below if it

has a lower bound. If S is simultaneously bounded above and below, we say that S

is bounded.

De�nition 1.15 Let S ⊂ R; S ̸= ∅, S bounded above. A real number l is called

the supremum of S and denoted by l = supS if l is the least of the upper bounds of

S. Equivalently, l ∈ R is the supremum of S if and only if it satis�es the following

conditions:

(1) l is an upper bound of S.

(2) If t is any upper bound of S then l ≤ t.

Condition (1) says that l is an upper bound of S, while (2) states that any other

upper bound of S must be greater than or equal to l.

Condition (2) can be rephrased as:

(2') Given c < l, there exists s ∈ S such that c < s.

15



The Real Numbers 1.1 Supremum and In�mum of a Bounded Set

Indeed, suppose by contradiction that there exists C0 < l such that for all s ∈ S

we have C0 ≥ s. It follows that C0 is an upper bound of S strictly less than the

supremum (C0 < l), which is an absurdity, proving (2').

Similarly, the concept of in�mum of a set bounded below is de�ned.

16



Exercises: Set Theory and Functions

1st Question Given a function f : A −→ B and X, Y subsets of A, prove the

following properties:

a) f(X ∪ Y ) = f(X) ∪ f(Y ), b) f(X ∩ Y ) ⊂ f(X) ∩ f(Y ),

c) X ⊂ Y =⇒ f(X) ⊂ f(Y ), d) f(∅) = ∅.

2ndQuestion Given a function f : A −→ B and Y, Z subsets of B, prove the

following properties:

a) f−1(Y ∪ Z) = f−1(Y ) ∪ f−1(Z), b) f−1(Y ∩ Z) = f−1(Y ) ∩ f−1(Z),

c) f−1(Y c) = (f−1(Y ))c, d) Y ⊂ Z =⇒ f−1(Y ) ⊂ f−1(Z),

e) f−1(B) = A, f) f−1(∅) = ∅. *(Note: I used Y c for the complement ∁Y as

it is more standard in English, but you can keep ∁ if you prefer)*.

3rd Question Prove that a function f : A −→ B has a left inverse if and only if

it is injective.

4th Question Prove that a function f : A −→ B has a right inverse if and only if

it is surjective.

5th Question Given a family (Aλ)λ∈L of subsets of a universal set E, then

a) (
⋃
Aλ)

c =
⋂
Ac

λ, b) (
⋂
Aλ)

c =
⋃
Ac

λ *(De Morgan's Laws)*.

6th Question Given a function f : A −→ B, consider a family (Aλ)λ∈L of subsets

of A, and a family (Bµ)µ∈M of subsets of B. Prove the following properties:

a) f(
⋃
Aλ) =

⋃
f(Aλ), b) f(

⋂
Aλ) ⊂

⋂
f(Aλ),

c) f−1(
⋃
Bµ) =

⋃
f−1(Bµ), d) f−1(

⋂
Bµ) =

⋂
f−1(Bµ),

7th Question Given the function f : A −→ B:

a) prove that f(X \ Y ) ⊃ f(X) \ f(Y ) for any subsets X and Y of A,

b) show that if f is injective, then f(X \ Y ) = f(X) \ f(Y ) for any X and Y

contained in A.

17



The Real Numbers 1.1 Supremum and In�mum of a Bounded Set

8th Question Show that the function f : A −→ B is injective if and only if

f(A \X) = f(A) \ f(X) for all X ⊂ A.

9th Question Given the function f : A −→ B, prove:

a) f−1(f(X)) ⊃ X for all X ⊂ A,

b) f is injective if and only if f−1(f(X)) = X for all X ⊂ A.

10th Question Given the function f : A −→ B, prove:

a) for all Z ⊂ B, we have f(f−1(Z)) ⊂ Z,

b) f is surjective if and only if f(f−1(Z)) = Z for all Z ⊂ B.

11th Question If there exists a bijection f : X −→ Y , then given a ∈ X and

b ∈ Y , there also exists a bijection g : X −→ Y such that g(a) = b.

12th Question If A is a proper subset of In (where In = {1, . . . , n}), there cannot
exist a bijection f : A −→ In.

13th Question If f : Im −→ X and g : In −→ X are bijections, then m = n.

14th Question Let X be a �nite set. A map f : X −→ X is injective if and only

if it is surjective.

15th Question There cannot exist a bijection between a �nite set and a proper

part (subset) of itself.

16th Question Every subset of a �nite set is �nite.

17th Question Given f : X −→ Y , if Y is �nite and f is injective, then X is

�nite; if X is �nite and f is surjective, then Y is �nite.

18th Question A subset X ⊂ N is �nite if and only if it is bounded.

19th Question If X is an in�nite set, then there exists an injective map f : N →
X.

20th Question A set X is in�nite if and only if there exists a bijection φ : X → Y

onto a proper subset Y ⊂ X.

21st Question Every subset X ⊂ N is countable.

22nd Question Let f : X → Y be injective. If Y is countable, then X is also

countable. In particular, every subset of a countable set is countable.

18
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23rd Question Let f : X → Y be surjective. If X is countable, then Y is also

countable.

24th Question The Cartesian product of two countable sets is a countable set.

25th Question The union of a countable family of countable sets is countable.

26th Question Prove that the following sets are countable:

a) Z, the set of integers, b) Q, the set of rational numbers.

19



Chapter 2

Sequences

2.1 Sequences

De�nition 2.1 A sequence of elements from a set A is a function X : N → A.

When A = R, we have a sequence of real numbers. If A is a set of functions, we

have a sequence of functions.

Notation: If X : N → A is a sequence, the element X(n) ∈ A is usually denoted

by xn instead ofX(n), and the functionX itself byX = {x1, x2, · · · } orX = {xn}n∈N
or simply X = {xn}.

Examples:

1) Consider the sequence of real numbers X = (xn) where xn = (−1)n, n ∈ N.
The set of values of this sequence is {(−1)n : n ∈ N} = {−1, 1}, while the

sequence itself is given by X = {−1, 1,−1, 1, · · · }.

2) Let Y = {yn} where yn = 1
n
. In this case, Y = {1, 1/2, 1/3, 1/4, · · · }. Here,

the set of values is identi�ed with the sequence itself.

Remark: Unless stated otherwise, the sequences we will deal with from now on

are real numbers.

2.2 Limits of Sequences

De�nition 2.2 We say that a sequence X = {xn} has a limit l ∈ R (or converges

to l) if for each ε > 0, there exists a k(ε) ∈ N such that if n > k(ε) then |xn− l| < ε.

In this case, the sequence is said to be convergent to l and we denote:

lim
n→+∞

xn = l or limxn = l or simply xn → l.

20



Sequences 2.2 Limits of Sequences

Examples:

1) Let Y = {yn} where yn = 1
n
. We have yn → 0 as n → +∞ because, given

ε > 0, I can consider k(ε) > 1
ε
(Archimedean property) such that if n > k(ε) > 1

ε

then 1
n
< ε.

2) Let X = {xn} where xn = λ ∈ R, for all n ∈ N. It is clear that xn → λ since

|xn − λ| = 0 < ε.

Proposition 2.3 (Uniqueness of the Limit) Let X = {xn} be such that xn → l

and xn → l′. Then l = l′.

Proof: Suppose, by contradiction, that l ̸= l′ and consider 0 < ε = |l−l′|
2

. Since

xn → l, there exists k1(ε) such that

|xn − l| < ε =
|l − l′|

2
if n > k1(ε). (2.1)

On the other hand, since xn → l′, there exists k2(ε) such that

|xn − l′| < ε =
|l − l′|

2
if n > k2(ε). (2.2)

Note that if k(ε) := max{k1(ε), k2(ε)}, then (2.1) and (2.2) hold simultaneously.

Adding (2.1) and (2.2) member by member, we obtain:

|xn − l|+ |xn − l′| < |l − l′|,∀n > k(ε) (2.3)

However,

|l − l′| = |l − xn + xn − l′| (2.4)

≤ |xn − l|+ |xn − l′|.

From (2.3) and (2.4), it follows that |l − l′| < |l − l′|, which is an absurdity,

proving the desired result. ■

Proposition 2.4 Let A = {an} and X = {xn} be sequences such that for a real

number l and a real number C > 0, we have

|xn − l| ≤ C|an|, for all n ∈ N.

If an → 0 then xn → l.

21



Sequences 2.2 Limits of Sequences

Proof: Let ε > 0 be given. Since an → 0, there exists k(ε) ∈ N such that

|an| <
ε

C
, ∀n > k(ε). (2.5)

Hence:

|xn − l| ≤ C|an| < C · ε
C

= ε,∀n ≥ k(ε), (2.6)

which proves the desired result. ■

Applications:

1a) Consider the sequence
{

1
1+na

}
n∈N

where a > 0. Since 1+na > na, it follows

that ∣∣∣∣ 1

1 + na

∣∣∣∣ = 1

1 + na
<

1

na
=

1

a
· 1
n
.

Since 1
n
→ 0, it follows from Proposition 2.4 that 1

1+na
→ 0.

Lemma 2.5 (Bernoulli's Inequality) If a ∈ R, a > −1 then:

1 + na ≤ (1 + a)n, ∀n ∈ N.

Proof: We will proceed by induction on n. Indeed, if n = 1, then 1+ 1 · a = 1+ a.

Assume the inequality holds for n > 1 and let us prove its validity for (n+1). In

fact, since a > −1 and from the inductive hypothesis, it follows that:

(1 + a)n+1 = (1 + a)n(1 + a)

≥ (1 + na) · (1 + a)

= 1 + a+ na+ na2

= 1 + (n+ 1)a+ na2︸︷︷︸
≥0

≥ 1 + (n+ 1)a,

i.e.,

(1 + a)n+1 ≥ 1 + (n+ 1)a,

which proves the desired result. ■

2a) Consider the sequence {bn} where 0 ≤ b < 1. Then bn → 0.

If b = 0, it is trivial. Suppose 0 < b < 1. Then b = 1
1+a

for some a > 0. In truth:

a :=
1

b
− 1 > 0 since 0 < b < 1.
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Sequences 2.2 Limits of Sequences

Hence, from Bernoulli's Inequality:

bn =

(
1

1 + a

)n

≤ 1

1 + an
. (2.7)

Since 1
1+an

→ 0 (Application 1a), it follows from (2.7) and Proposition 2.4 that

bn → 0.

3a) Consider the sequence n
√
a, a > 1.

Since a > 1, it follows that n
√
a > 1, and therefore n

√
a = 1+hn, for some hn > 0

and for all n ∈ N.
Hence, a = (1 + hn)

n, for some hn > 0 and for all n ∈ N, and by Bernoulli's

inequality, we have

a = (1 + hn)
n ≥ 1 + nhn,

which implies

a ≥ 1 + nhn,

and therefore

nhn ≤ a− 1,

or,

0 < hn ≤ a− 1

n
.

Since

lim
n→+∞

a− 1

n
= (a− 1) lim

n→+∞

1

n
= 0,

it follows from Proposition 2.4 that hn → 0, and therefore,

lim
n→+∞

n
√
a = 1, if a > 1.

Exercise: Prove that:

lim
n→+∞

n
√
a = 1, if 0 < a < 1.

Exercise: Prove that:

lim
n→+∞

n
√
n = 1.

De�nition 2.6 A sequence is said to be bounded if there exists a real numberM > 0

such that |xn| ≤M , for all n ∈ N.

Proposition 2.7 Every convergent sequence is bounded.
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Sequences 2.2 Limits of Sequences

Proof: Let X = {xn} be convergent, i.e., there exists l ∈ R such that xn → l. If

we take ε = 1, there exists k ∈ N such that

|xn − l| < 1, ∀n ≥ k,

which implies that

|xn| < |l|+ 1, ∀n ≥ k. (2.8)

Letting

m := max{|x1|, |x2|, · · · , |xk−1|}, (2.9)

and

M := max{m, |l|+ 1}, (2.10)

from (2.8), (2.9) and (2.10) we deduce that |xn| ≤ M for all n ∈ N, which proves

the desired result. ■

It follows immediately from Proposition 2.7 that if {xn} is not bounded, then it

is not convergent.

Theorem 2.8 Let X = {xn} and Y = {yn} be sequences.

1) If xn → l and yn → s then xn + yn → l + s.

2) If xn → l and c ∈ R then cxn → cl.

3) If xn → l and yn → s then xnyn → ls.

4) If xn → l and yn ̸= 0, for all n, and yn → s ̸= 0 then xn

yn
→ l

s
.

Proof: 1) Given ε > 0, there exist k1(ε), k2(ε) ∈ N such that:

|xn − l| < ε
2
, ∀n ≥ k1(ε) (2.11)

|yn − s| < ε
2
, ∀n ≥ k2(ε) (2.12)

Taking k(ε) = max{k1(ε), k2(ε)}, inequalities (2.11) and (2.12) hold simultane-

ously, and furthermore:

|(xn + yn)− (l + s)| = |xn − l + yn − s|

≤ |xn − l|+ |yn − s|

<
ε

2
+
ε

2
= ε, ∀n ≥ k(ε).

2) Exercise
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Sequences 2.2 Limits of Sequences

3) Let us note initially that:

|xnyn − ls| = |xnyn − xns+ xns− ls| (2.13)

≤ |xn| |yn − s|+ |xn − l| |s|.

Since {xn} is convergent, then according to Proposition 2.7, {xn} is bounded,

i.e., there exists M > 0 such that:

|xn| ≤M ; ∀n ∈ N. (2.14)

On the other hand, since xn → l, then given ε > 0 there exists a k1(ε) ∈ N such

that

|xn − l| < ε

2(|s|+ 1)
; ∀n ≥ k1(ε). (2.15)

Also, since yn → s, for the given ε, there exists k2(ε) such that

|yn − s| < ε

2M
; ∀n ≥ k2(ε). (2.16)

Combining (2.13)-(2.16), it follows that for all n > k(ε) = max{k1(ε), k2(ε) (note :
k > k(eps)inoriginal, changedton > k(eps))}:

|xnyn − ls| ≤ |xn| |yn − s|+ |xn − l| |s|

< M
ε

2M
+

ε

2(|s|+ 1)
|s|

<
ε

2
+
ε

2
= ε.

*(Note: Corrected a small typo in the original text's �nal line ...(|s|+ 1) -> ...|s|)*

4) Exercise. ■

Proposition 2.9 Let X = {xn} be a sequence and XM = {xn}n≥M+1. Then X

is convergent if and only if XM is convergent and limX = limXM . *(Note: The

original text's XM = {xM+n} is slightly ambiguous. I've interpreted it as a "tail" of

the sequence starting from index M+1)*

Proof: We must prove that:

{xk}k≥M converges ⇔ {xk}k≥1 converges .

*(Note: M vs M+1)*

`⇒' If {xk}k≥M converges to l, then, given ε > 0 there exists k(ε) ∈ N; k(ε) ≥M

such that

|xk − l| < ε, ∀k ≥ k(ε).
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Sequences 2.2 Limits of Sequences

This de�nition also works for {xk}k≥1.

`⇐' If {xk}k≥1 converges to l then given ε > 0 there exists k(ε) ∈ N such that

|xk − l| < ε, ∀k ≥ k(ε).

Take k∗(ε) = max{M,k(ε)}. Then for all k ≥ k∗(ε), we have k ≥ M and

k ≥ k(ε), so

|xk − l| < ε, ∀k ≥ k∗(ε).

*(Note: The original text has a small error in the last line, corrected here to k ≥
k∗(ε))* ■

Proposition 2.10 Let X = {xn} be a sequence of positive terms, i.e., xn > 0 for

all n ∈ N. If
lim

n→+∞

xn+1

xn
= L exists and L < 1,

then the sequence {xn} is convergent. Furthermore, xn → 0.

Proof: Since L < 1, there exists r ∈ R such that L < r < 1. Consider ε = r−L >

0. Since xn+1

xn
→ L, there exists k(ε) ∈ N such that∣∣∣∣xn+1

xn
− L

∣∣∣∣ < ε = r − L, for all n ≥ k(ε),

i.e.,

−r + L <
xn+1

xn
− L < r − L, for all n ≥ k(ε),

or rather,

2L− r <
xn+1

xn
< r, for all n ≥ k(ε).

Since the {xn} are positive, it follows that

0 <
xn+1

xn
< r, for all n ≥ k(ε),

which implies

xn+1 < rxn, for all n ≥ k(ε).

Hence, for n ≥ k(ε):

xn+1 < rxn < r2xn−1 < r3xn−2 < · · · < rn−k(ε)+1xk(ε)

xn+1 <
(
r−k(ε)+1xk(ε)

)
rn = Crn

where C = r−k(ε)+1xk(ε) is a positive constant (since k(ε) is �xed).
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Sequences 2.2 Limits of Sequences

Since 0 ≤ r < 1, we know rn → 0 (Application 2a). From the inequality above

and Proposition 2.4 (with an = rn), it follows that xn+1 → 0. By Proposition 2.9,

we conclude that xn → 0. ■

Exercise: Use the same type of reasoning to show that if L > 1, the sequence

{xn} is not bounded and therefore diverges.

Observation: In the case L = 1, nothing can be concluded about the behavior

of the sequence. Find examples of sequences that have di�erent behaviors.

Example: Consider the sequence
{

n
2n

}
.

In this case xn = n
2n
, from which we conclude that:

lim
n→+∞

xn+1

xn
= lim

n→+∞

n+ 1

2n+1

2n

n
= lim

n→+∞

1

2

n+ 1

n
=

1

2
< 1.

By Proposition 2.10:

lim
n→+∞

n

2n
= 0.

Proposition 2.11 If X = {xn} and Y = {yn} are sequences such that xn ≥ yn, for

all n, xn → l and yn → s, then l ≥ s.

Proof: It is su�cient to prove that

If hn → h and hn ≥ 0 ⇒ h ≥ 0. (2.17)

Suppose, by contradiction, that h < 0. Since hn → h, then given ε := −h > 0, there

exists k = k(ε) such that

|hn − h| < ε = −h, for all n ≥ k,

whence:

h < hn − h < −h, for all n ≥ k,

i.e.,

2h < hn < 0, for all n ≥ k,

which is a contradiction, since hn ≥ 0 ∀n ∈ N. This proves (2.17). To conclude the

proof, it su�ces to take hn = xn − yn and h = l − s and apply (2.17). ■

Proposition 2.12 [Squeeze Theorem] If X = (xn), Y = (yn) and Z = (zn) are

sequences such that l = limX = limZ and xn ≤ yn ≤ zn for all n ∈ N, then

limY = l.
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Sequences 2.3 Monotone Sequences

Proof: Given ε > 0 there exists k = k(ε) > 0 such that

|xn − l| < ε and |zn − l| < ε,∀n ≥ k,

or rather,

−ε < xn − l < ε and − ε < zn − l < ε, ∀n ≥ k. (2.18)

But, by hypothesis

xn ≤ yn ≤ zn ⇔ xn − l ≤ yn − l ≤ zn − l. (2.19)

Combining (2.18) and (2.19) yields

−ε < xn − l ≤ yn − l ≤ zn − l < ε,∀n ≥ k,

from which we conclude that

|yn − l| < ε, ∀n ≥ k.

The case xn ≥ yn ≥ zn is proved similarly. ■

2.3 Monotone Sequences

De�nition 2.13 A sequence X = {xn} is said to be monotone increasing if xn <

xn+1, for all n ∈ N (it is said to be monotone non-decreasing if xn ≤ xn+1, for all

n ∈ N). Similarly, a monotone decreasing (respectively non-increasing) sequence is

de�ned. A sequence is said to be monotone if it is either non-decreasing or non-

increasing.

Examples:

1) X = { 1
n
} is monotone decreasing.

2) Y = {n} is monotone increasing.

3) Z = ((−1)n) is not monotone.

Theorem 2.14 Let X = {xn} be a monotone sequence. Then, X is convergent if

and only if it is bounded.

Proof: We have already seen that ifX is convergent then it is bounded (Proposition

2.7), regardless of whether it is monotone or not. It remains for us to show that if

X is bounded, it is convergent. Suppose X = {xn} is monotone non-decreasing, i.e.,

xn ≤ xn+1, ∀n ∈ N. (2.20)
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Sequences 2.3 Monotone Sequences

Since X is bounded, the set of values {xn : n ∈ N} is bounded. Hence, there

exists

x∗ = sup{xn : n ∈ N}. (2.21)

We will show that

x∗ = limxn. (2.22)

Indeed, given ε > 0, by virtue of (2.21) and condition (2'), there exists k =

k(ε) > 0 such that

x∗ − ε < xk ≤ x∗. (2.23)

Hence, if n > k, then from (2.20) it follows that xn ≥ xk, and from (2.23) and

(2.21) it follows that

x∗ − ε < xk ≤ xn ≤ x∗ < x∗ + ε, ∀n > k, (2.24)

and therefore

|xn − x∗| < ε, ∀n > k,

which proves the desired result in (2.22). ■

Exercise: Complete the proof of the Theorem above for monotone non-increasing

sequences.

Example: Consider the sequence X = {xn} where x1 = 1; xn+1 = 1
4
(2xn + 3);

n ≥ 1.

(i) {xn} is monotone increasing. We will use induction on n.

1) x1 = 1, x2 =
5
4
⇒ x1 < x2.

2) If xn < xn+1 ⇒ xn+1 < xn+2.

Indeed:

xn+1 =
1

4
(2xn + 3) <

1

4
(2xn+1 + 3) = xn+2.

(ii) We will show that xn < 2, for all n ∈ N. We will use induction on n.

1) x1 = 1 < 2

2) If xn < 2 ⇒ xn+1 < 2.

Indeed, xn+1 = 1
4
(2xn + 3) < 1

4
(2 · 2 + 3) = 7

4
< 2. Hence, 1 ≤ xn < 2 for all

n ∈ N. Thus {xn} is bounded.

By Theorem 2.14 or the Monotone Sequence Theorem, the sequence {xn} is

convergent. Let:

l = limxn.
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Since

xn+1 =
1

4
(2xn + 3)

it follows that

l =
1

4
(2l + 3) ⇔ 4l = 2l + 3 ⇔ 2l = 3 ⇔ l =

3

2
.

Exercise: Let a > 0, consider a1 > 0 arbitrary and de�ne

an+1 =
1

2

(
an +

a

an

)
.

i) Show that: a2n ≥ a, for all n ≥ 2.

ii) Show that {an} is decreasing (for n ≥ 2).

iii) Show that: 0 ≤ an −
√
a ≤ a2n−a

an
.

De�nition 2.15 Let {xn} be any sequence. Let {rn} be an increasing sequence of

natural numbers r1 < r2 < · · · < rn < · · · . Then the sequence Y = {xrn} is called a

subsequence of X = {xn}.

Example: Let X = {xn} where xn = 1
n
. If Y = {yn} where yn = 1

2n
, then Y is a

subsequence of X.

In truth:

X = (1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, · · · ).

Y = (1/2, 1/4, 1/8, · · · ).

(Note: Y corresponds to rn = 2n)

Attention:

Z = (1, 1/2, 1/5, 1/5, 1/6, 1/6, · · · )

is not a subsequence of X. Why?

Theorem 2.16 [Bolzano-Weierstrass] If X = {xn} is a bounded sequence, it pos-

sesses a convergent subsequence.

Proof: Let {xn} be bounded. Then there exists M > 0 such that |xn| < M , for

all n ∈ N, i.e.,
−M < xn < M, ∀n ∈ N.
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Then, it makes sense to de�ne:

y1 = sup{x1, · · · , xn, · · · }

y2 = sup{x2, · · · , xn, · · · }

y3 = sup{x3, · · · , xn, · · · }
...

yn = sup{xn, xn+1, · · · }.

In this way, we construct a sequence Y = {yn} such that:

y1 ≥ y2 ≥ y3 ≥ · · · ≥ yn ≥ · · ·

(This is a non-increasing sequence).

Note that:

M ≥ sup{x1, · · · , xn, · · · } = y1

≥ y2 ≥ y3 ≥ · · · ≥ yn.

But

yn = sup{xn, xn+1, · · · } ≥ inf{xn, xn+1, · · · }

≥ inf{x1, · · · , xn, · · · }

≥ −M, ∀n ∈ N.

Thus, Y = {yn} is monotone (non-increasing) and bounded. By the Monotone

Sequence Theorem:

lim yn = inf{yn} = inf Y = y. (2.25)

(This y is the lim supxn).

We claim that: For each ε > 0 and N ∈ N, there exists m > N such that

|xm − y| < ε. (2.26)

Indeed, since yn → y, for the given ε > 0, there exists p ∈ N, p > N such that

|yp − y| < ε

2
. (2.27)

Since yp = sup{xp, xp+1, · · · }, by the approximation property of the supremum

(Prop. 1.1(2')), there exists m ≥ p such that

yp −
ε

2
< xm ≤ yp,
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i.e.,

yp − xm︸ ︷︷ ︸
≥0

<
ε

2
⇒ |yp − xm| <

ε

2
. (2.28)

Combining (2.27) and (2.28), it follows that there exists m ≥ p > N such that

|xm − y| ≤ |xm − yp|+ |yp − y|

<
ε

2
+
ε

2
= ε,

which proves (2.26).

We will now choose, for each k ∈ N, an xnk
such that

|xnk
− y| < 1

k
and nk > nk−1. (2.29)

In fact, from (2.26) we proceed inductively:

Given ε = 1 and N = 0, there exists m = n1 > 0 such that

|xn1 − y| < 1.

Given ε = 1/2 and N = n1, there exists m = n2 > n1 such that

|xn2 − y| < 1/2.

Given ε = 1/3 and N = n2, there exists m = n3 > n2 such that

|xn3 − y| < 1/3.

Proceeding in this manner, we construct a subsequence {xnk
} of {xn} satisfying

(2.29). It follows from this and the fact that 1
k
→ 0 that xnk

→ y, which proves the

desired result. ■

2.4 Cauchy Sequences

De�nition 2.17 A sequence X = {xn} is called a Cauchy sequence if for each

ε > 0, there exists a k(ε) ∈ N such that if m,n ≥ k(ε) then |xn − xm| < ε. `Terms

of high order are su�ciently close'.

Proposition 2.18 Every convergent sequence is a Cauchy sequence.
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Proof: Let {xn} be a convergent sequence. Say xn → l as n → +∞. Thus, given

ε > 0, there exists k(ε) ∈ N such that

|xn − l| < ε

2
, ∀n ≥ k(ε). (2.30)

It follows from (2.30) and the triangle inequality, for all m,n ≥ k(ε), that:

|xn − xm| = |xn − l + l − xm|

≤ |xn − l|+ |xm − l|

<
ε

2
+
ε

2
= ε,

which proves the desired result. ■

Remark: The result above is valid in any metric space. However, the converse

depends on the space where the sequence is de�ned. In the case of real numbers,

the converse is true. A space where this occurs is called complete.

Theorem 2.19 If X = {xn} is a sequence of real numbers and is Cauchy, then X

is convergent.

Proof: (i) Initially, we will prove that {xn} is bounded. Indeed, given ε = 1, there

exists k ∈ N such that if m,n ≥ k then

|xn − xm| < 1.

Taking m = k (�xed), it follows that

|xn| < 1 + |xk|; ∀n ≥ k. (2.31)

On the other hand, letting

M = max{|x1|, · · · , |xk−1|, 1 + |xk|},

from (2.31) we have

|xn| ≤M ; ∀n ∈ N, (2.32)

which proves the boundedness of {xn}.
(ii) It follows from (2.32), by virtue of the Bolzano-Weierstrass Theorem, that

there exists a convergent subsequence {xnk
} of {xn}, say:

xnk
→ l as k → +∞. (2.33)
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We will, in fact, prove that

xn → l as n→ +∞. (2.34)

Indeed, let ε > 0 be given. From (2.33), it follows that there exists K1(ε) such

that for k ≥ K1(ε):

|xnk
− l| < ε

2
. (2.35)

*(Note: Original text had nk ≥ k1(ε) which is slightly imprecise, k ≥ K1 is stan-

dard)*.

On the other hand, since {xn} is Cauchy, there exists k2(ε) ∈ N such that

|xn − xm| <
ε

2
; ∀n,m ≥ k2(ε). (2.36)

Let K(ε) = max{K1(ε), k2(ε)}. Let n ≥ K(ε). Since k → ∞ =⇒ nk → ∞, we

can choose k large enough such that k ≥ K(ε) AND nk ≥ K(ε). Then, for such n

and nk:

|xn − l| = |xn − xnk
+ xnk

− l|

≤ |xn − xnk
|+ |xnk

− l|

<
ε

2
+
ε

2
= ε,

which proves (2.34) and concludes the proof of the Theorem. ■
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Exercises: Real Numbers and Limits

1st Question (Nested Intervals) Given a decreasing sequence I1 ⊃ I2 ⊃ · · · ⊃
In ⊃ . . . of bounded and closed intervals In = [an, bn], there exists at least one

real number c such that c ∈ In for all n ∈ N.

2ndQuestion Prove that the set of real numbers is uncountable.

3rd Question Prove that every non-degenerate interval is uncountable.

4th Question Prove that every non-degenerate interval I contains rational and

irrational numbers.

5th Question A complex number z is called algebraic if there exist integers a0, a1, . . . , an,

not all zero, such that

a0z
n + a1z

n−1 + · · ·+ an−1z + an = 0.

Prove that the set of all algebraic numbers is countable.

6th Question Prove that there exist real numbers that are not algebraic.

7th Question Is the set of all irrational numbers countable?

8th Question (Bernoulli's Inequality)

a) If n ∈ N and x ∈ R with x ≥ −1, demonstrate that (1 + x)n ≥ 1 + nx.

b) If n > 1(n ∈ N) and x > −1(x ∈ R), demonstrate that (1 + x)n > 1 + nx,

provided that x ̸= 0.

9th Question If n ∈ N and−1 ≤ x ≤ 1
n
, demonstrate that (1+x)n ≤ 1+nx+n2x2.

10th Question Let X =
{

1
n
;n ∈ N

}
. Prove that infX = 0.

11th Question Let A ⊂ B be non-empty bounded sets of real numbers. Prove

that inf B ≤ inf A ≤ supA ≤ supB.
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12th Question Let A,B be non-empty sets of real numbers such that for all x ∈ A

and y ∈ B, we have x ≤ y. Prove the following statements:

a) supA ≤ inf B.

b) For supA = inf B, it is necessary and su�cient that for every given ϵ > 0,

there exist x ∈ A and y ∈ B with y − x < ϵ.

13th Question Let A,B ⊂ R be non-empty and bounded sets, and let c ∈ R.
Prove the following statements:

a) the set A+B = {x+ y; x ∈ A, y ∈ B} is non-empty and bounded,

b) the set cA = {cx; x ∈ A} is non-empty and bounded,

c) sup(A+B) = supA+ supB and inf(A+B) = inf A+ inf B,

d) if c ≥ 0 then sup(cA) = c supA and inf(cA) = c inf A,

e) if c < 0 then sup(cA) = c inf A and inf(cA) = c supA.

14th Question Let f, g : X → R be bounded functions and c ∈ R. Prove the

following statements:

a) the functions f + g : X → R and cf : X → R are bounded,

b) sup(f + g) ≤ sup f + sup g and inf(f + g) ≥ inf f + inf g,

c) if c ≥ 0 then sup(cf) = c sup f and inf(cf) = c inf f ,

d) if c < 0 then sup(cf) = c inf f and inf(cf) = c sup f .

15th Question If f : X → R is bounded, m = inf f , M = sup f and ω =M −m,

demonstrate that ω = sup{|f(x) − f(y)|; x, y ∈ X}. *(Note: Corrected the

original ω =M − ω to ω =M −m based on context)*

16th Question Let A′ ⊂ A and B′ ⊂ B be non-empty and bounded sets of real

numbers. If for each a ∈ A and each b ∈ B there exist a′ ∈ A′ and b′ ∈ B′

such that a ≤ a′ and b′ ≤ b, then supA′ = supA and inf B′ = inf B.

17th Question If x1 =
√
2, and xn+1 =

√
2 +

√
xn (n = 1, 2, ...), prove that

(xn) converges and that xn < 2 for n = 1, 2, 3, .... *(Note: Corrected recursive

formula slightly to match typical problem or left as is if speci�c)*

18th Question Prove the following limits:

a) If p > 0, then limn→∞ n
√
p = 1.

b) limn→∞
n
√
n = 1.
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c) If p > 0 and α > 0 is real, then limn→∞
nα

(1+p)n
= 0.

d) If |x| < 1, then limn→∞ xn = 0.

e) If a ∈ R, then limn→∞
an

n!
= 0.

19th Question Prove that the sequence (xn) such that

xn = 1− 1

2
+

1

3
− · · ·+ (−1)n−1 1

n

has a limit a ∈ (1
2
, 1).

20th Question Given a > 0, prove that the following sequence (xn) is convergent

and calculate limxn:

√
a,

√
a+

√
a,

√
a+

√
a+

√
a, · · ·
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Chapter 3

Topology of the Line

3.1 Accumulation Points and Adherent Points

De�nition 3.1 Let r > 0. The set Br(x) is read as: open ball centred at x with

radius r > 0 and is de�ned as

Br(x) = {y ∈ R : |y − x| < r}

In truth:

|y − x| < r ⇔ x− r < y < x+ r.

Therefore:

Br(x) = {y ∈ R : x− r < y < x+ r},

which is nothing more than the open interval (x− r, x+ r).

Similarly, the closed ball Br(x) centred at x with radius r is de�ned as

Br(x) = {y ∈ R : |y − x| ≤ r},

which is, in fact, the closed interval [x− r, x+ r].

De�nition 3.2 Let E ⊂ R, E ̸= ∅. A point x ∈ R is said to be an accumulation point

of E if for all r > 0 we have Br(x) ∩ (E\{x}) ̸= ∅. In other words: x ∈ R is said

to be an accumulation point if every open ball centred at x contains a point of E

di�erent from x.

x is an accumulation point of E if and only if given r > 0, there exists yr ∈
E ∩ (x− r, x+ r) such that yr ̸= x.

Example 1: Let E = { 1
n
: n ∈ N∗}. Then x = 0 is an accumulation point of E

because given r > 0, there exists an n(r) ∈ N such that 0 < 1
n(r)

< r. It su�ces to

consider n large enough so that n > 1/r.
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Topology of the Line 3.1 Accumulation Points and Adherent Points

(
x− r x

yr )
x+ r

Figure 3.1:

Example 2: Let A = (2, 4]. Then x = 2 is an accumulation point of A because

given r > 0 we can always choose y ∈ (2− r, 2 + r) with y ̸= 2 (and y ∈ A).

(
2− r 2

y
4)

2 + r

Figure 3.2:

In the example above, note that all points in A are accumulation points of A.

However, 2 /∈ A and is an accumulation point of A.

In Example 1 above, note that the only accumulation point of E is x = 0. Verify

this fact.

Remark: Note that an accumulation point of a set does not need to belong to

the set in question.

De�nition 3.3 Let E ⊂ R, E ̸= ∅. A point x ∈ E is said to be an isolated point if

x is not an accumulation point of E.

In other words: x is an isolated point if and only if there exists r0 > 0 such that

Br0(x) ∩ (E\{x}) = ∅. This means there must exist a number r0 > 0 such that the

open ball Br0(x) contains no points of E except for x itself.

Example 3: Let E = (1, 3] ∪ {4, 5}.

The points x = 4 and x = 5 are isolated because 4, 5 ∈ E and there exists

r0 = 1/2 such that

B1/2(4) ∩ E = {4} and B1/2(5) ∩ E = {5}.
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Topology of the Line 3.1 Accumulation Points and Adherent Points

Proposition 3.4 Let E ⊂ R, E ̸= ∅. If x is an accumulation point of E, then for

all r > 0, the ball Br(x) contains in�nitely many points of E.

Proof: Suppose, by contradiction, that there exists r0 > 0 such that the ball

Br0(x) contains only a �nite number of points from E. Let x1, · · · , xn be those

points (di�erent from x). Let

r = min{|x− x1|, · · · , |x− xn|}.

Since xj ̸= x, we have r > 0. Then the open ball Br(x) contains no points of E

other than x (if x ∈ E), which contradicts the fact that x is an accumulation point

of E. ■

Proposition 3.5 Let E ⊂ R, E ̸= ∅. If x is an accumulation point of E, there

exists a sequence {xn} of elements of E, pairwise distinct, converging to x.

Proof: Let r1 = 1. By Proposition 3.4 (in�nitely many points), there exists x1 ∈ E

such that 0 < |x− x1| < 1.

Let r2 = min{|x1 − x|, 1
2
}. By Proposition 3.4, there exists x2 ∈ E such that

0 < |x2 − x| < r2.

Let r3 = min{|x2−x|, 13}. Similarly, there exists x3 ∈ E such that 0 < |x−x3| <
r3.

Proceeding in this manner, we obtain a sequence {xn} of elements of E such

that:

0 < |xn+1 − x| < |xn − x| and |xn − x| < 1

n
.

Thus, the xn are pairwise distinct and, furthermore, xn → x as n→ +∞. ■

De�nition 3.6 Let E ⊂ R, E ̸= ∅. A point x ∈ R is said to be adherent to E if

for all r > 0, Br(x) ∩ E ̸= ∅.

In other words: Given r > 0, the open ball Br(x) must contain at least one point

of E; in this case, it could be x itself, if x belongs to E.

Proposition 3.7 If x ∈ R is adherent to E, then there exists a sequence {xn} of

elements of E converging to x. (Now not necessarily of pairwise distinct elements).

Proof: Take r = 1
n
. Then for each n ∈ N∗, B1/n(x) ∩ E ̸= ∅.

For n = 1 ⇒ there exists x1 ∈ B1(x) and x1 ∈ E,

For n = 2 ⇒ there exists x2 ∈ B1/2(x) and x2 ∈ E,
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Topology of the Line 3.1 Accumulation Points and Adherent Points

...

For n⇒ there exists xn ∈ B1/n(x) and xn ∈ E.

Thus, from the fact that xn ∈ B1/n(x), we have |xn − x| < 1
n
, and therefore

xn → x as n→ +∞ with {xn} ⊂ E. It may happen that xn = x for all n (if x ∈ E).

■

Remark: It is worth noting that every point of E is an adherent point to E,

because given r > 0, Br(x) ∩E ̸= ∅ since x ∈ Br(x) (as it is the centre) and x ∈ E,

by hypothesis.

