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“Let us keep in mind that we are not what others think, and often not even
what we think we are, but we truly are what we feel. Our feelings reveal our
performance in the past, our actions in the present, and our potential for the

future.” (Hamed)
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Preface

Mathematics plays a central role in modern science. Beyond its intrinsic value as a
discipline with its own concepts, theories, and open problems, mathematics permeates
essentially all areas of human knowledge. Many mathematical theories have their roots
in natural phenomena, and in turn have driven the remarkable development of physics,
engineering, computer science, and many other fields.

From this perspective, mathematics should not be viewed as an isolated subject, but
rather as a unifying language and framework that connects and clarifies different scientific
disciplines.

This book aims to present key topics in mathematical analysis in Rn, together with
illustrative examples and figures. Our goal is to help students from a variety of programs—
mathematics, physics, engineering, and related areas— develop a solid and intuitive un-
derstanding of the basic tools of real and vector analysis, while maintaining full rigor.

The material grew out of lecture notes for courses taught over several years at the
State University of Maringá. We have tried to balance conceptual clarity, motivating
examples, and detailed proofs, so that the text can be used both for self-study and as a
companion to a classroom course.

We hope that this book will contribute to the reader’s mathematical maturity and
stimulate further study in analysis, differential equations, geometry, and beyond.

Maringá, 2025

Marcelo M. Cavalcanti
Valéria N. Domingos Cavalcanti
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CONTENTS 1

Introduction

Under the title Advanced Calculus in Rn we gather a selection of topics in real and
vector analysis in several variables, complemented by figures and examples designed to
support intuition and to fix the main concepts, theorems, and proofs.

Real analysis is the branch of mathematical analysis that deals with the real numbers
and real-valued functions. It provides a rigorous foundation for the central notions of
calculus, such as limits, continuity, differentiation, integration, and infinite series and
sequences of functions.

Vector calculus extends these ideas to functions defined on Rn with values in Rm. It is
a fundamental tool in physics and engineering, appearing naturally in the study of fields,
fluxes, and conservation laws. Topics such as gradients, divergence, curl, line integrals,
surface integrals, and the classical integral theorems (Green, Gauss, Stokes) play a central
role.

Differential forms provide a unified language for these ideas. They are geometric
objects that can be integrated over curves, surfaces, and higher-dimensional manifolds,
and they generalize many familiar notions from vector calculus. The formalism of k-
forms and the exterior derivative offers a powerful and elegant framework that clarifies
and extends the classical formulas.

In this book, we aim to present the main concepts involved in these areas in a coherent
way, emphasizing both computational techniques and structural insights. The text is
intended for students who wish to deepen their understanding of calculus and analysis,
and to acquire a solid base for further studies in differential geometry, partial differential
equations, and related subjects.
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Chapter 1

Topology in Rn

1.1 The Vector Space Rn

Let n ∈ N, where N denotes the set of natural numbers. The n-dimensional Euclidean
space is the Cartesian product of n copies of R, that is:

Rn = R× R× · · · × R︸ ︷︷ ︸
n factors

.

The points of Rn are therefore all n-tuples x = (x1, x2, . . . , xn) whose coordinates
x1, . . . , xn are real numbers. Given x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, we have
x = y if and only if xi = yi for every i = 1, 2, . . . , n.

� R1 = R is the real line, that is, the set of real numbers;

� R2 is the plane, that is, the set of ordered pairs (x, y) of real numbers;

� R3 is three-dimensional Euclidean space, whose points are the triples (x, y, z).

Given x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn and a scalar α ∈ R, we define
addition and scalar multiplication by:

x+ y = (x1 + y1, . . . , xn + yn),

αx = (αx1, . . . , αxn).

These operations make Rn into a vector space of dimension n over the field of real
numbers. The elements of Rn are sometimes called *points* and sometimes *vectors*.
From a geometric viewpoint, considering x ∈ Rn as a vector means imagining the arrow
whose origin is at O and endpoint at x.

3
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1.2 Inner Product and Norm

An inner product on a real vector space V is a symmetric, positive bilinear form. That
is, it is a map that assigns to each pair of vectors x, y a real number ⟨x, y⟩ such that for
all x, y, z ∈ V and all α ∈ R:

(PI1) ⟨x, y⟩ = ⟨y, x⟩,
(PI2) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩,
(PI3) ⟨αx, y⟩ = α ⟨x, y⟩,
(PI4) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 iff x = 0.

The most important example is the canonical inner product in Rn:

⟨x, y⟩ = x1y1 + x2y2 + · · ·+ xnyn,

where x = (x1, . . . , xn) and y = (y1, . . . , yn).

Given x ∈ Rn, we write
∥x∥ =

√
⟨x, x⟩,

called the Euclidean norm of x. Indeed:

∥x∥ =
√
x21 + · · ·+ x2n,

and this number represents the length of the vector x.

Note that ∥x∥2 = ⟨x, x⟩, so that:

(i) ∥x∥ = 0 ⇐⇒ x = 0,

(ii) ∥x∥ > 0 ⇐⇒ x ̸= 0.

Two vectors x, y ∈ Rn are said to be *orthogonal* when ⟨x, y⟩ = 0. Clearly the zero
vector is orthogonal to every vector.

Given x, y ∈ Rn with y ̸= 0 and setting α = ⟨x,y⟩
∥y∥2 , the vector z = x− αy is orthogonal

to y. Indeed:

⟨z, y⟩ = ⟨x− αy, y⟩
= ⟨x, y⟩ − α⟨y, y⟩

= ⟨x, y⟩ − ⟨x, y⟩
∥y∥2

∥y∥2 = 0.

Geometrically (see Figure 1.1):

(i) ∥αy∥ =
|⟨x, y⟩|
∥y∥2

∥y∥ =
|⟨x, y⟩|
∥y∥

,

(ii) |⟨x, y⟩| = ∥x∥ ∥y∥ | cos θ|.
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x

y

y

x

αy

z

θ

Figure 1.1: Exemplo de ortogonalidade

From (i) and (ii) we obtain

∥αy∥ = ∥x∥ | cos θ|.

Proposition 1.1 (Cauchy-Schwarz Inequality) For all x, y ∈ Rn,

|⟨x, y⟩| ≤ ∥x∥ ∥y∥.

Proof: If y = 0 the inequality is trivial. If y ̸= 0, with α as above, the vector z = x−αy
is orthogonal to y. Then:

∥x∥2 = ⟨x, x⟩ = ⟨z + αy, z + αy⟩

= ∥z∥2 + α2∥y∥2 ≥ α2∥y∥2 = ⟨x, y⟩2

∥y∥4
∥y∥2.

Thus ⟨x, y⟩2 ≤ ∥x∥2∥y∥2, and the result follows. 2

Remark 1. Equality holds in the Cauchy–Schwarz inequality precisely when one vec-
tor is a scalar multiple of the other. Indeed, if y = 0 the equality is trivial. If y ̸= 0 and
x = αy for some α ∈ R, then:

|⟨x, y⟩| = ∥αy∥ ∥y∥ = |α| ∥y∥2

=
∥x∥
∥y∥

∥y∥2 = ∥x∥ ∥y∥.

Remark 2. The Euclidean norm ∥x∥ =
√

⟨x, x⟩ satisfies the following properties for
all x, y ∈ Rn:

(N1) ∥x∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = 0,

(N2) ∥αx∥ = |α| ∥x∥ for all α ∈ R,
(N3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality).
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The first two are immediate. The triangle inequality follows from the Cauchy–Schwarz
inequality. Indeed:

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ∥x∥2 + ∥y∥2 + 2⟨x, y⟩
≤ ∥x∥2 + ∥y∥2 + 2∥x∥ ∥y∥
= (∥x∥+ ∥y∥)2.

Thus ∥x+ y∥ ≤ ∥x∥+ ∥y∥, the so-called triangle inequality.

In general, a norm on a real vector space V is a function ∥ · ∥ : V → R satisfying the
axioms (N1), (N2), and (N3) above.

Although many norms exist on Rn, the Euclidean norm is the most geometrically
natural, since it corresponds to the usual formula for the length of a vector in Cartesian
coordinates. Geometrically:

x1

x2

x1

x2

x = (x1, x2)
∥x∥ =

√
x21 + x22

Figure 1.2: Length of a vector in the plane in Cartesian coordinates.

Unless stated otherwise, all norms in Rn will be assumed to be Euclidean. However,
two other norms are often useful because of their simple algebraic form:

∥x∥M = max{|x1|, . . . , |xn|} (maximum norm),

∥x∥S = |x1|+ · · ·+ |xn| (sum norm).

It is easy to verify that these satisfy axioms (N1)–(N3). One also shows that:

∥x∥M ≤ ∥x∥ ≤ ∥x∥S ≤ n ∥x∥M .

A norm on a real vector space V gives rise to a notion of distance:

d : V× V −→ R,
(x, y) 7−→ d(x, y) = ∥x− y∥.
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Using (N1)–(N3), one checks that the distance satisfies:

(D1) d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y,

(D2) d(x, y) = d(y, x),

(D3) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ V.

Indeed, the first two are immediate. For (D3):

d(x, z) = ∥x− z∥ = ∥(x− y) + (y − z)∥
≤ ∥x− y∥+ ∥y − z∥
= d(x, y) + d(y, z).

Remark 3. A norm ∥ · ∥ on a vector space V need not arise from an inner product.
If a norm does come from an inner product, then the parallelogram identity holds:

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).

Geometrically, this means that the sum of the squares of the diagonals of a parallelo-
gram equals the sum of the squares of its four sides.

Indeed:

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ∥x∥2 + 2⟨x, y⟩+ ∥y∥2,
∥x− y∥2 = ⟨x− y, x− y⟩ = ∥x∥2 − 2⟨x, y⟩+ ∥y∥2.

Adding the two equalities yields the desired identity.

The parallelogram identity is **not** satisfied by every norm. For example, the
maximum norm ∥x∥M = max{|x1|, . . . , |xn|} on Rn does not satisfy it. Using the canonical
basis e1, . . . , en and setting x = e1, y = e2, we have:

∥x+ y∥2M + ∥x− y∥2M = 2,

2(∥x∥2M + ∥y∥2M) = 4,

which are different, showing that this norm does not come from any inner product.

A very useful inequality derived from axioms (N1)–(N3) is:

|∥x∥ − ∥y∥| ≤ ∥x− y∥.

To prove it, it suffices to show that:

−∥x− y∥ ≤ ∥x∥ − ∥y∥ ≤ ∥x− y∥.

Indeed:

∥y∥ ≤ ∥x∥+ ∥x− y∥,
∥x∥ ≤ ∥y∥+ ∥x− y∥,

which follow directly from the triangle inequality by writing y = x + (y − x) and x =
y + (x− y).
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1.3 Balls and Bounded Sets

We now introduce some basic geometric notions in Rn that will be needed later.

Definition 1.2 An open ball with center at a point x0 ∈ Rn and radius r > 0, denoted
by Br(x0), is defined by

Br(x0) = {x ∈ Rn ; ∥x− x0∥ < r}.
Analogously, the closed ball Br(x0) and the sphere Sr(x0), both centered at x0, are defined
by

Br(x0) = {x ∈ Rn ; ∥x− x0∥ ≤ r},
Sr(x0) = {x ∈ Rn ; ∥x− x0∥ = r}.

When n = 1, the open ball Br(x0) is just the open interval (x0 − r, x0 + r); the closed
ball Br(x0) is the closed interval [x0 − r, x0 + r], and the sphere Sr(x0) reduces to the set
consisting of the points x0− r and x0 + r. Note that in R the three usual norms coincide.

For n = 2, with the Euclidean norm, balls in the plane are called (open or closed)
disks, and spheres reduce to circles (see Figure 1.3).

Figure 1.3: Euclidean norm in R2.

For n = 3, the Euclidean norm defines balls and spheres in space that agree with our
usual geometric intuition.

Remark 1. The geometric shape of balls and spheres generally depends on the norm
being used. If, instead of the Euclidean norm, we consider on R2 the maximum norm
and the sum norm, then the ball of center P = (x0, y0) and radius r > 0 is, in the first
case, a square with sides parallel to the coordinate axes, each of length 2r, and diagonals
intersecting at P ; in the second case, it is a square whose diagonals are parallel to the
coordinate axes, both of length 2r, and still intersecting at P .

Maximum norm.

Br,max(·) = {(x, y) ∈ R2 ; ∥(x, y)∥max < r}
= {(x, y) ∈ R2 ; max{|x|, |y|} < r}.

(i) |x| < r =⇒ −r < x < r,

(ii) |y| < r =⇒ −r < y < r.
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Figure 1.4: Maximum and sum norms in R2.

Sum norm.

Br,sum(·) = {(x, y) ∈ R2 ; ∥(x, y)∥sum < r}
= {(x, y) ∈ R2 ; |x|+ |y| < r}.

(i) x > 0, y > 0 ⇒ x+ y < r =⇒ y < −x+ r,

(ii) x > 0, y < 0 ⇒ x− y < r =⇒ y > x− r,

(iii) x < 0, y > 0 ⇒ −x+ y < r =⇒ y < x+ r,

(iv) x < 0, y < 0 ⇒ −x− y < r =⇒ y > −x− r.

Definition 1.3 A subset X ⊂ Rn is said to be bounded if there exists a real number
c > 0 such that ∥x∥ ≤ c for all x ∈ X.

The definition above is equivalent to saying that X is contained in the closed ball of
center at the origin and radius c. On the other hand, if there exists some ball Br(x0)
(with arbitrary center) containing X, then for all x ∈ X we have ∥x − x0∥ ≤ r. Setting
c = r + ∥x0∥, we obtain:

x ∈ X =⇒ ∥x∥ = ∥x− x0 + x0∥
≤ ∥x− x0∥+ ∥x0∥ ≤ r + ∥x0∥ = c.

Thus X is bounded. It follows that a set X is bounded if and only if it is contained in
some ball (whose center is not necessarily the origin).

Remark 2. For the three usual norms on Rn we have the inequalities

∥x∥M ≤ ∥x∥ ≤ ∥x∥S ≤ n ∥x∥M ,

which show that a set X ⊂ Rn is bounded with respect to one of these norms if and only
if it is bounded with respect to each of the other two.
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1.4 Sequences in Rn

Definition 1.4 A sequence in Rn is a map x : N → Rn defined on the set of natural
numbers.

The value of this map at k ∈ N, denoted by x(k) or xk, is called the k-th term of the
sequence. We use the notations (xk), (xk)k∈N or (x1, x2, . . . , xk, . . .) to denote the sequence
whose k-th term is xk.

Definition 1.5 A subsequence of a sequence (xk)k∈N is the restriction of this sequence to
an infinite subset A = {k1 < k2 < · · · < ki < · · · } ⊂ N.

We denote such a subsequence by (xk)k∈A or (xki)i∈N.

Definition 1.6 A sequence is said to be bounded if there exists a real number c > 0 such
that ∥xk∥ ≤ c for all k ∈ N.

Remark 1. A sequence in Rn is equivalent to n sequences of real numbers. Indeed,
for each k ∈ N we have xk = (xk1, xk2, . . . , xkn), where xki = πi(xk) is the i-th coordinate
of xk (i = 1, 2, . . . , n). The n sequences (xki)k∈N are called the coordinate sequences of
(xk). For example, in the plane R2, a sequence of points zk = (xk, yk) is equivalent to a
pair of sequences (xk) and (yk) of real numbers.

Figure 1.5: Sequence of points zk = (xk, yk) in R2.

It is easy to verify that a set X ⊂ Rn is bounded if and only if its projections
π1(X), π2(X), . . . , πn(X) are bounded subsets of R. It follows that a sequence (xk)k∈N
is bounded if and only if each of its coordinate sequences (xki) is bounded in R.

Definition 1.7 A point x0 ∈ Rn is said to be the limit of a sequence of points (xk) in Rn

if for every ε > 0 there exists k0 ∈ N such that for all k > k0 one has ∥xk − x0∥ < ε.
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In this case, we also say that (xk)k∈N converges to x0 or that xk tends to x0, and we
write

lim
k→∞

xk = x0, limxk = x0, lim
k∈N

xk = x0,

or simply xk → x0.

When there exists x0 = limk→∞ xk we say that the sequence is convergent ; otherwise,
it is said to be divergent.

Note that
lim
k→∞

xk = x0 ⇐⇒ lim
k→∞

∥xk − x0∥ = 0.

This reduces convergence in Rn to the convergence of nonnegative real numbers. Let us
state some consequences of the definition of limit.

P1) In terms of balls, we have limk→∞ xk = x0 if and only if every open ball of center
x0 and radius ε > 0 contains all but finitely many terms of the sequence (xk)k∈N (see
Figure 1.6).

Figure 1.6: The ball Bε(x0) containing all but finitely many terms of the sequence (xk)k∈N.

Indeed, if ε > 0 is the radius of the ball and k0 is the natural number corresponding
to ε in the definition of limit, then outside the ball Bε(x0) there can be at most the terms
x1, . . . , xk0 of the sequence.

P2) From the observation above, it follows that every convergent sequence is bounded. In
fact, if limk→∞ xk = x0, then outside the open ball of center x0 and radius 1 there can be
at most the terms x1, . . . , xk0 . If r is the largest of the numbers 1, ∥x1−x0∥, . . . , ∥xk0−x0∥,
then all the terms of the sequence are contained in the ball Br(x0).

P3) Again from the characterization via balls, if limk→∞ xk = x0, then every subsequence
of (xk)k∈N has the same limit x0.

P4) A crucial fact is the uniqueness of the limit of a sequence: if limxk = x0 and
limxk = y0, then x0 = y0.

Indeed, for all k ∈ N we have

0 ≤ ∥x0 − y0∥ ≤ ∥xk − x0∥+ ∥xk − y0∥.
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Thus
lim
k→∞

∥xk − x0∥ = lim
k→∞

∥xk − y0∥ = 0 ⇒ x0 = y0.

Remark 2. The definition of the limit of a sequence in Rn uses a norm. From the
inequalities relating the three usual norms in Rn we know that

∥xk − x0∥M ≤ ∥xk − x0∥ ≤ ∥xk − x0∥S ≤ n ∥xk − x0∥M .

It follows that

lim ∥xk − x0∥M = 0 ⇐⇒ lim ∥xk − x0∥ = 0 ⇐⇒ lim ∥xk − x0∥S = 0.

Thus the statement limk→∞ xk = x0 does not depend on which of these norms we use.

Proposition 1.8 A sequence (xk)k∈N in Rn converges to the point x0 = (x01, . . . , x0n) if
and only if, for each i = 1, 2, . . . , n, we have

lim
k→∞

xki = x0i,

that is, each coordinate of xk converges to the corresponding coordinate of x0.

Proof: Assume first that limk→∞ xk = x0, and let ε > 0 be given. Then there exists
k0 ∈ N such that ∥xk − x0∥ < ε for all k ≥ k0. For each i = 1, . . . , n we have

|xki − x0i| ≤ ∥xk − x0∥.

Hence |xki − x0i| < ε for all k ≥ k0, which implies limk→∞ xki = x0i.

Conversely, assume that limk→∞ xki = x0i for each i = 1, . . . , n, and let ε > 0 be given.
For each i there exists k0i ∈ N such that |xki − x0i| < ε whenever k ≥ k0i. Set

k0 = max{k01, . . . , k0n}.

Then, if k > k0,

∥xk − x0∥M = max{|xk1 − x01|, . . . , |xkn − x0n|} < ε,

and therefore ∥xk−x0∥ ≤ ∥xk−x0∥S ≤ n ∥xk−x0∥M < nε, so in particular ∥xk−x0∥ → 0.
Thus limk→∞ xk = x0. 2

Similarly, given convergent sequences (xk) and (yk) in Rn and (αk) in R with limxk =
x0, lim yk = y0 and limαk = α, we have:

� lim
k→∞

(xk + yk) = x0 + y0;

� lim
k→∞

(αkxk) = αx0;
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� lim
k→∞

⟨xk, yk⟩ = ⟨x0, y0⟩;

� lim
k→∞

∥xk∥ = ∥x0∥.

Definition 1.9 A sequence (xk) in Rn is called a Cauchy sequence if, given ε > 0, there
exists k0 ∈ N such that ∥xr − xs∥ < ε whenever r, s ≥ k0.

Remark 3. Using the maximum norm on Rn, we have

∥xr − xs∥M = max{|xr1 − xs1|, . . . , |xrn − xsn|}.

Thus (xk) is a Cauchy sequence in Rn if and only if, for each i = 1, . . . , n, the sequence
(xki)k∈N of its i-th coordinates is a Cauchy sequence of real numbers.

This, together with the previous proposition and the fact that a sequence of real
numbers is Cauchy if and only if it is convergent, yields the following immediate result.

Proposition 1.10 A sequence (xk) in Rn is a Cauchy sequence if and only if it is con-
vergent.

Definition 1.11 Two norms ∥ · ∥1 and ∥ · ∥2 on Rn are said to be equivalent if there exist
constants c1, c2 > 0 such that

∥x∥1 ≤ c1∥x∥2 and ∥x∥2 ≤ c2∥x∥1

for all x ∈ Rn. It is clear that if ∥ · ∥1 and ∥ · ∥2 are equivalent, then lim ∥xk − x0∥1 = 0 if
and only if lim ∥xk − x0∥2 = 0, that is, equivalent norms give rise to the same notion of
limit in Rn. Moreover, a set X ⊂ Rn is bounded with respect to one of them if and only
if it is bounded with respect to the other.

1.5 Accumulation, Adherent, Interior, and Bound-

ary Points

Definition 1.12 Let E ⊂ Rn. A point x ∈ Rn is called an accumulation point of E if
every open ball centered at x contains some point of E different from x. In other words,
x is an accumulation point of E if for every r > 0,

(Br(x) \ {x}) ∩ E ̸= ∅.

Examples.

(1) Let E = { 1
n
; n ∈ N∗}. Then 0 is an accumulation point of E, since given r > 0

there exists n(r) ∈ N such that 0 < 1
n(r)

< r.
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Figure 1.7:

Figure 1.8:

(2) Let E = (1, 3]× [2, 4] (Figure 1.8).

The point P0 = (1, 2), for instance, is an accumulation point of E, since for any r > 0
there exists pr ∈ E such that ∥pr − P0∥ < r.

These examples show that an accumulation point p of a set need not belong to the
set. Observe that in Example 1, no point of E is an accumulation point of E, since for
each n ∈ N∗ we can find rn > 0 such that the open interval centered at 1/n and radius rn
contains no point of E other than 1/n itself.

On the other hand, in Example 2 we have that every point of E is an accumulation
point of E.

A point x ∈ E that is not an accumulation point is called an isolated point of E. Thus
x ∈ E is isolated if and only if there exists r0 > 0 such that Br0(x) ∩ E = {x}.

In Example 1, by the argument above, all points of E are isolated. However, in
Example 2, the set E has no isolated points.

Proposition 1.13 Let E ⊂ Rn. If x ∈ Rn is an accumulation point of E, then for every
r > 0 the ball Br(x) contains infinitely many points of E.

Proof: Suppose, by contradiction, that there exists r0 > 0 such that the ball Br0(x)
contains only finitely many points of E, say x1, . . . , xk (see Figure 1.9). Set

r = min{∥x1 − x∥, . . . , ∥xk − x∥}.

Then the ball Br(x) contains no point of E except possibly x itself if x ∈ E. This
contradicts the fact that x is an accumulation point of E, since every open ball centered
at x must contain points of E different from x. 2
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Figure 1.9:

Proposition 1.14 Let E ⊂ Rn. If x is an accumulation point of E, then there exists a
sequence (xk) of pairwise distinct elements of E converging to x.

Figure 1.10:

Proof: Take r1 = 1. Then there exists x1 ∈ E such that 0 < ∥x1 − x∥ < 1. Next, let

r2 = min
{
∥x1 − x∥, 1

2

}
.

Then there exists x2 ∈ E such that 0 < ∥x2 − x∥ < r2. Similarly, with

r3 = min
{
∥x2 − x∥, 1

3

}
,

there exists x3 ∈ E such that 0 < ∥x3 − x∥ < r3. (See Figure 1.10)

Proceeding inductively in this way, we obtain a sequence (xk) such that

0 < ∥xk+1 − x∥ < ∥xk − x∥ and ∥xk − x∥ < 1

k
.
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Thus the xk are pairwise distinct and, moreover, limk→∞ xk = x. 2

We denote by E ′ the set of all accumulation points of a set E. Returning to Examples 1
and 2 above, we obtain in the first case E ′ = {0} and in the second case E ′ = [1, 3]× [2, 4].

As another example, let E = {1, 2}. In this case the set E ′ of accumulation points of
E is empty, since each point of E is isolated. It suffices to consider the balls of radius
1
2
centered at each of these points. These balls contain no point of E other than their

centers, as illustrated in Figure 1.11.

R
1 2

B1/2(1) B1/2(2)

Figure 1.11:

As in this example, any set E ⊂ Rn consisting of finitely many points has E ′ = ∅,
since all of its points are isolated. It follows that if E ′ ̸= ∅, then E is infinite.

Definition 1.15 A point x ∈ Rn is said to be adherent to a set E ⊂ Rn if every open
ball centered at x contains some point of E (not necessarily different from x). In other
words, x ∈ Rn is adherent to E if and only if, for every r > 0,

Br(x) ∩ E ̸= ∅.

Remark 1. If x is adherent to a set E and we consider the sequence rk =
1
k
, k ∈ N∗,

then for each k there exists some xk ∈ B1/k(x) with xk ∈ E. Hence ∥xk − x∥ < 1
k
and

therefore xk → x as k → ∞. Thus there exists a sequence (xk) ⊂ E such that xk → x.

Conversely, if there exists a sequence (xk) ⊂ E such that xk → x, then x is adherent
to E. Indeed, given r > 0, there exists k0 ∈ N such that

∥xk − x∥ < r for all k ≥ k0.

It follows that inside the open ball of radius r there is at least one element of E, namely
one of the xk with k ≥ k0.

From the above discussion we obtain the following result.

Proposition 1.16 A point x ∈ Rn is adherent to a set E ⊂ Rn if and only if there exists
a sequence (xk) of elements of E converging to x.

We denote by E the set of adherent points of E. This set is called the adherence or
closure of E. Note that every point of E is adherent to E. Indeed, if x ∈ E, then every
open ball centered at x contains at least one point of E, namely x itself. Thus E ⊂ E.
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It is also easy to verify that every accumulation point of E is adherent to E. Hence
E ′ ⊂ E, and therefore E ∪ E ′ ⊂ E.

On the other hand, if x ∈ E, then for every r > 0 we have Br(x) ∩ E ̸= ∅. In other
words, for each r > 0 there exists yr ∈ Br(x) with yr ∈ E.

There are two cases to consider:

(1) yr ̸= x.

In this case, x is an accumulation point of E.

(2) yr = x.

In this case, since yr ∈ E, we have x ∈ E.

Thus, from (1) and (2), we conclude that E ⊂ E ∪ E ′, and consequently

E = E ∪ E ′.

Example 4. Let

E = (1, 3)× [2, 5] ∪ {(5, 2), (5, 5)}.

Figure 1.12:

We have E ′ = [1, 3]× [2, 5] and

E = [1, 3]× [2, 5] ∪ {(5, 2), (5, 5)}.

Definition 1.17 A point x ∈ E ⊂ Rn is called an interior point of E if there exists
an open ball centered at x that is entirely contained in E. In other words, x ∈ E is an
interior point of E if there exists rx > 0 such that Brx(x) ⊂ E.
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Figure 1.13:

Example 5. Let E = (1, 3]. The point 2 is an interior point of E, since there exists
r0 =

1
2
such that B1/2(2) ⊂ E (see Figure 1.13).

Example 6. Consider

E = {(x, y) ∈ R2 ; x2

4
+ y2 ≤ 1},

as in Figure 1.14. The point (0, 0) is an interior point of E, since there exists r0 =
1
2
such

that B1/2(0, 0) ⊂ E.

Figure 1.14:

Proposition 1.18 Let ε > 0 and x ∈ Rn. Then every point belonging to the ball Bε(x)
is an interior point of this ball.

Proof: Let y ∈ Bε(x). We must exhibit r > 0 such that Br(y) ⊂ Bε(x).

Figure 1.15:
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Set r = ε− ∥y − x∥. Note that r > 0, since ∥y − x∥ < ε because y ∈ Bε(x). We shall
prove that Br(y) ⊂ Bε(x).

Indeed, let z ∈ Br(y). Then ∥z − y∥ < r. We want to show that ∥z − x∥ < ε. In fact,

∥z − x∥ ≤ ∥z − y∥+ ∥y − x∥
< r + ∥y − x∥
= ε− ∥y − x∥+ ∥y − x∥
= ε.

Therefore ∥z − x∥ < ε, as desired. 2

We denote by E◦ the set of interior points of E. This set is called the interior of E.
Clearly E◦ ⊂ E.

Definition 1.19 A point x ∈ Rn is called a boundary point of a set E ⊂ Rn if every
open ball centered at x contains points of E and points of the complement of E. In other
words, x ∈ Rn is a boundary point of E if and only if, for every r > 0,

Br(x) ∩ E ̸= ∅ and Br(x) ∩ Ec ̸= ∅.

Example 7. Let E = (2, 5]. The points 2 and 5 are boundary points of E, since every
open ball centered at one of these points contains points of E and points of the complement
of E.

Example 8. Consider

E = {(x, y) ∈ R2 ; 0 ≤ x ≤ 1 and y ≤ x}.

X

Y

0 1

1

Figure 1.16:

The point (1, 1), for instance, is a boundary point of E, since every ball centered at
(1, 1) contains points of E and points of the complement of E.
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The set of all boundary points of a set E is called the boundary of E and is denoted
by ∂E.

For example, if E is the closed ball Br(x), then ∂E = Sr(x), the sphere of center x
and radius r. To fix ideas, consider the planar illustration in Figure 1.17.

Figure 1.17:

As a more complete analysis, consider the following examples.

1. A = {1, 2, 3}.

Figure 1.18:

From the figure we observe that:

� A (closure) = A;

� A◦ (interior) = ∅;
� A′ (set of accumulation points) = ∅;
� A is a set of isolated points.

2. B = [1, 2) ∪ {3}.

Figure 1.19:

In this case:
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� B = [1, 2] ∪ {3};
� B◦ = (1, 2);

� B′ = [1, 2];

� ∂B (boundary) = {1, 2};
� x = 3 is an isolated point.

3. C =
{

1
n

}
n∈N∗ (Figure 1.20).

Figure 1.20:

Here:

� C = C ∪ {0};
� C◦ = ∅;
� C ′ = {0};
� ∂C (boundary) = {0};
� C is a set of isolated points.

4. D = [1, 3)× (2, 4] ∪ {(2, 5)}.

Figure 1.21:

We have:

� D = [1, 3]× [2, 4] ∪ {(2, 5)};
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� D◦ = (1, 3)× (2, 4);

� D′ = [1, 3]× [2, 4];

� ∂D = {1} × [2, 4] ∪ {3} × [2, 4] ∪ [1, 3]× {2} ∪ [1, 3]× {4};
� (2, 5) is an isolated point.

5. E = {(x, y) ∈ R2 ; x2 + y2 < 1 and y ≥ x} ∪ {(2− 1
n
, 2 + 1

n
)}n∈N∗ (Figure 1.22).

Figure 1.22:

In this case:

� E = {(x, y) ∈ R2 ; x2 + y2 ≤ 1 and y ≥ x} ∪ {(2− 1
n
, 2 + 1

n
)}n∈N∗ ;

� E◦ = {(x, y) ∈ R2 ; x2 + y2 < 1 and y > x};
� E ′ = {(x, y) ∈ R2 ; x2 + y2 ≤ 1 and y ≥ x} ∪ {(2, 2)};

� ∂E = {(x, y) ; y = x, −
√
2
2

≤ x ≤
√
2
2
} ∪ {(x, y) ; y =

√
1− x2, −1 ≤ x ≤

√
2
2
}

∪ {(x, y) ; y = −
√
1− x2, −1 ≤ x ≤ −

√
2
2
}.

1.6 Open and Closed Sets

Definition 1.20 A set E ⊂ Rn is said to be open if every point of E is an interior
point. In other words, E ⊂ Rn is open if, for each x ∈ E, there exists rx > 0 such that
Brx(x) ⊂ E.

Example 1. As we have seen in the previous section, every open ball is an open set.

Example 2. The set E = (−3,−1)× (1, 4) is an open set, as we can see in Figure 1.23.
Note that every point of E is an interior point of E.
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Figure 1.23:

Example 3. The empty set ∅ is open. Indeed, a set E fails to be open if there exists in
E some point that is not interior. Since there is no point at all in ∅, we must accept that
∅ is open.

Example 4. The whole space Rn is clearly open.

Warning. The sets A = (1, 3] and B = [2, 4]× [4, 5) are not open. See Figure 1.24.

Figure 1.24:

In fact, the point 3 ∈ A is not an interior point of A, and the point (3, 4), for example,
is not an interior point of B.

Proposition 1.21 Let {Eα}α∈I be a family of open subsets of Rn. Then E =
⋃
α∈I Eα

is an open subset of Rn.

Proof: Let x ∈ E. We must exhibit r > 0 such that Br(x) ⊂ E. Indeed, since
x ∈

⋃
α∈I Eα, we have x ∈ Eα for some α ∈ I. As Eα is open by assumption, there exists

r > 0 such that Br(x) ⊂ Eα, and since Eα ⊂ E, we obtain Br(x) ⊂ E. 2

Remark 1. The analogous statement is not true for arbitrary intersections of open



24 CHAPTER 1. TOPOLOGY IN RN

sets. Consider, for example,

En =
(
− 1

n
,
1

n

)
, n = 1, 2, . . . , and E =

∞⋂
n=1

En.

Then E is not open. In fact, note first that E = {0}. Indeed, clearly {0} ⊂ E, since
0 ∈ En for all n ∈ N∗. Now let x ∈ E and suppose, by contradiction, that x ̸= 0. Then
|x| > 0, and there exists a natural number n0 such that 0 < 1

n0
< |x|.

Figure 1.25:

This means that x /∈ (− 1
n0
, 1
n0
) = En0 , which is a contradiction, since x ∈ En for all

n ∈ N∗. Therefore E = {0}, and it is clear that {0} is not open.

Definition 1.22 A set F ⊂ Rn is said to be closed if F contains all of its accumulation
points. In other words, F is closed if and only if F ⊃ F ′.

Example 5. Let F = {1, 2, 3}. In this case the set F ′ of accumulation points of F is
empty, since F is a set of isolated points. Thus F ′ = ∅ and therefore F is a closed subset
of R.

Example 6. The closed ball Br(x0) ⊂ Rn is a closed set, since F ′ = F in this case.

Example 7. Both the empty set ∅ and the whole space Rn are closed.

Example 8. The set F = [−4,−2]× [−3,−1] is a closed subset of R2, since F ′ = F .

Figure 1.26:
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Proposition 1.23 A set A ⊂ Rn is open if and only if the complement ∁A is closed.

Proof: Suppose first that A is open, and assume by contradiction that ∁A is not closed.
Then there exists some x0 ∈ (∁A)′, that is, x0 is an accumulation point of ∁A, but
x0 /∈ ∁A. Since x0 /∈ ∁A, we have x0 ∈ A, and because A is open there exists r > 0
such that Br(x0) ⊂ A. On the other hand, since x0 ∈ (∁A)′, the ball Br(x0) must satisfy
Br(x0)∩∁A ̸= ∅. Thus there exists some y ∈ Br(x0) with y /∈ A, which is a contradiction,
since Br(x0) ⊂ A.

Conversely, suppose that ∁A is closed and, by contradiction, that A is not open. Then
there exists some x0 ∈ A such that for every ε > 0 the ball Bε(x0) is not contained in A.
In other words, for each ε > 0 there exists some yε ∈ Bε(x0) with yε /∈ A and yε ̸= x0 (for
if yε = x0, then yε ∈ A, which is absurd). Thus x0 is an accumulation point of ∁A, and
since ∁A is closed, we must have x0 ∈ ∁A, which is impossible because x0 ∈ A. 2

Corollary 1.24 A set F is closed if and only if its complement ∁F is open.

Proof: Just take A = ∁F in the previous proposition. 2

Lema 1.25 Let {Eα}α be a collection of open sets. Then

∁
(⋃
α

Eα

)
=
⋂
α

(
∁Eα

)
.

Proof: If x ∈ ∁(
⋃
αEα), then x /∈

⋃
αEα, that is, x /∈ Eα for every α, or equivalently,

x ∈ ∁Eα for every α. Hence x ∈
⋂
α(∁Eα).

Conversely, suppose that x ∈
⋂
α(∁Eα). Then x ∈ ∁Eα for every α, and therefore

x /∈ Eα for every α. Hence x /∈
⋃
αEα, and so x ∈ ∁(

⋃
αEα). 2

Remark 2. In the proof of the lemma above we used the facts that

x ∈
⋃
α

Eα ⇐⇒ x ∈ Eα for some α,

x /∈
⋃
α

Eα ⇐⇒ x /∈ Eα for every α.

Similarly, one proves that

∁
(⋂
α

Eα

)
=
⋃
α

(
∁Eα

)
.

Remark 3. It is worth emphasizing that there are sets in Rn that are neither open
nor closed. For instance, the set A = (1, 5] is not open, since 5 is not an interior point of
A although 5 ∈ A, and it is not closed, since 1 is an accumulation point of A and 1 /∈ A.
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Similarly, the set

B = {(x, y) ∈ R2 ; y < x and x2 + y2 ≤ 1}

is not open, since the point (1, 0), for example, is not an interior point of B although
(1, 0) ∈ B, and it is not closed, since (0, 0) is an accumulation point of B and does not
belong to B (see Figure 1.27).

Figure 1.27:

Proposition 1.26 Let {Fα}α∈I be a family of closed subsets of Rn. Then

F =
⋂
α

Fα

is a closed subset of Rn.

Proof: It suffices to show that ∁F is open.

Indeed,

∁F = ∁
(⋂
α

Fα

)
=
⋃
α

(∁Fα).

Since each Fα is closed, each ∁Fα is open. Hence
⋃
α(∁Fα) is an open set, as it is an

arbitrary union of open sets. 2

Remark 4. Here we have an observation analogous to the one made for families of
open sets: the union of an arbitrary family of closed sets need not be closed. For example,
let F ⊂ Rn be a set that is not closed. Clearly

F =
⋃
x∈F

{x},

and each singleton {x} is closed, but their union F is not closed.
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Proposition 1.27 A set E ⊂ Rn is closed if and only if E = E.

Proof: If E is closed, then E ⊃ E ′, and thus E ′∪E ⊂ E, that is, E ⊂ E. Since E ⊂ E,
it follows that E = E. Conversely, if E = E, then E ′ ⊂ E, and therefore E is closed. 2

It follows from this proposition that a set E is closed if and only if for every sequence
(xk) ⊂ E such that xk → x0 we have x0 ∈ E.

1.7 Compact Sets

Definition 1.28 A cover of a set E ⊂ Rn is a family C = {Cγ}γ∈I of sets Cγ ⊂ Rn such
that

E ⊂
⋃
γ∈I

Cγ.

Definition 1.29 A subcover of C is a subfamily C′ = {Cγ}γ∈I′ with I ′ ⊂ I such that still

E ⊂
⋃
γ∈I′

Cγ.

Remark 1. A cover is called open when all sets in the family are open. Similarly, we
speak of a closed cover if the sets are closed.

Definition 1.30 A set K ⊂ Rn is called compact if every open cover of K admits a finite
subcover.

Our goal from now on is to characterize the compact sets in Rn, since the definition
above is rather abstract.

Proposition 1.31 Let K ⊂ Rn be a compact set. Then K is closed and bounded.

Proof: (1) K is bounded.

For each n ∈ N, consider the open ball Gn = Bn(0). Clearly,

K ⊂
∞⋃
n=1

Gn,

since this union covers all of Rn. Indeed, given x ∈ Rn, there exists n0 ∈ N such that
∥x∥ < n0. Otherwise, if ∥x∥ ≥ n for every n ∈ N, then the set of natural numbers would
be bounded, which is absurd. Thus x ∈ Bn0(0) = Gn0 ⊂

⋃∞
n=1Gn, that is, Rn ⊂

⋃∞
n=1Gn.



28 CHAPTER 1. TOPOLOGY IN RN

Since K is compact, there exist n1, n2, . . . , nk ∈ N such that

K ⊂
k⋃
i=1

Gni
.

We may assume, without loss of generality, that n1 ≤ n2 ≤ · · · ≤ nk. Then

k⋃
i=1

Gni
= Bnk

(0),

so that K ⊂ Bnk
(0), which shows that K is bounded.

(2) K is closed.

It suffices to show that ∁K is open. Let x ∈ ∁K. We must find r > 0 such that
Br(x) ⊂ ∁K.

For each n ∈ N, set

Gn = {y ∈ Rn ; ∥y − x∥ > 1
n
} = ∁B1/n(x).

Figure 1.28:

Clearly Gn is open, since B1/n(x) is closed. We claim that

∞⋃
n=1

Gn = Rn \ {x}.

(i) Let y ∈
⋃∞
n=1Gn. Then y ∈ Gn0 for some n0 ∈ N. Thus y ∈ Rn and ∥y − x∥ > 1

n0
,

which implies y ̸= x. Hence y ∈ Rn \ {x}.
(ii) Conversely, let y ∈ Rn \ {x}. Then y ∈ Rn and y ̸= x, so ∥y − x∥ > 0. Choose

n0 ∈ N such that ∥y− x∥ > 1
n0
. Then y ∈ Gn0 , and hence y ∈

⋃∞
n=1Gn, which proves the

equality.

Since x /∈ K, we have

K ⊂
∞⋃
n=1

Gn.
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Because K is compact, there exist n1, n2, . . . , nr ∈ N (suppose, without loss of generality,
that n1 ≤ n2 ≤ · · · ≤ nr) such that

K ⊂
r⋃
i=1

Gni
.

Moreover, since Gni+1
⊃ Gni

for i = 1, . . . , r − 1, we have

r⋃
i=1

Gni
= Gnr .

Thus

K ⊂ Gnr = ∁B1/nr(x),

which implies

∁K ⊃ B1/nr(x) ⊃ B1/nr(x).

Therefore B1/nr(x) ⊂ ∁K, and ∁K is open. 2

Remark 2. It follows immediately from the previous proposition that if K ⊂ Rn is
not closed or not bounded, then it is not compact.

1.8 Nested Intervals

Lema 1.32 Let (In)n∈N be a sequence of closed and bounded intervals in R such that

In ⊃ In+1 ∀n ∈ N.

Then
∞⋂
n=1

In ̸= ∅.

Proof: For each n ∈ N, write In = [an, bn].

We first show that an ≤ bm for all n,m ∈ N. Indeed, suppose the contrary: that there
exist n0,m0 such that an0 > bm0 . But since each interval is nonempty, we always have
an ≤ bn for all n, hence

am0 ≤ bm0 < an0 ≤ bn0 .

Thus,

[am0 , bm0 ] ∩ [an0 , bn0 ] = ∅,

which is impossible because the intervals are nested. Hence an ≤ bm for all n,m.

In particular,

an ≤ b1 ∀n, a1 ≤ bm ∀m.
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Thus the set {an} is bounded above, and the set {bm} is bounded below. By the
completeness axiom, the following limits exist:

α = sup{an ; n ∈ N}, β = inf{bm ; m ∈ N}.

We now prove that α ≤ β. Suppose by contradiction that α > β and take

ε =
α− β

2
> 0.

Then there exist m0, n0 ∈ N such that

β ≤ bm0 < β + ε = α− ε < an0 < α.

Hence bm0 < an0 , contradicting what we proved above.

Thus α ≤ β, and therefore

[α, β] ⊂
∞⋂
n=1

In.

Indeed, if x ∈ [α, β], then since an ≤ α ≤ x ≤ β ≤ bn for all n, we have x ∈ In for all n.
Hence

[α, β] ⊂
∞⋂
n=1

In,

proving that the intersection is nonempty. 2

Remark 3. In fact, in the previous lemma we actually have

[α, β] =
∞⋂
n=1

In.

Indeed, let x ∈ In = [an, bn] for all n, and suppose by contradiction that x < α or x > β.

(i) If x < α, then α− x > 0. Take ε = α− x. Then for some n0 we have

α− ε < an0 ≤ α,

that is,
x < an0 ,

contradiction.

(ii) The case x > β is similar.

Examples.

(a) In =
[
− 1
n
, 1 + 1

n

]
.

�
∞⋂
n=1

In = [0, 1].
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� α = sup

{
− 1

n

}
= 0.

� β = inf

{
1 +

1

n

}
= 1.

(b) In =
[
− 1
n
, 1
n

]
.

�
∞⋂
n=1

In = {0}.

� α = sup

{
− 1

n

}
= 0.

� β = inf

{
1

n

}
= 0.

Definition 1.33 An n-parallelepiped, or n-dimensional block, or simply a cell, is a
subset A ⊂ Rn of the form

A =
n∏
i=1

[ai, bi] = [a1, b1]× · · · × [an, bn].

In one dimension an 1-parallelepiped is a closed bounded interval. In two dimensions
it is a rectangle, and in three dimensions it is a usual parallelepiped.

Lema 1.34 Let (Ak) be a sequence of n-parallelepipeds in Rn such that

Ak ⊃ Ak+1 ∀k ∈ N.

Then
∞⋂
k=1

Ak ̸= ∅.

Proof: Write
Ak = {(x1, . . . , xn) ; aki ≤ xi ≤ bki, 1 ≤ i ≤ n}.

For each fixed i, the intervals
Ik,i = [aki, bki]

satisfy Ik,i ⊃ Ik+1,i. Thus by Lemma 1.32 there exists x∗i such that

aki ≤ x∗i ≤ bki, ∀k.

Let x∗ = (x∗1, . . . , x
∗
n). Then x

∗ ∈ Ak for all k, proving the lemma. 2
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Proposition 1.35 Let A ⊂ Rn be an n-parallelepiped. Then A is compact.

Proof: Suppose, by contradiction, that A is not compact. Then there exists an open
cover

{Gα}α∈I
of A from which no finite subcover can be extracted.

Let A0 = A and divide A0 into 2n equal n-parallelepipeds. At least one of them, say
A1, cannot be covered by finitely many Gα. Otherwise, A0 itself would be covered by
finitely many of the Gα, contradiction.

Now divide A1 into 2n equal n-parallelepipeds. Again, one of them, call it A2, cannot
be finitely covered. Proceeding inductively we obtain a nested sequence

A0 ⊃ A1 ⊃ A2 ⊃ · · ·

of n-parallelepipeds, none of which admits a finite subcover.

Let

A0 = {(x1, . . . , xn) ; ai ≤ xi ≤ bi}, δ =
( n∑
i=1

(bi − ai)
2
)1/2

.

Then

x, y ∈ Ak =⇒ ∥x− y∥ ≤ δ

2k
.

By Lemma 1.34 there exists x′ ∈
⋂∞
k=1Ak. Since x

′ ∈ A, and {Gα} covers A, we have
x′ ∈ Gα0 for some α0. As Gα0 is open, there exists ε0 > 0 such that

Bε0(x
′) ⊂ Gα0 .

Choose n0 ∈ N such that

2n0 >
δ

ε0
.

If y ∈ An0 , then since x′ ∈ An0 ,

∥y − x′∥ ≤ δ

2n0
< ε0,

so y ∈ Bε0(x
′) ⊂ Gα0 .

Thus
An0 ⊂ Gα0 ,

contradicting the fact that no Ak can be finitely covered.

Hence A must be compact. 2

Proposition 1.36 Let K ⊂ Rn be a compact set and let F be a closed subset of K. Then
F is compact.
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Proof: Let {Gα}α∈A be an open cover of F . We must exhibit a finite subcover of F .

Since F is closed, its complement ∁F is open. We claim that

K ⊂
(⋃
α∈A

Gα

)
∪ ∁F.

Indeed, let x ∈ K. Since F ⊂ K, we have two cases:

(i) If x ∈ F , then, as {Gα}α∈A is an open cover of F , there exists some α ∈ A such
that x ∈ Gα. Hence x ∈

⋃
α∈AGα.

(ii) If x /∈ F , then x ∈ ∁F .

Thus {Gα}α∈A together with ∁F form an open cover of K. Since K is compact, there
exist α1, . . . , αn ∈ A such that

K ⊂
(
Gα1 ∪ · · · ∪Gαn

)
∪ ∁F.

However, F ⊂ K and clearly F ̸⊂ ∁F , so necessarily

F ⊂ Gα1 ∪ · · · ∪Gαn ,

which shows that F is compact. 2

Proposition 1.37 (Heine–Borel) A subset K ⊂ Rn is compact if and only if it is closed
and bounded.

Proof: We have already proved that every compact set is closed and bounded. It remains
to show that if K is closed and bounded, then K is compact.

Since K is bounded, there exists an n-parallelepiped A such that K ⊂ A. As A is
compact and K is closed, it follows from Proposition 1.36 that K is compact. 2

Proposition 1.38 Let K ⊂ Rn be compact. Then for every infinite subset A ⊂ K there
exists a point xA ∈ K which is an accumulation point of A.

Proof: Suppose, by contradiction, that there exists an infinite subset A ⊂ K such that
no point of K is an accumulation point of A. Thus, for each x ∈ K there exists εx > 0
such that (

Bεx(x) \ {x}
)
∩ A = ∅.

The collection of balls {Bεx(x)}x∈K is an open cover of K. Since K is compact, there
exist x1, . . . , xn ∈ K and ε1, . . . , εn > 0 such that

K ⊂
n⋃
i=1

Bεi(xi).
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Since A ⊂ K, it follows that

A ⊂
n⋃
i=1

Bεi(xi).

Hence

A = A ∩ A ⊂
n⋃
i=1

(
Bεi(xi) ∩ A

)
.

But for each i we have either Bεi(xi) ∩A = ∅ or Bεi(xi) ∩A = {xi} (if xi ∈ A). Thus
A is contained in a finite set, which contradicts the fact that A is infinite. 2

Corollary 1.39 (Bolzano–Weierstrass) Every infinite bounded subset of Rn has an
accumulation point.

