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“Let us keep in mind that we are not what others think, and often not even
what we think we are, but we truly are what we feel. Our feelings reveal our
performance in the past, our actions in the present, and our potential for the

future.” (Hamed)
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Preface

Mathematics plays a central role in modern science. Beyond its intrinsic value as a
discipline with its own concepts, theories, and open problems, mathematics permeates
essentially all areas of human knowledge. Many mathematical theories have their roots
in natural phenomena, and in turn have driven the remarkable development of physics,
engineering, computer science, and many other fields.

From this perspective, mathematics should not be viewed as an isolated subject, but
rather as a unifying language and framework that connects and clarifies different scientific
disciplines.

This book aims to present key topics in mathematical analysis in R", together with
illustrative examples and figures. Our goal is to help students from a variety of programs—
mathematics, physics, engineering, and related areas— develop a solid and intuitive un-
derstanding of the basic tools of real and vector analysis, while maintaining full rigor.

The material grew out of lecture notes for courses taught over several years at the
State University of Maringa. We have tried to balance conceptual clarity, motivating
examples, and detailed proofs, so that the text can be used both for self-study and as a
companion to a classroom course.

We hope that this book will contribute to the reader’s mathematical maturity and
stimulate further study in analysis, differential equations, geometry, and beyond.

Maringa, 2025

Marcelo M. Cavalcanti
Valéria N. Domingos Cavalcanti
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CONTENTS 1

Introduction

Under the title Advanced Calculus in R™ we gather a selection of topics in real and
vector analysis in several variables, complemented by figures and examples designed to
support intuition and to fix the main concepts, theorems, and proofs.

Real analysis is the branch of mathematical analysis that deals with the real numbers
and real-valued functions. It provides a rigorous foundation for the central notions of
calculus, such as limits, continuity, differentiation, integration, and infinite series and
sequences of functions.

Vector calculus extends these ideas to functions defined on R™ with values in R™. It is
a fundamental tool in physics and engineering, appearing naturally in the study of fields,
fluxes, and conservation laws. Topics such as gradients, divergence, curl, line integrals,
surface integrals, and the classical integral theorems (Green, Gauss, Stokes) play a central
role.

Differential forms provide a unified language for these ideas. They are geometric
objects that can be integrated over curves, surfaces, and higher-dimensional manifolds,
and they generalize many familiar notions from vector calculus. The formalism of k-
forms and the exterior derivative offers a powerful and elegant framework that clarifies
and extends the classical formulas.

In this book, we aim to present the main concepts involved in these areas in a coherent
way, emphasizing both computational techniques and structural insights. The text is
intended for students who wish to deepen their understanding of calculus and analysis,
and to acquire a solid base for further studies in differential geometry, partial differential
equations, and related subjects.
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Chapter 1

Topology in R"

1.1 The Vector Space R”

Let n € N, where N denotes the set of natural numbers. The n-dimensional Euclidean
space is the Cartesian product of n copies of R, that is:

R”:RXRX---XR.

n factors
The points of R™ are therefore all n-tuples = = (x1,29,...,x,) whose coordinates
xi,...,x, are real numbers. Given x = (z1,...,2,) and y = (y1,...,y,) in R, we have
x =y if and only if z; = y; for every i =1,2,...,n.

e R! = R is the real line, that is, the set of real numbers;
e R? is the plane, that is, the set of ordered pairs (z,y) of real numbers;

e R3 is three-dimensional Euclidean space, whose points are the triples (z,y, 2).

Given z = (x1,...,2,) and y = (y1,...,¥,) in R™ and a scalar « € R, we define
addition and scalar multiplication by:

Tty = ($1+y1,...,$n+yn)7
ar = (axy,...,0z,).

These operations make R™ into a vector space of dimension n over the field of real
numbers. The elements of R™ are sometimes called *points™ and sometimes *vectors*.
From a geometric viewpoint, considering x € R™ as a vector means imagining the arrow
whose origin is at O and endpoint at x.
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1.2 Inner Product and Norm

An inner product on a real vector space V is a symmetric, positive bilinear form. That
is, it is a map that assigns to each pair of vectors z,y a real number (z,y) such that for
all z,y,2 € Vand all a € R:

(PIL)  (2,9) = (v, ),

(PI2)  (z+4+y,2) = (z,2) + (v, 2)

(PI3)  {az,y) = a(z,y),

(P14) (x,z) >0 and (z,z) =0 iff x=0.

The most important example is the canonical inner product in R"™:

(T, y) = T1y1 + ToYo + - -+ + TpYn,

where x = (z1,...,2,) and ¥y = (Y1, ..., Yn)-

o)l = v/, ),

called the Fuclidean norm of z. Indeed:

Given x € R", we write

[zl = /2t + -+ + a3,

and this number represents the length of the vector x.
Note that ||z|* = (z, z), so that:

@) fz]=0 = z=0,
i) Jzl| >0 < z#0.

Two vectors z,y € R™ are said to be *orthogonal®* when (x,y) = 0. Clearly the zero
vector is orthogonal to every vector.

Given z,y € R™ with y # 0 and setting o = ﬁz ’|"|’2>7 the vector z = 2 — ay is orthogonal
to y. Indeed:

(z,y) = (z—ay,y)

= (z,y) — (Y, y)
(z,y
Geometrically (see Figure 1.1):
. [z, y)| [(z,y)|
1) oyl lyll = ,
lylI? [yl

(i) |zml = lzllyll|coso].
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S X
Figure 1.1: Exemplo de ortogonalidade
From (i) and (ii) we obtain
ol = [|]| | cos 0]
Proposition 1.1 (Cauchy-Schwarz Inequality) For all z,y € R",

(= o) < llzlHlyll-

Proof: If y = 0 the inequality is trivial. If y # 0, with a as above, the vector z = z — ay
is orthogonal to y. Then:

lz|]? = (z,2) = (z+ay, z+ ay)
(z,y)*
= [lzI* +a®lyl* = o®llyl* = THE lylI*.
Thus (z,y)? < ||z]|?|ly||?, and the result follows. O

Remark 1. Equality holds in the Cauchy—Schwarz inequality precisely when one vec-
tor is a scalar multiple of the other. Indeed, if y = 0 the equality is trivial. If y # 0 and
x = ay for some a € R, then:

[zl = lloyll Iyl = lod lly]1*
[Edi g
lyl1” = Nzl yll-
Iyl

Remark 2. The Euclidean norm ||z|| = \/(x, x) satisfies the following properties for
all x,y € R™

(N1) Jjz|| >0 and |z]|=0 < z =0,
(N2) Jlazx| = |a|||z]] for all @ € R,
(N3) Jlz+y| <|lz|l + |yl (triangle inequality).
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The first two are immediate. The triangle inequality follows from the Cauchy—Schwarz
inequality. Indeed:

-+ ylI*

(z+y, z+y)

Iz ]” + [lyl1* + 2(z, )
< =l + yli* + 2l [yl
= ([lzll + llylD>.

Thus ||z + y|| < ||z]| + ||y||, the so-called triangle inequality.

In general, a norm on a real vector space V is a function || - || : V — R satisfying the
axioms (N1), (N2), and (N3) above.

Although many norms exist on R", the Euclidean norm is the most geometrically
natural, since it corresponds to the usual formula for the length of a vector in Cartesian
coordinates. Geometrically:

A

Lot-----=------—-=-==—=

Figure 1.2: Length of a vector in the plane in Cartesian coordinates.

Unless stated otherwise, all norms in R™ will be assumed to be Euclidean. However,
two other norms are often useful because of their simple algebraic form:

x|y = max{|xi],...,|x,]} (maximum norm),

|lzlls = |z1i|+---+]zn] (sum norm).
It is easy to verify that these satisfy axioms (N1)—(N3). One also shows that:
lelar <zl < lzlls < nilzflar

A norm on a real vector space V gives rise to a notion of distance:

d:VxV — R,
(,y) +— d(z,y) = [z -y
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Using (N1)—(N3), one checks that the distance satisfies:
(D1) d(z,y) >0 and d(z,y) =0 <= x =y,
(D2) d(z,y) = d(y, ),
(D3) d(z,2) <d(z,y) +d(y,z) V,y,z€V.
Indeed, the first two are immediate. For (D3):
d(z,z) = |z =z =Il(z—-y)+(y -2l
< o =yl + lly — =l
= d(z,y) +d(y, 2).

Remark 3. A norm || - || on a vector space V need not arise from an inner product.
If a norm does come from an inner product, then the parallelogram identity holds:

Iz +yl1* + llz = ylI* = 2([l=]1* + lly*).

Geometrically, this means that the sum of the squares of the diagonals of a parallelo-
gram equals the sum of the squares of its four sides.

Indeed:
lz+yl* = (z+y x+y) =zl +2(x,y) + [yl
oz =yl = (&—y, z—y)=z]*—2x,y) + [y]*
Adding the two equalities yields the desired identity.

The parallelogram identity is **not*™* satisfied by every norm. For example, the
maximum norm ||z ||y = max{|z1],..., |z,|} on R™ does not satisfy it. Using the canonical
basis ey, ..., e, and setting x = e, y = e, we have:

e +ylli + e =yl = 2
2|l [l3 + lwlz) = 4,
which are different, showing that this norm does not come from any inner product.

A very useful inequality derived from axioms (N1)—(N3) is:
ezl = llylll < llz —yll.
To prove it, it suffices to show that:
=l =yl < llzll = llyll < [l = wll
Indeed:

Iyl <l + llz = yll;
el < llyll + llz = yll;

which follow directly from the triangle inequality by writing y = x + (y — x) and © =
y+(z—y).
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1.3 Balls and Bounded Sets

We now introduce some basic geometric notions in R that will be needed later.

Definition 1.2 An open ball with center at a point xo € R™ and radius r > 0, denoted
by B,(xo), is defined by

Bi(zo) = {z € R"; |l — o <7}

Analogously, the closed ball B,.(xy) and the sphere S,.(xg), both centered at xo, are defined
by

B.(zg) = {x €R"; |z — x| <7},
Sr(zg) = {z €R"; ||z — x| =r}.
When n = 1, the open ball B,(xg) is just the open interval (zg — 7,z + 7); the closed

ball B, (x¢) is the closed interval [xy — 7, z¢ + |, and the sphere S,.(zo) reduces to the set
consisting of the points o —r and xy 4+ r. Note that in R the three usual norms coincide.

For n = 2, with the Euclidean norm, balls in the plane are called (open or closed)
disks, and spheres reduce to circles (see Figure 1.3).

Y,‘"‘_I"-L Y;":_"‘w

"o

Bi(x0) | S(x0)

Figure 1.3: Euclidean norm in R2.

For n = 3, the Euclidean norm defines balls and spheres in space that agree with our
usual geometric intuition.

Remark 1. The geometric shape of balls and spheres generally depends on the norm
being used. If, instead of the Euclidean norm, we consider on R? the maximum norm
and the sum norm, then the ball of center P = (zg, o) and radius r > 0 is, in the first
case, a square with sides parallel to the coordinate axes, each of length 2r, and diagonals
intersecting at P; in the second case, it is a square whose diagonals are parallel to the
coordinate axes, both of length 2r, and still intersecting at P.

Maximum norm.

Brmax(:) = {(z,9) € R%; (2, 9)]Imax < 7}
= {(z,y) € R?; max{[z|, [y} <r}.
i) Jz|<r = —r<z<r,
i) |y <r = —-r<y<r.
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Yo Yo

xo x Xo X__::‘:
Maximo Soma

Figure 1.4: Maximum and sum norms in R

Sum norm.