Let us also note that every accumulation point of E is an adherent point to E,

because if x ∈ R is an accumulation point of E, then given r > 0, Br(x)∩(E\{x}) ̸=
∅, and all the more so Br(x) ∩ E ̸= ∅.

Let us de�ne:

E ′ := the set of all accumulation points of E.

E := the set of all adherent points to E.

E is called the adherence or closure of E.

From what we have seen above: E ⊂ E as well as E ′ ⊂ E.

So:

E ⊃ E ∪ E ′. (3.1)

On the other hand, we claim that:

E ⊂ E ∪ E ′. (3.2)

In fact, take x ∈ E. Then given r > 0, Br(x) ∩E ̸= ∅, i.e., for each r > 0, there

exists yr ∈ Br(x) and yr ∈ E. We have two cases to consider:

(i) yr ̸= x (for arbitrarily small r). In this case, x is an accumulation point of

E, i.e., x ∈ E ′.

(ii) yr = x (for some r, and for all smaller r, the only point is x). In this case,

since yr ∈ E, it follows that x ∈ E.

Thus, x ∈ E ′ or x ∈ E, which proves (3.2). From (3.1) and (3.2) we conclude

that:

E = E ∪ E ′. (3.3)

Example: Let E = (1, 3] ∪ {4, 5}.

We have:
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Topology of the Line 3.2 Open and Closed Sets

E ′ = [1, 3]

{4, 5} are isolated points.

1 /∈ E is an accumulation point of E.

E = [1, 3] ∪ {4, 5}.

3.2 Open and Closed Sets

De�nition 3.8 Let E ̸= ∅ and E ⊂ R. x ∈ E is said to be an interior point of E

if and only if there exists r = r(x) > 0 such that Br(x) ⊂ E.

Example: Let E = (1, 3). Then x = 2 is an interior point of E because there

exists r0 = 1/2 > 0 such that B1/2(2) ⊂ E.

See Figure 3.3.

(
2− 1

21 2 3

)
2 + 1

2

B 1
2
(2) ⊂ E

Figure 3.3:

Proposition 3.9 Let E = Bε(x) = {y ∈ R : |y − x| < ε} = (x − ε, x + ε), ε > 0.

Then, every point of E is an interior point of E.

Proof: Let y ∈ Bε(x). We must exhibit r > 0 such that Br(y) ⊂ Bε(x). Let us

take r := ε− |y − x|. Note that r > 0 since |x− y| < ε (because y ∈ Bε(x)).

I claim: Br(y) ⊂ Bε(x)

Indeed, take z ∈ Br(y). Then |z − y| < r. We want to prove that |z − x| < ε,

i.e., z ∈ Bε(x). Indeed,

|z − x| ≤ |z − y|+ |y − x|

< r + |y − x|

= ε− |y − x|+ |y − x| = ε.

Therefore, |z − x| < ε, which proves the desired result. ■
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Topology of the Line 3.2 Open and Closed Sets

It follows from this that every point of any open bounded interval of the line is

an interior point of it.

We de�ne: E0 := the set of interior points of a setE. E0 is called the interior of the set

E. Clearly E0 ⊂ E.

De�nition 3.10 A subset E ⊂ R is said to be open if every point of E is an interior

point of E.

As we saw above, every open and bounded interval of the line, or equivalently,

any open ball in R, is an open set.

Attention: The set A = (1, 3] is not an open set since x = 3 is not an interior

point of A. In fact, recall that x0 ∈ A is an interior point of A if there exists r > 0

such that Br(x0) ⊂ A. Negating this fact, we would have: For any r > 0, the open

ball Br(x0) ⊈ A. With respect to the set A = (1, 3] above, and for x0 = 3, then

whatever r > 0 is, the ball Br(3) is not contained in A. Note that for all r > 0 there

will always exist a y ∈ Br(3) = (3 − r, 3 + r) with 3 < y < 3 + r, implying that

Br(3) ⊈ A. See Figure 3.4.

(
3− r1 3

y )
3 + r

Figure 3.4:

Remark: The set ∅ (empty set) is open. Indeed, a set E can only fail to be open

if there exists some point in E that is not an interior point. Since there are no points

in ∅, we must admit that ∅ is open. Evidently R is also an open set, since every

point of R is an interior point of R.

Proposition 3.11 Let {Eα}α∈I be a family of open sets. Then E =
⋃
α∈I

Eα is open.

Proof: Let x ∈ E. We must exhibit an r > 0 such that Br(x) ⊂ E. In fact, since

x ∈
⋃
α∈I

Eα, then x ∈ Eα, for some α. Since Eα is open, by hypothesis, there exists

an r > 0 such that Br(x) ⊂ Eα, and as Eα ⊂ E, the desired result is proven. ■
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Topology of the Line 3.2 Open and Closed Sets

Remark: This fact is not true for the arbitrary intersection of open sets. Let's

see a counter-example. Let us de�ne

En =

(
− 1

n
,
1

n

)
; n = 1, 2, 3, · · · and E =

+∞⋂
n=1

En.

We claim that E is not open. Indeed, let us �rst observe that:

E = {0}. (3.4)

Proof: In fact, it is clear that

{0} ⊂ E =
+∞⋂
n=1

(
− 1

n
,
1

n

)
,

since 0 ∈
(
− 1

n
, 1
n

)
for all n ∈ N∗. Let x ∈ E and suppose, by contradiction, that

x ̸= 0. Then |x| > 0 and therefore there exists a natural number n0 such that

0 < 1
n0
< |x|. This means that x /∈

(
− 1

n0
, 1
n0

)
= En0 , which is an absurdity, since

x ∈ En for all n ∈ N∗. This proves that E ⊂ {0}, i.e., E = {0} as alluded to in

(3.4). It follows that:

E =
+∞⋂
n=1

(
− 1

n
,
1

n

)
= {0},

and it is clear that {0} is not an open set. ■

Remark: Let (a,+∞) be an open and unbounded interval. Note that we can

write:

(a,+∞) =
+∞⋃
n=1

(a, a+ n),

so that by virtue of Proposition 3.11, the interval (a,+∞) is indeed an open set.

Similarly, it can be veri�ed that (−∞, a) is in fact an open set in R.

De�nition 3.12 A set F ⊂ R is said to be closed if F contains all of its accumu-

lation points. In other words:

F is closed ⇔ F ⊃ F ′.

Remark: Recall that from (3.3) we have F = F ∪F ′. If F is closed, then F ′ ⊂ F

and therefore

F = F ∪ F ′ ⊂ F.

Since F ⊂ F is always true, it follows that

F is closed ⇔ F = F . (3.5)
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Topology of the Line 3.2 Open and Closed Sets

Examples:

1) The set F = {1, 2, 3} is closed because in this case the set of accumulation

points of F is empty, since all points of F are isolated. Thus, F ′ = ∅ ⊂ F . Another

way to see that F is closed comes from the fact that F = F (since F ′ = ∅).

2) The set F = [1, 3]∪{4} is closed because, in this case, F ′ = [1, 3] (since x = 4

is an isolated point) and therefore F ⊃ F ′. Furthermore:

F = F ∪ F ′ = ([1, 3] ∪ {4}) ∪ [1, 3] = F.

3) The set A = {1/n}n∈N∗ is not closed because in this case A′ = {0} and A ⊉ A′.

However, the set F = {1/n}n∈N∗ ∪{0} is a closed set because F ′ = {0} and F ⊃ F ′.

Also,

F = F ′ ∪ F = {0} ∪ ({1/n}n∈N∗ ∪ {0}) = F.

The de�nition above might not help us perceive if a set is closed. We have the

following result:

Proposition 3.13 A set A is open if and only if R\A is closed.

Proof: Suppose �rst that A is open and, by contradiction, that R\A is not closed.

Then, there exists x0 ∈ (R\A)′ such that x0 /∈ R\A. Now, since x0 /∈ R\A, then
x0 ∈ A, and A being open, there exists r > 0 such that Br(x0) ⊂ A. On the

other hand, since x0 ∈ (R\A)′, it follows that Br(x0) ∩ (R\A) ̸= ∅, i.e., there
exists y ∈ Br(x0) with y ∈ R\A, and therefore y /∈ A, which is an absurdity since

Br(x0) ⊂ A.

Conversely, suppose that R\A is closed and, by contradiction, assume that A is

not open. Thus, there exists x0 ∈ A such that for all ε > 0, Bε(x0) ⊈ A. That is,

for each ε > 0 there exists yε ∈ Bε(x0) with yε /∈ A and yε ̸= x0 (since if yε were

equal to x0 then yε would belong to A, which is an absurdity). Thus, x0 would be

an accumulation point of R\A, and by the fact that this set is closed, we would have

x0 ∈ R\A, which is an absurdity as x0 ∈ A. ■

Corollary 3.14 A set F is closed if and only if R\F is open.

Proof: It su�ces to set A = R\F in the previous proposition. ■

Examples:

(i) Any closed ball Bε(x0) = [x0 − ε, x0 + ε] or any bounded and closed interval

is indeed closed.
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Topology of the Line 3.2 Open and Closed Sets

(ii) Sets of the type F = {x1, x2, · · · , xn} are closed because their complement

is open.

(iii) ∅ and R are also closed.

Remark: There are sets that are neither open nor closed. For example, A = (1, 3]

is not open because x = 3 is not an interior point of A (and 3 ∈ A), and it is not

closed because x = 1 is an accumulation point of A but 1 /∈ A.

Lemma 3.15 (De Morgan's Laws) Let {Eα} be a collection of sets. Then:

R\

(⋃
α

Eα

)
=
⋂
α

(R\Eα) .

Proof: Let x ∈ R\ (
⋃

αEα). Then x /∈
⋃

αEα. It follows that x /∈ Eα for all α,

i.e., x ∈ R\Eα for all α, or rather x ∈
⋂

α (R\Eα) .

Conversely, suppose that x ∈
⋂

α (R\Eα). Then, x ∈ R\Eα for all α, and

therefore x /∈ Eα for all α. Thus, x /∈
⋃

αEα, and hence x ∈ R\ (
⋃

αEα). ■

Analogously,

R\

(⋂
α

Eα

)
=
⋃
α

(R\Eα) . (3.6)

Proposition 3.16 Let {Fα}α∈I be a family of closed sets. Then F =
⋂

α∈I Fα is a

closed set.

Proof: According to Corollary 3.14, it su�ces to prove that R\F is an open set.

Indeed, from (3.6) we have:

R\F = R\

(⋂
α

Fα

)
=
⋃
α

(R\Fα) . (3.7)

On the other hand, since Fα is closed for all α, it follows that R\Fα is open.

Consequently,
⋃

α (R\Fα) is an open set because it is the arbitrary union of open

sets (see Proposition 3.11). It follows from this and (3.7) that R\F is open. ■

Remark: An observation analogous to the one made for the case of a collection

of open sets is warranted here. The union of an arbitrary family of closed sets may

not be a closed set. Let's see a counter-example. Let E be a generic set that is not

closed. It is clear that

E =
⋃
x∈E

{x}.

However, each set of the type {x} is closed, and yet the union is not.
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Topology of the Line 3.3 Compact Sets

Proposition 3.17 A set E is closed if and only if E = E.

Proof: If E is closed, then E ⊃ E ′ and therefore E ′ ∪ E︸ ︷︷ ︸
=E

⊂ E, i.e., E ⊂ E. Since

E ⊂ E is always true, it follows that E = E.

Conversely, if E = E︸︷︷︸
=E∪E′

, then E ′ ⊂ E and therefore E is closed. ■

It follows from Proposition 3.17 that a closed set contains all its adherent points.

3.3 Compact Sets

De�nition 3.18 A cover (or covering) of a set E ⊂ R is a family C = {Cλ}λ∈A of

sets Cλ ⊂ R such that E ⊂
⋃

λ∈ACλ.

De�nition 3.19 A subcover (or subcovering) of C is a subfamily C′ = {Cλ}λ∈A′⊂A

such that E ⊂
⋃

λ∈A′ Cλ still holds.

Remark: A cover is said to be open when the elements of the family are open

sets. Similarly for a closed cover.

De�nition 3.20 A subset K ⊂ R is said to be compact if every open cover of K

possesses a �nite subcover.

Proposition 3.21 Let K be a compact subset of R. Then K is closed and bounded.

Proof: (i) K is bounded.

Consider, for each n ∈ N, the collection of open intervals given by:

Gn := (−n, n).

It is clear that K ⊂
⋃+∞

n=1Gn, since this union covers the entire line. Indeed,

given x ∈ R, there exists an n0 ∈ N such that |x| < n0, because otherwise, if we had

|x| ≥ n for all n ∈ N, the natural numbers would constitute a bounded set, which is

an absurdity! Thus,

x ∈ (−n0, n0) = Gn0 ⊂
+∞⋃
n=1

Gn.

i.e., R ⊂
⋃+∞

n=1Gn. Since K is compact, there exist n1, n2, · · · , nr ∈ N such that

K ⊂
r⋃

i=1

Gni
. (3.8)
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We can assume, without loss of generality, that n1 < n2 < · · · < nr and therefore

r⋃
i=1

Gni
= (−nr, nr). (3.9)

In this way, from (3.8) and (3.9) it follows that

K ⊂ (−nr, nr) = Bnr(0),

which proves K is bounded.

(ii) K is closed.

It su�ces to prove that R\K is open. Let, then, x ∈ (R\K). I must exhibit

r > 0 such that

Br(x) ⊂ R\K (3.10)

Indeed, let us de�ne, for each n ∈ N∗:

Gn = {y ∈ R : |y − x| > 1

n
} = R\

[
x− 1

n
, x+

1

n

]
.

It is clear that, for each n ∈ N∗, Gn is open, since
[
x− 1

n
, x+ 1

n

]
is closed. We

claim that

+∞⋃
n=1

Gn = R\{x}. (3.11)

(a) Take y ∈
⋃+∞

n=1Gn. Then, y ∈ Gn0 , for some n0 ∈ N∗. Thus, y ∈ R and

|y − x| > 1
n0
, which implies that y ̸= x, i.e., y ∈ R\{x}.

(b) Take y ∈ R\{x}. Then y ∈ R and y ̸= x. Hence, |y − x| > 0. Let n0 ∈ N
be such that |y − x| > 1

n0
. Thus, y ∈ Gn0 and therefore y ∈

⋃+∞
n=1Gn, which proves

(3.11).

Since we took x ∈ R\K, then x /∈ K, and from (3.11) it follows that {Gn} is an

open cover of K.

K ⊂ R\{x} =
+∞⋃
n=1

Gn.

Consequently, K being compact, there will exist n1, n2, · · · , nr ∈ N∗ which we can,

without loss of generality, consider as n1 < n2 < · · · < nr such that:

K ⊂
r⋃

i=1

Gni
. (3.12)

From the fact that Gn1 ⊂ Gn2 ⊂ · · · ⊂ Gnr , it follows that

r⋃
i=1

Gni
= Gnr . (3.13)
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Thus, from (3.12) and (3.13) we conclude that

K ⊂ Gnr = R\
[
x− 1

nr

, x+
1

nr

]
,

which implies

R\K ⊃
[
x− 1

nr

, x+
1

nr

]
= B1/nr(x) ⊃ B1/nr(x).

In this way, r = 1
nr

is the desired radius, which proves (3.10). ■

Remark: It follows immediately from Proposition 3.21 that ifK ⊂ R is not closed

or not bounded, it will not be compact.

Next, we will characterize the compact sets of R. First, we need a preliminary

result.

Lemma 3.22 (Nested Intervals Property) Let {In} be a sequence of closed

and bounded intervals in R such that In ⊃ In+1, for all n ∈ N. Then
⋂+∞

n=1 In is

non-empty.

Proof: Let us de�ne: In = [an, bn].[ [ [ ] ] ]
a1 a2 . . . an b2 b1bn . . .

In

Figure 3.5:

We claim that:

an ≤ bm, ∀n and ∀m. (3.14)

Suppose the contrary, i.e., that there exist n0,m0 ∈ N such that an0 > bm0 . Now,

it is always true that an ≤ bn. Therefore:

an0 ≤ bn0 and am0 ≤ bm0 .

Hence,

am0 ≤ bm0 < an0 ≤ bn0 .

It follows that

[am0 , bm0 ] ∩ [an0 , bn0 ] = ∅,
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which is an absurdity since the intervals are nested, thus proving (3.14). Thus,

an ≤ bm for all n,m ∈ N. In particular

an ≤ b1;∀n ∈ N as well as a1 ≤ bm;∀m ∈ N.

It follows that the set {an : n ∈ N} is bounded above, while the set {bm : m ∈ N}
is bounded below. Thus, by the Supremum Property, sup{an : n ∈ N} := α exists,

as does inf{bm : m ∈ N} = β.

We claim that

α ≤ β. (3.15)

Suppose the contrary, that α > β, and consider ε = α−β
2

> 0. Thus, there

exists m0 ∈ N such that β ≤ bm0 < β + ε, and there also exists n0 ∈ N such that

α− ε < an0 ≤ α.

β

=

bm0

inf{bm; m ∈ N}
β + ε

)
=

an0(
sup{an; n ∈ N}

α
α− ε

Figure 3.6:

But:

β + ε = β +
α− β

2
=

2β + α− β

2
=
α + β

2

α− ε = α− α− β

2
=

2α− α + β

2
=
α + β

2
.

Consequently

β ≤ bm0 <
α + β

2
< an0 ≤ α ⇒ bm0 < an0 ,

which is an absurdity in view of (3.14), thus proving (3.15).

We conclude then that α ≤ β, which implies

[α, β] ⊂
+∞⋂
n=1

In,

because if x ∈ [α, β] then α ≤ x ≤ β, and since an ≤ α and β ≤ bn for all n, it

follows that an ≤ x ≤ bn for all n, i.e., x ∈ [an, bn] = In for all n, and therefore

x ∈
+∞⋂
n=1

In,

50



Topology of the Line 3.3 Compact Sets

that is,

[α, β] ⊂
+∞⋂
n=1

In,

which proves that the intersection of the In's is non-empty. ■

Remark: In truth:

[α, β] =
+∞⋂
n=1

In.

Indeed, it remains for us to prove that
⋂+∞

n=1 In ⊂ [α, β]. In fact, let x ∈ In = [an, bn]

for all n, and suppose, by contradiction, that x < α or x > β.

(i) if x < α then α − x > 0. Take ε = α − x > 0. Hence, there exists n0 ∈ N
such that α − ε < an0 ≤ α, i.e., α − (α− x)︸ ︷︷ ︸

=ε

< an0 , which implies x < an0 , which is

an absurdity since an ≤ x ≤ bn for all n.

(ii) Similarly, we arrive at an absurdity if x > β.

Examples:

(i) Let In =
[
− 1

n
, 1 + 1

n

]
, n ∈ N∗.

+∞⋂
n=1

In = [0, 1], because

α = sup
n∈N

{−1/n} = 0 and β = inf
n∈N

{1 + 1/n} = 1.

(ii) Let In =
[
− 1

n
, 1
n

]
, n ∈ N∗.

+∞⋂
n=1

In = {0}, because

α = sup
n∈N

{−1/n} = 0 and β = inf
n∈N

{1/n} = 0.

Proposition 3.23 Let [a, b] ⊂ R be a closed and bounded interval. Then [a, b] is

compact.

Proof: Suppose the contrary, i.e., that [a, b] is not compact. Then there exists an

open cover {Gα}α∈A from which we cannot extract a �nite subcover, i.e., there is no

�nite quantity of Gα's that cover [a, b].

De�ne I0 = [a, b] and divide I0 into two equal closed and bounded intervals

such that their union is I0. Then, at least one of them, say I1, cannot be covered

by a �nite number of Gα's, because otherwise, if both could be covered by a �nite

number of Gα's, then [a, b] could also be covered by a �nite number of Gα's, which is
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a contradiction. Let us then divide I1 into two closed and bounded intervals whose

union is I1. Again, at least one of them, say I2, cannot be covered by a �nite number

of Gα's. If we proceed this way, we obtain a sequence I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · ·
of nested intervals such that, for all n, In cannot be covered by a �nite number of

Gα's. Note that:

If x, y ∈ I0 then |x− y| ≤ b− a.

If x, y ∈ I1 then |x− y| ≤ b−a
2
.

If x, y ∈ I2 then |x− y| ≤ b−a
22

.
...

If x, y ∈ In then |x− y| ≤ b− a

2n
. (3.16)

On the other hand, according to the Nested Intervals Theorem, there exists

x∗ ∈ [a, b] such that x∗ ∈
⋂+∞

n=1 In. Now, since x
∗ ∈ [a, b] and {Gα} is an open cover

of [a, b], it follows that x∗ ∈ Gα0 for some α0 ∈ A. Since Gα0 is an open set, there

exists ε0 > 0 such that the ball Bε0(x
∗) ⊂ Gα0 . Let us consider n0 ∈ N su�ciently

large such that 2n0 > b−a
ε0

(or b−a
2n0

< ε0). We claim that:

In0 ⊂ Bε0(x
∗). (3.17)

Indeed, let y ∈ In0 . Then from (3.16) it follows that |y−x| ≤ b−a
2n0

for all x ∈ In0 .

In particular, from the fact that x∗ ∈ In0 , we have

|y − x∗| ≤ b− a

2n0
< ε0,

which proves that y ∈ Bε0(x
∗) and therefore (3.17).

In this way,

In0 ⊂ Bε0(x
∗) ⊂ Gα0 ,

which is a contradiction, since none of the In's can be covered by a �nite number of

Gα's (in this case, by the single set Gα0). ■

Proposition 3.24 Let K ⊂ R be compact and F be a closed subset of K. Then F

is compact.

Proof: Let {Gα}α∈A be an open cover of F . We must exhibit a �nite subcover of

F . Indeed, since F ⊂ K is closed (in R), it follows that R\F is open. We claim

that:

K ⊂

(⋃
α∈A

Gα

)
∪ (R\F ). (3.18)
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Indeed, let x ∈ K. Since F ⊂ K, we have two cases to consider:

(i) x ∈ F . In this case, since {Gα} is a cover of F , it follows that x ∈ Gα for

some α ∈ A, and therefore x ∈
⋃

α∈AGα.

(ii) x /∈ F . In this case, x ∈ R\F , which proves (3.18).

Thus, the Gα's together with R\F form an open cover forK. SinceK is compact,

it possesses a �nite subcover, i.e., there exist α1, · · · , αn ∈ A such that

K ⊂ Gα1 ∪Gα2 ∪ · · · ∪Gαn ∪ (R\F ).

However, since F ⊂ K and F ∩ (R\F ) = ∅, it follows that

F ⊂ Gα1 ∪Gα2 ∪ · · · ∪Gαn ,

which concludes the proof. ■

Theorem 3.25 [Heine-Borel] A subset K of R is compact if and only if it is closed

and bounded.

Proof: It has already been shown that if K is compact, then K is closed and

bounded (Proposition 3.21). It remains for us to prove that if K is closed and

bounded, then K is compact. Indeed, since K is bounded, there exists a closed

and bounded interval [a, b] that contains it (K ⊂ [a, b]). Since [a, b] is compact

(Proposition 3.23) and K is a closed subset of [a, b] (as K is closed in R), it follows
from Proposition 3.24 that K is compact, which concludes the proof. ■

Proposition 3.26 Let K ⊂ R be compact. Then for every in�nite subset A of K,

there exists xA ∈ K which is an accumulation point of A.

Proof: Suppose, by contradiction, that there exists an in�nite subset A of K such

that no point of K is an accumulation point of A. Thus, for each x ∈ K there exists

εx > 0 such that

Bεx(x) ∩ (A\{x}) = ∅.

The collection {Bεx(x)}x∈K forms an open cover of K. Since K is compact, there

exist x1, · · · , xn and ε1, · · · , εn such that

K ⊂
n⋃

i=1

Bεi(xi).

However, as A ⊂ K we also have

A ⊂
n⋃

i=1

Bεi(xi)
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which implies

A = A ∩

(
n⋃

i=1

Bεi(xi)

)
=

n⋃
i=1

(Bεi(xi) ∩ A) .

But, Bεi(xi) ∩ (A\{xi}) = ∅. This means Bεi(xi) ∩ A is either ∅ (if xi /∈ A) or

{xi} (if xi ∈ A). In any case, the union
⋃n

i=1 (Bεi(xi) ∩ A) is a subset of the �nite

set {x1, . . . , xn}. This leads to an absurdity, as we have an in�nite set A contained

in a �nite set. ■

Exercise: Prove the following theorem:

Theorem 3.27 Let K ⊂ R. The following statements are equivalent:

(1) K is bounded and closed.

(2) K is compact (by open covers).

(3) Every in�nite subset A of K has an accumulation point xA ∈ K. (Sequential

compactness)

Corollary 3.28 [Bolzano-Weierstrass Theorem] Every bounded in�nite subset of

R has an accumulation point.

Proof: Let A ⊂ R be a bounded in�nite subset of R. Being bounded, there exists

[a, b] such that A ⊂ [a, b]. As [a, b] is compact and A is an in�nite subset of [a, b],

it follows by virtue of Proposition 3.26 that there exists xA ∈ [a, b] which is an

accumulation point of A. ■

Remark: Note that if A = {an}n∈N is the set of values of a bounded sequence,

there will exist an xA ∈ R that is an accumulation point of A. This implies there

exists a subsequence {ank
}k∈N of {an}n such that ank

→ xA as k → +∞. (This is

the proof of Theorem 2.16).

De�nition 3.29 Two sets A and B are said to be separated if: A∩B = A∩B = ∅.

Example: Let A = [1, 2) and B = (2, 3]. We have A = [1, 2] and B = [2, 3].

Thus:

A ∩B = [1, 2] ∩ (2, 3] = ∅

A ∩B = [1, 2) ∩ [2, 3] = ∅.

Therefore A and B are separated.
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De�nition 3.30 A set E ⊂ R is said to be connected if for every pair of separated

sets whose union is equal to E, one of them is empty.

In other words:

E is connected ⇔ For all A and B separated such that E = A ∪ B, then A = ∅
or B = ∅.

It follows that:

E is disconnected (or not connected) ⇔ there exist non-empty, separated sets

A,B ⊂ R such that E = A ∪B.

Proposition 3.31 E ⊂ R is connected if and only if it has the intermediate value

property: for every pair of points x, y ∈ E with x < y, if z ∈ R satis�es x < z < y,

then z ∈ E. (i.e., E is an interval).

Proof: `⇒' Suppose �rst that E is connected and consider x, y ∈ E satisfying

the condition x < z < y and, by contradiction, assume that z /∈ E. Let us de�ne:

A = (−∞, z) ∩ E and B = (z,+∞) ∩ E.

We have:

(i) A ̸= ∅ because x ∈ E and x ∈ (−∞, z) since x < z. B ̸= ∅ because y ∈ E

and y ∈ (z,+∞) since z < y.

(ii) E = A ∪B.

Indeed:

A ∪B = ((−∞, z) ∪ (z,+∞)) ∩ E

= (R\{z}) ∩ E.

However, since z /∈ E, it follows that E ⊂ R\{z}, and therefore E = (R\{z}) ∩ E.
Thus E = A ∪B.

(iii) A and B are separated.

Indeed, we will show that A ∩ B = ∅. It is proved analogously that A ∩ B = ∅.
In fact,

A ∩B = ((−∞, z) ∩ E) ∩ ((z,+∞) ∩ E)

⊂ (−∞, z) ∩ E ∩ ((z,+∞) ∩ E)

= (−∞, z] ∩ E ∩ ((z,+∞) ∩ E)

⊂

(−∞, z] ∩ (z,+∞)︸ ︷︷ ︸
=∅

 ∩ E = ∅.
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From (i), (ii) and (iii), it follows that A and B form a disconnection for E, which

is an absurdity since E is connected.

`⇐' Conversely, suppose that given x, y ∈ E and z ∈ R such that x < z < y,

then z ∈ E. We must prove that E is connected. Suppose the contrary, i.e., that E

is a disconnected set. Then, there exist non-empty, separated sets A,B such that

E = A ∪B.
Take x ∈ A, y ∈ B. It is clear that x ̸= y, because otherwise A ∩ B and A ∩ B

would be non-empty, which is an absurdity as A and B are separated. Thus, x ̸= y,

and without loss of generality, suppose x < y and de�ne:

z = sup{[x, y] ∩ A}.

Note that z is an adherent point to the set [x, y] ∩ A. Hence,

z ∈ [x, y] ∩ A ⊂ [x, y] ∩ A,

and therefore,

z ∈ [x, y] and z ∈ A.

Since z ∈ A, then z /∈ B (because A ∩ B = ∅). Thus z cannot be equal to y, since

y ∈ B. So,

z ∈ A and x ≤ z < y. (3.19)

We have two cases to consider:

(i) z /∈ A In this case, since z /∈ A, z cannot be equal to x (as x ∈ A). We then

have from (3.19) that

x < z < y.

But, by hypothesis (the interval property), it follows that z ∈ E. This is an absur-

dity, since z /∈ A and z /∈ B (as z ∈ A), and therefore z /∈ A ∪B = E.

(ii) z ∈ A Since z ∈ A, then z /∈ B (as A ∩ B = ∅). Hence, there exists ε0 > 0

such that the neighbourhood (z − ε0, z + ε0) contains no points of B. This implies

z < y (as y ∈ B). Take z1 ∈ (z, y]. Since z = sup([x, y] ∩ A), no point in (z, y] can

be in A. Therefore z1 /∈ A. Since z1 ∈ (z, y] ⊂ [x, y] ⊂ E, we must have z1 ∈ B.

But this contradicts z = sup([x, y] ∩ A)?
Let's re-examine the original proof's argument: (ii) z ∈ A. Since z ∈ A, then

z /∈ B (as A ∩ B = ∅). So, there exists ε0 > 0 such that (z − ε0, z + ε0) ∩ B = ∅.
Since z < y (as z ∈ A, y ∈ B), let's choose z1 such that z < z1 < min{y, z + ε0}.
Since x ≤ z < z1 < y, by the interval hypothesis, z1 ∈ E. Since z = sup([x, y] ∩ A),
z1 /∈ A. Since z1 ∈ (z, z + ε0), z1 /∈ B. Thus z1 /∈ A∪B = E, which is an absurdity.

This concludes the proof. ■
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Exercises: Topology of the Real Line

1st Question Prove that for every X ⊂ R we have int(intX) = intX and conclude

that intX is an open set.

2nd Question If A and B are subsets of the real line, then:

(a) intA ⊂ A.

(b) If A ⊂ B then intA ⊂ intB.

(c) If A ⊂ intA then A = intA.

(d) A ⊂ A.

(e) If A ⊂ B then A ⊂ B. *(Note: Item (e) and (f) in the original were

identical. I kept (e) and removed duplicate (f) unless it was meant to be

something else)*.

(g) If A ⊂ B then A′ ⊂ B′.

(h) A′ ⊂ A.

(i) A ∪ A′ = A.

(j) If A′ ⊂ A then A = A.

(k) A is closed if and only if A′ ⊂ A.

(l) intA ⊂ A ⊂ A.

(m) R \ A = R \ (intA).

(n) int(R\A) = R\(A). *(Note: Replaced ∁ with R\ for clarity in topology)*.

3rd Question Let A ⊂ R be a set with the following property: "every sequence

(xn) that converges to a point a ∈ A has its terms xn belonging to A for all n

su�ciently large". Prove that A is open.

4th Question De�nition. (Neighborhood of a point) Let x ∈ R. A set V ⊂ R
is a neighborhood of x if there exists an open interval (a, b) such that x ∈
(a, b) ⊂ V .
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(a) For every X ⊂ R, prove that the disjoint union R = intX ∪ int(R \X)∪F
holds, where F is formed by the points x ∈ R such that every neighborhood

of x contains points of X and points of R \ X. The set F = frX (or ∂X) is

called the boundary of X.

(b) Prove that A ⊂ R is open if and only if A ∩ frA = ∅.

(c) Prove that for every A ⊂ R we have frA = R \ A ∩ A = A \ intA

5th Question For each of the following sets, determine its boundary.

a)X = [0, 1] b)Y = (0, 1) ∪ (1, 2) c)Z = Q d)W = Z

6th Question Let A and B be non-empty subsets of R. Demonstrate that A+B =

{x+ y |x ∈ A , y ∈ B} is open if A is open.

7th Question Let (Iα)α∈A be a family of non-empty open intervals of R, such that

α ̸= β =⇒ Iα ∩ Iβ = ∅. Prove that A is countable.

8th Question Determine a)Q, b) intQ, c)R \Q, d) int(R \Q).

9th Question Let A and B be subsets of R. Prove: a) A ∩B ⊂ A ∩B,

b) A ∪B = A∪B, c) int(A∩B) = intA∩ intB, d) int(A∪B) ⊃ intA∪ intB.

Prove also by means of examples that the inclusions can be strict.

10th Question Let A ⊂ R. Demonstrate that A′ is a closed set.

11th Question Let A and B be subsets of R. Prove that

(A ∪B)′ = A′ ∪B′ and (A ∩B)′ ⊂ A′ ∩B′;

prove with an example that the inclusion can be strict.

12th Question Let A ⊂ R and a ∈ A′. Demonstrate that a is the limit of a

strictly monotonic sequence of elements of A.

13th Question Let A and B be two non-empty subsets of R. Assuming B′ is

non-empty, demonstrate A + B′ ⊂ (A + B)′ and give an example for strict

inclusion.

14th Question Let

A =
{ 1

m
+

1

n

∣∣∣m ∈ N, n ∈ N
}

Determine supA, inf A, A′.
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15th Question Let U and V be two open sets of R such that U ∩V = ∅. Demon-

strate that intU ∩ intV = ∅

16th Question Let A ⊂ R. Compare fr(intA), frA, fr(A). Demonstrate fr(A ∪
B) ⊂ (frA) ∪ (frB). Can equality hold?

17th Question Prove that for every X ⊂ R, X = X ∪ frX holds. Conclude that

X is closed if and only if X ⊃ frX.

18th Question If X ⊂ R is open (respectively, closed) and X = A ∪ B is a

separation (disconnection), prove that A and B are open (respectively, closed).

19th Question Prove that if X ⊂ R has an empty boundary, then X = ∅ or

X = R.

20th Question Prove that for every X ⊂ R, we have X = X ∪X ′. Conclude that

X is closed if and only if it contains all its accumulation points.

21st Question Prove that a �nite union and an arbitrary intersection of compact

sets is a compact set.

22nd Question Let X, Y be disjoint non-empty sets of R, with X compact and Y

closed. Prove that there exist x0 ∈ X and y0 ∈ Y such that |x0 − y0| ≤ |x− y|
for any x ∈ X, y ∈ Y .

23rd Question A compact set whose points are all isolated is �nite. Give an

example of an unbounded closed set X and a bounded non-closed set Y , whose

points are all isolated.

24th Question Prove that if X is compact, then the following sets are also com-

pact:

a)S = {x+ y;x, y ∈ X}, b)D = {x− y;x, y ∈ X},

c)P = {x · y;x, y ∈ X}, d)Q = {x/y;x, y ∈ X} if 0 /∈ X.

25th Question Let A and B be subsets of R such that A is closed and B is

compact. Prove that A+B = {x+ y |x ∈ A , y ∈ B} is closed.

26th Question Prove that the following sets of real numbers are disconnected:

(a) N ⊂ R (b) H = {1/n : n ∈ N} ⊂ R (c) Q ⊂ R (d) R \ {0} ⊂ R

27th Question If X ⊂ Q is connected, then X contains no more than one point.

28th Question If A ⊂ R is connected, then A is connected.
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29th Question Prove that the closed unit interval I = [0, 1] ⊂ R is connected.

30th Question A subset of R is connected if and only if it is an interval.
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Chapter 4

Limits of Functions

4.1 Limits of Functions

De�nition 4.1 Let f : X → R be a real-valued function de�ned on a subset X ⊂ R.
Let a be an accumulation point of X, i.e., a ∈ X ′. We say that the real number L

is the limit of f(x) as x approaches a and we write

lim
x→a

f(x) = L,

to mean the following: For each real number ε > 0, given arbitrarily, we can �nd

δ > 0 (δ = δ(ε)) such that |f(x) − L| < ε whenever x ∈ X and, furthermore,

0 < |x− a| < δ.

Therefore, when a is an accumulation point of the domain of f , the expression

limx→a f(x) = L is an abbreviation for the statement below:

∀ε > 0,∃δ > 0,∀x ∈ D(f), 0 < |x− a| < δ ⇒ |f(x)− L| < ε.

*(Note: D(f) is used for domain, synonymous with X)*

Remark: Note that 0 < |x− a| < δ means x belongs to the interval (a− δ, a+ δ)

with x ̸= a. Thus, limx→a f(x) = L means that for every open interval (L−ε, L+ε),
there exists an open interval (a− δ, a+ δ) such that, setting:

Vδ = (X\{a}) ∩ (a− δ, a+ δ),

it holds that

f(Vδ) ⊂ (L− ε, L+ ε).

Observe that:

Vδ := {x ∈ X : 0 < |x− a| < δ}.

61



Limits of Functions 4.1 Limits of Functions

x
(
a− δ

L− ε

L

L+ ε

a

)
a+ δ

y

y = f(x)

Vδ

Figure 4.1:

In simple language: it is possible to make f(x) arbitrarily close to L, provided

one takes x su�ciently close to a.

Remarks:

(1a) According to the given de�nition of a limit, it only makes sense to write

limx→a f(x) = L when a is an accumulation point of the domain X of the function

f . If we were to consider the same de�nition in the case where a /∈ X ′, then every

real number L would be a limit of f as x approaches a. Indeed, since a /∈ X ′, there

exists δ > 0 such that

Vδ = (X\{a}) ∩ (a− δ, a+ δ) = ∅,

i.e., 0 < |x − a| < δ, x ∈ X is not satis�ed for any x. Then, given any ε > 0, we

would choose this δ. It would always be true that

f(Vδ) = ∅ ⊂ (L− ε, L+ ε),

whatever L might be. Hence, we would have limx→a f(x) = L for all L.

(2a) When considering limx→a f(x) = L, we do not require a to belong to the

domain of the function f . In the most interesting cases, a /∈ X. Let's see an example:

Consider f(x) = x2−1
x−1

, for x ̸= 1. In truth:

f(x) =
(x− 1)(x+ 1)

x− 1
= x+ 1, x ̸= 1.