Proof: Let A be an infinite bounded subset of Rn. Since A is bounded, there exists an
n-parallelepiped B such that B ⊃ A. As B is compact and A is an infinite subset of B,
the previous proposition implies that there exists xA ∈ B which is an accumulation point
of A. 2

Remark 4. If A = (ak) is a bounded sequence in Rn, then there exists xA ∈ Rn which
is an accumulation point of A, that is, there exists a subsequence (ank

) of (an) such that
ank

→ xA.

1.9 Induced Topology

Definition 1.40 Let X ⊂ Rn. A subset A ⊂ X is said to be open in X if for every a ∈ A
there exists δ > 0 such that

Bδ(a) ∩X ⊂ A.

In other words, for each a ∈ A there exists δ > 0 such that every point x ∈ X with
∥x− a∥ < δ belongs to A.

Example 1. The set A = (0, 1] is open in X = [0, 1], although it is not open in R.
We arrive at the notion of open sets in X by ignoring the points outside X and

mimicking the usual definition of an open set. When X ⊂ Rn is open, a subset A ⊂ X is
open in X if and only if it is open in Rn in the usual sense.

More generally, a subset A ⊂ X is open in X if and only if there exists an open set
B ⊂ Rn such that

A = X ∩B.



1.9. INDUCED TOPOLOGY 35

Indeed, if A is open in X, let B be the union of all balls Bδ(a) with center a ∈ A and
such that Bδ(a) ∩X ⊂ A. Clearly B is open and A = X ∩ B. Conversely, if A = X ∩ B
with B open in Rn, then for each a ∈ A there exists a ball Bδ(a) ⊂ B, and hence

Bδ(a) ∩X ⊂ B ∩X = A,

so A is open in X.

Remark 1. An analogue of Proposition 1.21 for open sets in X also holds: arbitrary
unions and finite intersections of sets open in X are open in X.

Definition 1.41 Let X ⊂ Rn. A subset F ⊂ X is said to be closed in X if there exists
a closed set G ⊂ Rn such that

F = X ∩G.

Remark 2. Closed sets in X satisfy the analogue of Proposition 1.27: arbitrary in-
tersections and finite unions of sets closed in X are closed in X.

Definition 1.42 Let Y ⊂ X ⊂ Rn. The closure of Y relative to X is the set

Y
X
= Y ∩X,

that is, the set of points of X which are adherent to Y .

Note that if Y = Y
X
= Y ∩X, then Y is closed in X.

An important particular case occurs when the closure of Y in X is the whole of X.
To describe this situation, we introduce the following notion.

Definition 1.43 Let Y ⊂ X ⊂ Rn. We say that Y is dense in X if

Y
X
= X,

that is, Y ∩X = X, or equivalently X ⊂ Y .

It follows that every point of X is the limit of a sequence whose terms belong to Y .
Equivalently, every open ball centered at a point of X contains points of Y .

Remark 3. When X = Rn, a set Y is dense in X if and only if Rn ⊂ Y . For example,
Q is dense in R, since for every x ∈ R there exists a sequence (xn) ⊂ Q such that xn → x,
or equivalently, every open ball centered at x and of radius r > 0 contains rational points.
Similarly, Qn is dense in Rn.

Proposition 1.44 Every set X ⊂ Rn contains a countable subset E which is dense in
X.
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Proof: Let B be the collection of all open balls Br(q) with center q ∈ Qn and rational
radius r > 0. This family is clearly countable; write

B = {B1, B2, . . . , Bk, . . . }.

For each k ∈ N, choose a point xk ∈ Bk ∩X if Bk ∩X ̸= ∅. If Bk ∩X = ∅, we simply
do not choose a point. The set E obtained in this way is a countable subset of X. We
now show that E is dense in X, that is, X ⊂ E.

Let x ∈ X and ε > 0 be given. There exists a rational number r > 0 such that 2r < ε.
Since Qn is dense in Rn, we can find q ∈ Qn such that ∥q−x∥ < r. Then x ∈ Br(q) = Bk

for some k, so Bk ∩X ̸= ∅, and thus there exists xk ∈ E with xk ∈ Bk.

Because both x and xk lie in Bk = Br(q), we have

∥x− xk∥ ≤ ∥x− q∥+ ∥q − xk∥ < r + r = 2r < ε.

Hence every open ball Bε(x) with center in X contains some point xk ∈ E, and
therefore E is dense in X. 2

Proposition 1.45 (Lindelöf Property) Let X ⊂ Rn be arbitrary. Every open cover
{Aλ}λ∈I of X admits a countable subcover.

Proof: By Proposition 1.44, let

E = {x1, x2, . . . , xk, . . . } ⊂ X

be a countable dense subset of X. Let B be the set of all open balls Br(xk) with center
xk ∈ E, rational radius r > 0, and such that each of these balls is contained in some Aλ.
The family B is countable. We claim that the balls B ∈ B cover X.

Indeed, let x ∈ X. Since {Aλ}λ∈I is an open cover, there exists λ ∈ I and r > 0 such
that

B2r(x) ⊂ Aλ.

As E is dense in X, we can choose xk ∈ E with ∥x− xk∥ < r. Then x ∈ Br(xk).

To show that Br(xk) ∈ B, it remains to verify that Br(xk) ⊂ Aλ, as in Figure 1.39. If
y ∈ Br(xk), then

∥y − xk∥ < r,

and hence
∥y − x∥ ≤ ∥y − xk∥+ ∥xk − x∥ < r + r = 2r,

so y ∈ B2r(x) ⊂ Aλ.

This proves that the balls in B cover X. Enumerating them as B1, B2, . . . , Bk, . . . and
choosing, for each k ∈ N, an index λk ∈ I such that

Bk ⊂ Aλk ,
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we obtain
X ⊂ Aλ1 ∪ Aλ2 ∪ · · · ∪ Aλk ∪ · · · ,

which is a countable subcover. 2

Remark 4. If E ⊂ X ⊂ Rn, then E may be open relative to X without being open
in Rn. The same holds for closed sets. Compactness, however, behaves better, as we now
show.

Proposition 1.46 Let K ⊂ X ⊂ Rn. Then K is compact in Rn if and only if K is
compact in X.

Proof: Assume K is compact in Rn, and let {Gα}α∈A be an open cover of K in X, that
is,

K ⊂
⋃
α∈A

Gα,

where each Gα is open in X. For each α there exists an open set Hα ⊂ Rn such that

Gα = Hα ∩X.

Thus
K ⊂

⋃
α∈A

(Hα ∩X) =
(⋃
α∈A

Hα

)
∩X,

and hence K ⊂
⋃
α∈AHα.

Since K is compact in Rn and {Hα}α∈A is an open cover of K, there exist α1, . . . , αk ∈
A such that

K ⊂
k⋃
i=1

Hαi
.

As K ⊂ X, we have

K ⊂
k⋃
i=1

(Hαi
∩X) =

k⋃
i=1

Gαi
,

showing that K is compact in X.

Conversely, suppose K is compact in X, and let {Gα}α∈A be an open cover of K in
Rn. Then

K ⊂
⋃
α∈A

Gα,

and hence
K ∩X ⊂

⋃
α∈A

(Gα ∩X).

Since each Gα is open in Rn, it follows that Hα := Gα ∩X is open in X, and

K ∩X ⊂
⋃
α∈A

Hα.
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But K ⊂ X, so K ∩X = K, and thus

K ⊂
⋃
α∈A

Hα.

Since K is compact in X, there exist α1, . . . , αk ∈ A such that

K ⊂
k⋃
i=1

Hαi
=

k⋃
i=1

(Gαi
∩X),

which implies

K ⊂
k⋃
i=1

Gαi
.

Therefore K is compact in Rn. 2

1.10 Continuous Functions

Definition 1.47 Let f : X ⊂ Rn → Rm be a map. We say that f is continuous at a
point x0 ∈ X if, given ϵ > 0, one can find δ > 0 such that every point x ∈ X whose
distance to x0 is less than δ is mapped by f to a point f(x) whose distance to f(x0) is
less than ϵ. In other words,

∀ ϵ > 0 ∃ δ > 0 such that ∀x ∈ X, ∥x− x0∥ < δ ⇒ ∥f(x)− f(x0)∥ < ϵ.

In terms of balls, the continuity of f at x0 can be expressed as follows: for every open
ball B′ centred at f(x0) in Rm there exists an open ball B centred at x0 in Rn such that

f(B ∩X) ⊂ B′.

Figure 1.29:

Remark 1. Although the definition of continuity of a map f : X ⊂ Rn → Rm uses a
norm in Rn and another in Rm (both denoted by the same symbol), it follows from the
notion of equivalent norms that continuity of f at a point is preserved if we change one
of these norms or both.
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If f : X ⊂ Rn → Rm is continuous at every point of X, we simply say that f is a
continuous map. It is easily seen that if f is continuous on X, then for every Y ⊂ X, the
restriction f |Y is also continuous.

A trivial case of continuity is the following: if x0 is an isolated point of X, then every
map f : X ⊂ Rn → Rm is necessarily continuous at x0. Indeed, there exists δ > 0 such
that Bδ(x0) ∩X = {x0}. Thus, for any given ϵ > 0, taking this value of δ we obtain

x ∈ X, ∥x− x0∥ < δ ⇒ x = x0 ⇒ ∥f(x)− f(x0)∥ = 0 < ϵ.

Definition 1.48 Given X ⊂ Rn, a map f : X ⊂ Rn → Rm is said to be Lipschitz if there
exists k > 0 (a Lipschitz constant) such that, for all x, y ∈ X,

∥f(x)− f(y)∥ ≤ k∥x− y∥.

We shall prove that every Lipschitz map is continuous. Indeed, given ϵ > 0, it suffices
to take δ = ϵ

k
. Then

∥x− x0∥ < δ ⇒ ∥f(x)− f(x0)∥ ≤ k∥x− x0∥ < k · ϵ
k
= ϵ.

Note that the property of being Lipschitz does not depend on the particular choice of
equivalent norms.

Examples of Lipschitz functions.

1) Every linear transformation T : Rn → Rm is Lipschitz.

Indeed, for x ∈ Rn we have

∥T (x)∥ =
∥∥∥T(∑

i

xiei

)∥∥∥ =
∥∥∥∑

i

xi T (ei)
∥∥∥ ≤

∑
i

|xi| ∥T (ei)∥.

Setting k = max{∥T (e1)∥, . . . , ∥T (en)∥} we obtain

∥T (x)∥ ≤ k
∑
i

|xi|.

Taking in Rn the ℓ1â¿“norm (the ‘sum norm’), we get ∥T (x)∥ ≤ k∥x∥ for all x ∈ Rn.

Thus, for arbitrary x, y ∈ Rn, by linearity of T we obtain

∥T (x)− T (y)∥ = ∥T (x− y)∥ ≤ k∥x− y∥,

so T satisfies the Lipschitz condition and, in particular, is continuous.

2) The coordinate projections. For the iâ¿“th projection we have

|πi(x)− πi(y)| = |xi − yi| ≤ ∥x− y∥,

for any of the three usual norms on Rn.

3) The norm ∥ · ∥ : Rn → R, x 7→ ∥x∥.
Indeed, for any x, y ∈ Rn we have∣∣∥x∥ − ∥y∥

∣∣ ≤ ∥x− y∥.
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Proposition 1.49 The composition of two continuous maps is continuous. More pre-
cisely, let X ⊂ Rn, Y ⊂ Rm, f : X → Y be continuous at x0 ∈ X, and let g : Y → Rp be
continuous at y0 = f(x0). Then g ◦ f : X → Rp is continuous at x0.

Proof: Given ϵ > 0, by continuity of g there exists η > 0 such that

y ∈ Y, ∥y − f(x0)∥ < η ⇒ ∥g(y)− g(f(x0))∥ < ϵ.

On the other hand, by continuity of f at x0, corresponding to this η there exists δ > 0
such that

x ∈ X, ∥x− x0∥ < δ ⇒ ∥f(x)− f(x0)∥ < η.

Combining these two implications we obtain, for x ∈ X with ∥x− x0∥ < δ,

∥g(f(x))− g(f(x0))∥ < ϵ.

Thus g ◦ f is continuous at x0. 2

Let X ⊂ Rn. To give a map f : X → Rm is the same as giving m functions f1, . . . , fm :
X → R defined by fi = πi ◦ f , which are called the coordinate functions of f . For every
x ∈ X we have

f(x) = (f1(x), . . . , fm(x)).

Proposition 1.50 A map f : X ⊂ Rn → Rm is continuous at a point x0 ∈ X if and
only if each coordinate function fi = πi ◦ f : X → R is continuous at x0.

Proof: The continuity of f implies the continuity of each fi by the previous proposition
(using the projections πi). Conversely, suppose each fi : X → R is continuous at x0 ∈ X.
Given ϵ > 0, there exist δ1, . . . , δm > 0 such that

∥x− x0∥ < δi, x ∈ X ⇒ |fi(x)− fi(x0)| < ϵ for i = 1, . . . ,m.

In Rm take the maximum norm and set δ = min{δ1, . . . , δm}. Then

∥x− x0∥ < δ, x ∈ X ⇒ ∥f(x)− f(x0)∥ = max
1≤i≤m

|fi(x)− fi(x0)| < ϵ,

and consequently f is continuous at x0. 2

Corollary 1.51 Given f : X → Rn and g : X → Rm, consider the map

(f, g) : X → Rn × Rm, (f, g)(x) = (f(x), g(x)).

Then (f, g) is continuous if and only if both f and g are continuous.
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Using the previous results it is easy to show that if f, g : X ⊂ Rn → Rm and α : X ⊂
Rn → R, then

(i) f + g : X → Rm, (f + g)(x) = f(x) + g(x);

(ii) αf : X → Rm, (αf)(x) = α(x) f(x);

(iii) ⟨f, g⟩ : X → R, ⟨f, g⟩(x) = ⟨f(x), g(x)⟩;

(iv)
1

α
: X → R,

1

α
(x) =

1

α(x)
(α(x) ̸= 0),

are all continuous.

Proposition 1.52 A map f : X ⊂ Rn → Rm is continuous at a point x0 ∈ X if and
only if for every sequence (xk) ⊂ X with limk→∞ xk = x0 we have

lim
k→∞

f(xk) = f(x0).

Proof: Assume f is continuous at x0 and let (xk) ⊂ X with limk→∞ xk = x0. Given
ϵ > 0, there exists δ > 0 such that

x ∈ X, ∥x− x0∥ < δ ⇒ ∥f(x)− f(x0)∥ < ϵ.

Since limk→∞ xk = x0, there exists k0 ∈ N such that for all k > k0,

∥xk − x0∥ < δ,

which implies ∥f(xk)− f(x0)∥ < ϵ. Hence limk→∞ f(xk) = f(x0).

For the converse, suppose, by contradiction, that f is not continuous at x0. Then
there exists ϵ0 > 0 such that for every k ∈ N we can find xk ∈ X with

∥xk − x0∥ <
1

k
and ∥f(xk)− f(x0)∥ ≥ ϵ0.

Then limk→∞ xk = x0, but limk→∞ f(xk) ̸= f(x0), which is a contradiction. 2

Definition 1.53 A map f : X ⊂ Rn → Rm is said to be uniformly continuous if, for
every ϵ > 0, one can find δ > 0 such that

x, y ∈ X, ∥x− y∥ < δ ⇒ ∥f(x)− f(y)∥ < ϵ.

For example, every Lipschitz map f : X ⊂ Rn → Rm is uniformly continuous. Indeed,
if

∥f(x)− f(y)∥ ≤ k ∥x− y∥ for all x, y ∈ X,

then, given ϵ > 0, taking δ = ϵ
k
we obtain, for ∥x− y∥ < δ,

∥f(x)− f(y)∥ ≤ k ∥x− y∥ ≤ k · ϵ
k
= ϵ.

The composition g ◦ f of uniformly continuous functions f and g is again uniformly
continuous. Hence a map f : X ⊂ Rn → Rm is uniformly continuous if and only if each
of its coordinate functions f1, . . . , fm : X → R is uniformly continuous.
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1.11 Connected Sets

Definition 1.54 Two subsets A and B of Rn are said to be separated if

A ∩B = A ∩B = ∅.

Example 1. A = [1, 2) and B = (2, 3] are separated.

Remark 1. Note that if A and B are separated then they are disjoint. However, two
sets can be disjoint without being separated.

For example: A = [1, 2) and B = [2, 3) are disjoint but not separated.

There is, however, an important case in which two disjoint sets A and B are separated:
when A and B are open. Indeed:

(i) A ∩B = ∅.
Suppose, by contradiction, that there exists x ∈ A ∩ B. Since B is open, there exists

r > 0 such that Br(x) ⊂ B. As x ∈ A and A ̸= ∅, there exists y ∈ Br(x) with y ∈ A.
Because Br(x) ⊂ B, we have y ∈ B, hence y ∈ A ∩B, which contradicts A ∩B = ∅.

(ii) A ∩B = ∅ is proved in an analogous manner.

Definition 1.55 A set E ⊂ Rn is said to be connected if, for every pair of separated sets
A,B ⊂ Rn whose union is E, one of them is empty.

In other words:

E is connected if and only if for every pair of separated sets A,B ⊂ Rn such that
E = A ∪B we have A = ∅ or B = ∅.

It follows that:

A set E is nonconnected or disconnected if and only if there exist non-empty separated
sets A,B ⊂ Rn such that E = A ∪B.

Proposition 1.56 A set E ⊂ R is connected if and only if, for any pair of points x, y ∈ E
and any z ∈ R with x < z < y, we have z ∈ E.

Proof: First suppose that E is connected and consider x, y ∈ E and z ∈ R with
x < z < y. Assume, by contradiction, that z /∈ E. Set

A = (−∞, z) ∩ E, B = (z,+∞) ∩ E.

We have:

(i) A ̸= ∅, because x ∈ E and x ∈ (−∞, z) since x < z.

B ̸= ∅, because y ∈ E and y ∈ (z,+∞) since z < y.

(ii) E = A ∪B.
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Figure 1.30:

Indeed, clearly A ∪B ⊂ E. On the other hand,

A ∪B =
[
(−∞, z) ∪ (z,+∞)

]
∩ E =

(
R \ {z}

)
∩ E.

Since z /∈ E, we have E ⊂ R \ {z}, and hence

E ⊂
(
R \ {z}

)
∩ E = A ∪B.

(iii) A and B are separated.

Indeed,

A ∩B = [(−∞, z) ∩ E] ∩ [(z,+∞) ∩ E]
⊂
(
(−∞, z) ∩ E

)
∩
(
(z,+∞) ∩ E

)
= (−∞, z] ∩ (z,+∞) ∩ E = ∅.

Thus A ∩B = ∅. Similarly, A ∩B = ∅.
By (i), (ii) and (iii), A and B form a disconnection of E, which contradicts the con-

nectedness of E.

Conversely, suppose that for any x, y ∈ E and z ∈ R with x < z < y we have z ∈ E.
We must prove that E is connected. Suppose, on the contrary, that E is disconnected.
Then there exist non-empty separated sets A and B such that E = A ∪B.

Choose x ∈ A and y ∈ B. Clearly x ̸= y, otherwise both A ∩ B and A ∩ B would be
non-empty, contradicting the fact that A and B are separated. Without loss of generality,
suppose x < y and set

z = sup
(
[x, y] ∩ A

)
.

Note that z is adherent to [x, y] ∩ A, hence

z ∈ [x, y] ∩ A ⊂ [x, y] ∩ A.

Thus z /∈ B, since A ∩B = ∅. Therefore z ̸= y, because y ∈ B. Hence

z ∈ A and x ≤ z < y.

We distinguish two cases:



44 CHAPTER 1. TOPOLOGY IN RN

(1) z /∈ A.

In this case z ̸= x, since x ∈ A. Hence x < z < y. By our hypothesis, this implies
z ∈ E, which contradicts the fact that z /∈ A, z /∈ B and therefore z /∈ A ∪B = E.

(2) z ∈ A.

As z ∈ A, we have z /∈ B, since A ∩ B = ∅. Thus there exists ϵ0 > 0 such that the
neighbourhood (z − ϵ0, z + ϵ0) contains no points of B.

Let
δ = min{ϵ0, |z − x|, |y − z|}.

Figure 1.31:

Then (z − δ, z + δ) contains no points of B and is contained in [x, y] ⊂ E. Choose
z1 ∈ (z, z + δ). Then z < z1 < y. Since z ∈ A, y ∈ B and A ∩ B = ∅, by our hypothesis
we must have z1 ∈ E. However, as z < z1 and z is the supremum of [x, y] ∩ A, we have
z1 /∈ A. Moreover, z1 /∈ B, because there are no points of B in (z − δ, z + δ). Hence
z1 /∈ A ∪B = E, again a contradiction. 2

Corollary 1.57 A set E ⊂ R is connected if and only if it is one of the following:

(−∞, b), (−∞, b], (a,+∞), [a,+∞), (−∞,+∞), (a, b), [a, b), (a, b], [a, b].

Thus we have characterised the connected subsets of R: they are precisely the (possibly
infinite) intervals. The next step would be to try to characterise connected subsets of Rn.
This is not possible in general. However, there is a class of sets for which this becomes
possible, namely those in which the connected components are open.

Proposition 1.58 The union of a family of connected sets having a common point is
connected.

Proof: Let {Eα}α∈I be a family of connected sets, all containing the same point x ∈ Rn.
To prove that E =

⋃
α∈I Eα is connected, let A and B be separated subsets of Rn such

that E = A ∪B with x ∈ A. For each α ∈ I we have

Eα = E ∩ Eα = (A ∪B) ∩ Eα = (A ∩ Eα) ∪ (B ∩ Eα).

If we show that A ∩ Eα and B ∩ Eα are separated, then, since Eα is connected, we
must have A ∩ Eα = ∅ or B ∩ Eα = ∅. But x ∈ A ∩ Eα for every α, so A ∩ Eα ̸= ∅ and
therefore B ∩ Eα = ∅ for all α ∈ I. Hence

B = B ∩ E = B ∩
(⋃
α∈I

Eα

)
=
⋃
α∈I

(B ∩ Eα) = ∅,
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which shows that E is connected.

It remains to prove that A ∩ Eα and B ∩ Eα are separated:

(i)
(A ∩ Eα) ∩ (B ∩ Eα) ⊂ (A ∩B) ∩ Eα = ∅,

since A and B are separated.

(ii)
(A ∩ Eα) ∩ (B ∩ Eα) ⊂ (A ∩B) ∩ Eα = ∅,

for the same reason. 2

Corollary 1.59 A set E ⊂ Rn is connected if and only if, for any x, y ∈ E, there exists
a connected set Cxy such that x, y ∈ Cxy ⊂ E.

Proof: Necessity is obvious: we can simply take Cxy = E.

For sufficiency, fix x ∈ E. By assumption, for each y ∈ E there is a connected set Cxy
with x, y ∈ Cxy ⊂ E. Then

E =
⋃
y∈E

Cxy,

where the sets Cxy are connected and all contain the common point x. By the previous
proposition, E is connected. 2

Proposition 1.60 Let E ⊂ Rn be a connected subset and f : E → Rm a continuous
map. Then f(E) is connected.

Proof: Suppose, by contradiction, that f(E) is not connected. Then there exist non-
empty separated sets A,B ⊂ Rm such that f(E) = A ∪B.

Set
G = E ∩ f−1(A) and H = E ∩ f−1(B).

Then:

(1o) E = G ∪H.

Indeed,

G ∪H = (E ∩ f−1(A)) ∪ (E ∩ f−1(B))

= E ∩
(
f−1(A) ∪ f−1(B)

)
= E ∩ f−1(A ∪B).

Since f(E) = A ∪B, we have E ⊂ f−1(A ∪B), and hence

G ∪H = E ∩ f−1(A ∪B) = E.

(2o) G ̸= ∅ and H ̸= ∅.
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Indeed, since A ̸= ∅, there exists y ∈ A. But A ⊂ f(E), so y = f(x) for some x ∈ E.
Moreover, x ∈ f−1(A) because f(x) = y ∈ A. Thus x ∈ E ∩ f−1(A) = G, and therefore
G ̸= ∅. Similarly, using B ̸= ∅, we obtain H ̸= ∅.

(3o) G and H are separated.

Suppose, by contradiction, that there exists x ∈ Rn with x ∈ G∩H. Since x ∈ G, there
exists a sequence (xn) ⊂ G such that xn → x. As f is continuous, we have f(xn) → f(x).
On the other hand, (xn) ⊂ G = E ∩ f−1(A), so (f(xn)) ⊂ A. Since f(xn) → f(x), it
follows that f(x) ∈ A.

On the other hand, as x ∈ H, we have x ∈ f−1(B) and hence f(x) ∈ B. Thus

f(x) ∈ A ∩B,

which is impossible, because A and B are separated. Similarly, one shows that G∩H = ∅.

From (1o), (2o) and (3o) we conclude that E is the union of two non-empty separated
sets, which contradicts the connectedness of E. 2

Definition 1.61 A path in a set X ⊂ Rn is a continuous map

α : I −→ X,

where I ⊂ R is an interval.

For example, given x, y ∈ Rn, the map

λ : [0, 1] −→ Rn, t 7−→ λ(t) = (1− t)x+ ty,

is called the straight-line path joining x to y. Sometimes we refer to it as the path [x, y].

We say that the points x and y can be joined by a path in X if there exists a path
α : I → X such that x, y ∈ α(I). In other words, when there is a continuous map
α : I → X such that x = α(tx) and y = α(ty) for some tx, ty ∈ I.

To fix ideas, consider Figure 1.32.

Figure 1.32:

Remark 2. If x, y ∈ X can be joined by a path α : I → X, then there exists a path
φ : [0, 1] → X such that φ(0) = x and φ(1) = y. It suffices to set

φ(s) = α
(
(1− s)tx + sty

)
,
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Figure 1.33:

where x = α(tx) and y = α(ty); see Figure 1.33.

If α, β : [0, 1] → X are paths in X with α(1) = β(0), we define the concatenated path
γ = α ∨ β : [0, 1] → X by

γ(t) =

{
α(2t), 0 ≤ t ≤ 1

2
,

β(2t− 1), 1
2
≤ t ≤ 1.

Figure 1.34:

Note that the two formulas above define the same value γ
(
1
2

)
. Since γ|[0, 1

2
] and γ|[ 1

2
,1]

are continuous, it follows that γ is continuous. Intuitively, the path γ runs along the
trajectory of α (with double speed) until t = 1

2
and then, for t ≥ 1

2
, it follows (with double

speed) the trajectory of β, as indicated in Figure 1.34.

Let x, y, z be points of a set X ⊂ Rn. If x and y can be joined by a path in X, and
y and z can be joined by a path in X, then there exists a path in X joining x and z.
Indeed, take paths α, β : [0, 1] → X with α(0) = x, α(1) = y and β(0) = y, β(1) = z, and
set γ = α ∨ β. Then γ(0) = x and γ(1) = z.

Definition 1.62 A set X ⊂ Rn is said to be path-connected if any two points x, y ∈ X
can be joined by a path in X.

Every path-connected set is connected, in view of the propositions and corollaries
proved earlier, because if α : I → X is a path in X joining the points x and y, then
α(I) = Cxy is a connected subset of X containing x and y. Indeed, since the interval I
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is a connected subset of R and α : I → X is continuous, we have that α(I) = Cxy is a
connected subset of X containing x and y.

The converse is false. The set X ⊂ R2 given by the union of the graph of the function
f(x) = sin

(
1
x

)
, 0 < x ≤ 1, with the origin (0, 0) is connected but not path-connected; see

Figure 1.35.

Figure 1.35:

There is, however, an important particular case in which connectedness implies path-
connectedness: namely, whenX ⊂ Rn is open. Before discussing this case, let us introduce
an important definition.

Definition 1.63 A set X ⊂ Rn is said to be convex if

tx+ (1− t)y ∈ X for all x, y ∈ X and 0 ≤ t ≤ 1.

In other words, a set X ⊂ Rn is convex when it contains every line segment whose
endpoints belong to X.

To fix ideas, consider the schematic picture in Figures ?? and 1.37.

Figure 1.36:
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x
y

X

Figure 1.37: Convex set inside a region X.

The canonical example of a convex set is the ball Br(x0). Indeed, let x, y ∈ Br(x0)
and consider 0 ≤ t ≤ 1. Then

∥tx+ (1− t)y − x0∥ = ∥tx− tx0 + tx0 + y − ty − x0∥
= ∥t(x− x0) + t(x0 − y) + (y − x0)∥
= ∥t(x− x0)− t(y − x0) + (y − x0)∥
= ∥t(x− x0) + (1− t)(y − x0)∥
≤ t∥x− x0∥+ (1− t)∥y − x0∥
< tr + (1− t)r = r.

An analogous argument applies to closed balls. If X ⊂ Rn is convex, any two points
x, y ∈ X can be joined by a path in X, namely the straight-line path [x, y]. Thus every
convex set X ⊂ Rn is path-connected and therefore connected. In particular, every (open
or closed) ball in Rn is path-connected.

Proposition 1.64 An open set E ⊂ Rn is connected if and only if it is path-connected.

Proof: The sufficiency has already been proved. We now prove the necessity.

Fix a point x0 ∈ E and let A be the set of all points x ∈ E which can be joined to
x0 by a path in E. We claim that A is open. Indeed, let x ∈ A. Since E is open, there
exists r > 0 such that Br(x) ⊂ E. As the ball is convex, every point y ∈ Br(x) can be
joined to x by a path in E. Hence y can be joined to x0 by a path in E, which implies
that Br(x) ⊂ A. Consequently, A is open.

The set B = E \ A, that is, the set of all points x ∈ E which cannot be joined to x0
by a path in E, is also open. Indeed, take x ∈ B. Since E is open, there exists ϵ > 0
such that Bϵ(x) ⊂ E. We claim that this ball is contained in B, i.e., that every point
z ∈ Bϵ(x) cannot be joined to x0 by a path in E. Suppose, on the contrary, that there
exists z0 ∈ Bϵ(x) which can be joined to x0 by a path in E. By the convexity of the ball,
the segment [z0, x] is contained in Bϵ(x) and, therefore, in E. Concatenating a path from
x0 to z0 with the segment [z0, x], we obtain a path in E joining x0 to x, which would
imply x ∈ A, a contradiction.
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Figure 1.38:

Thus E = A ∪ B, where A and B are disjoint open sets, hence separated. Since E is
connected, one of the sets A or B must be empty. As x0 ∈ A, it follows that B = ∅, and
consequently E = A. This proves the proposition. 2

Definition 1.65 We say that α : [0, 1] → X is a polygonal path in X when α is the
concatenation of a finite number of straight-line paths.

Corollary 1.66 If E ⊂ Rn is open and connected, then any two points of E can be joined
by a polygonal path contained in E.

1.12 Strong Relations between Continuity, Compact-

ness and Connectedness

Proposition 1.67 Let K ⊂ Rn be a compact set and f : K → Rm a continuous function.
Then f(K) is compact.

Proof: Let {Gα}α∈A be an open cover of f(K). We must exhibit a finite subcover.
Indeed, since f(K) ⊂

⋃
α∈AGα, for each y ∈ f(K) we have y ∈ Gα for some α ∈ A, and

moreover y = f(x) for some x ∈ K. As Gα(x) is open, for each y = f(x) ∈ f(K) there
exists εx > 0 such that Bεx(f(x)) ⊂ Gα(x).

On the other hand, by the continuity of f , for each εx > 0 there exists δx > 0 such
that f(Bδx(x)) ⊂ Bεx(f(x)). The family {Bδx(x)}x∈K is an open cover of K, and since K
is compact there exist x1, . . . , xk ∈ K and δ1, . . . , δk > 0 such that

K ⊂
k⋃
i=1

Bδi(xi),

and consequently

f(K) ⊂ f
( k⋃
i=1

Bδi(xi)
)
⊂

k⋃
i=1

f(Bδi(xi)) ⊂
k⋃
i=1

Bεi(f(xi)) ⊂
k⋃
i=1

Gα(xi).

Thus f(K) admits a finite subcover. 2
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Proposition 1.68 Let K ⊂ Rn be a compact set and f : K → R a continuous function.
Then f attains its absolute maximum and minimum on K.

Proof: Since K is compact and f is continuous on K, the set f(K) is a compact subset
of R and therefore it is closed and bounded. Because it is bounded, by the completeness
axiom there exist

M = sup{f(x) : x ∈ K}, m = inf{f(x) : x ∈ K}.

Since f(K) is closed, it contains all its adherent points; hence M,m ∈ f(K). It follows
that there exist x1, x2 ∈ K such that f(x1) = m and f(x2) =M , as desired. 2

Proposition 1.69 Let K ⊂ Rn be a compact set and f : K → Rm a continuous function.
Then f is uniformly continuous.

Proof: Let ε > 0 be given. Since f is continuous, for this ε > 0 and for each x ∈ K
there exists δx > 0 such that, if y ∈ K and ∥y − x∥ < δx, then

∥f(x)− f(y)∥ < ε

2
.

Note that the family {Bδx/2(x)}x∈K is an open cover of K. As K is compact, there exist
x1, . . . , xk ∈ K and δ1, . . . , δk > 0 such that

K ⊂
k⋃
i=1

Bδi/2(xi).

Set

δ = min

{
δ1
2
, . . . ,

δk
2

}
,

and let x, y ∈ K with ∥x− y∥ < δ. We must show that ∥f(x)− f(y)∥ < ε.

Indeed, since x ∈ K, there exists i0 ∈ {1, . . . , k} such that x ∈ Bδi0/2
(xi0). Then

(i) x ∈ Bδi0
(xi0),

(ii)

∥y − xi0∥ ≤ ∥y − x∥+ ∥x− xi0∥ < δ +
δi0
2

≤ δi0
2

+
δi0
2

= δi0 ,

so y ∈ Bδi0
(xi0) as well.

By continuity of f at xi0 , we have

∥f(x)− f(xi0)∥ <
ε

2
and ∥f(y)− f(xi0)∥ <

ε

2
.

Hence
∥f(x)− f(y)∥ ≤ ∥f(x)− f(xi0)∥+ ∥f(xi0)− f(y)∥ < ε

2
+
ε

2
= ε,

which proves the proposition. 2
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Proposition 1.70 (Intermediate Value Theorem) Let f : E ⊂ Rn → R be a contin-
uous function defined on a connected set E ⊂ Rn. If there exist x, y ∈ E and c ∈ R such
that f(x) < c < f(y), then there exists z ∈ E such that f(z) = c.

Proof: The set E is connected and f is continuous, so f(E) is a connected subset of
R. By the first proposition about connected subsets of R, since f(x), f(y) ∈ f(E) and
f(x) < c < f(y), we must have c ∈ f(E). Thus c = f(z) for some z ∈ E, as claimed. 2



Chapter 2

Differentiation in Rn

2.1 The Norm of a Linear Transformation

Definition 2.1 A map T from a vector space X into a vector space Y (both over the
same field) is called a linear transformation if

T (x1 + x2) = T (x1) + T (x2),

T (αx1) = αT (x1),

for all x1, x2 ∈ X and all scalars α ∈ K.

Since T : X → Y is linear, it is customary to write Tx instead of T (x).

Definition 2.2 Let X and Y be vector spaces over the same field K. The set of all linear
transformations T : X → Y , denoted by L(X, Y ), is a vector space with the operations

(i) + : L(X, Y )× L(X, Y ) → L(X, Y ), (T, S) 7→ T + S, where

(T + S)(x) = T (x) + S(x), ∀x ∈ X;

(ii) · : K × L(X, Y ) → L(X, Y ), (α, T ) 7→ αT , where

(αT )(x) = αT (x), ∀x ∈ X.

When X = Y , instead of L(X,X) we simply write L(X). If X, Y, Z are vector spaces
(all over the same field K) and T ∈ L(X, Y ) and S ∈ L(Y, Z), we define the product ST
as the composition of T and S, that is,

(ST )(x) = (S ◦ T )(x) = S(T (x)), ∀x ∈ X.

Then ST ∈ L(X,Z).

53
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Definition 2.3 Given A ∈ L(Rn,Rm), we define a norm ∥A∥ of A as the map

∥ · ∥ : L(Rn,Rm) → R, A 7−→ ∥A∥,

where
∥A∥ = sup{∥Ax∥ : x ∈ Rn, ∥x∥ ≤ 1}.

The following proposition shows that this map indeed defines a norm on L(Rn,Rm).

Proposition 2.4 Let A,B ∈ L(Rn,Rm) and α ∈ R. Then:
(a) ∥A∥ < +∞, and therefore ∥A∥ is well-defined.

(b)

(i) ∥A∥ ≥ 0 and ∥A∥ = 0 ⇐⇒ A ≡ 0;

(ii) ∥αA∥ = |α| ∥A∥;

(iii) ∥A+B∥ ≤ ∥A∥+ ∥B∥.

Proof: (a) Let β = {e1, . . . , en} be a basis of Rn, and let x ∈ Rn. We can write
x =

∑n
i=1 xiei. For A ∈ L(Rn,Rm) we have

A(x) = A
( n∑
i=1

xiei

)
=

n∑
i=1

xiA(ei).

Hence

∥A(x)∥ =
∥∥∥ n∑
i=1

xiA(ei)
∥∥∥ ≤

n∑
i=1

∥xiA(ei)∥ =
n∑
i=1

|xi| ∥A(ei)∥ ≤ ∥x∥
n∑
i=1

∥A(ei)∥.

If ∥x∥ ≤ 1, then ∥A(x)∥ ≤ c, where c > 0 is a constant. Thus the set {∥Ax∥ : x ∈
Rn, ∥x∥ ≤ 1} is bounded above and, by the completeness axiom, its supremum exists:

∥A∥ = sup{∥Ax∥ : x ∈ Rn, ∥x∥ ≤ 1} < +∞.

(b)

(i) Clearly ∥A∥ ≥ 0, since ∥Ax∥ ≥ 0 for all x ∈ Rn with ∥x∥ ≤ 1. Moreover, if A = 0,
then ∥A∥ = 0. Conversely, if ∥A∥ = 0, then

0 ≤ ∥Ax∥ ≤ 0, ∀x ∈ Rn, ∥x∥ ≤ 1,

which implies Ax = 0 for all such x. If x ̸= 0, then

A
( x

∥x∥

)
= 0 =⇒ A(x) = 0.
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Since A(0) = 0, it follows that A(x) = 0 for all x ∈ Rn, that is, A ≡ 0.

(ii)

∥αA∥ = sup{∥(αA)x∥ : x ∈ Rn, ∥x∥ ≤ 1}
= sup{|α| ∥Ax∥ : x ∈ Rn, ∥x∥ ≤ 1}
= |α| sup{∥Ax∥ : x ∈ Rn, ∥x∥ ≤ 1}
= |α| ∥A∥.

(iii)
∥A+B∥ = sup{∥Ax+Bx∥ : x ∈ Rn, ∥x∥ ≤ 1}.

We shall show that

sup{∥Ax+Bx∥ : ∥x∥ ≤ 1} ≤ sup{∥Ax∥ : ∥x∥ ≤ 1}+ sup{∥Bx∥ : ∥x∥ ≤ 1},

that is, that the right-hand side is an upper bound for {∥Ax+Bx∥ : x ∈ Rn, ∥x∥ ≤ 1}.
For any x ∈ Rn with ∥x∥ ≤ 1 we have

∥Ax∥ ≤ sup{∥Ax∥Rm : x ∈ Rn, ∥x∥Rn ≤ 1}

and
∥Bx∥ ≤ sup{∥Bx∥Rm : x ∈ Rn, ∥x∥Rn ≤ 1}.

Therefore
∥Ax+Bx∥ ≤ ∥Ax∥+ ∥Bx∥ ≤ ∥A∥+ ∥B∥,

and hence ∥A+B∥ ≤ ∥A∥+ ∥B∥. 2

Proposition 2.5 (a) If A ∈ L(Rn,Rm), then

∥Ax∥ ≤ ∥A∥ ∥x∥, ∀x ∈ Rn.

(b) If A ∈ L(Rn,Rm) and B ∈ L(Rm,Rk), then

∥BA∥ ≤ ∥B∥ ∥A∥.

Proof: (a) Let x ∈ Rn and A ∈ L(Rn,Rm).

If x = 0, then A(0) = 0 and the inequality is trivial. If x ̸= 0, then y =
x

∥x∥
is a unit

vector in Rn and hence ∥Ay∥ ≤ ∥A∥. But

∥Ay∥ =
∥∥∥A( x

∥x∥

)∥∥∥ =
∥∥∥A(x · 1

∥x∥

)∥∥∥ =
∣∣∣ 1

∥x∥

∣∣∣ ∥Ax∥ =
1

∥x∥
∥Ax∥.

Therefore ∥Ax∥ ≤ ∥A∥ ∥x∥.



56 CHAPTER 2. DIFFERENTIATION IN RN

(b) Let A ∈ L(Rn,Rm) and B ∈ L(Rm,Rk). Then, for all x ∈ Rn, by part (a),

∥(BA)x∥ = ∥B(A(x))∥ ≤ ∥B∥ ∥Ax∥ ≤ ∥B∥ ∥A∥ ∥x∥.

We will show that ∥BA∥ ≤ ∥B∥ ∥A∥.
Since

∥BA∥ = sup{∥(BA)x∥ : x ∈ Rn, ∥x∥ ≤ 1},

it suffices to show that ∥B∥ ∥A∥ is an upper bound for the set {∥(BA)x∥ : x ∈ Rn, ∥x∥ ≤
1}. But from the inequality above, for any x ∈ Rn with ∥x∥ ≤ 1 we have

∥B(A(x))∥ ≤ ∥B∥ ∥A∥,

and the result follows. 2

Note 1. The norm ∥A∥ of a linear transformation A ∈ L(Rn,Rm) induces a distance or
metric on L(Rn,Rm), that is, an application

d : L(Rn,Rm)× L(Rn,Rm) → R, (A,B) 7→ d(A,B) = ∥A−B∥,

which satisfies:

(i) d(A,B) ≥ 0 and d(A,B) = 0 ⇐⇒ A = B;

(ii) d(A,B) = d(B,A);

(iii) d(A,C) ≤ d(A,B) + d(B,C) for all A,B,C ∈ L(Rn,Rm).

Proposition 2.6 Let Ω be the set of all invertible linear maps from Rn into Rn, that is,

Ω = {A ∈ L(Rn) : ∃A−1}.

(a) Ω is an open subset of L(Rn). In other words: if A ∈ Ω, then there exists r =
1

∥A−1∥
> 0 such that, whenever B ∈ L(Rn) and ∥B − A∥ < r, we have B ∈ Ω.

(b) The map
ψ : Ω → Ω, A 7→ A−1,

is continuous on Ω.

Proof: (a) Let A ∈ Ω and let B ∈ L(Rn) be such that

∥B − A∥ < 1

∥A−1∥
.

We shall prove that B ∈ Ω. Since B is a linear map between spaces of the same (finite)
dimension, it suffices to show that B is injective, for this will imply that B is surjective
as well.

Set ∥B − A∥ = β and ∥A−1∥ =
1

α
. Then, by hypothesis, β < α, that is (α− β) > 0.
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For a generic x ∈ Rn consider the expression

(α− β)∥x∥ = α∥x∥ − β∥x∥.

Observe that

(i) ∥x∥ = ∥A−1(A(x))∥ ≤ ∥A−1∥ ∥A(x)∥ =
1

α
∥A(x)∥, hence

α∥x∥ ≤ ∥A(x)∥;

(ii) ∥B(x)− A(x)∥ = ∥(B − A)(x)∥ ≤ ∥B − A∥ ∥x∥ = β∥x∥, so

−β∥x∥ ≤ −∥B(x)− A(x)∥.

Thus, from (i) and (ii),

(α− β)∥x∥ = α∥x∥ − β∥x∥ ≤ ∥A(x)∥ − ∥B(x)− A(x)∥. (2.2)

Moreover,
∥B(x)− A(x)∥ = ∥A(x)−B(x)∥ ≥ ∥A(x)∥ − ∥B(x)∥,

which implies

− ∥B(x)− A(x)∥ = −∥A(x)−B(x)∥ ≤ −∥A(x)∥+ ∥B(x)∥. (2.3)

Combining (2.2) and (2.3) we obtain

(α− β)∥x∥ ≤ ∥A(x)∥ − ∥A(x)∥+ ∥B(x)∥ = ∥B(x)∥.

Since (α− β) > 0, we conclude that

0 ≤ (α− β)∥x∥ ≤ ∥B(x)∥. (2.4)

If B(x) = 0 (and hence ∥B(x)∥ = 0), then by (2.4) we must have ∥x∥ = 0 (because
α−β > 0), so x = 0. By linearity, ker(B) = {0}, and therefore B is injective, as required.

(b) We now prove that
ψ : Ω → Ω, A 7→ A−1,

is continuous on Ω.

Let ε > 0 and A ∈ Ω be given. We must find δ > 0 such that, if B ∈ Ω and
∥B − A∥ < δ, then ∥B−1 − A−1∥ < ε. Indeed, for x ∈ Rn and A,B ∈ Ω we have

(B−1(A−B)A−1)(x) = B−1
(
(A−B)(A−1(x))

)
= B−1(A(A−1(x)))−B−1(B(A−1(x)))

= B−1(x)− A−1(x).

Thus
B−1(x)− A−1(x) = B−1(A−B)

(
A−1(x)

)
,
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and consequently
∥B−1 − A−1∥ ≤ ∥B−1∥ ∥A−B∥ ∥A−1∥. (2.5)

As before, set α =
1

∥A−1∥
and β = ∥B − A∥, and choose

δ < min

{
α,

α2ε

1 + αε

}
.

Suppose now that ∥B − A∥ < δ. Arguing as in (2.4) we obtain

(α− β)∥x∥ ≤ ∥B(x)∥, ∀x ∈ Rn. (2.6)

Since B ∈ Ω, for each x ∈ Rn there exists a unique y ∈ Rn, and conversely, such that
y = B(x) or x = B−1(y). From (2.6) we get

(α− β)∥B−1(y)∥ ≤ ∥B(B−1(y))∥ = ∥y∥, ∀y ∈ Rn,

which implies

∥B−1(y)∥ ≤ ∥y∥
α− β

, ∀y ∈ Rn.

Hence

∥B−1∥ = sup{∥B−1(y)∥ : y ∈ Rn, ∥y∥ ≤ 1} ≤ 1

α− β
. (2.7)

Therefore, from (2.5) and (2.7),

∥B−1 − A−1∥ ≤ 1

α− β
∥A−B∥ 1

α
. (2.8)

Since ∥A−B∥ < δ, we have

−∥A−B∥ > −δ =⇒ α− ∥A−B∥ > α− δ > 0

(because δ < α), and hence

1

α− ∥A−B∥
<

1

α− δ
=⇒ 1

α− β
<

1

α− δ
. (2.9)

Moreover,

δ <
α2ε

1 + αε
⇐⇒ δ + αδε < α2ε⇐⇒ δ < (α2 − αδ)ε⇐⇒ δ < α(α− δ)ε. (2.10)

Combining (2.8), (2.9) and (2.10), we obtain

∥B−1 − A−1∥ < 1

α− δ
δ
1

α
<

1

α− δ
α(α− δ)ε

1

α
= ε.

Thus ψ is continuous at A, and since A ∈ Ω was arbitrary, ψ is continuous on Ω. 2



2.2. DIFFERENTIABILITY OF A MAP 59

2.2 Differentiability of a Map

Before defining what it means for a map to be differentiable as a function from Rn to Rm,
let us first consider the particular case where n = m = 1.

So let f : (a, b) → R be a function differentiable at a point x0 ∈ (a, b). Then the limit

lim
h→0

f(x0 + h)− f(x0)

h

exists and is denoted, as usual, by f ′(x0). Equivalently, we also have

lim
h→0

f(x0 + h)− f(x0)− f ′(x0)h

h
= 0.

Now, setting
r(h) = f(x0 + h)− f(x0)− f ′(x0)h, (2.11)

and viewing h as the variable near x0, we obtain

lim
h→0

r(h)

h
= 0.

Because of the relation lim
h→0

r(h)

h
= 0, we say that the remainder r(h) tends to zero

faster than h. We also say that r(h) is an infinitesimal (a function whose limit is zero) of
order higher than 1, relative to h.

Conversely, given f , suppose that there exists a constant L such that we can write

f(x0 + h) = f(x0) + Lh+ r(h) with lim
h→0

r(h)

h
= 0. (2.12)

In this case,
f(x0 + h)− f(x0)

h
= L+

r(h)

h
,

and therefore

lim
h→0

f(x0 + h)− f(x0)

h
= L,

that is, the derivative of f exists at x0 ∈ (a, b) and is equal to the number L. Condition
(2.12) is thus necessary and sufficient for the existence of the derivative f ′(x0). Under
these conditions, (2.11) and (2.12) are equivalent.

We can now interpret the existence of the derivative f ′(x0), in a neighbourhood of x0,
as meaning that the function f can be expressed as an affine map T plus a remainder
which is ‘very small’ in a precise sense. Indeed, to fix ideas, consider Figure 2.1.

The equation of the tangent line to the graph of f at the point (x0, f(x0)) is

T (x) = f ′(x0)(x− x0) + f(x0) = f ′(x0)x+
(
f(x0)− f ′(x0)x0

)
.
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Figure 2.1:

In particular,

T (x0 + h) = f ′(x0)(x0 + h− x0) + f(x0) = f ′(x0)h+ f(x0). (2.13)

On the other hand, from (2.11) we obtain

f(x0 + h) = f(x0) + f ′(x0)h+ r(h). (2.14)

Thus, from (2.13) and (2.14) we see that

f(x0 + h) = T (x0 + h) + r(h),

that is, near x0, f(x0+h) is equal to an affine map T (x0+h) plus a ‘very small’ remainder,
which becomes smaller as |h| becomes smaller. Indeed,

|T (x0 + h)− f(x0 + h)| = |r(h)|,

and since r(h) → 0, the points T (x0+h) and f(x0+h) become arbitrarily close as h→ 0.
If we now consider the linear map L(x) = f ′(x0)x, then from (2.11) we can write

f(x0 + h)− f(x0) = L(h) + r(h)

with
r(h)

h
→ 0 as h→ 0.

In this way, we may regard the derivative of f at x0 not as a real number, but rather
as a linear map L which sends h to f ′(x0)h. Let us now generalise this new point of view
on the derivative to maps f : E ⊂ Rn → Rm with m,n > 1.