Bram() = {(z,y) e R?; [z, y)lsum < 7}
= {(z,y) € R%; |z + [y <7}
rt+y<r—y<-—x+r,
r—y<r=y>x—r,
—rH+y<r=—y<z+r,
—r—y<r=—-y>-—-xr—r.

(i)x>0,y>0
(i) x>0, y<O
(iii) x <0, y >0

Jz<0,y<0

e e

Definition 1.3 A subset X C R" is said to be bounded if there exists a real number
¢ > 0 such that ||z|| < ¢ for allx € X.

The definition above is equivalent to saying that X is contained in the closed ball of
center at the origin and radius ¢. On the other hand, if there exists some ball B, (x)
(with arbitrary center) containing X, then for all z € X we have ||z — x| < r. Setting
c =1+ ||zo||, we obtain:

re€X = 2] = llz —zo + x|
< e = woll + llwoll <7+ ol = c.

Thus X is bounded. It follows that a set X is bounded if and only if it is contained in
some ball (whose center is not necessarily the origin).

Remark 2. For the three usual norms on R™ we have the inequalities
zllar < [lzf] < flzlls < n [z,

which show that a set X C R" is bounded with respect to one of these norms if and only
if it is bounded with respect to each of the other two.
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1.4 Sequences in R”

Definition 1.4 A sequence in R™ is a map x : N — R"™ defined on the set of natural
numbers.

The value of this map at & € N, denoted by x(k) or zy, is called the k-th term of the
sequence. We use the notations (zy,), (g )ken or (21, X2, . .., Tk, . . .) to denote the sequence
whose k-th term is xy.

Definition 1.5 A subsequence of a sequence (xy)ren 1S the restriction of this sequence to
an infinite subset A ={k; < ko <---<k; <---} CN.

We denote such a subsequence by (x)kea or (T, )ien-

Definition 1.6 A sequence is said to be bounded if there exists a real number ¢ > 0 such
that ||zk|| < ¢ for all k € N.

Remark 1. A sequence in R" is equivalent to n sequences of real numbers. Indeed,
for each k € N we have xy = (241, T2, - - ., Thn ), Where xg; = m;(xy) is the i-th coordinate
of & (i = 1,2,...,n). The n sequences (zy;)ren are called the coordinate sequences of
(x1). For example, in the plane R? a sequence of points z = (x4, yx) is equivalent to a
pair of sequences (z;) and (y) of real numbers.

Yi - | -

Yz
Yy ]

X1 Xa K f:"

Figure 1.5: Sequence of points zj, = (zy, yx) in R?.

It is easy to verify that a set X C R” is bounded if and only if its projections
m(X), m2(X), ..., m(X) are bounded subsets of R. It follows that a sequence (z)ren
is bounded if and only if each of its coordinate sequences (zy;) is bounded in R.

Definition 1.7 A point xy € R™ is said to be the limit of a sequence of points () in R"
if for every e > 0 there exists ko € N such that for all k > ko one has ||z, — zo]| < e.
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In this case, we also say that (zj)ren converges to xg or that xy tends to zg, and we
write

lim zp = xg, limzp =29, limzp =z,
k—o0 keN

or simply xx — xo.
When there exists x¢p = lim_,o, x;x we say that the sequence is convergent; otherwise,
it is said to be divergent.

Note that

lim o, =2y <= lim ||zx — x| = 0.
k—o0 k—ro0

This reduces convergence in R” to the convergence of nonnegative real numbers. Let us
state some consequences of the definition of limit.

P1) In terms of balls, we have limy_,, xx = x¢ if and only if every open ball of center
xo and radius ¢ > 0 contains all but finitely many terms of the sequence (zy)ren (see
Figure 1.6).

S X X0

X2
Figure 1.6: The ball B.(z¢) containing all but finitely many terms of the sequence (z)en-

Indeed, if € > 0 is the radius of the ball and ky is the natural number corresponding
to e in the definition of limit, then outside the ball B.(x() there can be at most the terms
Z1,...,Tk, of the sequence.

P2) From the observation above, it follows that every convergent sequence is bounded. In
fact, if limy_,o, £ = xg, then outside the open ball of center xy and radius 1 there can be
at most the terms x1, ..., zg,. If r is the largest of the numbers 1, ||z; — o, . .., ||zk, — o],
then all the terms of the sequence are contained in the ball B, ().

P3) Again from the characterization via balls, if limy_,, x = 70, then every subsequence
of (zg)ken has the same limit .

P4) A crucial fact is the uniqueness of the limit of a sequence: if limz, = zy and
lim z;, = yo, then xy = yo.

Indeed, for all £ € N we have

0 < llzo = woll < [z = @oll + [lzx = wol-
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Thus
lim ||z — xo]| = lim ||z — 0l =0 = 20 = vo.
k—o0 k—oo

Remark 2. The definition of the limit of a sequence in R™ uses a norm. From the
inequalities relating the three usual norms in R” we know that

[k = wollar < [l = @oll < [lox = wolls < fln — zol|ar-
It follows that
lim ||z — zol|;y =0 <= lim||zp — 20| =0 <= lim ||z — 20||s = 0.

Thus the statement limy_,, ), = x¢ does not depend on which of these norms we use.

Proposition 1.8 A sequence (zy)ren in R™ converges to the point xg = (zo1, - . ., Ton) if
and only if, for each i =1,2,... n, we have

lim Tki = Tog,
k—00

that is, each coordinate of x) converges to the corresponding coordinate of xg.

Proof: Assume first that limy,_,. xx = z¢, and let € > 0 be given. Then there exists
ko € N such that ||z — x¢|| < € for all k > ko. For each i = 1,...,n we have

|2k — xoi] < ||z — xo]|-

Hence |zy; — x;| < € for all k& > kg, which implies limy_,o0 T = X;.

Conversely, assume that limg_,., zr; = x; for each i = 1,... n, and let € > 0 be given.
For each i there exists ko; € N such that |zy; — x¢;| < € whenever k > kq;. Set

k’o = max{k:m, N kOn}
Then, if k& > kg,
ek — xol|ar = max{|xrr — zo1|, - - -, |Ten — Ton|} < &,

and therefore ||zy —xo|| < ||xx—zolls < n |2k — 20| < ne, so in particular ||z —xq|| — 0.
Thus limy_,o 1 = Xo. O

Similarly, given convergent sequences (xy) and (yx) in R” and () in R with lim x; =
Zg, limy, = yo and lim o = «a, we have:

e lim (g + yx) = o + Yo;

k—o0

o lim (agxy) = auwo;
k—o00
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e lim <l'k7yk> = <ZUQ, y0>7
k—o0

o lim [lzy]| = [[zo]|.
k—o0

Definition 1.9 A sequence (zy) in R"™ is called a Cauchy sequence if, given € > 0, there
exists ko € N such that ||z, — z|| < € whenever r,s > k.

Remark 3. Using the maximum norm on R", we have

|z, — xs||pr = max{|z,1 — zs1l,- .oy |Trn — Tsnl}-

Thus (xy) is a Cauchy sequence in R™ if and only if, for each ¢ = 1,...,n, the sequence
(ki) ken of its i-th coordinates is a Cauchy sequence of real numbers.

This, together with the previous proposition and the fact that a sequence of real
numbers is Cauchy if and only if it is convergent, yields the following immediate result.

Proposition 1.10 A sequence (xy) in R™ is a Cauchy sequence if and only if it is con-
vergent.

Definition 1.11 Two norms ||-||1 and || - ||2 on R™ are said to be equivalent if there exist
constants ¢, co > 0 such that

lzlly < ellells and lz]ly < colllly

for allx € R™. It is clear that if || - |1 and || - ||2 are equivalent, then lim ||z — zo||; = 0 if
and only if im ||z, — xol|l2 = 0, that is, equivalent norms give rise to the same notion of
limat in R™. Moreover, a set X C R" s bounded with respect to one of them if and only
if it is bounded with respect to the other.

1.5 Accumulation, Adherent, Interior, and Bound-
ary Points

Definition 1.12 Let E C R". A point x € R" is called an accumulation point of E if
every open ball centered at x contains some point of E different from x. In other words,
x 1s an accumulation point of E if for every r > 0,

(Br(x) \ {z}) N E # 0.

Examples.

(1) Let £ = {2; n € N*}. Then 0 is an accumulation point of E, since given r > 0

there exists n(r) € N such that 0 < ﬁ <r.
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r 0 n(r) r 1

Figure 1.7:

Figure 1.8:

(2) Let £ = (1,3] x [2,4] (Figure 1.8).
The point Py = (1,2), for instance, is an accumulation point of F, since for any r > 0
there exists p, € E such that ||p, — By <.

These examples show that an accumulation point p of a set need not belong to the
set. Observe that in Example 1, no point of E is an accumulation point of F, since for
each n € N* we can find r,, > 0 such that the open interval centered at 1/n and radius r,
contains no point of E other than 1/n itself.

On the other hand, in Example 2 we have that every point of £ is an accumulation
point of E.

A point & € E that is not an accumulation point is called an isolated point of E. Thus
x € E is isolated if and only if there exists 1o > 0 such that B, (z) N E = {z}.

In Example 1, by the argument above, all points of E are isolated. However, in
Example 2, the set E has no isolated points.

Proposition 1.13 Let E C R". If z € R" is an accumulation point of E, then for every
r > 0 the ball B,(x) contains infinitely many points of E.

Proof: Suppose, by contradiction, that there exists 1o > 0 such that the ball B, (x)
contains only finitely many points of E, say 1, ...,z (see Figure 1.9). Set

7 =min{||z, —z|,..., ||z — 2| }.

Then the ball Br(z) contains no point of E except possibly z itself if x € E. This
contradicts the fact that = is an accumulation point of E, since every open ball centered
at x must contain points of F different from zx. O
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. “Xs
X

Figure 1.9:

Proposition 1.14 Let E C R". If x is an accumulation point of E, then there exists a
sequence (xy) of pairwise distinct elements of E converging to x.

* Xi

N =

Figure 1.10:

Proof: Take r; = 1. Then there exists 27 € E such that 0 < ||z; — z|| < 1. Next, let
) 1
ry = mm{”xl —zl|, 5}
Then there exists o € E such that 0 < ||xg — z|| < r9. Similarly, with
) 1
ry = mm{”mg —zl|, g},

there exists 23 € F such that 0 < ||z3 — z|| < r3. (See Figure 1.10)

Proceeding inductively in this way, we obtain a sequence (xy) such that

0 < ||zgs1 — 2] < |lzx — 2| and |jzp — 2| < T
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Thus the x; are pairwise distinct and, moreover, limy_,o, 2 = . O

We denote by E’ the set of all accumulation points of a set E. Returning to Examples 1
and 2 above, we obtain in the first case £’ = {0} and in the second case £’ = [1, 3] x [2, 4].

As another example, let £ = {1,2}. In this case the set E’ of accumulation points of
E is empty, since each point of E is isolated. It suffices to consider the balls of radius

1

3 centered at each of these points. These balls contain no point of E other than their

centers, as illustrated in Figure 1.11.

Bi2(1) Bi2(2)

Figure 1.11:

As in this example, any set £ C R” consisting of finitely many points has £’ =
since all of its points are isolated. It follows that if E’ # (), then E is infinite.

Y

Definition 1.15 A point x € R" is said to be adherent to a set E C R"™ if every open
ball centered at x contains some point of E (not necessarily different from x). In other
words, x € R™ is adherent to E if and only if, for every r > 0,

B.(z) N E # 0.