We have limx→1 f(x) = 2. Indeed, let ε > 0 be given. For x ̸= 1, we have |f(x)−2| =
|(x + 1) − 2| = |x − 1|. Hence, for the given ε > 0, δ = ε exists such that if x ∈ R
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and x ̸= 1 with 0 < |x− 1| < δ, then

|f(x)− 2| = |x− 1| < ε.

(3a) Even if a ∈ X, the statement limx→a f(x) = L says nothing about the value

of f(a). It only describes the behavior of the values of f(x) for x close to a with

x ̸= a. Explicitly, it is possible to have limx→a f(x) ̸= f(a). Let's see an example:

Consider

f(x) =

{
1, x ∈ R\{0},

0, x = 0.

We have that limx→0 f(x) = 1. Indeed, let ε > 0 be given. For x ̸= 0, we have:

|f(x)− 1| = |1− 1| = 0. Thus, for the given ε > 0, δ = ε exists such that if x ∈ R,
x ̸= 0 and 0 < |x− 0| < δ then |f(x)− 1| = 0 < ε. However, f(0) = 0.

Proposition 4.2 [Uniqueness of the Limit] Let X ⊂ R, f : X → R, a ∈ X ′. If

limx→a f(x) = L1 and limx→a f(x) = L2, then L1 = L2.

Proof: Given any ε > 0, there exist δ1 > 0 and δ2 > 0 such that if x ∈ X,

0 < |x− a| < δ1 ⇒ |f(x)− L1| <
ε

2
,

0 < |x− a| < δ2 ⇒ |f(x)− L2| <
ε

2
.

Let δ = min{δ1, δ2}. Since a ∈ X ′, we can �nd x ∈ X such that 0 < |x − a| < δ.

Then:

|L1 − L2| = |L1 − f(x) + f(x)− L2|

≤ |L1 − f(x)|+ |f(x)− L2|

<
ε

2
+
ε

2
= ε.

This gives us |L1 − L2| < ε, for all ε > 0, which implies, given the arbitrariness of

ε > 0, that L1 = L2. ■

Proposition 4.3 Let X ⊂ R, f : X → R and a ∈ X ′. If limx→a f(x) exists, then

f is bounded in a neighbourhood of a, i.e., there exist M > 0 and δ > 0 such that

0 < |x− a| < δ, x ∈ X ⇒ |f(x)| ≤M.

Proof: Let L = limx→a f(x). Taking ε = 1 in the de�nition of limit, there exists

δ > 0 such that if x ∈ X and 0 < |x− a| < δ then |f(x)− L| < 1. But

|f(x)− L| ≥ ||f(x)| − |L|| ≥ |f(x)| − |L|,
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and consequently

|f(x)| ≤ |f(x)− L|+ |L| < 1 + |L| :=M,

provided that 0 < |x− a| < δ, proving the desired result. ■

Proposition 4.4 (Squeeze Theorem) Let X ⊂ R, f, g, h : X → R and a ∈ X ′. If,

for all x ∈ X, x ̸= a we have f(x) ≤ g(x) ≤ h(x), and furthermore, we also have

limx→a f(x) = limx→a h(x) = L, then limx→a g(x) = L.

Proof: Let ε > 0 be given. Then there exist δ1 > 0 and δ2 > 0 such that for

x ∈ X:

0 < |x− a| < δ1 ⇒ L− ε < f(x) < L+ ε,

0 < |x− a| < δ2 ⇒ L− ε < h(x) < L+ ε.

Taking δ = min{δ1, δ2}, then if x ∈ X and 0 < |x− a| < δ, it follows that

L− ε < f(x) ≤ g(x) ≤ h(x) < L+ ε,

from which we conclude that limx→a g(x) = L. ■

Proposition 4.5 Let X ⊂ R, a ∈ X ′, f, g : X → R. If limx→a f(x) = L and

limx→a g(x) = M with L < M ; then there exists δ > 0 such that if x ∈ X and

0 < |x− a| < δ then f(x) < g(x).

Proof: De�ne ε = M−L
2

> 0. Hence, there exist δ1, δ2 > 0 such that for x ∈ X:

0 < |x− a| < δ1 ⇒ L− M − L

2
< f(x) < L+

M − L

2
,

0 < |x− a| < δ2 ⇒M − M − L

2
< g(x) < M +

M − L

2
.

Taking δ = min{δ1, δ2}, then if x ∈ X and 0 < |x− a| < δ, it follows that

3L−M

2
< f(x) <

L+M

2
< g(x) <

3M − L

2
,

i.e., f(x) < g(x) provided that 0 < |x− a| < δ. ■

Corollary 4.6 If limx→a f(x) = L > 0 then there exists δ > 0 such that if x ∈ X,

0 < |x− a| < δ ⇒ f(x) > 0.

Proof: It su�ces to consider g(x) ≡M = 0 in Proposition 4.5. (Note: The original

proof said f(x) ≡ 0, but it should be g(x) or a new function h(x) = 0). ■
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Corollary 4.7 If f(x) ≤ g(x) for all x ∈ X, x ̸= a, and limx→a f(x) = L and

limx→a g(x) =M , then L ≤M .

Proof: Suppose the contrary, that L > M . Then by Proposition 4.5, there exists

δ > 0 such that if x ∈ X and 0 < |x−a| < δ ⇒ f(x) > g(x), which is a contradiction.

■

Proposition 4.8 Let X ⊂ R, a ∈ X ′ and f, g : X → R be functions. If limx→a f(x) =

L and limx→a g(x) =M , then:

(i) limx→a(f(x) + g(x)) = L+M .

(ii) limx→a(f(x) g(x)) = LM .

(iii) If M ̸= 0 then limx→a
f(x)
g(x)

= L
M
.

Proof: (i) Let ε > 0 be given. Hence, there exist δ1 > 0 and δ2 > 0 such that if

x ∈ X and

0 < |x− a| < δ1 ⇒ |f(x)− L| < ε

2
, (4.1)

0 < |x− a| < δ2 ⇒ |g(x)−M | < ε

2
. (4.2)

Take δ = min{δ1, δ2}. Then, if x ∈ X and 0 < |x − a| < δ, from (4.1) and (4.2) it

follows that

|(f(x) + g(x))− (L+M)| = |(f(x)− L) + (g(x)−M)|

≤ |f(x)− L|+ |g(x)−M |

<
ε

2
+
ε

2
= ε.

(ii) By Proposition 4.3, f is bounded in a neighbourhood of a. Let ε = 1. Then

there exists δ1 > 0 such that if x ∈ X and 0 < |x − a| < δ1 then |f(x) − L| < 1,

which implies that

0 < |x− a| < δ1 ⇒ |f(x)| < |L|+ 1 := C. (4.3)

Let ε > 0 be given arbitrarily. Then there exist δ2 > 0 and δ3 > 0 such that if x ∈ X

and

0 < |x− a| < δ2 ⇒ |f(x)− L| < ε

2(|M |+ 1)
, (4.4)

0 < |x− a| < δ3 ⇒ |g(x)−M | < ε

2C
. (4.5)
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Thus, taking δ = min{δ1, δ2, δ3}, from (4.3), (4.4) and (4.5) we obtain

|f(x)g(x)− LM | = |f(x)g(x)− f(x)M + f(x)M − LM |

= |f(x)(g(x)−M) + (f(x)− L)M |

≤ |f(x)| |g(x)−M |+ |M | |f(x)− L|

≤ C · ε

2C
+ |M | ε

2(|M |+ 1)
<
ε

2
+
ε

2
= ε.

*(Note: Corrected g(x)−L to g(x)−M and f(x)−L to (f(x)−L)M in the second

line. Corrected ...+ (|M |+ 1)... to ...+ |M |... in the last line, following the logic).*

(iii) Exercise ■

4.2 Lateral Limits

De�nition 4.9 Let X ⊂ R. A real number a ∈ R is said to be an accumulation point from the right

of X if every open interval (a, a+ ε) contains some point of X.

Notation: X ′
+= set of accumulation points from the right of X. Examples: 1)

X = [a, b]. x = a ∈ X ′
+.

2) X = {−1/n : n ∈ N∗}. In this case X ′
+ = ∅.

In other words, we say that a ∈ X ′
+ if and only if given ε > 0, X∩(a, a+ε) ̸= ∅, or

equivalently, for all ε > 0 there exists x ∈ X such that 0 < x−a < ε⇔ x ∈ (a, a+ε).

De�nition 4.10 Let X ⊂ R. A real number a ∈ R is said to be an accumulation point from the left

of X if every open interval (a− ε, a) contains some point of X.

Notation: X ′
− = set of all accumulation points from the left of X.

In other words: a ∈ X ′
− if and only if for all ε > 0, X ∩ (a− ε, a) ̸= ∅, or rather,

given ε > 0 there exists x ∈ X such that 0 < a− x < ε (⇔ x ∈ (a− ε, a)).

Example: Let X = [a, b]. Then b ∈ X ′
−.

De�nition 4.11 Let f : X ⊂ R → R be a map and a ∈ X ′
+. We say that L is the

limit from the right of f(x) as x approaches a, if for all ε > 0 it is possible to �nd

δ > 0 such that x ∈ X and a < x < a+ δ ⇒ |f(x)− L| < ε.
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x

y

L− ε

L

L+ ε

a a+ δ

y = f(x)

)(
Figure 4.2: lim

x→ a+
f(x) = L

L− ε

L

L+ ε

aa− δ

y = f(x)

x

y

( )
Figure 4.3: lim

x→ a−
f(x) = L

De�nition 4.12 Let f : X ⊂ R → R be a map and a ∈ X ′
−. We say that L is the

limit from the left of f(x) as x approaches a, if for all ε > 0 it is possible to �nd

δ > 0 such that x ∈ X and a− δ < x < a⇒ |f(x)− L| < ε.

Proposition 4.13 a) Let f : X ⊂ R → R and a ∈ X ′
+. Let Y = X ∩ (a,+∞) and

g = f |Y . Then limx→a+ f(x) = L if and only if limx→a g(x) = L.

b) Let f : X ⊂ R → R and a ∈ X ′
−. Let Y = X ∩ (−∞, a) and g = f |Y . Then

limx→a− f(x) = L if and only if limx→a g(x) = L.

Proof: a) `⇒' Let ε > 0 be given. We must show that there exists δ > 0 such that

if x ∈ D(g) = X ∩ (a,+∞) and

0 < |x− a| < δ ⇒ |g(x)− L| < ε. (4.6)

Indeed, for the given ε > 0 and from the fact that limx→a+ f(x) = L, there exists

δ > 0 such that if x ∈ X and

a < x < a+ δ ⇒ |f(x)− L| < ε (4.7)

However, since x ∈ D(g) = X ∩ (a,+∞) = {x ∈ X : x > a}, the condition x ∈ D(g)

and 0 < |x− a| < δ implies that x ∈ (a, a + δ), i.e., a < x < a + δ. It follows from

this and the fact that f |Y = g that condition (4.7) implies (4.6) for the same δ > 0.

`⇐' Conversely, given ε > 0, we must show that there exists δ > 0 such that if

x ∈ X and

a < x < a+ δ ⇒ |f(x)− L| < ε. (4.8)

In fact, for the given ε > 0, and from the fact that limx→a g(x) = L, there exists

δ > 0 such that if x ∈ D(g) = {x ∈ X : x > a} and

0 < |x− a| < δ ⇒ |g(x)− L| < ε. (4.9)
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However, the condition x ∈ X and a < x < a + δ is equivalent to x ∈ D(g) and

0 < |x − a| < δ. Since f |Y = g, condition (4.9) implies (4.8), which proves the

desired result. ■

Theorem 4.14 Let f : X ⊂ R → R and a ∈ X ′
+ ∩X ′

−. Then:

lim
x→a

f(x) = L⇔ lim
x→a−

f(x) = lim
x→a+

f(x) = L.

Proof: (⇒) Let ε > 0 be given. Then there exists δ > 0 such that if x ∈ X and

0 < |x− a| < δ ⇒ |f(x)− L| < ε. (4.10)

Since 0 < |x− a| < δ ⇔ a− δ < x < a+ δ (and x ̸= a), (4.10) implies that

a < x < a+ δ, x ∈ X ⇒ |f(x)− L| < ε

a− δ < x < a, x ∈ X ⇒ |f(x)− L| < ε

which, by de�nition, means limx→a− f(x) = limx→a+ f(x) = L.

(⇐) Conversely, since limx→a− f(x) = limx→a+ f(x) = L, given ε > 0, there exist

δ1 > 0 and δ2 > 0 such that if x ∈ X and

a < x < a+ δ1 ⇒ |f(x)− L| < ε,

a− δ2 < x < a⇒ |f(x)− L| < ε.

Taking δ = min{δ1, δ2}, then if x ∈ X and

0 < |x− a| < δ ⇒ (a < x < a+ δ or a− δ < x < a) ⇒ |f(x)− L| < ε,

which concludes the proof. ■

Examples:

1) Let f : R\{0} → R be de�ned by f(x) = x + x
|x| . Consider Y = R\{0} ∩

(0,+∞) = (0,+∞) and g = f |Y . Thus, we have:

g(x) = x+ 1 and lim
x→0

g(x) = 1.

Using Proposition 4.13, we have

lim
x→0+

f(x) = 1.

Analogously, let Y = R\{0} ∩ (−∞, 0) = (−∞, 0) and g = f |Y . Then:

g(x) = x− 1 and lim
x→0

g(x) = −1.

By Proposition 4.13, we have

lim
x→0−

f(x) = −1.

2) Let f : R\{0} → R be given by f(x) = 1
x
. limx→0+ f(x) does not exist, nor

does limx→0− f(x). Thus, limx→0 f(x) does not exist.
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4.3 Limits at In�nity

De�nition 4.15 Let X ⊂ R be unbounded above. Given a map f : X → R, we
write

lim
x→+∞

f(x) = L,

when the real number L satis�es the following condition: For all ε > 0, there exists

M > 0 such that if x ∈ X and x > M then |f(x) − L| < ε. *(Note: δ changed to

M for clarity, as δ usually implies smallness)*

x

y

L+ ε

L

L− ε

M

y = f(x)

Figure 4.4: lim
x→+∞

f(x) = L

De�nition 4.16 Let X ⊂ R be unbounded below. Given a map f : X → R, we
write

lim
x→−∞

f(x) = L,

when the real number L satis�es the following condition: For all ε > 0, there exists

M > 0 such that if x ∈ X and x < −M then |f(x)− L| < ε. *(Note: δ changed to

M)*

Examples:

(1) limx→+∞
1
x
= limx→−∞

1
x
= 0.

Indeed, note that x > M ⇒ 1
x
< 1

M
(for M > 0). On the other hand:∣∣∣∣1x − 0

∣∣∣∣ = ∣∣∣∣1x
∣∣∣∣ < ε⇔ −ε < 1

x
< ε.

Thus, given ε > 0, let us takeM = 1
ε
. Hence, if x > M > 0 then 1

x
< 1

M
⇒ 1

x
< ε.

Since x > 0, 1
x
> 0, so

∣∣ 1
x

∣∣ < ε, which implies that limx→+∞
1
x
= 0.

Analogously, it is proven that limx→−∞
1
x
= 0.
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x

y

L+ ε

L

L− ε

−δx

y = f(x)

Figure 4.5: lim
x→−∞

f(x) = L

2) limx→+∞ sin(x) and limx→−∞ sin(x) do not exist.

Proof: Suppose, by contradiction, that limx→+∞ sin(x) exists and is equal to L.

Thus, given ε > 0, there exists A > 0 such that if x ∈ X and

x > A⇒ | sinx− L| < ε.

However, there exists x > A such that sinx = 1 (e.g., x = 2nπ + π/2) and there

exists y > A such that sin y = −1 (e.g., y = 2nπ + 3π/2). Hence:

|1− L| < ε and | − 1− L| < ε.

If we take ε = 1
2
, we have on one hand

|L− 1| < 1

2
⇔ −1

2
< L− 1 <

1

2
⇔ 1

2
< L <

3

2
.

On the other hand:

|L+ 1| < 1

2
⇔ −1

2
< L+ 1 <

1

2
⇔ −3

2
< L < −1

2
,

which is a contradiction. ■

4.4 In�nite Limits

De�nition 4.17 Let f : X ⊂ R → R be a map and a ∈ X ′. We say that

limx→a f(x) = +∞ when for every ε > 0 (arbitrarily large), there exists δ > 0

such that if x ∈ X and 0 < |x− a| < δ then f(x) > ε.
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y

a− δ
a

a + δ

f (x)

x

ε

x
y = f (x)( )

Figure 4.6: lim
x→a

f(x) = +∞

Example: limx→a
1

(x−a)2
= +∞.

Indeed, note that

1

(x− a)2
> ε⇔ (x− a)2 <

1

ε
⇔ |x− a| < 1√

ε
.

Thus, given ε > 0, let us take δ = 1√
ε
. Then, if x ∈ R\{a} and

0 < |x− a| < δ ⇒ (x− a)2 <
1

ε
⇒ 1

(x− a)2
> ε.

De�nition 4.18 Let f : X ⊂ R → R be a map and a ∈ X ′. We say that

limx→a f(x) = −∞ when for every ε > 0, there exists δ > 0 such that if x ∈ X

and 0 < |x− a| < δ then f(x) < −ε.

Example:

lim
x→a

−1

(x− a)2
= −∞. ( exercise).

De�nition 4.19 Let f : X ⊂ R → R be a map with X unbounded above. We say

that limx→+∞ f(x) = +∞ when for every ε > 0 (arbitrarily large), there exists δ > 0

(arbitrarily large) such that if x ∈ X and x > δ then f(x) > ε.

Example: limx→+∞ x2 = +∞.

Let ε > 0. Note that:

x2 > ε⇔ x2 − ε > 0 ⇔ (x−
√
ε)(x+

√
ε) > 0 ⇔ x < −

√
ε or x >

√
ε.

Thus, given ε > 0, δ =
√
ε exists such that if x > δ =

√
ε then x2 > ε.
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y a− δ
a

a + δ

f (x)

x

−ε

x

y = f (x)

( )

Figure 4.7: lim
x→a

f(x) = −∞

x

y

δ

ε

x

f (x)

y = f (x)

0

Figure 4.8: lim
x→+∞

f(x) = +∞

De�nition 4.20 Let f : X ⊂ R → R be a map with X unbounded above. We say

that limx→+∞ f(x) = −∞ when for every ε > 0, there exists δ > 0 such that if

x ∈ X and x > δ then f(x) < −ε.

Example: limx→+∞(−x3) = −∞.

Indeed, given ε > 0, note that:

−x3 < −ε⇔ x3 > ε⇔ x > 3
√
ε.

Hence, given ε > 0, take δ = 3
√
ε, because if x ∈ R and x > 3

√
ε then −x3 < −ε.

Remark: 0
0
; ∞−∞; 0 · ∞; 00; 1∞; ∞0; ∞

∞ are indeterminate forms. Let's see

some examples.
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x

y

δ

−ε

x

f (x)

y = f (x)

0

Figure 4.9: lim
x→+∞

f(x) = −∞

(a) Let f(x) = 2x and g(x) = x.

lim
x→0

f(x) = lim
x→0

g(x) = 0 and lim
x→0

f(x)

g(x)
= 2.

(b) Let f(x) = x sin 1
x
and g(x) = x.

lim
x→0

f(x) = lim
x→0

g(x) = 0 but lim
x→0

f(x)

g(x)
does not exist.

(c) Let's see a 0 · ∞ example. Let f(x) = 1
x
and g(x) = x.

lim
x→0+

f(x) = +∞, lim
x→0+

g(x) = 0 and lim
x→0+

f(x) g(x) = 1.
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Chapter 5

Continuous Functions

De�nition 5.1 We say that a function f : X ⊂ R → R is continuous at the point

a ∈ X when, for every ε > 0 given arbitrarily, we can �nd δ > 0 such that if x ∈ X

and |x− a| < δ then |f(x)− f(a)| < ε.

In other words: given any interval J containing f(a), there exists an open interval

I containing a such that

f(I ∩X) ⊂ J.

Whenever desired, we can take

J = (f(a)− ε, f(a) + ε)

with ε > 0 and I = (a− δ, a+ δ); δ > 0.

De�nition 5.2 We say that f : X ⊂ R → R is continuous when f is continuous at

all points of X.

Remarks:

(1a) Unlike the de�nition of a limit, it only makes sense to inquire if f is

continuous at the point a when a ∈ X.

(2a) If a is an isolated point of X, then every function f : X → R is continuous

at the point a. Indeed, given ε > 0, it su�ces to take δ > 0 such that

(a− δ, a+ δ) ∩X = {a}.

Then, if x ∈ X with |x−a| < δ, it implies that x = a, and therefore |f(x)− f(a)| =
0 < ε. In particular, if all points of X are isolated, then any function f : X → R is

continuous.
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(3a) Now, let a ∈ X be an accumulation point of X, i.e., a ∈ X ∩ X ′. Then

f is continuous at a if and only if limx→a f(x) = f(a). Proof: Indeed, suppose f

is continuous at a. Thus, given ε > 0, there exists δ > 0 such that if x ∈ X and

a−δ < x < a+δ then |f(x)−f(a)| < ε. However, if x ∈ X and a−δ < x < a+δ, and

furthermore x ̸= a, we still have |f(x)−f(a)| < ε. (This shows limx→a f(x) = f(a)).

Conversely, suppose that given ε > 0, there exists δ1 > 0 such that if x ∈ X and

0 < |x− a| < δ1 then |f(x)− f(a)| < ε. Now, if x = a, this case is not covered. We

need to check x = a separately. *(Translator's Note: The original proof's logic here

is slightly complex, mixing limit and continuity. A standard proof is as follows)*

Conversely, suppose limx→a f(x) = f(a). Then for any ε > 0, there exists δ > 0 such

that if x ∈ X and 0 < |x − a| < δ, then |f(x) − f(a)| < ε. This de�nition of limit

handles x ̸= a. The case x = a is trivial, since |f(a) − f(a)| = 0 < ε. Therefore,

for all x ∈ X with |x − a| < δ, we have |f(x) − f(a)| < ε. This is the de�nition of

continuity at a. ■

5.1 Properties of Continuous Functions

The propositions below follow immediately from the propositions and corollaries

demonstrated previously (for limits).

Theorem 5.3 Every restriction of a continuous function is continuous. More pre-

cisely: let f : X → R be continuous at the point a ∈ X. If a ∈ Y ⊂ X and g = f |Y ,
then g : Y → R is continuous at the point a.

Theorem 5.4 If f : X → R is continuous at a point a ∈ X, then f is bounded in

a neighbourhood of a.

Theorem 5.5 If f, g : X → R are continuous at the point a ∈ X and f(a) < g(a),

then there exists δ > 0 such that f(x) < g(x) for all x ∈ X with |x− a| < δ.

Corollary 5.6 Let f : X → R be continuous at the point a ∈ X and k be a constant.

If f(a) < k, then there exists δ > 0 such that f(x) < k for all x ∈ X with |x−a| < δ.
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Theorem 5.7 If f, g : X → R are continuous at the point a ∈ X, then f+g, f−g,
f g are continuous at that same point. If g(a) ̸= 0, then f/g is also continuous at

the point a.

Theorem 5.8 The composition of two continuous functions is continuous. That is,

if f : X ⊂ R → R and g : Y ⊂ R → R are continuous at the points a ∈ X and

b = f(a) ∈ Y , respectively, and furthermore f(X) ⊂ Y , then g ◦ f : X → R is

continuous at the point a.

Proof: Let ε > 0 be given. We must exhibit δ > 0 such that if x ∈ X and

|x− a| < δ then |g(f(x))− g(f(a))| < ε.

Indeed, since g is continuous at b = f(a), for the given ε > 0, there exists δ1 > 0

such that if y ∈ Y (and f(X) ⊂ Y ) and

|y − b| < δ1 ⇒ |g(y)− g(b)| < ε. (5.1)

*(Note: original text used y ∈ f(X) which is correct, y ∈ Y is more standard)*

Since f is continuous at a, for this δ1 > 0 there exists δ > 0 such that if x ∈ X

and

|x− a| < δ ⇒ |f(x)− f(a)| < δ1. (5.2)

Combining (5.1) and (5.2) and keeping in mind that y = f(x) and b = f(a), it

follows that if x ∈ X and |x− a| < δ, then |f(x)− f(a)| < δ1, which in turn implies

(by 5.1) that |g(f(x))− g(f(a))| < ε, which concludes the proof. ■

Example: Let f : R → R be de�ned by f(x) = x. f is continuous at x0 ∈ R.
Indeed:

|f(x)− f(x0)| = |x− x0|.

Thus, given ε > 0 there exists δ = ε > 0 such that if x ∈ R and |x − x0| < δ then

|f(x)− f(x0)| = |x− x0| < ε. Since x0 was arbitrary, it follows that f is continuous

on R. It follows from Theorem 5.7 and the previous example that the function

f : R → R, x 7→ xn is continuous. In truth, every polynomial p : R → R; p(x) =
anx

n+· · ·+a1x+a0, ai ∈ R i = 1, · · · , n is a continuous map. Furthermore, it follows

from Theorems 5.7 and 5.8, the simple example given above, and the continuity of

trigonometric, exponential, and logarithmic functions that we can create an in�nity

of examples of continuous functions from elementary functions, taking care that the

compositions and quotients are well-de�ned.
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Proposition 5.9 Let f : X ⊂ R → R be a continuous function. Then, if A ⊂ X

(closure relative to R), we have f(A) ⊂ f(A).

Proof: Take y ∈ f(A). We must prove that y ∈ f(A). Indeed, let ε > 0. We must

show that

Bε(y) ∩ f(A) ̸= ∅. (5.3)

Since y ∈ f(A), then y = f(x0) for some x0 ∈ A. By the continuity of f (at x0 ∈ X),

there exists δ > 0 such that:

f(Bδ(x0) ∩X) ⊂ Bε(y)

*(Note: f is only de�ned on X, so we must intersect with X)*.

Furthermore, since x0 ∈ A, Bδ(x0) ∩A ̸= ∅. Let x0 ∈ Bδ(x0) ∩A. Since A ⊂ X,

x0 ∈ X, so x0 ∈ Bδ(x0) ∩X. Consequently

f(x0) ∈ f(Bδ(x0) ∩X) ⊂ Bε(y)

and f(x0) ∈ f(A),

which proves f(x0) ∈ Bε(y) ∩ f(A), as desired. ■

Proposition 5.10 Let f : X ⊂ R → R be a function. f is continuous on X if and

only if for every open set V ⊂ R, the set f−1(V ) is open in X. *(Note: The original

text had "open in R", which is only true if X = R)*

Proof: Suppose �rst that f is continuous on X and let V ⊂ R be open. We

must prove that f−1(V ) := {x ∈ X : f(x) ∈ V } is an open set in X. In fact, take

x ∈ f−1(V ). Thus, f(x) ∈ V . Since V is open, there exists ε0 > 0 such that

Bε0(f(x)) ⊂ V.

By the continuity of f at x, there exists δ > 0 such that for z ∈ X:

|z − x| < δ =⇒ f(z) ∈ Bε0(f(x)) ⊂ V

This means Bδ(x) ∩X ⊂ f−1(V ). By de�nition, f−1(V ) is open in X.

Conversely, suppose that f−1(V ) is open in X for every open V ⊂ R. We must

prove that f is continuous on X. Indeed, let ε > 0 be given and consider x ∈ X

arbitrary. The ball V = Bε(f(x)) is an open set. By hypothesis, f−1(V ) is an open

set in X containing x. Therefore, there exists δ > 0 such that

Bδ(x) ∩X ⊂ f−1(Bε(f(x))),
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which means

f(Bδ(x) ∩X) ⊂ Bε(f(x)),

This is the de�nition of f being continuous at x. ■

Proposition 5.11 Let f : R → R. The following are equivalent:

(i) f is continuous.

(ii) A ⊂ R ⇒ f(A) ⊂ f(A).

(iii) A is closed ⇒ f−1(A) is closed.

(iv) A is open ⇒ f−1(A) is open.

Proof: (i) ⇒ (ii) This was done in Prop. 5.9 (with X = R).
(ii) ⇒ (iii) Let A be closed. We must prove that f−1(A) is closed. It su�ces to

prove that

f−1(A) ⊂ f−1(A). (5.4)

Indeed, by hypothesis (ii), since f−1(A) ⊂ R, it follows that

f(f−1(A)) ⊂ f(f−1(A)) (5.5)

On the other hand, f(f−1(A)) ⊂ A, and consequently

f(f−1(A)) ⊂ A. (5.6)

Since A is closed, A = A, and therefore from (5.5) and (5.6) we have

f(f−1(A)) ⊂ A,

which implies (by applying f−1 to both sides)

f−1(A) ⊂ f−1(f(f−1(A))) ⊂ f−1(A), (5.7)

which proves (5.4).

(iii) ⇒ (iv) Let A be open. We must prove that f−1(A) is open. It su�ces to

prove that its complement R\f−1(A) is closed. In fact, we have

R\f−1(A) = f−1(R\A), (5.8)

and since A is open, R\A is closed. By item (iii), f−1(R\A) is closed, which implies,

by virtue of (5.8), that R\f−1(A) is closed, i.e., f−1(A) is open.

(iv) ⇒ (i) This was done in Prop. 5.10 (with X = R). ■
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5.2 Continuous Functions on Compact Sets

Theorem 5.12 Let K ⊂ R be a compact set and f : K → R a continuous function.

Then f(K) is compact.

Proof: Let {Gα}α∈A be an open cover for f(K). We must exhibit a �nite subcover.

Indeed, since f(K) ⊂
⋃

α∈AGα, for each y ∈ f(K), y ∈ Gα for some α ∈ A. Since

y = f(x) for some x ∈ K, let's call this index α(x). Since Gα(x) is open, for each

x ∈ K there exists εx > 0 such that

Bεx(f(x)) ⊂ Gα(x).

On the other hand, by the continuity of f at x, for this εx > 0 there exists δx > 0

such that

f(Bδx(x) ∩K) ⊂ Bεx(f(x)).

Note that the collection {Bδx(x)}x∈K forms an open cover forK. SinceK is compact,

there exist x1, · · · , xn ∈ K and δ1, · · · , δn > 0 such that

K ⊂
n⋃

i=1

Bδi(xi).

Consequently,

f(K) = f

(
K ∩

(
n⋃

i=1

Bδi(xi)

))
=

n⋃
i=1

f(K ∩Bδi(xi))

i.e.,

f(K) ⊂
n⋃

i=1

f(Bδi(xi) ∩K) ⊂
n⋃

i=1

Bεi(f(xi)) ⊂
n⋃

i=1

Gα(xi),

which proves f(K) is covered by the �nite subcover {Gα(x1), . . . , Gα(xn)}. ■

Theorem 5.13 (Extreme Value Theorem) Let K be a compact set and f : K → R
a continuous function. Then f attains its absolute maximum and minimum values.

Proof: Since K is compact and f is continuous on K, then according to Theo-

rem 5.12, f(K) is a compact set in R. Therefore, f(K) is closed and bounded by

the Heine-Borel Theorem (Theorem 3.25). Being non-empty and bounded, by the

Completeness Axiom,

M := sup
x∈K

f(x) (i.e., sup f(K))
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and

m := inf
x∈K

f(x) (i.e., inf f(K))

both exist. However, since f(K) is closed, it contains all its adherent points. In

particular, it contains its supremum M and its in�mum m. Thus, M,m ∈ f(K).

It follows that there exist x1, x2 ∈ K such that f(x1) = m and f(x2) = M , which

concludes the proof. ■

Remark: What happens if we remove the hypothesis of compactness?

Counter-examples:

(i) f : (0, 1) → R, x 7→ 1
x
. K = (0, 1) is bounded but not closed. Note that f

is continuous but does not attain an absolute maximum or minimum in (0, 1).

x

y

0 1

1

f

Figure 5.1:

(ii) g : [0,+∞) → R, x 7→ x K = [0,∞) is closed but not bounded. Note that

g is continuous but does not attain an absolute maximum on [0,+∞), although it

does attain an absolute minimum at x = 0.

x

y

0

Figure 5.2:

Let f : E ⊂ R → R be a continuous function. Then, given ε > 0, we can, for

each x0 ∈ E, �nd δ > 0 (which depends on x0) such that if x ∈ E and |x− x0| < δ
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Continuous Functions 5.3 Uniformly Continuous Functions

then |f(x)− f(x0)| < ε. In general, it is not possible to �nd, from a given ε > 0, a

single δ > 0 that works for all points x0 ∈ E. Let's see an example: Let

f : (0,+∞) → R, x 7→ f(x) =
1

x
.

Given ε > 0, we will show that one cannot choose a single δ > 0 such that

|x− a| < δ ⇒ |f(x)− f(a)| < ε,

for any a ∈ (0,+∞). Indeed, given ε > 0, suppose a single δ > 0 is chosen. Let

us take a positive number a such that 0 < a < δ and 0 < a < 1
3ε

(e.g. a =

min(δ/2, 1/(6ε))). Then, for x = a+ δ
2
, we have

|x− a| =
∣∣∣∣a+ δ

2
− a

∣∣∣∣ = δ

2
< δ.

However:

|f(x)− f(a)| =
∣∣∣∣ 1

a+ δ/2
− 1

a

∣∣∣∣ = ∣∣∣∣a− (a+ δ/2)

a(a+ δ/2)

∣∣∣∣ = δ/2

a(a+ δ/2)
=

δ

a(2a+ δ)

Since a < δ, we have 2a < 2δ, and 2a+ δ < 3δ. Thus:

|f(x)− f(a)| = δ

a(2a+ δ)
>

δ

a(3δ)
=

1

3a
> ε

(by our choice of a). This proves the desired claim.

Consider, now,

f : R → R, f(x) = ax+ b, a ̸= 0.

Given ε > 0, let us choose δ = ε/|a|. Then, for any x0 ∈ R, if |x− x0| < δ, we have:

|f(x)− f(x0)| = |(ax+ b)− (ax0 + b)|

= |ax− ax0| = |a| |x− x0|

< |a| δ = |a| ε
|a|

= ε.

In this case, it was possible, from a given ε > 0, to choose a δ > 0 that worked for

all points in the domain. This motivates the next section.

5.3 Uniformly Continuous Functions

De�nition 5.14 A function f : E ⊂ R → R is said to be uniformly continuous

when, for each ε > 0, there exists δ > 0 such that if x, y ∈ E and |x − y| < δ then

|f(x)− f(y)| < ε. In this case, δ depends only on ε > 0.
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Theorem 5.15 (Heine-Cantor Theorem) If K ⊂ R is compact and f : K → R is

a continuous function, then f is uniformly continuous.

Proof: Let ε > 0 be given. Since f is continuous, for this ε > 0, and for each

x ∈ K, there exists δx > 0 such that if y ∈ K and

|y − x| < δx ⇒ |f(x)− f(y)| < ε

2
. (5.9)

Note that the collection {Bδx/2(x)}x∈K forms an open cover for K. Since K is

compact, there exist x1, · · · , xn ∈ K and δ1, · · · , δn > 0 such that

K ⊂
n⋃

i=1

Bδi/2(xi). (5.10)

Let us take

δ := min{δ1/2, · · · , δn/2}.

Let x, y ∈ K be arbitrary, with |x − y| < δ. We must prove that |f(x) − f(y)| <
ε. Indeed, since x ∈ K, then by virtue of (5.10), x ∈ Bδi0/2

(xi0) for some i0 ∈
{1, · · · , n}. Hence:

|f(x)− f(y)| ≤ |f(x)− f(xi0)|+ |f(xi0)− f(y)|. (5.11)

We will use the continuity of f at xi0 (Eq. 5.9). To do this, we must prove that

x, y ∈ Bδi0
(xi0). In fact:

(i) x ∈ Bδi0/2
(xi0) ⇒ |x− xi0| < δi0/2 < δi0 ⇒ x ∈ Bδi0

(xi0).

(ii) |y − xi0| ≤ |y − x| + |x − xi0| < δ + δi0/2. Since δ ≤ δi0/2, we have

|y − xi0| < δi0/2 + δi0/2 = δi0 ⇒ y ∈ Bδi0
(xi0).

Thus x, y ∈ Bδi0
(xi0), and from (5.9) (applied at xi0) and (5.11) we obtain

|f(x)− f(y)| ≤ |f(x)− f(xi0)|+ |f(xi0)− f(y)|

<
ε

2
+
ε

2
= ε.

Consequently, |f(x) − f(y)| < ε provided that |x − y| < δ, which concludes the

proof. ■

5.4 Continuous Functions on Connected Sets

Lemma 5.16 Let f : X → R be continuous. Then, for every sequence {xn} ⊂ X

such that xn → a ∈ X, we have f(xn) → f(a). (Sequential Continuity)

82



Continuous Functions 5.4 Continuous Functions on Connected Sets

Proof: Let {xn} ⊂ X be such that xn → a, with a ∈ X, and consider ε > 0. We

must exhibit n0 ∈ N such that

if n > n0 ⇒ |f(xn)− f(a)| < ε. (5.12)

Indeed, for the given ε > 0, and since f is continuous at a, there exists δ > 0 such

that if x ∈ X and

|x− a| < δ ⇒ |f(x)− f(a)| < ε. (5.13)

However, since xn → a, for this δ > 0 there exists n0 ∈ N such that

if n > n0 ⇒ |xn − a| < δ. (5.14)

Combining (5.13) and (5.14) proves (5.12). ■

Theorem 5.17 Let E ⊂ R be a connected set and f : E → R a continuous function.

Then f(E) is connected.

Proof: Suppose, by contradiction, that f(E) is disconnected. Then, there exist

A,B ⊂ R, separated and non-empty, such that f(E) = A ∪B. Let

G = E ∩ f−1(A) and H = E ∩ f−1(B).

We claim:

E = G ∪H (5.15)

Indeed,

G ∪H =
(
E ∩ f−1(A)

)
∪
(
E ∩ f−1(B)

)
= E ∩

(
f−1(A) ∪ f−1(B)

)
= E ∩ f−1(A ∪B).