Definition 2.7 Let E be a non-empty open subset of Rn and let x0 ∈ E. Consider a
map f : E ⊂ Rn → Rm. We say that f is differentiable at x0 if there exists a linear map
L : Rn → Rm such that

lim
h→0

∥f(x0 + h)− f(x0)− Lh∥
∥h∥

= 0. (2.15)
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In the definition above, we allow h ∈ Rn. Since E is open, we may take ∥h∥ sufficiently
small so that (x0 + h) ∈ E. Thus f(x0 + h) is defined and the definition is meaningful.
Note that

f(x0 + h)− f(x0)− Lh ∈ Rm,

so the norm in the numerator of the expression above is taken in Rm, while the norm in
the denominator is taken in Rn. However, from a topological point of view, it makes no
difference which of the three usual norms (or, more generally, which equivalent norm) we
use in each of these spaces, according to what we saw in the previous chapter.

It follows from the definition that a map f : E ⊂ Rn → Rm is differentiable at x0 ∈ E
if and only if there exists a linear map L : Rn → Rm such that

f(x0 + h)− f(x0) = Lh+ r(h) where lim
h→0

∥r(h)∥
∥h∥

= 0. (2.16)

Indeed, if f is differentiable at x0 ∈ E, there exists a linear map L : Rn → Rm such
that (2.15) holds. Setting

r(h) = f(x0 + h)− f(x0)− Lh,

we obtain
∥f(x0 + h)− f(x0)− Lh∥

∥h∥
=

∥r(h)∥
∥h∥

(h ̸= 0).

Taking the limit as h→ 0 gives

lim
h→0

∥f(x0 + h)− f(x0)− Lh∥
∥h∥

= 0.

Consequently,

lim
h→0

∥r(h)∥
∥h∥

= lim
h→0

∥f(x0 + h)− f(x0)− Lh∥
∥h∥

= 0.

Conversely, suppose that there exists a linear map L : Rn → Rm such that (2.16)
holds. Then

lim
h→0

∥f(x0 + h)− f(x0)− Lh∥
∥h∥

= lim
h→0

∥r(h)∥
∥h∥

= 0,

and hence

lim
h→0

∥f(x0 + h)− f(x0)− Lh∥
∥h∥

= 0.

We can interpret (2.16) in the same way as in the real case, saying that, for small h,
the left-hand side of the equality

f(x0 + h)− f(x0) = Lh+ r(h)

is approximately equal to Lh, that is, to the value of a linear transformation applied to
h.
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Definition 2.8 We say that a map f : E ⊂ Rn → Rm, where E is an open subset of Rn,
is differentiable on E if f is differentiable at every point of E.

Proposition 2.9 Let f : E ⊂ Rn → Rm be a map differentiable at x0 ∈ E, where E is
an open subset of Rn. Then the linear transformation L : Rn → Rm which provides a good
approximation of the increment f(x0 + h)− f(x0) in a neighbourhood of x0 is unique.

Proof: Suppose that there exist L1, L2 ∈ L(Rn,Rm) satisfying

lim
h→0

∥f(x0 + h)− f(x0)− L1h∥
∥h∥

= lim
h→0

∥f(x0 + h)− f(x0)− L2h∥
∥h∥

= 0.

Then

∥L1h− L2h∥ = ∥L1h− f(x0 + h) + f(x0 + h)− f(x0) + f(x0)− L2h∥
≤ ∥L1h− f(x0 + h) + f(x0)∥+ ∥f(x0 + h)− f(x0)− L2h∥
= ∥f(x0 + h)− f(x0)− L1h∥+ ∥f(x0 + h)− f(x0)− L2h∥.

Hence

0 ≤ ∥L1h− L2h∥
∥h∥

≤ ∥f(x0 + h)− f(x0)− L1h∥
∥h∥

+
∥f(x0 + h)− f(x0)− L2h∥

∥h∥
.

Passing to the limit as h→ 0, we obtain

lim
h→0

∥L1h− L2h∥
∥h∥

= 0. (2.17)

Let v ∈ Rn be arbitrary but fixed, and consider h = tv, t ∈ R. Then h → 0 if and
only if t→ 0, and from (2.17) we obtain

lim
t→0

∥(L1 − L2)(tv)∥
∥tv∥

= 0.

Thus

lim
t→0

(
|t| ∥(L1 − L2)(v)∥

∥tv∥

)
= 0,

and consequently (L1 − L2)(v) = 0. Since v was arbitrary, L1 = L2. 2

Note 1. If f : E ⊂ Rn → Rm, defined on the open set E ⊂ Rn, is differentiable at
x0 ∈ E, then there exists a unique linear transformation L : Rn → Rm which provides a
good approximation to the increment f(x0 + h) − f(x0) in a neighbourhood of x0. This
linear transformation is called the derivative of f at x0 and is denoted by f ′(x0).

Therefore, if f : E ⊂ Rn → Rm, defined on an open set E ⊂ Rn, is differentiable at
x0 ∈ E, its derivative is the linear map f ′(x0) : Rn → Rm characterised by

lim
h→0

∥f(x0 + h)− f(x0)− f ′(x0)h∥
∥h∥

= 0, (2.18)
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or equivalently

f(x0 + h)− f(x0) = f ′(x0)h+ r(h), with lim
h→0

∥r(h)∥
∥h∥

= 0. (2.19)

When n = m = 1, the linear transformation f ′(x0) : R → R coincides with the real
number f ′(x0), and for every h ∈ R, f ′(x0)h is simply the product of the number f ′(x0)
by the number h.

Example. If L ∈ L(Rn,Rm) and x ∈ Rn, then L′(x) = L, that is, L is differentiable
and its derivative is itself. Indeed, taking L′(x) : Rn → Rm to be L itself, then for every
x ∈ Rn, by linearity of L,

L(x+ h)− L(x) = L(x+ h− x) = L(h),

and consequently, from (2.18),

lim
h→0

∥L(x+ h)− L(x)− L′(x)h∥
∥h∥

= lim
h→0

∥Lh− Lh∥
∥h∥

= 0.

When a map f : E ⊂ Rn → Rm is differentiable on the open set E ⊂ Rn, we can
define the derivative map

f ′ : E → L(Rn,Rm) (2.20)

which associates to each point x ∈ E the linear transformation f ′(x) : Rn → Rm, the
derivative of f at that point.

Note 2. If E ⊂ Rn is open and f : E → Rm is differentiable at x0 ∈ E, then it follows
from (2.19) that f is continuous at x0. Indeed,

f(x0 + h)− f(x0) = f ′(x0)h+ r(h),

where lim
h→0

∥r(h)∥
∥h∥

= 0.

But:

(i)

lim
h→0

r(h) = lim
h→0

(
r(h)

∥h∥
∥h∥
)

= 0;

(ii)
lim
h→0

f ′(x0)h = 0,

since the linear map f ′(x0) : Rn → Rm is continuous at 0, and therefore limh→0 f
′(x0)h =

0.

Thus, from (i) and (ii),

lim
h→0

(
f(x0 + h)− f(x0)

)
= 0 ⇐⇒ lim

h→0
f(x0 + h) = f(x0).

Setting x = x0 + h, when h → 0 we have x → x0, and therefore lim
x→x0

f(x) = f(x0),

which implies that f is continuous at x0.
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Proposition 2.10 (Chain Rule) Let f : E ⊂ Rn → Rm and g : F ⊂ Rm → Rk be
maps, where E and F are open subsets of Rn and Rm, respectively, and f(E) ⊂ F . If f
is differentiable at x0 and g is differentiable at y0 = f(x0), then H = g ◦ f : E → Rk is
differentiable at x0 and, moreover,

H ′(x0) = g′(y0) f
′(x0).

Proof: We shall prove that there exists a linear map C : Rn → Rk such that

lim
h→0

∥H(x0 + h)−H(x0)− Ch∥
∥h∥

= 0. (2.21)

Indeed, by hypothesis there exist linear maps A : Rn → Rm and B : Rm → Rk such
that

lim
h→0

∥f(x0 + h)− f(x0)− Ah∥
∥h∥

= 0, (2.22)

lim
k→0

∥g(y0 + k)− g(y0)−Bk∥
∥k∥

= 0. (2.23)

Setting C = BA (that is, C = B ◦ A), C is clearly a linear map from Rn to Rk, and
we shall prove that C satisfies (2.21). In fact:

In (2.22) we are considering h ∈ Rn with ∥h∥ sufficiently small so that (x0 + h) ∈ E.
This is always possible because E is open. Thus f(x0 + h) ∈ f(E) ⊂ F . Setting

k = f(x0 + h)− f(x0),

and using the linearity of B, we obtain

H(x0 + h)−H(x0)− (BA)(h) = g(f(x0 + h))− g(f(x0))− (BA)h

= g(f(x0) + k)− g(f(x0))− (BA)h−Bk +Bk

=
(
g(y0 + k)− g(y0)−Bk

)
+B

(
k − Ah

)
=
(
g(y0 + k)− g(y0)−Bk

)
+B

(
f(x0 + h)− f(x0)− Ah

)
.

Therefore

∥H(x0+h)−H(x0)−(BA)(h)∥ ≤ ∥g(y0+k)−g(y0)−Bk∥+∥B(f(x0+h)−f(x0)−Ah)∥.

Consequently,

∥H(x0 + h)−H(x0)− (BA)(h)∥
∥h∥

≤ ∥g(y0 + k)− g(y0)−Bk∥
∥h∥

+
∥B(f(x0 + h)− f(x0)− Ah)∥

∥h∥
. (2.24)
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We claim that

(i) lim
h→0

∥g(y0 + k)− g(y0)−Bk∥
∥h∥

= 0;

(ii) lim
h→0

∥B(f(x0 + h)− f(x0)− Ah)∥
∥h∥

= 0.

From (i) and (ii) it will follow that (2.21) holds, as desired.

Proof of (i). From (2.22), taking ε = 1, there exists δ1 > 0 such that if ∥h∥ < δ1, then

∥f(x0 + h)− f(x0)− Ah∥ < ∥h∥.

Thus
∥h∥ ≥ ∥f(x0 + h)− f(x0)∥ − ∥Ah∥,

and therefore

∥f(x0 + h)− f(x0)∥ ≤ ∥h∥+ ∥Ah∥ ≤ ∥h∥+ ∥A∥ ∥h∥ = c∥h∥,

where c = 1 + ∥A∥. Since k = f(x0 + h)− f(x0), this last inequality implies that

∥k∥ ≤ c∥h∥ whenever ∥h∥ < δ1. (2.25)

On the other hand, from (2.23), given η > 0 there exists δ2 > 0 such that for every
k ∈ Rm with ∥k∥ < δ2 we have

∥g(y0 + k)− g(y0)−Bk∥ < η

c
∥k∥.

Set δ = min{δ1, δ2/c}. Then, if ∥h∥ < δ, from (2.25) we obtain

∥k∥ ≤ c∥h∥ < cδ ≤ c
δ2
c

= δ2.

Consequently,

∥g(y0 + k)− g(y0)−Bk∥ < η

c
∥k∥ < η

c
c∥h∥ = η∥h∥.

This proves (i).

Proof of (ii). We have

∥B(f(x0 + h)− f(x0)− Ah)∥
∥h∥

≤ ∥B∥ ∥f(x0 + h)− f(x0)− Ah∥
∥h∥

.

From (2.22),

lim
h→0

∥f(x0 + h)− f(x0)− Ah∥
∥h∥

= 0,

and therefore

lim
h→0

∥B(f(x0 + h)− f(x0)− Ah)∥
∥h∥

= 0.

This proves (ii), and hence the proposition. 2
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2.3 Partial Derivatives

Definition 2.11 Let E ⊂ Rn be open and f : E → Rm a map. Let {e1, . . . , en} and
{u1, . . . , um} be the canonical bases of Rn and Rm, respectively. The components of f , as
we know, are the functions f1, . . . , fm : E → R defined by fi(x) = πi(f(x)), where πi is
the i-th coordinate projection, so that

f(x) =
m∑
i=1

fi(x)ui. (2.25)

For each x ∈ E, 1 ≤ i ≤ m and 1 ≤ j ≤ n, we define

∂fi
∂xj

(x) = lim
t→0

fi(x+ tej)− fi(x)

t
,

whenever this limit exists. This quantity is called the partial derivative of the function fi
in the direction ej.

Given x ∈ E, the image of the path λ : R → Rn defined by λ(t) = x+ tej is what we
call â¿œthe line that passes through the point x and is parallel to the j-th axis. Since
E is open, there exists ε > 0 such that, if −ε < t < ε, then λ(t) = x + tej ∈ E. We can
then say that the partial derivative of fi in the direction ej is the derivative, at t = 0, of
the map fi ◦ λ : (−ε, ε) → R.

Indeed, to fix ideas, consider the figure:

Figure 2.2:

We have

(fi ◦ λ)′(0) = lim
t→0

(fi ◦ λ)(t)− (fi ◦ λ)(0)
t

= lim
t→0

fi(x+ tej)− fi(x)

t
=
∂fi
∂xj

(x).

Thus we may say that fi, when restricted to the open line segment (x− εej, x+ εej),

becomes a real-valued function, namely fi(x + tej) of the real variable t, and
∂fi
∂xj

(x) is

the derivative of this function at t = 0.
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Example. When n = 2 and m = 1, that is, when f : E ⊂ R2 → R, the graph of f is
a surface in R3. The restriction of f to the line segment that passes through (x0, y0) ∈ E
and is parallel to the x-axis has as its graph the plane curve obtained on this surface by

keeping y constant and equal to y0. Thus
∂f

∂x
(x0, y0) is the slope of the tangent line to

this curve at the point (x0, y0, f(x0, y0)), as illustrated in Figure 2.3.

Figure 2.3:

Writing fi(x1, . . . , xn) instead of fi(x), we see that the practical computation of the
j-th partial derivative of fi is carried out by treating all variables as constants except the
j-th, and then applying the usual rules of differentiation.

The existence of the partial derivatives
∂fi
∂xj

(x) does not imply the differentiability of

f at x, as can be seen in an exercise at the end of the chapter. However, it is known
that differentiability at a point x implies the existence of the partial derivatives at x, and
that these determine the linear transformation f ′(x) completely, as we shall now see in
the following result.

Proposition 2.12 Let E ⊂ Rn be open and f : E → Rm be differentiable at x0 ∈ E.

Then the partial derivatives
∂fi
∂xj

(x0) exist and, moreover,

f ′(x0)ej =
m∑
i=1

∂fi
∂xj

(x0)ui, 1 ≤ j ≤ n, (2.26)

where {e1, . . . , en} and {u1, . . . , um} are the canonical bases of Rn and Rm, respectively.

Proof: Since f is differentiable at x0 ∈ E, there exists a linear transformation f ′(x0) :
Rn → Rm such that

f(x0 + h)− f(x0) = f ′(x0)h+ r(h), where lim
h→0

∥r(h)∥
∥h∥

= 0.
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For t sufficiently small and for each ej we can write

f(x0 + tej)− f(x0) = f ′(x0)(tej) + r(tej),

where lim
t→0

∥r(tej)∥
∥tej∥

= 0. By linearity of f ′(x0),

f(x0 + tej)− f(x0)

t
= f ′(x0)ej +

r(tej)

t
. (2.27)

However,

lim
t→0

r(tej)

t
= lim

t→0

(
r(tej)

∥tej∥
∥tej∥
t

)
= 0,

and therefore, from (2.27),

lim
t→0

f(x0 + tej)− f(x0)

t
= f ′(x0)ej. (2.28)

If we write f in terms of its components, as in (2.25), we obtain

f(x0 + tej)− f(x0) =
m∑
i=1

(
fi(x0 + tej)− fi(x0)

)
ui. (2.29)

Thus, from (2.28) and (2.29),

lim
t→0

m∑
i=1

fi(x0 + tej)− fi(x0)

t
ui = f ′(x0)ej. (2.30)

On the other hand, by the Chain Rule, each fi = πi◦f is differentiable as a composition
of differentiable maps. Thus we can apply to each fi the same reasoning used for f , and
obtain, as in (2.28),

lim
t→0

fi(x0 + tej)− fi(x0)

t
= f ′

i(x0)ej,

where f ′
i(x0) : Rn → R is the linear map associated to fi. Hence

∂fi
∂xj

(x0) = f ′
i(x0)ej.

It then follows from (2.30) that

m∑
i=1

∂fi
∂xj

(x0)ui = f ′(x0)ej, ∀j, 1 ≤ j ≤ n,

which proves the claim. 2



2.4. DIRECTIONAL DERIVATIVES 69

As consequences, we have

f ′(x0)(e1) =
∂f1
∂x1

(x0)u1 +
∂f2
∂x1

(x0)u2 + · · ·+ ∂fm
∂x1

(x0)um,

f ′(x0)(e2) =
∂f1
∂x2

(x0)u1 +
∂f2
∂x2

(x0)u2 + · · ·+ ∂fm
∂x2

(x0)um,

...

f ′(x0)(en) =
∂f1
∂xn

(x0)u1 +
∂f2
∂xn

(x0)u2 + · · ·+ ∂fm
∂xn

(x0)um.

The matrix associated to the linear transformation f ′(x0) : Rn → Rm, obtained by
transposing the matrix of coefficients of this system, is called the Jacobian matrix and is
denoted by Jf(x0) or simply f ′(x0). It is given by

Jf(x0) =



∂f1
∂x1

(x0)
∂f1
∂x2

(x0) · · · ∂f1
∂xn

(x0)

∂f2
∂x1

(x0)
∂f2
∂x2

(x0) · · · ∂f2
∂xn

(x0)

...
...

. . .
...

∂fm
∂x1

(x0)
∂fm
∂x2

(x0) · · · ∂fm
∂xn

(x0)


.

Note. It is worth observing that if

Jf(a) =

(
∂fi
∂xj

(a)

)
, Jg(f(a)) =

(
∂gi
∂xj

(f(a))

)
, J(g ◦ f)(a) =

(
∂(gi ◦ f)
∂xj

(a)

)
are the Jacobian matrices of the maps f , g and g◦f at the indicated points, then, assuming
that f is differentiable at a and g is differentiable at f(a), it follows from the Chain Rule
that

J(g ◦ f)(a) = Jg(f(a)) Jf(a).

2.4 Directional Derivatives

Definition 2.13 Let f : E ⊂ Rn → Rm, where E is an open subset of Rn. The directional
derivative of f at a point x0 ∈ E in the direction of a vector v ∈ Rn is, by definition,

∂f

∂v
(x0) = lim

t→0

f(x0 + tv)− f(x0)

t
,

whenever this limit exists.



70 CHAPTER 2. DIFFERENTIATION IN RN

We can interpret
∂f

∂v
(x0) as follows: since E is open, there exists ε > 0 such that the

line segment (x0−εv, x0+εv) is contained in E. The straightâ¿“line path λ : (−ε, ε) → E
defined by λ(t) = x0+tv is mapped by f onto the path f ◦λ : (−ε, ε) → Rm that associates

to each t the point f(x0 + tv) in Rm. The directional derivative
∂f

∂v
(x0) is the velocity

vector (f ◦ λ)′(0). Indeed,

(f ◦ λ)′(0) = lim
t→0

(f ◦ λ)(t)− (f ◦ λ)(0)
t

= lim
t→0

f(x0 + tv)− f(x0)

t
=
∂f

∂v
(x0).

Figure 2.4:

If f = (f1, . . . , fm) then

∂f

∂v
(x0) =

(∂f1
∂v

(x0), . . . ,
∂fm
∂v

(x0)
)
.

Indeed, suppose
∂f

∂v
(x0) = y ∈ Rm and write y = (y1, . . . , ym). Let {u1, . . . , um} be the

canonical basis of Rm. Then

lim
t→0

f(x0 + tv)− f(x0)

t
= lim

t→0

∑m
i=1

(
fi(x0 + tv)− fi(x0)

)
ui

t
=

m∑
i=1

yiui,

and therefore
∂fi
∂v

(x0) = lim
t→0

fi(x0 + tv)− fi(x0)

t
= yi.

Note 1. If v = ej for some j = 1, . . . , n, where {ej}1≤j≤n is the canonical basis of

Rn, then
∂f

∂v
(x0) =

∂f

∂xj
(x0). Thus partial derivatives are special cases of directional

derivatives, when the vector v is one of the canonical basis vectors.

Now suppose f : E ⊂ Rn → Rm is differentiable at the point x0 ∈ E. Then, for every
v ∈ Rn and every t ∈ R sufficiently small, we obtain from (2.16)

f(x0 + tv)− f(x0) = L(tv) + r(tv), with lim
t→0

r(tv)

∥tv∥
= 0.
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Since L(tv) = tL(v) and

lim
t→0

r(tv)

t
= lim

t→0

[
r(tv)

∥tv∥
∥tv∥
t

]
= 0,

we obtain

lim
t→0

f(x0 + tv)− f(x0)

t
= L(v).

Consequently,

Lv =
∂f

∂v
(x0) or f ′(x0)v =

∂f

∂v
(x0). (2.32)

The relation in (2.32) allows us to conclude that if a map f : E ⊂ Rn → Rm is
differentiable at a point x0 ∈ E, then all directional derivatives exist at x0 and, moreover,
they can be computed simply by evaluating f ′(x0)v. On the other hand, the existence of
all directional derivatives does not imply the differentiability of f .

Since v ∈ Rn, we can write v =
∑n

j=1 αjej. Thus, from (2.26),

f ′(x0)v = f ′(x0)
( n∑
j=1

αjej

)
=

n∑
j=1

f ′(x0)(αjej)

=
n∑
j=1

αjf
′(x0)ej =

n∑
j=1

αj

( m∑
i=1

∂fi
∂xj

(x0)ui

)
=

n∑
j=1

m∑
i=1

∂fi
∂xj

(x0)αjui =
m∑
i=1

( n∑
j=1

∂fi
∂xj

(x0)αj

)
ui.

Thus, if f is differentiable at x0 ∈ E, the derivative of f applied to a vector v ∈ Rn is
given by

f ′(x0)v =
m∑
i=1

( n∑
j=1

∂fi
∂xj

(x0)αj

)
ui, where v =

n∑
j=1

αjej. (2.33)

As a consequence, from (2.32) and (2.33) we obtain

∂f

∂v
(x0) =

m∑
i=1

( n∑
j=1

∂fi
∂xj

(x0)αj

)
ui. (2.34)

In fact, the relation in (2.33) or (2.34) is simply the matrix product of the Jacobian
matrix in (2.31) with the vector v, that is,

f ′(x0)v =
∂f

∂v
(x0) =


∂f1
∂x1

(x0) · · · ∂f1
∂xn

(x0)
...

. . .
...

∂fm
∂x1

(x0) · · · ∂fm
∂xn

(x0)


α1

...
αn

 =



n∑
j=1

∂f1
∂xj

(x0)αj

...
n∑
j=1

∂fm
∂xj

(x0)αj


=

f ′
1(x0)v
...

f ′
m(x0)v

 .

(2.35)
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The vector equality

f(x0 + v)− f(x0) = f ′(x0)v + r(v)

is equivalent to the m scalar equalities

fi(x0 + v)− fi(x0) = f ′
i(x0)v + ri(v),

where r(v) = (r1(v), . . . , rm(v)), while the vector limit

lim
v→0

r(v)

∥v∥
= 0

corresponds to the m scalar limits

lim
v→0

ri(v)

∥v∥
= 0.

This yields the following result.

Proposition 2.14 A map f : E ⊂ Rn → Rm is differentiable at a point x0 ∈ E if and
only if each coordinate function f1, . . . , fm is differentiable at this point.

Note 2. It follows from the Chain Rule that if f : E ⊂ Rn → Rm is differentiable at
x0 ∈ E, then, in order to calculate the directional derivative

∂f

∂v
(x0) = (f ◦ λ)′(0),

it is not necessary to take λ(t) = x0+tv. Instead of restricting ourselves to a straightâ¿“line
path, we may consider any path λ : (−ε, ε) → E differentiable at 0, with λ(0) = x0 and
λ′(0) = v = (v1, . . . , vn), and we still have

∂f

∂v
(x0) = (f ◦ λ)′(0) = f ′(λ(0))λ′(0) = f ′(x0)v.

Thus we may regard the derivative f ′(x0) : Rn → Rm as the linear map which assigns
to each tangent vector v = λ′(0) (to any differentiable curve λ : (−ε, ε) → E such that
λ(0) = x0) the tangent vector

(f ◦ λ)′(0) = ∂f

∂v
(x0)

to the curve f ◦ λ.
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Figure 2.5:

2.5 Mean Value Inequalities

Proposition 2.15 (Mean Value Inequality for Vectorâ¿“Valued Functions) Let
f : [a, b] → Rm be a map continuous on [a, b] and differentiable on (a, b). Then there exists
x ∈ (a, b) such that

∥f(b)− f(a)∥ ≤ (b− a) ∥f ′(x)∥.

Proof: Set z = f(b)− f(a) ∈ Rm and define the map

φ : [a, b] → R, t 7→ φ(t) = ⟨z, f(t)⟩.

Then φ is a realâ¿“valued function, continuous on [a, b] and differentiable on (a, b).
Indeed, writing f(t) = (f1(t), . . . , fm(t)) and z = (z1, . . . , zm), we have

φ(t) = ⟨z, f(t)⟩ =
m∑
i=1

zifi(t).

Since f is differentiable on (a, b), the functions f1, . . . , fm are differentiable on (a, b)
and continuous on [a, b]. Thus φ satisfies the hypotheses of the Mean Value Theorem for
real functions of one variable. Hence, there exists x ∈ (a, b) such that

φ(b)− φ(a) = (b− a)φ′(x) = (b− a) ⟨z, f ′(x)⟩. (2.36)

On the other hand,

φ(b)− φ(a) = ⟨z, f(b)⟩ − ⟨z, f(a)⟩ = ⟨z, z⟩ = ∥z∥2. (2.37)

Thus, from (2.36) and (2.37) we obtain

∥z∥2 = (b− a) ⟨z, f ′(x)⟩.

By the Cauchy-Schwarz inequality,

∥z∥2 ≤ (b− a) ∥z∥ ∥f ′(x)∥,
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and therefore
∥z∥ ≤ (b− a) ∥f ′(x)∥.

(If z = 0, the inequality is trivial.) In other words,

∥f(b)− f(a)∥ ≤ (b− a) ∥f ′(x)∥.

2

Proposition 2.16 (Mean Value Inequality) Let E ⊂ Rn be an open convex set and
let f : E → Rm be a differentiable map on E. If there exists a constant M ≥ 0 such that
∥f ′(x)∥ ≤M for every x ∈ E, then

∥f(b)− f(a)∥ ≤M ∥b− a∥ for all a, b ∈ E.

Proof: Let a, b ∈ E be arbitrary. Consider the straightâ¿“line path γ : [0, 1] → E
defined by γ(t) = (1− t)a+ tb, which joins the points a and b. This path is well defined
because E is convex.

Define the map
g : [0, 1] → Rm, t 7→ g(t) = (f ◦ γ)(t),

that is, g is the restriction of f to the straightâ¿“line path γ. Then, by the Chain Rule,

g′(t) = f ′(γ(t)) γ′(t) = f ′(γ(t))(b− a), ∀ t ∈ [0, 1].

Hence
∥g′(t)∥ ≤ ∥f ′(γ(t))∥ ∥b− a∥ ≤M ∥b− a∥, ∀ t ∈ [0, 1]. (2.38)

On the other hand, by the mean value inequality for vectorâ¿“valued functions, there
exists t0 ∈ (0, 1) such that

∥g(1)− g(0)∥ ≤ ∥g′(t0)∥. (2.39)

Thus, from (2.38) and (2.39),

∥g(1)− g(0)∥ ≤M ∥b− a∥.

Since g(1) = f(γ(1)) = f(b) and g(0) = f(γ(0)) = f(a), it follows that

∥f(b)− f(a)∥ ≤M ∥b− a∥.

2

Corollary 2.17 If f : E → Rn is differentiable on the open convex set E and f ′(x) = 0
for every x ∈ E, then f is constant.

Proof: To prove this, simply note that the hypotheses of the previous proposition are
now satisfied with M = 0. 2
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2.6 Continuously Differentiable Functions

Definition 2.18 A differentiable function f : E → Rm, defined on an open set E ⊂ Rn,
is said to be continuously differentiable on E if its derivative

f ′ : E → L(Rn,Rm), x 7→ f ′(x),

is a continuous map. More precisely, for each x ∈ E and for every ε > 0 there exists
δ > 0 such that ∥f ′(y)− f ′(x)∥ < ε whenever y ∈ E and ∥x− y∥ < δ.

Note. Recall that on L(Rn,Rm) we are using the operator norm (supremum norm), while
on E we use the norm induced from Rn. When f satisfies the definition above, we also
say that f is of class C1(E).

Proposition 2.19 Let f : E ⊂ Rn → Rm, where E is an open subset of Rn. Then

f is of class C1(E) ⇐⇒ fi is of class C
1(E) for i = 1, . . . ,m.

Proof: First suppose that f is of class C1(E). Then each fi is differentiable. We shall
prove that f ′

i : E → L(Rn,R) is continuous for every i = 1, . . . ,m. Indeed, let ε > 0
be given and let x0 ∈ E. By hypothesis, there exists δ > 0 such that if x ∈ E and
∥x− x0∥ < δ, then ∥f ′(x)− f ′(x0)∥ < ε.

However, for each i = 1, . . . ,m we have

|f ′
i(x)h− f ′

i(x0)h| ≤ ∥f ′(x)h− f ′(x0)h∥,

since f ′(x)h = (f ′
1(x)h, . . . , f

′
m(x)h). Consequently, for each i = 1, . . . ,m,

∥f ′
i(x)− f ′

i(x0)∥ = sup
{
|f ′
i(x)h− f ′

i(x0)h|; h ∈ Rn, ∥h∥ ≤ 1
}

≤ sup
{
∥f ′(x)h− f ′(x0)h∥; h ∈ Rn, ∥h∥ ≤ 1

}
= ∥f ′(x)− f ′(x0)∥.

Therefore ∥f ′
i(x)− f ′

i(x0)∥ < ε whenever ∥x− x0∥ < δ.

Conversely, suppose that each fi, i = 1, . . . ,m, is of class C1(E). Then f is differen-
tiable. We shall show that the map f ′ : E → L(Rn,Rm) is continuous.

Let ε > 0 and x0 ∈ E. For each i = 1, . . . ,m there exists δi > 0 such that if x ∈ E
and ∥x− x0∥ < δi, then

∥f ′
i(x)− f ′

i(x0)∥ < ε.

Set δ = min{δ1, . . . , δm}. We shall show that ∥f ′(x)−f ′(x0)∥ < ε whenever ∥x−x0∥ < δ.
In fact, since

∥f ′(x)− f ′(x0)∥ = sup
{
∥f ′(x)h− f ′(x0)h∥; h ∈ Rn, ∥h∥ ≤ 1

}
,

it suffices to prove that ε is an upper bound for the set

A =
{
∥f ′(x)h− f ′(x0)h∥; h ∈ Rn, ∥h∥ ≤ 1

}
,
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whenever ∥x− x0∥ < δ. Indeed,

∥f ′(x)h− f ′(x0)h∥ = ∥(f ′
1(x)h− f ′

1(x0)h, . . . , f
′
m(x)h− f ′

m(x0)h)∥

= max
{
|f ′

1(x)h− f ′
1(x0)h|, . . . , |f ′

m(x)h− f ′
m(x0)h|

}
< ε,

whenever ∥x− x0∥ < δ, which proves the continuity of f ′. 2

Teorema 2.20 Let f : E → Rm be defined on an open set E ⊂ Rn. Then f is of

class C1(E) if and only if the partial derivatives
∂fi
∂xj

exist and are continuous on E for

1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof: First suppose that f ∈ C1(E). Then f is differentiable, and hence
∂fi
∂xj

(x) exist

for all x ∈ E. Moreover,

f ′(x)ej =
m∑
i=1

∂fi
∂xj

(x)ui,

where {e1, . . . , en} and {u1, . . . , um} are the canonical bases of Rn and Rm, respectively.
Thus

〈
f ′(x)ej, uk

〉
=

〈
m∑
i=1

∂fi
∂xj

(x)ui, uk

〉
=
∂fk
∂xj

(x) ⟨uk, uk⟩ =
∂fk
∂xj

(x), ∀x ∈ E.

We now show that the partial derivatives are continuous on E. In fact, if x, y ∈ E,
then

∂fi
∂xj

(x)− ∂fi
∂xj

(y) =
〈
f ′(x)ej, ui

〉
−
〈
f ′(y)ej, ui

〉
=
〈
f ′(x)ej − f ′(y)ej, ui

〉
=
〈
(f ′(x)− f ′(y))ej, ui

〉
. (2.40)

From (2.40), using the Cauchy-Schwarz inequality,∣∣ ∂fi
∂xj

(x)− ∂fi
∂xj

(y)
∣∣ = ∣∣〈(f ′(x)− f ′(y))ej, ui

〉∣∣
≤ ∥(f ′(x)− f ′(y))ej∥ ∥ui∥
= ∥(f ′(x)− f ′(y))ej∥
≤ ∥f ′(x)− f ′(y)∥ ∥ej∥
= ∥f ′(x)− f ′(y)∥.

Therefore, ∣∣ ∂fi
∂xj

(x)− ∂fi
∂xj

(y)
∣∣ ≤ ∥f ′(x)− f ′(y)∥, ∀x, y ∈ E. (2.41)
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Since f is of class C1(E), given ε > 0 and x ∈ E there exists δ > 0 such that if y ∈ E
and ∥x− y∥ < δ, then ∥f ′(x)− f ′(y)∥ < ε. It follows from (2.41) that∣∣ ∂fi

∂xj
(x)− ∂fi

∂xj
(y)
∣∣ < ε

whenever ∥x− y∥ < δ, which proves the necessity.

To prove the sufficiency, suppose that the partial derivatives
∂fi
∂xj

exist and are con-

tinuous on E. We shall prove that f is of class C1(E). Without loss of generality, by the
previous proposition, it suffices to consider the case m = 1, that is, the case of a map
f : E ⊂ Rn → R.

Let ε > 0 and x ∈ E be arbitrary. Since
∂f

∂xj
is continuous on E for each j = 1, . . . , n,

then, for the given ε > 0 and x ∈ E, there exists, for each j = 1, . . . , n, a δj > 0 such that
if y ∈ E and ∥y − x∥ < δj, then ∣∣∣ ∂f

∂xj
(y)− ∂f

∂xj
(x)
∣∣∣ < ε

n
.

Set δ = min{δ1, . . . , δn}. Thus∣∣∣ ∂f
∂xj

(y)− ∂f

∂xj
(x)
∣∣∣ < ε

n
, ∀ j = 1, . . . , n, (2.42)

whenever ∥y − x∥ < δ.

We shall first prove that f is differentiable at x, by exhibiting a candidate Lx : Rn → R
for the derivative of f at x. For this, we need some preliminary results.

Let h ∈ Rn with ∥h∥ < δ. Suppose h = (h1, . . . , hn) and set v0 = 0 and vk =
h1e1 + · · ·+ hkek for 1 ≤ k ≤ n, that is,

v0 = (0, . . . , 0), v1 = (h1, 0, . . . , 0), v2 = (h1, h2, 0, . . . , 0), . . . , vn = (h1, . . . , hn) = h.

Note that ∥vk∥ < δ for all k = 0, 1, . . . , n. We claim that

[x+ vk−1, x+ vk] ⊂ Bδ(x), ∀ k ≥ 1. (2.43)

Indeed,

[x+ vk−1, x+ vk] =
{
(x+ vk−1)(1− t) + t(x+ vk); t ∈ [0, 1]

}
.

Let z ∈ [x+ vk−1, x+ vk]. Then z = (x+ vk−1)(1− t) + t(x+ vk) for some t ∈ [0, 1], so

∥z − x∥ = ∥(x+ vk−1)(1− t) + t(x+ vk)− x∥
= ∥x− tx+ vk−1(1− t) + tx+ tvk − x∥
= ∥(1− t)vk−1 + tvk∥
≤ (1− t)∥vk−1∥+ t∥vk∥
< (1− t)δ + tδ = δ,
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which proves (2.43).

We also claim that

f(x+ h)− f(x) =
n∑
k=1

[
f(x+ vk)− f(x+ vk−1)

]
. (2.44)

In fact,

n∑
k=1

[
f(x+ vk)− f(x+ vk−1)

]
= f(x+ v1)− f(x+ v0) + f(x+ v2)− f(x+ v1) + · · ·

+ f(x+ vn−1)− f(x+ vn−2) + f(x+ vn)− f(x+ vn−1)

= f(x+ vn)− f(x+ v0)

= f(x+ h)− f(x),

which proves (2.44).

Now define the auxiliary function

δk : [0, 1] → R, t 7→ δk(t) = f
(
x+ vk−1 + t(vk − vk−1)

)
.

Notice that δk is the restriction of f to the straightâ¿“line path passing through the
point x+ vk−1 and parallel to the vector vk − vk−1 = hkek. We may also write

δk(t) = f(x+ vk−1 + thkek).

Therefore

δ′k(t) = lim
s→0

δk(t+ s)− δk(t)

s

= lim
s→0

f
(
x+ vk−1 + (t+ s)hkek

)
− f

(
x+ vk−1 + thkek

)
s

= lim
s→0

f
(
(x+ vk−1 + thkek) + shkek

)
− f

(
x+ vk−1 + thkek

)
s

=
∂f

∂(hkek)

(
x+ vk−1 + thkek

)
= hk

∂f

∂xk

(
x+ vk−1 + thkek

)
.

By the Mean Value Theorem for real functions of one variable, there exists tk ∈ (0, 1)
such that

δk(1)− δk(0) = δ′k(tk).

Equivalently,

f(x+ vk)− f(x+ vk−1) =
∂f

∂xk

(
x+ vk−1 + tkhkek

)
hk,
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which implies

n∑
k=1

[
f(x+ vk)− f(x+ vk−1)

]
=

n∑
k=1

∂f

∂xk

(
x+ vk−1 + tkhkek

)
hk.

From (2.44) we obtain

f(x+ h)− f(x) =
n∑
k=1

∂f

∂xk

(
x+ vk−1 + tkhkek

)
hk. (2.45)

Now consider the linear map Lx : Rn → R defined by

Lx(h) =
n∑
k=1

∂f

∂xk
(x)hk.

From (2.45) we obtain

|f(x+ h)− f(x)− Lxh| =

∣∣∣∣∣
n∑
k=1

( ∂f
∂xk

(x+ vk−1 + tkhkek)−
∂f

∂xk
(x)
)
hk

∣∣∣∣∣
≤

n∑
k=1

∣∣∣∣ ∂f∂xk (x+ vk−1 + tkhkek)−
∂f

∂xk
(x)

∣∣∣∣ |hk|
≤ ∥h∥

n∑
k=1

∣∣∣∣ ∂f∂xk (x+ vk−1 + tkhkek)−
∂f

∂xk
(x)

∣∣∣∣
= ∥h∥

n∑
k=1

∣∣∣∣ ∂f∂xk (x+ vk−1 + tk(vk − vk−1))−
∂f

∂xk
(x)

∣∣∣∣
= ∥h∥

n∑
k=1

∣∣∣∣ ∂f∂xk (x+ vk−1 + tk(x+ vk − (x+ vk−1)))−
∂f

∂xk
(x)

∣∣∣∣ .
However,

yk = (x+ vk−1) + tk(x+ vk − (x+ vk−1)) ∈ [x+ vk−1, x+ vk],

since tk ∈ (0, 1), and [x + vk−1, x + vk] ⊂ Bδ(x). Hence ∥yk − x∥ < δ. Therefore, from
(2.42),

|f(x+ h)− f(x)− Lxh| ≤ ∥h∥
n∑
k=1

∣∣ ∂f
∂xk

(yk)− ∂f
∂xk

(x)
∣∣

< ∥h∥
(
ε
n
+ · · ·+ ε

n

)
= ∥h∥ ε,

which proves that f is differentiable at x.

It remains to prove that f ′ is continuous. Let y ∈ E be such that ∥y − x∥ < δ. We
know that

∥f ′(x)− f ′(y)∥ = sup
{
|f ′(x)h− f ′(y)h|; h ∈ Rn, ∥h∥ ≤ 1

}
.
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To obtain the desired result, it suffices to show that the given ε > 0 is an upper bound
for the set {

|f ′(x)h− f ′(y)h|; ∥h∥ ≤ 1, h ∈ Rn
}
.

Indeed, let h ∈ Rn with ∥h∥ ≤ 1 and write h = (h1, . . . , hn). Then, using (2.42),

|f ′(x)h− f ′(y)h| =

∣∣∣∣∣
n∑
k=1

( ∂f
∂xk

(x)hk −
∂f

∂xk
(y)hk

)∣∣∣∣∣
≤

n∑
k=1

∣∣∣∣ ∂f∂xk (x)− ∂f

∂xk
(y)

∣∣∣∣ |hk|
≤ ∥h∥

n∑
k=1

∣∣∣∣ ∂f∂xk (x)− ∂f

∂xk
(y)

∣∣∣∣
≤ ε

n
+ · · ·+ ε

n
= ε,

as required. 2

2.7 Differentiable Maps from Rn into R

In this section we shall consider specifically differentiable maps f : E ⊂ Rn −→ R, where
E is an open subset of Rn.

If f is differentiable at the point x0 ∈ E, then, in accordance with (2.35), given v ∈ Rn,
v = (v1, . . . , vn), we have:

f ′(x0)v =
∂f

∂v
(x0) =

(
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

) v1
...
vn

 =
n∑
i=1

∂f

∂xi
(x0) vi. (2.1)

Definition 2.21 Let f : E → R be defined on the open set E ⊂ Rn. We define the
gradient of f at the point x0 ∈ E as the vector in Rn given by

∇f(x0) =
(
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

)
.

Thus, from (2.46) we may write

f ′(x0)v =
∂f

∂v
(x0) =

n∑
i=1

∂f

∂xi
(x0) vi = ⟨∇f(x0), v⟩ =

= lim
t→0

f(x0 + tv)− f(x0)

t
= (f ◦ λ)′(0), (2.2)
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where λ : (−ε, ε) −→ E is any differentiable path such that λ(0) = x0 and λ′(0) = v.

The derivative of a path is a vector. In the dual situation, the role of the derivative of
a function f : Rn −→ R is played by a linear functional, namely f ′(x0) : Rn −→ R, which
assigns to each vector v ∈ Rn the value f ′(x0)v given as in (2.47).

Definition 2.22 If f : E −→ R, defined on the open set E ⊂ Rn, is differentiable at the
point x0 ∈ E, the differential of f at x0 is the linear functional

df(x0) : Rn −→ R

whose value on a vector v = (v1, . . . , vn) is given by

df(x0)v =
∂f

∂v
(x0) =

n∑
i=1

∂f

∂xi
(x0) vi = ⟨∇f(x0), v⟩.

We call the dual space of Rn the space (Rn)∗ consisting of all linear maps, that is,
L(Rn,R). A basis for this space is given by the linear functionals πi : Rn −→ R, where
πi(x) = xi, the i-th projection of x. Indeed, note that if {e1, . . . , en} is the canonical basis
of Rn, then

πi(ej) =

{
1, if i = j,

0, if i ̸= j.

Hence:

(i) If
∑n

i=1 λiπi = 0 (where 0 denotes the identically zero functional), then for every
j = 1, . . . , n we have( n∑

i=1

λiπi

)
(ej) = 0 =⇒

n∑
i=1

λiπi(ej) = 0 =⇒ λj = 0.

Thus π1, . . . , πn are linearly independent.

(ii) Given w ∈ (Rn)∗, for every x =
∑n

i=1 xiei ∈ Rn we have

w(x) = w
( n∑
i=1

xiei

)
=

n∑
i=1

xiw(ei) =
n∑
i=1

λi πi(x) =
( n∑
i=1

λiπi

)
(x),

where λi = w(ei). Therefore, there exist λ1, . . . , λn ∈ R such that w =
∑n

i=1 λiπi. This
proves that π1, . . . , πn span (Rn)∗.

It is common to denote the canonical basis of (Rn)∗ by {dx1, . . . , dxn} instead of
{π1, . . . , πn}. Thus

dxi · v = vi, if v = (v1, . . . , vn).

The reason for this notation is the following: since, for each point x = (x1, . . . , xn) ∈
Rn, the i-th projection πi : Rn −→ R takes the value πi(x) = xi, computing the differential
of the i-th projection we obtain

dπi(x0)v =
n∑
j=1

∂πi
∂xj

(x0) vj = vi.
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We write xi instead of πi. Hence dxi(x0)v = vi.

Writing dxjv instead of vj in the definition of the differential, we obtain

df(x0)v =
n∑
j=1

∂f

∂xj
(x0) dxjv.

Since this equality holds for every v ∈ Rn, we have

df(x0) =
n∑
j=1

∂f

∂xj
(x0) dxj.

This means that the linear functional df(x0) can be written as a linear combination

of the functionals dxi, with coefficients
∂f

∂xi
(x0).

If we use only orthonormal bases in Rn, the coordinates of the gradient vector ∇f(x0)
with respect to the basis {e1, . . . , en} coincide with the coordinates of the functional
df(x0) with respect to the dual basis {dx1, . . . , dxn}. Under these conditions, the gradient
becomes practically indistinguishable from the differential. This vector exhibits very
convenient geometric features, providing information about the behaviour of the function,
as we shall see below.

From now on we shall assume ∇f(x0) ̸= 0. We highlight the three most important
properties of the gradient, namely:

(1) The gradient points in a direction along which the function f is increasing.

(2) Among all directions along which the function f increases, the direction of the
gradient is the one of fastest increase.

(3) The gradient of f at the point x0 is perpendicular to the level surface of f passing
through this point.

Indeed:

First, if w = ∇f(x0), then, from (3.47) we have

∂f

∂w
(x0) = ⟨∇f(x0), w⟩ = ∥∇f(x0)∥2 > 0.

This means that if λ : (−ε, ε) −→ E is a differentiable path taking values in the domain
E of f , such that λ(0) = x0 and λ

′(0) = ∇f(x0), then the real function t 7−→ f(λ(t)) has
positive derivative at the point t = 0. If we assume that f and λ are of class C1, then the
derivative of f ◦ λ will remain positive at every point of some open interval centred at 0.
That is, if we choose ε > 0 sufficiently small, then f ◦ λ : (−ε, ε) −→ R is an increasing
function. This means that f increases in the direction of the gradient (Figure 2.6).

Of course, we do not have
∂f

∂v
(x0) > 0 only when v = ∇f(x0). Since

∂f

∂v
(x0) = ⟨∇f(x0), v⟩,
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Figure 2.6:

the vectors v that point in directions along which the function f increases are precisely
those that form an acute angle with ∇f(x0), that is, those for which the inner product
⟨∇f(x0), v⟩ is positive. What distinguishes the gradient is the fact that in its direction
the growth of f is faster than in any other direction. Indeed, if v ∈ Rn is such that
∥v∥ = ∥∇f(x0)∥, then, by the Cauchy-Schwarz inequality, we have

∂f

∂v
(x0) = ⟨∇f(x0), v⟩ ≤ ∥∇f(x0)∥ ∥v∥ = ∥∇f(x0)∥2 =

∂f

∂(∇f(x0))
(x0),

that is,
∂f

∂v
(x0) ≤

∂f

∂(∇f(x0))
(x0).

Finally, we clarify the third property. Given a real number c, we say that x ∈ E is at level c
with respect to f when f(x) = c. Once c is fixed, the set

f−1({c}) = {x ∈ E; f(x) = c}

is called the level surface c of the function f . In particular, when n = 2, f−1({c}) is called
the level curve c of f . It is worth noting that the inverse image f−1({c}) does not always
look like a curve or a surface (for example, if f : R2 −→ R is a constant function equal
to c). It would be more accurate to call f−1({c}) a ‘level set’. However, the terminology
is standard and is justified by the fact that f−1({c}) is indeed a surface (or a curve)
whenever ∇f(x) ̸= 0 for all x ∈ E with f(x) = c, as can be proved, as we shall see later,
with the aid of the Implicit Function Theorem.

To say that a vector w is perpendicular to the level surface (or curve) f−1({c}) at the
point x0 means that w is perpendicular to the velocity vector, at x0, of any differentiable
path λ : (−ε, ε) −→ Rn at t = 0, with λ(0) = x0 and λ(t) ∈ f−1({c}), that is, f(λ(t)) = c
for all t ∈ (−ε, ε). From this last equality we obtain

0 = (f ◦ λ)′(0) = f ′(λ(0))λ′(0) = f ′(x0)λ
′(0) = ⟨∇f(x0), λ′(0)⟩.
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Hence ∇f(x0) is perpendicular to λ′(0) (the velocity vector at the point λ(0) = x0 of
any differentiable path λ contained in the level surface of f through x0).

Proposition 2.23 (Mean Value Theorem) Let f : E ⊂ Rn −→ R be a map defined
on an open set. If

[x, y] = {(1− t)x+ ty; t ∈ [0, 1]} ⊂ E

and f is differentiable on [x, y], then there exists z ∈ [x, y] such that

f(y)− f(x) = f ′(z)(y − x).

Proof: Consider the straightâ¿“line path joining the points x and y:

γ : [0, 1] −→ Rn, t 7−→ γ(t) = (1− t)x+ ty.

Define
H : [0, 1] −→ R, t 7−→ H(t) = (f ◦ γ)(t).

By the Mean Value Theorem for real functions of one variable, there exists t0 ∈ (0, 1)
such that H ′(t0) = H(1)−H(0). More precisely,

H ′(t0) = f(y)− f(x). (2.3)

On the other hand, by the Chain Rule we have

H ′(t0) = f ′(γ(t0)) γ
′(t0) = f

(
(1− t0)x+ t0y

)′
(y − x) = f ′((1− t0)x+ t0y)(y − x). (2.4)

Setting z = (1 − t0)x + t0y, it is clear that z ∈ [x, y], and from (2.48) and (2.49) we
obtain

f(y)− f(x) = f ′(z)(y − x).

Corollary 2.24 Let f : E ⊂ Rn −→ R be a differentiable map defined on a convex open
set E. Given x, y ∈ E, there exists z ∈ [x, y] such that

f(y)− f(x) = f ′(z)(y − x).