Remark 1. If x is adherent to a set £ and we consider the sequence r, = +, k € N*,
then for each k there exists some x; € Byp(x) with 2, € E. Hence |z, — x| <  and
therefore zy — = as k — oo. Thus there exists a sequence (z3) C FE such that z;, — .

x| =

Conversely, if there exists a sequence (z) C F such that xp — x, then x is adherent
to E. Indeed, given r > 0, there exists ky € N such that

|xp —z|| <r forall k> k.

It follows that inside the open ball of radius r there is at least one element of £, namely
one of the x; with & > k.

From the above discussion we obtain the following result.

Proposition 1.16 A point x € R" is adherent to a set E C R™ if and only if there exists
a sequence (xy) of elements of E converging to x.

We denote by E the set of adherent points of £. This set is called the adherence or
closure of E. Note that every point of E is adherent to E. Indeed, if x € E, then every
open ball centered at x contains at least one point of E, namely x itself. Thus £ C E.
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It is also easy to verify that every accumulation point of £ is adherent to L. Hence
E' C E, and therefore EU E' C E.

On the other hand, if # € E, then for every r > 0 we have B,(z) N E # (). In other
words, for each r > 0 there exists y, € B,(x) with y, € E.

There are two cases to consider:

(1) y, # .

In this case, x is an accumulation point of E.

In this case, since vy, € F, we have z € F.

Thus, from (1) and (2), we conclude that £ C EU E’, and consequently

E=EUE.

Example 4. Let
E=(1,3) x[2,5] U {(5,2),(5,5)}.

Figure 1.12:

We have E' = [1, 3] x [2,5] and

E=1[1,3] % [2,5 U {(5,2), (5,5)}.

Definition 1.17 A point x € E C R" is called an interior point of E if there exists
an open ball centered at x that is entirely contained in E. In other words, x € E is an
interior point of E if there exists r, > 0 such that B, (x) C E.
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2+1/2 2-A1/2

Figure 1.13:

Example 5. Let F = (1,3]. The point 2 is an interior point of E, since there exists

ro = 3 such that By»(2) C E (see Figure 1.13).

Example 6. Consider
E={(x,y) eR*; T +¢* <1},

as in Figure 1.14. The point (0,0) is an interior point of F, since there exists ro = % such
that By 2(0,0) C E.

1/2

-1/2

Figure 1.14:

Proposition 1.18 Let ¢ > 0 and x € R™. Then every point belonging to the ball B.(x)
is an interior point of this ball.

Proof: Let y € B.(x). We must exhibit r > 0 such that B,(y) C B:(z).

Figure 1.15:
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Set r = ¢ — ||y — z||. Note that r > 0, since ||y — x| < & because y € B.(x). We shall
prove that B,.(y) C B.(x).

Indeed, let z € B,(y). Then ||z — y|| < r. We want to show that ||z — z| < . In fact,

[z =zl < |lz—yll+ly—=|
< r+lly—=|
e~y —zll+lly — =l
£.

Therefore ||z — z|| < €, as desired. O

We denote by E° the set of interior points of E. This set is called the interior of F.
Clearly E° C E.

Definition 1.19 A point x € R" is called a boundary point of a set E C R™ if every
open ball centered at x contains points of E and points of the complement of E. In other
words, x € R™ is a boundary point of E if and only if, for every r > 0,

B.(x)NE #0 and B.(x)NE®#(.

Example 7. Let E = (2,5]. The points 2 and 5 are boundary points of F, since every
open ball centered at one of these points contains points of E' and points of the complement
of E.

Example 8. Consider

E={(z,y) eR*;0<xr<1landy<az}

Figure 1.16:

The point (1,1), for instance, is a boundary point of E, since every ball centered at
(1,1) contains points of £ and points of the complement of E.
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The set of all boundary points of a set E is called the boundary of E and is denoted
by OF.

For example, if F is the closed ball B,.(z), then OF = S,.(z), the sphere of center x
and radius r. To fix ideas, consider the planar illustration in Figure 1.17.

3

oE

L

7
Z

Figure 1.17:

As a more complete analysis, consider the following examples.

1. A={1,2,3}.

—_—

2 3

Figure 1.18:

From the figure we observe that:
o A (closure) = A;
e A° (interior) = {);
e A’ (set of accumulation points) = {);

e A is a set of isolated points.

2. B=[1,2)U{3}.

2

Figure 1.19:

In this case:
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e B=[1,2U{3}:
o B°=(1,2);
o B'=[1,2];

OB (boundary) = {1,2};

e 1 = 3 is an isolated point.

3. C={}, oy (Figure 1.20).

0 1/3 1/2 1
Figure 1.20:
Here:
e C=CU{0};
o C° =
o O"={0}

OC' (boundary) = {0};

C is a set of isolated points.

4. D=1[1,3) % (2,4] U {(2,5)}.

A

5 ®

4

2

3 >
1 2 3
Figure 1.21:

We have:

o D — [1,3] x [2,4] U {(2,5)};
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D° = (1,3) x (2,4);

D' =1,3] x [2,4];

0D = {1} x [2,4] U {3} x [2,4] U [1,3] x {2} U [1,3] x {4};
(2,5) is an isolated point.

5. E={(z,y) eR*; 2 +y* <landy>a} U {(2— 2,24 L)},cn (Figure 1.22).

A

3

Figure 1.22:

In this case:
e E={(z,y) eR*;2?+y* <landy >z} U{(2— 2124 1)} o
o £°={(z,y) e R*; 22 +9*> <1 and y > x};
o F'={(z,y) eR*; 22 +¢y*<land y >ax} U {(2,2)};
¢ IE={(r.y);y=a2, ~L <o <2U{(z.y);y=V1-2?, —1 <z <%}
U{(z,y);y=—vI—22 —1<z<-¥2}

1.6 Open and Closed Sets

Definition 1.20 A set E C R" is said to be open if every point of E is an interior
point. In other words, E C R"™ is open if, for each x € E, there exists r, > 0 such that
B, (z) C E.

Example 1. As we have seen in the previous section, every open ball is an open set.

Example 2. The set £ = (—3,—1) x (1,4) is an open set, as we can see in Figure 1.23.
Note that every point of E is an interior point of E.
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Figure 1.23:

Example 3. The empty set () is open. Indeed, a set E fails to be open if there exists in
E some point that is not interior. Since there is no point at all in (), we must accept that
() is open.

Example 4. The whole space R"” is clearly open.

Warning. The sets A = (1,3] and B = [2,4] x [4,5) are not open. See Figure 1.24.

Figure 1.24:

In fact, the point 3 € A is not an interior point of A, and the point (3, 4), for example,
is not an interior point of B.

Proposition 1.21 Let {E,}acr be a family of open subsets of R"*. Then E = |J,c; Fa
15 an open subset of R™.

Proof: Let # € E. We must exhibit » > 0 such that B.(z) C E. Indeed, since
v € Jyer Ea, we have z € E, for some o € I. As E|, is open by assumption, there exists
r > 0 such that B,(z) C E,, and since E, C F, we obtain B,(z) C E. O

Remark 1. The analogous statement is not true for arbitrary intersections of open
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sets. Consider, for example,

11 ~
E, = (--,-), —1,2,..., and E=()E,.
o n an g
Then E is not open. In fact, note first that £ = {0}. Indeed, clearly {0} C FE, since
0 € E, for all n € N*. Now let x € E and suppose, by contradiction, that  # 0. Then
|z| > 0, and there exists a natural number ny such that 0 < nio <z|.

/ . \ |X|
-1/h0 0 /1/n0
Figure 1.25:
This means that « ¢ (—X, =) = E,,, which is a contradiction, since z € E, for all

n € N*. Therefore E = {0}, and it is clear that {0} is not open.

Definition 1.22 A set F C R" is said to be closed if F' contains all of its accumulation
points. In other words, F is closed if and only if F D F'.

Example 5. Let F' = {1,2,3}. In this case the set F’ of accumulation points of F' is
empty, since F is a set of isolated points. Thus F’ = () and therefore F is a closed subset
of R.

Example 6. The closed ball B, (zy) C R™ is a closed set, since F' = F' in this case.
Example 7. Both the empty set () and the whole space R™ are closed.

Example 8. The set F' = [—4,—2] x [-3,—1] is a closed subset of R?, since F' = F.

Figure 1.26:
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Proposition 1.23 A set A C R™ is open if and only if the complement CA is closed.

Proof: Suppose first that A is open, and assume by contradiction that CA is not closed.
Then there exists some zy € (CA)’, that is, zy is an accumulation point of CA, but
Ty ¢ CA. Since ¢ CA, we have zy € A, and because A is open there exists r > 0
such that B,(z9) C A. On the other hand, since o € (CA)’, the ball B,(zy) must satisfy
B,(2)NCA # (). Thus there exists some y € B,(7¢) with y ¢ A, which is a contradiction,
since B,(xo) C A.

Conversely, suppose that CA is closed and, by contradiction, that A is not open. Then
there exists some g € A such that for every € > 0 the ball B.(z¢) is not contained in A.
In other words, for each € > 0 there exists some y. € B.(xg) with y. ¢ A and y. # z¢ (for
if 4. = @9, then y. € A, which is absurd). Thus ¢ is an accumulation point of (A, and
since CA is closed, we must have x5 € CA, which is impossible because x, € A. O

Corollary 1.24 A set F is closed if and only if its complement CF is open.

Proof: Just take A = CF in the previous proposition. O

Lema 1.25 Let {E,}a be a collection of open sets. Then

C(U E.) = ((CE).

«

Proof: If x € 0(, E.), then z & |J, Ea, that is, z ¢ E, for every a, or equivalently,
z € CE, for every a. Hence z € N, (CE,).

Conversely, suppose that € (,(CE,). Then x € CE, for every a, and therefore
x ¢ E, for every a. Hence x ¢ |, Ea, and so z € C(, E.). O

Remark 2. In the proof of the lemma above we used the facts that

[BGUEa < 1z € E, for some «,

o

xé UEa <~ x ¢ E, for every a.

Similarly, one proves that

E(ﬂ E.) = J(CE).

«

Remark 3. It is worth emphasizing that there are sets in R™ that are neither open
nor closed. For instance, the set A = (1, 5] is not open, since 5 is not an interior point of
A although 5 € A, and it is not closed, since 1 is an accumulation point of A and 1 ¢ A.
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Similarly, the set
B={(z,y) €R*;y <xand 2* +y* <1}

is not open, since the point (1,0), for example, is not an interior point of B although
(1,0) € B, and it is not closed, since (0,0) is an accumulation point of B and does not
belong to B (see Figure 1.27).

e
7B
A /
% .1‘/ (/ 1 >
1 5 o )
\\4/////
-1
Figure 1.27:

Proposition 1.26 Let {F,}.c; be a family of closed subsets of R™. Then
F=()Fa
15 a closed subset of R™.

Proof: It suffices to show that CF is open.

Indeed,
EF:CUWEQ:JJQEJ

«

Since each F, is closed, each CF, is open. Hence |J,(CF,) is an open set, as it is an
arbitrary union of open sets. U

Remark 4. Here we have an observation analogous to the one made for families of
open sets: the union of an arbitrary family of closed sets need not be closed. For example,
let F¥ C R™ be a set that is not closed. Clearly

F= Ut

zeF

and each singleton {z} is closed, but their union F' is not closed.
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Proposition 1.27 A set E C R" is closed if and only if E = E.