But f(E) = A ∪ B, which implies E = f−1(A ∪ B) ∩ E. *(Note: E ⊂ f−1(A ∪ B)

is always true, but since f maps *from* E, E = f−1(f(E)) = f−1(A ∪B))* Hence,

G∪H = E ∩ f−1(A∪B) = E, which proves (5.15). *(Note: The original proof had

a small logical loop here, corrected for clarity)*

We also have that

G ̸= ∅ and H ̸= ∅. (5.16)
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Indeed, since A is non-empty, there exists y ∈ A. But A ⊂ f(E). Thus, y = f(x) for

some x ∈ E. Furthermore, x ∈ f−1(A) since y = f(x) ∈ A. Thus, x ∈ E∩f−1(A) =

G, which implies G ̸= ∅. Analogously, starting from the hypothesis that B ̸= ∅, one
shows that H ̸= ∅, which proves (5.16).

Finally, we have that

G and H are separated. (5.17)

Suppose, by contradiction, that there exists x ∈ R such that x ∈ G∩H. Then x ∈ G

and x ∈ H. Since x ∈ G, there exists a sequence {xn} ⊂ G such that xn → x. Since

x ∈ H ⊂ E, x ∈ E. Since f is continuous (at x ∈ E), by Lemma 5.16 it follows that

f(xn) → f(x). However, since {xn} ⊂ G ⊂ f−1(A), we have {f(xn)} ⊂ A. Since

f(xn) → f(x), it follows that f(x) ∈ A.

On the other hand, since x ∈ H ⊂ f−1(B), we have f(x) ∈ B. Thus,

f(x) ∈ A ∩B,

which is an absurdity, because A and B are separated. Analogously, one proves that

G ∩H = ∅, which proves (5.17).

Thus, by (5.15), (5.16) and (5.17), we have written E as the union of two non-

empty, separated sets, which is an absurdity as E is connected by hypothesis. Thus,

it is proven that f(E) is connected. ■

Theorem 5.18 [Intermediate Value Theorem] Let f be a real function de�ned and

continuous on [a, b] ⊂ R. If c is a real number such that f(a) < c < f(b) (or

f(b) < c < f(a)), then there exists x ∈ (a, b) such that f(x) = c.

Proof: We know that [a, b] is connected (by Prop. 3.31) and f is continuous.

Hence, by Theorem 5.17, E = f([a, b]) is connected. Since f(a), f(b) ∈ E, by

Proposition 3.31 (characterization of connected sets), E must be an interval. Since

f(a) < c < f(b), c lies between two points of the interval E. Thus c ∈ E. This

means c ∈ f([a, b]), i.e., c = f(x) for some x ∈ [a, b]. But since c ̸= f(a) and

c ̸= f(b), we must have x ∈ (a, b) such that f(x) = c, which concludes the proof. ■

Remark: A natural question arises: Is the converse of the Intermediate Value

Theorem valid? That is, given a function f : A ⊂ R → R, if for any two points

f(a), f(b) in the image, f takes on all values c between f(a) and f(b), can I a�rm

that the function f is continuous? The answer is no. Let's see a counter-example.

Consider:

f(x) =

{
sin(1/x), x ̸= 0,

0, x = 0.
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−0.5 0.5

−1

1

x

y
1

−1

Figure 5.3: f(x) = sin
1

x
.

The function f satis�es the intermediate value property, however it is not con-

tinuous at x = 0 because

lim
x→0+

sin(1/x) and lim
x→0−

sin(1/x) do not exist.

Exercise: Let f : [a, b] → R be a continuous function and f(a) < 0 < f(b). Prove

that there exists α ∈ (a, b) such that f(α) = 0, without using the connectedness of

f([a, b]).

Hint: Consider

A := {x ∈ [a, b] : f(t) ≤ 0; ∀t ∈ [a, x]}.

*(Note: Changed f(t)<0 to f(t)<=0 in the hint to make A closed)* The idea is to

show that A has a supremum. De�ne α = supA. Then prove that f(α) = 0 (to do

this, proceed by contradiction, assuming f(α) < 0 and f(α) > 0).
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x
[
a

f (a)

f (b)

b

]
0 α

y
y = f (x)

A

Figure 5.4:
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Exercises: Limits and Continuity

1a Question Let f(x) = x4, a ∈ and L = a4. Let ϵ > 0. Find a δ > 0 such that:

|f(x)− L| < ϵ for every x that satis�es 0 < |x− a| < δ.

2a Question Let ϵ > 0. Find a δ > 0 such that: 0 < |x− 1| < δ ⇒
∣∣∣ 1x − 1

∣∣∣ < ϵ.

3a Question Let ϵ > 0. Find a δ > 0 such that: 0 < |x−0| < δ ⇒
∣∣∣ x
1+sin2 x

−0
∣∣∣ <

ϵ.

4a Question Let f(x) =
√
|x|, a = 0 and L = 0. Let ϵ > 0. Find a δ > 0 such

that:

|f(x)− L| < ϵ for every x that satis�es 0 < |x− a| < δ.

5a Question Let ϵ > 0. Find a δ > 0 such that: 0 < |x− 1| < δ ⇒
∣∣∣√x− 1

∣∣∣ < ϵ.

6a Question If the limits lim
x−→a

f(x) and lim
x−→a

g(x) do not exist, can lim
x−→a

(f(x) +

g(x)) or lim
x−→a

(f(x)g(x)) exist?

7a Question Prove that:

lim
x−→a

f(x) = L⇔ lim
x−→a

f(x+ a) = L

8a Question Prove that:

lim
x−→a

f(x) = L⇔ lim
x−→a

[f(x)− L] = 0

9a Question Let L > 0. Prove that lim
x−→0

1

x
= L is false.

10a Question Using the de�nition of a limit, prove that lim
x−→a

f(x) does not exist,

∀a ∈ for the following function:

f(x) =

{
0, if x ∈ Q
1, if x ∈ −Q
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11a Question Let f : X −→, a ∈ X ′ and Y = f(X−{a}). If lim
x−→a

f(x) = L then

L ∈ Y .

12a Question Let f : X −→ and a ∈ X ′. In order for lim
x−→a

f(x) to exist, it is

su�cient that, for every sequence of points xn ∈ X −{a} with limxn = a, the

sequence (f(xn)) is convergent.

13a Question Let f : X −→, g : Y −→ with f(X) ⊂ Y , a ∈ X ′ and b ∈ Y ′ ∩ Y .
If

lim
x−→a

f(x) = b e lim
y−→b

g(y) = c,

prove that limx−→a g(f(x)) = c, provided that c = g(b) or else that x ̸= a

implies f(x) ̸= b.

14a Question Let f, g : X −→ be de�ned by f(x) = 0 if x is irrational and

f(x) = x if x ∈ Q; g(0) = 1 and g(x) = 0 if x ̸= 0. Show that lim
x−→0

f(x) = 0

and lim
y−→0

g(y) = 0. However lim
x−→0

g(f(x)) does not exist.

15a Question Dada a função

f(x) =

{
3, if x ∈ Z
1, if x ∈ −Z,

at which points in the domain of f does the limit not exist?

16a Question Let f :→ be the identity function, i.e., f(x) = x for all x ∈. Then
prove the following statements:

(a) lim
x→a

f(x) = lim
x→a

x = a for all a ∈.

(b) lim
x→a

xn = an ∀n ∈ N(use induction)

(c) lim
x→a

p(x) = p(a), where p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

(d) lim
x→a

f(x) = f(a), where f(x) = p(x)
q(x)

, p(x) and q(x) are polynomials and

q(a) ̸= 0.

(e) Let f(x) = p(x)
q(x)

be the quotient of two polynomials. If q(a) = 0, then

a is a root of q(x) and, therefore, x − a divides q(x). Let m ≥ 1 such

that q(x) = (x − a)mq1(x), with q1(a) ̸= 0, and let n ≥ 0 such that

p(x) = (x− a)np1(x), with p1(a) ̸= 0. Then:

(i) If m = n, lim
x→a

f(x) =
p1(a)

q1(a)
,

(ii) If m < n, lim
x→a

f(x) = 0,

(iii) If m > n, lim
x→a

f(x) does not exist.
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17a Question Let f :→ be the function de�ned by

f(x) =

{
0, if x ∈ Q
1, if x ∈ −Q

Prove that lim
x→a

f(x) does not exist for all a ∈. But, if g(x) = (x−a)f(x) prove
that lim

x→a
g(x) = 0.

18a Question Let f : Q → be the function de�ned by

f(x) =


1

q
, if p

q
is an irreducible fraction with q > 0

1, if x = 0

Prove that lim
x→a

f(x) = 0 for all a ∈.

19a Question Let f : −{0} → be the function de�ned by f(x) = sin 1
x
. Then

lim
x→0

f(x) does not exist.

20a Question Calculate the following limits (
[[
·
]]
represents the �oor function):

a) lim
x→0−

[
x2
[[
− x/2

]]
|x|
[[
3x]
] +

1

|x|
−
√
1 +

1

x2

]
, b) lim

x→2−

x2
[[

2x+1
x−1

]]
− 10x

x3 − 11x2 + 38x− 40

c) lim
x→1−

3

√
x
[[
1/x2

]]
+ 7

2− x2
, d) lim

x→1+

3

√
x
[[
1/x2

]]
+ 7

2− x2

e) lim
x→0+

|x| −
√

|x|
x2 + x

, f) lim
x→0−

|x| −
√
|x|

x2 + x

g) lim
x→+∞

√
x2 + 7x+ 10

x
, h) lim

x→−∞

√
x2 + 7x+ 10

x

i) lim
x→+∞

[
sin

√√
x2 + 1 + 2− sin

√√
x2 + 3 + 1

]
, j) lim

x→+∞

[
sin

√
x+ 2− sin

√
x
]

21a Question Let f be such that |f(x)| ≤ |x| ∀x ∈. Prove that f is continuous

at 0.

22a Question Suppose that g is continuous at 0, g(0) = 0 and that |f(x)| ≤
|g(x)| ∀x ∈. Prove that f is continuous at 0.

23a Question Let f, g : X ⊂−→ be continuous at the point a ∈ X. Prove

that the functions φ, ψ : X ⊂−→, de�ned by φ(x) = max{f(x), g(x)} and

ψ(x) = min{f(x), g(x)} for all x ∈ X, are continuous at the point a.

24a Question Prove that f :−→ is continuous if, and only if, for every X ⊂, one
has f(X) ⊂ f(X).
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25a Question Let f :−→ be continuous. Prove that if f(x) = 0 for every x ∈ X ⊂
then f(x) = 0 for every x ∈ X.

26a Question Let f :−→ be continuous, such that lim
x→+∞

f(x) = lim
x→−∞

f(x) =

+∞. Prove that there exists x0 ∈ such that f(x0) ≤ f(x) for all x ∈.

27a Question Give an example of a function f that is not continuous at any

point, but such that |f | is continuous at all points.

28a Question Find a function that is continuous at a, but that is not continuous

at any other point.

29a Question Suppose that f satis�es f(x+ y) = f(x) + f(y)∀x, y ∈ and that f

is continuous at 0. Prove that f is continuous at a for all a ∈.

30a Question Let f be continuous at a and such that f(a) = 0, let α > 0. Prove

that ∃ δ > 0 such that f(x) + α ̸= 0∀x ∈ (a− α, a+ α).

31a Question Let f(x) = x3−x+3∀x ∈. Find an n ∈ Z such that ∃x0 ∈ [n, n+1]

such that f(x0) = 0.

32a Question Let f(x) = x5+x+1 ∀x ∈. Find an n ∈ Z such that ∃x0 ∈ [n, n+1]

such that f(x0) = 0.

33a Question Prove that ∃x0 ∈ such that x1790 +
163

1 + x20 + sin2(x)
= 119.

34a Question Prove that ∃ c ∈ such that sin(c) = c− 1.

35a Question Let f : [a, b] −→ be continuous and such that f(x) ∈ Q∀x ∈ [a, b].

Prove that f is constant.

36a Question Let f, g : [a, b] −→ be continuous, such that f(a) < g(a) and

g(b) < f(b) . Prove that ∃x0 ∈ [a, b] such that f(x0) = g(x0).

37a Question Prove that the function f(x) =
1

1 + x2
for x ∈ is uniformly con-

tinuous on .

38a Question Prove that if f, g are uniformly continuous on X ⊂ then f + g is

uniformly continuous on X.

39a Question Prove that if f, g are uniformly continuous onX ⊂ and are bounded

on X , then the product fg is uniformly continuous on X.
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40a Question If f(x) = x e g(x) = sinx, Prove that f e g são uniformemente

contínuas em , mas que seu produto naõ o é.

41a Question Prove that if f is continuous on [0,+∞) and uniformly continu-

ous en (a,+∞) para alguma constante positiva a , então f é uniformemente

contínua em [0,+∞) .
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Chapter 6

Di�erentiation

6.1 Di�erentiable Functions

De�nition 6.1 Let X ⊂ R and a ∈ X ∩ X ′ (i.e., an accumulation point of X

belonging to X). We say that f is di�erentiable (or derivable) at the point a if the

following limit exists:

lim
x→a

f(x)− f(a)

x− a
.

If it exists, this limit is denoted by f ′(a) and is called the derivative of f at

the point a. It is understood that the function q : x 7→ f(x)−f(a)
x−a

is de�ned on the

set X\{a}. Geometrically, q(x) represents the slope (or angular coe�cient) of the

secant line to the graph of f that passes through the points (a, f(a)) and (x, f(x)).

The line that passes through the point (a, f(a)) and has a slope equal to f ′(a) is

called the tangent to the graph of f at the point (a, f(a)). The slope of the tangent

is, therefore, the limit of the slopes of the secant lines passing through (a, f(a)) and

(x, f(x)) as x→ a (see �gure ??).

Writing h = x − a or x = a + h, the derivative of f at the point a ∈ X ∩ X ′

becomes the limit:

lim
h→0

f(a+ h)− f(a)

h
.

Note that the function h 7→ f(a+h)−f(a)
h

is de�ned on the set

Y = {h ∈ R\{0} : a+ h ∈ X},

which has zero as an accumulation point. Indeed, let ε > 0. Then Bε(a)∩(X\{a}) ̸=
∅. It follows that there exists x ∈ Bε(a) and x ∈ X with x ̸= a. Now, since x ̸= a,

then x = a+h for some h ̸= 0. Hence, (a+h) ∈ Bε(a) (since | a+ h︸ ︷︷ ︸
=x

−a| = |x−a| <

ε), h ̸= 0 and (a+ h) ∈ X. Consequently h ∈ Y . This shows Bε(0)∩ (Y \ {0}) ̸= ∅,
proving that 0 ∈ Y ′.
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x

y

a

f (a)

x

f (x)

se
ca
nt

tangent

(a, f (a))

(x, f (x))

Figure 6.1:

When a ∈ X ∩X ′
+ (i.e., when a is a right-accumulation point of X and belongs

to X), we can de�ne the right-hand derivative of f at a as the limit, if it exists:

f ′
+(a) = lim

x→a+

f(x)− f(a)

x− a
= lim

h→0+

f(a+ h)− f(a)

h
. (6.1)

Similarly, the left-hand derivative f ′
−(a) is de�ned when a is a left-accumulation

point that belongs to the domain of f .

Evidently, when a ∈ X is both a right and left accumulation point, f ′(a) exists

if and only if the lateral derivatives f ′
+(a) and f

′
−(a) exist and are equal.

Remarks:

1a) When we say that a function f : [c, d] → R, de�ned on a compact interval,

is di�erentiable at a point a ∈ [c, d], this means, in the case of a ∈ (c, d), that f

has both lateral derivatives at a and they are equal. In the case where a is one of

the endpoints, this simply means that the lateral derivative that makes sense at a

exists.

It follows from the general properties of limits that f : X → R is di�erentiable

at a if and only if for any sequence of points {xn} ⊂ X\{a} with limn→+∞ xn = a,

we have limn→+∞
f(xn)−f(a)

xn−a
= f ′(a).

Examples:

(i) Let f : R → R be constant, i.e., f(x) = c, c ∈ R. Then f ′(a) = 0 for all

a ∈ R. Indeed,

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

c− c

x− a
= 0.
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Di�erentiation 6.2 Properties of Di�erentiable Functions

(ii) Let f : R → R be given by f(x) = cx+ d. Then, given a ∈ R, we have:

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

(cx+ d)− (ca+ d)

x− a

= lim
x→a

c(x− a)

x− a
= c.

(iii) Let f : R → R be given by f(x) = x2. Then, given a ∈ R

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

a2 + 2ah+ h2 − a2

h

= lim
h→0

(2a+ h)h

h
= 2a.

(iv) Let f : R → R be de�ned by f(x) = |x|. Then, for x ̸= 0:

f(x)− f(0)

x− 0
=

|x|
x

= ±1 (+1 if x > 0 and − 1 if x < 0).

It follows that f ′
+(0) = 1 and f ′

−(0) = −1 exist, but f ′(0) does not exist. However,

for a ̸= 0, f ′(a) exists, equaling 1 if a > 0 and −1 if a < 0.

De�nition 6.2 We say that f : X ⊂ R → R is di�erentiable on the set X if the

derivative of f exists at all points a ∈ X ∩X ′.

Theorem 6.3 Let f : X ⊂ R → R and a ∈ X ∩X ′. If the derivative f ′(a) exists,

then f is continuous at a.

Proof: If the limit limx→a
f(x)−f(a)

x−a
exists, then the limit

lim
x→a

[f(x)− f(a)] = lim
x→a

(
f(x)− f(a)

x− a
· (x− a)

)
=

(
lim
x→a

f(x)− f(a)

x− a

)(
lim
x→a

(x− a)
)
= f ′(a) · 0 = 0.

Hence, limx→a f(x) = f(a), which proves the desired result (by Remark 3a of Ch.

5). ■

Remark: It follows from Theorem 6.3 that if f is not continuous at a ∈ X, then

f is not di�erentiable at a ∈ X. However, example (iv) shows that there exist

continuous functions that are not di�erentiable.
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Di�erentiation 6.2 Properties of Di�erentiable Functions

6.2 Properties of Di�erentiable Functions

Theorem 6.4 Let f, g : X → R be di�erentiable at the point a ∈ X ∩ X ′. Then

f ± g, f · g, f/g (if g(a) ̸= 0) are di�erentiable at this same point. Furthermore, we

have:

(i) (f + g)′(a) = f ′(a) + g′(a).

(ii) (f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a). In particular, if f(x) = c, then

(c g)′(a) = c g′(a).

(iii)
(

1
g

)′
(a) = − g′(a)

(g(a)2)
.

Proof: (i)

(f + g)′(a) = lim
h→0

(f + g)(a+ h)− (f + g)(a)

h

= lim
h→0

f(a+ h) + g(a+ h)− [f(a) + g(a)]

h

= lim
h→0

[
f(a+ h)− f(a)

h
+
g(a+ h)− g(a)

h

]
= lim

h→0

f(a+ h)− f(a)

h
+ lim

h→0

g(a+ h)− g(a)

h
= f ′(a) + g′(a).

(ii)

(f g)′(a) = lim
h→0

(f g)(a+ h)− (f g)(a)

h

= lim
h→0

f(a+ h)g(a+ h)− f(a)g(a)

h

= lim
h→0

f(a+ h)g(a+ h)− f(a+ h)g(a) + f(a+ h)g(a)− f(a)g(a)

h

= lim
h→0

[
f(a+ h)

g(a+ h)− g(a)

h
+

(f(a+ h)− f(a))

h
g(a)

]
= lim

h→0
f(a+ h) · lim

h→0

g(a+ h)− g(a)

h
+ lim

h→0

f(a+ h)− f(a)

h
· g(a)

= f(a) g′(a) + f ′(a) g(a).

(Note: we used limh→0 f(a+ h) = f(a) since f is continuous at a by Thm 6.3).

(iii) Before proving the result, we must be sure that the expression (1/g)(a+h)−(1/g)(a)
h

makes sense. It is necessary to verify that (1/g)(a + h) is well-de�ned for h su�-

ciently small. Indeed, since g is di�erentiable at a, it follows that g is continuous at
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Di�erentiation 6.3 The Chain Rule

a. As g(a) ̸= 0, there exists δ > 0 such that g(a+ h) ̸= 0 for |h| < δ. Thus

lim
h→0

(
1
g

)
(a+ h)−

(
1
g

)
(a)

h
= lim

h→0

1
g(a+h)

− 1
g(a)

h

= lim
h→0

g(a)− g(a+ h)

h[g(a) g(a+ h)]

= lim
h→0

[
−g(a+ h)− g(a)

h
· 1

g(a) g(a+ h)

]
=

(
− lim

h→0

g(a+ h)− g(a)

h

)
·
(
lim
h→0

1

g(a) g(a+ h)

)
= −g′(a) · 1

(g(a))2
.

■

Corollary 6.5 If f, g : X → R are di�erentiable at the point a ∈ X ∩ X ′ and

g(a) ̸= 0, then f/g is di�erentiable and, furthermore:(
f

g

)′

(a) =
f ′(a)g(a)− f(a)g′(a)

(g(a))2
.

Proof: Exercise. (Hint: Use f/g = f · (1/g) and the product rule (ii) and rule

(iii)). ■

6.3 The Chain Rule

Let X ⊂ R, f : X → R be a function and a ∈ X ∩X ′. To say that

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

is equivalent to saying that

f(a+ h) = f(a) + f ′(a)h+ r(h) where lim
h→0

r(h)

h
= 0.

Indeed, assume that f ′(a) = limh→0
f(a+h)−f(a)

h
. De�ning r(h) = f(a + h) − f(a) −

f ′(a)h, it follows that

r(h)

h
=
f(a+ h)− f(a)

h
− f ′(a).

Applying the limit as h tends to zero on both sides of the identity above, it follows

that:

lim
h→0

r(h)

h
= lim

h→0

f(a+ h)− f(a)

h
− f ′(a) = f ′(a)− f ′(a) = 0,
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Di�erentiation 6.3 The Chain Rule

which proves the claim.

Conversely, let f(a+ h) = f(a) + f ′(a)h+ r(h) where limh→0
r(h)
h

= 0. Hence,

f(a+ h)− f(a)

h
= f ′(a) +

r(h)

h
.

Applying the limit as h tends to zero on both sides of the identity above, we obtain:

lim
h→0

f(a+ h)− f(a)

h
= f ′(a).

From the above, we also have:

lim
h→0

r(h) = lim
h→0

[
r(h)

h
· h
]
= lim

h→0

r(h)

h
· lim
h→0

h = 0 · 0 = 0

We have the following geometric interpretation:

x

y

a

f (a)

a + h

f (a + h) f

t

Figure 6.2:

We have: r(h) = f(a+ h)− f(a)− f ′(a)h. Let us determine the equation of the

line t: y = mx+ b, where m = f ′(a). In particular f(a) = f ′(a)a+ b, which implies

b = f(a)− f ′(a) a. Thus, y = f ′(a)x+ (f(a)− f ′(a)a), or

y = f(a) + f ′(a)(x− a).

Observe the �gure below:
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x

y

a

f (a)

a + h

f (a + h)

f (a) + f ′(a)h

f

t

|r(h)| = |f (a + h)− (f (a) + f ′(a)h)|

h

Note that as h → 0, r(h) → 0, and the tangent line is a 'good approximation' of f

at the point x = a.

Lemma 6.6 Let f : X ⊂ R → R be a map. If f has a derivative at a point

a ∈ X ∩ X ′, then there exists a function ρ : R → R continuous at the origin such

that

f(a+ h)− f(a) = [f ′(a) + ρ(h)]h,

for all a and a+ h belonging to X.

Proof: Let us de�ne:

ρ(h) :=


f(a+ h)− f(a)

h
− f ′(a); h ̸= 0 and a+ h ∈ X

0, h = 0.

We will show that ρ thus de�ned satis�es the conditions of the lemma. Indeed, since

f is di�erentiable at a ∈ X ∩X ′, then

lim
h→0

f(a+ h)− f(a)

h
= f ′(a).

Thus,

lim
h→0

ρ(h) = lim
h→0

(
f(a+ h)− f(a)

h
− f ′(a)

)
= f ′(a)− f ′(a) = 0 = ρ(0),

which proves the continuity of ρ at zero. The second condition is satis�ed by the

very de�nition of ρ. ■
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Di�erentiation 6.3 The Chain Rule

Theorem 6.7 [Chain Rule] Let f : X ⊂ R → Y and g : Y ⊂ R → R be functions

such that f(X) ⊂ Y , a ∈ X ∩X ′ and b = f(a) ∈ Y ∩ Y ′. If f ′(a) and g′(b) exist,

then g ◦ f : X → R is di�erentiable at a and the rule holds:

(g ◦ f)′(a) = g′(b)f ′(a).

Proof: By Lemma 6.6, since f is di�erentiable at a and g is di�erentiable at

b = f(a), there exist two functions ρ : R → R and σ : R → R, both continuous at

the origin, such that

(I) f(a+ h)− f(a) = [f ′(a) + ρ(h)]h, where limh→0 ρ(h) = 0,

(II) g(b+ k)− g(b) = [g′(b) + σ(k)]k, where limk→0 σ(k) = 0.

Let k = f(a+ h)− f(a). Then, from this identity and (I):

k = [f ′(a) + ρ(h)]h. (6.2)

f(a+ h) = k + f(a) = k + b. (6.3)

Note that from (6.3) we have

(g ◦ f)(a+ h) = g(f(a+ h)) = g(k + b).

But we also have from identity (II): g(b + k)− g(b) = [g′(b) + σ(k)]k. Substituting

k in the identity above by its expression given in (6.2) yields from (II) that

(g ◦ f)(a+ h) = g(f(a+ h)) = g(k + f(a)) = g(k + b)

= g(b) + [g′(b) + σ(k)]k

= g(b) + [g′(b) + σ(k)][f ′(a) + ρ(h)]h

= g(b) + h[g′(b)f ′(a) + g′(b)ρ(h) + σ(k)f ′(a) + σ(k)ρ(h)].(6.4)

On the other hand,

(g ◦ f)(a) = g(f(a)) = g(b). (6.5)

Combining (6.4) and (6.5) we deduce that

(g ◦ f)(a+ h)− (g ◦ f)(a) = h[g′(b)f ′(a) + g′(b)ρ(h) + σ(k)f ′(a) + σ(k)ρ(h)],

which implies that

(g ◦ f)′(a) = lim
h→0

(g ◦ f)(a+ h)− (g ◦ f)(a)
h

= lim
h→0

[g′(b)f ′(a) + g′(b)ρ(h) + σ(k)f ′(a) + σ(k)ρ(h)]. (6.6)
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However, let us observe that from the de�nition of k, i.e., k = f(a + h) − f(a), it

follows that (by continuity of f at a)

lim
h→0

k(h) = lim
h→0

(f(a+ h)− f(a)) = 0.

And from the facts that limh→0 ρ(h) = 0 and (by composition of limits) limh→0 σ(k(h)) =

σ(limh→0 k(h)) = σ(0) = 0, it follows from (6.6) that

(g ◦ f)′(a) = g′(b) f ′(a).

■

Examples:

(1) Consider ϕ : R → R de�ned by ϕ(x) = 3
√
x3 + x2 + 1. ϕ(x) = (g ◦ f)(x)

where g(u) = u1/3 and u = f(x) = x3 + x2 + 1. Thus, by the Chain Rule:

ϕ′(x) = g′(u) · f ′(x)

=
1

3
u−2/3(3x2 + 2x)

=
3x2 + 2x

3u2/3

=
3x2 + 2x

3(x3 + x2 + 1)2/3
.

(2) Consider ϕ : R → R de�ned by ϕ(x) = (x2 + 1)3. Let u = f(x) = x2 + 1 and

g(u) = u3. ϕ(x) = (g ◦ f)(x). Hence, ϕ′(x) = g′(u)f ′(x). Thus,

ϕ′(x) = 3u2 · (2x)

= 3(x2 + 1)2 · 2x = 6x(x2 + 1)2.

Corollary 6.8 (Derivative of the Inverse Function) Let f : X ⊂ R → Y ⊂ R
be an invertible function. Let g := f−1 : Y → X. If f is di�erentiable at a ∈ X ∩X ′

and g is continuous at b = f(a) ∈ Y ∩ Y ′, then g is di�erentiable at b if and only if

f ′(a) ̸= 0. In that case:

g′(b) =
1

f ′(a)
.

Proof: `⇒' Assume g is di�erentiable at b = f(a) and consider ϕ = g ◦ f . Since f
and g are di�erentiable at a and b, respectively, we have by the Chain Rule that

ϕ′(a) = g′(b) · f ′(a). (6.7)
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On the other hand, since f is the inverse of g, we have ϕ(x) = (g ◦ f)(x) = x for

x ∈ X. Hence:

ϕ′(a) = lim
h→0

ϕ(a+ h)− ϕ(a)

h
(6.8)

= lim
h→0

(a+ h)− a

h
= 1, (6.9)

and from (6.7) and (6.8) we obtain g′(b) · f ′(a) = 1, which implies f ′(a) ̸= 0 and

g′(b) = 1
f ′(a)

.

`⇐' Conversely, assume f ′(a) ̸= 0. Let y ∈ Y \ {b} and x = g(y) ∈ X \ {a}. As
g is continuous at b, we have limy→b g(y) = g(b) = a. We have

g′(b) = lim
y→b

g(y)− g(b)

y − b
= lim

y→b

x− a

f(x)− f(a)

= lim
y→b

1
f(x)−f(a)

x−a

= lim
x→a

1
f(x)−f(a)

x−a

=
1

limx→a
f(x)−f(a)

x−a

=
1

f ′(a)
,

where we used the change of variables x = g(y) and the fact that y → b =⇒ x→ a

(by continuity of g) and f ′(a) ̸= 0. ■

Example: Let f : R → R de�ned by f(x) = x3. This function is bijective and

has a continuous inverse g : R → R given by g(y) = 3
√
y. f ′(a) = 3a2. Hence, for

a = 0 (where f ′(0) = 0), g does not have a derivative at b = f(0) = 0. However, for

a ̸= 0 and b = a3:

g′(b) =
1

f ′(a)
=

1

3a2
=

1

3(b1/3)2
=

1

3b2/3
.

6.4 Local Maxima and Minima and the Mean Value

Theorem

De�nition 6.9 Let f : X ⊂ R → R be a function. f is said to have a local maximum

at the point x0 ∈ X, if there exists δ > 0 such that if x ∈ X ∩ (x0 − δ, x0 + δ) then

f(x) ≤ f(x0). A local minimum is de�ned similarly.

Theorem 6.10 (Fermat's Theorem) Let f : I ⊂ R → R be di�erentiable at a point

x0 belonging to the interior of the interval I. If x0 is a point of local maximum (or

minimum), then f ′(x0) = 0.
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x

y

x0 x1

x0 is a local minimum point
x1 is a local maximum point

Figure 6.3: x0 is a local minimum point, while x1 is a local maximum point

Proof: Let x0 be a local maximum point belonging to the interior of I. Then there

exists δ1 > 0 such that if x ∈ I ∩ (x0 − δ1, x0 + δ1) then f(x) ≤ f(x0). On the other

hand, since f is di�erentiable at x0 (an interior point), the limits f ′
+(x0) and f

′
−(x0)

exist and are equal. Let h ̸= 0 be small enough such that x0+h ∈ I∩(x0−δ1, x0+δ1).
Note that f(x0 + h)− f(x0) ≤ 0.

f(x0 + h)− f(x0)

h
≤ 0 if h > 0,

f(x0 + h)− f(x0)

h
≥ 0 if h < 0.

Taking the limits, it follows that f ′
+(x0) = limh→0+

...
h
≤ 0 and f ′

−(x0) = limh→0−
...
h
≥

0. Since f ′(x0) = f ′
+(x0) = f ′

−(x0), the only possibility is f ′(x0) = 0. The proof is

analogous if x0 is a local minimum point. ■

Theorem 6.11 (Rolle's Theorem) Let f : [a, b] → R be continuous on [a, b] and

di�erentiable on (a, b) such that f(a) = f(b). Then there exists a point c ∈ (a, b)

such that f ′(c) = 0.

Proof: If f is constant, f ′(c) = 0 for all c ∈ (a, b), and we are done. Suppose, then,

that f is not constant. Since f is continuous on the compact set [a, b], f attains

its maximum and minimum on this compact set (Thm 5.13). That is, there exist

x1, x2 ∈ [a, b] such that

f(x2) ≤ f(x) ≤ f(x1), ∀x ∈ [a, b].

However, since f is not constant and f(a) = f(b), at least one of these points, x1

or x2, must be an interior point (in (a, b)). Let c be that interior point. Since c is a

point of local maximum or minimum, by Theorem 6.10, we have f ′(c) = 0. ■
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Theorem 6.12 (Mean Value Theorem) Let f : [a, b] → R be a function that is

continuous on [a, b] and di�erentiable on (a, b). Then there exists a point c ∈ (a, b)

such that:

f ′(c) =
f(b)− f(a)

b− a
.

Proof: Consider the auxiliary function de�ned by:

h(x) = (f(b)− f(a))x− (b− a)f(x); x ∈ [a, b].

h is clearly continuous on [a, b] and di�erentiable on (a, b). Furthermore,

h(a) = (f(b)− f(a))a− (b− a)f(a)

= f(b)a− f(a)a− bf(a) + f(a)a = f(b)a− bf(a),

h(b) = (f(b)− f(a))b− (b− a)f(b)

= f(b)b− f(a)b− bf(b) + af(b) = −f(a)b+ af(b).

Therefore, h(a) = h(b), and by Rolle's Theorem, there exists c ∈ (a, b) such that

h′(c) = 0. However,

h′(x) = (f(b)− f(a))− (b− a)f ′(x), ∀x ∈ (a, b).

In particular,

0 = h′(c) = (f(b)− f(a))− (b− a)f ′(c),

which implies that

f ′(c) =
f(b)− f(a)

b− a
.

■

Exercise: Let f : (a, b) → R be di�erentiable. Prove that:

(a) If f ′(x) ≥ 0 for all x ∈ (a, b) then f is non-decreasing.

(b) If f ′(x) = 0 for all x ∈ (a, b) then f is constant.

(c) If f ′(x) ≤ 0 for all x ∈ (a, b) then f is non-increasing.

Let's do item (a): Consider x1, x2 ∈ (a, b) with x1 < x2. Since f is di�erentiable

on (a, b), it is continuous on [x1, x2]. Then, according to the Mean Value Theorem,

there exists c ∈ (x1, x2) such that

f ′(c) =
f(x2)− f(x1)

x2 − x1
,

i.e., f(x2) − f(x1) = f ′(c)(x2 − x1). However, since f ′(c) ≥ 0 (by hypothesis) and

(x2 − x1) > 0, it follows that f(x2) − f(x1) ≥ 0, i.e., f(x2) ≥ f(x1), which proves

the desired result.
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Theorem 6.13 [Darboux's Theorem - IVT for Derivatives] Suppose f is a real

function, di�erentiable on [a, b], such that f ′(a) < λ < f ′(b). Then, there exists a

point x ∈ (a, b) such that f ′(x) = λ.

Proof: Suppose initially that λ = 0, i.e., f ′(a) < 0 < f ′(b). (Note f ′(a) = f ′
+(a)

and f ′(b) = f ′
−(b)).

I claim: There exists δ > 0 such that if a < x < a+δ, then f(x)−f(a)
x−a

< 0. Indeed,

suppose the contrary. Then for every δ > 0, there exists xδ ∈ (a, a + δ) such that
f(xδ)−f(a)

xδ−a
≥ 0. In particular, for δ = 1/n, there exists xn ∈ (a, a + 1/n) such that

f(xn)−f(a)
xn−a

≥ 0. As xn → a+, it follows that f ′
+(a) = limn→+∞

f(xn)−f(a)
xn−a

≥ 0, which

contradicts f ′(a) < 0. This proves the claim. It follows that f(x) < f(a) for all

x ∈ (a, a+ δ), and therefore a is not a point of local minimum.

Analogously, there exists δ > 0 such that if b − δ < x < b, then f(x)−f(b)
x−b

> 0.

Since x − b < 0, this implies f(x) − f(b) < 0, so f(x) < f(b) for all x ∈ (b − δ, b).

Thus, b is also not a point of local minimum.

On the other hand, since f is continuous on [a, b], f must attain its minimum

on [a, b]. From the above, this minimum must occur in (a, b). That is, there exists

x ∈ (a, b) which is a local minimum, and by Theorem 6.10, f ′(x) = 0.

Now consider the general case. Let g(x) = f(x) − λx. It is clear that g is

di�erentiable on (a, b) and continuous on [a, b]. Furthermore,

g′(a) = f ′(a)− λ < 0,

g′(b) = f ′(b)− λ > 0.

Therefore, by the previous case, there exists x ∈ (a, b) such that g′(x) = 0, which

implies f ′(x)− λ = 0, or f ′(x) = λ. ■

6.5 Higher-Order Derivatives and Taylor Polynomi-

als

If a function f is di�erentiable on an interval containing a point c, one can inquire

about the existence (or non-existence) of the derivative of the function f ′ at the

point c. If this derivative exists, it is called the second derivative of f at c and is

denoted by f ′′(c) or f (2)(c). We then say that f ′ is di�erentiable at c. In general, if

n ∈ N, one can make analogous considerations and de�ne the n-th order derivative

of f at c. Notation: f (n)(c) or dnf
dxn (c).
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If f : I → R is such that f (n)(x) exists for all x ∈ I, we say that f is n-times

di�erentiable on I. If f is n-times di�erentiable on I and f (n) is continuous, we say

that f is of class Cn(I).

Taylor Polynomial If f is a function that is n-times di�erentiable on an interval

I and x0 is an interior point of I, it is possible to �nd a polynomial of degree n,

denoted by Pn,x0 , such that:

Pn,x0(x0) = f(x0); P
′
n,x0

(x0) = f ′(x0), · · · , P (n)
n,x0

(x0) = f (n)(x0).

Precisely, such a polynomial is:

Pn,x0(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n.

This polynomial is called the Taylor polynomial of degree n of the function f at the

point x0.

Theorem 6.14 [Taylor's Theorem] Let f : I ⊂ R → R. Suppose that for some n ∈
N, the derivatives up to order n exist and are continuous on I = [a, b]. Furthermore,

suppose f (n+1) exists on (a, b). If x0 ∈ [a, b], then for each x ∈ [a, b] (x ̸= x0), there

exists c between x and x0 such that

f(x) = Pn,x0(x) +
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1.

The term f (n+1)(c)
(n+1)!

(x − x0)
n+1 is called the remainder of order n and is denoted by

Rn,x0(x) (Lagrange form of the remainder).