Definition 2.25 Let f : E −→ R be differentiable on the open set E ⊂ Rn. A natural
question arises as to whether the functions

∂f

∂xj
: E −→ R

are differentiable at a point x0. If all of them are, we say that f is twice differentiable at
x0. In this case, for all integers i, j = 1, 2, . . . , n there exist the secondâ¿“order partial
derivatives

∂

∂xj

( ∂f
∂xi

(x0)
)
=
∂2f(x0)

∂xj ∂xi
.
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When f is twice differentiable at every point of E, there are n2 functions of the form

∂2f

∂xj ∂xi
: E −→ R, 1 ≤ i, j ≤ n.

If all these functions are differentiable at a point x0 ∈ E, we say that f is three times differentiable
at x0, and so on.

2

Teorema 2.26 (Schwarz) Let f : E −→ R be a map defined on an open set E ⊂ Rn. If
f is twice differentiable at a point p ∈ E, then for any 0 ≤ i, j ≤ n one has

∂2f(p)

∂xi ∂xj
=
∂2f(p)

∂xj ∂xi
.

Proof: Without loss of generality, assume that E ⊂ R2 and set p = (x0, y0). Since E
is an open set, there exists δ > 0 such that the ball Bδ(x0, y0) ⊂ E. Consequently, there
exists ε > 0 such that the square

(x0 − ε, x0 + ε)× (y0 − ε, y0 + ε)

is contained in Bδ(x0, y0) (for instance, take ε =
δ
√
2

2
).

Figure 2.7:
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For every t ∈ (−ε, ε) define

φ(t) = f(x0 + t, y0 + t)− f(x0 + t, y0)− f(x0, y0 + t) + f(x0, y0).

For each fixed t ∈ (−ε, ε) and every x ∈ [x0 − t, x0 + t], set

h(x) = f(x, y0 + t)− f(x, y0).

In this way we see that
φ(t) = h(x0 + t)− h(x0).

Since, by hypothesis, f is differentiable on E, in particular h is differentiable on the
interval (x0, x0 + t) and continuous on [x0, x0 + t], for every 0 < t < ε. Hence, by the
Mean Value Theorem for real functions of one variable, there exists ξ ∈ (x0, x0 + t) such
that

h′(ξ) =
h(x0 + t)− h(x0)

t
=
φ(t)

t
.

Moreover, since ξ ∈ (x0, x0 + t) = {x0 + st; s ∈ (0, 1)}, we have ξ = x0 + θt for some
θ ∈ (0, 1). Thus, from (2.50) we obtain

φ(t) = h′(ξ) t =

[
∂f

∂x
(x0 + θt, y0 + t)− ∂f

∂x
(x0 + θt, y0)

]
t. (2.5)

On the other hand, since the map

∂f

∂x
: E −→ R

is differentiable at the point φ = (x0, y0), we have

∂f

∂x

(
(x0, y0) + (θt, t)

)
=
∂f

∂x
(x0, y0) +

∂2f(x0, y0)

∂x2
(θt) +

∂2f(x0, y0)

∂y ∂x
t+ r1, (2.6)

where lim
t→0

r1
t
= 0.

∂f

∂x
(x0 + θt, y0) =

∂f(x0, y0)

∂x
+
∂2f(x0, y0)

∂x2
(θt) + r2, (2.7)

where lim
t→0

r2
t
= 0.

Therefore, from (2.51), (2.52) and (2.53) we obtain

φ(t) =
∂2f(x0, y0)

∂y ∂x
t2 + (r1 − r2) t. (2.8)
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Hence, from (2.54) we have

lim
t→0

φ(t)

t2
=
∂2f(x0, y0)

∂y ∂x
+ lim

t→0

r

t
,

where r = r1 − r2, and therefore lim
t→0

r

t
= 0.

Thus,

lim
t→0

φ(t)

t2
=
∂2f(x0, y0)

∂y ∂x
. (2.9)

Similarly, if we consider the function

g(y) = f(x0 + t, y)− f(x0, y)

and argue as before, we obtain

lim
t→0

φ(t)

t2
=
∂2f(x0, y0)

∂x ∂y
. (2.10)

Thus, from (2.55) and (2.56) we obtain the desired result. 2

Note: We saw earlier that a map f : E ⊂ Rn −→ R is said to be of class C1(E) when
the differential

df : E −→ (Rn)∗

is a continuous map on the open set E ⊂ Rn. Equivalently (see Theorem 2.20), we

proved that f is of class C1(E) if and only if the partial derivatives
∂f

∂xi
exist on E and

are continuous. In the same way, we say that a function f is of class C2(E) when the

mixed partial derivatives
∂2f

∂xi ∂xj
exist and are continuous on E, or, equivalently, when

the first-order partial derivatives
∂f

∂xi
exist on E and are of class C1(E).

Corollary 2.27 Let f : E ⊂ Rn −→ R be a map of class C2(E). Then, for any 0 ≤
i, j ≤ n one has

∂2f(x)

∂xi ∂xj
=
∂2f(x)

∂xj ∂xi
, ∀x ∈ E.

Proof: Immediate. 2
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2.8 The Inverse Function Theorem

In the proof of the Inverse Function Theorem we shall use the Method of Successive
Approximations, a principle of great usefulness in proving existence and uniqueness of
solutions for differential equations, integral equations, and so on.

Definition 2.28 Let X ⊂ Rn. A map f : X −→ Rm is called a contraction if there exist
λ ∈ R, 0 ≤ λ < 1, and norms on Rn and Rm such that

∥f(x)− f(y)∥ ≤ λ∥x− y∥, ∀x, y ∈ X.

Every contraction is uniformly continuous. For example, let E ⊂ Rn be an open
and convex set. If f : E −→ Rm is a differentiable map such that ∥f ′(x)∥ ≤ λ < 1
for some constant λ and every x ∈ E, then the Mean Value Inequality guarantees that
∥f(x)− f(y)∥ ≤ λ∥x− y∥, and therefore f is a contraction.

Definition 2.29 Let X ⊂ Rn. A fixed point of a map f : X −→ Rn is a point x ∈ X
such that f(x) = x.

Teorema 2.30 (Fixed Point Theorem for Contractions) Let F ⊂ Rn be a closed
subset and φ : F −→ F a contraction. Given any point x0 ∈ F , the sequence

x1 = φ(x0), x2 = φ(x1), . . . , xk+1 = φ(xk), . . .

converges to a point x ∈ F , which is the unique fixed point of φ.

Proof: (1) Existence.

Let x0 ∈ F and consider the sequence (xk) defined by the recurrence relation

xk+1 = φ(xk), k = 0, 1, 2, . . . . (2.11)

Since φ is a contraction, there exist 0 ≤ C < 1 and a norm on Rn such that

∥φ(x)− φ(y)∥ ≤ C∥x− y∥, ∀x, y ∈ F. (2.12)

Note that

∥xk+1 − xk∥ = ∥φ(xk)− φ(xk−1)∥ ≤ C ∥xk − xk−1∥, k = 1, 2, . . . .

Hence

∥xk+1 − xk∥ ≤ C∥xk − xk−1∥, k = 1, 2, . . . . (2.13)
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From (2.59) we may write

∥x2 − x1∥ ≤ C∥x1 − x0∥,

∥x3 − x2∥ ≤ C∥x2 − x1∥ ≤ C2∥x1 − x0∥,
...

We claim that

∥xk+1 − xk∥ ≤ Ck∥x1 − x0∥ ∀k ≥ 1. (2.14)

We prove this by induction on k.

(i) k = 1 (already proved).

(ii) Suppose the statement holds for k, that is,

∥xk+1 − xk∥ ≤ Ck∥x1 − x0∥.

(iii) We prove it for k + 1. From (2.59) and (ii) we have

∥xk+2 − xk+1∥ ≤ C∥xk+1 − xk∥ ≤ Ck+1∥x1 − x0∥,

which proves (3.60).

We now show that (xk) is a Cauchy sequence in Rn. Indeed, let r, s ∈ N with s < r.
Then r = s+ p for some p ∈ N. Hence

∥xs − xr∥ = ∥xs − xs+p∥ ≤ ∥xs − xs+1∥+ ∥xs+1 − xs+2∥+ · · ·+ ∥xs+p−1 − xs+p∥.

Therefore, by (2.60) we obtain

∥xs − xs+p∥ ≤ Cs∥x1 − x0∥+ Cs+1∥x1 − x0∥+ · · ·+ Cs+p−1∥x1 − x0∥

=
(
Cs + Cs+1 + · · ·+ Cs+p−1

)
∥x1 − x0∥ =

Cs(1− Cp)

1− C
∥x1 − x0∥.

However, since 0 ≤ C < 1, we have 1− Cp ≤ 1 and hence

∥xs − xs+p∥ ≤ K Cs,

where K =
∥x1 − x0∥
1− C

is a constant. As

lim
s→+∞

(KCs) = 0,

it follows that, for any ε > 0, there exists s0 ∈ N such that, for all s ≥ s0, KC
s < ε.

Hence, given ε > 0 we have

∥xs − xs+p∥ < ε, ∀s ≥ s0,
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that is,

lim
s→+∞

∥xs − xs+p∥ = 0

for every p ∈ N. Thus (xk) is a Cauchy sequence in Rn, and since Rn is complete, we have

lim
k→+∞

xk = x∗

and clearly x∗ ∈ F , since F is closed. As φ is a contraction, it is continuous on F . Hence

φ(x∗) = φ
(
limxk

)
= limφ(xk) = limxk+1 = x∗.

(2) Uniqueness.

Suppose there is also y∗ ∈ F such that φ(y∗) = y∗. Then, from (2.58) we have

∥x∗ − y∗∥ = ∥φ(x∗)− φ(y∗)∥ ≤ C∥x∗ − y∗∥.

Hence

∥x∗ − y∗∥(1− C) ≤ 0.

Since (1−C) > 0, from the last inequality we obtain x∗ = y∗, which proves uniqueness
and completes the proof of the theorem. 2

Definition 2.31 Given sets X ⊂ Rn and Y ⊂ Rm, a homeomorphism between X and Y
is a continuous bijection f : X −→ Y whose inverse f−1 : Y −→ X is also continuous.
In this case, X and Y are said to be homeomorphic.

A bijection may be continuous without its inverse being continuous. A canonical
example is given by the map

f : [0, 2π) −→ S1 = {(x, y) ∈ R2; x2 + y2 = 1}
t 7−→ f(t) = (cos t, sin t).

The map f is clearly continuous and is evidently bijective. However, its inverse f−1 :
S1 −→ [0, 2π) is discontinuous at the point p = (1, 0). Indeed, for each k ∈ N let

tk = 2π − 1

k
and zk = f(tk). Then lim

k→∞
zk = p, but it is not true that

lim
k→∞

f−1(zk) = lim
k→∞

tk

is equal to f−1(p) = 0.

As examples of homeomorphisms of Rn onto itself we have:

(i) The translations:

Tα : Rn −→ Rn, Tα(x) = α + x.
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Indeed, Tα is actually an isometry, that is, a continuous surjective map that preserves
distance:

∥Tα(x)− Tα(y)∥ = ∥x− y∥.

It follows that it is also injective, since if Tα(x) = Tα(y) then ∥x − y∥ = 0, hence x = y.
As (Tα)

−1 = T−α, we see that its inverse is also continuous.

(ii) The homotheties:

Hλ : Rn −→ Rn, Hλ(x) = λx, λ ̸= 0.

Each homothety Hλ is an invertible linear transformation with (Hλ)
−1 = Hλ−1 .

As examples of homeomorphic subsets of Rn, we may consider two open (or closed)
balls. Indeed, given Br(a) and Bs(b), it suffices to consider the map

φ : Rn −→ Rn

defined by

φ = Tb ◦Hs/r ◦ T−a.

A more sophisticated example of a homeomorphism is given by the map

ψ : Ω −→ Ω

A 7−→ A−1,

where

Ω = {A ∈ L(Rn); ∃A−1},

as mentioned in the first section of this chapter.

Definition 2.32 Let U and V be open subsets of Rn. A bijection f : U → V is called a
diffeomorphism from U onto V if it is differentiable and its inverse f−1 : V → U is also
differentiable.

We say that a differentiable map f : E ⊂ Rn −→ Rn is a ‘local diffeomorphism’ if for
each x ∈ E there exists an open set Vx with x ∈ Vx ⊂ E such that the restriction of f to
Vx is a diffeomorphism onto an open set Wx ⊂ Rn, that is, the map f : Vx −→ Wx is a
diffeomorphism.

Care must be taken not to confuse a diffeomorphism with a differentiable homeomor-
phism. An example of a homeomorphism whose inverse is not differentiable (at 0) is the
function f : R −→ R given by f(x) = x3.

Note: It follows from the Chain Rule that if a map f : U −→ Rn, where U is an open
subset of Rn, is differentiable at a point a ∈ U and admits an inverse g = f−1 : V −→ Rn

defined on the open set V ⊂ Rn, differentiable at b = f(a), then f ′(a) : Rn −→ Rn is an
isomorphism whose inverse is g′(b) : Rn −→ Rn. Indeed:
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Figure 2.8:

From g ◦ f = IU and f ◦ g = IV it follows that

g′(b) ◦ f ′(a) = Id : Rn −→ Rn,

f ′(a) ◦ g′(b) = Id : Rn −→ Rn.

Hence
g′(b) = (f ′(a))−1.

As a consequence of the observation above, if f : U −→ V is a diffeomorphism between
open subsets of Rn, then for every x ∈ U the derivative

f ′(x) : Rn −→ Rn

is an isomorphism. In terms of the Jacobian determinant, this means that

det(Jf(x)) ̸= 0, ∀x ∈ U,

where Jf(x) =
(
∂fi
∂xj

(x)
)
is the Jacobian matrix of f at x. It is natural to ask whether the

converse holds.

The Inverse Function Theorem will provide the converse in the case where f ∈ Ck

(k ≥ 1), in the sense of ‘local diffeomorphism’, as we now state.

Teorema 2.33 (Inverse Function Theorem) Let f : E ⊂ Rn −→ Rn be a continu-
ously differentiable function on the open set E, and suppose that f ′(a) is invertible for
some a ∈ E. (In other words, we are assuming that f ′(a) : Rn −→ Rn is an isomorphism,
or equivalently, that Jf(a) ̸= 0.) Set b = f(a). Then:

(i) There exist open sets U and V in Rn such that a ∈ U , b ∈ V , f is one-to-one on
U , and f(U) = V , that is, f is a bijection from U onto V .

(ii) If g denotes the inverse of f (which exists by (i)), defined by g(f(x)) = x for
x ∈ U , then g ∈ C1(V ) and

g′(y) = f ′(g(y))−1, ∀y ∈ V.

In other words, f is a local diffeomorphism from U onto V , with f−1 of class C1.
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Proof: (i) Set A = f ′(a). Since f ∈ C1(E), given ε > 0 there exists δ > 0 such that for
every x ∈ E with ∥x− a∥ < δ one has

∥f ′(x)− f ′(a)∥ < ε. (2.15)

For each fixed y ∈ Rn define the auxiliary map

φ : E −→ Rn

x 7−→ φ(x) = x+ A−1(y − f(x)). (2.16)

Note that y = f(x) if and only if x is a fixed point of φ. Indeed, if y = f(x) then
φ(x) = x + A−1(0). Since A−1 is linear, A−1(0) = 0, thus φ(x) = x. Conversely, if
φ(x) = x, then φ(x) = x + A−1(y − f(x)), and therefore A−1(y − f(x)) = 0. As A−1 is
linear and injective, it follows that y = f(x).

On the other hand, from the expression for φ we may write

φ(x) = I(x) + A−1(y − f(x)),

whose derivative is, by the Chain Rule,

φ′(x) = I ′(x) + (A−1)′(y − f(x)) ◦ (y − f(x))′. (2.17)

Recall that if T : Rn −→ Rm is linear, then T ′(x) = T for every x ∈ Rn. Thus

I ′(x) = I and (A−1)′(y − f(x)) = A−1.

Therefore, from (2.63) we obtain

φ′(x) = I + A−1 ◦ (−f ′(x)) = A−1 ◦ A− A−1 ◦ f ′(x)

= A−1(A− f ′(x)). (2.18)

From (2.64) we deduce that

∥φ′(x)∥ = ∥A−1(A− f ′(x))∥ ≤ ∥A−1∥∥A− f ′(x)∥
= ∥A−1∥∥f ′(a)− f ′(x)∥. (2.19)

If we take ε =
1

2∥A−1∥
in (2.61), then from (2.65) we obtain

∥φ′(x)∥ ≤ ∥A−1∥∥f ′(a)− f ′(x)∥ < 1

2
, (2.20)

for all x ∈ E with ∥x− a∥ < δ.

Now let U = Bδ(a), which is clearly a convex open set. In view of (2.66) and by the
Mean Value Inequality, we have

∥φ(x1)− φ(x2)∥ ≤ 1

2
∥x1 − x2∥ (2.21)
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for all x1, x2 ∈ U , that is,

∥φ(x1)− φ(x2)∥ = ∥x1 + A−1(y − f(x1))− x2 − A−1(y − f(x2))∥ ≤ 1

2
∥x1 − x2∥

for all x1, x2 ∈ U .

Thus

∥(x1 − x2) + A−1(f(x2)− f(x1))∥ ≤ 1

2
∥x1 − x2∥, ∀x1, x2 ∈ U.

Note that if f(x1) = f(x2) then

0 ≤ ∥x1 − x2∥ ≤ 1

2
∥x1 − x2∥,

which implies x1 = x2 and consequently f |U is injective.

Let V = f(U). Then the map f : U −→ V is a bijection. It remains to prove that V
is an open subset of Rn. Indeed, take y0 ∈ V . We shall show that there exists R > 0 such
that BR(y0) ⊂ V . In fact:

Since y0 ∈ V , we have y0 = f(x0) for some x0 ∈ U . Let r > 0 be sufficiently small so
that the closure of the ball B = Br(x0) is contained in U , that is, B ⊂ U .

Set

λ =
1

2∥A−1∥
> 0 and R = λr.

We claim that BR(y0) ⊂ V . Indeed, let y ∈ BR(y0). Then

∥y − y0∥ <
r

2∥A−1∥
.

For this y ∈ BR(y0), consider the function φ defined by (2.62). In particular, for
x = x0 we have

∥φ(x0)− x0∥ = ∥x0 + A−1(y − f(x0))− x0∥ ≤ ∥A−1∥∥y − f(x0)∥

= ∥A−1∥∥y − y0∥ < ∥A−1∥ r

2∥A−1∥
=
r

2
.

On the other hand, for any x ∈ B ⊂ U we have ∥x − x0∥ ≤ r, and from (2.67) we
obtain

∥φ(x)− x0∥ ≤ ∥φ(x)− φ(x0)∥+ ∥φ(x0)− x0∥ <
1

2
∥x− x0∥+

r

2
<
r

2
+
r

2
= r.

Hence φ(x) ∈ B = Br(x0) for every x ∈ B. This allows us to define the map

φ : B −→ B

x 7−→ φ(x) = x+ A−1(y − f(x)),
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which is a contraction, as we saw in (2.67).

Since B is a closed subset of Rn, it follows from the Fixed Point Theorem that φ has
a unique fixed point x∗ ∈ B, that is, there exists x∗ ∈ B such that φ(x∗) = x∗.

However, as we proved earlier, y = f(x) if and only if x is a fixed point of φ. Thus,
since x∗ is a fixed point of φ, we have f(x∗) = y, and since x∗ ∈ B, it follows that
y = f(x∗) ∈ f(B) ⊂ f(U) = V , which completes the proof of item (i). 2

Proof: (ii) Let us now prove the differentiability of the inverse. Set g = f−1.

Figure 2.9:

Let y ∈ V and k ∈ Rn be such that ∥k∥ is sufficiently small to ensure that y + k ∈ V .
Since f is a bijection, there exist x, x + h ∈ U (with h ̸= 0) such that y = f(x) and
y + k = f(x+ h). For the chosen y ∈ V , define, as before, the map

φ(x) = x+ A−1(y − f(x)), x ∈ U.

Then

φ(x+ h)− φ(x) = (x+ h) + A−1(y − f(x+ h))− x− A−1(y − f(x))

= h+ A−1(y − f(x+ h)− y + f(x))

= h− A−1(f(x+ h)− f(x))

= h− A−1(k). (2.22)

On the other hand, from (2.67) we have

∥φ(x+ h)− φ(x)∥ ≤ 1

2
∥x+ h− x∥ =

∥h∥
2
. (2.23)

Thus, from (2.68) and (2.69) we obtain

∥h− A−1(k)∥ ≤ ∥h∥
2
,
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which implies

∥h∥ ≤ ∥A−1(k)∥+ ∥h∥
2
.

Equivalently,

∥h∥ ≤ 2∥A−1∥∥k∥. (2.24)

Hence

1

∥k∥
≤ 2∥A−1∥

∥h∥
. (2.25)

On the other hand, as in item (i), we have

∥f ′(x)− A∥ < 1

2∥A−1∥
, ∀x ∈ Bδ(a) = U,

which implies

∥f ′(x)− A∥∥A−1∥ < 1

2
< 1,

and by Proposition 2.6 we obtain f ′(x) ∈ Ω, that is, f ′(x) is invertible for every x ∈ U .

Consider x ∈ U = Bδ(a) and f
′(x), and denote

T = (f ′(x))−1.

Let y = f(x) and consider k ∈ Rn such that f(x+ h) = y + k. Then

g(y + k)− g(y)− Tk = f−1(y + k)− f−1(y)− Tk

= f−1(f(x+ h))− f−1(f(x))− Tk

= x+ h− x− Tk

= h− Tk

= h− T (f(x+ h)− f(x)).

Therefore
g(y + k)− g(y)− Tk = h− T (f(x+ h)− f(x)),

and since h = T (T−1(h)) = T (f ′(x)h), we obtain

g(y + k)− g(y)− Tk = T (f ′(x)h)− T (f(x+ h)− f(x))

= T (f ′(x)h− f(x+ h) + f(x))

= −T
(
f(x+ h)− f(x)− f ′(x)h

)
. (2.26)

Thus, from (2.71) and (2.72) we get

0 ≤ ∥g(y + k)− g(y)− Tk∥
∥k∥

≤ ∥T∥∥f(x+ h)− f(x)− f ′(x)h∥
∥k∥

≤ 2∥A−1∥∥T∥∥f(x+ h)− f(x)− f ′(x)h∥
∥h∥

. (2.27)
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Since (by (2.70)) k → 0 implies h → 0, it follows from (2.73) that g′(y) exists and,
moreover, g′(y) = T , that is, g′(y) = (f ′(x))−1. This implies

g′(y) = (f ′(f−1(y)))−1,

or equivalently

g′(y) = (f ′(g(y)))−1, ∀y ∈ V.

Finally, since g : V → U is continuous (as it is differentiable), f ′ : U → Ω ⊂ L(Rn) is
continuous (because f is of class C1(U)), and ψ : Ω → Ω is continuous (Proposition 2.6),
it follows that g′ is continuous on V , that is, g ∈ C1(V ). 2

To fix ideas, consider the diagram below:

Figure 2.10:

Corollary 2.34 A map f : E → Rn of class Ck on the open set E ⊂ Rn (where 1 ≤
k ≤ +∞) is a local diffeomorphism if and only if, for every x ∈ E, the derivative f ′(x) :
Rn −→ Rn is an isomorphism (that is, det Jf(x) ̸= 0).

We now introduce some notation that will be useful in the proof of the Implicit Func-
tion Theorem.

If x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , ym) ∈ Rm, we write (x, y) for the point

(x1, . . . , xn, y1, . . . , ym) ∈ Rn+m.

Every A ∈ £(Rn+m,Rn) can be written in terms of two linear maps Ax and Ay defined
by

Axh = A(h, 0), Ayk = A(0, k),

for all h ∈ Rn, k ∈ Rm. Then Ax ∈ £(Rn,Rn), Ay ∈ £(Rm,Rn) and

A(h, k) = Axh+ Ayk. (2.28)
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Proposition 2.35 Let A ∈ £(Rn+m,Rn) and assume that Ax is invertible. Then, for
each k ∈ Rm, there exists a unique h ∈ Rn such that A(h, k) = 0. This h is given by

h = −A−1
x (Ayk). (2.29)

Proof: Let A : Rn+m −→ Rn be linear. Then, by (2.74), if A(h, k) = 0 we have
Axh+ Ayk = 0. Since Ax is invertible, there exists A−1

x , and therefore

A−1
x

(
Axh+ Ayk

)
= A−1

x (0),

so
h+ A−1

x (Ayk) = 0 ⇒ h = −A−1
x (Ayk).

Conversely, it is clear that if h = −A−1
x (Ayk), then A(h, k) = 0.

Moreover, for each k ∈ Rm there is a unique Ayk ∈ Rn, since Ay is a function; and
to each such Ayk there corresponds a unique A−1

x (Ayk), because A
−1
x is a bijection. It

follows that to each k ∈ Rm there corresponds a unique h ∈ Rn, given by (2.75), such
that A(h, k) = 0. 2

Teorema 2.36 (Implicit Function Theorem) Let f be a C1 function defined on an
open set E ⊂ Rn+m with values in Rn, such that f(a, b) = 0 for some point (a, b) ∈ E.
Let A = f ′(a, b) and assume that Ax is invertible. Then:

(a) There exist open sets U ⊂ Rn+m and W ⊂ Rm, with (a, b) ∈ U and b ∈ W , having
the following property: for each y ∈ W there exists a unique x ∈ Rn such that (x, y) ∈ U
and f(x, y) = 0.

(b) There exists (by (a)) a map g : W → Rn, with g ∈ C1(W ), g(b) = a and
f(g(y), y) = 0 for all y ∈ W . Moreover,

g′(y) = −A−1
x Ay.

Proof: (a) Define the auxiliary map

F : E ⊂ Rn+m −→ Rn+m

(x, y) 7−→ F (x, y) = (f(x, y), y),

which is of class C1(E), since each coordinate function is C1.

Now consider the linear map

L : Rn+m −→ Rn+m

(h, k) 7−→ L(h, k) = (A(h, k), k),

which we shall show is the derivative of F at (a, b). Indeed, let h ∈ Rn and k ∈ Rm have
sufficiently small norms so that (a+ h, b+ k) ∈ E. Then

∥F (a+ h, b+ k)− F (a, b)− L(h, k)∥ = ∥(f(a+ h, b+ k), b+ k)− (f(a, b), b)− (A(h, k), k)∥
= ∥(f(a+ h, b+ k)− f(a, b)− A(h, k), 0)∥
= ∥f(a+ h, b+ k)− f(a, b)− A(h, k)∥.
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Since f is differentiable at (a, b), by hypothesis,

lim
(h,k)→(0,0)

f(a+ h, b+ k)− f(a, b)− A(h, k)

∥(h, k)∥
= 0.

It follows that

lim
(h,k)→(0,0)

F (a+ h, b+ k)− F (a, b)− L(h, k)

∥(h, k)∥
= 0,

and hence F ′(a, b) = L.

We now show that L is an isomorphism. In fact, if L(h, k) = (0, 0) then (A(h, k), k) =
(0, 0), so A(h, k) = 0 and k = 0. Since Ax is invertible, and for each k ∈ Rm there is a
unique h ∈ Rn such that A(h, k) = 0, given by

h = −A−1
x (Ayk),

we obtain, for k = 0, that
h = −A−1

x (Ay0) = 0,

that is, (h, k) = (0, 0). Thus L is injective, and by the Rankâ¿“Nullity Theorem L is an
isomorphism.

Therefore, by the Inverse Function Theorem, there exist open sets U, V ⊂ Rn+m such
that F : U → V is a bijection, with F ′(x, y) invertible for all (x, y) ∈ U . Moreover,
G = F−1 : V → U is a C1 map, with (a, b) ∈ U and F (a, b) = (0, b) ∈ V .

Figure 2.11:

Define
W = {y ∈ Rm; (0, y) ∈ V }.

Note that W is an open subset of Rm, since W is the image of V ∩ ({0} ×Rm) under
the natural identification {0} × Rm ≃ Rm, and V is an open subset of Rn+m. Now, if
y ∈ W , then (0, y) ∈ V and consequently

(0, y) = F (x, y)
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for some (x, y) ∈ U . Since F (x, y) = (f(x, y), y), it follows that f(x, y) = 0 for this x.

Suppose now that for the same y we had x′ ∈ Rn with (x′, y) ∈ U and f(x′, y) = 0.
Then

F (x′, y) = (f(x′, y), y) = (f(x, y), y) = F (x, y),

and by the injectivity of F we would have x′ = x. Thus, to each y ∈ W there corresponds
a unique x ∈ Rn such that (x, y) ∈ U and f(x, y) = 0. Moreover, b ∈ W , since (0, b) ∈ V .
This completes the proof of part (a).

(b) By part (a) we obtain a well-defined map

g : W −→ Rn

y 7−→ g(y) = x,

such that (x, y) ∈ U and f(g(y), y) = f(x, y) = 0 for all y ∈ W . Clearly g(b) = a, since
(a, b) ∈ U , b ∈ W and f(a, b) = 0.

On the other hand, note that for every y ∈ W we have

F (g(y), y) = F (x, y) = (f(x, y), y) = (0, y).

Hence
G(0, y) = F−1(0, y) = (g(y), y).

Since G is C1 on V and (0, y) ∈ V for all y ∈ W , the restriction g is C1 on W .

Finally, set
Φ(y) = (g(y), y) = (g(y), Id(y)).

Since
(f ◦ Φ)(y) = f(g(y), y) ≡ 0,

it follows from the Chain Rule that

f ′(Φ(y)) ◦ Φ′(y) = 0, ∀y ∈ W.

In particular, for y = b we have

f ′(Φ(b)) ◦ Φ′(b) = 0.

Since Φ(b) = (g(b), b) = (a, b), this can be written as

f ′(a, b) ◦ Φ′(b) = 0,

that is,
A ◦ Φ′(b) = 0.

Now, for k ∈ Rm,
Φ′(b)k =

(
g′(b), Id

)
k = (g′(b)k, k),

and therefore
A(g′(b)k, k) = 0, ∀k ∈ Rm.
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Using (2.74), we obtain

Ax(g
′(b)k) + Ayk = 0, ∀k ∈ Rm,

which implies
g′(b)k = −A−1

x (Ayk), ∀k ∈ Rm.

Thus
g′(b) = −A−1

x Ay,

as claimed. 2
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Chapter 3

Multiple Integrals

3.1 The Definition of the Integral

According to Definition 1.33, an n-parallelepiped, or n-dimensional block, or cell, is the
subset A of Rn given by the Cartesian product

A =
n∏
i=1

[ai, bi] = [a1, b1]× · · · × [an, bn]

of n compact intervals [ai, bi], each of which is called an edge of the block A. When all
the edges have the same length bi− ai = a, the block is called an nâ¿“dimensional cube.
When n = 1, A is an interval; for n = 2, the block reduces to a rectangle and the cube to

a square. The point whose coordinates are ci =
ai + bi

2
is called the centre of the block

A. The vertices of the block A are the points p = (c1, . . . , cn), where for each i = 1, . . . , n
we have ci = ai or ci = bi. The faces of the block A are the Cartesian products

F = L1 × · · · × Ln

such that, for each i = 1, . . . , n, we have Li = {ai}, or Li = {bi}, or Li = [ai, bi]. We say
that the face F has dimension k when there are precisely k indices i for which Li = [ai, bi].
In particular, each vertex of the block A is a face of dimension zero, while the block A
itself is a face of dimension n.

Definition 3.1 The nâ¿“dimensional volume of the block A =
∏n

i=1[ai, bi] is

volA =
n∏
i=1

(bi − ai).

If A is an nâ¿“dimensional cube whose edges have length a, then volA = an.

103
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The n-dimensional block A =
∏n

i=1[ai, bi] is a compact subset of Rn whose interior is
the Cartesian product

intA =
n∏
i=1

(ai, bi)

of open intervals (ai, bi), which we call the open nâ¿“dimensional block. By definition,
the volume of an open block is the same as that of the corresponding closed block.

Definition 3.2 A partition of the block A =
∏n

i=1[ai, bi] is a finite set of the form

P = P1 × · · · × Pn,

where each Pi is a partition of the interval [ai, bi].

The elements of P are called the vertices of the partition P . A partition P = P1 ×
· · · × Pn of the block A determines a decomposition of A into sub-blocks of the form
B = I1 × · · · × In, where each Ij is an interval of the partition Pj. Each of these sub-
blocks B will be called a block of the partition P . We write B ∈ P . Let us look at an
example for n = 2.

Figure 3.1:

Let P1 = {a1, x1, x2, b1} and P2 = {a2, y1, y2, b2} be partitions of the intervals [a1, b1]
and [a2, b2], respectively. Then P = P1 × P2 is a partition of A. Each Bi is a sub-block,
called a block of the partition P ; we denote this by Bi ∈ P .

If, for each j = 1, . . . , n, the partition Pj decomposes the interval [aj, bj] into kj
subintervals, then the partition P decomposes the blockA =

∏n
j=1[aj, bj] into k1, k2, . . . , kn

sub-blocks.

In the example above, P1 decomposes the interval [a1, b1] into 3 subintervals, while P2

decomposes [a2, b2] also into 3 subintervals. Hence the partition P decomposes the block
A =

∏2
i=1[ai, bi] into 3× 3, that is, 9 sub-blocks.

If B1 and B2 are blocks of the same partition, then either their intersection is empty
or it is a common kâ¿“dimensional face of B1 and B2 (k = 0, 1, . . . , n− 1).
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Given a partition P = P1 × · · · × Pn of the block A =
∏n

j=1[aj, bj], the length of
each edge is the sum of the lengths of the intervals in the partition Pi. It follows, by the
distributive law of multiplication, that the volume of A is the sum of the volumes of all
the blocks into which P decomposes A.

Returning to the example, we have

volA =
n∏
i=1

(bi − ai) = (b1 − a1)(b2 − a2).

However,

b1 − a1 = (x1 − a1) + (x2 − x1) + (b1 − x2),

b2 − a2 = (y1 − a2) + (y2 − y1) + (b2 − y2).

Therefore,

volA = (x1 − a1)(y1 − a2) + (x1 − a1)(y2 − y1) + (x1 − a1)(b2 − y2) +

+(x2 − x1)(y1 − a2) + (x2 − x1)(y2 − y1) + (x2 − x1)(b2 − y2) +

+(b1 − x2)(y1 − a2) + (b1 − x2)(y2 − y1) + (b1 − x2)(b2 − y2),

that is, volA =
∑9

i=1 volBi.

In general, we may write

volA =
∑
B∈P

volB.

Definition 3.3 Let P and Q be partitions of the block A. We say that Q is finer than
P if P ⊂ Q. If P = P1 × · · · × Pn and Q = Q1 × · · · × Qn, then P ⊂ Q if and only
if P1 ⊂ Q1, . . . , Pn ⊂ Qn. In this case, each block of the partition Q is contained in a
unique block of P , and each block of P is the union of those blocks of Q that it contains.
More precisely, if P ⊂ Q, then Q induces a partition of each block of P , and therefore the
volume of a block B ∈ P is the sum of the volumes of the blocks of Q that are contained
in B.

Let us look at an example:

Let P1 = {a1, x1, x2, b1} and P2 = {a2, y2, b2} be partitions of [a1, b1] and [a2, b2],
respectively, and let P = P1 × P2 be a partition of A =

∏2
i=1[ai, bi]. Consider Q1 =

{a1, x1, x2, x3, b1} and Q2 = {a2, y1, y2, b2}, partitions of [a1, b1] and [a2, b2], respectively,
with P1 ⊂ Q1 and P2 ⊂ Q2. Clearly P ⊂ Q. Notice that:

Each block B′
i of Q is contained in a unique block Bi of P .

Each block Bi of P is the union of those blocks B′
i of Q that are contained in it.

In this case:

B1 = B′
1∪B′

2, B2 = B′
3, B3 = B′

4∪B′
5, B4 = B′

6, B5 = B′
7∪B′

8∪B′
10∪B′

11, B6 = B′
9∪B′

12.
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Figure 3.2:

Figure 3.3:

The volume of each block Bi of P is the sum of the volumes of the blocks B′
i of Q

contained in it.

In general, if P ⊂ Q and B ∈ P is a block of the partition P , and B′ ∈ Q is a block
of the partition Q contained in B, then

volB =
∑
B′⊂B

volB′.

It follows that

volA =
∑
B∈P

volB =
∑
B∈P

∑
B′⊂B

volB′. (3.1)

Note 1: In Figure 3.3 we see two blocks (rectangles) decomposed as unions of sub-
blocks:

The decomposition on the left arises from a partition, but the one on the right does
not.
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If P =
∏n

i=1 Pi and Q =
∏n

i=1Qi are partitions of a block A, the union P ∪Q is not,
in general, a partition of A. However, there exists a partition

P +Q =
n∏
i=1

(Pi ∪Qi)

that refines both P and Q.

Definition 3.4 The norm |P | of a partition P =
∏n

i=1 Pi is the largest length of a subin-
terval of any of the partitions Pi, that is, the largest length of the edges of the blocks
B ∈ P .

Note 2: If we equip Rn with the maximum norm, then the diameter of a block will be
the length of its longest edge. To fix ideas, consider the diagram below (Figure 3.4):

x

y

d

a1 b1

a2

b2

d = diameter of the block
= length of the vector v given by:

v = (b1, b2)− (a1, a2)

= (b1 − a1, b2 − a2)

Figure 3.4: Diameter of a rectangular block in R2.

Thus

∥v∥ = max{ |b1 − a1|, |b2 − a2| } = length of the longest edge of the block.

In general,
diamA = max{ |b1 − a1|, . . . , |bn − an| }.

In this case, the norm |P | of the partition P will be the largest diameter of the blocks
B ∈ P .

Definition 3.5 Let f : A → R be a bounded real function defined on a block A ⊂ Rn.
Given a partition P of A, to each block B ∈ P we associate the numbers

mB = inf{f(x); x ∈ B} and MB = sup{f(x); x ∈ B},

with which we define, respectively, the lower sum and upper sum of f with respect to the
partition P by setting

s(f ;P ) =
∑
B∈P

mB volB and S(f ;P ) =
∑
B∈P

MB volB. (3.2)

The sums above extend over all blocks B of the partition P . Since mB ≤MB for each B,
we have s(f ;P ) ≤ S(f ;P ).
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As in the case of functions of one variable, we shall now show that, when a partition
is refined, the lower sum does not decrease and the upper sum does not increase. Indeed,
consider the following:

Teorema 3.6 Let P and Q be partitions of the block A ⊂ Rn, with P ⊂ Q, and let
f : A→ R be a bounded function. Then

s(f ;P ) ≤ s(f ;Q) ≤ S(f ;Q) ≤ S(f ;P ). (3.3)

Proof: It is enough to prove the first and third inequalities, since the second has
already been established. We denote by B and B′ the blocks of the partitions P and Q,
respectively. From (3.1) and (3.2), we have

s(f ;P ) =
∑
B∈P

mB volB =
∑
B∈P

mB

[∑
B′⊂B

volB′
]

=
∑
B∈P

[∑
B′⊂B

mB volB′
]
≤
∑
B∈P

[∑
B′⊂B

mB′ volB′
]

=
∑
B′∈Q

mB′ volB′.

The inequality above follows from the fact that B′ ⊂ B, and therefore mB′ ≥ mB.
The third inequality is analogous, using the fact that MB′ ≤MB. 2

Corollary 3.7 Let f : A → R be bounded. For any partitions P and Q of the block A,
one has

s(f ;P ) ≤ S(f ;Q).

Proof: Since P ⊂ P +Q and Q ⊂ P +Q, it follows from the theorem above that

s(f ;P ) ≤ s(f ;P +Q) ≤ S(f ;P +Q) ≤ S(f ;Q).

2

Note 3: Any partition Q of the block A refines the trivial partition P , whose only
sub-block is A. It follows from Theorem 3.6 that if m ≤ f(x) ≤M for all x ∈ A, then

s(f ;P ) ≤ s(f ;Q) ≤ S(f ;Q) ≤ S(f ;P ).

However,

s(f ;P ) =
∑
B∈P

mB volB = mB volA (since P is trivial),

S(f ;P ) =
∑
B∈P

MB volB = MB volA.
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Thus
mB volA ≤ s(f ;Q) ≤ S(f ;Q) ≤MB volA,

and therefore

m volA ≤ s(f ;Q) ≤ S(f ;Q) ≤M volA. (3.4)

Let ℘ be the set of all partitions of A. Then the set

σ = {s(f ;Q); Q ∈ ℘}

is bounded above, and the set

Σ = {S(f ;Q); Q ∈ ℘}

is bounded below.

Definition 3.8 Let f : A → R be a bounded function defined on a block A ⊂ Rn.
We define the lower integral, denoted by

∫
A
f(x) dx, and the upper integral, denoted by∫

A
f(x) dx, of the function f over the block A by setting∫

A

f(x) dx = supσ,

∫
A

f(x) dx = inf Σ. (3.5)

Note 4: It follows from Corollary 3.7 and Note 3 that, if m ≤ f(x) ≤M , then

m volA ≤
∫
A

f(x) dx ≤
∫
A

f(x) dx ≤M volA. (3.6)

Indeed, the first and third inequalities follow from the fact that m volA and M volA
are, respectively, lower and upper bounds for the sets σ and Σ. We now prove the middle
inequality.

Proof: Suppose, by contradiction, that∫
A

f(x) dx >

∫
A

f(x) dx,

that is,
supσ > inf Σ.

Take

ϵ =
supσ − inf Σ

2
> 0.

Then, for this ϵ > 0, there exist partitions P0 and P1 in ℘ such that

inf Σ ≤ S(f ;P0) < inf Σ + ϵ = supσ − ϵ < s(f ;P1) ≤ supσ,
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that is,
S(f ;P0) < s(f ;P1),

which contradicts Corollary 3.7. 2

Note 5: Let P0 be an arbitrary partition of the block A. In order to compute the lower
and upper integrals of a bounded function f : A→ R, it suffices to consider the partitions
that refine P0, that is,∫

A

f(x) dx = sup{s(f ;P ); P ⊃ P0} and

∫
A

f(x) dx = inf{S(f ;P ); P ⊃ P0}.

Indeed, for every partition Q of the block A there exists a partition P that refines both
Q and P0, namely P = Q + P0. Then s(f ;Q) ≤ s(f ;P ) and S(f ;P ) ≤ S(f ;Q), with
P ⊃ P0, and the claim follows.

Definition 3.9 Let f : A → R be bounded on the block A ⊂ Rn. We say that f is
integrable if its lower and upper integrals coincide. In that case we define the integral of
f by ∫

A

f(x) dx =

∫
A

f(x) dx =

∫
A

f(x) dx. (3.7)

Teorema 3.10 A bounded function f : A → R is integrable on the block A ⊂ Rn if and
only if, for every ϵ > 0, there exists a partition P of A such that

S(f ;P )− s(f ;P ) < ϵ.

Proof: Suppose that f is integrable and let ϵ > 0 be given. Then, by hypothesis,

inf Σ = supσ,

where, as we have seen,

σ = {s(f ;Q); Q ∈ ℘}, Σ = {S(f ;Q); Q ∈ ℘}.

Thus, for the given ϵ > 0, there exist partitions P0, P1 ∈ ℘ such that

supσ − ϵ

2
< s(f ;P0) ≤ supσ = inf Σ ≤ S(f ;P1) < inf Σ +

ϵ

2
.

To fix ideas, see Figure 3.5:

From the last relation we obtain

S(f ;P1)− s(f ;P0) < ϵ.

Set P = P0 + P1. Then

S(f ;P )− s(f ;P ) ≤ S(f ;P1)− s(f ;P0) < ϵ.
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Figure 3.5:

Conversely, suppose that, for each ϵ > 0, there exists Pϵ ∈ ℘ such that

S(f ;Pϵ)− s(f ;Pϵ) < ϵ.

We must prove that inf Σ = supσ. Indeed, we have

S(f ;Pϵ) < ϵ+ s(f ;Pϵ) ⇒ inf Σ ≤ S(f ;Pϵ) < ϵ+ s(f ;Pϵ) ⇒
⇒ inf Σ < ϵ+ s(f ;Pϵ) ≤ ϵ+ supσ ⇒ inf Σ− supσ < ϵ. (3.8)

On the other hand, since supσ ≤ inf Σ, that is, inf Σ− supσ ≥ 0, it follows from (3.8)
that, for every ϵ > 0,

0 ≤ inf Σ− supσ < ϵ,

and, by the arbitrariness of ϵ, we obtain the equality. 2

Definition 3.11 Let f : X → R be bounded on a set X ⊂ A. We call the oscillation of
f on X the number

ωX = ω(f ;X) = sup{|f(x)− f(y)|; x, y ∈ X}. (3.9)

Lema 3.12 Let f : X → R be a bounded function. Set

mX = inf{f(x); x ∈ X}, MX = sup{f(x); x ∈ X}.

Then ωX =MX −mX .

Proof: For each x ∈ X we have f(x) ≤MX and mX ≤ f(x). It follows that

f(x)− f(y) ≤MX −mX , ∀x, y ∈ X. (3.10)

In particular,

f(y)− f(x) ≤ MX −mX , and therefore

f(x)− f(y) ≥ −(MX −mX). (3.11)

Since MX −mX ≥ 0, from (3.10) and (3.11) we obtain

|f(x)− f(y)| ≤MX −mX , ∀x, y ∈ X.
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Thus MX −mX is an upper bound for the set

{|f(x)− f(y)|; x, y ∈ X},

and hence ωX ≤MX −mX .

We now show that in fact MX −mX is the least upper bound. Indeed, given ϵ > 0,
there exist x, y ∈ X such that

mX ≤ f(x) < mX +
ϵ

2
and MX − ϵ

2
< f(y) ≤MX ,

and we may assume f(x) < f(y). Then

|f(y)− f(x)| = f(y)− f(x)

>
(
MX − ϵ

2

)
−
(
mX +

ϵ

2

)
= (MX −mX)− ϵ.

Consequently,
MX −mX < |f(y)− f(x)|+ ϵ,

and therefore
MX −mX < ωX + ϵ.

By the arbitrariness of ϵ we obtain MX −mX ≤ ωX , as required. 2

Note 6: In view of the previous lemma, we can write

S(f ;P )− s(f ;P ) =
∑
B∈P

MB volB −
∑
B∈P

mB volB

=
∑
B∈P

(MB −mB) volB

=
∑
B∈P

ωB volB. (3.12)

In view of this last observation and of Theorem 3.10, for a function f : A→ R defined
on a block A ⊂ Rn to be integrable it is necessary and sufficient that, for every ϵ > 0, one
can find a partition P of the block A such that∑

B∈P

ωB volB < ϵ. (3.13)

Proposition 3.13 Every continuous function f : A → R defined on a block A of Rn is
integrable.

Proof: Let ϵ > 0 be given. Since the block A is compact, the function f is uniformly
continuous. Hence, for the given ϵ > 0 there exists δ > 0 such that, if x, y ∈ A and
∥x− y∥ < δ, then

|f(x)− f(y)| < ϵ

volA
.
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Using on Rn the maximum norm, and letting P ∈ ℘ be a partition of A with |P | < δ,
we have that the largest diameter of the blocks B ∈ P does not exceed δ. Thus, given

x, y ∈ B we have ∥x − y∥ ≤ |P | < δ and hence |f(x) − f(y)| < ϵ

volA
, for every B ∈ P .

Therefore,
ϵ

volA
is an upper bound of the set {|f(x)− f(y)|; x, y ∈ B}, for every B ∈ P .

It follows that ωB <
ϵ

volA
for all B ∈ P . Consequently,∑
B∈P

ωB volB <
ϵ

volA

∑
B∈P

volB = ϵ,

which proves the proposition (by (3.13)). 2

Example 1.

Let A ⊂ Rn be a block and let X be the subset of A whose coordinates are rational
numbers. Define χX : A→ R by

χX(x) =

1, if x ∈ X,

0, if x /∈ X.

The function χX is called the characteristic function of X. For every partition P of the
block A and every B ∈ P , we have mB = 0 and MB = 1. It follows that s(χX ;P ) = 0
and S(χX ;P ) = volA, for every partition P . Thus the characteristic function χX is not
integrable.

Proposition 3.14 Let f, g : A→ R be integrable functions. Then:

(a) f + g is integrable and, moreover,∫
A

(f(x) + g(x)) dx =

∫
A

f(x) dx+

∫
A

g(x) dx.

(b) For every c ∈ R, the function c f is integrable and∫
A

c f(x) dx = c

∫
A

f(x) dx.

(c) If f(x) ≥ 0 for all x ∈ A, then

∫
A

f(x) dx ≥ 0. Equivalently, if f(x) ≤ g(x) for all

x ∈ A, then ∫
A

f(x) dx ≤
∫
A

g(x) dx.

(d) The function |f(x)| is integrable and∣∣∣∫
A

f(x) dx
∣∣∣ ≤ ∫

A

|f(x)| dx.

In particular, if |f(x)| ≤ C for all x ∈ A, then∣∣∣∫
A

f(x) dx
∣∣∣ ≤ C volA.
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(e) If f is continuous, there exists ξ ∈ A such that∫
A

f(x) dx = f(ξ) volA.

Proof:

(a) For every B ⊂ A we have mB(f) + mB(g) ≤ mB(f + g) and MB(f + g) ≤
MB(f) +MB(g). Indeed, note that

mB(f) +mB(g) is a lower bound of the set {(f + g)(x); x ∈ B},
MB(f) +MB(g) is an upper bound of the set {(f + g)(x); x ∈ B},

since

mB(f) ≤ f(x) and mB(g) ≤ g(x) ⇒ mB(f) +mB(g) ≤ f(x) + g(x),

MB(f) ≥ f(x) and MB(g) ≥ g(x) ⇒ MB(f) +MB(g) ≥ f(x) + g(x),

for all x ∈ B.

It follows that, for any partitions P,Q of the block A, we have

s(f ;P ) + s(g;P ) ≤ s(f + g;P ) ≤ S(f + g;Q) ≤ S(f ;Q) + S(g;Q).