Proof: If E is closed, then £ D E', and thus E'U E C E, that is, ECE. Since ECE,
it follows that £ = E. Conversely, if £ = E, then E' C E, and therefore F is closed. O

It follows from this proposition that a set E is closed if and only if for every sequence
() C E such that x; — xo we have 2 € E.

1.7 Compact Sets

Definition 1.28 A cover of a set E C R™ is a family € = {C, },er of sets C, C R™ such

that
Ecl]c,.

vyel

Definition 1.29 A subcover of € is a subfamily € = {C,},ep with I' C I such that still

Remark 1. A cover is called open when all sets in the family are open. Similarly, we
speak of a closed cover if the sets are closed.

Definition 1.30 A set K C R" s called compact if every open cover of K admits a finite
subcover.

Our goal from now on is to characterize the compact sets in R", since the definition
above is rather abstract.

Proposition 1.31 Let K C R" be a compact set. Then K is closed and bounded.

Proof: (1) K is bounded.
For each n € N; consider the open ball G,, = B,(0). Clearly,

K C GGn,

n=1

since this union covers all of R”. Indeed, given x € R", there exists ng € N such that
llz|| < ng. Otherwise, if ||z|| > n for every n € N, then the set of natural numbers would
be bounded, which is absurd. Thus = € B, (0) = G,, C |J.—, Gy, that is, R* C |J,_, G,..
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Since K is compact, there exist ni,ng,...,n; € N such that
k
K cl| )G,
i=1

We may assume, without loss of generality, that ny < ns <...- < mng. Then

so that K C B,, (0), which shows that K is bounded.

(2) K is closed.

It suffices to show that CK is open. Let z € CK. We must find r > 0 such that
B,.(z) c CK.
For each n € N, set

Go={y e R"; ly — || > 1} = 0By, ().

Figure 1.28:

Clearly G, is open, since By/,(x) is closed. We claim that

UJGn = R"\ {«}.

(i) Let y € U2, Gpn. Then y € Gy, for some ng € N. Thus y € R” and ||y — z|| > -

which implies y # x. Hence y € R™\ {z}. "
(ii) Conversely, let y € R™\ {z}. Then y € R™ and y # z, so ||y — z|| > 0. Choose
no € N such that ||y — x| > nio Then y € G,,, and hence y € |J.-, G,,, which proves the
equality.
Since x ¢ K, we have

e

n=1
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Because K is compact, there exist ny, no,...,n,. € N (suppose, without loss of generality,
that ny < ng <--- <mn,) such that

K C O G-
i=1

Moreover, since GG DGy, fori=1,...,r—1, we have

Ti4+1

Thus
K C G,, =CByy,(z),

which implies

CK D By, (z) D By, ().
Therefore By, (z) C 0K, and CK is open. 0

Remark 2. It follows immediately from the previous proposition that if K C R" is
not closed or not bounded, then it is not compact.

1.8 Nested Intervals

Lema 1.32 Let (I,)nen be a sequence of closed and bounded intervals in R such that
]n D In+1 Vn € N.

Then .
(1. #0.
n=1

Proof: For each n € N, write I, = [a,, b,).

We first show that a,, < b, for all n,m € N. Indeed, suppose the contrary: that there
exist ng, mg such that a,, > b,,. But since each interval is nonempty, we always have
a, < b, for all n, hence

Uy < by < Ay < by

Thus,
[amm bmo] N [anm bno] = ®7
which is impossible because the intervals are nested. Hence a,, < b, for all n, m.

In particular,
a, <b Vn, a1 <b, Vm.
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Thus the set {a,} is bounded above, and the set {b,,} is bounded below. By the
completeness axiom, the following limits exist:

a = sup{a, ; n € N}, B = inf{b,, ; m € N}.

We now prove that a < . Suppose by contradiction that o > § and take

a—p
> 0.
2

E =
Then there exist mg, ng € N such that
B<by, <B+e=a—c<ay, <o

Hence b,,,, < a,,, contradicting what we proved above.

Thus o < (3, and therefore
[0, 8] C () In-
n=1

Indeed, if x € [a, (], then since a, < a <z < < b, for all n, we have = € I, for all n

Hence

[0, 8] C () I,
n=1

proving that the intersection is nonempty.

Remark 3. In fact, in the previous lemma we actually have

[, 8] = () Ln-
n=1
Indeed, let x € I, = [ayn, b,] for all n, and suppose by contradiction that < a or x > 3
(i) If z < a, then @ — x > 0. Take ¢ = a — 2. Then for some ny we have

a—& < ap, < a,

that is,
T < Qpy,

contradiction.
(ii) The case x > 3 is similar.

Examples.
(a) I, = [-%, 1+ 2].

° ﬁln: [0, 1].
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1
° a:sup{——} = 0.
n

° ﬂ[n: {0}.

. a:sup{—l}:O.
n
) ﬁ:inf{l}:().
n

Definition 1.33 An n-parallelepiped, or n-dimensional block, or simply a cell, is a
subset A C R™ of the form

n

A= ]Tlai, bi] = [a1,b1] x -+ x [an, ba].

=1

In one dimension an 1-parallelepiped is a closed bounded interval. In two dimensions
it is a rectangle, and in three dimensions it is a usual parallelepiped.

Lema 1.34 Let (Ax) be a sequence of n-parallelepipeds in R™ such that
A D Ak Vk € N.

Then .
() Ax # 0.
k=1

Proof: Write
A ={(z1,...,2n) 5 ap <23 < by, 1 <9 <nj.

For each fixed 7, the intervals
Ik,i = [aim bki]

satisty Iy ; D Ix+1,. Thus by Lemma 1.32 there exists x] such that
ap; < xj < by, Vk.

Let z* = (x7,...,2}). Then 2* € A, for all k, proving the lemma. O
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Proposition 1.35 Let A C R"™ be an n-parallelepiped. Then A is compact.

Proof: Suppose, by contradiction, that A is not compact. Then there exists an open
cover

{Ga}ael
of A from which no finite subcover can be extracted.

Let Ayg = A and divide Aq into 2" equal n-parallelepipeds. At least one of them, say
A, cannot be covered by finitely many G,. Otherwise, Aq itself would be covered by
finitely many of the G, contradiction.

Now divide A; into 2" equal n-parallelepipeds. Again, one of them, call it A,, cannot
be finitely covered. Proceeding inductively we obtain a nested sequence

AoDAlDAQD"'

of n-parallelepipeds, none of which admits a finite subcover.
Let

n

=1
Then
1)
r,y€ Ay = |r—yl < ok

By Lemma 1.34 there exists ' € [, Ax. Since 2’ € A, and {G,} covers A, we have
' € G,, for some ay. As G,, is open, there exists g9 > 0 such that

B, (2') C Gqy-

Choose ng € N such that
210 > —,
If y € A,,, then since 2’ € A,,,
, )
Iy =2l < o <o

S0 Y € B (2') C G-

Thus
Ay C Gay,

contradicting the fact that no A, can be finitely covered.

Hence A must be compact. O

Proposition 1.36 Let K C R" be a compact set and let F' be a closed subset of K. Then
F'is compact.
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Proof: Let {G,}aca be an open cover of F. We must exhibit a finite subcover of F.

Since F is closed, its complement CF is open. We claim that

K c (U Ga) UCF.

acA

Indeed, let x € K. Since I' C K, we have two cases:

(i) If x € F, then, as {G4}aca is an open cover of F, there exists some a € A such
that © € G,. Hence x € |, 4 Ga-

(ii) If z ¢ F, then x € CF.
Thus {G4 }aca together with CF form an open cover of K. Since K is compact, there

exist aq,...,qa, € A such that
K C (Go U-+-UG,,) UCF.
However, F C K and clearly F ¢ CF, so necessarily

FCGayU- UG,

which shows that F'is compact. O

Proposition 1.37 (Heine—Borel) A subset K C R" is compact if and only if it is closed
and bounded.

Proof: We have already proved that every compact set is closed and bounded. It remains
to show that if K is closed and bounded, then K is compact.

Since K is bounded, there exists an n-parallelepiped A such that K € A. As A is
compact and K is closed, it follows from Proposition 1.36 that K is compact. O

Proposition 1.38 Let K C R" be compact. Then for every infinite subset A C K there
exists a point r4 € K which is an accumulation point of A.

Proof: Suppose, by contradiction, that there exists an infinite subset A C K such that
no point of K is an accumulation point of A. Thus, for each x € K there exists ¢, > 0
such that

(Be(@)\ {z}) N A=0.

The collection of balls {B., (z)}.ex is an open cover of K. Since K is compact, there
exist xy1,...,x, € K and €q,...,&, > 0 such that

K C O B, (z;).

=1
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Since A C K, it follows that
AclB. ().
i=1
Hence
A=AnAc|J(B.(z:)NA).
i=1

But for each i we have either B, (z;) N A =10 or B, (x;) N A= {x;} (if ; € A). Thus
A is contained in a finite set, which contradicts the fact that A is infinite. O

Corollary 1.39 (Bolzano—Weierstrass) FEvery infinite bounded subset of R" has an
accumulation point.

Proof: Let A be an infinite bounded subset of R". Since A is bounded, there exists an
n-parallelepiped B such that B D A. As B is compact and A is an infinite subset of B,

the previous proposition implies that there exists x4 € B which is an accumulation point
of A. O

Remark 4. If A = (a) is a bounded sequence in R", then there exists 24 € R™ which
is an accumulation point of A, that is, there exists a subsequence (ay, ) of (a,) such that
QAp, — TA.

1.9 Induced Topology

Definition 1.40 Let X C R". A subset A C X is said to be open in X if for everya € A
there exists 6 > 0 such that

B5(CL) NX C A

In other words, for each a € A there exists 0 > 0 such that every point x € X with
|z — al| <& belongs to A.

Example 1. The set A = (0, 1] is open in X = [0, 1], although it is not open in R.

We arrive at the notion of open sets in X by ignoring the points outside X and
mimicking the usual definition of an open set. When X C R" is open, a subset A C X is
open in X if and only if it is open in R™ in the usual sense.

More generally, a subset A C X is open in X if and only if there exists an open set
B C R" such that

A=XNBAB.
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Indeed, if A is open in X, let B be the union of all balls Bs(a) with center a € A and
such that Bs(a) N X C A. Clearly B is open and A = X N B. Conversely, if A =X NB
with B open in R", then for each a € A there exists a ball Bs(a) C B, and hence

Bs(a)Nn X C BNX = A,

so A is open in X.

Remark 1. An analogue of Proposition 1.21 for open sets in X also holds: arbitrary
unions and finite intersections of sets open in X are open in X.

Definition 1.41 Let X C R". A subset F' C X s said to be closed in X if there exists
a closed set G C R"™ such that
F=XnNAaG.

Remark 2. Closed sets in X satisfy the analogue of Proposition 1.27: arbitrary in-
tersections and finite unions of sets closed in X are closed in X.

Definition 1.42 Let Y € X C R™. The closure of Y relative to X is the set
Y¥=Ynx,
that is, the set of points of X which are adherent to'Y .

Note that if Y =Y =Y N X, then Y is closed in X.

An important particular case occurs when the closure of Y in X is the whole of X.
To describe this situation, we introduce the following notion.

Definition 1.43 Let Y C X C R". We say that Y s dense in X if
v =X,
that is, Y N X = X, or equivalently X C Y.
It follows that every point of X is the limit of a sequence whose terms belong to Y.