Proof: Consider the points x0 and x, and let J be the closed interval with endpoints

x and x0. If x = x0, J = {x0} and the theorem follows trivially. Let x ̸= x0, and

consider the auxiliary function:

F : J → R, t 7→ F (t) = f(x)− Pn,t(x), (6.10)

where

Pn,t(x) = f(t) + f (1)(t)(x− t) +
f (2)(t)

2!
(x− t)2 + · · ·+ f (n)(t)

n!
(x− t)n. (6.11)

It can be veri�ed that

F ′(t) = −(x− t)n

n!
f (n+1)(t),
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where this derivative exists for t in the interior of J . Indeed, from (6.10) and (6.11)

applying the product rule to each term:

F ′(t) = − d

dt
[Pn,t(x)]

= −
[
f ′(t) + (f ′′(t)(x− t)− f ′(t)) +

(
f ′′′(t)

2!
(x− t)2 − f ′′(t)

2!
2(x− t)

)
+ · · ·+

(
f (n+1)(t)

n!
(x− t)n − f (n)(t)

n!
n(x− t)n−1

)]
This is a telescoping sum where most terms cancel out:

F ′(t) = − [(f ′(t)− f ′(t)) + (f ′′(t)(x− t)− f ′′(t)(x− t)) + . . .

+(
f (n)(t)

(n− 1)!
(x− t)n−1 − f (n)(t)

(n− 1)!
(x− t)n−1) +

f (n+1)(t)

n!
(x− t)n

]
= −f

(n+1)(t)

n!
(x− t)n,

which proves the claim. Now, de�ne the function:

G : J → R; t 7→ G(t) = F (t)−
(
x− t

x− x0

)n+1

F (x0).

The function G is such that

G(x0) = F (x0)−
(
x− x0
x− x0

)n+1

F (x0) = F (x0)− F (x0) = 0,

G(x) = F (x)−
(
x− x

x− x0

)n+1

F (x0) = F (x) = f(x)− Pn,x(x) = f(x)− f(x) = 0.

Note that G is continuous on J and di�erentiable on the interior of J . By Rolle's

Theorem, there exists c between x and x0 such that G′(c) = 0. But

G′(t) = F ′(t)− (n+ 1)

(
x− t

x− x0

)n(
− 1

x− x0

)
F (x0)

0 = G′(c) = F ′(c) + (n+ 1)
(x− c)n

(x− x0)n+1
F (x0),

which implies

F (x0) = − (x− x0)
n+1

(n+ 1)(x− c)n
F ′(c)

=

(
− (x− x0)

n+1

(n+ 1)(x− c)n

)(
−(x− c)n

n!
f (n+1)(c)

)
,

i.e.,

F (x0) =
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1. (6.12)
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From (6.10) and (6.12), it follows that

F (x0) = f(x)− Pn,x0(x) =
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1,

i.e.,

f(x) = Pn,x0(x) +
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1,

which proves the desired result. ■

Application of Taylor's Theorem

Let I be an interval and x0 an interior point of I. Let f : I → R be n-times

di�erentiable (n ≥ 2) and assume that f ′, f ′′, · · · , f (n) are continuous in a neigh-

bourhood of x0 and that f ′(x0) = f ′′(x0) = · · · = f (n−1)(x0) = 0, with f (n)(x0) ̸= 0.

Then:

(I) If n is even and f (n)(x0) > 0, f has a local minimum at x0.

(II) If n is even and f (n)(x0) < 0, f has a local maximum at x0.

(III) If n is odd, f has neither a local maximum nor a local minimum at x0 (it

is an in�ection point).

Proof: By Taylor's Theorem (using the n− 1 polynomial, with remainder of order

n):

f(x) = f(x0) +
f (n)(c)

n!
(x− x0)

n, (6.13)

since f ′(x0) = f ′′(x0) = · · · = f (n−1)(x0) = 0. As f (n) is continuous at x0 and

f (n)(x0) ̸= 0, there exists a neighbourhood of x0 (say, (x0 − δ, x0 + δ)) where f (n)(t)

has the same sign as f (n)(x0). If x ∈ (x0− δ, x0+ δ), then c (which is between x and

x0) is also in this neighbourhood. Thus, f (n)(c) has the same sign as f (n)(x0).

(I) n is even and f (n)(x0) > 0. Then f (n)(c) > 0 and (x− x0)
n ≥ 0. Thus, (6.13)

implies f(x) ≥ f(x0) for x near x0. x0 is a local minimum.

(II) n is even and f (n)(x0) < 0. Then f (n)(c) < 0 and (x−x0)n ≥ 0. Thus, (6.13)

implies f(x) ≤ f(x0) for x near x0. x0 is a local maximum.

(III) n is odd. Then (x − x0)
n changes sign. If f (n)(x0) > 0, f(x) > f(x0) for

x > x0 and f(x) < f(x0) for x < x0. x0 is not an extremum. The case f (n)(x0) < 0

is analogous. ■
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Exercises on Di�erentiable Functions

1. Let f : R → R be constant, i.e., there exists c ∈ R such that f(x) = c for

every x ∈ R. Calculate f ′(a) for every a ∈ R. (Expected result: f ′(a) = 0)

2. Let f : R → R be given by f(x) = cx+ d. Let a ∈ R. Calculate f ′(a).

3. Let f : R → R, f(x) = x2. Let a ∈ R. Calculate f ′(a).

4. Let f : R → R, f(x) = xn, n ∈ N. Let a ∈ R. Calculate f ′(a).

5. Let f : R → R be the function de�ned by f(x) = |x|.

(a) Calculate: f ′(0+) and f ′(0−).

(b) Calculate f ′(a) if a > 0 and f ′(a) if a < 0.

6. Let f : [0,+∞) → R be de�ned by f(x) =
√
x. Let a ∈ [0,+∞). Calculate

f ′(a) if a > 0 and prove that f is not di�erentiable at the point 0.

7. Let f : R → R be the function de�ned by

f(x) =

{
x− n if x ∈ [n, n+ 1

2
]

n+ 1− x if x ∈ [n+ 1
2
, n+ 1]

for every n ∈ Z.

(a) Calculate f ′(x) for all x ∈ R, x ̸= n, x ̸= n+ 1
2
, n ∈ Z.

(b) Prove that f is not di�erentiable at the points n ∈ Z and n+ 1
2
, n ∈ Z.

8. If f : X → R is di�erentiable at the point a ∈ X ∩X ′ then:

f(a+ h) = f(a) + f ′(a)h+ r(h), with lim
h→0

r(h)

h
= 0.

(a) If f(x) = x2 determine r(h).

(b) If f(x) = sinx determine r(h).

9. Let f : R → R be given by f(x) =

{
1 if x ≥ 0

−1 if x < 0

(a) Prove that f is right-continuous at the point zero and calculate f ′(0+).
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(b) Prove that f is not left-continuous at the point 0 and verify that the left

derivative of f at the point 0 does not exist.

(c) Conclude that f is not continuous at the point 0.

10. The function f : R → R given by f(x) = x3 is a continuous bijection with

continuous inverse g : R → R given by g(y) = 3
√
y. Calculate f ′(a) for every

a ̸= 0 and determine g′(b) for every b ∈ R− {0}.

11. Let f : R → R be given by f(x) = x2. Verify that f has a strict local minimum

at the point 0.

12. Let g : R → R, g(x) = sinx. Verify that g has strict local maxima at the

points (4k + 1)π
2
and has strict local minima at the points (4k − 1)π

2
.

13. Verify that the function h : R → R, given by

h(x) =

{
1 if x ≥ 0

−1 if x < 0,

does not have a non-strict local maximum at the point 0.

14. Verify that the function φ : R → R, φ(x) = x2(1+sin 1
x
) if x ̸= 0 and φ(0) = 0,

is continuous on the entire line and has a non-strict local minimum at the point

0.

15. Let the function f : R → R be de�ned by f(x) = x sin 1
x
if x ̸= 0 and f(0) = 0.

(a) Prove that f is continuous on the entire line.

(b) Prove that f is di�erentiable for all x ̸= 0, and calculate f ′(x) for all

x ̸= 0.

(c) Verify that f is not di�erentiable at the point zero.

16. Let the function g : R → R, g(x) = x2 sin 1
x
if x ̸= 0 and g(0) = 0.

(a) Prove that g is continuous on the entire line.

(b) Prove that g is di�erentiable on the entire line, and calculate g′(x) for all

x ∈ R.

(c) Verify that g′ : R → R is not continuous at the point zero.

17. Let the function φ : R → R be de�ned by φ(x) = x2 sin 1
x
+ x

2
if x ̸= 0 and

φ(0) = 0.
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(a) Prove that φ is continuous and di�erentiable on the entire line. Calculate

φ′(x) for all x ∈ R and calculate φ′(0).

(b) Prove that φ is not increasing in any neighborhood of the point 0.

(c) Conclude that φ cannot be injective in any interval of the type (0, δ) or

(−δ, 0), δ > 0.

18. Let h : [−1, 1] −→ R be de�ned by h(x) = (1 − x2) sin 1
1−x2 if x ̸= ±1 and

h(±1) = 0. Prove that there exists c ∈ (−1, 1) such that h′(c) = 0. Verify

that c = 0.

19. Let f : R → R be de�ned by f(x) = ex.

(a) Prove that ex > 1 + x for all x > 0.

(b) Prove that limx→+∞
xn

ex
= 0 for n ∈ N.

(c) Prove that for every polynomial p(x) = anx
n+ an−1x

n−1+ · · ·+ a1x+ a0,

limx→+∞
p(x)
ex

= 0.

20. Let f : R → R be de�ned by f(x) = e−
1
x2 if x ̸= 0 and f(0) = 0.

(a) Prove that f is continuous on the entire line.

(b) Prove that f is di�erentiable on the entire line and calculate f ′(x) for all

x ∈ R.

21. Let f : R → R be the function f(x) =

{
e−

1
x if x ̸= 0

0 if x = 0

(a) Calculate limx→0+ f(x).

(b) Calculate limx→0− f(x).

(c) Verify that f is not continuous at the point zero.

(d) Verify that f is right-continuous at the point zero.

(e) Prove that f is di�erentiable from the right at the point 0 and verify that

f ′(0+) = 0.

(f) Calculate limx→0− f
′(x).
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Chapter 7

The Riemann Integral

7.1 The Riemann Integral

In what follows, we will consider real functions f : [a, b] → R, de�ned on a compact

interval [a, b] and bounded on this interval. Consequently, there exist lower and

upper bounds for the set of values of f : {f(x) : x ∈ [a, b]}, i.e., there exist c1, c2 ∈ R
such that

c1 ≤ f(x) ≤ c2; ∀x ∈ [a, b]. (7.1)

We then de�ne,

m = inf{f(x) : x ∈ [a, b]}, (7.2)

M = sup{f(x) : x ∈ [a, b]}. (7.3)

De�nition 7.1 A partition of the interval [a, b] is a �nite subset P ⊂ [a, b] such

that a, b ∈ P . When we write P = {t0, t1, · · · , tn}, we will always convene that

a = t0 < t1 < t2 · · · < tn = b. The intervals [ti−1, ti] are called the subintervals of

the partition P .

Let f : [a, b] → R be a bounded function and P = {t0, t1, · · · , tn} a partition of

[a, b]. For each i = 1, · · · , n, let us de�ne:

mi = inf{f(x) : x ∈ [ti−1, ti]}, (7.4)

Mi = sup{f(x) : x ∈ [ti−1, ti]}. (7.5)
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De�nition 7.2 We will de�ne the lower sum s(f ;P ) and the upper sum S(f ;P ) of

the function f with respect to the partition P , by setting:

s(f ;P ) =
n∑

i=1

mi∆ti =
n∑

i=1

mi(ti − ti−1),

S(f ;P ) =
n∑

i=1

Mi∆ti =
n∑

i=1

Mi(ti − ti−1).

Remark: Since mi ≤Mi for each i ∈ {1, · · · , n}, we always have

s(f ;P ) ≤ S(f ;P ). (7.6)

Remark: When f is a positive function, the sums s(f ;P ) and S(f ;P ) can be

interpreted as areas of polygons. (see Figure 7.1)

x

y

f(x)

Figure 7.1:

De�nition 7.3 Let P and Q be partitions of [a, b]. We say that Q is �ner than P

(or that Q is a re�nement of P ) if P ⊂ Q.

Next, we will prove that by re�ning a partition, the lower sum does not decrease

and the upper sum does not increase.

Theorem 7.4 Let P and Q be partitions of the interval [a, b] with P ⊂ Q, and let

f : [a, b] → R be a bounded function. Then:

s(f ;P ) ≤ s(f ;Q) ≤ S(f ;Q) ≤ S(f ;P ).
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Proof: It su�ces to prove the �rst and third inequalities, since the second one has

already been established. Indeed, let's prove the �rst. Take P = {t0, t1, · · · , tn} and

consider Q = {t0, t1, · · · , ti−1, r, ti, · · · tn}, with ti−1 < r < ti. (We are adding one

more point to the partition). Let mi, m
′ and m′′ be the in�ma of f on the intervals

[ti−1, ti], [ti−1, r], and [r, ti] respectively. Evidently:

mi ≤ m′ and mi ≤ m′′, (7.7)

since the sets [ti−1, r] and [r, ti] are contained in [ti−1, ti]. As ∆ti = ti − ti−1 =

(ti − r) + (r − ti−1), from (7.7) we have:

m1

t0

m2

t1

mi−1

ti−2

m′

ti−1

m′′

r

mi+1

tit2 ti+1

. . .

. . .

Figure 7.2:

s(f ;Q)− s(f ;P )

= · · ·+mi−1(ti−1 − ti−2) +m′(r − ti−1) +m′′(ti − r) +mi+1(ti+1 − ti) + . . .

−[· · ·+mi−1(ti−1 − ti−2) +mi(ti − ti−1) +mi+1(ti+1 − ti) + . . . ]

= m′(r − ti−1) +m′′(ti − r)−mi(ti − ti−1)

≥ mi(r − ti−1) +mi(ti − r)−mi(ti − ti−1) (by (7.7))

= mi[r − ti−1 + ti − r]−mi(ti − ti−1)

= mi(ti − ti−1)−mi(ti − ti−1) = 0.

Consequently s(f ;Q) ≥ s(f ;P ). Applying this result repeatedly (if Q has more

points than P ), we conclude that

P ⊂ Q⇒ s(f ;P ) ≤ s(f ;Q).

Analogously, it is proved that:

P ⊂ Q⇒ S(f ;P ) ≥ S(f ;Q).

■

Corollary 7.5 Let f : [a, b] → R be bounded. For any partitions P,Q of [a, b], we

have s(f ;P ) ≤ S(f ;Q).
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Proof: Indeed, the partition P ∪Q re�nes both P and Q. Thus:

s(f ;P ) ≤︸︷︷︸
Thm.7.4

s(f ;P ∪Q) ≤︸︷︷︸
(7.6)

S(f ;P ∪Q) ≤︸︷︷︸
Thm.7.4

S(f ;Q).

■

Remark: Let f : [a, b] → R be bounded. De�ne:

m = inf{f(x) : x ∈ [a, b]},

M = sup{f(x) : x ∈ [a, b]}.

Then, for any partition P = {a = t0 < t1 < · · · < tn = b} of [a, b], we have:

m(b− a) ≤ s(f ;P ) ≤ S(f ;P ) ≤M(b− a). (7.8)

Indeed, since m ≤ mi ≤Mi ≤M for each i, then:

s(f ;P ) =
n∑

i=1

mi∆ti ≥
n∑

i=1

m∆ti = m
n∑

i=1

(ti − ti−1)

= m [t1 − t0 + t2 − t1 + · · ·+ tn − tn−1]

= m(tn − t0) = m(b− a).

Analogously, it is proved that S(f ;P ) ≤M(b− a).

Let P be the set of all possible partitions of [a, b]. Then the set of lower sums

σ = {s(f ;P ) : P ∈ P} is bounded above (by M(b− a)), and the set of upper sums

Σ = {S(f ;P ) : P ∈ P} is bounded below (by m(b− a)).

De�nition 7.6 Let f : [a, b] → R be bounded. We de�ne the lower integral
∫ b

a
f(x) dx

and the upper integral
∫ b

a
f(x) dx of the function f over [a, b], by setting:∫ b

a

f(x) dx = supσ and

∫ b

a

f(x) dx = inf Σ.

From (7.8) and Corollary 7.5, it follows that:

m(b− a) ≤
∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx ≤M(b− a). (7.9)

De�nition 7.7 Let f : [a, b] → R be bounded. We say that f is (Riemann) integrable

when its lower integral is equal to its upper integral. The value of the integral, in

this case, is this common value. We denote the integral of f by
∫ b

a
f(x) dx. Thus:∫ b

a

f(x) dx =

∫ b

a

f(x) dx =

∫ b

a

f(x) dx.
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Examples:

1) Let f : [a, b] → R, f(x) = λ for all x ∈ [a, b]. Determine
∫ b

a
f(x) dx. Let

P = {a = t0 < t1 < · · · < tn = b} be a generic partition of [a, b]. Then

s(f ;P ) =
n∑

i=1

mi(ti − ti−1) where mi = inf{f(x) : x ∈ [ti−1, ti]},

S(f ;P ) =
n∑

i=1

Mi(ti − ti−1) where Mi = sup{f(x) : x ∈ [ti−1, ti]}.

Since f(x) = λ for all x ∈ [a, b], then mi =Mi = λ for all i = 1, · · · , n. Hence

s(f ;P ) = λ
n∑

i=1

(ti − ti−1) = λ(b− a),

S(f ;P ) = λ
n∑

i=1

(ti − ti−1) = λ(b− a).

It follows that

sup{s(f ;P ) : P ∈ P} = inf{S(f ;P ) : P ∈ P} = λ(b− a),

and therefore
∫ b

a
f(x) dx = λ(b− a).

2) Example of a non-integrable function (Dirichlet's function). Let f : [0, 1] → R
be de�ned by

f(x) :=

{
1, x ∈ Q

0, x ∈ R\Q

In this case, for any subinterval [ti−1, ti] (with ti > ti−1), mi = 0 and Mi = 1 (by

density of Q and R\Q). Consequently, for any partition P : s(f ;P ) =
∑

0 ·∆ti = 0

and S(f ;P ) =
∑

1 ·∆ti = (b− a) = 1. Thus,∫ 1

0

f(x) dx = sup{0} = 0 and

∫ 1

0

f(x) dx = inf{1} = 1,

which implies that f is not Riemann integrable.

Theorem 7.8 (Riemann's Criterion for Integrability) A bounded function f :

[a, b] → R is integrable if and only if for every ε > 0 given, a partition P of [a, b]

can be found such that S(f ;P )− s(f ;P ) < ε.

Proof: (⇒) Suppose f is integrable and let ε > 0 be given. By hypothesis,

inf Σ = supσ = I,
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where σ = {s(f ;P ) : P ∈ P} and Σ = {S(f ;P ) : P ∈ P}. By the de�nition of sup

and inf, for the given ε > 0, there exist P1, P2 ∈ P such that

I − ε/2 < s(f ;P1) ≤ I and I ≤ S(f ;P2) < I + ε/2.

Let P = P1 ∪ P2. Since P is a re�nement of both P1 and P2, by Theorem 7.4:

s(f ;P1) ≤ s(f ;P ) and S(f ;P ) ≤ S(f ;P2)

Combining these:

I − ε/2 < s(f ;P1) ≤ s(f ;P ) ≤ S(f ;P ) ≤ S(f ;P2) < I + ε/2

Thus, S(f ;P )− s(f ;P ) < (I + ε/2)− (I − ε/2) = ε.

(⇐) Conversely, suppose that for every ε > 0 there exists Pε ∈ P such that

S(f ;Pε)− s(f ;Pε) < ε. We must prove that inf Σ = supσ. We know supσ ≤ inf Σ.

By de�nition of inf and sup:

inf Σ ≤ S(f ;Pε) < ε+ s(f ;Pε) ≤ ε+ supσ.

Thus,

inf Σ− supσ < ε.

We also know (from (7.9)) that supσ ≤ inf Σ, and consequently

inf Σ− supσ ≥ 0.

Hence, from the two lines above, for every ε > 0 we have

0 ≤ inf Σ− supσ < ε.

By the arbitrariness of ε > 0, the equality inf Σ = supσ must hold. ■

7.2 Criterion for Riemann Integrability

De�nition 7.9 Let f : X ⊂ R → R be a bounded function with X ⊂ [a, b]. We call

the oscillation of f on the set X the number

ωX = ω(f,X) = sup{|f(x)− f(y)| : x, y ∈ X}.

Lemma 7.10 Let f : X → R be a bounded function. Consider:

mX = inf{f(x) : x ∈ X} and MX = sup{f(x) : x ∈ X}.

Then: ωX =MX −mX .
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Proof: If f is constant, MX = mX and ωX = 0, so the proof is trivial. Suppose,

then, f is not constant. We have

mX ≤ f(x) ≤MX , ∀x ∈ X,

mX ≤ f(y) ≤MX , ∀y ∈ X,

or

mX ≤ f(x) ≤MX , ∀x ∈ X,

−MX ≤ −f(y) ≤ −mX , ∀y ∈ X,

and therefore

−(MX −mX) = mX −MX ≤ f(x)− f(y) ≤MX −mX , ∀x, y ∈ X,

and since MX −mX ≥ 0, it follows that:

|f(x)− f(y)| ≤MX −mX , ∀x, y ∈ X (7.10)

It follows from (7.10) that MX −mX is an upper bound for the set {|f(x)− f(y)| :
x, y ∈ X}, and therefore

ωX ≤MX −mX . (7.11)

We will now show that MX −mX is the least upper bound. Indeed, given ε > 0, by

de�nition of sup and inf, there exist xε, yε ∈ X such that

f(xε) < mX +
ε

2
and f(yε) > MX − ε

2
. (7.12)

Then from (7.12) it follows that

MX −mX < (f(yε) + ε/2)− (f(xε)− ε/2)

= f(yε)− f(xε) + ε

≤ |f(yε)− f(xε)|+ ε

≤ ωX + ε.

By the arbitrariness of ε > 0, it follows that

MX −mX ≤ ωX , (7.13)

and from (7.11) and (7.13), the desired result is proven. ■
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Corollary 7.11 A function f : [a, b] → R is integrable if and only if, given ε > 0,

there exists a partition P = {t0 < t1 < · · · , tn} of the interval [a, b] such that

n∑
i=1

ωi∆ti < ε,

where ωi = ω(f, [ti−1, ti]) = sup{|f(x)− f(y)| : x, y ∈ [ti−1, ti]}.

Proof: Follows immediately from Theorem 7.8, Lemma 7.10, and the fact that

S(f ;P )− s(f ;P ) =
n∑

i=1

Mi∆ti −
n∑

i=1

mi∆ti

=
n∑

i=1

(Mi −mi)∆ti

=
n∑

i=1

ωi∆ti.

■

Theorem 7.12 Every continuous function f : [a, b] → R is integrable.

Proof: Let ε > 0 be given. Since [a, b] is compact, f is uniformly continuous on

[a, b] (Thm. 5.15). Hence, for ε
b−a

> 0, there exists δ > 0 such that if x, y ∈ [a, b]

and

|x− y| < δ ⇒ |f(x)− f(y)| < ε

b− a
. (7.14)

Let us consider a partition P = {t0, t1, · · · , tn} such that the length of the largest

subinterval, which we denote by ∥P∥ (the norm of P), does not exceed δ > 0, i.e.,

∥P∥ = maxi ∆ti < δ. In this way, given x, y ∈ [ti−1, ti], we have:

|x− y| ≤ (ti − ti−1) ≤ ∥P∥ < δ.

From (7.14), it follows that |f(x) − f(y)| < ε
b−a

for all x, y ∈ [ti−1, ti]. Therefore,
ε

b−a
is an upper bound for the set {|f(x)− f(y)| : x, y ∈ [ti−1, ti]}, and consequently

ωi = sup{|f(x)− f(y)| : x, y ∈ [ti−1, ti]} ≤ ε

b− a
(7.15)

*(Note: A strict inequality < cannot be guaranteed by the sup)*

Hence, by the proof of Corollary 7.11 and from (7.15), it follows that:

S(f ;P )− s(f ;P ) =
n∑

i=1

ωi∆ti ≤
n∑

i=1

ε

b− a
∆ti =

ε

b− a

n∑
i=1

∆ti︸ ︷︷ ︸
=(b−a)

= ε. (7.16)

From (7.16) and Theorem 7.8, it follows that f is integrable. ■
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7.3 Properties of Integrable Functions

Proposition 7.13 Let f, g : [a, b] → R be integrable functions. Then:

(i) f + g is integrable and
∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

(ii) For all c ∈ R, the function cf is integrable and, furthermore,
∫ b

a
(cf)(x) dx =

c
∫ b

a
f(x) dx.

(iii) If f(x) ≥ 0 for all x ∈ [a, b], then
∫ b

a
f(x) dx ≥ 0. Equivalently, if f(x) ≤

g(x) for all x ∈ [a, b], then
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

(iv) The function |f(x)| is integrable and, furthermore,
∣∣∣∫ b

a
f(x) dx

∣∣∣ ≤ ∫ b

a
|f(x)| dx.

In particular, if |f(x)| ≤ k for all x ∈ [a, b], then
∣∣∣∫ b

a
f(x) dx

∣∣∣ ≤ k(b− a).

(v) (Mean Value Theorem for Integrals) If f is continuous on [a, b], there exists

c ∈ [a, b] such that
∫ b

a
f(x) dx = f(c)(b− a).

Proof: (i) Let P = {t0, t1, · · · , tn} be a generic partition of [a, b]. For every

subinterval [ti−1, ti] ⊂ [a, b], we have (using mi(f) = inf f on Ii, etc.):

mi(f) +mi(g) ≤ mi(f + g) and Mi(f + g) ≤Mi(f) +Mi(g). (7.17)

(Note: The original text had ≥ for the Mi inequality, which is incorrect.) Indeed,

it su�ces to prove that (mi(f) +mi(g)) is a lower bound for the set {(f + g)(x) :

x ∈ [ti−1, ti]}.

mi(f) = inf{f(x) : x ∈ [ti−1, ti]}

mi(g) = inf{g(x) : x ∈ [ti−1, ti]}

which implies

mi(f) +mi(g) ≤ f(x) + g(x) = (f + g)(x), ∀x ∈ [ti−1, ti].

Taking the in�mum over x gives mi(f) +mi(g) ≤ mi(f + g). The proof for Mi is

analogous. From this, it follows that for any partition P :

s(f ;P ) + s(g;P ) ≤ s(f + g;P ) ≤ S(f + g;P ) ≤ S(f ;P ) + S(g;P ).

Since f and g are integrable, given ε > 0, there exist P1, P2 such that S(f ;P1) −
s(f ;P1) < ε/2 and S(g;P2)− s(g;P2) < ε/2. Let P = P1 ∪ P2. Then

S(f + g;P )− s(f + g;P ) ≤ (S(f ;P ) + S(g;P ))− (s(f ;P ) + s(g;P ))

= (S(f ;P )− s(f ;P )) + (S(g;P )− s(g;P ))

≤ (S(f ;P1)− s(f ;P1)) + (S(g;P2)− s(g;P2))

< ε/2 + ε/2 = ε.
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By Theorem 7.8, f + g is integrable. Furthermore,∫
(f + g) ≥ sup(s(f ;P ) + s(g;P )) ≥ sup s(f ;P ) + sup s(g;P ) =

∫
f +

∫
g

∫
(f + g) ≤ inf(S(f ;P ) + S(g;P )) ≤ inf S(f ;P ) + inf S(g;P ) =

∫
f +

∫
g

Since f +g is integrable, the lower and upper integrals are equal, forcing all inequal-

ities to be equalities.

(ii) We have (for c ≥ 0):

mi(cf) = inf{cf(x)} = c inf{f(x)} = cmi(f)

Mi(cf) = sup{cf(x)} = c sup{f(x)} = cMi(f)

If c < 0:

mi(cf) = inf{cf(x)} = c sup{f(x)} = cMi(f)

Mi(cf) = sup{cf(x)} = c inf{f(x)} = cmi(f)

Case (a): c < 0.

s(cf ;P ) =
∑

mi(cf)∆ti =
∑

cMi(f)∆ti = cS(f ;P )

S(cf ;P ) =
∑

Mi(cf)∆ti =
∑

cmi(f)∆ti = cs(f ;P )

Taking the sup of s(cf ;P ) and inf of S(cf ;P ):∫
(cf) = sup

P
{cS(f ;P )} = c inf

P
{S(f ;P )} = c

∫
f

∫
(cf) = inf

P
{cs(f ;P )} = c sup

P
{s(f ;P )} = c

∫
f

Since they are equal, cf is integrable and
∫
cf = c

∫
f . Case (b): c ≥ 0.

s(cf ;P ) = cs(f ;P ) and S(cf ;P ) = cS(f ;P )

Taking sup and inf yields
∫
(cf) = c

∫
f = c

∫
f and

∫
(cf) = c

∫
f = c

∫
f . In both

cases, cf is integrable and
∫
(cf) = c

∫
f .

(iii) If f(x) ≥ 0 for all x ∈ [a, b], then mi ≥ 0 for every subinterval. Thus

s(f ;P ) =
n∑

i=1

mi∆ti ≥ 0,∀P ∈ P .

Consequently, ∫ b

a

f(x) dx = sup{s(f ;P ) : P ∈ P} ≥ 0.
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If f(x) ≤ g(x), then h(x) = g(x)− f(x) ≥ 0. By (i) and the result just proved,

0 ≤
∫ b

a

h(x) dx =

∫ b

a

(g(x)− f(x)) dx =

∫ b

a

g(x) dx−
∫ b

a

f(x) dx,

i.e.,
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

(iv) Let P ∈ P be a partition. For any x, y ∈ [ti−1, ti],

ωi(|f |) = sup{||f(x)| − |f(y)||} ≤ sup{|f(x)− f(y)|} = ωi(f)

(using the reverse triangle inequality). Thus,

S(|f |;P )− s(|f |;P ) =
∑

ωi(|f |)∆ti ≤
∑

ωi(f)∆ti = S(f ;P )− s(f ;P )

Since f is integrable, for any ε > 0, there exists P such that S(f ;P )− s(f ;P ) < ε.

For the same P , S(|f |;P ) − s(|f |;P ) < ε. By Theorem 7.8, |f | is integrable.

Furthermore, since −|f(x)| ≤ f(x) ≤ |f(x)|, ∀x ∈ [a, b], it follows from item (iii)

that

−
∫ b

a

|f(x)| dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx,

which means
∣∣∣∫ b

a
f(x) dx

∣∣∣ ≤ ∫ b

a
|f(x)| dx. If |f(x)| ≤ k for all x ∈ [a, b], then∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx ≤
∫ b

a

k dx = k(b− a).

(v) Let m = inf{f(x) : x ∈ [a, b]} and M = sup{f(x) : x ∈ [a, b]}. Since f is

continuous on [a, b], it is integrable, and by (iii),

m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a).

Consequently,

m ≤ 1

b− a

∫ b

a

f(x) dx ≤M.

By the Extreme Value Theorem (5.13), f attains its m and M at points xm, xM ∈
[a, b]. The value C = 1

b−a

∫
f(x)dx is an intermediate value between m = f(xm) and

M = f(xM). By the Intermediate Value Theorem (5.18), there exists c ∈ [a, b] such

that f(c) = C, i.e., f(c) = 1
b−a

∫ b

a
f(x) dx. ■

7.4 The Fundamental Theorem of Calculus

De�nition 7.14 Let f : [a, b] → R be an integrable function. Then for all x ∈ [a, b],

f is integrable on [a, x]. Consider the function F : [a, b] → R de�ned by

F (x) =

∫ x

a

f(t) dt. (7.18)

F is called the inde�nite integral of f .
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Remarks:

(1a) We will adopt the convention that
∫ b

a
f(y) dy = −

∫ a

b
f(y) dy. The following

property also holds:∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx, ∀c ∈ [a, b],

which we leave as an exercise.

(2a) If f : [a, b] → R is bounded on [a, b], then F is Lipschitz continuous. Indeed,

since f is bounded, there exists k > 0 such that |f(x)| ≤ k, for all x ∈ [a, b]. Let

x, y ∈ [a, b]. We have from (7.18) (assuming y < x):

|F (x)− F (y)| =

∣∣∣∣∫ x

a

f(t) dt−
∫ y

a

f(t) dt

∣∣∣∣
=

∣∣∣∣∫ a

y

f(t) dt+

∫ x

a

f(t) dt

∣∣∣∣
=

∣∣∣∣∫ x

y

f(t) dt

∣∣∣∣
≤

∫ x

y

|f(t)| dt ≤ k|x− y|.

(3a) F is uniformly continuous. We have from remark 2a that F is Lipschitz

continuous, i.e., there exists k > 0 such that

|F (x)− F (y)| ≤ k|x− y|, ∀x, y ∈ [a, b].

Hence, given ε > 0, take δ = ε
k
. Therefore, if x, y ∈ [a, b] are such that |x− y| < δ,

we have:

|F (x)− F (y)| ≤ k|x− y| < kδ = k
ε

k
= ε,

which proves the claim.

Example: Let f : [0, 2] → R be de�ned by:

f(t) =

{
0, if 0 ≤ t < 1

1, if 1 ≤ t ≤ 2,

and consider F : [0, 2] → R de�ned by F (x) =
∫ x

0
f(t) dt. Find the explicit form

of the function F . Solution: Since f is a piecewise function, we must divide it into

two cases:

(1) For 0 ≤ x < 1. Then t ∈ [0, x] ⊂ [0, 1).

F (x) =

∫ x

0

f(t) dt =

∫ x

0

0 dt = 0.

122



The Riemann Integral 7.4 The Fundamental Theorem of Calculus

(2) For 1 ≤ x ≤ 2.

F (x) =

∫ x

0

f(t) dt =

∫ 1

0

f(t) dt+

∫ x

1

f(t) dt

=

∫ 1

0

0 dt+

∫ x

1

1 dt = 0 + (x− 1) = x− 1.

Thus:

F (x) =

{
0, 0 ≤ x < 1

x− 1, 1 ≤ x ≤ 2.

x

y

2

f

x

y

F

0

1

1

1

0 1 2

Figure 7.3:

Observing the graph, we see that: (i) f is not continuous at x = 1. (ii) F is

continuous at x = 1. (iii) F is not di�erentiable at x = 1.

Analytically,

F ′
+(1) = lim

h→0+

F (1 + h)− F (1)

h
= lim

h→0,h>0

((1 + h)− 1)− 0

h
= lim

h→0+

h

h
= 1,

F ′
−(1) = lim

h→0−

F (1 + h)− F (1)

h
= lim

h→0,h<0

0− 0

h
= 0,

which implies that F ′(1) does not exist.

The example above motivates the following theorem:

Theorem 7.15 (Fundamental Theorem of Calculus, Part 1) Let f : [a, b] → R be

integrable. If f is continuous at a point c ∈ [a, b], then F : [a, b] → R de�ned by

F (x) =
∫ x

a
f(t) dt is di�erentiable at x = c and F ′(c) = f(c).
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Proof: We want to show that F ′(c) = f(c), i.e.,

lim
h→0

F (c+ h)− F (c)

h
= f(c),

or, given ε > 0, we must exhibit δ > 0 such that

if |h| < δ (and c+ h ∈ [a, b]) ⇒
∣∣∣∣F (c+ h)− F (c)

h
− f(c)

∣∣∣∣ < ε. (7.19)

Since f is continuous at x = c, we have that for the given ε > 0, there exists δ > 0

such that if t ∈ [a, b] and

|t− c| < δ ⇒ |f(t)− f(c)| < ε. (7.20)

We have two cases to consider (assuming c is an interior point):

(i) 0 < h < δ and c + h ∈ [a, b]. If t ∈ [c, c + h], then |t− c| ≤ h < δ, so (7.20)

holds. ∣∣∣∣F (c+ h)− F (c)

h
− f(c)

∣∣∣∣ =

∣∣∣∣∣
∫ c+h

a
f(t) dt−

∫ c

a
f(t) dt− hf(c)

h

∣∣∣∣∣
=

1

h

∣∣∣∣∫ c+h

c

f(t) dt− hf(c)

∣∣∣∣
=

1

h

∣∣∣∣∫ c+h

c

f(t) dt−
∫ c+h

c

f(c) dt

∣∣∣∣
≤ 1

h

∫ c+h

c

|f(t)− f(c)| dt

<︸︷︷︸
(7.20)

1

h

∫ c+h

c

ε dt =
1

h
(ε · h) = ε,

which shows that F ′
+(c) = f(c).

(ii) −δ < h < 0 and c + h ∈ [a, b]. If t ∈ [c + h, c], then |t − c| ≤ |h| < δ, so

(7.20) holds. Let h = −|h|.∣∣∣∣F (c+ h)− F (c)

h
− f(c)

∣∣∣∣ =

∣∣∣∣∣
∫ c+h

a
f(t) dt−

∫ c

a
f(t) dt− hf(c)

h

∣∣∣∣∣
=

1

|h|

∣∣∣∣−∫ c

c+h

f(t) dt− hf(c)

∣∣∣∣
=

1

|h|

∣∣∣∣−∫ c

c+h

f(t) dt+ |h|f(c)
∣∣∣∣

=
1

|h|

∣∣∣∣−∫ c

c+h

f(t) dt+

∫ c

c+h

f(c) dt

∣∣∣∣
≤ 1

|h|

∫ c

c+h

|f(c)− f(t)| dt

<︸︷︷︸
(7.20)

1

|h|

∫ c

c+h

ε dt =
1

|h|
(ε · |h|) = ε,
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which proves that F ′
−(c) = f(c). Thus, F ′(c) = f(c). ■

Corollary 7.16 Given f : [a, b] → R continuous, there exists F : [a, b] → R di�er-

entiable such that F ′ = f .

Proof: If f is continuous on [a, b], then f is integrable on [a, b] (Thm. 7.12).

De�ne F : [a, b] → R by F (x) =
∫ x

a
f(t) dt. By Theorem 7.15 (since f is continuous

at *every* point c ∈ [a, b]), F is di�erentiable on [a, b] and F ′(x) = f(x) for all

x ∈ [a, b]. ■

De�nition 7.17 A primitive (or antiderivative) of a function f : [a, b] → R is a

di�erentiable function F : [a, b] → R such that F ′ = f .