Consequently,

sup{s(f ;P ); P ∈ ℘}+ sup{s(g;P ); P ∈ ℘} ≤
≤ sup{s(f + g;P ); P ∈ ℘} ≤ inf{S(f + g;Q); Q ∈ ℘} ≤

≤ inf{S(f ;Q); Q ∈ ℘}+ inf{S(g;Q); Q ∈ ℘},

or, equivalently, ∫
A
f(x) dx+

∫
A
g(x) dx ≤

≤
∫
A
[f(x) + g(x)] dx ≤

∫
A
[f(x) + g(x)] dx ≤

≤
∫
A
f(x) dx+

∫
A
g(x) dx,

which gives the desired equality and shows that f + g is integrable.

(b) We have

mB(c f) = inf{(c f)(x); x ∈ B} =

c inf{f(x); x ∈ B} = cmB(f), if c ≥ 0,

c sup{f(x); x ∈ B} = cMB(f), if c < 0,

and similarly

MB(c f) =

cMB(f), if c ≥ 0,

cmB(f), if c < 0.
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Thus

s(c f ;P ) = c s(f ;P ) and S(c f ;P ) = c S(f ;P ), if c ≥ 0,

s(c f ;P ) = c S(f ;P ) and S(c f ;P ) = c s(f ;P ), if c < 0.

Hence we have two cases:

(i) c < 0:∫
A

(c f)(x) dx = inf{S(c f ;P ); P ∈ ℘} = inf{c s(f ;P ); P ∈ ℘}

= c sup{s(f ;P ); P ∈ ℘} = c

∫
A

f(x) dx,∫
A

(c f)(x) dx = sup{s(c f ;P ); P ∈ ℘} = sup{c S(f ;P ); P ∈ ℘}

= c inf{S(f ;P ); P ∈ ℘} = c

∫
A

f(x) dx.

(ii) c > 0:∫
A

(c f)(x) dx = inf{S(c f ;P ); P ∈ ℘} = inf{c S(f ;P ); P ∈ ℘}

= c inf{S(f ;P ); P ∈ ℘} = c

∫
A

f(x) dx,∫
A

(c f)(x) dx = sup{s(c f ;P ); P ∈ ℘} = sup{c s(f ;P ); P ∈ ℘}

= c sup{s(f ;P ); P ∈ ℘} = c

∫
A

f(x) dx.

In either case, c f is integrable and∫
A

(c f)(x) dx = c

∫
A

f(x) dx.

(c) If f(x) ≥ 0 for all x ∈ A, then mB ≥ 0 for every block B ⊂ A, hence s(f ;P ) =∑
B∈P mB volB ≥ 0 for all P ∈ ℘. Consequently, sup{s(f ;P ); P ∈ ℘} ≥ 0, that is,∫

A
f(x) dx ≥ 0.

If f(x) ≤ g(x) for all x ∈ A, then (g − f)(x) ≥ 0 for all x, and therefore∫
A

(g − f)(x) dx =

∫
A

g(x) dx−
∫
A

f(x) dx ≥ 0,

that is, ∫
A

f(x) dx ≤
∫
A

g(x) dx.
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(d) Let P ∈ ℘ be a generic partition of A, and let B ∈ P be any block of P . Then

ω(f ;B) = sup{|f(x)− f(y)|; x, y ∈ B},
ω(|f |;B) = sup

{ ∣∣|f(x)| − |f(y)|
∣∣; x, y ∈ B

}
.

However, since ||f(x)| − |f(y)|| ≤ |f(x) − f(y)|, it follows that ω(|f |;B) ≤ ω(f ;B) for
every B ∈ P .

Thus ∑
B∈P

ω(|f |;B) volB ≤
∑
B∈P

ω(f ;B) volB,

and since f is integrable, (3.13) implies that |f | is integrable. Moreover, from −|f(x)| ≤
f(x) ≤ |f(x)| we obtain, by item (c),

−
∫
A

|f(x)| dx ≤
∫
A

f(x) dx ≤
∫
A

|f(x)| dx,

which means that ∣∣∣∫
A

f(x) dx
∣∣∣ ≤ ∫

A

|f(x)| dx.

If |f(x)| ≤ C for all x ∈ A, then∣∣∣∫
A

f(x) dx
∣∣∣ ≤ ∫

A

|f(x)| dx ≤
∫
A

C dx = C

∫
A

dx = C volA.

(e) Let m = inf{f(x); x ∈ A} and M = sup{f(x); x ∈ A}, which exist since f is
continuous on A. As f is integrable, we have

m volA ≤
∫
A

f(x) dx ≤M volA.

Consequently,

m ≤
∫
A
f(x) dx

volA
≤M.

Hence, by the Intermediate Value Theorem (and the fact that A is convex), there exists
ξ ∈ A such that ∫

A
f(x) dx

volA
= f(ξ).

2

The first two items of the proposition above show that the set of integrable functions
on a block A ⊂ Rn is a real vector space, and the map f 7→

∫
A
f(x) dx is a linear functional

on that space. The third item says that this functional is positive, and the fourth implies
that the functional is continuous when we consider uniform convergence in the space of
integrable functions. In other words:

Let
R(A) = { f : A→ R; f Riemann integrable }
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and consider the functional

T : R(A) −→ R

f 7−→ T (f) =

∫
A

f(x) dx.

If we equip R(A) with the metric d(f, g) = sup{|f(x)− g(x)|; x ∈ A}, then

|T (f)| ≤
∫
A

|f(x)| dx ≤ sup
x∈A

|f(x)| volA = C∥f∥,

where ∥f∥ = supx∈A |f(x)| and C = volA. Therefore T is continuous.

Item (c) is further complemented by the remark that, if f ≥ 0, then
∫
A
f(x) dx = 0

can only occur when f(x) = 0 at every point x ∈ A at which f is continuous.

Every integrable function f : A → R can be written as the difference f = f+ − f− of
two nonâ¿“negative integrable functions. The function f+ : A→ R is called the positive
part of f , whilst the function f− : A→ R is its negative part. For every x ∈ A we set

f+(x) = max{f(x), 0} and f−(x) = −min{f(x), 0}. (3.14)

Thus, when f(x) ≥ 0 we have f+(x) = f(x) and f−(x) = 0. On the other hand, if
f(x) ≤ 0, then f+(x) = 0 and f−(x) = −f(x). The equality f = f+ − f− is evident.
Hence, if f+ and f− are integrable, then f is also integrable. Conversely, since

f+(x) =
f(x) + |f(x)|

2
and f−(x) =

|f(x)| − f(x)

2
, (3.15)

for every x ∈ A, the integrability of f implies that of f+ and f−, by item (d) of the
previous proposition.

Note 7: Let A,B be blocks in Rn with B ⊂ A, and let χB : A→ R be the characteristic
function of B, that is,

χB(x) =

1, if x ∈ B,

0, if x ∈ A and x /∈ B.

We claim that χB is integrable and that∫
A

χB(x) dx = volB.

Indeed, let P0 be a partition of A that has B as one of its blocks. By Note 5, in order
to obtain the lower and upper integrals of a bounded function it suffices to consider the
partitions that refine P0, that is,∫

A

χB(x) dx = sup
P⊃P0

s(χB;P ),

∫
A

χB(x) dx = inf
P⊃P0

S(χB;P ).
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If P ⊃ P0 and C is a block of the partition P , then

s(χB;P ) =
∑
C∈P

mC volC = volB +
∑

C∈P\{B}

mC volC = volB,

since mC = inf{χB(x); x ∈ C} = 0 for all C ∈ P \ {B}.
Similarly,

S(χB;P ) =
∑
C∈P

MC volC = volB +
∑

C∈P\{B}

MC volC = volB,

because MC = sup{χB(x); x ∈ C} = 0 for all C ∈ P \ {B}.
It follows that ∫

A

χB(x) dx =

∫
A

χB(x) dx = volB.

3.2 Sets of Measure Zero

Definition 3.15 We say that a set X ⊂ Rn has measure zero, and we write medX = 0,
if, for every ϵ > 0, it is possible to find a sequence of open nâ¿“dimensional cubes
C1, C2, . . . such that

X ⊂
+∞⋃
i=1

Ci and
+∞∑
i=1

volCi < ϵ.

When necessary, to be more precise, we shall say in this situation thatX has nâ¿“dimensional
measure zero or that X has measure zero in Rn.

Example 1. Let X = {r1, r2, . . . , rn, . . .} be a countable subset of the real line R. For
each ϵ > 0 consider the intervals

In =
{
x ∈ R; rn −

ϵ

2n+2
< x < rn +

ϵ

2n+2

}
, n = 1, 2, . . . .

The family {In}n∈N is a countable covering of X and, in addition,

+∞∑
n=1

vol In =
+∞∑
n=1

ϵ

2n+2
< ϵ.

We conclude that any countable subset of the real line has measure zero. As a conse-
quence, any finite set has measure zero.

We now present a list of nine propositions on sets of measure zero.

Proposition 3.16 Every subset of a set of measure zero has measure zero.
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Proof: Let Z ⊂ Rn be a set of measure zero and let X ⊂ Z. By the definition above, for
each ϵ > 0 there exists a sequence of open nâ¿“dimensional cubes C1, C2, . . . such that
Z ⊂

⋃+∞
i=1 Ci and

∑+∞
i=1 volCi < ϵ. Since X ⊂ Z, the same sequence of cubes shows that

X also has measure zero. 2

Proposition 3.17 Every countable union of sets of measure zero is again a set of measure
zero.

Proof: Let Z =
⋃
α∈I Zα, with I ⊂ N, and suppose med(Zα) = 0 for all α ∈ I. Given

ϵ > 0, we can obtain, for each α ∈ I, a sequence of open cubes Cα1, Cα2, . . . such that
Zα ⊂

⋃+∞
j=1 Cαj and

+∞∑
j=1

vol(Cαj) <
ϵ

2α
.

It follows that Z is contained in the countable union of all the Cαj. Moreover, given any
finite subset F ⊂ I ×N, there exist m ∈ I and n ∈ N such that (α, j) ∈ F ⇒ α ≤ m and
j ≤ n, and hence

∑
(α,j)∈F

vol(Cαj) ≤
m∑
α=1

[ n∑
j=1

vol(Cαj)
]
<

m∑
α=1

ϵ

2α
< ϵ.

Therefore, regardless of the way in which the Cαj are enumerated in a sequence, we have∑
{α,j}

vol(Cαj) ≤ ϵ.

Hence med(Z) = 0. 2

In particular, since every point has measure zero, it follows that any countable subset
of Rn has measure zero in Rn.

Proposition 3.18 Let A ⊂ Rn be a block. Given any countable cover A ⊂
⋃+∞
i=1 Bi by

open blocks, we have
+∞∑
i=1

volBi ≥ volA.

Proof: Assume first that A is closed. Being bounded, A is compact. Since {Bi}i∈N is
an open cover, there exist B1, . . . , Bk in this cover such that A ⊂

⋃k
i=1Bi. Take a closed

block B such that B1 ⊂ B, . . . , Bk ⊂ B.

We have

χA ≤ χB1∪···∪Bk
≤

k∑
i=1

χBi
.
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It follows from Note 7 of the previous section and from Proposition 3.14 (items (a)
and (c)) that

volA =

∫
B

χA(x) dx ≤
∫
B

χB1(x) dx+ · · ·+
∫
B

χBk
(x) dx

= volB1 + · · ·+ volBk ≤
k∑
i=1

volBi.

If the block A is open, then for every closed block D contained in A we have

volD ≤
+∞∑
i=1

volBi.

However,

volA = sup{volD; D is a closed block contained in A}. (3.16)

Indeed, let

S = sup{volD; D is a closed block contained in A}.

Clearly S ≤ volA, since volD ≤ volA for all closed D ⊂ A. It remains to show that
S ≥ volA. In fact, let A =

∏n
j=1(aj, bj). Note that

lim
k→+∞

n∏
j=1

(
bj − aj −

1

k

)
=

n∏
j=1

(bj − aj) = volA.

Thus, given ϵ > 0, there exists k0 ∈ N such that, for all k ≥ k0,∣∣∣∣∣volA−
n∏
j=1

(
bj − aj −

1

k

)∣∣∣∣∣ < ϵ,

that is,

volA < ϵ+
n∏
j=1

(
bj − aj −

1

k

)
.

Setting

Dk(ϵ) =
n∏
j=1

[
aj +

1

2k
, bj −

1

2k

]
,

we have Dk(ϵ) ⊂ A and

volA < volDk(ϵ) + ϵ ≤ S + ϵ.

By the arbitrariness of ϵ we deduce that volA ≤ S, hence volA = S.
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Since
∑+∞

i=1 volBi is an upper bound for the set

{volD; D is a closed block contained in A},

it follows from (3.16) that volA ≤
∑+∞

i=1 volBi. 2

Note 1: It follows from the previous result that A does not have measure zero, since
there exists ϵ0 = volA such that, for every countable cover A ⊂

⋃+∞
i=1 Bi by open cubes,

we have
+∞∑
i=1

volBi ≥ volA.

From Propositions 3.16 and 3.18 it follows that every set X of measure zero has empty
interior; otherwise, if intX ̸= ∅, then X would contain some block, and hence X would
not have measure zero.

Proposition 3.19 In the definition of a set of measure zero, we may use closed cubes
instead of open cubes.

Proof: Suppose X ⊂
⋃
iCi, where each Ci is a closed cube, and

∑
i volCi < ϵ.

On the other hand, let C =
∏n

j=1[aj, aj+1] be a closed cube of edge length 1. For each
δ > 0, the set

D(δ) =
n∏
j=1

(
aj −

δ

2
, aj + 1 +

δ

2

)
is an open cube of edge length (1 + δ) that contains C. Clearly,

lim
δ→0

volD(δ) = lim
δ→0

n∏
j=1

[
(aj + 1 + δ

2
)− (aj − δ

2
)
]
= 1n = volC.

It follows that, given ϵ′ = volC > 0, there exists δ0 > 0 such that, if 0 < δ < δ0, then
|volD(δ) − volC| < volC. Since D(δ) ⊃ C, we have volD(δ) − volC ≥ 0. Thus there
exists δ > 0 such that volD(δ) < 2 volC.

Therefore, for each i we can choose an open cube Di containing Ci with volDi <
2 volCi, so that X ⊂

⋃
iDi and, in addition,∑

i

volDi <
∑
i

2 volCi < 2ϵ.

2

Proposition 3.20 Let X ⊂ Rn be such that, for every ϵ > 0, there exists a sequence of
closed blocks A1, . . . , Ai, . . . with X ⊂

⋃
iAi and

∑
i volAi < ϵ. Then medX = 0. In

other words, in the definition of a set of measure zero we may use closed blocks instead of
cubes.
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Proof: We first show the following: given a closed block A ⊂ Rn and ϵ > 0, there exist
closed cubes C1, . . . , Ck such that A ⊂

⋃k
i=1Ci and

∑k
i=1 volCi < volA+ ϵ.

Indeed, let A =
∏n

j=1[aj, bj]. Take q ∈ N. For every j = 1, . . . , n there exists an
integer pj ≥ 0 such that

pj < q(bj − aj) ≤ pj + 1,

that is,
pj
q
< bj − aj ≤

pj + 1

q
.

The block

A′ =
n∏
j=1

[
aj, aj +

pj + 1

q

]
contains A, since bj ≤ aj +

pj + 1

q
. Moreover, A′ admits a natural partition P = P1 ×

· · · × Pn, where

Pj =

{
aj, aj +

1

q
, aj +

2

q
, . . . , aj +

pj + 1

q

}
is a partition of the interval

[
aj, aj +

pj + 1

q

]
.

Note that the blocks associated with the partition P are cubes Ci, all with edges of

length
1

q
. We have

A ⊂ A′ =
⋃
i

Ci, with

∑
i

volCi = volA′ =
n∏
j=1

(pj
q
+

1

q

)
<

n∏
j=1

(
bj − aj +

1

q

)
.

Since

lim
q→+∞

n∏
j=1

(
bj − aj +

1

q

)
=

n∏
j=1

(bj − aj) = volA,

for the given ϵ > 0 there exists q0 ∈ N such that, for all q ≥ q0,∣∣∣∣∣
n∏
j=1

(
bj − aj +

1

q

)
− volA

∣∣∣∣∣ < ϵ.

Since A′ ⊃ A, we have volA′ ≥ volA and therefore

n∏
j=1

(
bj − aj +

1

q

)
< volA+ ϵ

for sufficiently large q. Consequently,∑
i

volCi < volA+ ϵ.
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Returning to the statement of the proposition, for each i ∈ N we choose closed cubes
Cij such that Ai ⊂

⋃
j Cij and ∑

j

volCij < volAi +
ϵ

2i
.

Then X ⊂
⋃
i,j Cij and, moreover,∑

i,j

volCij <
∑
i

volAi +
∑
i

ϵ

2i
< ϵ+ ϵ = 2ϵ.

By the previous proposition, we conclude that med(X) = 0. 2

Note 2: A fortiori, we may use open blocks to define measure zero.

Indeed, let X ⊂
⋃
iCi, where the Ci are open blocks and

∑
i volCi < ϵ. Clearly

X ⊂
⋃
iCi and, in addition, ∑

i

volCi =
∑
i

volCi < ϵ.

On some occasions, in order to prove that a set has measure zero, instead of covering it
with a sequence of blocks whose sum of volumes can be made arbitrarily small, it may be
convenient to leave uncovered a subset that we already know to have measure zero. This
is the content of the proposition below. It is worth noting that the set Y may depend on
ϵ.

Proposition 3.21 Let X ⊂ Rn. Suppose that, for every ϵ > 0, there exists a sequence of
blocks Ai (open or closed) such that

∑
i volAi < ϵ and

X ⊂
(⋃

i

Ai

)
∪ Y,

where med(Y ) = 0. Then X has measure zero.

Proof: Given ϵ > 0, by hypothesis we obtain blocks Ai and a set Y of measure zero
such that ∑

i

volAi <
ϵ

2
and X ⊂

(⋃
i

Ai

)
∪ Y.

Since med(Y ) = 0, we can find blocks Bj such that Y ⊂
⋃
j Bj and, moreover,∑

j

volBj <
ϵ

2
.

It follows that
X ⊂

(⋃
i

Ai

)
∪
(⋃

j

Bj

)
and ∑

i

volAi +
∑
j

volBj < ϵ.

Hence X has measure zero. 2
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Definition 3.22 A map f : X ⊂ Rn → Rm is said to be locally Lipschitz if, for every
x ∈ X, there exist an open set Vx ⊂ Rn containing x and a constant kx > 0 such that,
whenever y, z ∈ Vx, one has

∥f(y)− f(z)∥ ≤ kx∥y − z∥.

In other words, there exists an open covering X ⊂
⋃
Vx such that each restriction f |Vx∩X

is Lipschitz.

The next proposition shows that the notion of a set of measure zero is invariant under
locally Lipschitz maps. It is important to note that X and f(X) are required to lie in the
same Euclidean space Rn.

Proposition 3.23 If X ⊂ Rn has measure zero and f : X → Rn is locally Lipschitz,
then f(X) has measure zero in Rn.

Proof: First consider the case in which f is globally Lipschitz. Then there exists K > 0
such that

∥f(x)− f(y)∥ ≤ K∥x− y∥

for all x, y. We shall work with the maximum norm on Rn. Thus, given ϵ > 0, there exists
a countable covering

X ⊂
⋃
i

Ci,

where each Ci is an open cube of edge length ai, and

+∞∑
i=1

ani <
ϵ

Kn
.

For each i ∈ N, take x, y ∈ Ci ∩X. Write x = (x1, . . . , xn) and y = (y1, . . . , yn). Then

∥x− y∥ = max{|x1 − y1|, . . . , |xn − yn|} < ai,

which implies

∥f(x)− f(y)∥ ≤ K∥x− y∥ < K ai.

It follows that each of the n coordinate projections of f(X ∩ Ci) is contained in an
interval of length K ai, since if f(x) = (z1, . . . , zn) and f(y) = (w1, . . . , wn), then

∥f(x)− f(y)∥ = max{|z1 − w1|, . . . , |zn − wn|} < K ai.

Hence f(X ∩ Ci) is contained in the Cartesian product of these intervals, which is a
cube Di of volume Knani .

To fix ideas, consider the picture below in the particular case n = 2.
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Figure 3.6:

Since X =
⋃
i(X ∩ Ci), we have

f(X) =
⋃
i

f(X ∩ Ci) ⊂
⋃
i

Di,

and ∑
i

volDi =
∑
i

Knani = Kn
∑
i

ani < Kn ϵ

Kn
= ϵ.

Therefore med(f(X)) = 0.

In the general case, we have X ⊂
⋃
Vx, where each Vx is open and each restriction

f |Vx∩X is Lipschitz. By Lindelöf’s theorem (Induced Topology, Chapter 1, Proposi-
tion 1.45), X admits a countable subcover, that is,

X ⊂
⋃
j∈I

Vj,

with I ⊂ N. By the first part of the proof, f(Vj ∩ X) has measure zero for each j ∈ N.
Hence

f(X) =
+∞⋃
j=1

f(Vj ∩X)

is a countable union of sets of measure zero, and therefore med(f(X)) = 0. 2

Proposition 3.24 Let f : U ⊂ Rn → Rn be of class C1 on the open set U . If X ⊂ U
has measure zero in Rn, then f(X) ⊂ Rn also has measure zero.

Proof: For each x ∈ X, let Vx be a ball centred at x with Vx ⊂ U , and set

kx = sup{∥f ′(y)∥; y ∈ Vx}.
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Recall that the derivative map f ′ is given by

f ′ : U −→ £(Rn)

y 7−→ f ′(y),

and that on £(Rn) we are using the operator norm (supremum norm). Since f is of class
C1, the map f ′ is continuous; and as Vx is compact and contained in U , the set f ′(Vx) is
compact in £(Rn). Hence there exists C > 0 such that ∥f ′(y)∥ ≤ C for all y ∈ Vx, so kx
is well defined.

On the other hand, since Vx is convex and ∥f ′(y)∥ ≤ C for all y ∈ Vx, the mean value
inequality yields

∥f(x)− f(y)∥ ≤ kx∥x− y∥ ∀x, y ∈ Vx.

This implies that f is locally Lipschitz. Therefore, by Proposition 3.23, we obtain the
desired conclusion. 2

Note 3: Let n < m and a ∈ Rm−n. Then every subset

X ⊂ Rn × {a} ⊂ Rm

has measure zero in Rm. To fix ideas, consider Figure 3.7.

Figure 3.7:

Indeed, since Rn × {a} is a union of nâ¿“dimensional cubes, it suffices to prove this
for one such cube, say C ×{a}. Now, for every ϵ > 0, the set C ×{a} is contained in the
mâ¿“dimensional block

A = C ×
(
ai −

ϵ

2
, ai +

ϵ

2

)m−n
with volA = ϵm−n volC.

In view of Proposition 3.20 we have med(C × {a}) = 0 and, consequently, med(X) = 0.

Proposition 3.25 If n < m and f : U → Rm is of class C1 on the open set U ⊂ Rn,
then f(U) has measure zero in Rm.
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Proof: Consider 0 ∈ Rm−n. By the previous note, U ×{0} has measure zero in Rm. On
the open set

W = U × Rm−n ⊂ Rm

define the map

g : W ⊂ Rm −→ Rm

(x, y) 7−→ g(x, y) = f(x).

Clearly, g is of class C1 and, moreover,

g |U×{0}≡ f, that is, g(U × {0}) = f(U).

By Proposition 3.24 it follows that f(U) has measure zero in Rm. 2

Proposition 3.25 shows, in particular, that there are no Peano curves of class C1, that
is, the unpleasant phenomenon of a map f , defined on a subset X ⊂ Rn, whose image
contains a cube of Rm, with n < m, may occur in class C0 but not in class C1.

Definition 3.26 We say that a set X ⊂ Rn is locally of measure zero if, for each x ∈ X,
there exists an open set Vx ⊂ Rn containing x such that med(Vx ∩X) = 0.

Note 4: Let X ⊂ Rn be such that X is locally of measure zero. From the open covering
X ⊂

⋃
x∈X Vx, Lindelöf’s theorem yields a countable subcover

X ⊂
⋃
i

Vi.

Thus
X =

⋃
i

(Vi ∩X)

is a countable union of sets of measure zero; hence med(X) = 0.

Therefore, a set X ⊂ Rn is locally of measure zero if and only if it has measure zero.

Definition 3.27 An n-dimensional Ck surface in Rm is a set S ⊂ Rm that can be covered
by a family of open sets U ⊂ Rm such that each V = U ∩ S admits a parametrisation
φ : V0 → V , of class Ck, defined on an open set V0 ⊂ Rn. Each such set V = U ∩ S is
open in S. For each p ∈ S, V is called a parametrised neighbourhood of p.

Thus, an n-dimensional Ck surface in Rm is a subset such that each of its points has
a parametrised neighbourhood via an n-dimensional Ck parametrisation.

Note 5: Let S ⊂ Rm be a C1 surface of dimension n < m in Rm. Given a parametrisa-
tion φ : V0 → V of S, it follows from Proposition 3.25 that the parametrised neighbour-
hood V ⊂ S has measure zero in Rm. Since V = A ∩ S, where A is open in Rm, we see
that S is locally of measure zero and, consequently, med(S) = 0 in Rm. More generally, if
X ⊂ Rm is a countable union of C1 surfaces of dimension < m, then med(X) = 0 in Rm.
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Figure 3.8:

3.3 Characterisation of Integrable Functions

Let X ⊂ Rn and f : X → R be a bounded function. Fix x ∈ X and, for each δ > 0, set

Ω(δ) = ω[f ;X ∩Bδ(x)] = sup{|f(y)− f(z)|; y, z ∈ X ∩Bδ(x)}, (3.17)

which is the oscillation of f on the set of points of X whose distance from x is less than
δ. This defines a nonâ¿“negative function

Ω : (0,+∞) −→ R
δ 7−→ Ω(δ). (3.18)

Since f is bounded, so is Ω. Moreover, if δ ≤ δ′ then Ω(δ) ≤ Ω(δ′). Hence the limit

ω(f ;x) = lim
δ→0

ω[f ;X ∩Bδ(x)] = lim
δ→0

Ω(δ) = inf
δ>0

Ω(δ)

exists, by the Monotone Sequence Theorem. We call this limit the oscillation of the
function f at the point x.

The oscillation enjoys the following properties:

I. ω(f ;x) ≥ 0 for every x ∈ X.

This is evident, since the infimum can only be nonâ¿“negative.

II. ω(f ;x) = 0 if and only if f is continuous at x.

Note that ω(f ;x) = 0 means infδ>0Ω(δ) = 0. Thus, given ϵ > 0, there exists δ > 0
such that

0 ≤ sup{|f(y)− f(z)|; y, z ∈ X ∩Bδ(x)} < ϵ,

or, equivalently,

if y, z ∈ X ∩Bδ(x) then |f(y)− f(z)| < ϵ.

This is clearly equivalent to the continuity of f at x.
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III. If x ∈ Ẏ and Y ⊂ X, then ω(f ;x) ≤ ω(f ;Y ).

Indeed, since x ∈ Ẏ , there exists δ > 0 such that Bδ(x) ⊂ Y . Hence

ω[f ;X ∩Bδ(x)] = ω[f ;Bδ(x)],

since Bδ(x) ⊂ X, and consequently

ω(f ;x) = inf
δ>0

Ω(δ) = inf
δ>0

ω[f ;X ∩Bδ(x)]

≤ ω[f ;X ∩Bδ(x)] = ω[f ;Bδ(x)] ≤ ω(f ;Y ).

The last inequality follows from the fact that Bδ(x) ⊂ Y and therefore

sup{|f(y)− f(z)|; y, z ∈ Bδ(x)} ≤ sup{|f(y)− f(z)|; y, z ∈ Y }.

IV. If ω(f ;x) < C, then there exists δ > 0 such that ω(f ; y) < C for every y ∈ X with
∥y − x∥ ≤ δ.

Since lim
δ→0

Ω(δ) < C, by the definition of limit there exists δ > 0 such that

Ω(δ) = ω[f ;X ∩Bδ(x)] < C.

Now, given y ∈ X with ∥y − x∥ ≤ δ, that is, y ∈ Bδ(x), take η > 0 such that
Bη(y) ⊂ Bδ(x); then

ω(f ; y) = inf
η>0

ω[f ;X ∩Bη(y)] ≤ ω[f ;X ∩Bη(y)]

≤ ω[f ;X ∩Bδ(x)] < C.

V. If X ⊂ Rn is closed (respectively compact), then for every C ≥ 0 the set

{x ∈ X; ω(f ;x) ≥ C}

is closed (respectively compact).

In fact, let (yk) be a sequence in {x ∈ X; ω(f ;x) ≥ C} such that yk → y in Rn.
We shall prove that y ∈ {x ∈ X; ω(f ;x) ≥ C}, and hence that this set is closed.

Indeed, since (yk) ⊂ X and X is closed, we have y ∈ X. On the other hand, it
cannot happen that ω(f ; y) < C, because otherwise, by item IV, there would exist
δ > 0 such that ω(f, z) < C for all z ∈ X with z ∈ Bδ(y), and in particular, since
yk → y, there would exist k0 ∈ N such that ω(f, yk) < C for all k ≥ k0, which
contradicts the fact that ω(f, yk) ≥ C for all k, because

(yk) ⊂ {x ∈ X; ω(f ;x) ≥ C}.

Hence ω(f ; y) ≥ C and therefore y belongs to this set.

With these preliminaries in place, we now prove the characterisation theorem for
integrable functions.
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Teorema 3.28 A function f : A→ R, bounded on the block A ⊂ Rn, is integrable if and
only if the set Df of its points of discontinuity has measure zero.

Proof: Assume first that med(Df ) = 0 and let ϵ > 0. We must exhibit a partition P of
the block A such that ∑

B∈P

ωB volB < ϵ,

as in (3.13). Indeed:

For the given ϵ > 0, and using the fact that the set Df has measure zero, there exists
a countable covering {C ′

i} of Df by open cubes such that∑
i

volC ′
i <

ϵ

2K
,

where K =M −m (the difference between the supremum and infimum of f on A) is the
oscillation of f on the block A. For each x ∈ A \Df , take an open cube C ′′

x containing x

such that the oscillation of f on the closure C ′′
x is less than

ϵ

2 volA
. Since A is compact,

from the open covering

A ⊂
(⋃

i

C ′
i

)
∪
( ⋃
x∈A\Df

C ′′
x

)
we can extract a finite subcover

A ⊂ C ′
1 ∪ · · · ∪ C ′

r ∪ C ′′
1 ∪ · · · ∪ C ′′

s .

Let P be a partition of A such that each (open) block B ∈ P is contained either in one
of the cubes C ′

i or in one of the cubes C ′′
j . More precisely, if

A =
n∏
k=1

[ak, bk],

then P = P1 × · · · × Pn, where, for each k = 1, . . . , n, Pk is the set consisting of ak, bk,
together with the k-th coordinates of the vertices of the cubes C ′

i and C ′′
j . The picture

below illustrates how to ‘prolong the faces’ of five cubes in order to obtain a partition of
the block A.

We denote generically by B′ those blocks of P that are contained in some cube C ′
i.

The remaining blocks (necessarily contained in cubes C ′′
j ) will be denoted by B′′. The

sum of the volumes of the blocks B′ is less than
ϵ

2K
, and on each block B′′ the oscillation

of f does not exceed
ϵ

2 volA
. Therefore, the partition P gives∑

B∈P

ωB volB =
∑
B′

ωB′ volB′ +
∑
B′′

ωB′′ volB′′

≤ K
∑
B′

volB′ +
ϵ

2 volA

∑
B′′

volB′′

< K
ϵ

2K
+

ϵ

2 volA
volA = ϵ.
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Figure 3.9:

Hence f is integrable.

Conversely, suppose that f is integrable. We shall prove that Df has measure zero.
Let ϵ > 0 be given. For each i ∈ N∗ set

Di =
{
x ∈ A; ω(f ;x) ≥ 1

i

}
.

We shall prove that

Df =
+∞⋃
i=1

Di. (3.19)

Indeed, as observed above, if ω(f ;x) > 0 then f is discontinuous at x. SinceDi collects

the points of A such that ω(f ;x) ≥ 1

i
> 0, the function f is discontinuous at every point

of Di, for any i. Therefore Di ⊂ Df for all i, and hence
⋃+∞
i=1 Di ⊂ Df .

On the other hand, if x ∈ Df , then ω(f ;x) > 0. Choose i0 ∈ N∗ such that 0 <
1

i0
≤

ω(f ;x). Then

x ∈ Di0 =
{
x ∈ A; ω(f ;x) ≥ 1

i0

}
,

and thus Df ⊂
⋃+∞
i=1 Di, which proves (3.19).

To show thatDf has measure zero, it suffices to prove that, for each i ∈ N∗, med(Di) =
0. Indeed, since f is integrable, for the given ϵ > 0 there exists a partition P of the block
A such that ∑

B∈P

ωB volB <
ϵ

i
.

Let B′ denote those blocks of the partition P that contain some point of Di in their
interior. By item III, since x ∈ B′◦ and B′◦ ⊂ B′, we have ω(f ;x) ≤ ω(f ;B′) and

therefore ω(f ;B′) ≥ 1

i
. Hence

1

i

∑
B′∈P

volB′ ≤
∑
B′∈P

ωB′ volB′ ≤
∑
B∈P

ωB volB <
ϵ

i
.
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Multiplying by i we obtain ∑
B′∈P

volB′ < ϵ.

Now, clearly

Di ⊂
( ⋃
B′∈P

B′
)
∪ Y,

where Y is the union of the proper faces of the blocks B ∈ P that contain some point ofDi.
We know that Y has measure zero. By Proposition 3.21 we conclude that med(Di) = 0,
which completes the proof. 2

Definition 3.29 A bounded set X ⊂ Rn is said to be J-measurable (Jordan-measurable)
if, taking a block A ⊂ Rn that contains X, the characteristic function χX : A → R is
integrable.

When X is Jâ¿“measurable, its volume is, by definition, the integral of its character-
istic function:

volX =

∫
A

χX(x) dx. (3.20)

As a consequence of Lebesgue’s theorem, we shall now prove an important characteri-
sation of J-measurable sets. Before doing so, recall that the boundary δX of a set X ⊂ Rn

is the set of points x ∈ Rn such that every neighbourhood of x contains points of X and
points of Rn \X. One has the disjoint union

Rn = X◦ ∪ δX ∪ (Rn \X)◦.

Figure 3.10:

Teorema 3.30 A bounded set X ⊂ Rn is J-measurable if and only if its boundary has
measure zero.
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Proof: Given a block A ⊃ X in Rn, let D be the set of points of discontinuity of
the characteristic function χX : A → R. Note that the possible discontinuities of the
characteristic function occur on the boundary of X, that is, D ⊂ δX, because

A = X◦ ∪ δX ∪ (A \X)◦

and, moreover, the characteristic function is continuous on X◦ and on (A \X)◦.

On the other hand, a point of δX which is not a point of discontinuity of χX must
belong to δA. Indeed, suppose otherwise that x /∈ D, x ∈ δX and yet x /∈ δA. Since x
is a point of discontinuity of χX , it is clear that x ∈ A; and as x /∈ δA, it follows that
x ∈ A◦. Hence there exists ϵ0 > 0 such that Bϵ0(x) ⊂ A.

Choose n0 ∈ N sufficiently large so that 1
n0
< ϵ0. Then, for every n ≥ n0, we have

B1/n(x) ⊂ Bϵ0(x) ⊂ A.

Since we are assuming that x ∈ δX, for each n ≥ n0 there exist points yn, zn ∈ B1/n(x)
with yn ∈ X and zn ∈ A \ X. The sequences (yn) and (zn) then converge to x, with
χX(yn) = 1 and χX(zn) = 0. It follows that x is a point of discontinuity of χX , which is
a contradiction. Thus, a point of δX is either a point of discontinuity of χX or a point
that belongs to the boundary of A. In other words,

δX = D ∪ (δX ∩ δA).

The figure below (Figure 3.11) illustrates the case where x ∈ δX and x /∈ D.

Figure 3.11:

Note that if X ⊂ A◦ then δX = D. Since δA has measure zero in Rn, it follows that

med(δX) = 0 ⇐⇒ med(D) = 0.

Indeed, if med(δX) = 0, then D ⊂ δX implies med(D) = 0, since every subset of a
set of measure zero has measure zero. Conversely, assume that med(D) = 0. To prove
that med(δX) = 0, it suffices to show that med(δX ∩ δA) = 0, since a countable union
of sets of measure zero has measure zero. However, δX ∩ δA ⊂ δA and med(δA) = 0, so
med(δX ∩ δA) = 0.

Thus med(δX) = 0 ⇐⇒ med(D) = 0, and, in view of Lebesgueâ¿�s theorem, X is
J-measurable ⇐⇒ med(D) = 0, which proves the theorem. 2
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Note 1: We have just proved that the characterisation of J-measurable sets does not
depend on the choice of the block containing them. Likewise, the value of volX is also
independent of the block A taken in the definition.

Note 2: A block is a J-measurable set, and its volume has already been determined in
Note 7 of Section 3.1. A ball (open or closed) is Jâ¿“measurable because its boundary is
a sphere, which has measure zero, according to Note 3 of Section 3.2. More generally, if
X ⊂ Rn is a bounded set whose boundary is a countable union of C1-surfaces of dimension
< n, then X is J-measurable.

Definition 3.31 Given a bounded set X ⊂ Rn, we may consider a block A ⊃ X in Rn

and define the inner volume and outer volume of X, respectively, by

vol intX =

∫
A

χX(x) dx and vol extX =

∫
A

χX(x) dx.

Recalling the definitions of the lower and upper integrals, we see that

vol intX = sup{s(χX ;P ); P ∈ ℘},
vol extX = inf{S(χX ;P ); P ∈ ℘},

where ℘ is the set of all possible partitions of the block A.

We denote by P a partition of the block A and by B the blocks of P . Then

s(χX ;P ) =
∑
B∈P

mB volB and S(χX ;P ) =
∑
B∈P

MB volB,

where mB = inf{χX(x); x ∈ B} and MB = sup{χX(x); x ∈ B}.
Observe that:

s(χX ;P ) is the sum of the volumes of those blocks of P which are contained in X,
since if B ⊂ X then mB = 1 and if B is not contained in X then mB = 0. Consequently,

s(χX ;P ) =
∑
B∈P
B⊂X

volB.

Similarly:

S(χX ;P ) is the sum of the volumes of the blocks of P that have a non-empty intersec-
tion with X, because if B ∈ P is such that B∩X ̸= ∅ thenMB = 1, whereas if B∩X = ∅
then MB = 0. Thus

S(χX ;P ) =
∑
B∈P

B∩X ̸=∅

volB.

To fix ideas, see the figure below (Figure 3.12):

Note 3: Let X ⊂ Rn be a J-measurable set. Then X has volume zero if and only if it
has outer volume zero. Indeed, if volX = 0, then∫

A

χX(x) dx = 0,
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Figure 3.12:

and consequently
∫
A
χX(x) dx = 0, that is, vol extX = 0.

Conversely, if vol extX = 0, then, since

0 ≤
∫
A

χX(x) dx ≤
∫
A

χX(x) dx,

it follows that vol intX = 0. Therefore volX = 0.

From what we have seen above,

vol extX = inf{S(χX ;P ); P ∈ ℘∗},

where ℘∗ is the set of partitions P of the block A such that the blocks of P have some
point in common with X. In this case

S(χX ;P ) =
∑
B∈P

B∩X ̸=∅

volB.

Since vol extX = 0, for every ϵ > 0 one can find a block A ⊃ X and a partition P
of A such that the sum of the volumes of the blocks of P that intersect X is less than ϵ.
This is equivalent to saying that, given ϵ > 0, there exist blocks B1, . . . , Bk in Rn with

X ⊂ B1 ∪ · · · ∪Bk and
k∑
i=1

volBi < ϵ.

Now consider a compact J-measurable set K ⊂ Rn. Then volK = 0 if and only if
med(K) = 0. Indeed:

If volK = 0, then vol extK = 0 and, as seen above, given ϵ > 0 there exist blocks
B1, . . . , Bk in Rn such that

K ⊂
k⋃
i=1

Bi and
k∑
i=1

volBi < ϵ,

that is, med(K) = 0.
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Conversely, if med(K) = 0, then given ϵ > 0 there exists a countable open covering

K ⊂
∞⋃
i=1

Bi with
∞∑
i=1

volBi < ϵ.

Since K is compact, there exist blocks B1, . . . , Bk with

K ⊂
k⋃
i=1

Bi and
k∑
i=1

volBi < ϵ,

which implies that vol extK = 0 and consequently volK = 0.

For example, the boundary ∂X of a bounded set is always compact (because ∂X ⊂ X,
∂X is closed, and X is compact). Hence the following statements are equivalent:

(a) X is J-measurable;

(b) ∂X has measure zero;

(c) ∂X has volume zero.

Note 4: A set which is not compact and has measure zero is not necessarily J-measurable.
For instance, the set of points of a block A whose coordinates are rational is countable,
hence has measure zero, but is not J-measurable, as seen in Note 7 of Section 3.1, since its
characteristic function is not integrable in any block containing A. However, if X ⊂ Rn

is J-measurable and has measure zero (or more generally has empty interior), then its
volume must be zero, because, as no block is contained in X, we have volX◦ = 0, and
therefore vol extX = 0; and since X is J-measurable, vol intX = vol extX. Thus, if
X ⊂ Rn is J-measurable, we have

volX = 0 ⇐⇒ X◦ = ∅.

Indeed:

If volX = 0, then vol extX = 0, which implies med(X) = 0 and consequently X◦ = ∅.
Conversely, if X◦ = ∅, then, for the reason given above (no block is contained in X and
hence volX◦ = 0), we have volX = 0.

Teorema 3.32 Let X, Y be J-measurable subsets of a block A ⊂ Rn. Then:

(a) X ∪ Y , X ∩ Y and A \X are J-measurable;

(b) vol(X ∪ Y ) + vol(X ∩ Y ) = volX + volY .

Proof: Assertion (a) follows immediately from the three inclusions below, which in turn
follow from the definition of boundary:

∂(X ∪ Y ) ⊂ ∂X ∪ ∂Y, ∂(X ∩ Y ) ⊂ ∂X ∪ ∂Y, ∂(A \X) ⊂ ∂A ∪ ∂X.
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Assertion (b) follows from the equality

χX∪Y + χX∩Y = χX + χY ,

which is straightforward to verify. 2

Corollary 3.33 If X, Y are J-measurable and X◦ ∩ Y ◦ = ∅, then

vol(X ∪ Y ) = volX + volY.

Since (X∩Y )◦ = X◦∩Y ◦, the hypothesis of the corollary means that the J-measurable
sets X and Y have at most points of their boundaries in common.

Definition 3.34 We now define the integral of a bounded function f : X → R whose
domain is a J-measurable set X ⊂ Rn. To this end, consider a block A ⊂ Rn that
contains X and extend f to a function f̃ : A→ R by setting

f̃(x) =

{
f(x), if x ∈ X,

0, if x ∈ A \X.

We say that f is integrable on X if the function f̃ is integrable on A and we define∫
X

f(x) dx =

∫
A

f̃(x) dx.

Evidently, the above definition does not depend on the choice of the block A ⊃ X.

Note 5: One sometimes writes f̃ = fχX , meaning that f̃(x) = f(x)χX(x) for all x ∈ A.
This is an abuse of notation corresponding to treating a product as zero when one factor
is zero and the other is not defined. What is actually true is that f̃ = f̃χX .

Teorema 3.35 Let X ⊂ Rn be a J-measurable set. A bounded function f : X → R is
integrable if and only if the set Df of its points of discontinuity has measure zero.

Proof: First note that every point of discontinuity of f is also a point of discontinuity
of f̃ . In fact, if f is discontinuous at a point x ∈ X, there exists a sequence (xk) of points
in X such that f(xk) does not converge to f(x). It is then clear that x is a point of
discontinuity of f̃ , and thus Df ⊂ Df̃ .

Hence the points of discontinuity of f̃ are either points of discontinuity of f or lie on
the boundary of X, since

A = X◦ ∪ ∂X ∪ (A \X)◦,

and f̃ is continuous on (A \X)◦. Thus

Df ⊂ Df̃ ⊂ Df ∪ ∂X.
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Since ∂X has measure zero, we see that med(Df ) = 0 if and only if med(Df̃ ) = 0. By

definition, f is integrable on X if and only if f̃ is integrable on A, that is, if and only if
med(Df̃ ) = 0. This proves the theorem, as summarised in the scheme below:

f integrable on X ⇐⇒ f̃ integrable on A

↕ ↕
med(Df ) = 0 ⇐⇒ med(Df̃ ) = 0.

2

Definition 3.36 Let f : X ⊂ Rn → R be bounded on the J-measurable set X ⊂ Rn. We
define the lower integral and the upper integral of f on X by∫

X

f(x) dx =

∫
A

f̃(x) dx and

∫
X

f(x) dx =

∫
A

f̃(x) dx,

where A is a block in Rn containing X and f̃ : A→ R is the extension of f which vanishes
on A \X.

Clearly, f is integrable on X if and only if its lower and upper integrals coincide on
X.

Proposition 3.37 (Properties) Let f, g : X → R be integrable functions on the J-
measurable set X ⊂ Rn and let C ∈ R. Then:

(a) The functions Cf and f + g are integrable on X, and∫
X

(Cf)(x) dx = C

∫
X

f(x) dx.

(b) If f(x) ≤ g(x) for all x ∈ X, then∫
X

f(x) dx ≤
∫
X

g(x) dx.

In particular, if m ≤ f(x) ≤M for all x ∈ X, then

m volX ≤
∫
X

f(x) dx ≤M volX.

(c) The function x 7→ |f(x)| is integrable and∣∣∣∣∫
X

f(x) dx

∣∣∣∣ ≤ ∫
X

|f(x)| dx.

In particular, if |f(x)| ≤ K for all x ∈ X, then∣∣∣∣∫
X

f(x) dx

∣∣∣∣ ≤ K volX.
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(d) If f is continuous and X is connected, then there exists x0 ∈ X such that∫
X

f(x) dx = f(x0) volX.

Proof:

(a) Let A ⊂ Rn be a block containing X and let f̃ , g̃ : A→ R be the extensions of f and
g which are equal to zero on A\X. The extensions of Cf and f+g are, respectively,
Cf̃ and f̃ + g̃. By hypothesis, f̃ and g̃ are integrable on A, and therefore so are Cf̃
and f̃ + g̃. Hence Cf and f + g are integrable on X and, moreover,∫

X

(Cf)(x) dx =

∫
A

Cf̃(x) dx = C

∫
A

f̃(x) dx = C

∫
X

f(x) dx,∫
X

[f(x) + g(x)] dx =

∫
A

[f̃(x) + g̃(x)] dx =

∫
A

f̃(x) dx+

∫
A

g̃(x) dx

=

∫
X

f(x) dx+

∫
X

g(x) dx.

(b) If f(x) ≤ g(x) for all x ∈ X, then f̃(x) ≤ g̃(x) for all x ∈ A. Thus∫
X

f(x) dx =

∫
A

f̃(x) dx ≤
∫
A

g̃(x) dx =

∫
X

g(x) dx.

If m ≤ f(x) ≤M for all x ∈ X, then

mχX(x) ≤ f̃(x) ≤M χX(x) for all x ∈ A.

Hence

m volX = m

∫
A

χX(x) dx =

∫
A

mχX(x) dx ≤
∫
A

f̃(x) dx =

∫
X

f(x) dx,

and similarly ∫
X

f(x) dx ≤M volX.

(c) Let g : X → R be defined by g(x) = |f(x)|. Clearly Dg ⊂ Df , because if x ∈ Dg

then there exists a sequence (xn) ⊂ X such that xn → x and |f(xn)| ̸→ |f(x)|. It
follows that f(xn) ̸→ f(x), that is, x ∈ Df . Hence g is integrable. The extension
g̃ : A → R is given by g̃(x) = |f̃(x)|, where f̃ : A → R is the extension of f .
Therefore ∣∣∣∣∫

X

f(x) dx

∣∣∣∣ =

∣∣∣∣∫
A

f̃(x) dx

∣∣∣∣ ≤ ∫
A

|f̃(x)| dx

=

∫
A

g̃(x) dx =

∫
X

|f(x)| dx.

If |f(x)| ≤ K for all x ∈ X, then∣∣∣∣∫
X

f(x) dx

∣∣∣∣ ≤ ∫
X

|f(x)| dx ≤ K volX.
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(d) Since X is connected, f(X) is an interval whose endpoints are m and M , where
M = maxx∈X f(x) and m = minx∈X f(x). As

1

volX

∫
X

f(x) dx

belongs to this interval, it equals f(x0) for some x0 ∈ X.

2

Proposition 3.38 Let X, Y ⊂ Rn be J-measurable sets. A function f : X ∪ Y → R is
integrable if and only if its restrictions f |X and f |Y are integrable. In this case,∫

X∪Y
f(x) dx+

∫
X∩Y

f(x) dx =

∫
X

f(x) dx+

∫
Y

f(x) dx.

In particular, if X and Y have no interior points in common, then∫
X∪Y

f(x) dx =

∫
X

f(x) dx+

∫
Y

f(x) dx.

Proof: Let D, DX and DY denote the sets of points of discontinuity of f , f |X and f |Y ,
respectively. Then

DX ∪DY ⊂ D ⊂ DX ∪DY ∪ ∂X ∪ ∂Y.

We know that ∂X and ∂Y have measure zero. Therefore

med(D) = 0 ⇐⇒ med(DX) = med(DY ) = 0,

that is, f is integrable if and only if f |X and f |Y are integrable.

In this case, let A be a block in Rn containing X ∪ Y and let f̃ : A → R be the
extension of f which vanishes on A \ (X ∪ Y ). Then f̃ = f̃χX∪Y . From the equality

χX∪Y + χX∩Y = χX + χY

we obtain

f̃ + f̃χX∩Y = f̃χX + f̃χY ,

and hence∫
X∪Y

f(x) dx+

∫
X∩Y

f(x) dx =

∫
A

f̃(x) dx+

∫
A

f̃(x)χX∩Y (x) dx

=

∫
A

f̃(x)χX(x) dx+

∫
A

f̃(x)χY (x) dx

=

∫
X

f(x) dx+

∫
Y

f(x) dx.
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If X and Y have no interior points in common, then vol(X ∩Y ) = 0, in view of Note 4
of this section. On the other hand, there exists K > 0 such that |f(x)| ≤ K for all
x ∈ X ∪ Y . Thus ∣∣∣∣∫

X∩Y
f(x) dx

∣∣∣∣ ≤ K vol(X ∩ Y ) = 0.