Equivalently, every open ball centered at a point of X contains points of Y.

Remark 3. When X = R”, a set Y is dense in X if and only if R* C Y. For example,
Q is dense in R, since for every z € R there exists a sequence (z,) C Q such that z,, — z,
or equivalently, every open ball centered at x and of radius » > 0 contains rational points.
Similarly, Q™ is dense in R".

Proposition 1.44 Fvery set X C R" contains a countable subset E which is dense in
X.
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Proof: Let B be the collection of all open balls B,.(¢q) with center ¢ € Q" and rational
radius > 0. This family is clearly countable; write

B={Bi,By,...,By,...}.

For each k € N, choose a point z;, € B, N X if B,NX # (. If B,NX = 0, we simply
do not choose a point. The set E obtained in this way is a countable subset of X. We
now show that E is dense in X, that is, X C E.

Let x € X and € > 0 be given. There exists a rational number r > 0 such that 2r < e.
Since Q™ is dense in R™, we can find ¢ € Q" such that ||¢ —z|| < r. Then z € B,(q) = B
for some k, so By N X # (), and thus there exists x;, € E with x;, € By,

Because both x and zy, lie in By, = B,(q), we have

|z — x| <z —ql| + g — k]| <r+7r=2r<e.

Hence every open ball B.(z) with center in X contains some point z, € E, and
therefore F is dense in X. O

Proposition 1.45 (Lindel6f Property) Let X C R™ be arbitrary. Every open cover
{Ax}arer of X admits a countable subcover.

Proof: By Proposition 1.44, let
E={xy,29,...,7p,...} C X

be a countable dense subset of X. Let B be the set of all open balls B,.(x) with center
xr € E, rational radius r > 0, and such that each of these balls is contained in some A,.
The family B is countable. We claim that the balls B € B cover X.

Indeed, let x € X. Since {A,}res is an open cover, there exists A € I and r > 0 such
that
BQT(LC) C A)\.
As FE is dense in X, we can choose zj € E with ||z — x| < 7. Then = € B,(xy).

To show that B,.(zx) € B, it remains to verify that B,(xy) C A,, as in Figure 1.39. If
y € B.(xy), then
ly — @l <,

and hence
ly —zl| < lly — x| + [Jox — zf| <7r+7r=2r

so y € By.(z) C Aj.

This proves that the balls in B cover X. Enumerating them as By, Bs, ..., By, ... and
choosing, for each k € N, an index \; € I such that

B, C A)\k,
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we obtain
XCA)\1UA>\2U"'UA)\kU"',

which is a countable subcover. O

Remark 4. If £ C X C R”, then E may be open relative to X without being open
in R™. The same holds for closed sets. Compactness, however, behaves better, as we now
show.

Proposition 1.46 Let K C X C R". Then K is compact in R™ if and only if K is
compact 1 X.

Proof: Assume K is compact in R", and let {G,}aca be an open cover of K in X, that
is,

K C UGa,

aEA

where each GG, is open in X. For each « there exists an open set H, C R" such that
G,=H,NX.

Thus
Kc|JH.nX)= (U Ha) nx,

acA acA
and hence K C |J,cq Ha-

Since K is compact in R™ and {H, }4c4 is an open cover of K, there exist aq, ..., ay €

A such that .

K c| JH.,

=1

As K C X, we have
k k

K c | JHs, nX) =G,

i=1 i=1
showing that K is compact in X.

Conversely, suppose K is compact in X, and let {G4}aca be an open cover of K in
R™. Then

K C UGa,

aEA

and hence
EnXc|]J(GanX).

acA

Since each G, is open in R”, it follows that H, := G, N X is open in X, and

EnXc | H.

a€cA
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But K € X, so KN X = K, and thus

K c | J Ha.
acA
Since K is compact in X, there exist aq,...,ar € A such that
k k
K c | JHq, = J(Ga, nX),
i=1 i=1
which implies
k
K c|JGa,.
i=1
Therefore K is compact in R™. O

1.10 Continuous Functions

Definition 1.47 Let f : X C R® — R™ be a map. We say that [ is continuous at a
point xy € X 1if, given € > 0, one can find 6 > 0 such that every point x € X whose
distance to xo is less than § is mapped by f to a point f(x) whose distance to f(xq) is
less than €. In other words,

Ve>035>0 such thatVae € X, ||z —xol| <0 = || f(z) — flzo)] <e

In terms of balls, the continuity of f at xy can be expressed as follows: for every open
ball B’ centred at f(zo) in R™ there exists an open ball B centred at zy in R™ such that

f(BNnX)cCB.
f B's(f(xo))

X X S (k)

Y [ \\,\,‘

Figure 1.29:

Remark 1. Although the definition of continuity of a map f: X C R™ — R™ uses a
norm in R” and another in R™ (both denoted by the same symbol), it follows from the
notion of equivalent norms that continuity of f at a point is preserved if we change one
of these norms or both.
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If f:X CR"— R™is continuous at every point of X, we simply say that f is a
continuous map. It is easily seen that if f is continuous on X, then for every Y C X, the
restriction f|y is also continuous.

A trivial case of continuity is the following: if z( is an isolated point of X, then every
map f : X C R" — R™ is necessarily continuous at xy. Indeed, there exists o > 0 such
that Bs(z9) N X = {xo}. Thus, for any given € > 0, taking this value of § we obtain

reX, lx—af| <6 = z=20 = ||f(x)— flzo)]| =0<e.

Definition 1.48 Given X C R", a map f : X C R™ — R™ is said to be Lipschitz if there
exists k > 0 (a Lipschitz constant) such that, for all v,y € X,

1 () = F)l < Ellz =yl

We shall prove that every Lipschitz map is continuous. Indeed, given € > 0, it suffices
to take 6 = ¢. Then

€ _
=

Note that the property of being Lipschitz does not depend on the particular choice of
equivalent norms.

lo —aoll <& = [If(2) — flwo)]| < klla — ol < k- < =e.

Examples of Lipschitz functions.
1) Every linear transformation 7" : R™ — R™ is Lipschitz.

Indeed, for x € R™ we have
7@ = ||7( 3w || = | S Teen
Setting k = max{||T(e1)|, ..., ||T(en)]|} we obtain
T < kY bl

< Z EANACHIR

Taking in R" the ¢*a€ “norm (the ‘sum norm’), we get ||7(z)|| < kx| for all x € R".
Thus, for arbitrary x,y € R", by linearity of T" we obtain

1T(x) =Tl = IT(x —y)ll < kllz—yll,
so T satisfies the Lipschitz condition and, in particular, is continuous.
2) The coordinate projections. For the ia€“th projection we have
mi(x) = mi(y)| = |zi — il < [l —wyll,
for any of the three usual norms on R".
3) The norm || - || : R® = R, = +— ||z]|.
Indeed, for any z,y € R™ we have

[l = llyll] < lle =yl
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Proposition 1.49 The composition of two continuous maps is continuous. More pre-
cisely, let X CR™, Y CR™, f: X =Y be continuous at xo € X, and let g : Y — RP be
continuous at yo = f(xo). Then go f: X — RP is continuous at xy.

Proof: Given € > 0, by continuity of g there exists n > 0 such that

yeV, ly—flxo)ll <n = llg(y) — g(f(xo))]l <e

On the other hand, by continuity of f at xz(, corresponding to this n there exists § > 0
such that

e X, [lz—wol <é = |[f(x) = flxo)ll <.

Combining these two implications we obtain, for x € X with ||z — || < 0,

lg(f () = g(f (o))l <€

Thus g o f is continuous at xg. O

Let X C R". To give amap f : X — R™ is the same as giving m functions fi,..., fi, :
X — R defined by f; = m; o f, which are called the coordinate functions of f. For every
xr € X we have

f(x) = (fi(@), s ().

Proposition 1.50 A map f : X C R* — R™ is continuous at a point ro € X if and
only if each coordinate function f; = m; o f: X — R is continuous at x.

Proof: The continuity of f implies the continuity of each f; by the previous proposition
(using the projections ;). Conversely, suppose each f; : X — R is continuous at zy € X.
Given € > 0, there exist d1,...,0d,, > 0 such that

lx — x|l < sy, € X = |fi(z)— filxo)|<e fori=1,...,m.
In R™ take the maximum norm and set 6 = min{di,...,d,}. Then

[ = zol| <6, € X = ||f(z) = fzo)|| = max |fi(x) — fi(zo)| <,

1<i<m

and consequently f is continuous at xg. O

Corollary 1.51 Given f: X — R" and g : X — R™, consider the map

(f,g9): X = R" xR™, (f,9)(x) = (f(x),9(x)).

Then (f,g) is continuous if and only if both f and g are continuous.
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Using the previous results it is easy to show that if f,g: X CR" - R™ and o : X C
R™ — R, then

(i) f+g:X=>R" (f+9)(z)=f(x)+g(x)

(i) af:X >R (af)(x) = ale) f(z)
(iii) (f,9): X =R, (f,9)(z) = (f(2),9(2));
() S XSRS = (o) £0)

are all continuous.

Proposition 1.52 A map f : X C R" — R™ s continuous at a point xo € X if and
only if for every sequence (ry) C X with limy_,o 1, = xo we have

k—oo
Proof: Assume f is continuous at xo and let (z5) C X with limg_ o xx = x9. Given
€ > 0, there exists § > 0 such that
v€X, lr—wmol < = |f(z)— flzo)ll <e
Since limy_,o £ = xg, there exists ky € N such that for all k& > kg,
[k — @ol| <6,
which implies || f(zr) — f(x0)|| < €. Hence limy_, f(zx) = f(x0).

For the converse, suppose, by contradiction, that f is not continuous at xy. Then
there exists ¢y > 0 such that for every k& € N we can find x;, € X with

o —woll < 3 and | £w) — fao)] > e

Then limy_, o xx = g, but limy_,o f(xx) # f(xo), which is a contradiction. O

Definition 1.53 A map f : X C R" — R™ is said to be uniformly continuous if, for
every € > 0, one can find o > 0 such that

vyeX, lr—yll<do = [If(=) - fwl <e

For example, every Lipschitz map f: X C R” — R™ is uniformly continuous. Indeed,
if
1f (@) = fWl < kllz—yll forall z,y € X,

then, given € > 0, taking 0 = ¢ we obtain, for ||z —y[| <4,

€

1F (@) = fll < klle —yll < k-

The composition g o f of uniformly continuous functions f and g is again uniformly

continuous. Hence a map f : X C R® — R™ is uniformly continuous if and only if each
of its coordinate functions fi,..., fi, : X — R is uniformly continuous.

= €.
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1.11 Connected Sets

Definition 1.54 Two subsets A and B of R"™ are said to be separated if
ANB=ANB=0.

Example 1. A =[1,2) and B = (2, 3] are separated.

Remark 1. Note that if A and B are separated then they are disjoint. However, two
sets can be disjoint without being separated.

For example: A = [1,2) and B = [2,3) are disjoint but not separated.

There is, however, an important case in which two disjoint sets A and B are separated:
when A and B are open. Indeed:

(i) AnB =19.
Suppose, by contradiction, that there exists € AN B. Since B is open, there exists

r > 0 such that B,(z) C B. Asx € A and A # (), there exists y € B,(z) with y € A.
Because B,(x) C B, we have y € B, hence y € AN B, which contradicts AN B = ().

(ii) AN B = () is proved in an analogous manner.

Definition 1.55 A set E C R" is said to be connected if, for every pair of separated sets
A, B C R™ whose union is E, one of them is empty.