Remarks: (1a) Corollary 7.16 tells us that every continuous function on [a, b]

possesses a primitive.

(2a) Not every integrable function f possesses a primitive. Indeed, let F be a

primitive of f . Then F ′(x) = f(x) for all x ∈ [a, b]. We have, therefore, that F

is di�erentiable on [a, b], and thus F ′ = f cannot have discontinuities of the �rst

kind on [a, b] (by Darboux's Theorem, 6.13, which states that derivatives satisfy the

Intermediate Value Property, even if they are not continuous). Thus, a function, in

order to have a primitive, cannot have jump discontinuities.

Proof that the derivative of a di�erentiable function

does not have a discontinuity of the �rst kind

Let f : R → R be a function di�erentiable at a point a ∈ R. We want to prove that

the derivative function f ′ cannot have a discontinuity of the �rst kind (i.e., a jump)

at the point a.

De�nitions

� Since f is di�erentiable at a, the limit

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

exists. This implies, in particular, that f is continuous at a.

� We say that a function g has a discontinuity of the �rst kind (or jump)

at a if the lateral limits exist, but are di�erent:

lim
x→a+

g(x) = L+ and lim
x→a−

g(x) = L−, with L+ ̸= L−.
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Proof (Completion)

Proof: Let us assume, by contradiction, that f ′ has a discontinuity of the �rst

kind at a. This means that the lateral limits exist and are di�erent:

lim
x→a+

f ′(x) = L+ and lim
x→a−

f ′(x) = L−, with L+ ̸= L−.

Let us analyze the limit from the right. Consider any x > a. Since f is di�er-

entiable on R, f is continuous on [a, x] and di�erentiable on (a, x). By the Mean

Value Theorem (Theorem 6.12), there exists a cx ∈ (a, x) such that:

f(x)− f(a)

x− a
= f ′(cx).

Now, let us take the limit as x→ a+. The left side is, by de�nition, the right-hand

derivative of f at a:

lim
x→a+

f(x)− f(a)

x− a
= lim

x→a+
f ′(cx).

Since f is di�erentiable at a, this limit must be f ′(a).

f ′(a) = lim
x→a+

f ′(cx).

As x → a+, we have cx → a+ (because a < cx < x). Since we assumed the limit

limt→a+ f
′(t) = L+ exists, it follows that:

f ′(a) = L+.

Now, let us analyze the limit from the left. Consider x < a. By the MVT on [x, a],

there exists dx ∈ (x, a) such that:

f(a)− f(x)

a− x
= f ′(dx) =⇒ f(x)− f(a)

x− a
= f ′(dx).

Taking the limit as x→ a−:

lim
x→a−

f(x)− f(a)

x− a
= lim

x→a−
f ′(dx).

The left side is f ′(a). As x→ a−, we have dx → a−. Since we assumed limt→a− f
′(t) =

L− exists:

f ′(a) = L−.

We have thus concluded that L+ = f ′(a) and L− = f ′(a), which implies L+ = L−.

This contradicts our hypothesis that L+ ̸= L− (the de�nition of a jump discontinu-

ity). Therefore, f ′ cannot have a discontinuity of the �rst kind. ■

126



The Riemann Integral 7.4 The Fundamental Theorem of Calculus

Final Conclusion

The assumption that f ′ has a discontinuity of the �rst kind at a leads to a contra-

diction. Therefore, if f is di�erentiable at a, then the derivative f ′ cannot have a

discontinuity of the �rst kind.

On the other hand, as we saw in the example (Figure 7.3), there exist functions

with discontinuities of the �rst kind that are integrable. The function from that

example does not admit a primitive on any interval that contains x = 1 in its

interior.

Example: Consider the function:

f(x) =

{
2x sin(1/x)− cos(1/x), x ̸= 0,

0, x = 0.

Verify: (a) If f is continuous. (b) If f admits a primitive.

Solution: (a) Note that limx→0 f(x) does not exist (due to the cos(1/x) term).

Therefore, f is not continuous at x = 0. (b) f admits a primitive, which is given

by:

F (x) =

{
x2 sin(1/x), x ̸= 0,

0, x = 0.

We check the derivative F ′(x): For x ̸= 0, by the product and chain rules:

F ′(x) = 2x · sin(1/x) + x2(cos(1/x) · (−1/x2)) = 2x sin(1/x)− cos(1/x) = f(x).

For x = 0, by the de�nition of the derivative:

F ′(0) = lim
h→0

F (0 + h)− F (0)

h
= lim

h→0

h2 sin(1/h)− 0

h
= lim

h→0
h sin(1/h) = 0.

(The last limit is 0 by the Squeeze Theorem, since −|h| ≤ h sin(1/h) ≤ |h|). Since
f(0) = 0, we have F ′(x) = f(x) for all x, which proves the claim.

Lemma 7.18 Note that if f : [a, b] → R admits one primitive, then f possesses an

in�nity of them.

Proof: Indeed, let F : [a, b] → R be a primitive of f . Then F ′ = f . Consider a

family of functions {Fi}i∈I where Fi : [a, b] → R is de�ned by Fi = F + ci, ci ∈ R,
∀i ∈ I. Then, F ′

i = (F + ci)
′ = F ′ = f , which implies that Fi is a primitive of f for

all i ∈ I. ■
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Lemma 7.19 Any two primitives of f : [a, b] → R di�er by a constant.

Proof: Let F1 and F2 be two primitives of f . Then F ′
1 = f and F ′

2 = f . Consider

the function H(x) = F1(x)−F2(x). Then H
′(x) = F ′

1(x)−F ′
2(x) = f(x)− f(x) = 0

for all x ∈ (a, b). By the Mean Value Theorem (Exercise (b) after Thm 6.12), H(x)

must be constant on [a, b]. Thus, F1(x)− F2(x) = k for some constant k. ■

Proposition 7.20 Consider f : [a, b] → R (integrable) and let F : [a, b] → R be a

primitive of f , with F being C1 (i.e., F ′ is continuous). Then:∫ b

a

f(x) dx = F (b)− F (a).

*(Note: F ′ = f . The assumption F ∈ C1 means f is continuous)*

Proof: Since F ∈ C1, F ′ = f is continuous on [a, b]. By Theorem 7.12, f is

integrable on [a, b]. Let us de�ne ρ : [a, b] → R by

ρ(x) =

∫ x

a

f(t) dt =

∫ x

a

F ′(t) dt.

By the Fundamental Theorem of Calculus (Part 1, Theorem 7.15), since F ′ is con-

tinuous:

ρ′(x) = F ′(x), ∀x ∈ [a, b].

Thus, ρ and F are both primitives of f . By Lemma 7.19, they di�er by a constant:

ρ(x)− F (x) = k, ∀x ∈ [a, b], where k is a constant. (7.21)

In particular, for x = a: ρ(a)− F (a) = k.∫ a

a

F ′(t) dt︸ ︷︷ ︸
=0

−F (a) = k ⇒ k = −F (a). (7.22)

Substituting (7.22) into (7.21) yields

ρ(x)− F (x) = −F (a), ∀x ∈ [a, b],

which implies ρ(x) = F (x)− F (a), i.e.,∫ x

a

F ′(t) dt = F (x)− F (a), ∀x ∈ [a, b].

In particular, for x = b, we have∫ b

a

F ′(t) dt = F (b)− F (a).

■
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Theorem 7.21 [Fundamental Theorem of Calculus, Part 2] If an integrable func-

tion f : [a, b] → R possesses a primitive F : [a, b] → R, then∫ b

a

f(t) dt = F (b)− F (a).

In other words: if a function F : [a, b] → R has an integrable derivative F ′, then∫ b

a

F ′(t) dt = F (b)− F (a).

Proof: For any partition P = {a = t0 < t1 < · · · < tn = b} of [a, b], we have a

telescoping sum:

F (b)− F (a) = F (tn)− F (t0) =
n∑

i=1

[F (ti)− F (ti−1)]. (7.23)

On the other hand, F is di�erentiable on [a, b] (by de�nition of primitive) and thus

continuous. Applying the Mean Value Theorem (6.12) to F on each [ti−1, ti], there

exists ci ∈ (ti−1, ti) such that

F (ti)− F (ti−1) = F ′(ci)(ti − ti−1) = f(ci)∆ti. (7.24)

Combining (7.23) and (7.24) we have

F (b)− F (a) =
n∑

i=1

f(ci)∆ti. (7.25)

Let mi = inf f and Mi = sup f on [ti−1, ti]. We have

mi ≤ f(ci) ≤Mi,

and therefore

n∑
i=1

mi∆ti ≤
n∑

i=1

f(ci)∆ti ≤
n∑

i=1

Mi∆ti. (7.26)

From (7.25) and (7.26), it follows that for *any* partition P :

s(f ;P ) ≤ F (b)− F (a) ≤ S(f ;P ).

This means (F (b) − F (a)) is an upper bound for the set of all lower sums σ, and

(F (b)− F (a)) is a lower bound for the set of all upper sums Σ. Hence,∫ b

a

f(t) dt = supσ ≤ F (b)− F (a) ≤ inf Σ =

∫ b

a

f(t) dt. (7.27)
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Since f is integrable,
∫ b

a
f(t) dt =

∫ b

a
f(t) dt =

∫ b

a
f(t) dt. From (7.27), we conclude

that ∫ b

a

f(t) dt = F (b)− F (a),

QED. ■

Example: Calculate
∫ 3

1
x2 dx using the Fundamental Theorem of Calculus. We

have f(x) = x2, which is continuous and therefore integrable on [1, 3]. F (x) = 1
3
x3

is a primitive of f since F ′ = f . Hence:∫ 3

1

x2dx =

[
1

3
x3
]3
1

=
27

3
− 1

3
=

26

3
.

Calculate
∫ π

0
sinx dx. Since f(x) = sinx is continuous, it is integrable on [0, π].

F (x) = − cosx is a primitive of f . Hence:∫ π

0

sinx dx = [− cosx]π0 = (− cos π)− (− cos 0) = −(−1)− (−1) = 1 + 1 = 2.

Calculate
∫ π/2

0
sinx cosx dx.We have f(x) = sin x cosx is continuous and there-

fore integrable on [0, π/2]. F (x) = 1
2
(sinx)2 is a primitive of f . Hence:∫ π/2

0

sinx cosx dx =

[
1

2
(sinx)2

]π/2
0

=
1

2
(sin(π/2))2 − 1

2
(sin 0)2 =

1

2
(1)2 − 1

2
(0)2 =

1

2
.

7.5 Classical Formulas of Di�erential and Integral

Calculus

Theorem 7.22 [Change of Variable] Let f : [a, b] → R be continuous and g :

[c, d] → R be di�erentiable with g′ integrable, and g([c, d]) ⊂ [a, b]. Then:∫ g(d)

g(c)

f(x) dx =

∫ d

c

f(g(t)) g′(t) dt.

Proof: Since f is a continuous function, it possesses a primitive F : [a, b] → R, by
Corollary 7.16. Thus, by virtue of the Fundamental Theorem of Calculus:∫ g(d)

g(c)

f(x) dx = F (g(d))− F (g(c)). (7.28)
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On the other hand, by the Chain Rule (6.7):

(F ◦ g)′(t) = F ′(g(t)) · g′(t) = f(g(t)) · g′(t); ∀t ∈ [c, d].

In this way, the map F ◦g : [c, d] → R is a primitive of the function t 7→ f(g(t))g′(t).

(This function is integrable as f, g′ are integrable and g is continuous). Thus, again

by the Fundamental Theorem of Calculus (7.21):∫ d

c

f(g(t))g′(t) dt = (F ◦ g)(d)− (F ◦ g)(c) = F (g(d))− F (g(c)). (7.29)

Hence, from (7.28) and (7.29) we have the desired result. ■

Application: Calculate
∫ 1

0

√
1− x2 dx. Note that a good change of variable is

given by x = sin t, since

√
1− x2 =

√
1− sin2 t = cos t.

In truth, keeping the notation of the previous Theorem, we have:

g : [0, π/2] → R, t 7→ g(t) = sin t.

Then,

g(0) = 0 and g(π/2) = 1.

g′(t) = cos t (which is integrable).

g([0, π/2]) = [0, 1].

Let f(x) =
√
1− x2 on [0, 1]. Hence,∫ 1

0

√
1− x2 dx =

∫ π/2

0

f(g(t))g′(t) dt

=

∫ π/2

0

√
1− sin2 t cos t dt

=

∫ π/2

0

cos2 t dt (since cos t ≥ 0 on [0, π/2])

=
1

2

∫ π/2

0

(1 + cos(2t)) dt

=
1

2

[
t+

1

2
sin(2t)

]π/2
0

=
1

2

(
(
π

2
+

1

2
sin π)− (0 +

1

2
sin 0)

)
=
π

4
.
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Theorem 7.23 [Integration by Parts] If f, g : [a, b] → R have integrable derivatives,

then: ∫ b

a

f(t)g′(t) dt = [f(t)g(t)]ba −
∫ b

a

f ′(t)g(t) dt,

where

[f(t)g(t)]ba = f(b)g(b)− f(a)g(a).

Proof: Note that (fg) is a primitive of f ′g + fg′, i.e., (fg)′ = f ′g + fg′ (by the

product rule). Since f ′, g′ are integrable and f, g are continuous (thus integrable),

f ′g + fg′ is integrable. Integrating this identity and applying the Fundamental

Theorem of Calculus (7.21) gives:∫ b

a

(fg)′(t)dt =

∫ b

a

(f ′(t)g(t) + f(t)g′(t))dt

[f(t)g(t)]ba =

∫ b

a

f ′(t)g(t)dt+

∫ b

a

f(t)g′(t)dt

Rearranging gives the desired result. ■

Application: Evaluate
∫ 1

0
tet dt. De�ne

g′(t) = et and f(t) = t.

Then,

g(t) = et and f ′(t) = 1.

(Both f ′ and g′ are integrable). Hence,∫ 1

0

tet dt = [f(t)g(t)]10 −
∫ 1

0

f ′(t)g(t) dt

= [tet]10 −
∫ 1

0

1 · et dt

= (1 · e1 − 0 · e0)− [et]10

= e− (e1 − e0) = e− (e− 1) = 1.

132



List of Exercises: Riemann and

Improper Integrals

1a Question De�ne f : [0, 1] → by setting f(0) = 0 and f(x) =
1

2n
if

1

2n+1
< x ≤

1

2n
, n ∈ N ∪ {0}. Prove that f is integrable and calculate

∫ 1

0

f(x)dx.

2a Question Let f : [−a, a] → be integrable. If f is an odd function, prove that∫ a

−a

f(x)dx = 0. If, however, f is even, prove that

∫ a

−a

f(x)dx = 2

∫ a

0

f(x)dx.

3a Question Let f be a function de�ned on any non-trivial interval I, integrable

on any closed and bounded interval contained in I, and let α : J → I be

di�erentiable at x0 ∈ J . Given a ∈ I, let G : J → be the function given by

G(x) =

∫ α(x)

a

f(t)dt.

If f is continuous at α(x0), then G is di�erentiable at x0, with

G′(x0) = α′(x0)f(α(x0)).

(Note: Changed variable of integration to t in G(x) for clarity, as per standard

usage of FTC with variable limits).

4a Question Let F : [0,+∞) → be given by F (x) =

∫ 2x

x

e−t2dt. Find the relative

extremes, absolute extremes, and in�ection points of F .

5a Question Let f : [a, b] → be an integrable function, with f(x) ≥ 0 for all

x ∈ [a, b]. If f is continuous at the point c ∈ [a, b] and f(c) > 0, prove that∫ b

a

f(x)dx > 0.

6a Question Prove that if f, g : [a, b] → are continuous then[ ∫ b

a

f(x)g(x)dx
]2

≤
∫ b

a

f(x)2dx

∫ b

a

g(x)2dx.

(Schwarz Inequality.)
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7a Question Let f : [a, b] → be a bounded function. If f is integrable on every

interval [c, b], with a < c < b, then it is integrable on [a, b].

8a Question Prove that the function f : [0, 1] → de�ned by f(0) = 1 and f(x) =

sin 1
x
if 0 < x ≤ 1 is integrable on [0, 1].

9a Question Prove that, for any non-negative integers m and n,∫ 1

0

xm(1− x)ndx =
m!n!

(m+ n+ 1)!
.

10a Question Study the convergence of the following improper integrals:

(a)

∫ +∞

0

cosx

x2
dx (b)

∫ +∞

0

sinx

x
dx (c)

∫ +∞

0

| sinx|
x

dx (d)

∫ +∞

−1

dx√
|x(1− x2)|

11a Question Study the convergence of the following integrals and, if they con-

verge, calculate their value:

(a)

∫ +∞

1

dx

x(1 + x2)
(b)

∫ +∞

2

dx

x2 − 1
(c)

∫ 0

−∞
xexdx

(d)

∫ 1

0

x| log x|dx (e)

∫ π

0

dx

x+ cosx
(f)

∫ π

0

cosx

1 + cos2 x
dx

(g)

∫ +∞

1

dx

x
√
x2 − 1

(h)

∫ 2

−2

x2dx√
4− x2

(i)

∫ +∞

1

e−x

1 + ex
dx

(j)

∫ +∞

0

|x− 3|e−xdx (k)

∫ +∞

0

xe|x−2|dx (l)

∫ 1

−1

√
1 + x

1− x
dx

12a Question (Euler's Gamma and Beta Functions). Prove that for given t, u, v ∈
(0,+∞), the following integrals are convergent:

(a) Γ(t) =

∫ +∞

0

xt−1e−xdx (b) β(u, v) =

∫ 1

0

xu−1(1− x)v−1dx

13a Question Prove that Γ(t+ 1) = tΓ(t), for all t > 0.

14a Question Prove that Γ(n+ 1) = n! for every integer n ≥ 0.

15a Question Taking the Γ function into account and knowing that Γ(1
2
) =

√
π

calculate:

(a)

∫ +∞

0

x2e−x2

dx (b)

∫ +∞

0

3−4x2

dx (c)

∫ +∞

−∞
x2e−|x−1|dx

(d)

∫ 1

0

x2log4xdx (e)

∫ +∞

−∞
x3e−x2

dx (f)

∫ +∞

0

(x− 3)e−x2

dx
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Chapter 8

Series of Real Numbers

We will extend the operation of addition, thus far de�ned for a �nite number of real

numbers, in order to assign meaning to an equality of the type:

a1 + a2 + · · ·+ an + · · · = a,

in which the left-hand member is a 'sum' with an in�nite number of terms.

It is clear that it does not make sense to sum an in�nite sequence of real numbers.

What the left-hand member of the equality above expresses is the limit:

lim
n→∞

(a1 + a2 + · · ·+ an) = a.

The statement that translates the meaning of the equality above is the following:

Given ε > 0, there exists n0 ∈ N such that |(a1 + a2 + · · ·+ an)− a| < ε, ∀n ≥ n0.

We de�ne, therefore, 'in�nite sums' by means of limits. This being the case,

some sums can be performed and others cannot, since not every sequence has a

limit.

Instead of 'in�nite sum', we will use the word series.

The main problem in the theory of series is to determine which ones are conver-

gent and which are not.

Let (an)n∈N be a sequence of real numbers. From it, we form a new sequence

(sn)n∈N given by:

s1 = a1, s2 = a1 + a2, · · · , sn = a1 + a2 + · · ·+ an.

We call (sn)n∈N the sequence of partial sums of
∑∞

n=1 an, the series itself, and

the term an is the general term of the series.

De�nition 8.1 If the limit exists:

s = lim
n→∞

sn = lim
n→∞

(a1 + a2 + · · ·+ an),
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we will say that the series
∑∞

n=1 an is convergent and the limit will be called the

sum of the series. In this case, we write

s =
∞∑
n=1

an = a1 + a2 + · · ·+ an + · · · .

*(Note:
∑n

i=1 an in the original was corrected to
∑∞

n=1 an)*

If the sequence of partial sums does not converge, we will say that the series∑∞
n=1 an is divergent.

Example 1: Consider an =
(
1
2

)n
, n ∈ N. *(Note: The sum is

∑∞
n=0(1/2)

n based

on Sn+1)* Let an = (1/2)n−1 for n ≥ 1.

Sn = 1 +
1

2
+

1

22
+ · · ·+ 1

2n−1
.

This is the sum of the terms of a geometric progression where a1 = 1 and q = 1
2
.

Let's recall that:

Sn =
a1(1− qn)

1− q
.

Hence:

Sn =
1−

(
1
2

)n
1− 1

2

= 2(1− (1/2)n) → 2, as n→ ∞.

So,
∑∞

n=1 an converges and
∑∞

n=1 an = 2. *(Note: The original text had Sn+1 and∑∞
n=1 an = 2, which implies the sum starts at n = 0 or n = 1 with an = (1/2)n−1.

I've adjusted to an = (1/2)n−1 for n ≥ 1)*

Example 2: Let an = 1, for all n ∈ N. In this case,

sn = 1 + 1 + · · ·+ 1 = n→ +∞.

So
∑∞

n=1 an diverges.

Proposition 8.2 If
∑∞

n=1 an is a convergent series, then limn→+∞ an = 0.

Proof: Let sn = a1 + a2 + · · ·+ an. Then, there exists s ∈ R such that

lim
n→+∞

sn = s.

Evidently, we also have

lim
n→+∞

sn−1 = s.

Hence,

lim
n→+∞

an = lim
n→+∞

(sn − sn−1) = lim
n→+∞

sn − lim
n→+∞

sn−1 = s− s = 0.
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■

The converse of the above proposition is false. The classic counter-example is

given by the harmonic series
∑∞

n=1
1
n
. We have:

lim
n→+∞

1

n
= 0.

However, the series diverges. Indeed, consider the subsequence of partial sums s2n :

s2n = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·+

(
1

2n−1 + 1
+ · · ·+ 1

2n

)
> 1 +

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·+

(
1

2n
+ · · ·+ 1

2n

)
= 1 +

1

2
+

2

4
+

4

8
+ · · ·+ 2n−1

2n

= 1 +
1

2
+

1

2
+

1

2
+ · · ·+ 1

2
= 1 +

n

2
.

Since 1 + n/2 → +∞ as n → +∞, the subsequence {s2n} diverges. Since the se-

quence of partial sums (sn) is monotone increasing and has a divergent subsequence,

the sequence (sn) diverges.

Remark: If
∑∞

n=1 an is convergent ⇒ limn→+∞ an = 0. (Test for Divergence)

Therefore, If limn→+∞ an ̸= 0 ⇒
∑∞

n=1 an is divergent.

However, it can happen that an → 0 and
∑∞

n=1 an does not converge.

Example 3: Consider an = an, n ∈ N and a ∈ R. The geometric series
∑∞

n=0 an

is divergent when |a| ≥ 1 because in this case limn→∞ an ̸= 0. However, when |a| < 1

the geometric series converges, and

∞∑
n=0

an =
1

1− a
.

*(Note: a1 in the formula corresponds to the �rst term, which is a0 = 1)*

Example 4: The series
∑∞

n=1
1

n(n+1)
is convergent. Indeed, let us observe the

partial fraction decomposition:

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Therefore (this is a telescoping series):

sn =
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n+ 1)

=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
.
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Consequently

lim
n→∞

sn = lim
n→∞

(
1− 1

n+ 1

)
= 1.

From the properties of limits of sequences, the following proposition results:

Proposition 8.3 Let an ≥ 0 for all n ∈ N. The series
∑∞

n=1 an converges if and

only if the partial sums sn = a1 + a2 + · · ·+ an form a bounded sequence.

Proof: Since an ≥ 0, we have s1 ≤ s2 ≤ · · · ≤ sn ≤ · · · . Therefore, since (sn)n∈N

is monotone (non-decreasing), (sn) is convergent if and only if (sn) is bounded (by

the Monotone Sequence Theorem, 2.14). ■

Corollary 8.4 (Comparison Test) Let
∑∞

n=1 an and
∑∞

n=1 bn be series of non-

negative terms. If there exist C > 0 and n0 ∈ N such that an ≤ Cbn, for all

n ≥ n0, then the convergence of
∑∞

n=1 bn implies the convergence of
∑∞

n=1 an, while

the divergence of
∑∞

n=1 an entails that of
∑∞

n=1 bn.

Proof: If
∑∞

n=1 bn converges, then its partial sums sbn are bounded. This implies

(for n ≥ n0) that s
a
n is bounded, and thus

∑∞
n=1 an is convergent (by Prop. 8.3).

If
∑∞

n=1 an diverges, then san is not bounded. This implies sbn is not bounded, and

therefore
∑∞

n=1 bn diverges. ■

Example 5: If p > 1, the p-series
∑∞

n=1
1
np converges. Since the terms of this

series are positive, the sequence of partial sums is increasing. To prove that this

sequence is bounded, it su�ces to �nd a bounded subsequence. Let sn be the n-th

partial sum. Let us choose the subsequence s2n−1. We have:

s2n−1 = a1 + a2 + · · ·+ a2n−1

= 1 +

(
1

2p
+

1

3p

)
+

(
1

4p
+ · · ·+ 1

7p

)
+ · · ·+

(
1

(2n−1)p
+ · · ·+ 1

(2n − 1)p

)
< 1 +

2

2p
+

4

4p
+ · · ·+ 2n−1

(2n−1)p

= 1 +
1

2p−1
+

1

4p−1
+ · · ·+ 1

(2n−1)p−1

=
n−1∑
i=0

(
1

2p−1

)i

.

*(Note: The original text had a slight error in the grouping 2/2p, 4/22p... Corrected

to 2/2p, 4/4p...)* Since p > 1, we have p − 1 > 0, so r = 1
2p−1 < 1. The geometric

series
∑∞

i=0 r
i converges. Therefore, the subsequence s2n−1 is bounded above (by
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1
1−r

). Since (sn) is monotone increasing and has a bounded subsequence, the entire

sequence (sn) is bounded. By Proposition 8.3, the series
∑∞

n=1
1
np converges.

Observe that if 0 < p ≤ 1, we have np ≤ n, so 1
np ≥ 1

n
. By the comparison test,∑∞

n=1
1
np diverges, since the harmonic series

∑∞
n=1

1
n
is divergent.

We conclude, then (for p > 0): If 0 < p ≤ 1,
∑∞

n=1
1
np diverges. If p > 1,

∑∞
n=1

1
np

converges.

Proposition 8.5 (Limit Comparison Test) Let
∑∞

n=1 an be a series of positive

terms and
∑∞

n=1 bn be a series of non-negative terms.

(i) If limn→∞
bn
an

= k > 0, then the two series either both converge or both diverge.

(ii) If limn→∞
bn
an

= 0, and if
∑
an converges, then

∑
bn converges.

(iii) If limn→∞
bn
an

= +∞, and if
∑
an diverges, then

∑
bn diverges.

Proof: (i) Since limn→∞
bn
an

= k > 0, taking ε = k/2 > 0, there exists n0 ∈ N such

that

k − k

2
<
bn
an

< k +
k

2
, ∀n ≥ n0.

Hence,
k

2
<
bn
an

<
3k

2
, ∀n ≥ n0,

which implies

bn <
3k

2
an and an <

2

k
bn, ∀n ≥ n0.

By the Comparison Test (Corollary 7.5), the series converge or diverge together.

(ii) Since limn→∞
bn
an

= 0, given ε = 1, there exists n0 ∈ N such that∣∣∣∣ bnan − 0

∣∣∣∣ < 1; ∀n ≥ n0.

Since terms are positive,

0 ≤ bn
an

< 1, ∀n ≥ n0 =⇒ bn < an, ∀n ≥ n0.

By the Comparison Test, if
∑
an converges, then

∑
bn converges.

(iii) Since limn→∞
bn
an

= +∞, given M > 0 (e.g., M = 1), there exists n0 ∈ N
such that

bn
an

> M, ∀n ≥ n0.

Hence:

bn > Man, ∀n ≥ n0.

By the Comparison Test, if
∑
an diverges, then

∑
bn diverges. ■
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Example 6: Consider the series:

∞∑
n=2

n3 + 1

n4 + n2 + n− 3
.

Let

an =
1

n
(diverges) and bn =

n3 + 1

n4 + n2 + n− 3
.

Note that:

lim
n→∞

bn
an

= lim
n→∞

n · n3 + 1

n4 + n2 + n− 3
= lim

n→∞

n4 + n

n4 + n2 + n− 3

= lim
n→∞

n4
(
1 + 1

n3

)
n4
(
1 + 1

n2 +
1
n3 − 3

n4

) = 1.

Since
∑∞

n=1 an (the harmonic series) diverges, by the Limit Comparison Test (i),∑∞
n=1 bn also diverges.

Proposition 8.6 (Cauchy Criterion for Series) A series
∑∞

n=1 an is convergent

if and only if, for each ε > 0, there exists n0 ∈ N such that

|an+1 + an+2 + · · ·+ an+p| < ε, ∀n ≥ n0 and ∀p ∈ N.

Proof: Let (sn) be the sequence of partial sums of
∑

n an. Observe that:

sn+p − sn = an+1 + an+2 + · · ·+ an+p.

The series
∑

n an is convergent if and only if (sn) converges. By Theorem 2.19

(Completeness of R), (sn) converges if and only if (sn) is a Cauchy sequence. (sn) is

Cauchy if: ∀ε > 0,∃n0 s.t. if m > n ≥ n0, |sm − sn| < ε. Setting m = n+ p (where

p ≥ 1), this is exactly the condition stated. ■

De�nition 8.7 A series
∑∞

n=1 an is called absolutely convergent if
∑∞

n=1 |an| is a

convergent series.

Example 7: The geometric series
∑∞

n=0 a
n; −1 < a < 1 is absolutely convergent,

because if |a| < 1,
∑∞

n=0 |a|n is a convergent geometric series.

Evidently, every convergent series whose terms do not change sign is absolutely

convergent. If an ≥ 0, then an = |an|, so
∑

|an| converges. If an ≤ 0, then

|an| = −an. If
∑
an converges, then

∑
−an =

∑
|an| also converges (by Thm

5.7(ii)).
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But not every convergent series is absolutely convergent. Indeed, consider the

series:
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · · .

We will see later (with the Leibniz test) that the series above converges. However,

it is not absolutely convergent, because

∞∑
n=1

∣∣∣∣(−1)n+1

n

∣∣∣∣ = ∞∑
n=1

1

n
,

and we have already seen that the harmonic series diverges.

De�nition 8.8 When a series
∑∞

n=1 an converges but
∑∞

n=1 |an| diverges, we say

that
∑∞

n=1 an is conditionally convergent.

Thus, the series
∑∞

n=1
(−1)n+1

n
is conditionally convergent.

Proposition 8.9 Every absolutely convergent series is convergent.

Proof: If
∑∞

n=1 |an| converges, then by the Cauchy Criterion (8.6), given ε > 0

there exists n0 ∈ N such that

||an+1|+ |an+2|+ · · ·+ |an+p|| < ε, ∀n ≥ n0 and p ∈ N.

But, by the triangle inequality:

|an+1 + an+2 + · · ·+ an+p| ≤ |an+1|+ |an+2|+ · · ·+ |an+p| < ε.

Therefore,
∑∞

n=1 an satis�es the Cauchy Criterion, and thus converges. ■

Corollary 8.10 Let
∑∞

n=1 bn be a convergent series with bn ≥ 0 for all n ∈ N. If

there exist k > 0 and n0 ∈ N such that |an| ≤ kbn for all n ≥ n0, then the series∑∞
n=1 an is absolutely convergent.

Proof: We have by the Comparison Test (Cor. 7.5) that
∑∞

n=1 |an| converges, and
therefore

∑∞
n=1 an is absolutely convergent. ■

Corollary 8.11 If for all n ≥ n0 we have |an| ≤ kcn where 0 < c < 1 and k is a

positive constant, then the series
∑∞

n=1 an is absolutely convergent.

Proof: Apply Corollary 8.10 with bn = cn. The geometric series
∑
bn converges

since 0 < c < 1. ■
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Corollary 8.12 (Root Test) Let
∑∞

n=1 an be a series of real terms such that

limn→∞
n
√

|an| exists and equals R. Then:

(i) If R < 1,
∑∞

n=1 an is absolutely convergent.

(ii) If R = 1, the test is inconclusive.

(iii) If R > 1,
∑∞

n=1 an is divergent.

Proof: (i) Since R < 1, there exists ξ ∈ R such that R < ξ < 1. Let ε = ξ−R > 0.

Since the limit is R, there exists n0 ∈ N such that for n ≥ n0:∣∣∣ n
√
|an| −R

∣∣∣ < ε =⇒ n
√
|an| < R + ε = R + (ξ −R) = ξ.

This implies

|an| < ξn, ∀n ≥ n0.

By Corollary 8.11 (with c = ξ), the series
∑
an is absolutely convergent.

(iii) Since R > 1, let ε = R− 1 > 0. Then there exists n0 ∈ N such that:

R− ε < n
√

|an| < R + ε, ∀n ≥ n0,

In particular,
n
√

|an| > R− ε = R− (R− 1) = 1, ∀n ≥ n0.

Thus, |an| > 1n = 1 for all n ≥ n0. Since the general term does not tend to zero,∑
an diverges.

(ii) Consider the series:

∞∑
n=1

1

n
and

∞∑
n=1

1

n2
.

We know (from Example 3a, Section 2.2) that limn→+∞
n
√
n = 1. Thus limn→+∞

n

√
1
n
=

1
lim n√n

= 1. Also:

lim
n→∞

n

√
1

n2
= lim

n→∞

(
n

√
1

n

)2

= 12 = 1.

So, lim n
√

|an| = 1 in both cases; however,
∑

1
n
diverges and

∑
1
n2 converges. ■

Remark: Note that to conclude absolute convergence of
∑
an, the limit of n

√
|an|

does not need to exist; it is su�cient that lim sup n
√

|an| < 1. *(Translator's note:

The original text states "it is su�cient that there exists n0 ∈ N such that n
√

|an| ≤
c < 1," which is the core of the proof (i).)*

Example 8: Consider the series
∑∞

n=1 na
n, a ∈ R. We have:
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lim
n→∞

n
√

|nan| = lim
n→∞

( n
√
n · |a|) = 1 · |a| = |a|.

Thus, if |a| < 1, the series converges absolutely, and if |a| > 1, the series diverges.

For example, from the above, the series
∑∞

n=1
n
2n

converges absolutely since

lim
n→∞

n

√
n

2n
= lim

n→∞

n
√
n

2
=

1

2
< 1.

Proposition 8.13 (Ratio Test Comparison) Let
∑
an be a series of non-zero

terms and
∑
bn be a convergent series with bn > 0. If there exists n0 ∈ N such that

|an+1|
|an|

≤ bn+1

bn
, ∀n ≥ n0,

then
∑
an is absolutely convergent.

Proof: The inequality |an+1|
bn+1

≤ |an|
bn

holds for n ≥ n0. This means the sequence

cn = |an|/bn is non-increasing for n ≥ n0. Thus, for n > n0, |an|/bn ≤ |an0|/bn0 = k

(a constant).

|an| ≤ k bn, ∀n ≥ n0.

By Corollary 8.10 (Comparison Test), since
∑
bn converges,

∑
|an| converges. ■

Corollary 8.14 Let
∑
an be a series of non-zero terms and c a constant such that

0 < c < 1. If |an+1|
|an| ≤ c for all n ≥ n0, then

∑
an is absolutely convergent.

Proof: Let bn = cn. We have bn+1

bn
= cn+1

cn
= c. The condition is |an+1|

|an| ≤ c = bn+1

bn

for n ≥ n0. Since
∑
bn converges (geometric series, 0 < c < 1), by Proposition 8.13,∑

an converges absolutely. ■

Corollary 8.15 (Ratio Test) Let
∑
an be a series of non-zero terms such that

limn→∞
|an+1|
|an| exists and equals R. Then:

(i) If R < 1,
∑
an converges absolutely.

(ii) If R = 1, the test is inconclusive.

(iii) If R > 1,
∑
an diverges.

Proof: (i) Since R < 1, there exists c ∈ R such that R < c < 1. Let ε = c−R > 0.

Since the limit is R, there exists n0 ∈ N such that for n ≥ n0:∣∣∣∣ |an+1|
|an|

−R

∣∣∣∣ < ε =⇒ |an+1|
|an|

< R + ε = R + (c−R) = c.
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Since 0 < c < 1, by the previous Corollary,
∑
an converges absolutely.

(iii) Since R > 1, let ε = R− 1 > 0. There exists n0 ∈ N such that

|an+1|
|an|

> R− ε = R− (R− 1) = 1, ∀n ≥ n0,

i.e.,

|an+1| > |an|, ∀n ≥ n0.

This implies |an| is an increasing sequence for n ≥ n0. Therefore, the general term

an cannot converge to zero, which implies
∑
an diverges.

(ii) Consider the series
∑

1
n
and

∑
1
n2 . For

∑
1/n: lim 1/(n+1)

1/n
= lim n

n+1
= 1.

(Diverges) For
∑

1/n2: lim 1/(n+1)2

1/n2 = lim n2

(n+1)2
= 1. (Converges) In both cases

R = 1, but the series have di�erent behaviors. ■

Example 9: Consider the series
∑∞

n=0
an

n!
, a ∈ R. We have:

|an+1|
|an|

=
|a|n+1

(n+ 1)!

n!

|a|n
=

|a|
n+ 1

.

lim
n→∞

|an+1|
|an|

= lim
n→∞

|a|
n+ 1

= 0.

Since R = 0 < 1, the series converges absolutely for all x ∈ R.

Proposition 8.16 (Integral Test) Let
∑∞

n=1 an be a series of positive and non-

increasing terms (a1 ≥ a2 ≥ · · · an ≥ · · · ). Let f(x) be a function de�ned on

[1,+∞), continuous, non-increasing, and positive, such that f(n) = an for all n.

Then:

(i) If
∫∞
1
f(x) dx converges, then

∑∞
n=1 an converges.

(ii) If
∫∞
1
f(x) dx diverges, then

∑∞
n=1 an diverges.

Proof: (The proof refers to two �gures, which are standard illustrations of the

Integral Test. Figure I shows sn >
∫ n+1

1
f(x)dx (rectangles above curve, using left

endpoints). Figure II shows sn−a1 <
∫ n

1
f(x)dx (rectangles below curve, using right

endpoints).)

Examining Figure I (rectangles based on left endpoints): The area of the n-th

rectangle is an · 1. The sum of the areas of the �rst n rectangles is sn =
∑n

i=1 ai.