Consequently,
∫
X∩Y f(x) dx = 0, which completes the proof. 2

Corollary 3.39 Let f : X → R be integrable on the J-measurable set X ⊂ Rn. If Y ⊂ X
is Jâ¿“measurable and X \ Y has empty interior, then∫

X

f(x) dx =

∫
Y

f(x) dx.

In particular, if U = X◦, then ∫
X

f(x) dx =

∫
U

f(x) dx.

Proof: The corollary follows from the last part of Proposition 3.38, applied to the
equality X = (X \ Y ) ∪ Y , together with the following observations:

1. The set X \ Y is J-measurable, since if we take a block A ⊃ X, then

X \ Y = X ∩ (A \ Y ),

and we may apply Proposition 3.32 to X and A \ Y .

2. As the J-measurable set X \ Y has empty interior, its volume is zero (by Note 4).
Hence ∫

X\Y
f(x) dx = 0.

Therefore ∫
X

f(x) dx =

∫
X\Y

f(x) dx+

∫
Y

f(x) dx =

∫
Y

f(x) dx.

3. If U = X◦, then ∂U ⊂ ∂X, so U is J-measurable. Moreover,

X \ U = ∂X

has empty interior, and thus ∫
X

f(x) dx =

∫
U

f(x) dx.
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2

Note 6: The corollary above shows that, when considering integrals over J-measurable
sets in Rn, there is no loss of generality in assuming that such sets are open. It should be
noted, however, that not every bounded open set is J-measurable. There is a particular
case in which we can define the integral of a function f : U → R defined on an open set
U ⊂ Rn, even if U is not J-measurable: this happens when f has compact support, where

supp(f) = {x ∈ U ; f(x) ̸= 0}
U
.

If supp(f) is compact, we can define∫
U

f(x) dx =

∫
K

f(x) dx,

where K is any J-measurable set such that

supp(f) ⊂ K ⊂ U.

The integral exists provided the set of points of discontinuity of f has measure zero.
Such a compact J-measurable set K also exists. Observe that

d(supp(f),Rn \ U) = δ > 0.

Using the maximum norm, we can cover the compact set supp(f) by finitely many closed
cubes of edge length < δ and take K as the union of these cubes.

Figure 3.13:

The integral
∫
K
f(x) dx clearly does not depend on the set K chosen under these

conditions, since f vanishes outside supp(f).

3.4 Repeated Integration

The reduction of an integral over an n-dimensional block (multiple integral) to a sequence
of n integrals of functions of one variable (repeated or iterated integral) is an effective
computational tool.
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Clearly, to reduce an integral over a block to successive integrals over intervals, it
suffices to consider A = A1 × A2 ⊂ Rm+n, where A1 ⊂ Rm and A2 ⊂ Rn are blocks, and
to show that any integral over A can be obtained by integrating first over A2 and then
over A1 (or vice versa). This is what we shall do. Points of A1 × A2 will be written as
(x, y), where x ∈ A1, y ∈ A2. If f : A1×A2 → R is integrable, its integral will be denoted
by ∫

A1×A2

f(x, y) d(x, y).

Given f : A1 ×A2 → R, for each x ∈ A1 we write fx : A2 → R, where fx(y) = f(x, y),
y ∈ A2. Thus fx is essentially the restriction of f to the nâ¿“dimensional block {x}×A2.
Even assuming f to be integrable, the function fx may, for some values of x ∈ A1, fail to
be integrable. Indeed, the set of points of discontinuity of f has measure zero in Rm+n,
but its intersection with some block {x}×A2 may fail to have nâ¿“dimensional measure
zero.

Example. Let f : [0, 1]× [0, 1] → R be defined by

f(x, y) =


0, if x ̸= 1

2
,

1, if x = 1
2
and y is rational,

0, if x = 1
2
and y is irrational.

The set of points of discontinuity of f is the vertical segment {1/2} × [0, 1], which has
measure zero in R2. Thus f is integrable. For every x ̸= 1

2
, fx : [0, 1] → R is identically

zero and hence integrable. But f1/2 is discontinuous at every point of the interval [0, 1],
and therefore is not integrable.

Teorema 3.40 (Repeated Integration) Let f : A1 × A2 → R be integrable on the
product of blocks A1 ⊂ Rm, A2 ⊂ Rn. For each x ∈ A1, let fx : A2 → R be defined by
fx(y) = f(x, y) and set

φ(x) =

∫
A2

fx(y) dy, ψ(x) =

∫
A2

fx(y) dy.

The functions φ, ψ : A1 → R thus defined are integrable and satisfy∫
A1

φ(x) dx =

∫
A1

ψ(x) dx =

∫
A1×A2

f(x, y) dx dy,

that is,

∫
A1×A2

f(x, y) dx dy =

∫
A1

dx

(∫
A2

f(x, y) dy

)
=

∫
A1

dx

(∫
A2

f(x, y) dy

)
.
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Proof: Let P = P1 × P2 be an arbitrary partition of A1 × A2. The blocks of P are the
products B1 × B2, where B1 ∈ P1 and B2 ∈ P2. The lower sum of f with respect to the
partition P is

s(f ;P ) =
∑

mB1×B2 volB1 volB2

=
∑
B1∈P1

( ∑
B2∈P2

mB1×B2 volB2

)
volB1.

For every x ∈ B1, one has mB1×B2 = mB1×B2(f) ≤ mB2(fx). Hence∑
B2∈P2

mB1×B2 volB2 ≤
∑
B2∈P2

mB2(fx) volB2 ≤ φ(x).

Since this inequality holds for every x ∈ B1, we conclude that∑
B2∈P2

mB1×B2 volB2 ≤ mB1(φ).

Therefore
s(f ;P ) ≤

∑
B1∈P1

mB1(φ) volB1 = s(φ;P1).

Similarly, one proves the inequality S(φ;P1) ≤ S(f ;P ). Thus

s(f ;P ) ≤ s(φ;P1) ≤ S(φ;P1) ≤ S(f ;P )

for any partition P = P1 × P2. Since f is integrable, it follows immediately that φ is
integrable and ∫

A1

φ(x) dx =

∫
A1×A2

f(x, y) dx dy.

The assertion concerning ψ is proved in the same way. 2

Corollary 3.41 If f : A1 × A2 → R is integrable, then∫
A1×A2

f(x, y) dx dy =

∫
A1

dx

(∫
A2

f(x, y) dy

)
=

∫
A2

dy

(∫
A1

f(x, y) dx

)
,

and there are three further analogous equalities, obtained by taking lower and upper inte-
grals inside the parentheses. In particular, if fx and fy are continuous for all x ∈ A1 and
y ∈ A2 (for example, if f is continuous), then∫

A1×A2

f(x, y) dx dy =

∫
A1

dx

(∫
A2

f(x, y) dy

)
=

∫
A2

dy

(∫
A1

f(x, y) dx

)
.

Proof: Indeed, everything we did with x in the previous theorem can equally well be
done with y. 2



Chapter 4

Differential Forms

4.1 k-Forms

In what follows, Rn will denote a vector space of dimension n (not necessarily the usual

Euclidean space we work with). We fix an arbitrary basis {e1, . . . , en} of Rn. Thus, if

v ∈ Rn, then

v = a1e1 + · · ·+ anen,

that is, we can write any vector of Rn as a linear combination of the basis elements, and

this combination is unique.

Definition 4.1.1 A 1-form on Rn is a map

ω : Rn −→ R

which is linear, or, in other words, a linear functional. Hence

ω(λ1ξ1 + λ2ξ2) = λ1ω(ξ1) + λ2ω(ξ2), ∀ ξ1, ξ2 ∈ Rn, ∀λ1, λ2 ∈ R.

We denote by (Rn)∗ the set of all 1-forms. This set is called the dual of Rn and is

a vector space over R, endowed with the operations

i) (ω1 + ω2)(ξ) = ω1(ξ) + ω2(ξ),

ii) (λω)(ξ) = λω(ξ),

for all ω1, ω2 ∈ (Rn)∗ and λ ∈ R.

145
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We shall now show that (Rn)∗ is a vector space of dimension n by exhibiting a basis

{X1, . . . , Xn} of linear functionals, defined for each i = 1, . . . , n by

Xi : Rn −→ R

ξ = a1e1 + · · ·+ anen 7−→ Xi(ξ) = ai.

In fact, Xi(ξ) = ai is the i-th coordinate of the point x ∈ Rn. Note that, since

ej = 0e1 + · · ·+ 1ej + · · ·+ 0en,

we have

Xi(ej) =

{
1, i = j,

0, i ̸= j.

In view of this, we shall prove that {X1, . . . , Xn} is a basis of (Rn)∗. Indeed:

1) X1, . . . , Xn are linearly independent, because if

λ1X1 + · · ·+ λnXn = 0,

(where 0 denotes the zero 1-form, the neutral element of (Rn)∗), then

(λ1X1 + · · ·+ λnXn)(ei) = 0,

that is,

λ1X1(ei) + · · ·+ λiXi(ei) + · · ·+ λnXn(ei) = 0,

whence λi = 0 for all i = 1, . . . , n.

2) X1, . . . , Xn span (Rn)∗, since, given ω ∈ (Rn)∗, we have, for every

ξ = a1e1 + · · ·+ anen ∈ Rn,

ω(ξ) = ω(a1e1 + · · ·+ anen)

= a1ω(e1) + · · ·+ anω(en)

= X1(ξ)ω(e1) + · · ·+Xn(ξ)ω(en)

= (λ1X1 + · · ·+ λnXn)(ξ),

where λi = ω(ei) are real numbers.

Therefore, there exist λ1, . . . , λn ∈ R such that

ω = (λ1X1 + · · ·+ λnXn),

which proves that the subspace generated by X1, . . . , Xn is precisely (Rn)∗, that is,

[X1, . . . , Xn] = (Rn)∗.
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Example 4.1.2 Consider a uniform force field F in R3 and define

ω : R3 −→ R, ξ 7−→ ω(ξ) = ⟨F, ξ⟩.

The value ω(ξ) represents the work done by the field F in displacing a particle through

Figure 4.1: Force field

a distance equal to the modulus of ξ. The map ω is clearly a linear functional, by the

linearity of the inner product.

Definition 4.1.3 A 2-form on Rn is a map

ω2 : Rn × Rn −→ R

which is bilinear and antisymmetric.

Thus, for all ξ1, ξ
′
1, ξ2 ∈ Rn and all λ1, λ

′
1 ∈ R, we have

ω2(λ1ξ1 + λ′1ξ
′
1, ξ2) = λ1ω

2(ξ1, ξ2) + λ′1ω
2(ξ′1, ξ2),

and

ω2(ξ1, ξ2) = −ω2(ξ2, ξ1).

Example 4.1.4 Let R2 be the plane. Given ξ = ξ1e1 + ξ2e2 and η = η1e1 + η2e2 in R2,

set

ω2 : R2 × R2 −→ R, (ξ, η) 7−→ ω2(ξ, η) =

∣∣∣∣ ξ1 ξ2
η1 η2

∣∣∣∣ = ξ1η2 − η1ξ2.
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Then ω2 is a 2-form on R2. In fact, writing ξ = ξ1e1+ξ2e2, η = η1e1+η2e2, ν = ν1e1+ν2e2,

we have

ω2(ξ + η, ν) =

∣∣∣∣ ξ1 + η1 ξ2 + η2
ν1 ν2

∣∣∣∣
= (ξ1 + η1)ν2 − (ξ2 + η2)ν1

= (ξ1ν2 − ξ2ν1) + (η1ν2 − η2ν1)

=

∣∣∣∣ ξ1 ξ2
ν1 ν2

∣∣∣∣+ ∣∣∣∣ η1 η2
ν1 ν2

∣∣∣∣
= ω2(ξ, ν) + ω2(η, ν).

Similarly, one proves that

ω2(λξ, η) = λω2(ξ, η), ∀λ ∈ R.

It remains to prove antisymmetry. Indeed,

ω2(ξ, η) = ξ1η2 − η1ξ2 = −(η1ξ2 − ξ1η2) = −ω2(η, ξ).

Remark 4.1.5 Geometrically, the modulus of ω2(ξ, η) is the area of the parallelogram

generated by the vectors ξ and η.

Figure 4.2:

Recall this fact:

The area of the parallelogram above is given by

|η| · h = |η| · |ξ| sin θ = ∥ξ ∧ η∥.

On the other hand, writing ξ = ξ1e1 + ξ2e2 + 0e3, η = η1e1 + η2e2 + 0e3, we have

ξ ∧ η =

∣∣∣∣∣∣
i j k
ξ1 ξ2 0
η1 η2 0

∣∣∣∣∣∣ = (0, 0, ξ1η2 − ξ2η1).

Hence ∥ξ ∧ η∥ = |ξ1η2 − ξ2η1|.
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Figure 4.3:

Example 4.1.6 Let R3 be Euclidean space and consider ξ = ξ1e1 + ξ2e2 + ξ3e3, η =

η1e1 + η2e2 + η3e3 in R3. Define

ω2 : R3 × R3 −→ R, (ξ, η) 7−→ ω2(ξ, η) =

∣∣∣∣ ξ1 ξ2
η1 η2

∣∣∣∣ .
In view of the previous example, ω2 is a 2-form on R3. From a geometric point of view,

the modulus of ω2(ξ, η) is the area of the projection on the x1x2-plane of the parallelogram

generated by the vectors ξ and η.

Figure 4.4:

Example 4.1.7 Let R3 be Euclidean space and let v be a uniform velocity field. Define

ω2 : R3 × R3 −→ R, (ξ, η) 7−→ ω2(ξ, η) = [v, ξ, η] = ⟨v, ξ ∧ η⟩.

Indeed, writing v = v1e1 + v2e2 + v3e3, ξ = ξ1e1 + ξ2e2 + ξ3e3, η = η1e1 + η2e2 + η3e3,

we obtain

ω2(ξ, η) =

∣∣∣∣∣∣
v1 v2 v3
ξ1 ξ2 ξ3
η1 η2 η3

∣∣∣∣∣∣ .
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It is not difficult to show that ω2 is a bilinear, antisymmetric form and hence a 2-form.

From a physical point of view, ω2(ξ, η) represents the flow of the fluid crossing the area

of the parallelogram generated by the vectors ξ and η.

Figure 4.5:

The set of 2-forms ω2 : Rn×Rn → R, which we denote by A2(Rn), just as in the case

of (Rn)∗, is a vector space endowed with the operations

(ω2
1 + ω2

2)(ξ1, ξ2) = ω2
1(ξ1, ξ2) + ω2

2(ξ1, ξ2),

(λω2
1)(ξ1, ξ2) = λω2

1(ξ1, ξ2).

As we know, if Rn is a vector space of dimension n and B : Rn×Rn → R is a bilinear

form, then, given a basis β = {e1, . . . , en} of Rn, we associate to B a matrix [B]ββ, called

the matrix of the bilinear form B in the basis β, as follows:

If ξ = a1e1 + · · ·+ anen and η = b1e1 + · · ·+ bnen, then

[B(ξ, η)] =
[
a1 · · · an

] B(e1, e1) · · · B(e1, en)
...

. . .
...

B(en, e1) · · · B(en, en)


b1...
bn

 .
This correspondence is bijective. Moreover, there is an isomorphism between bilinear

forms and their corresponding matrices [B]ββ. If B : Rn × Rn → R is bilinear and sym-

metric, then [B]ββ is a symmetric matrix and vice versa. Similarly, the same holds for

antisymmetric forms.
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From the above, if ω2 : Rn×Rn → R is a bilinear, antisymmetric form, then [ω2(ξ, η)]

is of the type 

0 B12 B13 · · · B1(n−1) B1n

−B12 0 B23 · · · B2(n−1) B2n

−B13 −B23 0 · · · B3(n−1) B3n
...

...
...

. . .
...

...
−B1(n−1) −B2(n−1) −B3(n−1) · · · 0 B(n−1)n

−B1n −B2n −B3n · · · −B(n−1)n 0


.

A basis for the set of all matrices of this type is given by matrices of the form

0 0 · · · 0 · · · 0
0 0 · · · 1 · · · 0
...

...
. . .

...
...

...
0 −1 · · · 0 · · · 0

0 0 · · · ... · · · 0
0 0 · · · 0 · · · 0


,

where the entries 1 and −1 occupy positions which are symmetric with respect to the

main diagonal. A natural question then arises:

How many matrices of this type are there?

It is easy to see that the number of such matrices is related to the number of positions

that can be occupied by the entry 1 in the ‘upper triangle’ (or equivalently by −1 in the

‘lower triangle’). Clearly, this number is given by the sum of the arithmetic progression

(n− 1, n− 2, . . . , 1),

that is,
n(n− 1)

2
=

(
n
2

)
.

Therefore, in view of the isomorphism described above, the dimension of A2(Rn) is(
n
2

)
.

Later we shall exhibit a basis for this space whose number of vectors is precisely(
n
2

)
.

Definition 4.1.8 A k-form is a map

ωk : Rn × Rn × · · · × Rn −→ R
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which is k-linear and antisymmetric. In other words:

i) ωk(λ1ξ1 + λ′1ξ
′
1, ξ2, . . . , ξk) = λ1ω

k(ξ1, ξ2, . . . , ξk) + λ′1ω
k(ξ′1, ξ2, . . . , ξk),

ii) ωk(ξi1 , ξi2 , . . . , ξik) = (−1)ν ωk(ξ1, ξ2, . . . , ξk),

where (i1, i2, . . . , ik) is a permutation of (1, 2, . . . , k) and

ν =

{
0, if the permutation is even,

1, if the permutation is odd.

Generalising the previous examples, we can consider as an example of a k-form on Rn

(k ≤ n) the map

ωk : Rn × · · · × Rn −→ R, (ξ1, . . . , ξk) 7−→ ωk(ξ1, . . . , ξk) =

∣∣∣∣∣∣∣∣∣
ξ11 ξ12 · · · ξ1k
ξ21 ξ22 · · · ξ2k
...

...
. . .

...
ξk1 ξk2 · · · ξkk

∣∣∣∣∣∣∣∣∣ ,
where 

ξ1 = ξ11e1 + ξ12e2 + · · ·+ ξ1kek + · · ·+ ξ1nen,

ξ2 = ξ21e1 + ξ22e2 + · · ·+ ξ2kek + · · ·+ ξ2nen,
...

...
...

...
...

ξk = ξk1e1 + ξk2e2 + · · ·+ ξkkek + · · ·+ ξknen.

Note that there are (
n
k

)
ways of choosing examples of this kind, it being enough to choose k among the n directions

e1, . . . , en in Rn.

In fact, ωk(ξ1, . . . , ξk) represents the ‘oriented volume’ of the projected parallelotope

with edges ξ1, . . . , ξk (oriented because it carries a sign).

Denoting by Ak(Rn) the set of all k-forms on Rn, and using an argument analogous

to that used for 2-forms, we find that the dimension of Ak(Rn) is(
n
k

)
=

n!

k!(n− k)!
.
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4.2 Exterior Product

Definition 4.2.1 Let ω1, ω2 : Rn → R be 1â¿“forms and consider the map

ω1 ∧ ω2 : Rn × Rn −→ R,

(ξ1, ξ2) 7−→ (ω1 ∧ ω2)(ξ1, ξ2) =

∣∣∣∣ ω1(ξ1) ω2(ξ1)
ω1(ξ2) ω2(ξ2)

∣∣∣∣ .
This map is called the exterior product of the 1-forms ω1 and ω2.

Now, setting

ω : Rn −→ R× R, ξ 7−→ ω(ξ) = (ω1(ξ), ω2(ξ)),

we have, in particular,

ω(ξ1) = (ω1(ξ1), ω2(ξ1)), ω(ξ2) = (ω1(ξ2), ω2(ξ2)),

and therefore (ω1 ∧ ω2)(ξ1, ξ2) is the area of the parallelogram with sides ω(ξ1) and ω(ξ2)

in R2.

Figure 4.6:

We observe that the exterior product ω1 ∧ ω2 defined above is a 2-form. Indeed,

linearity follows from the fact that ω1 and ω2 are 1-forms (and hence linear maps), and

from the fact that the determinant is linear in each of its row vectors when the others

are kept fixed. Antisymmetry also follows from the determinant, as an intrinsic property

which can be found in standard analysis textbooks.

From what we have seen, it makes sense to define the map

ϕ : (Rn)∗ × (Rn)∗ −→ A2(Rn), (ω1, ω2) 7−→ ϕ(ω1, ω2) = ω1 ∧ ω2.



154 CHAPTER 4. DIFFERENTIAL FORMS

Since the determinant of a 2 × 2 matrix is a bilinear, antisymmetric form in its row

vectors, we see that ϕ is a bilinear, antisymmetric map on (Rn)∗.

Let X1, . . . , Xn be basic 1-forms, that is, for each i = 1, . . . , n define

Xi : Rn → R, a1e1 + · · ·+ anen 7−→ ai,

as in the previous section.

Given i, j ∈ {1, . . . , n}, what does the exterior product Xi ∧Xj represent?

By definition, for ξ1, ξ2 ∈ Rn we have

(Xi ∧Xj)(ξ1, ξ2) =

∣∣∣∣ Xi(ξ1) Xj(ξ1)
Xi(ξ2) Xj(ξ2)

∣∣∣∣ ,
which is the area of the parallelogram with sides ω(ξ1) and ω(ξ2).

However,

ω(ξ1) = (Xi(ξ1), Xj(ξ1)), ω(ξ2) = (Xi(ξ2), Xj(ξ2)).

Figure 4.7:

Thus (Xi∧Xj)(ξ1, ξ2) represents the ‘oriented area’ of the parallelogram generated by

the vectors ξ1 and ξ2.

Note that

(Xi ∧Xj)(ξ1, ξ2) =

∣∣∣∣ Xi(ξ1) Xj(ξ1)
Xi(ξ2) Xj(ξ2)

∣∣∣∣
= Xi(ξ1)Xj(ξ2)−Xi(ξ2)Xj(ξ1)

= −[Xi(ξ2)Xj(ξ1)−Xi(ξ1)Xj(ξ2)]

= −
∣∣∣∣ Xi(ξ2) Xj(ξ2)
Xi(ξ1) Xj(ξ1)

∣∣∣∣
= −(Xj ∧Xi)(ξ1, ξ2), ∀ (ξ1, ξ2) ∈ Rn × Rn.



4.2. EXTERIOR PRODUCT 155

In particular, (Xi ∧Xi)(ξ1, ξ2) = −(Xi ∧Xi)(ξ1, ξ2), which implies (Xi ∧Xi) = 0, for

all (ξ1, ξ2) ∈ Rn × Rn.

Thus

(1) Xi ∧Xj = −(Xj ∧Xi), (2) Xi ∧Xi ≡ 0.

We claim that the exterior forms (Xi ∧Xj) with i < j are linearly independent, and

there are n(n−1)
2

of them.

Indeed, suppose
∑

i<j aij(Xi ∧Xj) = 0 (where 0 denotes the zero 2-form). Then, for

k, l ∈ {1, . . . , n} with k < l, we have∑
i<j

aij(Xi ∧Xj)(ek, el) = 0. (1)

On the other hand,

(Xi ∧Xj)(ek, el) =

∣∣∣∣ Xi(ek) Xj(ek)
Xi(el) Xj(el)

∣∣∣∣ .
Let I = {i, j} and J = {k, l}. There are two cases:

(1) I = J .

In this case, if i = k then necessarily j = l, and if i = l then necessarily j = k.

However, since i < j and k < l, the only possible case would be i = l and j = k, which

would give l = i < j = k, a contradiction. Therefore

(Xi ∧Xj)(ek, el) = (Xi ∧Xj)(ei, ej)

=

∣∣∣∣ Xi(ei) Xj(ei)
Xi(ej) Xj(ej)

∣∣∣∣
=

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1.

(2) I ̸= J .

In this case there exists ik ∈ I \ J . Thus ik differs from every j ∈ J , and hence

Xik(em) = 0 for all m ∈ J . Say ik = i. Then

(Xi ∧Xj)(ek, el) =

∣∣∣∣ Xi(ek) Xj(ek)
Xi(el) Xj(el)

∣∣∣∣ = ∣∣∣∣ Xik(ek) Xj(ek)
Xik(el) Xj(el)

∣∣∣∣ = 0,

because Xik(ek) = Xik(el) = 0.

Returning to (1), we obtain∑
i<j

aij(Xi ∧Xj)(ei, ej) = 0,
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which implies aij = 0 for all i, j with i < j, proving that these vectors are linearly

independent.

When we consider the exterior forms Xi ∧ Xj with i < j, how many such forms are

there?

There are as many as there are sets I = {i, j} with i < j, and there are(
n
2

)
such sets.


0 X1 ∧X2 X1 ∧X3 . . . X1 ∧Xn

X2 ∧X1 0 X2 ∧X3 . . . X2 ∧Xn
...

... 0 . . .
...

Xn ∧X1 Xn ∧X2 Xn ∧X3 . . . 0

 .
We shall now prove that the exterior products {Xi ∧Xj}i<j span A2(Rn), that is,

[Xi ∧Xj]i<j = A2(Rn).

Indeed, let ω2 ∈ A2(Rn) and ξ, η ∈ Rn. Then

ω2(ξ, η) = ω2

(
n∑
i=1

aiei,
n∑
j=1

bjej

)
= ω2(a1e1 + · · ·+ anen, b1e1 + · · ·+ bnen)

= a1b1ω
2(e1, e1) + · · ·+ a1bnω

2(e1, en)

+ a2b1ω
2(e2, e1) + · · ·+ a2bnω

2(e2, en)

+
... · · · ...

+ anb1ω
2(en, e1) + · · ·+ anbnω

2(en, en)

=
∑
i

∑
j

aibjω
2(ei, ej)

=
∑
i

∑
j

Xi(ξ)Xj(η)ω
2(ei, ej)

=
∑
i<j

Xi(ξ)Xj(η)ω
2(ei, ej) +

∑
i>j

Xi(ξ)Xj(η)ω
2(ei, ej)

=
∑
i<j

Xi(ξ)Xj(η)ω
2(ei, ej) +

∑
i>j

−Xi(ξ)Xj(η)ω
2(ej, ei).

Renaming indices i = k, j = l in the second sum, we obtain

ω2(ξ, η) =
∑
i<j

Xi(ξ)Xj(η)ω
2(ei, ej) +

∑
l<k

−Xk(ξ)Xl(η)ω
2(el, ek).
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Setting l = i, k = j in the second sum, we have

ω2(ξ, η) =
∑
i<j

Xi(ξ)Xj(η)ω
2(ei, ej) +

∑
i<j

−Xj(ξ)Xi(η)ω
2(ei, ej)

=
∑
i<j

[Xi(ξ)Xj(η)−Xj(ξ)Xi(η)]ω
2(ei, ej)

=
∑
i<j

(Xi ∧Xj)(ξ, η)ω
2(ei, ej)

=

(∑
i<j

ω2(ei, ej)Xi ∧Xj

)
(ξ, η),

which proves the claim.

Definition 4.2.2 Let ω1, . . . , ωk (k ≤ n) be 1-forms on Rn and consider the map

ω1 ∧ · · · ∧ ωk : Rn × · · · × Rn −→ R

(ξ1, ξ2, . . . , ξk) 7−→ (ω1 ∧ · · · ∧ ωk)(ξ1, ξ2, . . . , ξk),

where

(ω1 ∧ · · · ∧ ωk)((ξ1, ξ2, . . . , ξk)) =

∣∣∣∣∣∣∣
ω1(ξ1) · · · ωk(ξ1)
...

. . .
...

ω1(ξk) · · · ωk(ξk)

∣∣∣∣∣∣∣ .
Such application is called the exterior product of the k-forms.

Now, setting

ω : Rn −→ R× . . .× R, ξ 7−→ (ω1(ξ), . . . , ωk(ξ)),

we have, in particular,

ω(ξ1) = (ω1(ξ1), . . . , ωk(ξ1)),

...
...

...
...

ω(ξk) = (ω1(ξk), . . . , ωk(ξk)).

It follows that

(ω1∧. . .∧ωk)(ξ1, . . . , ξk) = oriented volume of the parallelotope defined by ω(ξ1), . . . , ω(ξk) in Rk,

which is precisely the determinant above.
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Note that the exterior product (ω1 ∧ . . .∧ωk) defined above is a k-form, thanks to the

linearity of the maps involved and to the antisymmetry of the determinant.

In this way, the map

ϕ : (Rn)∗ × . . .× (Rn)∗ −→ Ak(Rn)

(ω1, ω2, . . . , ωk) 7−→ ω1 ∧ . . . ∧ ωk

is well defined and is multilinear and antisymmetric.

Let X1, . . . , Xk be basic 1-forms on Rn, and let {i1, i2, . . . , ik} be a permutation of

{1, 2, . . . , k}. Then, analogously to the case of A2(Rn), (Xi1∧Xi2∧. . .∧Xik)(ξ1, ξ2, . . . , ξk)

represents the oriented volume of the parallelotope generated by the vectors (ξ1, ξ2, . . . , ξk)

projected onto the subspace Xi1Xi2 . . . Xik .

Our aim from now on is to determine a basis for Ak(Rn). We claim that the exterior

forms Xi1 ∧ Xi2 ∧ . . . ∧ Xik , with 1 ≤ i1 < i2 < . . . < ik ≤ n, are linearly independent,

that they are

(
n
k

)
in number and, moreover, that they span Ak(Rn), that is, they form

a basis of this space. Before that, however, we need some preliminary results, as we shall

see below.

Lemma 4.2.3 Let φ, ψ : Rn × · · · × Rn −→ Rm be k-linear maps and let G be a gener-

ating set of the vector space Rn. If φ(ξ1, ξ2, . . . , ξk) = ψ(ξ1, ξ2, . . . , ξk) for every k-tuple

(ξ1, ξ2, . . . , ξk) of elements of G, then φ = ψ.

Proof:

We use induction on k.

If k = 1, then φ, ψ : Rn → R are linear maps. For every x ∈ Rn we have

x =
∑

αiξi, ξi ∈ G,

since G generates Rn.

Therefore

φ(x) = φ
(∑

αiξi

)
=
∑

αiφ(ξi)

=
∑

αiψ(ξi) = ψ
(∑

αiξi

)
= ψ(x).

Assume now that the statement holds for (k − 1) and let us prove it for k. Indeed:
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For each ξ ∈ G, define (k − 1)-linear maps

φξ : Rn × · · · × Rn −→ R, ψξ : Rn × · · · × Rn −→ R

by

φξ(η1, . . . , ηk−1) = φ(η1, . . . , ηk−1, ξ),

ψξ(η1, . . . , ηk−1) = ψ(η1, . . . , ηk−1, ξ).

By the hypothesis of the lemma, φξ and ψξ take the same values on all (k − 1)-tuples

of elements of G. By the induction hypothesis we conclude that φξ = ψξ, that is,

φ(η1, . . . , ηk−1, ξ) = ψ(η1, . . . , ηk−1, ξ),

for all η1, . . . , ηk−1 ∈ Rn and ξ ∈ G.

On the other hand, every element ηk ∈ Rn is a linear combination of elements of G.

Thus, for arbitrary η1, . . . , ηk−1 ∈ Rn, we have

φ(η1, . . . , ηk) = φ(η1, . . . , ηk−1,
∑
i

αiξi)

=
∑
i

αiφ(η1, . . . , ηk−1, ξi)

=
∑
i

αiψ(η1, . . . , ηk−1, ξi)

= ψ(η1, . . . , ηk),

as required. 2

Lemma 4.2.4 Let φ, ψ : Rn × · · · × Rn −→ Rm be k-forms and let {e1, e2, . . . , en} be a

basis of Rn. If for every increasing sequence i1 < . . . < ik of k integers between 1 and n

we have

φ(ei1 , . . . , eik) = ψ(ei1 , . . . , eik),

then φ = ψ.

Proof:

Let (j1, j2, . . . , jk) be an arbitrary k-tuple of integers between 1 and n. If there are

repeated indices in this list, then

φ(ej1 , . . . , ejk) = ψ(ej1 , . . . , ejk) = 0.



160 CHAPTER 4. DIFFERENTIAL FORMS

Indeed, suppose there exist js ̸= jt with ejs = ejt = ej0 . Then

φ(ej1 , . . . , ejs , . . . , ejt , . . . , ejk) = ψ(ej1 , . . . , ejs , . . . , ejt , . . . , ejk),

since φ is antisymmetric. Consequently

2φ(ej1 , . . . , ej0 , . . . , ej0 , . . . , ejk) = 0, ∀ ej1 , . . . , ejk .

Analogously, we obtain the same conclusion for ψ.

If, however, all indices in this list are distinct, then by means of successive transpo-

sitions we can rearrange the numbers j1, . . . , jk into increasing order i1 < . . . < ik. If ν

transpositions are needed, the antisymmetry of φ and ψ, together with the hypothesis of

the lemma, give

φ(ej1 , . . . , ejk) = (−1)νφ(ei1 , . . . , eik)

= (−1)νψ(ei1 , . . . , eik)

= ψ(ej1 , . . . , ejk).

Thus, the k-linear maps φ and ψ satisfy the hypothesis of Lemma 1, and are therefore

equal. 2

Proposition 4.2.5 Let {X1, X2, . . . , Xn} be a basis of (Rn)∗. The k-forms

XI = Xi1 ∧Xi2 ∧ . . . ∧Xik ,

where I = {i1 < . . . < ik} runs over the subsets of {1, . . . , n} with k elements, form a

basis of Ak(Rn). In particular,

dimAk(R) =
(
n
k

)
.

Proof:

Let ωk ∈ Ak(R). For each I = {i1 < . . . < ik} set

αI = ωk(ei1 , . . . , eik),

where {ei1 , ei2 , . . . , eik}⊂ Rn is the basis corresponding to the basis of the dual space (R)∗,
that is, {Xi1 , Xi2 , . . . , Xik}⊂ (Rn)∗.
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The kâ¿“form

φ =
∑
I

αIXI

=
∑

1≤i1<...<ik≤n

ωk(ei1 , . . . , eik)Xi1 ∧Xi2 ∧ . . . ∧Xik

is such that, for every increasing sequence J = {j1 < . . . < jk} of integers between 1 and

n, we have

φ(ej1 , . . . , ejk) =
∑
I

αIXI(ej1 , . . . , ejk)

=
∑

1≤i1<...<ik≤n

(
ωk(ei1 , . . . , eik)Xi1 ∧Xi2 ∧ . . . ∧Xik

)
(ej1 , . . . , ejk)

=
∑

1≤i1<...<ik≤n

ωk(ei1 , . . . , eik) (Xi1 ∧Xi2 ∧ . . . ∧Xik)(ej1 , . . . , ejk).

On the other hand,

(Xi1 ∧Xi2 ∧ . . . ∧Xik)(ej1 , . . . , ejk) =

∣∣∣∣∣∣∣∣∣
Xi1(ej1) Xi2(ej1) · · · Xik(ej1)
Xi1(ej2) Xi2(ej2) · · · Xik(ej2)
...

...
. . .

...
Xi1(ejk) Xi2(ejk) · · · Xik(ejk)

∣∣∣∣∣∣∣∣∣ .
There are two cases to consider.

1) I = J .

In this case, is = js for all s ∈ {1, . . . , k}. Indeed, we argue by induction on k. The

case k = 2 has already been proved for 2-forms. Suppose it holds for (k − 1) and let us

prove it for k.

Since is = js for all s ∈ {1, . . . , k − 1}, we must have ik = jk. Otherwise, if ik ̸= jk,

then ik = jr0 for some r0 ∈ {1, . . . , k − 1}, and also jk = is0 for some s0 ∈ {1, . . . , k − 1}.
Hence

jk = is0 ≤ ik−1 < ik, ik = jr0 ≤ jk−1 < jk,

which is impossible. It follows that is = js for all s ∈ {1, . . . , k}, and therefore

(Xi1 ∧Xi2 ∧ . . . ∧Xik)(ej1 , . . . , ejk) =

∣∣∣∣∣∣∣∣∣
Xi1(ej1) Xi2(ej1) · · · Xik(ej1)
Xi1(ej2) Xi2(ej2) · · · Xik(ej2)
...

...
. . .

...
Xi1(ejk) Xi2(ejk) · · · Xik(ejk)

∣∣∣∣∣∣∣∣∣ = 1.
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2) I ̸= J .

In this case there exists ik0 ∈ I such that ik0 ̸∈ J , more precisely, ik0 is different from

every element j ∈ J . Hence

Xik0
(ej) = 0, ∀j ∈ J.

Thus (Xi1 ∧Xi2 ∧ . . .∧Xik)(ej1 , . . . , ejk) = 0, since it is the determinant of a matrix whose

kâ¿“th column is zero.

Therefore, going back to the computation of φ(ej1 , . . . , ejk), we obtain

φ(ej1 , . . . , ejk) = ωk(ej1 , . . . , ejk).

By Lemma (2.1.4) it follows that φ = ωk, that is, ωk =
∑

I αIXI . This proves that

the k-forms XI = Xi1 ∧Xi2 ∧ . . . ∧Xik span Ak(Rn). Moreover, these forms are linearly

independent, because from any linear combination φ =
∑

I αIXI = 0 we deduce, for every

J = {j1 < . . . < jk}, that

0 = φ(ej1 , . . . , ejk) =
∑
I

αIXI(ej1 , . . . , ejk) = αJ .

2

Remark 4.2.6 The previous proposition is the most important fact about k-forms. An

important special case occurs when k = n. Then dimAk(Rn) = 1. This means that, up to

a constant factor, there is only one antisymmetric form of degree n on an n-dimensional

vector space.

Proposition 4.2.7 Let φ : Rn × · · · × Rn −→ Rm be a kâ¿“linear, antisymmetric map.

If ξ1, . . . , ξk ∈ Rn are linearly dependent, then

φ(ξ1, ξ2, . . . , ξn) = 0.

Proof:

One of the vectors ξ1, . . . , ξk is a linear combination of the others. Say

ξ1 = a2ξ2 + . . .+ akξk.

Then

φ(k1, k2, . . . , kk) = φ

(
k∑
i=2

aiξi, ξ2, . . . , ξk

)

=
k∑
i=2

aiφ(ξi, ξ2, . . . , ξk) = 0,
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because

φ(ξ2, ξ2, ξ3, . . . , ξk) = φ(ξ3, ξ2, ξ3, . . . , ξk) = . . . = φ(ξk, ξ2, ξ3, . . . , ξk) = 0,

since φ is antisymmetric. 2

Corollary 4.2.8 The exterior product ω1 ∧ . . . ∧ ωk is a nonzero kâ¿“form if and only

if ω1, . . . , ωk are linearly independent in (Rn)∗.

Proof:

Since the map ϕ : (Rn)∗ × . . . × (Rn)∗ −→ Ak(Rn) defined by (ω1, ω2, . . . , ωk) 7→
ω1 ∧ . . . ∧ ωk is kâ¿“linear and antisymmetric, it follows from Proposition (1.2.7) that if

ω1∧ . . .∧ωk ̸= 0, then ω1, . . . , ωk are linearly independent. Conversely, if these functionals

are linearly independent, we may extend them to a basis of (Rn)∗. Let {e1, e2, . . . , en}⊂ Rn

be the basis corresponding to this dual basis. Then for all i, j between 1 and k we have

ωi(ej) =

{
1, i = j,

0, i ̸= j.

Hence (ωi(ej))i,j is the k × k identity matrix, and it follows that

(ω1 ∧ . . . ∧ ωk)(e1, e2, . . . , ek) = 1.

In particular, ω1 ∧ . . . ∧ ωk ̸= 0. 2

Corollary 4.2.9 If k > n, then Ak(Rn) = {0}.

Proof:

Indeed, in this case any k vectors in Rn are linearly dependent. 2

Remark 4.2.10 k-forms of the type (ω1 ∧ . . .∧ ωk), where ω1, . . . , ωk ∈ (Rn)∗, are called

decomposable. It also follows from Proposition 1 that every k-form can be written (in

a nonâ¿“unique way) as a sum of decomposable k-forms.

In fact, not every kâ¿“form is decomposable, but Proposition 1 shows that every ele-

ment of Ak(Rn) can be written as the sum of decomposable k-forms.
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Take a basis {X1, X2, . . . , Xn} of (Rn)∗, dual to the basis {e1, e2, . . . , en} of Rn. Sup-

pose that the linear functionals ω1, . . . , ωk ∈ (Rn)∗ are expressed in terms of the basis

{Xi}1≤i≤n as

ωi =
n∑
s=1

aisXs, (i = 1, . . . , k).

What are the coordinates of the exterior product ωk = ω1 ∧ . . . ∧ ωk with respect to

the basis {XJ} (J = {j1, . . . < jk}) of the space Ak(Rn)?

We know that there is a unique expression

ω1 ∧ . . . ∧ ωk =
∑
J

αJXJ

with

αJ = ωk(ej1 , . . . , ejk) = (ω1 ∧ . . . ∧ ωk)(ej1 , . . . , ejk) = det(ωi(ejs))1≤i,s≤k

for every J = {j1 < . . . < jk} ⊂ {1, . . . , n}.

Now, the matrix A = (aij), with k rows and n columns, determined by the coordinates

of the functionals ωi relative to the basis {Xj}, is characterised by

aij = ωi(ej), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Indeed, since ωi =
∑n

s=1 aisXs for i = 1, . . . , k, we have

ωi(ej) = ai1X1(ej) + . . .+ aijXj(ej) + . . .+ ainXn(ej) = aij.

For every subset J ⊂ {1, . . . , n} with k elements, the matrix A has a k× k submatrix,

denoted by AJ , obtained by selecting the k columns of A = (aij) whose indices j belong

to J . Then

αJ = det(AJ) = det(ωi(ejs)).

Thus

(ω1 ∧ . . . ∧ ωk) =
∑
J

αJXJ =
∑
J

det(AJ)XJ ,

the sum being taken over all subsets J ⊂ {1, . . . , n} with k elements.

More explicitly,

ω1 ∧ . . . ∧ ωk =
∑

1≤j1<j2<...<jk≤n

det(ωi(ejs))1≤i,s≤k (Xj1 ∧Xj2 ∧ . . . ∧Xjk).
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In particular, if k = n we obtain

ω1 ∧ . . . ∧ ωn = det(A)(X1 ∧ . . . ∧Xn),

whereA = (aij) is the changeâ¿“ofâ¿“basis matrix from {X1, X2, . . . , Xn} to {ω1, ω2, . . . , ωn}.

We now use this result to establish a useful identity for determinants.

Lagrange’s Identity

Let A = (aij) be an n× k matrix, n ≥ k, and A∗ its transpose. Then

det(A∗A) =
∑
J

[det(AJ)]
2,

where J runs over all subsets of {1, . . . , n} with k elements and AJ is the matrix obtained

from A by choosing the k rows whose indices belong to J .

Indeed, we have

A =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
. . .

...
an1 an2 · · · ank

∣∣∣∣∣∣∣∣∣ , A∗ =

∣∣∣∣∣∣∣∣∣
a11 a21 · · · an1
a12 a22 · · · an2
...

...
. . .

...
a1k a2k · · · ank

∣∣∣∣∣∣∣∣∣ .
Let v1, . . . , vk ∈ Rn be the column vectors of the matrix A. For each j = 1, . . . , k we

have vj = (a1j, . . . , anj). If {X1, X2, . . . , Xn}⊂ (Rn)∗ is the canonical basis of the dual

space, then

Xi(vj) = Xi

(
n∑
r=1

arjer

)
=

n∑
r=1

arjXi(er) = aij.

As we saw earlier, for every subset J = {j1 < . . . < jk} ⊂ {1, . . . , n} we have

XJ(v1, v2, . . . , vk) = (Xj1 ∧ . . . ∧Xjk)(v1, . . . , vk)

=

∣∣∣∣∣∣∣∣∣
Xj1(v1) Xj2(v1) · · · Xjk(v1)
Xj1(v2) Xj2(v2) · · · Xjk(v2)
...

...
. . .

...
Xj1(vk) Xj2(vk) · · · Xjk(vk)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
aj11 aj21 · · · ajk1
aj12 aj22 · · · ajk2
...

...
. . .

...
aj1k aj2k · · · ajkk

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
aj11 aj12 · · · aj1k
aj21 aj22 · · · aj2k
...

...
. . .

...
ajk1 ajk2 · · · ajkk

∣∣∣∣∣∣∣∣∣ = det(AJ).
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Now consider the functionals ω1, . . . , ωk ∈ (Rn)∗ given by

ωi =
n∑
r=1

ariXr.

Then, for any 1 ≤ i, j ≤ k,

ωi(vj) =
n∑
r=1

ariXr(vj) =
n∑
r=1

ariarj,

so ωi(vj) is the (i, j)â¿“entry of the product matrix A∗A.

It follows from the expression obtained earlier,

ω1 ∧ . . . ∧ ωk =
∑
J

det(AJ)XJ ,

that

det(A∗A) = det

( n∑
r=1

ariarj

)
1≤i,j≤k


= (ω1 ∧ . . . ∧ ωk)(v1, v2, . . . , vk)

=
∑
J

det(AJ)XJ(v1, v2, . . . , vk)

=
∑
J

det(AJ) det(AJ)

=
∑
J

[det(AJ)]
2.

4.3 Exterior Product of Monomials

Let ω1, ..., ωk, ωk+1, ..., ωk+l be 1-forms on Rn. Then (ω1∧...∧ωk) and (ωk+1∧...∧ωk+l) are,
respectively, a decomposable k-form and a decomposable l-form, which we shall simply

call binomials.

We now define the exterior product of a k-form by an lâ¿“form, or, in other words,

of two binomials (ω1 ∧ ...∧ωk) and (ωk+1 ∧ ...∧ωk+l), obtaining as a result a (k+ l)-form

of the type

ω1 ∧ ... ∧ ωk ∧ ωk+1 ∧ ... ∧ ωk+l.

More precisely, we wish to obtain a bilinear map

φ : Ak(Rn)×Al(Rn) −→ Ak+l(Rn)
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such that, in particular, for decomposable forms we have

φ(ω1 ∧ ... ∧ ωk, ωk+1 ∧ ... ∧ ωk+l) = ω1 ∧ ... ∧ ωk ∧ ωk+1... ∧ ωk+l, (1)

for any 1-forms ω1, ..., ωk, ωk+1, ..., ωk+l.

Before proceeding, let us consider two preliminary results.

Lemma 4.3.1 Let φ, ψ : Rn×Rn −→ Rk be bilinear maps. Let G1 and G2 be generating

sets of Rn and Rm, respectively. If φ(v, w) = ψ(v, w) for all v ∈ G1 and w ∈ G2, then

φ = ψ.

Proof:

Let G1 = {x1, . . . , xp} and G2 = {y1, . . . , yq}. Take x ∈ Rn and y ∈ Rm. Then

x =

p∑
i=1

aixi, y =

q∑
j=1

bjyj.

Thus

φ(x, y) = φ

(
p∑
i=1

aixi,

q∑
j=1

bjyj

)

=

p∑
i=1

q∑
j=1

aibjφ(xi, yj)

=

p∑
i=1

q∑
j=1

aibjψ(xi, yj)

= ψ

(
p∑
i=1

aixi,

q∑
j=1

bjyj

)
= ψ(x, y).

2

Lemma 4.3.2 Let {e1, e2, . . . , en} and {e1, . . . , em} be bases of Rn and Rm, respectively.

For each pair (i, j) of integers with 1 ≤ i ≤ n and 1 ≤ j ≤ m, suppose we are given a

vector ωij ∈ Rk. Then there exists a unique bilinear map φ : Rn × Rm −→ Rk such that

φ(ei, ej) = ωij for every pair (i, j).

Proof:
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Any two vectors x ∈ Rn and y ∈ Rm can be written as

x =
n∑
i=1

αiei, y =
m∑
j=1

βjej,

where the coefficients αi and βj are uniquely determined.

Define the map φ : Rn × Rm −→ Rk by

φ(x, y) =
∑
i

∑
j

αiβjωij.

Clearly, φ is bilinear and satisfies the condition φ(ei, ej) = ωij, since the coordinates

of ei in the basis {ek} are 0 when i ̸= k and 1 when i = k, and likewise the coordinates of

ej in the basis {ek} are 0 when j ̸= k and 1 when j = k. Uniqueness follows from Lemma

(4.3.2). 2

Returning now to our problem, note that since the vector spaces Ak(Rn) and Al(Rn)

are generated by decomposable forms, Lemma (4.3.2) implies that if there exists a bilinear

map

φ : Ak(Rn)×Al(Rn) −→ Ak+l(Rn)

satisfying (1), then it is unique.

Take an arbitrary but fixed basis {X1, X2, . . . , Xn} of (Rn)∗. For each I = {i1 < . . . <

ik} and J = {ik+1, . . . , ik+l} contained in {1, . . . , n}, set

φ(XI , XJ) = Xi1 ∧Xi2 ∧ . . . ∧Xik ∧Xik+1
∧ . . . ∧Xik+l

, (2)

where XI = Xi1 ∧Xi2 ∧ . . . ∧Xik and XJ = Xik+1
∧ . . . ∧Xik+l

.

Recall that the k-forms XI = Xi1 ∧ Xi2 ∧ . . . ∧ Xik , where I = {i1 < . . . < ik} runs

over the subsets of {1, . . . , n} with k elements, form a basis of Ak(Rn).

Moreover, since there are

(
n
k

)
ways to choose k elements among the n elements of

{1, . . . , n}, we can enumerate these choices by defining, for each i ∈ {1, . . . ,
(
n
k

)
}, a set

Ii collecting the elements of the iâ¿“th choice. Thus there is a bijective correspondence

between (i, j) ∈ {1, . . . ,
(
n
k

)
} ×

{
1, . . . ,

(
n
l

)}
and the pairs (Ii, Jj). Hence, by

(2) and Lemma (4.3.2), we can extend φ to a bilinear map from Ak(Rn) × Al(Rn) into

Ak+l(Rn).

Consider the diagram in Figure 4.8:
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Figure 4.8:

where

Φ(ω1, . . . , ωk, ωk+1, . . . , ωk+l) = ω1 ∧ · · · ∧ ωk ∧ ωk+1 ∧ · · · ∧ ωk+l,

α(ω1, . . . , ωk, ωk+1, . . . , ωk+l) = (ω1 ∧ · · · ∧ ωk, ωk+1 ∧ · · · ∧ ωk+l).