In other words:

E is connected if and only if for every pair of separated sets A, B C R"™ such that
E=AUB wehave A= or B=10.

It follows that:

A set F is nonconnected or disconnected if and only if there exist non-empty separated
sets A, B C R" such that £ = AU B.

Proposition 1.56 A set E C R is connected if and only if, for any pair of points x,y € E
and any z € R with x < z <y, we have z € E.

Proof: First suppose that F is connected and consider z,y € F and z € R with
xr < z < y. Assume, by contradiction, that z ¢ E. Set

A=(—00,2)NE, B = (z,400) N E.

We have:

(i) A# 0, because x € E and x € (—o0, 2) since z < z.
B # (), because y € E and y € (z,+00) since z < y.

(i) F = AUB.
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-0 Uox z y

Figure 1.30:

Indeed, clearly AU B C E. On the other hand,
AUB = [(—00,2) U (z,+00)] NE = (R\ {z}) N E.
Since z ¢ E, we have E C R\ {2z}, and hence

Ec (R\{z})NnE=AUB.

(iii) A and B are separated.
Indeed,

ANB =|[(—00,2) NE]N[(z,+00) N E]
C ((—00,2)NE) N ((z,+00) N E)

(—00, 2] N (z,+00) N E = 0.

Thus AN B = (). Similarly, AN B = (.
By (i), (ii) and (iii), A and B form a disconnection of E, which contradicts the con-

nectedness of F.

Conversely, suppose that for any z,y € E and z € R with z < 2 < y we have z € E.
We must prove that E is connected. Suppose, on the contrary, that E is disconnected.
Then there exist non-empty separated sets A and B such that £ = AU B.

Choose € A and y € B. Clearly = # y, otherwise both AN B and A N B would be
non-empty, contradicting the fact that A and B are separated. Without loss of generality,
suppose r < y and set

z =sup([z,y| N A).

Note that z is adherent to [z,y] N A, hence
z€[r,y]NAC [x,y]NA.
Thus z ¢ B, since AN B = (). Therefore z # y, because y € B. Hence

ze A and r<z<uy.

We distinguish two cases:
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(1) = ¢ A.
In this case z # x, since x € A. Hence x < z < y. By our hypothesis, this implies
z € E, which contradicts the fact that z ¢ A, z ¢ B and therefore 2 ¢ AUB = E.

(2) z € A.

As z € A, we have z ¢ B, since AN B = (). Thus there exists ¢; > 0 such that the
neighbourhood (z — €y, z + €g) contains no points of B.

Let
0 = min{e, |z — x|, |y — 2|}

Figure 1.31:

Then (z — §,z 4+ §) contains no points of B and is contained in [z,y] C E. Choose
21 € (2,24 9). Then 2z < z; <y. Since z € A, y € B and AN B = (), by our hypothesis
we must have z; € E. However, as z < z; and z is the supremum of [z,y] N A, we have
z1 ¢ A. Moreover, z; ¢ B, because there are no points of B in (z — 0,2z + §). Hence
21 ¢ AU B = E, again a contradiction. O

Corollary 1.57 A set E C R is connected if and only if it is one of the following:

(—00,b), (—00,b], (a,+00), [a,+00), (—o00,+00), (a,b), [a,b), (a,b], [a,b].

Thus we have characterised the connected subsets of R: they are precisely the (possibly
infinite) intervals. The next step would be to try to characterise connected subsets of R”.
This is not possible in general. However, there is a class of sets for which this becomes
possible, namely those in which the connected components are open.

Proposition 1.58 The union of a family of connected sets having a common point is
connected.

Proof: Let {E,}.cs be a family of connected sets, all containing the same point = € R™.
To prove that E = |J,.; Fo is connected, let A and B be separated subsets of R" such
that E = AU B with © € A. For each o € I we have

E.=ENE,=(AUB)NE,=(ANE,) U (BN E,).

If we show that AN E, and B N E, are separated, then, since E, is connected, we
must have ANE, =0 or BNE,=0. But z € AN E, for every «, so ANE, # () and
therefore BN E, = ) for all o € I. Hence

BzBﬂEzBﬂ(UEa) - JBnE) =0,

acl ael
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which shows that E is connected.
It remains to prove that AN E, and B N E,, are separated:
(1) _
(ANE,)N(BNE,) C(ANB)NE, =0,
since A and B are separated.
(ii) o
(ANE,)N(BNE, C(ANB)NE, =0,

for the same reason. O

Corollary 1.59 A set E C R" is connected if and only if, for any x,y € E, there exists
a connected set Cyy, such that v,y € Cpy C E.

Proof: Necessity is obvious: we can simply take Cy, = E.

For sufficiency, fix x € E. By assumption, for each y € E there is a connected set Cy,
with z,y € Cyy C E. Then
E=]JCu

yer

where the sets C,, are connected and all contain the common point z. By the previous
proposition, E is connected. O

Proposition 1.60 Let E C R" be a connected subset and f : E — R™ a continuous
map. Then f(E) is connected.

Proof: Suppose, by contradiction, that f(E) is not connected. Then there exist non-
empty separated sets A, B C R™ such that f(E) = AU B.

Set
G=Enf'A4) and H=FEnNfB).
Then:
(1°) E=GUH.
Indeed,

GUH = (ENf(A)U(ENf(B))
=En(f(AUf(B)
=Enf'(AuB).

Since f(E) = AU B, we have E C f~'(AU B), and hence

GUH=FENf'(AUB)=E.

(2°) G # 0 and H # 0.
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Indeed, since A # (), there exists y € A. But A C f(F), soy = f(x) for some = € E.
Moreover, z € f~1(A) because f(z) =y € A. Thus z € EN f~1(A) = G, and therefore
G # (. Similarly, using B # (), we obtain H # ().

(3°) G and H are separated.

Suppose, by contradiction, that there exists © € R” with z € GNH. Since z € G, there

exists a sequence (x,) C G such that x,, — x. As f is continuous, we have f(z,) — f(x).
On the other hand, (z,) C G = EN f~'(A), so (f(zn)) C A. Since f(z,) — f(z), it
follows that f(z) € A.

On the other hand, as x € H, we have x € f~'(B) and hence f(x) € B. Thus
f(r) € An B,
which is impossible, because A and B are separated. Similarly, one shows that GNH = (.
From (1°), (2°) and (3°) we conclude that E' is the union of two non-empty separated
sets, which contradicts the connectedness of E. O
Definition 1.61 A path in a set X C R" is a continuous map
a:l — X,

where I C R is an interval.

For example, given z,y € R", the map
A:[0,1] — R", t— A(t) = (1 —t)z +ty,

is called the straight-line path joining x to y. Sometimes we refer to it as the path [z, y].

We say that the points x and y can be joined by a path in X if there exists a path
a : I — X such that z,y € a(I). In other words, when there is a continuous map
a: I — X such that z = a(t,) and y = a(t,) for some t,,t, € I.

To fix ideas, consider Figure 1.32.

Figure 1.32:

Remark 2. If x,y € X can be joined by a path « : I — X, then there exists a path
¢ :]0,1] — X such that ¢(0) = z and ¢(1) = y. It suffices to set

o(s) = a((l — S)t, + sty),
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A
o a, R
1 A1) t. M
0 AO) Tt X Y
\—/D/
¢ = Q0N
Figure 1.33:

where z = a(t,) and y = a(t,); see Figure 1.33.

If o, 5:[0,1] — X are paths in X with a(1) = 3(0), we define the concatenated path
y=aVp:[0,1] - X by

a(2t), 0<t<g,
(t) = .
BRt—1), ;<t<1

Figure 1.34:

Note that the two formulas above define the same value v(3). Since Yo, 1) and Y2 1
are continuous, it follows that ~ is continuous. Intuitively, the path v runs along the
trajectory of a (with double speed) until ¢ = $ and then, for ¢ > 1, it follows (with double
speed) the trajectory of 3, as indicated in Figure 1.34.

Let z,y, z be points of a set X C R™. If x and y can be joined by a path in X, and
y and z can be joined by a path in X, then there exists a path in X joining x and z.
Indeed, take paths «a, 5 : [0,1] — X with «(0) = 2, a(1) = y and £(0) =y, B(1) = z, and
set v = aV f. Then v(0) = z and (1) = z.

Definition 1.62 A set X C R" is said to be path-connected if any two points x,y € X
can be joined by a path in X.

Every path-connected set is connected, in view of the propositions and corollaries
proved earlier, because if a : [ — X is a path in X joining the points =z and y, then
a(I) = Cyy is a connected subset of X containing = and y. Indeed, since the interval /
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is a connected subset of R and o : I — X is continuous, we have that o(l) = Cy, is a
connected subset of X containing x and y.

The converse is false. The set X C R? given by the union of the graph of the function
f(z) =sin(L), 0 <z < 1, with the origin (0,0) is connected but not path-connected; see
Figure 1.35.

—
D

Figure 1.35:

There is, however, an important particular case in which connectedness implies path-
connectedness: namely, when X C R" is open. Before discussing this case, let us introduce
an important definition.

Definition 1.63 A set X C R" is said to be convex if

tr+(1—thye X forallz,ye X and 0 <t <1.

In other words, a set X C R" is convexr when it contains every line segment whose
endpoints belong to X.

To fix ideas, consider the schematic picture in Figures 7?7 and 1.37.

y

Convexo N&o Convexo

Figure 1.36:
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Figure 1.37: Convex set inside a region X.

The canonical example of a convex set is the ball B,(xy). Indeed, let z,y € B,(xo)
and consider 0 <t < 1. Then

|tz + (1 — t)y — xo|| = ||tz — taxg + taxg + y — ty — 0|
= [[t(z — 20) + t(xo — y) + (y — o) |
= [|t(z — 20) — t(y — m0) + (y — z0) |
= [[t(z — 20) + (1 = t)(y — @o)]|
< tllz = zoll + (1 = ?)[ly — zo|
<tr+(l—t)r=r.

An analogous argument applies to closed balls. If X C R" is convex, any two points
x,y € X can be joined by a path in X, namely the straight-line path [z, y]. Thus every
convex set X C R" is path-connected and therefore connected. In particular, every (open
or closed) ball in R" is path-connected.

Proposition 1.64 An open set E C R™ is connected if and only if it is path-connected.

Proof: The sufficiency has already been proved. We now prove the necessity.

Fix a point o € E and let A be the set of all points x € E which can be joined to
xo by a path in £. We claim that A is open. Indeed, let x € A. Since E is open, there
exists 7 > 0 such that B,(z) C E. As the ball is convex, every point y € B,(x) can be
joined to x by a path in E. Hence y can be joined to xy by a path in E, which implies
that B,(x) C A. Consequently, A is open.

The set B = E'\ A, that is, the set of all points x € F which cannot be joined to xg
by a path in F, is also open. Indeed, take z € B. Since FE is open, there exists ¢ > 0
such that B.(x) C E. We claim that this ball is contained in B, i.e., that every point
z € B(x) cannot be joined to xo by a path in E. Suppose, on the contrary, that there
exists zgp € B(x) which can be joined to x¢ by a path in E. By the convexity of the ball,
the segment [z, 2| is contained in B.(z) and, therefore, in E. Concatenating a path from
xo to zo with the segment [z, ], we obtain a path in E joining zy to x, which would
imply x € A, a contradiction.
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b~

Figure 1.38:

Thus EF = AU B, where A and B are disjoint open sets, hence separated. Since F is
connected, one of the sets A or B must be empty. As g € A, it follows that B = (), and
consequently £ = A. This proves the proposition. O

Definition 1.65 We say that o : [0,1] — X is a polygonal path in X when « is the
concatenation of a finite number of straight-line paths.