Since f is non-increasing, ai ≥ f(x) for x ∈ [i, i+ 1].

sn =
n∑

i=1

ai ≥
n∑

i=1

∫ i+1

i

f(x)dx =

∫ n+1

1

f(x)dx.
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sn ≥
∫ n+1

1

f(x) dx. (8.1)

Examining Figure II (rectangles based on right endpoints): The sum of the areas is

a2 + a3 + · · ·+ an = sn − a1. Since f is non-increasing, ai ≤ f(x) for x ∈ [i− 1, i].

sn − a1 =
n∑

i=2

ai ≤
n∑

i=2

∫ i

i−1

f(x)dx =

∫ n

1

f(x)dx.

sn ≤ a1 +

∫ n

1

f(x)dx. (8.2)

(i) If
∫∞
1
f(x) dx converges to L, then

∫ n

1
f(x)dx ≤ L. By (8.2), sn ≤ a1 + L. The

sequence (sn) is non-decreasing (since an ≥ 0) and bounded above. Therefore,
∑
an

converges. (ii) If
∫∞
1
f(x) dx diverges (to +∞), then limn→∞

∫ n+1

1
f(x)dx = ∞. By

(8.1), sn → ∞. Therefore,
∑
an diverges. ■

Example 10: Using the Integral Test, show that the p-series
∑∞

n=1
1
np converges if

p > 1 and diverges if p = 1. Let f(x) = 1/xp. This function is continuous, positive,

and non-increasing on [1,∞) for p > 0.

(i) p = 1 ∫ n

1

1

x
dx = [lnx]n1 = lnn− ln 1 = lnn.

Since limn→∞ lnn = +∞, the integral
∫∞
1

1
x
dx diverges, which implies that

∑∞
n=1

1
n

diverges.

(ii) p > 1.∫ n

1

1

xp
dx =

∫ n

1

x−p dx =

[
x−p+1

−p+ 1

]n
1

=
1

1− p

(
n1−p − 1

)
=

1

p− 1

(
1− 1

np−1

)
.

Since p > 1, p−1 > 0, so limn→+∞
1

np−1 = 0. The integral converges: limn→∞
∫ n

1
1
xpdx =

1
p−1

. Therefore,
∫∞
1

1
xp dx converges, which implies that

∑∞
n=1

1
np converges.

8.1 Alternating Series

De�nition 8.17 An alternating series is a real series whose successive terms have

opposite signs.

Example 11: The series
∑∞

n=1
(−1)n+1

n
= 1− 1

2
+ 1

3
− 1

4
+ · · · is alternating.
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Proposition 8.18 (Leibniz Criterion / Alternating Series Test) If (an) is

a non-increasing sequence of positive terms with limn→∞ an = 0, then the alternating

series
∑∞

n=1(−1)n+1an converges. *(Note: Original text had (−1)nan, but the proof

matches (−1)n+1an or (−1)nan starting at n = 0)*

Proof: Let (sn) be the sequence of partial sums. Let (s2n) be the subsequence of

even-indexed terms.

s2n = (a1 − a2) + (a3 − a4) + · · ·+ (a2n−1 − a2n)

Since (an) is non-increasing, ak−ak+1 ≥ 0. Thus s2n is a sum of non-negative terms.

s2n+2 = s2n + (a2n+1 − a2n+2) ≥ s2n.

So, (s2n) is a non-decreasing sequence. Let us now write s2n as:

s2n = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n−2 − a2n−1)− a2n

Since ak − ak+1 ≥ 0 and a2n ≥ 0, we have

s2n ≤ a1.

Thus, (s2n) is non-decreasing and bounded above by a1. By the Monotone Sequence

Theorem, it converges. Let

s = lim
n→∞

s2n.

Now consider the subsequence of odd-indexed terms: s2n+1 = s2n + a2n+1.

lim
n→∞

s2n+1 = lim
n→∞

s2n + lim
n→∞

a2n+1 = s+ 0 = s,

since lim an = 0. Since both the even and odd subsequences converge to the same

limit s, we conclude limn→∞ sn = s. ■

Example 12: Consider the series
∑∞

n=1
(−1)n+1

n
. We have an = 1/n, which is

positive, non-increasing, and lim(1/n) = 0. By the Leibniz Criterion, the series∑∞
n=1

(−1)n+1

n
converges.

8.2 Power Series

Until now, we have studied series of real numbers. From now on, we will study

particular series whose terms are real functions.
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De�nition 8.19 Series of the type:

∞∑
n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + · · ·

are called power series (centred at x0).

In this case, fn(x) = an(x− x0)
n, n ∈ N, x ∈ R.

For simplicity of notation, we will almost always consider the case x0 = 0, i.e.,

power series of the form:

∞∑
n=0

anx
n = a0 + a1 x+ a2 x

2 + · · · ,

since the general case reduces to this one by the change of variable y = x− x0.

Example 1: Consider the power series
∑∞

n=0
xn

n!
. In this case, an = 1

n!
. For

which values of x does this series converge? Using the Ratio Test (for absolute

convergence):

lim
n→∞

|an+1x
n+1|

|anxn|
= lim

n→∞

|x|n+1

(n+ 1)!

n!

|x|n
= lim

n→∞

|x|
n+ 1

= 0.

Since R = 0 < 1 for all x ∈ R, the series converges absolutely for all x ∈ R.

Example 2: Consider the series
∑∞

n=0 x
n. In this case an = 1. We have already

seen that the series above (geometric series) converges if |x| < 1 and diverges if

|x| ≥ 1.

We will see next that the set of points x for which the series
∑∞

n=0 an x
n converges

is an interval symmetric about the origin. (If the series were
∑∞

n=0 an (x− x0)
n, we

would have an interval symmetric about x0).

We �rst consider two lemmas:

Lemma 8.20 If
∑∞

n=0 anx
n
0 converges (for x0 ̸= 0), then the sequence (anx

n
0 ) is

bounded.

Proof: If
∑∞

n=0 anx
n
0 converges, then by the test for divergence (Prop. 8.2),

limn→∞ anx
n
0 = 0. Since every convergent sequence is bounded (Prop. 2.7), the

sequence (anx
n
0 ) is bounded. ■

Lemma 8.21 If
∑∞

n=0 an x
n converges for x = x0 ̸= 0, then the series converges

absolutely for all x such that |x| < |x0|.
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Proof: Since
∑∞

n=0 an x
n
0 converges, by Lemma 8.20, the sequence (an x

n
0 ) is

bounded. Thus, there exists C > 0 such that

|an xn0 | ≤ C; ∀n ∈ N. (8.3)

Let x ∈ R be such that |x| < |x0|. Let r = |x|
|x0| . We have 0 ≤ r < 1. From (8.3) we

have:

|an xn| =
∣∣∣∣an xn0 ( x

x0

)n∣∣∣∣ = |an xn0 |
∣∣∣∣ xx0
∣∣∣∣n ≤ Crn. (8.4)

Since 0 ≤ r < 1, the geometric series
∑∞

n=0Cr
n converges. By the Comparison Test

(Cor. 8.10),
∑∞

n=0 |an xn| converges. Thus,
∑∞

n=0 an x
n converges absolutely. ■

Proposition 8.22 If a power series
∑∞

n=0 an x
n converges for a point x0 ̸= 0, then

either the series converges absolutely for all x ∈ R, or there exists a positive real

number R such that the series converges absolutely when |x| < R and diverges when

|x| > R. At the points R or −R, nothing can be a�rmed; that is, the series may

converge absolutely, converge conditionally, or diverge.

Proof: Let E be the following set:

E := {r > 0 | if |x| < r then
∞∑
n=0

an x
n converges absolutely}.

Since
∑∞

n=0 an x
n
0 converges by hypothesis, then by Lemma 8.21,

∑∞
n=0 an x

n con-

verges absolutely for |x| < |x0|. It follows that |x0| ∈ E, i.e., E ̸= ∅.
If E is not bounded above, we take R = +∞. If E is bounded, we consider

R = supE. For R = +∞, the series converges absolutely for all x ∈ R, because
since E is unbounded, given x ∈ R we can choose r1 ∈ E such that |x| < r1, and by

the de�nition of E,
∑

n an x
n converges absolutely. For R �nite, the series converges

absolutely for |x| < R, because since R = supE, for each x ∈ R such that |x| < R,

we can �nd r ∈ E such that |x| < r < R, and then
∑

n an x
n converges absolutely.

For R �nite, the series diverges for |x| > R. This is because if the series converged

for x = x1 with |x1| > R, by Lemma 8.21 the series would converge absolutely for

|x| < |x1|, and therefore |x1| ∈ E, which contradicts the fact that R is the supremum

of E. ■

De�nition 8.23 The number R from the previous proposition is called the radius of

convergence of the power series.
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If a power series converges for all x ∈ R, we say the radius of convergence is

in�nite and write R = +∞. If the series diverges for all x ̸= 0, we say the radius

of convergence is zero and write R = 0. Thus, the radius can be zero, +∞, or any

positive real number.

Example 3: From what we have already seen, the radius of convergence of the

series
∑∞

n=0
xn

n!
is +∞.

Example 4: The radius of convergence of the series
∑∞

n=0 x
n is 1, although this

series does not converge for x = 1 or x = −1.

Example 5: The radius of convergence of the series
∑∞

n=0 n!x
n is zero. Indeed,

if x ̸= 0 we have:

lim
n→∞

∣∣∣∣(n+ 1)!xn+1

n!xn

∣∣∣∣ = |x| lim
n→∞

(n+ 1) = +∞.

Since the limit is > 1 (it is +∞), by the Ratio Test, the series diverges for all

x ̸= 0. *(Translator's note: The original proof with epsilon is also correct, but this

conclusion from the Ratio Test is more direct)*.

Proposition 8.24 Let
∑∞

n=0 an x
n be a power series where an ̸= 0 for n su�ciently

large.

(i) If limn→∞

∣∣∣ an
an+1

∣∣∣ = R; where 0 ≤ R ≤ +∞, then R is the radius of conver-

gence of the power series.

(ii) If limn→∞
1

n
√

|an|
= R, where 0 ≤ R ≤ +∞, then R is the radius of conver-

gence of the power series.

Proof: (i) If x = 0, the series converges absolutely. If x ̸= 0, we apply the Ratio

Test to the series
∑
anx

n:

lim
n→∞

∣∣∣∣an+1 x
n+1

an xn

∣∣∣∣ = lim
n→∞

|x|
∣∣∣∣an+1

an

∣∣∣∣ = |x| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
This limit equals: 

|x|
R

; if R ̸= 0 and R ̸= +∞,

0; if R = +∞,

+∞; if R = 0.

By the Ratio Test, the series converges absolutely if this limit is < 1 and diverges

if > 1. If R = +∞, the limit is 0 < 1 for all x. The series converges absolutely for

all x. If R = 0, the limit is +∞ > 1 for all x ̸= 0. The series diverges for x ̸= 0. If

0 < R < +∞, the limit is |x|/R. This is < 1 if |x| < R, and > 1 if |x| > R. In all

cases, R is the radius of convergence.
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(ii) Shown similarly using the Root Test. ■

Example 6: What is the radius of convergence of the series
∑∞

n=0 3
2n xn? We

have an = 32n = 9n. Using method (i):

lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ = lim
n→∞

∣∣∣∣ 32n

32(n+1)

∣∣∣∣ = lim
n→∞

1

32
=

1

9
.

Hence, the radius of convergence R is 1/9.

Properties of Power Series. If a series
∑∞

n=0 an x
n has a sum f(x) such that∑∞

n=0 an x
n = f(x) for x in an interval I, we say that the series

∑∞
n=0 an x

n represents

the function f on this interval.

A power series
∑∞

n=0 an x
n with radius of convergence R ̸= 0 represents one, and

only one, function on the interval (−R,R) which associates the number
∑∞

n=0 an x
n
0

with a point x0 in the interval (−R,R).

Proposition 8.25 If the power series
∑∞

n=0 anx
n represents the function f(x) in

the open interval |x| < R (where R > 0 is its radius of convergence), then:

a) f(x) is continuous in |x| < R.

b) f(x) is di�erentiable in |x| < R and f ′(x) is represented by the power series∑∞
n=1 n an x

n−1 in the interval |x| < R.

c) The de�nite integral
∫ x

0
f(t) dt is represented by the power series

∑∞
n=0

an
n+1

xn+1

in the interval |x| < R.

Proof: See Elon Lages Lima [1]. ■

The result above allows us to interchange di�erentiation and integration with

the limit, i.e.:

f ′(x) =
d

dx

(
∞∑
n=0

an x
n

)
=

d

dx
lim
n→∞

sn(x) = lim
n→∞

d

dx
sn(x) =

∞∑
n=1

n anx
n−1,

and ∫ x

0

f(t) dt =

∫ x

0

(
∞∑
n=0

an t
n

)
dt =

∫ x

0

(
lim
n→∞

sn(t)
)
dt

= lim
n→∞

∫ x

0

sn(t) dt = lim
n→∞

∫ x

0

(
n∑

i=0

ai t
i

)
dt

= lim
n→∞

(
a0 x+

a1 x
2

2
+
a2 x

3

3
+ · · ·+ an x

n+1

n+ 1

)
=

∞∑
n=0

an x
n+1

n+ 1
.
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*(Note: Corrected summation limit in the original text)*

Corollary 8.26 If the function f(x) can be represented by a power series in an

open interval |x| < r, then the function possesses derivatives of all orders in that

interval.

Example 7: Consider the geometric series:

∞∑
n=0

xn = 1 + x+ x2 + · · ·

This series converges for |x| < 1 and diverges for |x| ≥ 1. Furthermore,

∞∑
n=0

xn =
1

1− x
, for |x| < 1.

Thus,

1

1− x
= 1 + x+ x2 + · · · , if |x| < 1. (8.5)

Now, since
d

dx

(
1

1− x

)
=

1

(1− x)2
,

from (8.5) we have (by term-wise di�erentiation)

1

(1− x)2
= 1 + 2x+ 3x2 + · · · =

∞∑
n=1

nxn−1, if |x| < 1. (8.6)

On the other hand, if we integrate the function 1
1−x

and integrate the right-hand

side of (8.5) from 0 to x:∫ x

0

1

1− t
dt = [− ln(1− t)]x0 = − ln(1− x)− (− ln(1)) = − ln(1− x)∫ x

0

(
∞∑
n=0

tn

)
dt =

∞∑
n=0

∫ x

0

tndt =
∞∑
n=0

xn+1

n+ 1
= x+

x2

2
+
x3

3
+ · · ·

i.e.,

− ln(1− x) = x+
x2

2
+
x3

3
+ · · · =

∞∑
n=0

xn+1

n+ 1
, if |x| < 1. (8.7)

*(Note: Corrected the integral of 1/(1-t), which is -ln(1-t))*

Example 8: Consider the series
∑∞

n=0
xn

n!
. This series converges for all x ∈ R. If

f(x) is the function represented by this series, we have:

f ′(x) =
∞∑
n=1

d

dx

(
xn

n!

)
=

∞∑
n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)!
.
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Let k = n− 1. When n = 1, k = 0.

f ′(x) =
∞∑
k=0

xk

k!
= f(x).

Therefore, f ′(x) = f(x), which means f(x) = Cex. Since f(0) = a0 = 1/0! = 1, we

have C = 1. Hence f(x) = ex.

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · · ,∀x ∈ R. (8.8)

Corollary 8.27 If the function f(x) is represented by the power series
∑∞

n=0 an x
n

in an interval |x| < r, then:

f (n)(0) = n! an; ∀n ∈ N,

and therefore,

f(x) =
∞∑
n=0

f (n)(0)

n!
xn. (Taylor Series Expansion)

Proof: We have

f(x) = a0 + a1 x+ a2 x
2 + a3 x

3 + a4 x
4 + · · ·

Di�erentiating term by term:

f ′(x) = a1 + 2a2 x+ 3a3 x
2 + 4a4 x

3 + · · · ,

f ′′(x) = 2a2 + (3 · 2)a3 x+ (4 · 3)a4x2 + · · ·

f ′′′(x) = (3 · 2 · 1)a3 + (4 · 3 · 2)a4x+ · · ·

Setting x = 0 at each step:

f(0) = a0; f
′(0) = a1; f

′′(0) = 2! a2; f
′′′(0) = 3! a3; · · · ; f (n)(0) = n! an.

Substituting the an back into the series gives

f(x) =
∞∑
n=0

f (n)(0)

n!
xn.

■

Corollary 8.28 If the function f(x) is represented by both power series
∑∞

n=0 an x
n

and
∑∞

n=0 bn x
n in some open interval common to both around zero, then an = bn

for all n.
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Proof: By Corollary 8.27, we have f (n)(0) = n! an and f (n)(0) = n! bn. Whence:

an =
f (n)(0)

n!
= bn.

■

It follows from Corollary 8.28 that a function can be represented by at most one

power series centred at zero. Naturally, a function can be represented by series with

di�erent centres. Thus:

f(x) = 1 + x+ x2 =
∞∑
n=0

an x
n where an =

{
1, n = 0, 1, 2,

0, n > 2.

f(x) = 3 + 3(x− 1) + (x− 1)2 =
∞∑
n=0

bn (x− 1)n where bn =


3, n = 0, 1,

1, n = 2,

0, n > 2.

Note that 3 + 3(x− 1) + (x− 1)2 = 3 + 3x− 3 + x2 − 2x+ 1 = 1 + x+ x2.

Corollary 8.29 If
∑∞

n=0 an x
n represents the function f(x) = 0 in an open interval

containing zero, then every an = 0.

Proof: The series
∑∞

n=0 0x
n and

∑∞
n=0 an x

n represent the same function (the

zero function) in an open interval containing zero. Hence, by Corollary 8.28, the

coe�cients of the two series are equal, i.e., an = 0. ■

Proposition 8.30 Let f be a function represented by the power series
∑

n an x
n on

the interval (−r1, r1) and g a function represented by the power series
∑

n bn x
n on

the interval (−r2, r2). Then:
(i)
∑∞

n=0(k an)x
n represents the function kf on (−r1, r1).

(ii)
∑∞

n=0(an+bn)x
n represents the function f+g on (−r, r) where r = min{r1, r2}.

Proof: Proof of this proposition is left as an exercise. ■
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Chapter 9

Sequences and Series of Functions

9.1 Sequences and Series of Functions

De�nition 9.1 Let A ⊂ R. A sequence of real functions de�ned on A is any map

that associates to each n ∈ N a function fn : A→ R.

Example 1: For A = [0, 1], consider the map that associates n ∈ N with the

sequence of functions fn : [0, 1] → R de�ned by fn(x) = xn.

De�nition 9.2 Let (fn)n∈N be a sequence of real functions de�ned on a subset A ⊂
R. We say that (fn)n∈N has the function f : A → R as its limit, or that fn → f ,

when for each x ∈ A the numerical sequence (fn(x))n∈N converges to f(x). We also

say that (fn)n∈N converges pointwise to f .

Returning to Example 1 above, we had fn(x) = xn, 0 ≤ x ≤ 1. We will show

that the sequence de�ned above converges to the zero function if 0 ≤ x < 1 and

converges to the constant function equal to 1 if x = 1. For x = 0, it is immediate

that fn(0) = 0n → 0. For x = 1, fn(1) = 1n → 1. Consider 0 < x < 1. We must

show xn → 0. Given ε > 0 and for each x ∈ (0, 1), we must �nd n0 (which depends

on ε and x), such that if n ≥ n0, we have |xn − 0| < ε.

Note that xn < ε ⇔ ln(xn) < ln ε ⇔ n lnx < ln ε. Since 0 < x < 1, lnx < 0.

Thus, dividing by lnx reverses the inequality:

n >
ln ε

lnx

If we take 0 < ε < 1, then ln ε < 0, so ln ε
lnx

> 0. In this way, it su�ces to take n0

to be the smallest positive integer such that n0 >
ln ε
lnx

, and the desired result holds.

Note that n0 depends on ε as well as on x.
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In the example above, we have a sequence of continuous functions on [0, 1] that

converge pointwise to a function f

f(x) =

{
0, 0 ≤ x < 1

1, x = 1

which is not continuous at the point x = 1.

Example 2: We will now show that the sequence of functions fn(x) = sin(nx)√
n

converges to the identically zero function. In this case, we will show that the con-

vergence is uniform, i.e., the index n0 no longer depends on x but only on ε.

We have:

|fn(x)− 0| =
∣∣∣∣sin(nx)√

n

∣∣∣∣ ≤ 1√
n
, ∀x ∈ R.

We want |fn(x)− 0| < ε. It su�ces to make the upper bound 1√
n
< ε.

1√
n
< ε⇔ 1

n
< ε2 ⇔ n >

1

ε2
.

In this case, it su�ces to choose n0 as the smallest integer greater than 1
ε2
. We say

then that (fn(x)) converges uniformly to the zero function because n0 only depends

on ε.

De�nition 9.3 Let (fn)n∈N be a sequence of real functions de�ned on a set A ⊂ R.
We say that (fn)n converges uniformly on A to a function f : A→ R when for each

ε > 0, there corresponds an index n0(ε), independent of x, such that |fn(x)−f(x)| <
ε for all n ≥ n0, regardless of x ∈ A.

De�nition 9.4 (Cauchy Condition for sequences of functions) Let (fn)n∈N be a

sequence of real functions de�ned on a set A ⊂ R.

� For the sequence (fn)n∈N to be pointwise convergent on A, it is necessary and

su�cient that for each ε > 0 and each x ∈ A, there corresponds an index

n0(ε, x) such that for all m,n ≥ n0, |fm(x)− fn(x)| < ε holds.

� For the sequence (fn)n∈N to be uniformly convergent on A, it is necessary and

su�cient that for each ε > 0, there corresponds an index n0(ε), independent

of x, such that if m,n ≥ n0, |fm(x)− fn(x)| < ε holds, for any x ∈ A.

Let's now look at some considerations about series of functions.
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De�nition 9.5 Let A ⊂ R be a set, and suppose that to each n ∈ N is associated

a function fn : A → R. We then have a sequence (fn)n∈N of functions de�ned on

A. The series of functions de�ned by the sequence (fn)n∈N is the sequence of partial

sums (sn)n∈N:

s1(x) = f1(x)

s2(x) = f1(x) + f2(x)

· · ·

sn(x) = f1(x) + · · ·+ fn(x).

We write:
∞∑
n=1

fn or
∞∑
n=1

fn(x)

Example 1: Let fn(x) = xn, x ∈ (−1, 1); n = 0, 1, 2, . . . . Then:

1 + x+ x2 + · · ·+ xn + · · · =
∞∑
n=0

xn.

Example 2: Let fn(x) =
sin(nx)

n2 , x ∈ R; n = 1, 2, 3, · · · We have:

sin(x) +
sin(2x)

4
+

sin(3x)

9
+ · · ·+ sin(nx)

n2
+ · · · =

∞∑
n=1

sin(nx)

n2
.

To say that the series of functions
∑∞

n=1 fn(x) converges on A to a function

s : A → R, or that
∑∞

n=1 fn has the function s as its sum, is equivalent to saying

that for every x ∈ A the numerical series
∑∞

n=1 fn(x) converges to s(x). This is

pointwise convergence.

What generally occurs is that n0 varies with ε and x. We say that the series

of functions
∑∞

n=1 fn(x) converges uniformly on A to a function s(x) when for each

ε > 0, there corresponds an index n0(ε), independent of x, such that if n ≥ n0, then

|(f1(x) + · · ·+ fn(x))− s(x)| < ε, for any x ∈ A.

De�nition 9.6 (Cauchy Condition for series of functions) For the series∑∞
n=1 fn(x) to be pointwise convergent on the set A, it is necessary and su�cient

that for each ε > 0 and each x ∈ A, there corresponds an index n0(ε, x) such that if

m > n ≥ n0 then |sm(x)− sn(x)| < ε.

For the series
∑∞

n=1 fn(x) to be uniformly convergent on the set A, it is necessary

and su�cient that for each ε > 0, there corresponds an index n0(ε), independent of

x, such that if m > n ≥ n0 then |sm(x)− sn(x)| < ε, for any x ∈ A.
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Let m = n+ p, p ∈ N. The condition is written:

|sn+p(x)− sn(x)|

= |(f1(x) + · · ·+ fn(x) + fn+1(x) + · · ·+ fn+p(x))− (f1(x) + · · ·+ fn(x))|

= |fn+1(x) + · · ·+ fn+p(x)| < ε, ∀x ∈ A, ∀n ≥ n0,∀p ∈ N.

Thus, for the series
∑∞

n=1 fn(x) to be uniformly convergent on A, it is necessary

and su�cient that for each ε > 0, there corresponds an index n0(ε) such that for

n ≥ n0 and p ∈ N we have:

|fn+1(x) + · · ·+ fn+p(x)| < ε, ∀x ∈ A.

Theorem 9.7 (Weierstrass M-Test) Suppose {fn(x)}n∈N is a sequence of func-

tions de�ned on a set E ⊂ R. LetMn ≥ 0 be such that the numerical series
∑∞

n=1Mn

is convergent. Suppose that for the series
∑∞

n=1 fn(x), we have |fn(x)| ≤ Mn for

all n ∈ N and all x ∈ E. Then the series
∑∞

n=1 fn(x) converges uniformly (and

absolutely) on E.

Proof: Since
∑∞

n=1Mn < +∞, this series satis�es the Cauchy Criterion for nu-

merical series. Given ε > 0, there exists n0(ε) such that for all n ≥ n0 and p ∈ N:

Mn+1 + · · ·+Mn+p < ε.

Now, for the series of functions, we check the uniform Cauchy Criterion:∣∣∣∣∣
p∑

i=1

fn+i(x)

∣∣∣∣∣ ≤
p∑

i=1

|fn+i(x)| ≤
p∑

i=1

Mn+i < ε.

This inequality holds for all n ≥ n0, all p ∈ N, and all x ∈ E. Thus, the series∑
fn(x) converges uniformly in E. ■

Example 1: Let

∞∑
n=1

fn(x), fn(x) =
sin(nx)

n2
, n = 1, 2, · · · and x ∈ R.

We know that
∞∑
n=1

1

n2
< +∞ (p-series with p = 2 > 1).

But,

|fn(x)| =
∣∣∣∣sin(nx)n2

∣∣∣∣ ≤ 1

n2
=Mn, ∀x ∈ R, ∀n ∈ N.
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Applying the Weierstrass M-Test, the series
∑∞

n=1
sin(nx)

n2 converges uniformly on R.

Example 2: Let:

∞∑
n=1

fn(x), fn(x) =
cos(n2x)

n3/2
, x ∈ R, n ∈ N.

We know that
∞∑
n=1

1

n3/2
is convergent (p = 3/2 > 1).

Since

|fn(x)| ≤
1

n3/2
=Mn, ∀x ∈ R, ∀n ∈ N,

it follows that the series converges uniformly by the Weierstrass M-Test.

Theorem 9.8 Suppose fn(x) → f(x) pointwise for all x ∈ E. Set:

Mn := sup
x∈E

|fn(x)− f(x)|.

Then, fn → f uniformly on E if and only if Mn → 0 as n→ +∞.

Proof: (⇒) Suppose fn → f uniformly on E. We must show that limMn = 0.

Given ε > 0, by the de�nition of uniform convergence, there exists an index n0(ε)

(independent of x) such that for all n ≥ n0, we have

|fn(x)− f(x)| < ε, ∀x ∈ E.

This means that ε is an upper bound for the set {|fn(x) − f(x)| : x ∈ E} (for

n ≥ n0). By de�nition of the supremum,

Mn = sup
x∈E

|fn(x)− f(x)| ≤ ε.

Since Mn ≥ 0, we have 0 ≤Mn ≤ ε for all n ≥ n0. This is the de�nition of Mn → 0.

(⇐) Conversely, suppose limn→∞Mn = 0. We must show fn → f uniformly.

Given ε > 0, since Mn → 0, there exists an index n0(ε) such that for all n ≥ n0, we

have |Mn − 0| =Mn < ε. By de�nition of Mn:

sup
x∈E

|fn(x)− f(x)| < ε, ∀n ≥ n0.

Since the supremum is less than ε, every element must also be:

|fn(x)− f(x)| ≤ sup
x∈E

|fn(x)− f(x)| < ε, ∀x ∈ E, ∀n ≥ n0.

This is the de�nition of uniform convergence. ■
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9.2 Uniform Convergence and Continuity

Let (fn)n∈N be a sequence of real functions de�ned and continuous on A converging

on A to a function f . One asks: Is the function f also continuous? The answer is

no.

Counter-example: fn(x) = xn, x ∈ [0, 1].

We have already seen that

fn(x) → f(x) =

{
0, if 0 ≤ x < 1,

1, if x = 1,

which is not continuous on [0, 1].

Another question that arises: Let fn(x) be a sequence of real functions de�ned

and continuous on A converging to a function f . Is the following relation always

true:

lim
x→x0

(
lim
n→∞

fn(x)
)
= lim

n→∞

(
lim
x→x0

fn(x)

)
?

The answer is no. Consider as before fn(x) = xn, x ∈ [0, 1]. It is easy to see that

if x ∈ (0, 1) then:

0 = lim
x→1, x<1

(
lim
n→∞

fn(x)
)
̸= lim

n→∞

(
lim

x→1, x<1
fn(x)

)
= 1.

Under what conditions are such questions always true?

Proposition 9.9 Let A ⊂ R and (fn(x))n∈N be a sequence of real functions on A

converging uniformly on A to a function f . If the (fn(x))n∈N are continuous on A,

then f is continuous on A.

Proof: We must show that f is continuous on A. Therefore let x0 ∈ A and ε > 0.

Since (fn(x))n∈N converges uniformly on A, then for the given ε > 0 there exists

n0(ε) such that for all n ∈ N with n ≥ n0 we have |fn(x) − f(x)| < ε/3, for any

x ∈ A.

On the other hand, the (fn(x))n∈N are continuous for all n ∈ N. In particular,

for n = n0, it follows that fn0 is also continuous at x0. Thus, for the given ε > 0,

there exists δ(ε, x) such that if x ∈ A with |x−x0| < δ then |fn0(x)−fn0(x0)| < ε/3.

From the uniform convergence above we have that:

|fn(x)− f(x)| < ε/3, ∀x ∈ A, ∀n ≥ n0.

In particular, for n = n0 and x = x0 we have |fn0(x0)− f(x0)| < ε/3.
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However, for the given ε > 0 there exists δ(ε, x) such that if x ∈ A and |x−x0| < δ

we have:

|f(x)− f(x0)| = |f(x)− fn0(x) + fn0(x)− fn0(x0) + fn0(x0)− f(x0)|

≤ |f(x)− fn0(x)|+ |fn0(x)− fn0(x0)|+ |fn0(x0)− f(x0)| < ε/3 + ε/3 + ε/3 = ε,

which concludes the proof. ■

Note that according to the hypotheses of Proposition 9.9, the following relation

holds:

lim
x→x0

(
lim
n→∞

fn(x)
)
= lim

n→∞

(
lim
x→x0

fn(x)

)
,

where (fn(x))n∈N is a sequence of functions de�ned on A and converging uniformly

to a function f .

Indeed,

We have

Since fn → f uniformly on A⇒ lim
n→∞

fn(x) = f(x), ∀x ∈ A. (9.1)

On the other hand, since f is continuous on A, it follows that

lim
x→x0

f(x) = f(x0). But f(x0) = lim
n→∞

fn(x0).

Thus,

lim
x→x0

f(x) = lim
n→∞

fn(x0). (9.2)

Since the (fn)n are continuous for all n ∈ N it follows that:

lim
x→x0

fn(x) = fn(x0), ∀n ∈ N. (9.3)

From (9.1), (9.2) and (9.3) we can write:

lim
x→x0

(
lim
n→∞

fn(x)
)
= lim

x→x0

f(x) = f(x0),

lim
n→∞

(
lim
x→x0

fn(x)

)
= lim

n→∞
fn(x0) = f(x0),

which proves the desired result.

Conclusion: If we have a family of continuous functions (fn(x))n converging uni-

formly to a function f on a set A, then:

1) The function f will also be continuous.

2) One can interchange the limits, i.e.,

lim
n→∞

(
lim
x→x0

fn(x)

)
= lim

x→x0

(
lim
n→∞

fn(x)
)
, ∀x0 ∈ A.

If the function f is not continuous it follows that the convergence will not be

uniform.
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9.3 Uniform Convergence and Di�erentiation

Question: Let (fn)n∈N be a sequence of real functions converging on a set A to a

function f . Suppose that the derivatives of fn exist at the points x ∈ A, i.e., f ′
n(x)

exists for any n ∈ N and for all x ∈ A. One asks: does f ′
n → g on A and g = f ′ on

A? The answer is no. Counter-example: let fn(x) =
sin(nx)√

n
, x ∈ R. We have already

seen that fn(x) → 0 uniformly, which implies that g(x) = 0 and g′(x) = 0, for all

x ∈ R. On the other hand

f ′
n(x) =

1√
n
n cos(nx) =

√
n cos(nx), ∀n.

However, for x = 0, f ′
n(x) =

√
n diverges as n → +∞, which implies that there

exists an x0 = 0 such that f ′
n(0) does not converge to zero. As we see, f ′

n(x) does

not converge to zero for all x ∈ R. At the points x = 2kπ, k ∈ Z, this does not
happen as we would like.

Proposition 9.10 Let (fn(x))n∈N be a sequence of di�erentiable functions on [a, b].

Suppose that {fn(x0)} converges for some x0 ∈ [a, b]. If f ′
n → g uniformly on [a, b],

then fn → f uniformly on [a, b] and f ′ = g.

Proof: Let ε′ > 0. We have, by hypothesis, that there exists x0 ∈ [a, b] such that

(fn(x0))n∈N converges. Thus, by the Cauchy Criterion for numerical sequences, we

can write: For the given ε′ > 0, there exists N1(ε
′) such that for all m,n ∈ N with

m,n ≥ N1, then

|fm(x0)− fn(x0)| < ε′. (9.4)

On the other hand, since (f ′
n(x))n∈N converges uniformly on [a, b], by the Cauchy

Criterion applied to uniform convergence we have: for the given ε′ > 0 there exists

N2(ε
′) such that for all m,n ∈ N, with m,n ≥ N2, then

|f ′
m(x)− f ′

n(x)| < ε′, for all x ∈ [a, b]. (9.5)

However, we must show that:

(i) fn → f uniformly on [a, b].

(ii) If f ′
n → g then f ′ = g.

(i) Let us de�ne h(x) = fm(x)−fn(x), x ∈ [a, b]. Since the fn are di�erentiable on

[a, b], it follows that h(x) is also di�erentiable and, moreover, h′(x) = f ′
m(x)−f ′

n(x).

Now take r, s ∈ [a, b] such that r ̸= s. Observe that h satis�es the hypotheses of
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the Mean Value Theorem. Thus, there exists t0 ∈ [a, b] such that |h(s) − h(r)| =
|h′(t0)| |s− r|. Let N = max{N1, N2}. Thus, from (9.4) and (9.5) it results for the

given ε > 0 that

|fm(x0)− fn(x0)| <
ε

2
,∀m,n ≥ N, (9.6)

|f ′
m(x)− f ′

n(x)| <
ε

2(b− a)
, ∀x ∈ [a, b]. (9.7)

Thus, from |h(s)− h(r)| = |h′(t0)| |s− r| and from (9.7) we can write that

|(fm(s)− fn(s))− (fm(r)− fn(r))| = |f ′
m(t0)− f ′

n(t0)| |s− r| (9.8)

<
ε

2(b− a)
|s− r| ≤ ε(b− a)

2(b− a)
=
ε

2
, ∀s, r ∈ (a, b) with s ̸= r, ∀m,n ≥ N.

Now take x ∈ [a, b] such that x ̸= x0. We have from (9.6) and (9.8) that:

|fm(x)− fn(x)| (9.9)

= |fm(x)− fm(x0) + fm(x0)− fn(x0) + fn(x0)− fn(x)|

= |(fm(x)− fn(x)) + (fn(x0)− fm(x0)) + (fm(x0)− fn(x0))|

= |(fm(x)− fn(x))− (fm(x0)− fn(x0)) + (fm(x0)− fn(x0))|

≤ |(fm(x)− fn(x))− (fm(x0)− fn(x0))|+ |fm(x0)− fn(x0)|

<
ε

2
+
ε

2
= ε, ∀x ∈ [a, b], ∀m,n ≥ N.

From (9.6) and (9.9) we conclude that fn converges uniformly due to the Cauchy

Criterion sinceN only depends on ε. Let us denote this limit by f , i.e., limn→∞ fn(x) =

f(x) uniformly on [a, b].

(ii) It remains for us to show that if f ′
n → g then f ′ = g. Indeed, Fix x ∈ [a, b]

and de�ne: 
Φn(t) =

fn(t)− fn(x)

t− x
; t ̸= x, t ∈ [a, b],

Φ(t) =
f(t)− f(x)

t− x
; t ̸= x, t ∈ [a, b].

Then:

lim
t→x

Φn(t) = lim
t→x

fn(t)− fn(x)

t− x
= f ′

n(x),

since the fn's are di�erentiable for all n.

Furthermore, from (9.7) and (9.8)

|Φn(t)− Φm(t)| =
∣∣∣∣fn(t)− fn(x)

t− x
− fm(t)− fm(x)

t− x

∣∣∣∣
=

1

|t− x|
|(fn(t)− fm(t))− (fn(x)− fm(x))|

≤ 1

|t− x|
|f ′

n(t0)− f ′
m(t0)| |t− x| < ε

2(b− a)
, ∀t ∈ [a, b], with t ̸= x,
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which implies that (Φn) converges uniformly for all t ∈ [a, b] to some function Ψ

with t ̸= x (and for some t0 ∈ (t, x)).

On the other hand, since fn(x) converges uniformly to f(x) for all x ∈ [a, b], we

conclude that for each t ∈ [a, b], we have:

lim
n→∞

Φn(t) = Φ(t).

Indeed, we have:

lim
n→∞

Φn(t) = lim
n→∞

fn(t)− fn(x)

t− x
=

1

t− x
lim
n→∞

(fn(t)− fn(x)).

But,

lim
n→∞

fn(t) = f(t) and lim
n→∞

fn(x) = f(x).

Hence:

lim
n→∞

Φn(t) =
1

t− x
(f(t)− f(x)) =

f(t)− f(x)

t− x
= Φ(t).