We shall prove that φ ◦ α = Φ.

According to Lemma (4.2.3) of the previous section, it suffices that these maps coincide

on any (k + l)-tuple of elements of {X1, X2, . . . , Xn}. Thus it is enough to prove that

(φ ◦ α)(Xi1 , . . . , Xik , Xik+1
, . . . , Xik+l

) = Φ(Xi1 , . . . , Xik , Xik+1
, . . . , Xik+l

)

or, equivalently, that

(φ ◦ α)(Xi1 ∧ . . . ∧Xik , Xik+1
∧ . . . ∧Xik+l

) = Φ(Xi1 ∧ . . . ∧Xik , Xik+1
∧ . . . ∧Xik+l

) (3)

for any (k + l)-tuple (Xi1 , . . . , Xik , Xik+1
, . . . , Xik+l

) of basis elements.

The equality in (3) is obvious when one of the sequences (i1, . . . , ik) or (ik+1, . . . , ik+l)

has repetitions, since both sides are then equal to zero. If neither sequence has repetitions

and, moreover, i1 < . . . < ik and ik+1 < . . . < ik+l, then the equality in (3) is precisely

the definition of φ. Finally, if the sequences have no repetitions but at least one of them

is not in increasing order, we may rearrange both into increasing order by successive

transpositions. Since each transposition of two indices changes the sign of both sides of

(3), we conclude that the equality in question holds in all cases.

Given ωk ∈ Ak(Rn) and ωl ∈ Al(Rn), we usually write ωk∧ωl ∈ Ak+l(Rn) instead of

φ(ωk, ωl). In particular, if

ωk = ω1 ∧ . . . ∧ ωk and ωl = ωk+1 ∧ . . . ∧ ωk+l,
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then

ωk∧ωl = φ(ωk, ωl)

= ω1 ∧ · · · ∧ ωk ∧ ωk+1 ∧ · · · ∧ ωk+l
= ωk ∧ ωl.

We claim that if ωk1 = ω1
1 ∧ . . .∧ω1

k, ω
k
2 = ω2

1 ∧ . . .∧ω2
k and ω

l = ωk+1∧ . . .∧ωk+l, then

(λ1ω
k
1 + λ2ω

k
2)∧λωl = λ1λ(ω

k
1 ∧ ωl) + λ2λ(ω

k
2 ∧ ωl). (4)

Indeed, by the bilinearity of φ we have

(λ1ω
k
1 + λ2ω

k
2)∧λωl = φ(λ1ω

k
1 + λ2ω

k
2 , λω

l)

= λ1λφ(ω
k
1 , ω

l) + λ2λφ(ω
k
2 , ω

l)

= λ1λ(ω
k
1∧ωl) + λ2λ(ω

k
2∧ωl)

= λ1λ(ω
k
1∧ωl) + λ2λ(ω

k
2∧ωl).

Thus, for decomposable forms, the distributive property (4) holds.

The exterior product of decomposable forms enjoys the following properties.

(5) Anticommutativity:

ωk∧ωl = (−1)kl ωl∧ωk.

Indeed, let ωk = ω1 ∧ . . . ∧ ωk and ωl = ωk+1 ∧ . . . ∧ ωk+l. Then

ωk∧ωl = φ(ωk, ωl)

= ω1 ∧ . . . ∧ ωk ∧ ωk+1 ∧ . . . ∧ ωk+l
= (−1)k(ωk+1 ∧ ω1 ∧ . . . ∧ ωk ∧ ωk+2 ∧ . . . ∧ ωk+l)

= (−1)k(−1)k . . . (−1)k(ωk+1 ∧ ωk+2 ∧ . . . ∧ ωk+l ∧ ω1 ∧ . . . ∧ ωk)

= (−1)kl(ωl∧ωk).

(6) Associativity:

(ωk∧ωl)∧ωm = ωk∧(ωl∧ωm).

This is immediate.
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Now, given ωk ∈ Ak(Rn) and ωl ∈ Al(Rn), how can we characterise their exterior

product ωk∧ωl?

According to Proposition (1.2.5) of the previous section, we have

ωk =
∑
I

αIXI and ωl =
∑
J

αJXJ ,

where

(i) I = {i1 < . . . < ik} and J = {j1 < . . . < jl} run over the subsets of {1, . . . , n} with

k and l elements, respectively;

(ii) αI = ωk(ei1 , . . . , eik) and αJ = ωl(ej1 , . . . , ejk) (where ej is the basis of Rn);

(iii) XI = Xi1 ∧Xi2 ∧ . . . ∧Xik and XJ = Xj1 ∧Xj2 ∧ . . . ∧Xjl .

Thus, by the bilinearity of φ, we have

ωk∧ωl = φ

(∑
I

αIXI ,
∑
J

αJXJ

)
=

∑
I

∑
J

αIαJφ(XI , XJ)

=
∑
I

∑
J

αIαJ(XI∧XJ)

=
∑
I

∑
J

αIαJ(XI∧XJ).

Therefore, for (ξ1, . . . , ξk, ξk+1, . . . , ξk+l) ∈ Rn × . . .× Rn,

ωk∧ωl(ξ1, . . . , ξk, ξk+1, . . . , ξk+l) =
∑
I

∑
J

αIαJ(XI∧XJ)(ξ1, . . . , ξk, ξk+1, . . . , ξk+l).

More explicitly,

ωk∧ωl(ξ1, . . . , ξk, ξk+1, . . . , ξk+l)

=
∑

1≤i1<...<ik≤n

∑
1≤j1<...<jl≤n

ωk(ei1 , . . . , eik) ω
l(ej1 , . . . , ejk) (Xi1 ∧ . . . ∧Xik ∧Xj1 ∧ . . . ∧Xjl)(ξ1, . . . , ξk, ξk+1, . . . , ξk+l).

Equivalently,

ωk∧ωl(ξ1, . . . , ξk, ξk+1, . . . , ξk+l) =
∑

1≤i1<...<ik≤n

∑
1≤j1<...<jl≤n

(−1)νωk(ei1 , . . . , eik)ω
l(ej1 , . . . , ejk)

·(Xi1 ∧ . . . ∧Xik ∧Xj1 ∧ . . . ∧Xjl)(ξ1, . . . , ξk, ξk+1, . . . , ξk+l),
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where

ν =

{
0, if the permutation {i1, . . . , ik, j1, . . . , jl} is even,

1, if it is odd.

The exterior product ωk∧ωl enjoys the properties

(1) Anticommutativity:

ωk∧ωl = (−1)kl(ωl∧ωk);

(2) Associativity:

(ωk∧ωl)∧ωm = ωk∧(ωl∧ωm);

(3) Distributivity:

(λ1ω
k
1 + λ2ω

k
2)∧λωl = λ1λ(ω

k
1∧ωl) + λ2λ(ω

k
2∧ωl).

Indeed, it suffices to prove these properties for decomposable forms, since the general

case, as we have seen, reduces to sums of decomposable forms. However, this has already

been done above.

4.4 Induced Forms

Definition 4.4.1 Let T : Rn −→ Rm, v 7→ T.v, be a linear map and consider its transpose

T ∗ : (Rm)∗ −→ (Rn)∗, w 7−→ T ∗.w,

where

T ∗.w : Rn −→ R

v 7−→ (T ∗.w)(v) = w(T.v).

Thus T ∗ is well defined, thanks to the linearity of T and w, and moreover the relation

(T ∗.w)(v) = w(T.v), ∀w ∈ (Rm)∗, ∀v ∈ Rn (1)

holds.
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Remark 4.4.2 If T : Rn −→ Rm and S : Rm −→ Rp are linear maps, then

(S ◦ T )∗ = T ∗ ◦ S∗.

Indeed, let w ∈ (Rp)∗ and v ∈ Rn. Then[
(S ◦ T )∗w

]
(v) = w

[
(S ◦ T )(v)

]
= w

(
S(Tv)

)
= (S∗w)(Tv)

=
[
T ∗(S∗w)

]
(v)

=
[
(T ∗ ◦ S∗)w

]
(v).

This notion can be generalised. For every k, the linear map T : Rn −→ Rm determines

a new linear map

T ∗ : Ak(Rm) −→ Ak(Rn)

w 7−→ T ∗w

defined by

(T ∗w)(v1, . . . , vk) = w(Tv1, . . . , T vk), ∀w ∈ Ak(Rm), ∀v1, . . . , vk ∈ Rn. (2)

The transformation T ∗ is said to be induced by T on forms of degree k. The kâ¿“form

T ∗w is called the form induced by T on Rn, or the pullâ¿“back of the kâ¿“form w to the

space Rn.

Proposition 4.4.3 Let T : Rn → Rm be a linear map. Then:

(a) T ∗(w1 + w2) = T ∗(w1) + T ∗(w2), for all w1, w2 ∈ Ak(Rm).

(b) T ∗(αw) = αT ∗(w), for all α ∈ R and all w ∈ Ak(Rm).

(c) T ∗(w1 ∧ w2) = T ∗(w1) ∧ T ∗(w2), for all w1, w2 ∈ (Rm)∗.

Proof:

(a) Let v1, . . . , vk ∈ Rn and w1, w2 ∈ Ak(Rm). Then

[T ∗(w1 + w2)](v1, v2, . . . , vk) = (w1 + w2)(Tv1, T v2, . . . , T vk)

= w1(Tv1, T v2, . . . , T vk) + w2(Tv1, T v2, . . . , T vk)

= (T ∗w1)(v1, v2, . . . , vk) + (T ∗w2)(v1, v2, . . . , vk).
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(b) Let α ∈ R and w ∈ Ak(Rm). Then

[T ∗(αw)](v1, v2, . . . , vk) = (αw)(Tv1, T v2, . . . , T vk)

= αw(Tv1, T v2, . . . , T vk)

= α[T ∗(w)](v1, v2, . . . , vk).

(c) Let w1, w2 ∈ (Rm)∗ and v1, v2 ∈ Rn. Then

[T ∗(w1 ∧ w2)](v1, v2) = (w1 ∧ w2)(Tv1, T v2)

=

∣∣∣∣ w1(Tv1) w2(Tv1)
w1(Tv2) w2(Tv2)

∣∣∣∣
=

∣∣∣∣ (T ∗w1)(v1) (T ∗w2)(v1)
(T ∗w1)(v2) (T ∗w2)(v2)

∣∣∣∣
=

[
(T ∗w1) ∧ (T ∗w2)

]
(v1, v2).

2

Remark 4.4.4 Let T : Rn −→ Rm be a linear transformation and denote by

T ∗ : Ar(Rm) → Ar(Rn)

its induced map (without specifying the degree r in the notation). Then, for wk ∈ Ak(Rm)

and wl ∈ Al(Rm), we have

T ∗(wk ∧ wl) = (T ∗wk) ∧ (T ∗wl).

Indeed, this relation holds, as we have seen, when wk and wl are decomposable forms.

Now, for general wk and wl, we can write

wk =
∑
I

αIXI , wl =
∑
J

αJXJ .

Hence

wk ∧ wl =
∑
I

∑
J

αIαJ(XI ∧XJ).
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Consequently,

T ∗(wk ∧ wl) =
∑
I

∑
J

αIαJ T
∗(XI ∧XJ)

=
∑
I

∑
J

αIαJ
(
T ∗XI ∧ T ∗XJ

)
=

(∑
I

αI T
∗XI

)
∧

(∑
J

αJ T
∗XJ

)

= T ∗

(∑
I

αIXI

)
∧ T ∗

(∑
J

αJXJ

)
= T ∗(wk) ∧ T ∗(wl).

Let {X1, X2, . . . , Xn}⊂ (Rn)∗ and {Y1, . . . , Ym} ⊂ (Rm)∗ be dual bases of the bases

{e1, . . . , en} and {f1, . . . , fm}, respectively. Let T = (tij) be the matrix (with m rows and

n columns) of the linear transformation T : Rn −→ Rm with respect to these bases, that

is,

Tej =
m∑
i=1

tijfi, j = 1, . . . , n. (3)

Then the matrix of T ∗ : (Rm)∗ −→ (Rn)∗ is the transpose of the matrix T .

Indeed, if

T ∗Yi =
n∑
j=1

tijXj, i = 1, . . . ,m,

then, from (1), for k ∈ {1, . . . , n} we have

(T ∗Yi)(ek) = Yi
(
T (ek)

)
, i = 1, . . . ,m.

Thus (
n∑
j=1

tijXj

)
(ek) = Yi

(
m∑
l=1

tlkfl

)
.

Equivalently,
n∑
j=1

tijXj(ek) =
m∑
l=1

tlkYi(fl).

Hence

tik = tik, ∀i ∈ {1, . . . ,m}, ∀k ∈ {1, . . . , n}.

Thus

T ∗Yi =
n∑
j=1

tijXj, i = 1, . . . ,m. (4)
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We now determine the matrix of the induced linear transformation

T ∗ : Ak(Rm) −→ Ak(Rn)

with respect to the bases (YI) = (Yi1 ∧ . . . ∧ Yik) and (XJ) = (Xj1 ∧ . . . ∧Xjk), where the

sets I = {i1 < . . . < ik} and J = {j1 < . . . < jk} run, respectively, over the subsets of

{1, . . . ,m} and {1, . . . , n} with k elements.

We have T ∗YI ∈ Ak(Rn) and therefore

T ∗YI =
∑
J

αIJ XJ ,

when J = {j1 < . . . < jk}. Moreover,

XJ(ej1 , . . . , ejk) =

∣∣∣∣∣∣∣
Xj1(ej1) · · · Xjk(ej1)
...

. . .
...

Xj1(ejk) · · · Xjk(ejk)

∣∣∣∣∣∣∣ = 1.

Consequently

(T ∗YI)(ej1 , . . . , ejk) = αIJ .

Thus, from (2) and (3) we obtain

αIJ = (T ∗YI)(ej1 , . . . , ejk)

= YI(Tej1 , . . . , T ejk)

=

∣∣∣∣∣∣∣
Yi1(Tej1) · · · Yik(Tej1)
...

. . .
...

Yi1(Tejk) · · · Yik(Tejk)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
Yi1

(∑m
r=1 trj1fr

)
· · · Yik

(∑m
r=1 trj1fr

)
...

. . .
...

Yi1

(∑m
r=1 trjkfr

)
· · · Yik

(∑m
r=1 trjkfr

)
∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∑m

r=1 trj1Yi1(fr) · · ·
∑m

r=1 trj1Yik(fr)
...

. . .
...∑m

r=1 trjkYi1(fr) · · ·
∑m

r=1 trjkYik(fr)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ti1j1 · · · tikj1
...

. . .
...

ti1jk · · · tikjk

∣∣∣∣∣∣∣
= det(tiµjν ),



4.4. INDUCED FORMS 177

with 1 ≤ µ ≤ k and 1 ≤ ν ≤ k.

Denoting by (TIJ) the k×k submatrix obtained from the matrix T = (tij) by selecting

all entries tij with i ∈ I and j ∈ J , we have

T ∗YI =
∑
J

det(TIJ)XJ . (4)

Thus, for each I = {i1 < . . . < ik} ⊂ {1, . . . ,m},

T ∗YI =
∑
J

det(TIJ)XJ , (5)

where J = {j1 < . . . < jk} runs over the subsets of {1, . . . , n} with k elements. There are(
m
k

)
sets of type I and (

n
k

)
sets of type J . Consequently, the matrix of T ∗ has(

n
k

)
rows and (

m
k

)
columns. It is the transpose of the matrix whose entries αIJ = det(TIJ) have as row

indices the subsets I = {i1 < . . . < ik} ⊂ {1, . . . ,m}.

In particular, if m = n = k, then the linear map

T ∗ : An(Rn) −→ An(Rn)

satisfies

T ∗(Y1 ∧ . . . ∧ Yn) = det(T )(X1 ∧ . . . ∧Xn), (6)

where T = (tij) is the matrix of T : Rn −→ Rn as above.

More particularly, if the bases in (Rn)∗ coincide, then

T ∗(X1 ∧ . . . ∧Xn) = det(T )(X1 ∧ . . . ∧Xn).

We now examine how the coordinates of a form wk ∈ Ak(Rn) change when we perform

a change of basis in Rn.
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Let {e1, e2, . . . , en} and {e1, e2, . . . , en} be bases in Rn related by

ej =
n∑
i=1

aijei, j = 1, . . . , n. (8)

Their dual bases {X1, X2, . . . , Xn} and {X1, X2, . . . , Xn} in (Rn)∗ satisfy

X i =
n∑
j=1

aijXj, i = 1, . . . , n. (9)

Indeed, if for each i ∈ {1, . . . , n} we have X i =
∑n

j=1 bijXj, then, for all i, k ∈
{1, . . . , n}, we obtain:

(i) X i(ek) =
n∑
j=1

bijXj(ek) = bik,

(ii) X i(ek) = X i

( n∑
l=1

alkel

)
=

n∑
l=1

alkX i(el) = aik.

Thus, from (i) and (ii) we get aik = bik, which proves (9).

For any subsets I, J ⊂ {1, . . . , n} with k elements we denote by AIJ the k×k submatrix

of A = (aij) formed by the entries aij with i ∈ I and j ∈ J .

From the above it follows that

XI =
∑
J

det(AIJ)XJ .

Indeed, XI ∈ Ak(Rn) and therefore XI =
∑

J aIJXJ , where aIJ = XI(eJ). Hence

XI =
∑

J XI(eJ)XJ . If I = {i1 < . . . < ik} and J = {j1 < . . . < jk}, then, by (9),

XI(eJ) =

∣∣∣∣∣∣∣∣∣
X i1(ej1) · · · X ik(ej1)
X i1(ej2) · · · X ik(ej2)
...

. . .
...

X i1(ejk) · · · X ik(ejk)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑n

r=1 ai1rXr(ej1) · · ·
∑n

r=1 aikrXr(ej1)
...

. . .
...∑n

r=1 ai1rXr(ejk) · · ·
∑n

r=1 aikrXr(ejk)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ai1j1 · · · aikj1
...

. . .
...

ai1jk · · · aikjk

∣∣∣∣∣∣∣
= det(AIJ).
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Thus, if a form wk ∈ Ak(Rn) admits the expressions

wk =
∑
J

αJXJ and wk =
∑
I

βIXI

with respect to the bases (XJ) and (XI), we have

wk =
∑
J

αJXJ

=
∑
I

βI
∑
J

det(AIJ)XJ

=
∑
I

∑
J

βI det(AIJ)XJ

=
∑
J

[∑
I

det(AIJ)βI

]
XJ .

Comparing the coefficients of XJ , we obtain

αJ =
∑
I

det(AIJ)βI .

Remark 4.4.5 In the language of classical tensor calculus, a k-form is described, in each

basis of Rn, by its coordinates αJ , so that a change of basis in Rn induces a change of

coordinates for the form according to the expression above.

It is worthwhile to note the particular case in which w ∈ An(Rn). We then have the

bases {X} and {X} of An(Rn), with X = X1 ∧ . . . ∧ Xn and X = X1 ∧ . . . ∧ Xn, and

X = (detA)X, where A = (aij) is the changeâ¿“ofâ¿“basis matrix. An arbitrary n-form

w ∈ An(Rn) can be written as

w = αX = βX,

with α = (detA)β, keeping in mind the relations

X i =
n∑
j=1

aijXj,

which define the matrix A.
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4.5 The Volume Element

Let Rn be an n-dimensional oriented inner product space. Recall that to orient a vector

space is to choose a basis, call it positive, and declare positive every other basis whose

change-of-basis matrix has determinant greater than zero.

We now define an n-form called the volume element on Rn. First, choose a positive

orthonormal basis {e1, e2, . . . , en} in Rn. Given a sequence of vectors ξ1, . . . , ξn ∈ Rn, for

each j = 1, . . . , n we can write

ξj =
n∑
i=1

aijei.

Let (Aij) be the resulting n× n matrix, and define the map

ω : Rn × · · · × Rn −→ R

(ξ1, . . . , ξn) 7−→ ω(ξ1, . . . , ξn) = det(A).

Clearly ω ∈ Ak(Rn) is alternating and n-linear. We claim that ω does not depend on the

choice of basis we made. To prove this, we introduce the Gram matrix G = (⟨ξi, ξj⟩),
whose entry in the i-th row and j-th column is the inner product ⟨ξi, ξj⟩. Indeed,

⟨ξi, ξj⟩ =

〈
n∑
k=1

akiek,
n∑
s=1

asjes

〉

=
n∑
k=1

n∑
s=1

akiasj⟨ek, es⟩

=
n∑
k=1

akiakj.

It follows that G = A∗A, where A∗ is the transpose of A. In fact,

AA∗ =

∣∣∣∣∣∣∣
∑

k ak1ak1 · · ·
∑

k ak1akn
...

. . .
...∑

k aknak1 · · ·
∑

k aknakn

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
⟨ξ1, ξ1⟩ · · · ⟨ξ1, ξn⟩
...

. . .
...

⟨ξn, ξ1⟩ · · · ⟨ξn, ξn⟩

∣∣∣∣∣∣∣ .
Thus

detG = det(AA∗) = detA · detA∗ = (detA)2.
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In particular, detG ≥ 0, and detG = 0 if and only if the vectors ξ1, . . . , ξn are linearly

dependent.

We conclude that

ω(ξ1, . . . , ξn) = ±
√
det
(
⟨ξi, ξj⟩

)
,

where the sign + or − is the sign of detA. The equality above shows that the definition of

ω is independent of the choice of basis. Thus ω(ξ1, . . . , ξn) > 0 when the vectors ξ1, . . . , ξn

form a positive basis, and if ξ1, . . . , ξn are linearly dependent then

ω(ξ1, . . . , ξn) = 0.

In the case where Rn is the n-dimensional Euclidean space, | det(A)| is the volume of

the parallelepiped with edges ξ1, . . . , ξn, so that ω(ξ1, . . . , ξn) is the oriented volume, as

mentioned in Section 1.

4.6 The Cross Product

Let R3 be three-dimensional Euclidean space.

The cross product

× : R3 × R3 −→ R3, (ξ, η) 7−→ ξ × η,

is the bilinear map defined as follows.

Consider the canonical basis {e1, e2, e3} ⊂ R3. Set

e1 × e1 = e2 × e2 = e3 × e3 = 0,

e1 × e2 = −e2 × e1 = e3,

e2 × e3 = −e3 × e2 = e1,

e3 × e1 = −e1 × e3 = e2.

Now, given arbitrary vectors ξ = (x1, x2, x3) and η = (y1, y2, y3), we have

ξ × η = (x1e1 + x2e2 + x3e3)× (y1e1 + y2e2 + y3e3)

= (x2y3 − x3y2)e1 + (x3y1 − x1y3)e2 + (x1y2 − x2y1)e3.
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Clearly ξ × ξ = 0. Thus the cross product is a bilinear and antisymmetric map. Note

that the inner products ⟨ξ × η, ξ⟩ and ⟨ξ × η, η⟩ are zero, and consequently the cross

product ξ × η is perpendicular to the plane spanned by these vectors (if ξ and η are

linearly dependent, they do not span a plane, and in this case we have ξ × η = 0).

For each η ∈ R3, define ω1
η : R3 → R by

ω1
η(ξ) = ⟨η, ξ⟩.

Then ω1
η is a 1-form. Consider the map

φ : R3 −→ (R3)∗

η 7−→ ω1
η.

(i) φ is linear:

Let η1, η2 ∈ R3 and α, β ∈ R. Then

ω1
αη1+βη2

(ξ) = ⟨αη1 + βη2, ξ⟩

= ⟨αη1, ξ⟩+ ⟨βη2, ξ⟩

= ω1
αη1

(ξ) + ω1
βη2

(ξ), ∀ξ ∈ R3.

(ii) φ is one-to-one.

If ω1
η1

= ω1
η2
, then ω1

η1
(ξ) = ω1

η2
(ξ) for all ξ ∈ R3. Thus

⟨η1 − η2, ξ⟩ = 0, ∀ξ ∈ R3.

In particular, taking ξ = η1 − η2, we obtain

⟨η1 − η2, η1 − η2⟩ = 0,

which implies η1 = η2.

Since φ is surjective by construction, it follows that φ is an isomorphism. Hence R3

and (R3)∗ are isomorphic vector spaces.

Now, for each η ∈ R3, define

ω2
η : R3 × R3 −→ R

(ξ1, ξ2) 7−→ ω2
η(ξ1, ξ2) = ⟨η, ξ1 × ξ2⟩.
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The map ω2
η is a 2-form, which motivates the definition of

ψ : R3 −→ A2(R3)

η 7−→ ω2
η.

Arguing as we did for the map φ, we obtain an isomorphism between R3 and A2(R3).

In fact, n = 3 is the only dimension in which this happens, since

dimA2(Rn) = n⇐⇒ n = 3.

Indeed,

dimA2(Rn) =

(
n

2

)
=

n!

2!(n− 2)!
.

Thus,

n!

2!(n− 2)!
= n⇐⇒ n(n− 1)(n− 2)!

2!(n− 2)!
= n⇐⇒ n2 − 3n = 0 ⇐⇒ n = 3.

Given η = (x1, x2, x3) ∈ R3 and the projections Xi : R3 → R (i = 1, 2, 3), we have

ω1
η = x1X1 + x2X2 + x3X3.

Indeed, take ξ = (y1, y2, y3) ∈ R3. Then

(
x1X1 + x2X2 + x3X3

)
(ξ) = x1X1(ξ) + x2X2(ξ) + x3X3(ξ)

= x1y1 + x2y2 + x3y3

= ⟨η, ξ⟩ = ω1
η(ξ).

Thus we have the isomorphism

x1e1 + x2e2 + x3e3 ∈ R3 ≈ x1X1 + x2X2 + x3X3 ∈ (R3)∗.

For η = (x1, x2, x3) we claim that

ω2
η = x1(X2 ∧X3) + x2(X1 ∧X3) + x3(X1 ∧X2).
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Indeed, with ξ1 = (y1, y2, y3) and ξ2 = (z1, z2, z3),(
x1(X2 ∧X3) + x2(X1 ∧X3) + x3(X1 ∧X2)

)
(ξ1, ξ2)

= x1

∣∣∣∣ X2(ξ1) X3(ξ1)
X2(ξ2) X3(ξ2)

∣∣∣∣+ x2

∣∣∣∣ X1(ξ1) X3(ξ1)
X1(ξ2) X3(ξ2)

∣∣∣∣+ x3

∣∣∣∣ X1(ξ1) X2(ξ1)
X1(ξ2) X2(ξ2)

∣∣∣∣
= x1

∣∣∣∣ y2 y3
z2 z3

∣∣∣∣+ x2

∣∣∣∣ y1 y3
z1 z3

∣∣∣∣+ x3

∣∣∣∣ y1 y2
z1 z2

∣∣∣∣
= x1(y2z3 − z2y3) + x2(y1z3 − z1y3) + x3(y1z2 − z1y2)

= ⟨η, ξ1 × ξ2⟩

= ω2
η(ξ1, ξ2).

Therefore we have the isomorphism

x1e1 + x2e2 + x3e3 ∈ R3 ≈ x1(X2 ∧X3) + x2(X1 ∧X3) + x3(X1 ∧X2) ∈ A2(R3).

On the other hand, given η1 = (y1, y2, y3) and η2 = (z1, z2, z3),

ω1
η1
∧ ω1

η2
= (y1X1 + y2X2 + y3X3) ∧ (z1X1 + z2X2 + z3X3)

= y1z2(X1 ∧X2) + y1z3(X1 ∧X3) + y2z1(X2 ∧X1)

+y2z3(X2 ∧X3) + y3z1(X3 ∧X1) + y3z2(X3 ∧X2)

= (y1z2 − z1y2)(X1 ∧X2) + (y2z3 − z2y3)(X2 ∧X3)

+(y1z3 − z1y3)(X1 ∧X3)

= ω2
η1×η2 .

Thus

ω1
η1
∧ ω1

η2
= ω2

η1×η2 .

From now on, our aim is to generalise the cross product.

We define the ‘cross product’

ξ1 × · · · × ξn

of n vectors in Rn+1 as the vector ξ ∈ Rn+1 such that, for every η ∈ Rn+1,

⟨η, ξ⟩ = det(η, ξ1, . . . , ξn),

where det(η, ξ1, . . . , ξn) is the determinant of the (n+1)× (n+1) matrix whose columns

are the vectors η, ξ1, . . . , ξn, in this order. That is, if

η = (y1, . . . , yn+1),
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ξ1 = (x11, x21, . . . , x(n+1)1),

ξ2 = (x12, x22, . . . , x(n+1)2),

...
...

...

ξn = (x1n, x2n, . . . , x(n+1)n),

then the cross product ξ1 × · · · × ξn is the vector ξ ∈ Rn+1 such that, for every η ∈ Rn+1,

⟨η, ξ⟩ =

∣∣∣∣∣∣∣∣∣
y1 x11 · · · x1n
y2 x21 · · · x2n
...

...
. . .

...
yn+1 x(n+1)1 · · · x(n+1)n

∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

The coordinates of the vectors

ξj =
n+1∑
i=1

xijei, j = 1, . . . , n,

with respect to the canonical basis of Rn+1 form a matrix M = (xij) with (n + 1) rows

and n columns. We denote by M(i) the n × n matrix obtained from M by omitting its

i-th row.

By the definition of the cross product, for each i = 1, . . . , n+ 1 we have

⟨ei, ξ1 × · · · × ξn⟩ = det(ei, ξ1, . . . , ξn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x11 x12 · · · x1n
0 x21 x22 · · · x2n
...

...
...

. . .
...

1 xi1 xi2 · · · xin
...

...
...

. . .
...

0 x(n+1)1 x(n+1)2 · · · x(n+1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)i+1 det(M(i)),

where the last equality follows from expanding the determinant along the first column.

Therefore

ξ1 × · · · × ξn =
n+1∑
i=1

(−1)i+1 det(M(i))ei

is the expression of the vector ξ1 × · · · × ξn in the canonical basis of Rn+1.

From this, or directly from the definition, we see that the cross product is an n-linear

antisymmetric map from Rn+1 × · · · × Rn+1 to Rn+1.
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The cross product enjoys the following properties:

(1) ξ1 × · · · × ξn = 0 whenever the vectors ξ1, . . . , ξn are linearly dependent.

Indeed, this follows from the fact that the determinant in the definition is alternating

(and hence vanishes when two of the columns coincide).

(2) ξ1 × · · · × ξn is perpendicular to each ξj.

In fact, by definition

⟨ξj, ξ1 × · · · × ξn⟩ = det(ξj, ξ1, . . . , ξn) = 0,

since this determinant has two equal columns.

(3) ∥ξ1×· · ·×ξn∥ is the volume of the parallelepiped generated by the vectors ξ1, . . . , ξn.

We know that the volume of the parallelepiped [ξ1, . . . , ξn] is
√
detG, where the Gram

matrix G has as its (i, j)-entry the inner product

⟨ξi, ξj⟩ =
n+1∑
k=1

xkixkj.

Hence

M∗M =

∣∣∣∣∣∣∣
∑n+1

k=1 xk1xk1 · · ·
∑n+1

k=1 xk1xkn
...

. . .
...∑n+1

k=1 xknxk1 · · ·
∑n+1

k=1 xknxkn

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
⟨ξ1, ξ1⟩ · · · ⟨ξ1, ξn⟩
...

. . .
...

⟨ξn, ξ1⟩ · · · ⟨ξn, ξn⟩

∣∣∣∣∣∣∣ = G.

Thus, by Lagrange’s identity we can write

vol[ξ1, . . . , ξn] =
√
detG

=
√

det(M∗M)

=

√√√√n+1∑
i=1

[det(M(i))]2

= ∥ξ1 × · · · × ξn∥.

(4) det(ξ1 × · · · × ξn, ξ1, . . . , ξn) > 0 whenever the vectors ξ1, . . . , ξn are linearly inde-

pendent.
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Indeed, observe that by definition (in particular when η = ξ = ξ1 × · · · × ξn),

det(ξ1 × · · · × ξn, ξ1, . . . , ξn) = ⟨ξ1 × · · · × ξn, ξ1 × · · · × ξn⟩

= ∥ξ1 × · · · × ξn∥2 = detG,

and detG ̸= 0 if and only if {ξ1, . . . , ξn} is linearly independent.

We now show that the properties above characterise the cross product. Indeed:

By property (1) it suffices to consider the case where ξ1, . . . , ξn are linearly indepen-

dent. Property (2) determines the direction of the vector ξ1 × · · · × ξn, that is, the line

through the origin containing it. Property (3) gives its length, while property (4) tells us

which of the two non-zero vectors with that length is the cross product, namely the one

for which (ξ1 × · · · × ξn, ξ1, . . . , ξn) is a positive basis of Rn+1; in other words, it fixes the

‘sense’ of this vector along that direction.

Thus, from all the above, the cross product ξ1×· · ·×ξn does not depend on the positive

orthonormal basis chosen to define it. The cross product is an nâ¿“linear antisymmetric

map

× : Rn+1 × · · · × Rn+1 −→ Rn+1

(ξ1, . . . , ξn) 7−→ ξ1 × · · · × ξn =
n+1∑
i=1

(−1)i+1 det(M(i))ei.

We can generalise the isomorphisms constructed at the beginning of this section by

defining the following maps.

For each η ∈ Rn+1, define

ω1
η : Rn+1 −→ R

ξ 7−→ ω1
η(ξ) = ⟨η, ξ⟩

and the map

φ : Rn+1 −→ (Rn+1)∗

η 7−→ ω1
η.

This is an isomorphism between Rn+1 and (Rn+1)∗.

Now, for each η ∈ Rn+1 define

ωnη : Rn+1 × · · · × Rn+1 −→ R

(ξ1, . . . , ξn) 7−→ ωnη (ξ1, . . . , ξn) = ⟨η, ξ1 × · · · × ξn⟩
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and the map

ψ : Rn+1 −→ An(Rn+1)

η 7−→ ωnη .

This is an isomorphism between Rn+1 and An(Rn+1).

In an analogous way, given η = (x1, . . . , xn+1) ∈ Rn+1 and the projections

Xi : Rn+1 → R, i = 1, . . . , n+ 1,

we have

ω1
η =

n+1∑
i=1

xiXi.

Note that we have (
n+ 1

n

)
= n+ 1

subsets of the form I = {i1 < · · · < in} running through the set {1, . . . , n + 1}. Thus

there are as many such subsets as there are coordinates of the vector η = (x1, . . . , xn+1).

Therefore, for each i ∈ {1, . . . , n + 1} we choose one of the Ii in such a way that Ii does

not contain the element i. Then

Xn
η =

∑
i

xiXIi .

More precisely,

Xn
η = x1(X2∧X3∧· · ·∧Xn+1)+x2(X1∧X3∧· · ·∧Xn+1)+ · · ·+xn+1(X1∧X2∧· · ·∧Xn).

Finally, given η1, . . . , ηn ∈ Rn+1 we also have

ω1
η1
∧ · · · ∧ ω1

ηn = ωnη1×···×ηn .

We leave the proof of these results to the reader.



Chapter 5

Differential Forms in Rn

5.1 Differential Forms in Rn

Definition 5.1.1 Let p ∈ Rn be an arbitrary but fixed point. The set of vectors attached

at p is called the tangent space of Rn at p, denoted by Rn
p . More precisely,

Rn
p =

{
(p, v); v ∈ Rn

}
.

We sometimes use the notation v(p) or simply vp to represent the elements (p, v) ∈ Rn
p .

To fix ideas, consider the diagram below:

Figure 5.1:

Rn
p is a vector space endowed with the operations

(p, v1) + (p, v2) = (p, v1 + v2),

α(p, v1) = (p, αv1), ∀v1, v2 ∈ Rn and ∀α ∈ R,

that is, the natural addition and scalar multiplication.

189
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In fact, Rn
p is a vector space isomorphic to Rn. Indeed, consider the linear bijection

from Rn onto Rn
p given by v 7→ (p, v) = vp. Through this isomorphism the vectors of the

canonical basis {e1, . . . , en} of Rn can be ‘identified’ with their translates {(e1)p, . . . , (en)p}
at the point p.

Definition 5.1.2 We define an inner product on Rn
p by setting, for vp, wp ∈ Rn

p ,

⟨vp, wp⟩p = ⟨v, w⟩.

Definition 5.1.3 A vector field on Rn is a map v : Rn → Rn
p which associates to each

point p ∈ Rn a vector v(p) ∈ Rn
p .

In view of the identification above, v can be written in the form

v(p) =
n∑
i=1

ai(p)ei.

The vector field v is said to be differentiable when the functions ai : Rn → R for

i = 1, . . . , n are differentiable.

Definition 5.1.4 Let f : Rn → R be a differentiable map. We denote by dfp the

differential of the function f at the point p in Rn
p and define

dfp : Rn
p −→ R

(p, v) = vp 7−→ (df)(p)(vp) = Df(p)(v),

where Df(p) : Rn → R is the (Fréchet) differential of f at the point p in Rn. Clearly,

(df)(p) is a linear map and therefore dfp ∈ (Rn
p )

∗.

For each tangent space Rn
p , consider the dual space (Rn

p )
∗. A basis for (Rn

p )
∗ is obtained

by taking

(dXi)(p), i = 1, . . . , n,

where Xi : Rn → R is the i-th coordinate projection.

Indeed, if vp ∈ Rn
p then vp = (p, v) and v =

∑n
i=1 viei. Thus, by the previous definition

we have

(dXi)(p)(vp) = (DXi)(p)(v) =
n∑
j=1

∂Xi

∂xj
(p)vj.
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However,

∂Xi

∂xj
(p) =

{
1, i = j,

0, i ̸= j.

Hence

(dXi)(p)(vp) = vi. (1)

In particular, for vp = (ej)p we get

(dXi)(p)(ej)p =

{
1, i = j,

0, i ̸= j.

Thus {(dXi)p; 1 ≤ i ≤ n} is the ‘dual basis’ of {(ei)p; 1 ≤ i ≤ n}, that is, the dual

basis of Rn
p .

Proposition 5.1.5 If f : Rn → R is differentiable, then

df =
∂f

∂x1
dX1 + · · ·+ ∂f

∂xn
dXn.

Proof:For every vp = (p, v) with v =
∑n

i=1 viei, by Definition (2.1.4) and (1),

(df)(p)(vp) = Df(p)(v)

=
n∑
i=1

∂f

∂xi
(p) vi

=
n∑
i=1

∂f

∂xi
(p)(dXi)(p)(vp)

=
n∑
i=1

(
∂f
∂xi
dXi

)
(p)(vp).

By the arbitrariness of vp ∈ Rn
p we obtain

(df)(p) =
n∑
i=1

(
∂f
∂xi
dXi

)
(p),

and, by the arbitrariness of p ∈ Rn, we conclude

df =
n∑
i=1

∂f

∂xi
dXi.

2
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Remark 5.1.6 The differential df can be understood as the map which to each p ∈ Rn

associates dfp ∈ (Rn
p )

∗, where

dfp : Rn
p −→ R,

vp 7−→ (df)(p)(vp) =
n∑
i=1

(
∂f

∂xi
dXi

)
(p)(vp) = Df(p)(v),

and which, by a slight abuse of terminology, we also call the differential of f .

Let Ak(Rn
p ) be the vector space of k-forms

ωk : Rn
p × · · · × Rn

p → R. (2)

If ω1, . . . , ωk are 1-forms, we can obtain from them a kâ¿“form as in (2),

ω1 ∧ · · · ∧ ωk,

(called decomposable) defined by

ω1 ∧ · · · ∧ ωk : Rn
p × · · · × Rn

p −→ R

(v1, . . . , vk) 7−→ (ω1 ∧ · · · ∧ ωk)(v1, . . . , vk),

where

(ω1 ∧ · · · ∧ ωk)(v1, . . . , vk) = det
(
ωi(vj)

)
1≤i,j≤k. (3)

As seen in the previous chapter, ω1 ∧ · · · ∧ ωk is a k-form. In particular,

(dxi1)p ∧ · · · ∧ (dxik)p ∈ Ak(Rn
p ).

We denote this element by

(dxi1 ∧ · · · ∧ dxik)p.

In accordance with Proposition (4.2.5) we have the analogous result:

Proposition 5.1.7 The set{
(dxi1 ∧ · · · ∧ dxik)p

}
, i1 < · · · < ik,

where ij ∈ {1, . . . , n}, forms a basis of Ak(Rn
p ).

Definition 5.1.8 An exterior kâ¿“form on Rn is a map which to each p ∈ Rn associates

ω(p) ∈ Ak(Rn
p ).
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In view of Proposition (4.1.7) we can write

ω(p) =
∑

i1<i2<···<ik

ai1···ik(p) (dxi1 ∧ · · · ∧ dxik), ij ∈ {1, 2, . . . , n}, (4)

where ai1···ik are functions from Rn into R. If these functions are differentiable, ω is called

a differentiable k-form.

As before, we denote by I the k-tuple

i⃗ = (i1, . . . , ik), i1 < · · · < ik, ij ∈ {1, . . . , n},

and, for simplicity, we use the notation

ω(p) =
∑
I

aI(p) dXI(p),

or simply

ω =
∑
I

aIdXI ,

when there is no risk of confusion.

By convention, a differential 0-form on Rn is a differentiable function.

Example 5.1.9 In R4 we have the following types of exterior forms:

0â¿“forms: functions on R4.

1â¿“forms:

a1dX1 + a2dX2 + a3dX3 + a4dX4.

2â¿“forms:

a12(dX1 ∧ dX2) + a13(dX1 ∧ dX3) + a14(dX1 ∧ dX4)

+ a23(dX2 ∧ dX3) + a24(dX2 ∧ dX4) + a34(dX3 ∧ dX4).

3â¿“forms:

a123(dX1 ∧ dX2 ∧ dX3) + a124(dX1 ∧ dX2 ∧ dX4)

+ a134(dX1 ∧ dX3 ∧ dX4) + a234(dX2 ∧ dX3 ∧ dX4).

4â¿“forms:

a1234(dX1 ∧ dX2 ∧ dX3 ∧ dX4).
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Unless otherwise stated, from now on we shall deal only with differentiable k-forms.

If ωk1 and ωk2 are two k-forms:

ωk1 =
∑
I

aIdXI and ωk2 =
∑
I

bIdXI , I = (i1, . . . , ik),

with i1 < · · · < ik, we define the sum ωk1 + ωk2 by

ωk1 + ωk2 =
∑
I

(aI + bI)dXI . (5)

If ωk is a kâ¿“form and ωl is an ℓ-form, we can also, as in Section 3 of the previous

chapter, define the exterior product ωk ∧ ωl as follows:

If ωk =
∑

I aIdXI , I = (i1, . . . , ik), i1 < · · · < ik, and ω
l =
∑

J bJdXJ , J = (j1, . . . , jl),

j1 < · · · < jl, we set

ωk1 ∧ ωl2 =
∑
I,J

aIbJ(dXI ∧ dXJ). (6)

The exterior product, as in Section 3 of the previous chapter, enjoys the following prop-

erties:

(1) (ωk ∧ ωl) = (−1)kl(ωl ∧ ωk) (anticommutativity);

(2) (ωk ∧ ωl) ∧ ωm = ωk ∧ (ωl ∧ ωm) (associativity);

(3) (ωk1 + ωk2) ∧ λωl = (ωk1 ∧ ωl) + (ωk2 ∧ ωl) (distributivity).

We also recall that the exterior product defined in (6) has the crucial property that if

ω1, . . . , ωk are 1-forms, then the exterior product (ω1∧ · · · ∧ωk) (which is a decomposable

kâ¿“form) coincides with the form defined in (3).

Definition 5.1.10 Let f : Rn → Rm be a differentiable map. We denote by dfp the

derivative of the function f at the point p in Rn
p , defined by

dfp : Rn
p −→ Rm

f(p)

vp 7−→ (df)(p)(vp) = (f ′(p) · v)f(p),

where f ′(p) : Rn → Rm is the derivative of f at p.

Sometimes, instead of dfp, we also denote this map by f∗. Such a map is clearly linear,

because f ′(p) is linear. Therefore dfp ∈ L(Rn
p ,Rm

f(p)) and we obtain a map

p ∈ Rn 7−→ dfp ∈ L(Rn
p ,Rm

f(p)).
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Let f : Rn → Rm be a differentiable map. Given an exterior kâ¿“form ω on Rm, we

define an exterior k-form f ∗ω on Rn by setting, for each p ∈ Rn and each list of vectors

v1, . . . , vk ∈ Rn
p , [

(f ∗ω)(p)
]
(v1, . . . , vk) = ω

(
f(p)

)(
dfp(v1), . . . , dfp(vk)

)
. (7)

In this way we obtain a map f ∗ω which to each p ∈ Rn associates

(f ∗ω)(p) ∈ Ak(Rn
p ) defined as in (7), that is, an exterior kâ¿“form on Rn.

On the other hand, as we know, the derivative dfp : Rn
p −→ Rm

f(p), being linear, induces

a linear transformation

[dfp]
∗ : Ak(Rm

f(p)) −→ Ak(Rn
p ) (8)

given by

ω 7−→ [dfp]
∗(ω),

where

[dfp]
∗(ω) : Rn

p × · · · × Rn
p −→ R (9)

is defined by

v⃗ 7−→ [dfp]
∗(ω)(v⃗) = ω

(
dfp(v1), . . . , dfp(vk)

)
,

as seen in Section 4 of Chapter 1.

Thus, from (7) and (9) we obtain, in particular for ω(f(p)) ∈ Ak(Rm
f(p)),

(f ∗ω)(p) = [dfp]
∗(ω(f(p))). (10)

Conclusion

Every differentiable map f : Rn −→ Rm induces a linear transformation f ∗ which

sends exterior forms on Rm to exterior forms on Rn. This transformation is one of the

main reasons why differential forms are so useful for studying maps between surfaces, as

we shall see later.

In the case of a 0â¿“form, that is, a map g : Rm −→ R, we set f ∗g = g ◦ f , which is

clearly a differentiable 0-form on Rn, i.e. an exterior 0â¿“form.

Proposition 5.1.11 If f : Rn −→ Rm is differentiable, then:

(a) f ∗(ω1 + ω2) = f ∗(ω1) + f ∗(ω2), where ω1, ω2 are k-forms on Rm.
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(b) f ∗(g ω) = f ∗(g) f ∗(ω), where g is a 0â¿“form and ω is a kâ¿“form on Rm.

(c) f ∗(ω1∧ω2) = f ∗(ω1)∧f ∗(ω2), where ω1, ω2 are differential forms on Rm (of degrees

adding up to the degree of the wedge product).

Proof:

Items (a) and (c) have already been proved in the general case in Section 4 of Chapter

1. We now prove item (b).

Let p ∈ Rn and v1, . . . , vk ∈ Rn
p . Then, by (10),

f ∗(g ω)(p)(v⃗) = [dfp]
∗(g ω)(f(p))(v1, . . . , vk)

= (g ω)(f(p))
(
dfp(v1), . . . , dfp(vk)

)
= g(f(p))ω(f(p))

(
dfp(v1), . . . , dfp(vk)

)
= (g ◦ f)(p) [dfp]∗(ω(f(p)))(v1, . . . , vk)

= (g ◦ f)(p) (f ∗ω)(p)(v1, . . . , vk)

= f ∗(g)(p) (f ∗ω)(p)(v1, . . . , vk).

2

Proposition 5.1.12 If f : Rn −→ Rm is a differentiable map, then

f ∗(dXi) = dfi =
n∑
j=1

∂fi
∂xj

dXj.

Proof:

Let p ∈ Rn and vp ∈ Rn
p . Then

[f ∗(dXi)(p)](vp) = dXi(f(p))
(
dfp(vp)

)
= dXi(f(p))

(
f ′(p) v

)
f(p)

= dXi(f(p))
(
Df1(p)v, . . . , Dfm(p)v

)
f(p)

= Dfi(p)v

=
n∑
j=1

∂fi
∂xj

(p) vj

=
n∑
j=1

∂fi
∂xj

(p) dXj(p)(vp)

=
[ n∑
j=1

( ∂fi
∂xj

dXj

)
(p)
]
(vp).

2
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Remark 5.1.13 In fact, the map f ∗ (which sends exterior k-forms on Rm to exterior

k-forms on Rn) is equivalent to a change of variables.

Indeed, let ω =
∑

I aIdYI be a k-form on Rm. Using the properties in Proposition

(2.1.11), we obtain:

f ∗ω = f ∗

(∑
I

aIdYI

)
=
∑
I

f ∗(aI) f
∗(dYI)

=
∑
I

(aI ◦ f) f ∗(dYi1 ∧ · · · ∧ dYik)

=
∑
I

(aI ◦ f) f ∗(dYi1) ∧ · · · ∧ f ∗(dYik). (11)

On the other hand, by Proposition (5.1.12),

f ∗(dYij) = dfij =
m∑
k=1

∂fij
∂yk

dYk.

Hence, from (11) we obtain

f ∗(ω) =
∑
I

(aI ◦ f) dfi1 ∧ · · · ∧ dfik .

More explicitly,

f ∗(ω) =
∑
I

aI
(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)
dfi1 ∧ · · · ∧ dfik ,

where the fi and dfi are functions of the variables xj.

Therefore, to apply f ∗ to ω is equivalent to substituting, in ω, the variables Yi and

their differentials dYi by the functions of xk and dxk given by
y1 = f1(x1, . . . , xn),
...

...
ym = fm(x1, . . . , xn).

5.2 The Exterior Differential

We now define an operation on differentiable exterior k-forms which generalises the usual

differentiation of functions.
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If f : Rn → R is a 0-form (a C2 differentiable function), its differential

df =
n∑
i=1

∂f

∂xi
dXi,

which is an identity in (Rn
p )

∗, is a differentiable exterior 1-form. Recall that df is the map

p ∈ Rn 7−→ dfp ∈ (Rn
p )

∗,

where

dfp : Rn
p −→ R

vp 7−→ dfp(vp) = Df(p)(v) =
n∑
i=1

(
∂f
∂xi

dXi

)
(p)(vp).

We wish to define, by analogy, an operation which sends a differentiable exterior k-form

to a differentiable exterior (k + 1)-form.