Corollary 1.66 If E C R" is open and connected, then any two points of E can be joined
by a polygonal path contained in E.

1.12 Strong Relations between Continuity, Compact-
ness and Connectedness

Proposition 1.67 Let K C R" be a compact set and f : K — R™ a continuous function.
Then f(K) is compact.

Proof: Let {Ga}laca be an open cover of f(K). We must exhibit a finite subcover.
Indeed, since f(K) C |Jyeq Ga, for each y € f(K) we have y € G, for some a € A, and
moreover y = f(x) for some x € K. As Gu(,) is open, for each y = f(z) € f(K) there
exists €, > 0 such that B, (f(z)) C Ga)-

On the other hand, by the continuity of f, for each ¢, > 0 there exists d, > 0 such
that f(Bs,(x)) C B.,(f(z)). The family {Bs,(x)}.cx is an open cover of K, and since K
is compact there exist xy,...,z, € K and d1,...,0; > 0 such that

k
K c | Bs,(x),

=1

and consequently

f(K) - f(U B&@%)) C Uf(B(Sz(:L"L)) - UBaz(f(xz)) - U Ga(xi)'

Thus f(K) admits a finite subcover. O



1.12. STRONG RELATIONS BETWEEN CONTINUITY, COMPACTNESS AND CONNECTEDNESS5]

Proposition 1.68 Let K C R"™ be a compact set and f : K — R a continuous function.
Then f attains its absolute maximum and minimum on K.

Proof: Since K is compact and f is continuous on K, the set f(K) is a compact subset
of R and therefore it is closed and bounded. Because it is bounded, by the completeness
axiom there exist

M =sup{f(z) :z € K}, m =inf{f(z):z € K}.

Since f(K) is closed, it contains all its adherent points; hence M, m € f(K). It follows
that there exist x;, 2z € K such that f(z1) = m and f(z2) = M, as desired. O

Proposition 1.69 Let K C R" be a compact set and f : K — R™ a continuous function.
Then f is uniformly continuous.

Proof: Let ¢ > 0 be given. Since f is continuous, for this € > 0 and for each z € K
there exists d, > 0 such that, if y € K and ||y — z|| < d,, then

1£@) = FWl < 5.

Note that the family {B;, /2(2)}sck is an open cover of K. As K is compact, there exist
Z1,...,2x € K and 0q,...,0; > 0 such that

k

=1

R R O
(5—m1n{2,..., 2},

and let z,y € K with ||z — y|| < §. We must show that || f(z) — f(y)|| < e.
Indeed, since z € K, there exists 4o € {1,...,k} such that x € Bs, /2(;,). Then
(i) x € B5i0 (mio)v
(i)

Set

dig _ 0ip O
ly = zioll < lly =2l + llz — 23| <0+ 5 < o+ 72 = i,
2 2 2
s0 y € Bs, (w,) as well.

By continuity of f at x;,, we have

1@ = Sl <5 and [1f() = Sl < 5.

Hence

1£ (@) = f@Il < 1 (@) = flai)l + 1 (zio) = F < 5+ 5 =¢,

which proves the proposition. O
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Proposition 1.70 (Intermediate Value Theorem) Let f: E C R" — R be a contin-
uous function defined on a connected set EE C R™. If there exist x,y € E and ¢ € R such
that f(z) < ¢ < f(y), then there exists z € E such that f(z) = c.

Proof: The set F is connected and f is continuous, so f(E) is a connected subset of
R. By the first proposition about connected subsets of R, since f(z), f(y) € f(E) and
f(x) <c< f(y), we must have ¢ € f(E). Thus ¢ = f(z) for some z € E, as claimed. O



Chapter 2

Differentiation in R"

2.1 The Norm of a Linear Transformation

Definition 2.1 A map T from a vector space X into a vector space Y (both over the
same field) is called a linear transformation if

T(xy 4 x2) = T(21) + T'(x2),
T(axy) = aT(x),

for all x1,x9 € X and all scalars o € K.
Since T : X — Y is linear, it is customary to write Tz instead of T'(x).

Definition 2.2 Let X andY be vector spaces over the same field K. The set of all linear
transformations T : X —'Y, denoted by L(X,Y'), is a vector space with the operations

(i) +: L(X,)Y)x L(X,)Y) = L(X,Y), (T,S) — T+ S, where
(T+8)(z) =T(z)+ S(x), VrelX;
(i) - K x L(X,Y) = L(X,Y), (o, T) — T, where

(aT)(z) =aT(z), VrelX.

When X =Y, instead of £(X, X) we simply write £(X). If XY, Z are vector spaces
(all over the same field K) and T' € L(X,Y) and S € L(Y, Z), we define the product ST
as the composition of T" and 5, that is,

(ST)(z) = (SoT)(z) =S(T(z)), VrelX.
Then ST € L(X, Z).

93
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Definition 2.3 Given A € L(R",R™), we define a norm ||A|l of A as the map
|- : LR",R™) — R, Ar—||A],

where
|Al = sup{[|Az[| : z € R", [[z|| < 1}.

The following proposition shows that this map indeed defines a norm on L(R™ R™).

Proposition 2.4 Let A, B € L(R",R™) and o € R. Then:
(a) ||A]| < +o00, and therefore || A|| is well-defined.

(b)
(i) A >0 and | Al =0 <= A=0;
(i) [|oAll = |af [|A]l;
(iti) [|[A+ Bl < [|A]l + || BJ|.

Proof: (a) Let = {e1,...,e,} be a basis of R", and let x € R". We can write
r =" wxe. For Ae L(R",R™) we have

Ax) = A(i :Ul-ei) = i z;A(e;).

Hence

4@ =[S zeAten]| < 3 Al = 3l A < lall D A

If ||z|| < 1, then |[|A(z)]] < ¢, where ¢ > 0 is a constant. Thus the set {||Az| : = €
R, ||z|| < 1} is bounded above and, by the completeness axiom, its supremum exists:

|A]] = sup{[[Az]| : z € R", [[z[| <1} < +o0.
(b)
(i) Clearly ||A]| > 0, since ||Az|| > 0 for all z € R™ with ||z|| < 1. Moreover, if A =0,
then ||A|| = 0. Conversely, if ||A|| = 0, then
0< Azl <0, Vo eR" [z <1,

which implies Az = 0 for all such x. If  # 0, then

A< ’ ):o —  Afx) =0.

]
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Since A(0) = 0, it follows that A(z) = 0 for all z € R™, that is, A = 0.
(ii)
Al = sup{[|(aA)z| : z € R", [lz]| <1}
= sup{|al || Az[| : z € R", lz[ <1}

= [o|sup{[|Az| : v € R", |[zf| < 1}
= [af |A]-

(111)
|A+ Bl = sup{[|Az + Bz : z € R", ||lz|| < 1}.
We shall show that
sup{[|Az + Bz : [|z]| <1} <sup{[|Az|| : ||z < 1} +sup{||Bz| : [|z[| < 1},

that is, that the right-hand side is an upper bound for {||Az + Bz|| : x € R", ||z| < 1}.
For any x € R™ with ||z|| < 1 we have

JAz]) < sup{[[Az]jzn : = € R”, [lz]an < 1}

and

|Ball < sup{||Bzllzn : @ € R”, [allan < 1}.
Therefore

Az + Bz|| < |[Az|| + |[Bx|| < [|A]l + || B]],
and hence |A+ B| < ||A]| + || B]]. O

Proposition 2.5 (a) If A € L(R",R™), then
[Az]| < |AH[zfl, vz e R™
(b) If A € L(R™,R™) and B € L(R™ R*), then
IBA|| < [|B][ |l
Proof: (a) Let z € R" and A € L(R",R™).

If x =0, then A(0) = 0 and the inequality is trivial. If x # 0, then y = Hx—“ is a unit
x
vector in R™ and hence [|Ay| < ||A||. But

ol = A ()l = Ao )= 14 = g et

Therefore | Ax| < [|A]||]|z]].
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(b) Let A € L(R",R™) and B € L(R™,R¥). Then, for all x € R, by part (a),
[(BA)z| = [B(A(x)[| < | B [[Ax]| < [|BI[ [|A[} ]|

We will show that ||BA|| < ||B]| ||A]|-

Since
|BA|| = sup{[|(BA)z|| : z € R", [[z|| <1},

it suffices to show that || B||||A]| is an upper bound for the set {||(BA)z|| : z € R™, ||z| <
1}. But from the inequality above, for any € R™ with ||z|| < 1 we have

I1B(A@)[| < I BIHAIl
and the result follows. O

Note 1. The norm ||A|| of a linear transformation A € L(R", R™) induces a distance or
metric on L(R™ R™), that is, an application

d: L(R",R™) x L(R",R™) 5 R, (A, B)w d(A,B)=||A- B,

which satisfies:
(i) d(A,B) > 0 and d(A,B) =0 «<— A= B;
(ii) d(A, B) = d(B, A);
(iii) d(A,C) < d(A,B) +d(B,C) for all A, B,C € L(R",R™).

Proposition 2.6 Let € be the set of all invertible linear maps from R™ into R™, that is,
Q={AcL(R"):3A '}

(a) Q is an open subset of L(R™). In other words: if A € Q, then there exists r =

1
AT > 0 such that, whenever B € L(R") and ||B — Al < r, we have B € ().

(b) The map
v —Q, A AL

18 continuous on §).

Proof: (a) Let A € Q and let B € L(R") be such that

1
1B = Al < -
[ A=)
We shall prove that B € €. Since B is a linear map between spaces of the same (finite)
dimension, it suffices to show that B is injective, for this will imply that B is surjective
as well.

1
Set ||[B — A|| = 8 and ||A7!|| = —. Then, by hypothesis, 8 < a, that is (a — 3) > 0.
o
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For a generic # € R" consider the expression
(= B)llzll = allz|| — Bll=|.
Observe that
@) Izl = A7 (A@)I < 1AM [A@@)] = éHA(w)H, hence
allz| < [|A(@)];
(ii) [[B(z) — A(@)|| = (B = A)(@)|| < |1B = Alllz]| = Bll=[, so
=Bzl < || B(z) — Az)].
Thus, from (i) and (ii),
(@ = Bllzll = allz]| = Bllz|| < [|[A@)]| - [B(z) — A(=z)]]. (2.2)

Moreover,

1B(z) = A(z)|| = [[A(z) = B(x)|| = [[A(=)[] = [[B(z)]],

which implies
— [|B(z) = A(z)|| = —[[A(z) = B(x)|| < —[|A(z)]| + | B(2)]| (2.3)
Combining (2.2) and (2.3) we obtain
(a =Bzl < [[A@)] — [[A@)] + | B(2)]| = [| B(x)]]-
Since (a — B) > 0, we conclude that
0 < (o= Bzl <[ B(=)]. (2.4)
If B(z) =0 (and hence ||B(z)|| = 0), then by (2.4) we must have ||z|| = 0 (because
a—f > 0),s0x = 0. By linearity, ker(B) = {0}, and therefore B is injective, as required.

(b) We now prove that
P —Q, A AL
is continuous on §2.