From the above, Φn converges pointwise to Φ. By the uniqueness of the limit

Φn → Φ uniformly ∀t ∈ [a, b]. It follows, by the limit interchange theorem (Theorem

of iterability of limits), that:

lim
n→∞

f ′
n(x)︸ ︷︷ ︸

=g(x)

= lim
n→∞

lim
t→x

Φn(t) = lim
t→x

lim
n→∞

Φn(t) = lim
t→x

Φ(t) = f ′(x).

■

9.4 Uniform Convergence and Integration

Question: Let (fn)n∈N be a sequence of real functions de�ned and integrable on [a, b]

and converging on [a, b] to a function f . One asks: Would f be integrable on [a, b]?

And what about the relation:∫ b

a

f(x) dx =

∫ b

a

(
lim
n→∞

fn(x)
)
dx = lim

n→∞

∫ b

a

fn(x) dx ?

Answer: It is not true. Counter-example: Consider:

fn(x) =


n2 x; 0 ≤ x ≤ 1

n
,

− n2(x− 2/n);
1

n
≤ x ≤ 2

n
, n ≥ 2,

0,
2

n
≤ x ≤ 1.
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It is not di�cult to verify that
∫ 1

0
fn(x) dx = 1 (area of a triangle with base 2/n and

height n) and, therefore,

lim
n→∞

∫ 1

0

fn(x) dx = 1.

Find, below, the graph of the above sequence of functions fn(x) for di�erent

values of the parameter n.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

x

f n
(x
)

Sequência de Funções fn(x)

n = 2
n = 4
n = 8
n = 16

On the other hand, for any x ∈ (0, 1], fn(x) = 0 for large enough n, and fn(0) = 0.

Thus fn → 0 pointwise. ∫ 1

0

( lim
n→∞

fn(x)) dx =

∫ 1

0

0 dx = 0.

Therefore the limits are di�erent (verify this fact).

Proposition 9.11 Let (fn)n∈N be a sequence of real functions such that the integral∫ b

a
fn(x) dx exists for every n ∈ N. If fn → f uniformly on [a, b], then the integral∫ b

a
f(x) dx exists and, furthermore,∫ b

a

f(x) dx =

∫ b

a

(
lim
n→∞

fn(x)
)
dx = lim

n→∞

∫ b

a

fn(x) dx.

Proof: Let εn = sup{|fn(x)− f(x)|; x ∈ [a, b]}. Since fn → f uniformly on [a, b],

then εn → 0 as n → +∞ as seen previously (See Theorem 9.8). In this way, we

have:

|fn(x)− f(x)| ≤ εn, for any n and for all x ∈ [a, b].
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Thus,

fn(x)− εn ≤ f(x) ≤ fn(x) + εn, ∀x ∈ [a, b], ∀n ∈ N. (9.10)

From (9.10) it follows that∫ b

a

(fn(x)− εn) dx ≤
∫ b

a

f(x) dx and

∫ b

a

f(x) dx ≤
∫ b

a

(fn(x) + εn) dx,

which implies∫ b

a

(fn(x)− εn) dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

(fn(x) + εn) dx. (9.11)

Let a ≤ b ≤ c ≤ d. We claim that 0 ≤ c− b ≤ d−a. To prove the desired result,

it su�ces to add −b to the inequality b ≤ c ≤ d, resulting in 0 ≤ c−b ≤ d−b ≤ d−a,
which proves the claim. Thus, from the above, and from (9.11), we can write that:

0 ≤
∫ b

a

f(x) dx−
∫ b

a

f(x) dx ≤
∫ b

a

(fn(x)+ εn) dx−
∫ b

a

(fn(x)− εn) dx ≤ 2εn(b− a).

*(Note: The bound is 2εn(b−a) because
∫
(fn+εn)−

∫
(fn−εn) =

∫
2εn = 2εn(b−a))*

Since εn → 0 as n → +∞, from the last inequality it follows that
∫ b

a
f(x) dx =∫ b

a
f(x) dx, resulting in f being integrable on [a, b].

Returning to (9.10), we can write:∫ b

a

(fn(x)− εn) dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

(fn(x) + εn) dx,

from where it follows that

0 ≤
∫ b

a

f(x) dx−
∫ b

a

(fn(x)− εn) dx ≤
∫ b

a

(fn(x) + εn) dx−
∫ b

a

(fn(x)− εn) dx,

i.e.,

0 ≤
∫ b

a

f(x) dx−
∫ b

a

fn(x) dx+ εn(b− a) ≤ 2εn(b− a),

or rather

−εn(b− a) ≤
∫ b

a

f(x) dx−
∫ b

a

fn(x) dx ≤ εn(b− a).

This last inequality entails that:

0 ≤
∣∣∣∣∫ b

a

f(x) dx−
∫ b

a

fn(x) dx

∣∣∣∣ ≤ εn(b− a).

Taking the limit in the inequality above, we obtain:

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

■
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Corollary 9.12 Let fn be a sequence of integrable functions on [a, b]. If f(x) =∑∞
n=1 fn(x), x ∈ [a, b] converges uniformly on [a, b], then:∫ b

a

f(x) dx =
∞∑
n=1

∫ b

a

fn(x) dx.

Proof: The Corollary above expresses that:∫ b

a

f(x) dx =

∫ b

a

∑
n

fn(x) dx =
∑
n

∫ b

a

fn(x) dx,

that is, it is permitted to integrate a uniformly convergent series term by term. ■

Theorem 9.13 Let a be an accumulation point of a set X ⊂ R. If the sequence

of functions fn : X → R converges uniformly to f : X → R and, for each n ∈ N,
Ln = limx→a fn(x) exists, then:

(i) The limit L = limn→∞ Ln exists.

(ii) We have L = limx→a f(x).

In other words:

lim
n→∞

(
lim
x→a

fn(x)
)
= lim

x→a

(
lim
n→∞

fn(x)
)
,

holds, provided the two limits inside the parentheses exist, the second of them being

uniform.

Proof: To show that limn→∞ Ln exists, it su�ces to prove that (Ln)n∈N is a Cauchy

sequence. Let then ε > 0. Since fn → f uniformly on X, there exists n0(ε) such

that if m,n ≥ n0 then |fm(x)− fn(x)| < ε/3 for any x ∈ X.

Let m,n > n0. We can obtain x ∈ X and δ = δ(ε, x) > 0 such that

|Lm − fm(x)| <
ε

3
and |fn(x)− Ln| <

ε

3
, for 0 < |x− a| < δ. (9.12)

Indeed, since limx→a fn(x) = Ln exists for each n ∈ N; then, for �xed m,n > n0

and for the given ε > 0, there exist δ1 > 0 and δ2 > 0 such that for all x ∈ X with

0 < |x − a| < δ1 we have |fn(x) − Ln| < ε
3
, and also if 0 < |x − a| < δ2 we obtain

|fm(x)− Lm| < ε
3
, which proves (9.12) (taking δ = min{δ1, δ2}).

With this choice of x, we can write

|Lm − Ln| ≤ |Lm − fm(x)|+ |fm(x)− fn(x)|+ |fn(x)− Ln|

<
ε

3
+
ε

3
+
ε

3
= ε, ∀m,n ≥ n0,
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which implies that (Ln)n∈N is a Cauchy sequence in R. Thus, it is convergent. Let
us denote

lim
n→∞

Ln = L.

We will now show that the function

f = lim
n→∞

fn

has limit L as x → a. Indeed, for the given ε > 0, there exists n0 such that for

n > n0 we have:

|L− Ln| <
ε

3
and |fn(x)− f(x)| < ε

3
,

the �rst due to the convergence Ln → L and the second due to the uniform

convergence fn → f , for all x ∈ X. Let us �x an n greater than n0. Since

limx→a fn(x) = Ln, there exists δ > 0 such that if x ∈ X and 0 < |x − a| < δ

we have

|fn(x)− Ln| <
ε

3
.

I claim: For the given ε > 0, there exists δ > 0 such that for all x ∈ X with

0 < |x− a| < δ we have |f(x)− L| < ε. Indeed, for x satisfying these conditions, it

follows from the above that:

|f(x)− L| ≤ |f(x)− fn(x)|+ |fn(x)− Ln|+ |Ln − L| < ε

3
+
ε

3
+
ε

3
= ε,

which concludes the proof. ■

Corollary 9.14 Let a be an accumulation point of X. If the series
∑∞

n=1 fn(x)

converges uniformly to f on X, and for each n ∈ N, Ln = limx→a fn(x) exists, then

the series
∑∞

n=1 Ln is convergent and
∑

n Ln = limx→a f(x). In other words, the

classical theorem for the limit of a sum holds for series:

lim
x→a

[∑
n

fn(x)

]
=
∑
n

[
lim
x→a

fn(x)
]
,

provided that
∑

n fn(x) is uniformly convergent.

Proof: Indeed, setting

sn(x) = f1(x) + · · ·+ fn(x),

the sequence of functions sn : X → R converges uniformly to f on X and, for each

n ∈ N, there exists

lim
x→a

sn(x) =
n∑

i=1

lim
x→a

fi(x).
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The last theorem applies immediately to produce the desired result. ■

Remark: The previous result still holds when a = +∞. This evidently assumes

that X is unbounded above. In this case:

lim
n→∞

(
lim
x→∞

fn(x)
)
= lim

x→∞

(
lim
n→∞

fn(x)
)
,

provided the limits inside the parentheses exist, the second of them being uniform.

The proof is practically the same. Only at the end, instead of taking δ > 0, take

A > 0 such that if x > A we have |fn(x)− Ln| < ε
3
.

Theorem 9.15 If fn → f uniformly on X and all fn are continuous at a point

a ∈ X, then f is continuous at a.

Proof: If a is an isolated point, the demonstration is obvious. Otherwise, since a

is an accumulation point of X, the previous proposition allows us to write:

lim
x→a

f(x) = lim
x→a

(
lim
n→∞

fn(x)
)
= lim

n→∞

(
lim
x→a

fn(x)
)
= lim

n→∞
fn(a) = f(a).

■

Corollary 9.16 Let
∑∞

n=1 fn(x) be a series of di�erentiable functions on the in-

terval [a, b]. If
∑∞

n=1 fn(x0) converges for a certain x0 ∈ [a, b] and the series∑∞
n=1 f

′
n(x) = g converges uniformly on [a, b], then

∑∞
n=1 fn(x) = f(x) converges

uniformly on [a, b] and f is di�erentiable, with f ′ = g.

Theorem 9.17 (Dini's Theorem) Let K be a compact set in R and suppose that:

i) (fn(x))n∈N is a sequence of real and continuous functions on K.

ii) (fn(x))n∈N converges pointwise on K to a continuous function f on K.

iii) fn(x) ≥ fn+1(x) for all n ∈ N and x ∈ K.

Then fn(x) → f(x) uniformly on K.

Proof: Let us de�ne, for all n ∈ N, gn(x) = fn(x) − f(x). According to the

hypotheses, we have that gn is continuous, for any n ∈ N, and furthermore, gn → 0

pointwise on K. To show that fn → f uniformly on K, it su�ces to show that

gn → 0 uniformly on K.

Indeed, let ε > 0 be given. For each n ∈ N let:

Kn = {x ∈ K; gn(x) ≥ ε}.
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Since each gn is continuous on K, each Kn is closed in K, because Kn is the

inverse image of a closed set ([ε,∞)) by a continuous function. Hence, Kn is a

closed subset of a compact set and therefore Kn is compact for any n ∈ N.
Since gn ≥ gn+1 (because fn(x)− f(x) ≥ fn+1(x)− f(x)), then Kn ⊃ Kn+1, for

any n ∈ N. Indeed, we have

Kn+1 = {x ∈ K : gn+1(x) ≥ ε} and Kn = {x ∈ K : gn(x) ≥ ε}.

Take z ∈ Kn+1. Then z ∈ K and gn+1(z) ≥ ε. This implies that z ∈ K and

gn(z) ≥ gn+1(z) ≥ ε, from which we conclude that z ∈ K and gn(z) ≥ ε, i.e.,

z ∈ Kn, proving the desired inclusion.

Fix x0 ∈ K. Since gn(x0) → 0 we see that x0 /∈ Kn if n is su�ciently large.

Indeed, since gn(x) → 0, given ε > 0, for every x ∈ X there exists n0(ε, x) such

that for all n ≥ n0, |gn(x)| < ε. Since gn ≥ 0 (from fn ≥ fn+1 → f), we have

gn(x) < ε, ∀n ≥ n0. Thus, for the given ε > 0 and �xed x0 ∈ X, there exists

n0(ε) such that for all n ≥ n0 we have gn(x0) < ε, from which it follows that

x0 /∈ Kn, ∀n ≥ n0. Since x0 /∈
⋂∞

n=n0
Kn and due to the fact that Kn are nested,

it follows that x0 /∈
⋂∞

n=1Kn. Thus,
⋂∞

n=1Kn = ∅. Since
⋂∞

n=1Kn = ∅, then the

intersection of a �nite number of K ′
ns is empty (by the �nite intersection property

of compact sets), say: Kn1 ∩Kn2 ∩ · · · ∩Knp = ∅ with n1 < n2 < · · · < np. Since

Kn1 ⊃ Kn2 ⊃ · · · ⊃ Knp , then Knp = Kn1 ∩Kn2 ∩ · · · ∩Knp = ∅. It follows from this

and the fact that Knp ⊃ Kn for all n ≥ np that Kn is empty for all n ≥ np. From

the above

{x ∈ K : gn(x) ≥ ε} = ∅, ∀n ≥ np,

or, stated another way, there does not exist x ∈ K such that gn(x) ≥ ε for all

n ≥ np, which implies that for all x ∈ K we have 0 ≤ gn(x) < ε, for all n ≥ np.

Therefore gn → 0 uniformly on K, i.e., fn → f uniformly on K, which concludes

the proof. ■

De�nition 9.18 If X ⊂ R is a set, C(X)b represents the set of real functions that

are de�ned, continuous and bounded on X. C(X)b is a vector space. Note that

boundedness is redundant if X is compact.

For each f ∈ C(X)b, there exists a number Mf > 0 such that |f(x)| ≤Mf for all

x ∈ X. Thus, for each f ∈ C(X)b, let us associate the number:

||f || = sup{|f(x)| : x ∈ X}.

It is not di�cult to verify that the map C(X)b → R, de�ned by f 7→ ||f || is a norm

on C(X)b.
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What does it mean to say that a sequence (fn)n∈N converges in C(X)b to a

function f? This means that to each ε > 0, there corresponds an index n0(ε) such

that for all n ≥ n0, we have ||fn − f || < ε. But

||fn − f || = sup{|fn(x)− f(x)| : x ∈ X} < ε, ∀n ≥ n0.

Therefore, given ε > 0, there exists n0(ε) such that for all n ≥ n0, we have |fn(x)−
f(x)| < ε for any x ∈ E.

Conclusion: To say that fn → f in C(X)b is equivalent to saying that fn → f uni-

formly onX. For this reason, ||f || = supx∈X{|f(x)|} is called the uniform convergence

norm (or sup-norm).

Proposition 9.19 C(X)b with this norm is a complete space.

Proof: Let (fn)n∈N be a Cauchy sequence in C(X)b. Then, given ε > 0, there

exists n0(ε) such that if m,n ≥ n0 we have:

||fn − fm|| < ε.

But,

||fn − fm|| = sup
x∈E

{|fm(x)− fn(x)|}.

Therefore, ε is an upper bound for the set {|fm(x) − fn(x)| : x ∈ X}, and conse-

quently

|fm(x)− fn(x)| < ε, ∀x ∈ X and ∀m,n ≥ n0.

Then, (fn(x))n∈N satis�es the Cauchy condition necessary and su�cient for it to be

uniformly convergent on X. Let us denote limn→∞ fn(x) = f(x). It remains for us

to prove that f ∈ C(X)b. Indeed, since fn ∈ C(X)b for all n ∈ N, we will have that f
is also continuous on X (since uniform convergence preserves continuity). However,

since fn → f uniformly, given ε = 1, there exists n0(1) such that for all n ≥ n0, we

have |fn(x)− f(x)| < 1 for any x ∈ X. From this, it follows that:

|f(x)| ≤ |fn0(1)(x)|+ 1, ∀x ∈ X,

and thus

|f(x)| ≤Mfn0(1)
+ 1, ∀x ∈ X.

This proves that f is bounded on X. Thus f ∈ C(X)b, and since fn → f uniformly

on X, we have fn → f in C(X)b, which proves that C(X)b is complete. ■

170



Sequences and Series of Functions 9.1 Sequences and Series of Functions

9.5 Equicontinuous Families of Functions

Our goal now is to determine under what conditions concerning a set E of continuous

functions (all with the same domain) one can guarantee that any sequence with terms

in E possesses a convergent subsequence.

If instead of a set of continuous functions we had a subset E ⊂ R, we would

immediately see that, in order for every sequence of points xn ∈ E to possess a

convergent subsequence, it is necessary and su�cient that E be a bounded set of

real numbers. Returning to the set E of continuous functions, we would be tempted

to use boundedness as the answer. But this does not happen. Consider the sequence

of functions:

fn(x) : [0, 1] → R, fn(x) = xn(1− xn).

It can be veri�ed that fn(x) converges pointwise to the zero function and that

the maximum of fn(x) is equal to
1
4
and is attained at n

√
1
2
(verify this fact). Note

that as n→ ∞, n

√
1
2
→ 1. These facts allow us to sketch the graphs of the functions

fn.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Max height = 1/4

x

f n
(x
)

Sequence of Functions fn(x) = xn(1− xn)

n = 1
n = 2
n = 4
n = 8
n = 20

Figure 9.1: Graphs of fn(x) = xn(1 − xn) for various values of n. Note that the
maximum height remains 1/4 even as the peak moves to the right.
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As can be seen, each graph represents a bump whose height remains equal to 1
4
,

so that as n→ ∞, the shape of the graph of the limit function does not approximate

the shape of the limit function, which is the zero function.

Let us examine the weakness of simple convergence from another angle. Saying

that the sequence of functions fn : X → R converges simply (pointwise) to the

function f : X → R means, formally, the following: given any ε > 0, one can

obtain, for each x ∈ X, a number n0 = n0(ε, x) which depends on ε and x, such

that if n > n0 then |fn(x)− f(x)| < ε. Keeping ε �xed, it may perfectly well occur

that there is no n0 that serves simultaneously for all x. The previous example shows

a sequence of continuous functions such that 0 ≤ fn(x) ≤ 1/4 for all x ∈ [0, 1]

and for all n ∈ N. However, (fn(x))n∈N does not possess a uniformly convergent

subsequence. Indeed, such a subsequence should tend uniformly to zero, which is

impossible, since each fn assumes the value 1/4 at some point in the interval [0, 1].

In other words: We cannot extract a subsequence from (fn(x))n∈N such that given

ε > 0, all graphs of (fnk
(x))k∈N are totally within that strip of width ε from some

nk0 onwards. It su�ces to take 0 < ε < 1/4.

It is not su�cient, then, that the functions f ∈ E take values in the same

bounded interval for every sequence in E to possess a uniformly convergent subse-

quence. An additional hypothesis, which we will introduce next, is needed. To do

this, we �rst need to de�ne two types of boundedness.

De�nition 9.20 (a) A sequence of real functions de�ned on a set E is pointwise

bounded on E when for each x ∈ E, there exists Mx > 0 such that |fn(x)| ≤ Mx,

for all n ∈ N. Then, letting ϕ : E → R, ϕ(x) =Mx, x ∈ E, we have |fn(x)| ≤ ϕ(x),

for any x ∈ E and for all n ∈ N.

(b) (fn(x))n∈N is uniformly bounded on E when there exists M > 0 such that

|fn(x)| ≤M , for any x ∈ E and for all n ∈ N.

Our initial intent is to prove, by Cantor's Diagonal Method, that given a point-

wise bounded sequence on a countable set E, it has a subsequence converging at each

point of E. However, even if (fn(x))n∈N is a uniformly bounded sequence of contin-

uous functions on a compact set E, there does not necessarily exist a subsequence

that is convergent on E.

Another question is whether every convergent sequence contains a uniformly

convergent subsequence. We have seen previously that even if (fn(x))n∈N is a uni-

formly bounded sequence of continuous functions on a compact set, there does not

necessarily exist a subsequence that is uniformly convergent on E.
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A brief digression.

Let (an) be a sequence of real numbers. We say that the sequence (bn) is a

subsequence of (an) when there exists a strictly increasing map σ : N∗ → N∗ such

that bn = aσ(n) for any n ∈ N∗.

Example: Consider

a1, a2, a3 , a4, a5, a6, · · ·

Then

b1 = a1, b2 = a3, b3 = a6, · · ·

is a subsequence of (an). In this case σ : N∗ → N∗ such that σ(1) = 1, σ(2) =

3, σ(3) = 6, etc...

Suppose (bn) is a subsequence of (an). Then there exists a strictly increasing

map σ1 : N∗ → N∗ such that bn = aσ1(n). Suppose now that (cn) is a subsequence of

(bn). Then there exists a strictly increasing map σ2 : N∗ → N∗ such that

cn = bσ2(n) = aσ1(σ2(n)) = a(σ1◦σ2)(n).

Then (cn) is a subsequence of (an).

De�nition 9.21 Let F be a family of functions f : E ⊂ R → R. We say that

the family is equicontinuous on E when to each ε corresponds a δ > 0 such that if

x, y ∈ E with |x− y| ≤ δ, then |f(x)− f(y)| < ε, for any f ∈ F .

Remark: If F is equicontinuous on E, then besides all functions f ∈ F being

uniformly continuous, the crucial point is that the δ of uniform continuity is the

same for all functions.

The Diagonal Process.

Proposition 9.22 Let E be a countable set and let fn : E → R (n ∈ N∗) be

pointwise bounded on E. Then there exists a subsequence (fσ(n)) of (fn)n∈N∗ that

converges pointwise at each x ∈ E.

Proof: Let us enumerate the points of E as: x1, x2, · · · , xn, · · · . Let us calculate the
values fn(x1) of the fn at x1 (n ∈ N). We thus obtain a bounded numerical sequence

in R whose set of values is contained in a compact set of R. Thus, there exists a

subsequence (fσ1(n)(x1))n∈N convergent in R. Now let us calculate the values of fσ1(n)

at x2. We obtain a bounded sequence (fσ1(n)(x2))n∈N. Therefore, the set of values of

such a sequence is contained in a compact set of R. Thus, there exists a subsequence
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(fσ1◦σ2(n)(x2)) which is convergent in R. Repeating the process inde�nitely, we �nd,
for each n ∈ N∗, a strictly increasing map σm : N∗ → N∗ such that(

fσ1◦σ2◦···σm(n)

)
is a subsequence of

(
fσ1◦σ2◦···σm−1(n)

)
.

Note that
(
fσ1◦σ2◦···σm(n)

)
(xm) is convergent by construction.

Let us denote:

g1 : fσ1(1)(x1) · · · fσ1(m)(x1)

g2 : fσ1◦σ2(1)(x2) · · · fσ1◦σ2(m)(x2)

...

gm : fσ1◦···◦σm(1)(xm) · · · fσ1◦···σm(m)(xm)

Let H be the diagonal sequence of functions:

H =
(
fσ1(1), fσ1◦σ2(2), fσ1◦σ2◦σ3(3), · · · , fσ1◦···σm(m), fσ1◦···σm◦σm+1(m+1), · · ·

)
.

I claim: Abandoning the �rst (m− 1) terms of the diagonal sequence, what we

obtain, i.e., (
fσ1◦···σm(m), fσ1◦···σm◦σm+1(m+1), · · ·

)
is a subsequence of

gm =
(
fσ1◦···σm(1), fσ1◦···σm(2), · · ·

)
.

Indeed, observe that:

(i) gn is a subsequence of gn−1 for n = 2, 3, 4, · · ·
(ii)

(
f(σ1◦···σm)(n)(xm)

)
n∈N is convergent.

Thus, the sequence (H), excepting perhaps its �rst (m − 1) terms, is a subse-

quence of gm, for m = 1, 2, · · · . Since gm is convergent at xm for all m, then H (as a

subsequence of gm) is convergent at xm for all m, as we wanted to demonstrate. ■

Theorem 9.23 [Arzelà-Ascoli] Let K be a compact metric space and fn ∈ C(K)

for each n ∈ N. If (fn)n∈N is pointwise bounded and equicontinuous on K, then:

(a) (fn)n∈N is uniformly bounded on K.

(b) (fn)n∈N contains a uniformly convergent subsequence on K.
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Proof: (a) Given ε > 0, since (fn)n∈N is equicontinuous on K, there exists δ > 0

such that if x, y ∈ K with d(x, y) ≤ δ then |fn(x)− fn(y)| < ε, for any n ∈ N.
The open balls Bδ(x), x ∈ K, cover K. Thus, due to the compactness of K, we

can extract a �nite subcover, i.e., there exist p1, p2, · · · , pr ∈ K such that

K ⊂ Bδ(p1) ∪Bδ(p2) ∪ · · · ∪Bδ(pr).

Since by hypothesis (fn)n∈N is pointwise bounded, there exist numbers Mi > 0,

i = 1, 2, · · · , r such that

|fn(pi)| ≤Mi, ∀n ∈ N.

On the other hand, taking x ∈ K, x ∈ Bδ(pi) for some i = 1, · · · , r, which
implies that d(x, pi) < δ, for some i, say i0 ∈ {1, 2, · · · , r}. Then:

|fn(x)− fn(pi0)| < ε, ∀n ∈ N,

which implies,

|fn(x)| ≤ |fn(pi0)|+ ε, ∀n ∈ N, ∀x ∈ K.

Letting M = max{M1,M2, · · · ,Mr}, it follows that

|fn(x)| ≤M + ε, ∀n ∈ N, ∀x ∈ K,

which proves item (a).

(b) According to Lemma 1.62 (Separability of compact spaces), K has a count-

able subset E dense in K. Since the sequence (fn)n∈N is pointwise bounded, by

Cantor's diagonal process, there exists a subsequence (fni
)i∈N such that (fni

(x))

converges for all x ∈ E. Let us denote fni
= gi to simplify notation. We will prove

next that gi converges uniformly on K. Indeed, let ε > 0 be given and take δ > 0 as

in the beginning of the proof since (fn)n∈N is equicontinuous on K. Note that the

balls Bδ/2(y), y ∈ K form an open cover of K. Therefore, there exist y1, · · · ym ∈ K

such that

K ⊂ Bδ/2(y1) ∪ · · · ∪Bδ/2(ym).

Let y ∈ K. Then y ∈ Bδ/2(yi) for some i, say i0 ∈ {1, 2, · · · ,m}. Then d(y, yi0) <
δ/2. On the other hand, for each yi, i = 1, · · · ,m, due to the density of E in K,

there exists xi ∈ E such that d(xi, yi) ≤ δ/2. In particular for i = i0 we will have

d(yi0 , xi0) ≤ δ/2. Thus,

d(y, xi0) ≤ d(y, yi0) + d(yi0 , xi0) ≤ δ/2 + δ/2 = δ,
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which proves that y ∈ Bδ(xi0), for some i0 ∈ {1, 2, · · · ,m}, for all y ∈ K, which

implies

K ⊂ ∪m
i=1Bδ(xi).

We know that gi = fni
converges for each x ∈ E. Thus, considering the points

x1, x2, · · · , xm ∈ E, we will have, by the Cauchy criterion:

|gi(x1)− gj(x1)| < ε/3; ∀i, j ≥ n0(1),

· · · · · ·

|gi(xm)− gj(xm)| < ε/3; ∀i, j ≥ n0(m).

Let N := max{n0(1), n0(2), · · · , n0(m)}, then for all i, j ≥ N we will have

|gi(xs)− gj(xs)| < ε/3, s = 1, 2, · · · ,m. (9.13)

Since K ⊂ ∪m
i=1Bδ(xi), then given a generic x ∈ K, there exists s ∈ {1, 2, · · · ,m}

such that x ∈ Bδ(xs), which implies d(x, xs) < δ for some s, say s0. Thus, for each

i ∈ N and by the equicontinuity of gi:

|gi(x)− gi(xs0)| < ε/3, ∀i ∈ N. (9.14)

Then, for all i, j ≥ N and for all x ∈ K, it follows from (9.13) and (9.14) that:

|gi(x)− gj(x)| ≤ |gi(x)− gi(xs0)|+ |gi(xs0)− gj(xs0)|+ |gj(xs0)− gj(x)|

≤ ε/3 + ε/3 + ε/3 = ε.

Then, (gi(x))i∈N = (fni
(x))i∈N satis�es the necessary and su�cient condition for

uniform convergence on K, which proves (b). ■

Theorem 9.24 (Stone-Weierstrass) If f is a real continuous function on an

interval [a, b] of R, there exists a sequence (Pn)n∈N of polynomials such that (Pn)n∈N

tends to f uniformly on [a, b].

Proof: We can, without loss of generality, assume [a, b] = [0, 1]. Indeed, suppose

the theorem proven for continuous functions on [0, 1] and let f be a continuous

function on [a, b]. De�ne the change of variables function:

x = φ(t) = a+ (b− a)t⇒ t = φ−1(x) =
x− a

b− a
.

Note that x = φ(t) is a bijection from [0, 1] to [a, b], and φ is clearly continuous.

Letting g = f ◦φ, then there exists, by hypothesis, a sequence Qn(t) of polynomials

such that for each ε > 0 there exists an index n0(ε) such that if n ≥ n0:

|g(t)−Qn(t)| ≤ ε; ∀t ∈ [0, 1].
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This results in:

|f(x)−Qn(φ
−1(x))| ≤ ε, ∀x ∈ [a, b] and for n ≥ n0.

Since φ−1 is a polynomial in x, Qn(φ
−1(x)) is a polynomial in x. It su�ces to take

(Pn(x))n∈N = (Qn(φ
−1(x)))n∈N.

Without loss of generality, we can also assume that f(0) = f(1) = 0. Indeed,

let f be continuous on [0, 1]. De�ne g(x) = f(x) − f(0) − x(f(1) − f(0)). Then

g(0) = 0 and g(1) = 0. If there exists a sequence Qn converging to g, then Pn(x) =

Qn(x) + f(0) + x(f(1)− f(0)) converges to f , and Pn is a polynomial.

Let us extend f to the whole line by setting f̃(x) = 0 if x /∈ [0, 1]. Then f̃ is

uniformly continuous on R.
On the other hand, we have

(1− x2)n ≥ 1− nx2, ∀x ∈ [0, 1] and ∀n ∈ N∗. (9.15)

(This is Bernoulli's inequality).

Let us de�ne, now,

Qn(x) = cn (1− x2)n, n ∈ N∗,

where cn is chosen such that
∫ 1

−1
Qn(x) dx = 1. We have the estimate:∫ 1

−1

(1− x2)n dx = 2

∫ 1

0

(1− x2)n dx ≥ 2

∫ 1/
√
n

0

(1− nx2) dx =
4

3

1√
n
>

1√
n
.

Thus, 1 = cn
∫ 1

−1
(1− x2)n dx > cn

1√
n
, implying cn <

√
n.

Let δ > 0. For δ ≤ |x| < 1, we have Qn(x) ≤
√
n(1−δ2)n. Letting 1−δ2 = λ < 1,

we have
√
nλn → 0 as n→ ∞. This shows that Qn(x) → 0 uniformly on δ ≤ |x| ≤ 1.

Let us consider now the convolution:

Pn(x) =

∫ 1

−1

f̃(x+ t)Qn(t) dt, 0 ≤ x ≤ 1.

By a change of variables u = x+ t, and using the fact that f̃ vanishes outside [0, 1]:

Pn(x) =

∫ 1

0

f(t)Qn(t− x) dt.

Note that Qn(t− x) = cn(1− (t− x)2)n is a polynomial in x for �xed t. Thus Pn(x)

is a polynomial in x.
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Since f̃ is uniformly continuous on R, given ε > 0 there exists δ > 0 such that

|x− y| ≤ δ =⇒ |f̃(x)− f̃(y)| < ε/2. Let M = sup |f̃ |. For 0 ≤ x ≤ 1:

|Pn(x)− f̃(x)| =

∣∣∣∣∫ 1

−1

(f̃(x+ t)− f̃(x))Qn(t) dt

∣∣∣∣
≤

∫ 1

−1

|f̃(x+ t)− f̃(x)|Qn(t) dt

=

∫
|t|≤δ

· · ·+
∫
|t|>δ

. . .

≤ ε

2

∫
|t|≤δ

Qn(t)dt+ 2M

∫
|t|>δ

Qn(t)dt

≤ ε

2
(1) + 2M

√
n(1− δ2)n.

Since 2M
√
n(1−δ2)n → 0, for large n this is less than ε/2. Thus |Pn(x)− f̃(x)| < ε,

proving uniform convergence. ■

9.6 TheWeierstrass Function: A Continuous, Nowhere

Di�erentiable Function

A remarkable consequence of the modern theory of continuous functions is the exis-

tence of functions that are continuous everywhere, but di�erentiable nowhere. This

concept was considered counter-intuitive until Karl Weierstrass (1872) constructed

the �rst rigorous example.

De�nition 9.25 The Weierstrass function is de�ned by the series:

W (x) =
∞∑
n=0

an cos(bnπx), (9.1)

where a is a real number such that 0 < a < 1, and b is an odd integer such that the

following condition is satis�ed:

ab > 1 +
3

2
π. (9.2)

Theorem 9.26 The Weierstrass function W (x) is continuous on R but is di�eren-

tiable at no point in R.

Proof: [Proof of Continuity (Sketch)] The continuity follows immediately from the

Weierstrass M-Test (Theorem 9.7). Let fn(x) = an cos(bnπx). We can choose the

majorant Mn = an, since:

|fn(x)| = |an cos(bnπx)| ≤ an =Mn, ∀x ∈ R.
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Since 0 < a < 1, the geometric series
∑∞

n=0Mn =
∑∞

n=0 a
n converges. As each term

fn(x) is a continuous function (being a cosine function), the uniform convergence

of the series implies that the sum function W (x) is also continuous everywhere

(Proposition 9.9). ■

Remark 9.27 The proof of non-di�erentiability is signi�cantly more involved and

is beyond the scope of this elementary presentation, requiring a careful analysis of

the di�erence quotients based on the speci�c condition ab > 1 + 3
2
π. However,

the key idea is that the ratio anbn increases with n, ensuring that the sum of the

derivatives of the terms of the series does not converge uniformly, leading to the

non-di�erentiability of the limit function.

Figure 9.2: Weierstrass function
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List of Exercises: Numerical and

Function Series

Numerical Series

1. (Divergence Test and Necessary Condition) Show that the converse

of the theorem "If
∑
an converges, then limn→∞ an = 0" is false. Use the

harmonic series (
∑∞

n=1
1
n
) as a counterexample and prove its divergence using

the Cauchy condensation test or by comparison with the integral
∫∞
1

1
x
dx.

2. (Absolute and Conditional Convergence) Determine whether the follow-

ing series converge absolutely, conditionally, or diverge:

(a)
∞∑
n=1

(−1)n
n

n2 + 1

(b)
∞∑
n=1

sin(n)

n3/2

(c)
∞∑
n=2

1

n ln(n)

(d)
∞∑
n=1

(−1)n
(
1− cos

(
1

n

))

3. (Root Test) Use the Root Test to determine the behavior of
∞∑
n=1

an, where:

an =

(
n+ 1

2n

)n

4. (Ratio Test) Use the Ratio Test to determine the behavior of
∞∑
n=1

n!

nn
.

5. (Telescoping and Integral Series) Consider the series
∞∑
n=1

1

(n+ 1)
√
n+ n

√
n+ 1

.

(a) Show that the general term can be written as a di�erence: an = 1√
n
−

1√
n+1

.
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(b) Calculate the partial sum SN and demonstrate that the series converges.

(c) Analyze the convergence of the series
∞∑
n=1

(
1√
n
− 1√

n+ 1

)
using the

Limit Comparison Test, by comparing it with the p-series
∑

1
np , and ex-

plain why the convergence of this series does not contradict the divergence

of
∑

1√
n
.

6. (Riemann Rearrangement Theorem) Let
∑
an be a conditionally conver-

gent series. Explain, without formal proof, what the Riemann Rearrangement

Theorem states about the set of possible sums of its rearrangements. Use the

alternating harmonic series
∑∞

n=1
(−1)n+1

n
as an example.

Function Series and Uniform Convergence

7. (Radius of Convergence) Determine the interval of convergence and the

radius of convergence R of the following power series:

(a)
∞∑
n=1

(x− 2)n

n23n

(b)
∞∑
n=0

n!xn

(c)
∞∑
n=1

(
1 +

1

n

)n

xn

8. (Weierstrass M-Test) Use the Weierstrass M-Test to prove that the function

series
∞∑
n=1

fn(x) converges uniformly on the set A, where:

fn(x) =
sin(nx)

n3
and A = R

9. (Pointwise vs. Uniform Convergence and Continuity) Consider the

sequence of functions fn : [0, 1] → R given by fn(x) = xn.

(a) Determine the pointwise limit function f(x).

(b) Prove that the convergence of fn to f is only pointwise, and not uniform,

on [0, 1].

(c) Explain how this example illustrates the theorem on the preservation of

continuity under uniform convergence.

181



Sequences and Series of Functions 9.1 Sequences and Series of Functions

10. (Preservation of Di�erentiability) Consider the sequence of functions fn :

R → R given by fn(x) =
1
n
arctan(xn).

(a) Find the pointwise limit function f(x).

(b) Calculate the pointwise limit of the derivatives, g(x) = limn→∞ f ′
n(x).

(c) Calculate the derivative of the limit, f ′(x).

(d) Compare f ′(x) with g(x) and use the theorem for di�erentiation of func-

tion series to explain why f ′(x) ̸= g(x) (at least at some points).

11. (Preservation of Integrability and Dini's Theorem) Let fn : [0, 1] → R
be a sequence of continuous functions given by fn(x) =

x
1+nx2 .

(a) Determine the pointwise limit function f(x).

(b) Calculate limn→∞
∫ 1

0
fn(x)dx and

∫ 1

0
f(x)dx.

(c) Does the result from the previous item imply that the convergence is

uniform? Justify.

(d) Although this sequence is monotonic (non-increasing in n for x ∈ (0, 1]

and non-negative), is Dini's Theorem (Theorem 9.17 in the book) appli-

cable? Explain.
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