Definition 5.2.1 Let ω be a differentiable exterior k-form of class Ck, that is, a map

ω : p ∈ Rn 7−→ ω(p) ∈ Ak(Rn
p )

such that

ω(p) =
∑
I

aI(p) dXI(p),

with functions aI ∈ Ck(Rn).

We define the exterior differential of ω to be the differentiable exterior (k + 1)-form of class Ck−1,

that is, the map

dω : p ∈ Rn 7−→ dω(p) ∈ Ak+1(Rn
p )

such that

dω(p) =
∑
I

daI(p) ∧ dXI(p) =
∑
j,I

∂aI(p)

∂xj
dXj(p) ∧ dXI(p).

Remark 5.2.2 (i) If ω is a form of degree zero, that is a function

ω = f : Rn → R,

then

dω =
n∑
i=1

∂f

∂xi
dXi.
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(ii) If ω is a 1-form, then for each p ∈ Rn we can write

ω =
∑
i

ai dXi,

and therefore

dω =
∑
i

dai ∧ dXi

=
∑
i,j

∂ai
∂xj

dXj ∧ dXi

=
∑
j<i

∂ai
∂xj

dXj ∧ dXi +
∑
i<j

∂ai
∂xj

dXj ∧ dXi

=
∑
i<j

∂aj
∂xi

dXi ∧ dXj −
∑
i<j

∂ai
∂xj

dXi ∧ dXj

=
∑
i<j

(
∂aj
∂xi

− ∂ai
∂xj

)
dXi ∧ dXj,

where all quantities above are evaluated at the point p ∈ Rn.

For simplicity, from now on we shall omit the point p in the notation.

In particular:

If ω =M dx+N dy, then

dω =

(
∂N

∂x
− ∂M

∂y

)
dx ∧ dy.

If ω = P dx+Qdy +Rdz, then

dω =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy +

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz

+

(
∂R

∂x
− ∂P

∂z

)
dx ∧ dz.

Proposition 5.2.3 Let ω1, ω2 be exterior differential forms of class C1 and let

f : Rn → Rm be a map of class C2 (a 0-form of class C2). Then:

(a) If ω : Rn → R is a differentiable 0â¿“form, then dω is the usual differential of a

function.

(b) d(ω1 + ω2) = dω1 + dω2, for ω1, ω2 kâ¿“forms.

(c) If ω is of class C2, then d(dω) = d2ω = 0.
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(d) d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k ω1 ∧ dω2, where ω1 is a kâ¿“form and ω2 is an

ℓâ¿“form.

(e) d(f ∗ω) = f ∗(dω).

Proof:

(a) Obvious.

(b) Let ω1, ω2 be two k- forms. Then, for each p ∈ Rn,

ω1 =
∑

I aIdXI and ω2 =
∑

I bIdXI . Thus ω1 + ω2 =
∑

I(aI + bI)dXI and hence

d(ω1 + ω2) =
∑
I

d(aI + bI) ∧ dXI

=
∑
I

daI ∧ dXI +
∑
I

dbI ∧ dXI

= dω1 + dω2.

As seen in earlier sections, to establish the remaining properties it suffices to treat the

case in which, for each p ∈ Rn, ω1 = a dXI and ω2 = b dXJ are monomials.

Let us proceed.

(c) If ω is as above and of class C2, then for each p we have ω = a dXI . Hence

dω =
n∑
j=1

∂a

∂xj
dXj ∧ dXI ,

and therefore

d(dω) =

[
n∑

k,j=1

∂2a

∂xk∂xj
dXk ∧ dXj

]
∧ dXI

=

[∑
j<k

(
∂2a

∂xj∂xk
− ∂2a

∂xk∂xj

)
dXj ∧ dXk

]
∧ dXI = 0,

by Schwarz’s theorem on the equality of mixed partial derivatives.

(d) For each p ∈ Rn we have ω1 = a dXI and ω2 = b dXJ . Thus

ω1 ∧ ω2 = ab (dXI ∧ dXJ).

Hence

d(ω1 ∧ ω2) = d(ab) ∧ dXI ∧ dXJ

= (da · b+ a · db) ∧ (dXI ∧ dXJ)

= b da ∧ (dXI ∧ dXJ) + a db ∧ (dXI ∧ dXJ)

= b (da ∧ dXI) ∧ dXJ + (−1)ka (dXI ∧ db) ∧ dXJ . (1)
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On the other hand, dω1 = da ∧ dXI . Thus

dω1 ∧ ω2 = (da ∧ dXI) ∧ b dXJ = b (da ∧ dXI) ∧ dXJ . (2)

Similarly, dω2 = db ∧ dXJ , so

ω1 ∧ dω2 = a dXI ∧ db ∧ dXJ . (3)

Combining (1), (2) and (3), we obtain

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k ω1 ∧ dω2.

(e) Finally, to prove the last property, we begin with the case where the form ω reduces

to a function g : Rm → R. Then, by the chain rule, at every point p ∈ Rn we have

dg(f(p)) · f ′(p) = d(g ◦ f)(p).

Therefore, for any v ∈ Rn,

f ∗(dg)(p)(v) = dg(f(p))
(
dfp(v)

)
= dg(f(p))

(
f ′(p) v

)
= d(g ◦ f)(p) v.

Hence

f ∗(dg) = d(g ◦ f) = d(f ∗g).

Now consider a form ω = a dXI = a(dxi1 ∧ · · · ∧ dxik) of arbitrary degree k. From (d),

(c) and a straightforward induction one shows that if

a : Rm → R is of class C1 and g1, . . . , gk are of class C2, then

d
(
a(dg1 ∧ · · · ∧ dgk)

)
= da ∧ dg1 ∧ · · · ∧ dgk.

We also recall that f ∗(α ∧ β) = f ∗(α) ∧ f ∗(β). Thus

f ∗ω = f ∗a ·
(
f ∗dXi1 ∧ · · · ∧ f ∗dXik

)
= f ∗a · d(Xi1 ◦ f) ∧ · · · ∧ d(Xik ◦ f).

Therefore

d(f ∗ω) = d(f ∗a) ∧ d(Xi1 ◦ f) ∧ · · · ∧ d(Xik ◦ f)

= f ∗(da ∧ dXi1 ∧ · · · ∧ dXik

)
= f ∗(dω),

as claimed. 2
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Chapter 6

Differentiable Surfaces

6.1 Differential Forms on Surfaces

Although differential forms were introduced in the previous chapter on Rn, they, like

everything related to differentiability, naturally live on differentiable surfaces (manifolds).

Let us recall this concept.

A surface of class Ck and dimension m < n in Rn is a subset S ⊂ Rn such that for

each p ∈ S there exists a neighbourhood V of p in Rn and a map f : U ⊂ Rm → V ∩ S
of class Ck on the open set U such that

i) f is a differentiable diffeomorphism;

ii) the differential Df(q) : Rm → Rn is injective for every q ∈ U .

The map f : U ⊂ Rm → S is called a parametrisation of S. To fix ideas, consider the

diagram of a surface S in R3:

Figure 6.1:

203
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Given a surface S ⊂ Rn of dimension m and class Ck (k ≥ 1) and a point p ∈ S, the

tangent space to S at p in Rn is the vector subspace Tp(S). We can describe it in the

following ways:

i) Take a parametrisation φ : V0 → V ∩ S of class Ck of a neighbourhood V of p with

φ(q) = p. We then set

Tp(S) = φ′(q)(Rm).

ii) Consider all curves λ : (−ε, ε) → S with λ(0) = p, differentiable at 0. Then Tp(S)

is defined as the set of velocity vectors λ′(0) of these curves.

By the first definition we obtain Tp(S) as an m-dimensional vector subspace of Rn,

but this description depends on the parametrisation φ. The second definition does not

depend on the choice of parametrisation, although it is not immediately obvious from it

that Tp(S) is a vector space. However, one proves that the two definitions are equivalent

and therefore

Tp(S) = φ′(q)(Rm) = {λ′(0) ∈ Rn; λ : (−ε, ε) → S ∩ V, λ(0) = p},

with λ differentiable at 0.

The most important fact that follows from the definition of a surface is that the change

of parameters is a diffeomorphism of class Ck.

More precisely, if φ : U0 → φ(U0) and ψ : W0 → ψ(W0) are two parametrisations such

that

φ(U0) ∩ ψ(W0) = W ̸= ∅,

that is, they both contain the point p, then the maps

ψ−1 ◦ φ : φ−1(W ) → Rm and φ−1 ◦ ψ : ψ−1(W ) → Rm

are diffeomorphisms of class Ck.

As a consequence, we can introduce the concept of differentiable maps between sur-

faces. Indeed, a map

f : S −→ Rk

is said to be differentiable at a point p ∈ S if there exists a parametrisation φ of class Ck,

φ : V0 → V , of a neighbourhood V of p in S such that

f ◦ φ : V0 → Rk
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Figure 6.2:

(V0 open in Rm) is differentiable at the point q = φ−1(p). If we take another parametrisa-

tion ψ : W0 → W of class Ck of a neighbourhood W of p in S, then f ◦φ is differentiable

at φ−1(p) if and only if f ◦ ψ is differentiable at ψ−1(p), since

f ◦ ψ = (f ◦ φ) ◦ (φ−1 ◦ ψ),

and

φ−1 ◦ ψ : ψ−1(V ∩W ) −→ φ−1(V ∩W )

is a diffeomorphism of class Ck.

Figure 6.3:

If f : S → Rk is differentiable at p ∈ S, its derivative at p is the linear transformation

f ′(p) : Tp(S) −→ Rk (1)

given by

v 7−→ f ′(p)v

defined as follows:
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Take a parametrisation φ : V0 → V such that φ(q) = p. Given a vector v ∈ Tp(S), we

have v = φ′(q)v0 for some v0 ∈ Rm. We then set

f ′(p)v = (f ◦ φ)′(q)v0.

The linear map (1) is well defined, because if

ψ : W0 → W

is another parametrisation with p = ψ(q′) and v = ψ′(q′)w0 for some w0 ∈ Rm, then

(f ◦ φ)′(q)v0 = (f ◦ ψ)′(q′)w0.

Indeed, we know that ψ = φ ◦ ξ, where

ξ = φ−1 ◦ ψ : ψ−1(V ∩W ) → φ−1(V ∩W )

is a diffeomorphism of class Ck with ξ(q′) = q. Then

φ′(q)v0 = v = ψ′(q′)w0 = (φ ◦ ξ)′(q′)w0 = φ′(q) ξ′(q′)w0.

Since φ′(q) is injective, it follows that ξ′(q′)w0 = v0, and therefore

(f ◦ ψ)′(q′)w0 = (f ◦ φ ◦ ξ)′(q′)w0 = (f ◦ φ)′(q) ξ′(q′)w0

= (f ◦ φ)′(q)v0.

Any velocity vector v ∈ TpS is the velocity vector v = λ′(0) of a curve

λ : (−ε, ε) → S with λ(0) = p. Then the image

f ′(p)v = (f ◦ λ)′(0)

is the velocity vector at 0 of the curve (f ◦ λ) : (−ε, ε) → Rk.
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Figure 6.4:

If S ⊂ Rk is another Ck-surface and the map

f : S −→ Rk

is differentiable at p and satisfies f(S) ⊂ S, we shall say that

f : S → S (2)

is differentiable at p. The observation we have just made about f ′(p)v as the velocity

vector of a curve shows that if (2) is differentiable at p ∈ S, then the derivative f ′(p) is a

linear map from Tp(S) to Tf(p)(S):

f ′(p) : Tp(S) −→ Tf(p)(S)

v 7−→ f ′(p)v.

Figure 6.5:

Note that the chain rule holds: if f : S → S is differentiable at p ∈ S and g : S → Rs

is differentiable at f(p), then

g ◦ f : S −→ Rs
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is differentiable at p and

(g ◦ f)′(p) = g′(f(p)) ◦ f ′(p).

In complete analogy with the previous setting, we may define an exterior k-form on a

surface S of dimension m in Rn as a map

ω : p ∈ S −→ ω(p) ∈ Ak(TpS). (3)

If k = 0, an exterior 0â¿“form on S is simply a real-valued function ω : S → R.

Let φ : U0 → U be a parametrisation of an open set U ⊂ S. At each point

p = φ(q) ∈ U we have the basis{
∂φ(q)

∂u1
, . . . ,

∂φ(q)

∂um

}
⊂ TpS. (4)

Indeed,
∂φ(q)

∂u1
= φ′(q)e1, . . . ,

∂φ(q)

∂um
= φ′(q)em.

Since the derivative of the parametrisation

φ′(q) : Rm −→ Rn

v 7−→ φ′(q)v

is linear and injective (by definition), the family in (4) is indeed a basis of Tp(S). Now, if

ψ : V0 → V is another parametrisation of S such that U ∩ V ̸= ∅ and p = φ(q) = ψ(q′),

then we also have the basis {
∂ψ

∂v1
(q′), . . . ,

∂ψ

∂vm
(q′)

}
⊂ TpS.

There is, of course, a relation of the form

∂φ

∂uj
(q) =

m∑
i=1

aij
∂ψ

∂vi
(q′).

To determine the coefficients aij, we again use the diffeomorphism (see Figure 6.6)

ξ = ψ−1 ◦ φ : φ−1(U ∩ V ) −→ ψ−1(U ∩ V ).

If ξ1, . . . , ξm are the coordinate functions of ξ, the equality φ = ψ ◦ ξ yields

φ′(x) = ψ′(ξ(x)) ξ′(x) ⇒ φ′(q) = ψ′(q′) ξ′(q).
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Figure 6.6:

Consequently,
∂φ1

∂u1
· · · ∂φ1

∂um
...

. . .
...

∂φn

∂u1
· · · ∂φn

∂um

 =


∑m

i=1
∂ψ1

∂vi

∂ξi
∂u1

· · ·
∑m

i=1
∂ψ1

∂vi

∂ξi
∂um

...
. . .

...∑m
i=1

∂ψn

∂vi

∂ξi
∂u1

· · ·
∑m

i=1
∂ψn

∂vi

∂ξi
∂um

 .

Thus

∂φ

∂uj
(q) =

(
∂φ1

∂uj
, . . . ,

∂φn
∂uj

)
=

(
m∑
i=1

∂ψ1

∂vi

∂ξi
∂uj

, . . . ,
m∑
i=1

∂ψn
∂vi

∂ξi
∂uj

)

=
m∑
i=1

∂ξi
∂uj

(q)

(
∂ψ1

∂vi
, . . . ,

∂ψn
∂vi

)
(q′)

=
m∑
i=1

∂ξi
∂uj

(q)
∂ψ

∂vi
(q′).

Hence
∂φ

∂uj
(q) =

m∑
i=1

∂ψ

∂vi
(q′)

∂ξi
∂uj

(q),

and therefore

aij =
∂ξi
∂uj

(q).

Note that the change-of-basis matrix (aij) from the basis
(
∂ψ
∂vi

(q′)
)
to the basis

(
∂φ
∂ui

(q)
)

in the vector space Tp(S) is precisely the Jacobian matrix J(ξ(q)), where ξ = ψ−1 ◦ φ is

the diffeomorphism mentioned above.



210 CHAPTER 6. DIFFERENTIABLE SURFACES

We use the notation

{du1, . . . , dum} ⊂ (TpS)
∗

for the dual basis of {
∂φ(q)

∂u1
, . . . ,

∂φ(q)

∂um

}
.

Indeed, du1, . . . , dum are exterior 1-forms on U ; that is, for each

i ∈ {1, . . . ,m}, dui is the map

dui : p ∈ U 7−→ dui(p) ∈ Tp(S)
∗.

For each p ∈ U we shall write dui instead of dui(p) when there is no risk of confusion.

Thus, at each point p = φ(q) ∈ U the kâ¿“forms

duI = dui1 ∧ · · · ∧ duik , I = {i1 < · · · < ik} ⊂ {1, 2, · · · ,m},

form a basis of Ak(Tp(S)).

Given an exterior kâ¿“form ω on S, we can write, at each point p = φ(q) ∈ U ,

ω(p) = ω(φ(q)) =
∑
I

aI(q) duI . (6)

Thus the exterior form determines, for each parametrisation φ : U0 → U in S, a family

of functions aI : U0 → R, in number (
m

k

)
,

called the coordinates of the form ω with respect to the parametrisation φ. Indeed,

according to Proposition (1.2.5),

aI(q) = ω(φ(q))
( ∂φ
∂ui1

(q), . . . ,
∂φ

∂uik
(q)
)
, ∀q ∈ U0. (7)

Now let ψ : V0 → V be another parametrisation of S, with U ∩ V ̸= ∅. For each

p = φ(q) = ψ(q′) ∈ U ∩ V we have the dual bases{
∂ψ

∂v1
(q′), . . . ,

∂ψ

∂vm
(q′)

}
⊂ Tp(S) and {dv1, . . . , dvm} ⊂ (Tp(S))

∗,

which are related to the bases determined by φ as follows:

∂φ

∂uj
(q) =

m∑
i=1

∂vi
∂uj

∂ψ

∂vi
(q′) and dvi =

m∑
j=1

∂vi
∂uj

duj. (8)
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The first identity follows from (4) and (5), and the second from what we saw in Section

4 of Chapter 1.

In these equalities, ( ∂vi
∂uj

) is the Jacobian matrix of the change of parameters ψ−1 ◦ φ,
evaluated at q; the derivative ∂φ

∂uj
is taken at q, and ∂ψ

∂vi
at q′ = ψ−1(φ(q)).

The parametrisation ψ determines in Ak(TpS) the basis consisting of the k-forms

dvI = dvi1 ∧ · · · ∧ dvik .

From Chapter 1 we know that if p = φ(q) = ψ(q′) ∈ U ∩ V and, in addition,

ω(p) =
∑
J

aJ(q) duJ =
∑
I

bI(q
′) dvI , (9)

then

aJ(q) =
∑
I

det

(
∂vI
∂uJ

)
bI(q

′), (10)

where
(
∂vI
∂uJ

)
is the k × k matrix formed by the entries ∂vi

∂uj
(q) such that i ∈ I and j ∈ J .

In terms of classical tensor calculus, an exterior k-form on a surface S may be thought

of as an assignment which, to each parametrisation φ : U0 → U in S, associates the
(
m
k

)
functions aJ : U0 → R, called the coordinates of the form with respect to φ, in such a

way that if to another parametrisation ψ : V0 → V correspond the functions bI : V0 → R
and φ(q) = ψ(q′), then the coordinate change formulas (10) hold.

It is worth highlighting the important particular case k = m, that is, when the degree

of the form equals the dimension of the surface. In this case the form has only one

coordinate in each parametrisation. Thus:

For every point p = φ(q) = ψ(q′) ∈ U ∩ V , we have

ω(p) = a(q) du1 ∧ · · · ∧ dum = b(q′) dv1 ∧ · · · ∧ dvm, (11)

where the functions a : U0 → R and b : V0 → R satisfy

a(q) = det

(
∂vi
∂uj

)
b(q′), (12)

where q ∈ φ−1(U ∩ V ), q′ = (ψ−1 ◦ φ)(q), and det
(
∂vi
∂uj

)
is the Jacobian determinant of

the diffeomorphism (ψ−1 ◦ φ) evaluated at q.

Let S be a surface of class Cm. An exterior kâ¿“form on S is said to be of class Ck

(k < m) if S can be covered by images U of Cmâ¿“parametrisations φ : U0 → U , with

respect to which ω =
∑
aI duI , where all functions aI : U0 → R are of class Ck.
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The coordinate change formulas (10) show that if the coordinates of ω in a parametri-

sation ψ ∈ Cm are functions of class Ck (k < m), then they remain of class Ck in any

other parametrisation φ ∈ Cm with Im(φ) ∩ Im(ψ) ̸= ∅. An exterior 0-form of class Ck

on S is simply a function f : S → R of class Ck.

The coordinate change formulas express the ‘invariance of differential forms’. The sim-

plest case, given in (12), ensures, for instance, that the integral of an exterior mâ¿“form

is well defined on an m- dimensional surface, as we shall see next.

6.2 Integration of Differential Forms

We begin this section by defining the support of a top-degree form on a surface.

Definition 6.2.1 The support of an exterior form ω on a surface S is the closure

(relative to S) of the set of points p ∈ S such that ω(p) ̸≡ 0. Denoting the support

of ω by supp(ω), we set

supp(ω) = {p ∈ S; ω(p) ̸≡ 0}
S
.

Equivalently,

supp(ω) = {p ∈ S; ω(p) ̸≡ 0}
Rn

∩ S.

Thus, p ∈ supp(ω) means that every neighbourhood of p contains points p′ such that

ω(p′) ̸≡ 0. Observe that, by definition, the support of ω is always a closed subset of S.

Hence, if the form

ω : p ∈ S 7−→ ω(p) ∈ Ak(TpS)

is continuous and ω(p) ̸= 0, then ω ̸= 0 in some neighbourhood of p. Thus p ∈
int(supp(ω)) (relative to S). In other words, if p ∈ S and p /∈ int(supp(ω)), then ω(p) ≡ 0.

It follows that if ω ∈ C0 and p ∈ S is a boundary point of supp(ω), then ω(p) = 0,

although p ∈ supp(ω).

We now define the integral of a continuous exterior mâ¿“form ω with compact sup-

port on an oriented mâ¿“dimensional surface S, in the particular case where supp(ω) is

contained in the image of a positive parametrisation φ : U0 → U .

Definition 6.2.2 Let S be an oriented surface of class C1 and dimension m, and let

ω : p ∈ S 7→ ω(p) ∈ Ak(TpS) be a continuous exterior mâ¿“form. Suppose that supp(ω)
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is a compact set, contained in the image of a positive parametrisation φ : U0 → U . In

terms of this parametrisation we can write

ω(p) = a(q) du1 ∧ · · · ∧ dum

for every p = φ(q) ∈ U , where the continuous function

a : U0 −→ R

has compact support equal to φ−1(supp(ω)). By definition,∫
S

ω =

∫
K

a(u) du, (13)

where K ⊂ Rm is any compact Jordan-measurable subset contained in U0 and containing

supp(a).

We now make some remarks concerning this definition:

i) One may drop the requirement that K ⊂ U0 (still assuming that supp(a) ⊂ K),

provided we regard a as a continuous function defined on K, vanishing at the points of

K \U0. In this way a ceases to be continuous only on a set of measure zero in Rm, which

does not affect the value of the integral in (13).

ii) Since S is orientable, there exists a family of parametrisations φ : U0 → U (of class

C1) such that any two of them are always coherent.

More precisely, if φ : U0 → U and ψ : V0 → V are two parametrisations of this family,

then either U ∩ V = ∅ or, if U ∩ V ̸= ∅, the Jacobian determinant of the diffeomorphism

between the two parametrisations is positive at every point

q ∈ φ−1(U ∩ V ). The parametrisations in this family are called positive.

We must still show that
∫
S
ω, as defined above, is independent of the choice of positive

parametrisation φ.

Indeed, let ψ : V0 → V be another positive parametrisation of S, with supp(ω) ⊂ V

and

ω(p) = b(q′) dv1 ∧ · · · ∧ dvm

for every p = ψ(q′) ∈ V . The function b : V0 → R is continuous, its support is equal to

ψ−1(supp(ω)), and for every q ∈ φ−1(U ∩ V ) we have

a(q) = J(q) b(q′), (14)
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where J(q) is the Jacobian determinant of (ψ−1 ◦ φ) at q, and q′ = ψ−1(φ(q)). Note that

J(q) > 0 for all q ∈ φ−1(U ∩ V ).

To compute
∫
S
ω in terms of the parametrisation φ, letK be a compact Jordanâ¿“measurable

set such that

φ−1(supp(ω)) ⊂ K ⊂ φ−1(U ∩ V ),

and to compute
∫
S
ω in terms of ψ, let L = ψ−1(φ(K)) be the compact Jordanâ¿“measurable

set (its boundary has measure zero).

Figure 6.7:

By an ordinary change of variables we obtain∫
L

b(v) dv =

∫
K

b(ψ−1φ(u)) J(u) du =

∫
K

a(u) du.

Thus the surface integral
∫
S
ω is well defined whenever ω is a continuous exterior

m-form with compact support contained in some parameterised neighbourhood of an

orientedm-dimensional surface. Later we shall define the integral
∫
S
ω under more general

assumptions on the form ω.

Now consider a continuous k-form ω whose support K is not contained in a single

coordinate neighbourhood, and let us define the surface integral
∫
S
ω.

Roughly speaking, we take a covering {Vα} of the oriented surface S by coordinate

neighbourhoods, and a smooth partition of unity subordinate to this covering {Vα}, that
is, a family of differentiable functions φ1, . . . , φm : S → R such that

i)
∑m

i=1 φi = 1;

ii) 0 ≤ φi ≤ 1 and the support of φi is contained in some Vαi
= Vi;
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and we then define the integral of the k-form ω on S.

For each i, let ωi = φi ω. Then

m∑
i=1

ωi =
m∑
i=1

φi ω = ω

m∑
i=1

φi = ω.

Moreover, the support of each form ωi is contained in the parameterised neighbourhood

Vi associated with φi. Indeed, if φi(a) ̸= 0 and ω(a) ̸= 0, then a ∈ supp(φi) ∩ supp(ω),

so that supp(ωi) ⊂ supp(φi) ⊂ Vi. Since supp(ωi) is a closed subset of supp(φi), it is

compact. Hence, by the previous definition,
∫
S
ωi makes sense.

In view of these considerations, we set∫
S

ω =
m∑
i=1

∫
S

φi ω.

It remains to show that this definition is independent of the particular partition of

unity chosen.

In fact, let {Wβ} be another covering of S that induces on S the same orientation

as {Vα} and let {ψj}sj=1 be the corresponding partition of unity. Thus {Vα ∩Wβ} is a

covering of S, and the family of functions φiψj is a partition of unity subordinated to this

covering. In this case, we have

m∑
i=1

∫
S

φiω =
m∑
i=1

∫
S

φi

( s∑
j=1

ψj

)
ω

=
∑
i,j

∫
S

φiψjω.

Similarly,
s∑
j=1

∫
S

ψjω =
s∑
j=1

∫
S

ψj

( m∑
i=1

φi

)
ω =

∑
i,j

∫
S

φiψjω,

and this shows the desired independence.

In summary, the integral of a differential form with compact support reduces to a

multiple integral.

6.3 Surfaces with boundary

From now on, we shall enlarge the concept of a surface, so that it will come to include,

for example, closed balls in the Euclidean space. For this, we shall allow parametrisations

to have open subsets of subspaces as domains.
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Definition 6.3.1 A half-space in Rn is a set of the form

H = {x ∈ Rn; α(x) ≤ 0},

where α ∈ (Rn)∗ is a non-zero linear functional. The boundary of the half-space is the set

∂H = {x ∈ Rn; α(x) = 0}.

If A ⊂ H is open in the half-space H ⊂ Rn, we say that f : A → Rm is differentiable

if there exists a function f : U → Rm, where U ⊂ Rn is open, U ⊃ A, such that the

restriction of f to A coincides with f .

Observe that, if f : A → Rm is differentiable, then for each x ∈ A, the derivative

f ′(x) : Rn → Rm is well defined. In fact, if x ∈ int(H) there is nothing to prove. Now

let x ∈ A ∩ ∂H, and let {v1, . . . , vn} be a basis of Rn such that vi ∈ H for 1 ≤ i ≤ n.

Note that such a basis exists, since for any v ∈ Rn we have v ∈ H or −v ∈ H. Thus, if

x ∈ ∂H, then for every t ≤ 0 we have x+ tvi ∈ H, because, as

H = {y ∈ Rn; α(y) ≤ 0},

we obtain

α(x+ tvi) = α(x) + tα(vi) ≤ 0, ∀t ≤ 0.

In particular, letting t→ 0 through positive values,

f
′
(x)vi = lim

t→0+

f(x+ tvi)− f(x)

t

= lim
t→0+

f(x+ tvi)− f(x)

t
.

In view of the above, we now enlarge the notion of parametrisation.

Definition 6.3.2 A parametrisation (of class Ck and dimension m) of a set U ⊂ Rn is

a homeomorphism φ : U0 → U of class Ck, defined on an open set U0 of a half-space of

Rm, such that φ′(u) : Rm → Rn is an injective linear map for each u ∈ U0.

Definition 6.3.3 A set S ⊂ Rn is called a surface with boundary (of dimension m and

class Ck) if every x ∈ S belongs to an open set U ⊂ Rn which is the image of a parametri-

sation φ : U0 → U , of class Ck, defined on an open set U0 of some half-space of Rm.

If S is a surface with boundary, the boundary of S is the set consisting of those points

x ∈ S such that, for every parametrisation φ : U0 → U of class Ck onto some open

U ⊂ S with x ∈ φ(U0), one has x ∈ ∂U0. Moreover, this definition does not depend on

the parametrisation chosen.
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Given x ∈ S, it suffices that there exists a parametrisation of class Ck of an open set

U ⊂ S with x = φ(u) and u ∈ ∂U0, in order to have x ∈ ∂S. Indeed, let φ : U0 → U be a

parametrisation of class Ck such that x = φ(u) and u ∈ ∂U0. Suppose, by contradiction,

that there exists another parametrisation ψ : V0 → V of class Ck such that x = ψ(v) but

v /∈ ∂V0.

Consider W = U ∩ V , which is clearly non-empty since x ∈ U ∩ V , and the map

φ−1 ◦ ψ : ψ−1(W ) → φ−1(W ),

which is a diffeomorphism. Since v /∈ ∂V0, there exists a neighbourhood B of v such that

B ⊂ ψ−1(W ) and

B ∩ ∂H = ∅,

that is, B does not intersect the hyperplane α = 0. Say that

B ⊂ H = {x ∈ Rm; α(x) ≤ 0}.

Restricting φ−1 ◦ ψ to B, we have a differentiable map

φ−1 ◦ ψ : B → H,

with Jacobian non-zero at some point q2 ∈ U . By the Inverse Function Theorem, there

exists a diffeomorphism between a neighbourhood G ⊂ B of v and a neighbourhood of

φ−1 ◦ψ(v) in Rm. But, since u ∈ ∂U0, for any neighbourhood V of u we have V ∩∂H ̸= ∅,
and in particular,

φ−1 ◦ ψ(G) ∩ ∂H ̸= ∅,

which is a contradiction, because

φ−1 ◦ ψ(B) ⊂ φ−1(W ) ⊂ H.

This proves the claim.

We now examine the relation between the dimension of a surface with boundary and

the dimension of its boundary, and how these objects are related.

Proposition 6.3.4 If S is a surface with boundary of class Ck and dimensionm (m < n),

then its boundary ∂S is a (boundaryless) surface of class Ck and dimension m− 1.
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Proof:

Indeed, the parametrisations that characterise ∂S as a surface are the restrictions to

the boundary ∂U0 = U0∩∂H of the parametrisations φ : U0 → U , of class Ck on S, whose

image is an open set U ⊂ Rn and such that U ∩ ∂S ̸= ∅. To verify that the dimension of

∂S is m−1, note that another way to parametrise ∂U is the following: write the elements

of Rm as u = (u0, . . . , um−1), set H0 = {u ∈ Rm; u0 ≤ 0} and identify ∂H0 with Rm−1 via

the correspondence

(0, u1, . . . , um−1) 7→ (u1, . . . , um−1).

Next, we standardise the parametrisations of class Ck on S by considering only those

defined on open subsets of the half-space H0. If φ : U0 → U is standard and U ∩ ∂S ̸= ∅,
the restriction φ|∂U0 : ∂U0 → ∂U is a parametrisation of the surface ∂S, defined on an

open subset ∂U0 ⊂ Rm−1. In this way, dim(∂S) = m− 1. 2

As in the case of regular surfaces, for surfaces with boundary one also has the notion

of ‘tangent plane’, a notion which is likewise local.

Definition 6.3.5 Let S ⊂ Rn be a surface with boundary of class C1 and dimension m

(m < n). To each point x ∈ S we associate a vector subspace TxS ⊂ Rn of dimension m,

called the tangent space to S at x, defined as the image φ′(u)(Rm), where φ : U0 → U is

any parametrisation of class Ck of an open set U ⊂ S such that x = φ(u).

If x ∈ ∂S, then U0 is open in a half-space H ⊂ Rm with u = φ−1(x) ∈ ∂H. The

image φ′(u)(∂H) = Tx(∂S) is the tangent space to the boundary ∂S at x. Obviously,

Tx(∂S) ⊂ TxS, and it is a subspace of dimension m−1. As seen earlier, the tangent space

TxS = φ′(u)(Rm) does not depend on the parametrisation used to define it.

Definition 6.3.6 Let S ⊂ Rn be a surface with boundary and let x ∈ ∂S. We say that

a vector w ∈ TxS points outwards from the surface S if there exists a parametrisation

φ : U0 → U of class C1 on an open set U0 of a half-space H ⊂ Rm, with image an open

set U ⊂ S, such that x = φ(u) ∈ U and w = φ′(u)w0, where w0 ∈ Rm points outwards

from the half-space H. Moreover, this concept does not depend on the parametrisation

chosen.

For x ∈ ∂S, the tangent space TxS contains not only the distinguished subspace

Tx(∂S) but also a half-space, formed by the vectors that point outwards from the surface

S.
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Figure 6.8:

At each point x ∈ ∂S, the vectors tangent to ∂S together with the vectors that point

outwards from S at x form a half-space of TxS. Among the vectors that point outwards

from S at x, there is a unique one of length 1 which is normal to Tx(∂S). We denote this

vector by ν(x). In this way, we obtain a field of unit vectors ν : ∂S → Rn normal to ∂S.

Indeed, if φ : U0 → U is a parametrisation of class Ck defined on the open set U0 of

the half-space H ⊂ Rm, choose a basis {v0, . . . , vm−1} ⊂ Rm such that v0 points outwards

from H and {v1, . . . , vm−1} ⊂ ∂H. Then:

ν(x) =
φ′(u)v1 × · · · × φ′(u)vm−1

∥φ′(u)v1 × · · · × φ′(u)vm−1∥
,

for every x = φ(u) ∈ ∂U = ∂S∩U (here we are assuming that the basis {φ′(u)v1, . . . , φ
′(u)vm−1}

is positive).

Thus, if S is a surface with boundary of class Ck and dimension m in Rn, then its

boundary ∂S is an orientable surface.

Definition 6.3.7 A surface with boundary is said to be orientable if it admits a coherent

atlas of class C1, that is, given parametrisations φ, ψ of S, the change of parametrisation

has positive Jacobian at each point of its domain.

From the above, we conclude that the boundary of a surface is endowed with a natural

orientation. Furthermore, if the surface S is an oriented surface, then it induces an

orientation on its boundary.

Proposition 6.3.8 If S is an orientable surface, then its boundary is also orientable.
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Proof:

Let A be the set of parametrisations φ : U0 → U of S, of class C1, with the following

properties:

i) U0 is connected;

ii) U0 is open in the half-space H0 = {u = (u0, . . . , um−1) ∈ Rm; u0 ≤ 0};

iii) φ is positive with respect to the orientation of S.

Note that A, under the above conditions, is an atlas on S. Identifying, as before,

Rm−1 with ∂H0, let A0 be the set of restrictions φ0 = φ|∂U0 of the parametrisations φ ∈ A

such that ∂U0 = U0 ∩ Rm−1 ̸= ∅. Note that A0 is a C1 atlas on ∂S, and moreover it is

coherent. In fact, if φ0 : ∂U0 → U and ψ0 : ∂V0 → V belong to A0, with ∂U ∩ ∂V ̸= ∅,
then the change of parametrisation ψ−1

0 ◦ φ0 is the restriction to the boundary of the

diffeomorphism ψ−1◦φ on its domain. Let u ∈ ∂U∩∂V and A = (ψ−1◦φ)′(u) : Rm → Rm.

Since A is coherent, we have detA > 0. As ψ−1 ◦φ is a diffeomorphism from the open set

φ−1(U ∩ V ) ⊂ H0 onto the open set ψ−1(U ∩ V ) ⊂ H0, it follows that A(∂H0) = ∂H0,

i.e., Avi = (0, a1i, . . . , am−1,i) for every i = 1, 2, . . . ,m − 1. Since e0 = (1, 0, . . . , 0) points

outwards from H0, we have Ae0 = (a00, a10, . . . , am−1,0) also pointing outwards from H0,

hence a00 > 0. Thus, the matrix of A has the form
a00 0 · · · 0
a10 a11 · · · a1,m−1
...

...
. . .

...
am−1,0 am−1,1 · · · am−1,m−1


with a00 > 0, and therefore

detA = a00 detA0,

where A0 = A|Rm−1 is the Jacobian of ψ−1 ◦ φ at the point u. Hence detA0 > 0, so A0 is

coherent. 2

The orientation defined on ∂S by the atlas A0 is said to be induced by the orientation

of S.

With respect to the orientation induced by S on ∂S, a basis {w1, . . . , wm−1} ⊂
Tx(∂S) is positive if and only if, for any vector w0 that points outwards from S, the

set {w0, w1, . . . , wm−1} is a positive basis of TxS.

In particular, if ν(x) ∈ TxS is the unit vector tangent to S and normal to ∂S at x,

pointing outwards from S, then {w1, . . . , wm−1} ⊂ Tx(∂S) is a positive basis if and only
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if the basis {ν(x), w1, . . . , wm−1} ⊂ TxS is positive.

Indeed, we have {w1, . . . , wm−1} ⊂ Tx(∂S) positive if and only if

wj =
m∑
i=1

aij
∂φ

∂ui
(u), j = 1, . . . ,m− 1,

where the (m− 1)× (m− 1) matrix A0 = (aij) has positive determinant and φ : U0 → U

is a parametrisation defined on an open set U0 of the half-space

H0 = {(u0, . . . , um−1) ∈ Rm; u0 ≤ 0},

with u ∈ ∂H0 and φ(u) = x.

Since e0 = (1, 0, . . . , 0) points outwards from H0,

∂φ

∂u0
(u) = φ′(u)e0 ∈ TxS

points outwards from the surface S. Hence, if w0 ∈ TxS is any vector pointing outwards

from S, then

w0 = a00
∂φ

∂u0
(u) + a10

∂φ

∂u1
(u) + · · ·+ am−1,0

∂φ

∂um−1

(u), a00 > 0,

and for j = 1, 2, . . . ,m− 1 we have

wj = 0 · ∂φ
∂u0

(u) + a1j
∂φ

∂u1
(u) + · · ·+ am−1,j

∂φ

∂um−1

(u).

Thus, the matrix A of the change of basis from{
∂φ

∂u0
(u),

∂φ

∂u1
(u), . . . ,

∂φ

∂um−1

(u)

}
to the basis

{w0, . . . , wm−1}

has the form

A =


a00 0 · · · 0

a10
...

...
...

. . . A0

am−1,0
. . .

...

 .

Hence detA = a00 detA0, that is, detA > 0 ⇔ detA0 > 0.

This means that, when w0 ∈ TxS points outwards from S, the set {w1, . . . , wm−1} ⊂
Tx(∂S) is a positive basis if and only if {w0, w1, . . . , wm−1} ⊂ TxS is a positive basis.
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6.4 Stokes’s Theorem and applications

We are now in a position to state Stokes’s Theorem, which allows the computation of

surface integrals, and to reformulate it in the classical cases.

Teorema 6.4.1 (Stokes’s Theorem) Let ω be a differential form of class C1, of degree

m, with compact support on an oriented surface S of dimension m + 1, whose boundary

∂S is endowed with the induced orientation. Then:∫
S

dω =

∫
∂S

ω.

Proof:

Let K be the support of ω. If ω = ω1 + · · ·+ ωk and the theorem holds for each term

ωi, then it holds for the sum ω, since dω =
∑
dωi and∫

S

dω =
∑∫

S

dωi =
k∑
i=1

∫
∂S

ωi =

∫
∂S

ω.

We consider the following cases:

(i) K is contained in the image of a positive parametrisation φ : U0 → U and U∩∂S =

∅.

In this case, for every x = φ(u) ∈ U we have

ω(x) =
m∑
i=0

ai(u) du0 ∧ · · · ∧ dui−1 ∧ dui+1 ∧ · · · ∧ dum+1,

with ai(u) differentiable functions. Hence

dω(x) =

[
m∑
i=0

(−1)i
∂ai
∂ui

]
du0 ∧ · · · ∧ dum.

Since U ∩ ∂S = ∅, ω vanishes on ∂S, and therefore i∗ω = 0, so that∫
∂S

i∗ω = 0.

We now show that ∫
S

dω =

∫
U0

(
m∑
i=0

(−1)i
∂ai
∂ui

)
du0 ∧ · · · ∧ dum = 0.
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Indeed, extend each function ai to H0 by setting

ai(u) =

{
ai(u), u ∈ U0,

0, u ∈ H0 \ U0,

so that, as φ−1(K) ⊂ U0, the functions ai thus defined are differentiable on H0. Let

Q ⊂ H0 be the m-dimensional parallelepiped given by u1i ≤ ui ≤ u0i , 0 ≤ i ≤ m,

containing φ−1(K) in its interior. Then∫
S

dω =
m∑
i=0

∫
U0

(−1)i
∂ai
∂ui

(u) du0 ∧ · · · ∧ dum

=
m∑
i=0

(−1)i
∫
U0

∂ai
∂ui

(u) du0 ∧ · · · ∧ dum

=
m∑
i=0

(−1)i
∫
Q

[
∂ai
∂ui

(u) dui

]
du0 ∧ · · · ∧ dui−1 ∧ dui+1 ∧ · · · ∧ dum

=
m∑
i=0

(−1)i
∫
Q

[
ai(u0, . . . , ui−1, u

0
i , ui+1, . . . , um)

−ai(u0, . . . , ui−1, u
1
i , ui+1, . . . , um)

]
du0 · · · dui−1dui+1 · · · dum = 0,

because ai(u0, . . . , u
0
i , . . . , um) = ai(u0, . . . , u

1
i , . . . , um) = 0.

(ii) Now suppose that U ∩ ∂S ̸= ∅. Then the inclusion map is written as

i(u0) = 0, i(uj) = uj, j = 1, 2, . . . ,m.

By the definition of the induced orientation, the restriction of φ to ∂U0 = U0 ∩ H0 is a

positive parametrisation of ∂S, whose image is ∂U. As in case (i), consider the extension

of the functions ai by

ai(u) = ai(u), u ∈ U0,

ai(u) = 0, u ∈ H0 \ U0,

which are differentiable. Let K =
∏m

i=0[αi, βi] be a rectangle containing φ−1(K) with

β0 = 0, so that K ⊂ H0. For each i = 0, 1, . . . ,m let Ki be the Cartesian product of the

intervals [αj, βj], j ̸= i. In particular, K0 =
∏m

i=1[αi, βi] is a rectangle in ∂H0 containing

φ−1(supp(i∗ω)). For every x = φ(u) = φ(0, u1, . . . , um) ∈ ∂U , clearly (by the induced

orientation)

(i∗ω)(x) = a0(0, u1, . . . , um) du1 ∧ · · · ∧ dum,

and hence ∫
∂S

ω =

∫
∂S

i∗ω =

∫
K0

a0(0, u1, . . . , um) du1 ∧ · · · ∧ dum.
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It follows that∫
S

dω =
m∑
i=0

∫
K

∂ai
∂ui

(u) du0du1 · · · dum

=
m∑
i=0

∫
Ki

[∫ βi

αi

∂ai
∂ui

(u) dui

]
du0 · · · dui−1dui+1 · · · dum

=
m∑
i=0

∫
Ki

[
ai(u0, . . . , βi, . . . , um)− ai(u0, . . . , αi, . . . , um)

]
du0 · · · dui−1dui+1 · · · dum.

Since

ai(u0, . . . , βi, . . . , um) = ai(u0, . . . , αi, . . . , um) = 0, i = 1, 2, . . . ,m,

and

a0(u0, u1, . . . , um) = 0

for u0 < 0, we obtain∫
S

dω =

∫
K0

a0(0, u1, . . . , um) du1 · · · dum =

∫
∂S

ω.

(iii) Finally, consider the general case. Let {Vα} be a covering of S by coordinate

neighbourhoods, and let φ1, . . . , φm be a differentiable partition of unity subordinated to

{Vα}. The forms ωj = φjω, j = 1, 2, . . . ,m, satisfy the hypotheses of either case (i) or

case (ii). Moreover, since ∑
j

dφj = 0,

we have
∑
ωj = ω and

∑
dωj = dω. Therefore∫

S

dω =
m∑
j=1

∫
S

dωj

=
m∑
j=1

∫
∂S

i∗ωj

=

∫
∂S

m∑
j=1

i∗ωj

=

∫
∂S

i∗
( m∑
j=1

ωj

)
=

∫
∂S

i∗ω.

2

From now on, our aim is to reformulate Stokes’s Theorem in its classical forms.
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6.4.1 The divergence theorem

Let X = (a0, . . . , am) be a vector field of class Ck, defined on an open set U ⊂ Rm+1 by

its m + 1 coordinate functions ai : U → R. To the field X we associate the differential

form

αX =
m∑
i=0

(−1)iai dx0 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxm,

of class Ck on the open set U . Expansion of a determinant along the first column shows

that, for x ∈ U and w1, . . . , wm ∈ Rm+1,

αX(x)(w1, . . . , wm) = det(X(x), w1, . . . , wm).

Indeed,

αX(x)(w1, . . . , wm) =
m∑
i=0

(−1)iai(x) (dx0 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxm)

(w1, . . . , wm)

=
m∑
i=0

(−1)iai(x) det



dx0(w1) · · · dx0(wi) · · · dx0(wm)

dx1(w1)
... · · · ...

...

dxi−1(w1)
...

. . .
...

...

dxi+1(w1)
...

. . .
...

...
...

...
. . .

...
...

dxm(w1)
... . . .

... dxm(wm)



= det


a0(x) w01 · · · w0m

a1(x) w11 · · · w1m
...

...
. . .

...
am(x) wm1 · · · wmm


= det(X(x), w1, . . . , wm).

IfM ⊂ U is an oriented surface and the vector field X has compact support, we define∫
M
X as

∫
M
⟨X, ν⟩ω, where ω is the m-form element of volume on M and ν is the unit

normal vector field determining the orientation of M . Observe that at each point x ∈M

this form coincides with the previously defined αX(x). In fact, given any positive basis

{w1, . . . , wm} ⊂ TxM , we have:

αX(x)(w1, . . . , wm) = det(X(x), w1, . . . , wm)

= ⟨X(x), w1 × · · · × wm⟩

= ⟨X(x), ν(x)⟩∥w1 × · · · × wm∥

= ⟨X(x), ν(x)⟩ω(x)(w1, . . . , wm).
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Hence, αX = ⟨X, ν⟩ω.

The volume element on a surface is always denoted by dM . Thus, if X = (a0, . . . , am)

is a vector field with compact support, continuous on the open set U ⊂ Rm+1 andM ⊂ U

is an oriented surface, then∫
M

⟨X, ν⟩ dM =

∫
M

m∑
i=0

ai dx0 · · · dxi−1dxi+1 · · · dxm.

When X is a vector field of class C1 on the open set U ⊂ Rm+1 and Ω ⊂ U is a

compact domain with regular boundary of class Ck (k ≥ 1) (that is, Ω is a compact

surface with boundary, of dimension m+ 1 and class Ck, contained in U), the interior of

Ω is a bounded open subset of Rm+1 and its boundary ∂Ω is a compact oriented surface

in Rm+1. The differential of the form αX is

dαX =

(
m∑
i=0

(−1)i
∂ai
∂xi

)
dx0 ∧ · · · ∧ dxm.

We define the function divX : U → R by

divX(x) =
∂a0
∂x0

(x) + · · ·+ ∂am
∂xm

(x),

the divergence of the vector field X. Stokes’s Theorem allows us to conclude that, under

these conditions, if M = ∂Ω then:∫
M

⟨X, ν⟩dM =

∫
Ω

(divX) dx,

where, in the second member, we have the integral of the continuous function divX on

the Jordan-measurable compact set Ω ⊂ Rm+1.

6.4.2 Stokes’s Theorem (vector form)

Let X = (a, b, c) be a vector field of class C1 on the open set U ⊂ R3 containing the

compact oriented surface M (of dimension 2), whose boundary C is endowed with the

induced orientation. To the field X we associate the 1-form βX = a dx + b dy + c dz of

class C1 on U . Stokes’s Theorem can be written explicitly as∫
M

(
∂c

∂y
− ∂b

∂z

)
dy∧dz+

(
∂a

∂z
− ∂c

∂x

)
dz∧dx+

(
∂b

∂x
− ∂a

∂y

)
dx∧dy =

∫
C

a dx+b dy+c dz.

We want to express the above identity in vector notation. To this end, consider the curl

of X, which is the field rotX : U → R3 given by

rotX =

(
∂c

∂y
− ∂b

∂z
,
∂a

∂z
− ∂c

∂x
,
∂b

∂x
− ∂a

∂y

)
.
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Then the first member of the previous equality can be written as∫
M

⟨rotX, ν⟩ dM,

where ν is the unit normal vector field to M and dM is the area element. For the second

member, let ds denote the arc length element of C. For x ∈ C and v ∈ TxC, we have

ds(v) = ±|v| (depending on the direction of v). If τ(x) ∈ TxC is the unit tangent vector

pointing in the positive direction of C, then τ(x) = ± v
|v| for all v ̸= 0 in TxC. Thus, if

0 ̸= v ∈ TxC, we obtain

βX(v) = ⟨X, v⟩ =
〈
X,

v

|v|

〉
|v| = ⟨X,±τ⟩ ± ds(v) = ⟨X, τ⟩ ds(v).

Hence βX = ⟨X, τ⟩ ds, and therefore∫
M

⟨rotX, ν⟩ dM =

∫
C

⟨X, τ⟩ ds.

The first member represents the flux of the field rotX across the surface M , and the

second member is the circulation of the field X along the boundary C = ∂M.

6.4.3 Green’s Theorem

Green’s Theorem concerns a compact surface with boundary, of class C1 and dimension 2

in R2, that is, a compact domainM ⊂ R2 with regular boundary of class C1. The domain

M has the natural orientation of R2, and its boundary ∂M is endowed with the induced

orientation. Let f, g :M → R be functions of class C1. Green’s Theorem states that∫
M

(
∂g

∂x
− ∂f

∂y

)
dx dy =

∫
∂M

f dx+ g dy.

This is precisely Stokes’s Theorem applied to the 1-form β = f dx+ g dy, defined on the

surface with boundary M .
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