Let ¢ > 0 and A € Q be given. We must find 4 > 0 such that, if B € 2 and
|B — Al| <6, then ||B~! — A7!|| < &. Indeed, for z € R" and A, B € Q we have

(BY(A— B)A ™) (x) = B ((A— B)(A™\(2)))
= B7H(A(A7!(2))) = BT(B(A™!(2)))
=B (x) — A7 (2).

Thus
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and consequently
H/}T1 — AT < [IBTHIJA = BI[[JA™"].

As before, set o = and 8 = ||B — AJ|, and choose

||A A1
2
5<min{a, e }
14+ ae

Suppose now that ||B — A|| < 0. Arguing as in (2.4) we obtain

(= B)llzl < |[B(x)|l, VeeR"

(2.5)

(2.6)

Since B € 2, for each x € R" there exists a unique y € R"™, and conversely, such that

y = B(z) or x = B~!(y). From (2.6) we get

(a=BIB~ W < IBB W)l = llyll. vy eR",
which implies

< .
1B~ (y)| a_p Vy e R

Hence

. _ . 1
B~ =sup{[| B~ ()| : y € R", [y <1} < Y

Therefore, from (2.5) and (2.7),
1 1
B'—AY < ——|A-B|| -
u < 5la- B
Since ||A — B|| < 9, we have
—[A=B||>-d = a—||[A-B|>a—-§>0

(because § < «), and hence

1 - 1 N 1 - 1
a—||A=B| a-9§ a—p a—1§
Moreover,
a’e 9 )
5<1Jr €<:>5+045€<048<:>5<(04 —ad)e <=0 < a(a —d)e.
«

Combining (2.8), (2.9) and (2.10), we obtain

1 1
Bfl —1 _ _ — = c.
| | < —5 (5 " — ala—d)e o =c

Thus ¢ is continuous at A, and since A € ) was arbitrary, ¢ is continuous on §2.

(2.9)

(2.10)
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2.2 Differentiability of a Map

Before defining what it means for a map to be differentiable as a function from R” to R™,
let us first consider the particular case where n = m = 1.

So let f : (a,b) — R be a function differentiable at a point z € (a,b). Then the limit

lim f(xo+h) — f(xo)

h—0 h

exists and is denoted, as usual, by f'(zg). Equivalently, we also have

f(zo+h) — f(xo) — f'(zo)h

o h -0
Now, setting
r(h) = f(zo + h) — f(wo) — f'(xo)h, (2.11)
and viewing h as the variable near x(, we obtain
. r(h)
o =
... r(h) .
Because of the relation ;ILH% = 0, we say that the remainder r(h) tends to zero
—

faster than h. We also say that r(h) is an infinitesimal (a function whose limit is zero) of
order higher than 1, relative to h.

Conversely, given f, suppose that there exists a constant L such that we can write

f(xg + h) = f(l’o) + Lh + T(h) with Ilzlirtl) L}?) =0. (2.12)

In this case,

f(zo+h) — f(xo) r(h)
i =
and therefore
lim f(xo+h) — f(xo) .y
h—0 h ’

that is, the derivative of f exists at z9 € (a,b) and is equal to the number L. Condition
(2.12) is thus necessary and sufficient for the existence of the derivative f’(x). Under
these conditions, (2.11) and (2.12) are equivalent.

We can now interpret the existence of the derivative f’(xg), in a neighbourhood of x,
as meaning that the function f can be expressed as an affine map 7" plus a remainder
which is ‘very small’ in a precise sense. Indeed, to fix ideas, consider Figure 2.1.

The equation of the tangent line to the graph of f at the point (zq, f(z0)) is

T(x) = f'(xo)(x — mo) + f(x0) = f'(wo)z + (f(w0) — f'(0)0).
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fi(x)h + f(x)
f(x, +h)

(x,)

X Xo+h =
Figure 2.1:
In particular,
T(QZO + h) = f/(I0)<LU0 +h — Q?o) + f(l’()) = f/(l’g)h + f($0> (213)
On the other hand, from (2.11) we obtain
f(xo+h) = f(zo) + f'(o)h +7(h). (2.14)

Thus, from (2.13) and (2.14) we see that
f(l‘o + h) = T(.To + h) + T(h),

that is, near xo, f(zo+h) is equal to an affine map T'(zo+h) plus a ‘very small’ remainder,
which becomes smaller as |h| becomes smaller. Indeed,

T (o + h) — f(zo + h)| = |r(h)],

and since r(h) — 0, the points T'(zo+ h) and f(zo+ h) become arbitrarily close as h — 0.
If we now consider the linear map L(z) = f'(zo)z, then from (2.11) we can write

f(zo+h) — f(xg) = L(h) +r(h)
r(h)

WithT—>Oash—>O.

In this way, we may regard the derivative of f at zy not as a real number, but rather
as a linear map L which sends h to f'(xg)h. Let us now generalise this new point of view
on the derivative to maps f: E C R" — R™ with m,n > 1.

Definition 2.7 Let E be a non-empty open subset of R™ and let xy € E. Consider a
map f: E CR" —= R™. We say that f is differentiable at xq if there exists a linear map
L :R™ — R™ such that

| f o+ h) = flz) = L]

lim

. 2.1
im Tl 0 (2.15)
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In the definition above, we allow A € R™. Since E is open, we may take ||| sufficiently
small so that (zg + h) € E. Thus f(zg+ h) is defined and the definition is meaningful.
Note that

f(zo+h) — f(xo) — Lh € R™,
so the norm in the numerator of the expression above is taken in R™, while the norm in
the denominator is taken in R™. However, from a topological point of view, it makes no

difference which of the three usual norms (or, more generally, which equivalent norm) we
use in each of these spaces, according to what we saw in the previous chapter.

It follows from the definition that a map f : E C R™ — R™ is differentiable at xqg € F
if and only if there exists a linear map L : R" — R™ such that

f(xzo+h) — f(xg) = Lh+r(h) where }lllg(l) % =0. (2.16)

Indeed, if f is differentiable at xq € E, there exists a linear map L : R — R™ such
that (2.15) holds. Setting

r(h) = f(xo + h) — f(z0) — Lh,

e obtain 1o + 1) = flawg) = i _ [Ir(B)]
To+n)— J(xo) — T
= (h #0).
Il Al
Taking the limit as h — 0 gives
lim |f(zo +h) — f(xo) — LA —0
h—0 17| ‘
Consequently,
— — L
W ot )~ flao) L)
h—=0 ||h| h—0 Al

Conversely, suppose that there exists a linear map L : R” — R™ such that (2.16)

holds. Then h o h
o 10+ ) = Jao) = LR _ o )] _
h—0 Al h—0 ||Al
and hence , o
o I b = fao) — Lh
h—0 1Al

We can interpret (2.16) in the same way as in the real case, saying that, for small h,
the left-hand side of the equality

f(zo+h) — f(xg) = Lh +r(h)

is approximately equal to Lh, that is, to the value of a linear transformation applied to
h.
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Definition 2.8 We say that a map f: E C R® — R™, where E is an open subset of R™,
is differentiable on E if f is differentiable at every point of E.

Proposition 2.9 Let f : E C R" — R™ be a map differentiable at xq € E, where E is
an open subset of R™. Then the linear transformation L : R™ — R™ which provides a good
approximation of the increment f(xo+ h) — f(xo) in a neighbourhood of o is unique.

Proof: Suppose that there exist Ly, Ly € L(R™,R™) satisfying
N fwo+h) = flwo) = Lab|l |l f(wo + ) = fzo) = Loh||

Gt 0] Gt @ .
Then
[Lih = Lah|| = [[Lih = f(zo + h) + f(zo + h) — f(20) + f(20) — L2h|]
<|[Lih — f(zo + h) + f(zo)ll + || f(zo + h) — f(x0) — Lahl|
= || f(zo +h) = f(xo) — Lih[| + || f(zo + ) — f(z0) — Lah|.
Hence
0< |L1h — Lahl| < |f(zo + h) — f(xo) — L1h|| n |.f(zo + h) — f(20) — Lahl|

[[7] B 17| [[7]
Passing to the limit as A — 0, we obtain

. |ILih = Loh||
lim S5 =0 (2.17)

Let v € R™ be arbitrary but fixed, and consider h = tv, t € R. Then h — 0 if and
only if t — 0, and from (2.17) we obtain

(L = Lo)(tv) |

lim =0.
=0 [#]]
Thus L1
o (12— L)O _
=0 [#]]
and consequently (L; — Ly)(v) = 0. Since v was arbitrary, L; = Lo. O

Note 1. If f : E C R* — R™, defined on the open set £ C R", is differentiable at
xo € E, then there exists a unique linear transformation L : R® — R™ which provides a
good approximation to the increment f(zg+ h) — f(zo) in a neighbourhood of zy. This
linear transformation is called the derivative of f at zo and is denoted by f’(xz).

Therefore, if f: F C R* — R™, defined on an open set £ C R"”, is differentiable at
xo € E, its derivative is the linear map f'(xo) : R"” — R™ characterised by

o 1 @0 1) = F@0) = o)l _

h—0 17|

0, (2.18)
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or equivalently

f(zo+h) — f(xg) = f'(xo)h +r(h), with Ilzli% I H(hH)H 0. (2.19)

When n = m = 1, the linear transformation f’(z¢) : R — R coincides with the real
number f'(zy), and for every h € R, f'(x¢)h is simply the product of the number f'(x¢)
by the number h.

Example. If L € L(R",R™) and = € R", then L'(z) = L, that is, L is differentiable
and its derivative is itself. Indeed, taking L'(z) : R™ — R™ to be L itself, then for every
x € R", by linearity of L,

L(z+h)— L(x) =Lz + h—x) = L(h),
and consequently, from (2.18),
L — L(z) = L' Lh— L
o |EG 1) = Dla) = K@l _ . |Lh = LAl _
i 0] =T

When a map f : £ C R — R™ is differentiable on the open set £ C R", we can

define the derivative map

/' E— L(R"R™) (2.20)
which associates to each point # € E the linear transformation f/(z) : R — R™, the
derivative of f at that point.

Note 2. If E C R™ is open and f : ' — R™ is differentiable at xq € E, then it follows
from (2.19) that f is continuous at zy. Indeed,

f@o+h) = f(xo) = f'(xo)h + r(h),

where im ——— “ (h )H = 0.
h—0 HhH

But:
(i)

(ii)
o B
}Lli)r(l)f (J}0>h - O)
since the linear map f'(x) : R™ — R™ is continuous at 0, and therefore limy_,o f'(z¢)h =
0.
Thus, from (i) and (ii),
lim(f(l'o +h) — f(ﬂﬂo)) =0 < }g%f(iﬁo +h) = f(xo).

h—0

Setting © = x¢ + h, when h — 0 we have x — xg, and therefore lim f(z) = f(xo),

T—T0
which implies that f is continuous at xg.
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Proposition 2.10 (Chain Rule) Let f : E C R* - R™ and g : F C R™ — R* be
maps, where E and F are open subsets of R™ and R™, respectively, and f(E) C F. If f
is differentiable at o and g is differentiable at yo = f(xo), then H = go f : E — R¥ is
differentiable at xy and, moreover,

H'(20) = ¢'(v0) f'(0).

Proof: We shall prove that there exists a linear map C' : R* — R* such that

| H o+ h) — H(z) ~ Ch|
h—0 7|

— 0. (2.21)

Indeed, by hypothesis there exist linear maps A : R” — R™ and B : R™ — R¥ such
that

|f(zo + h) — f(x0) — Ah||

lim ] =0, (2.22)
k) — — Bk
k—0 k]|

Setting C' = BA (that is, C = Bo A), C is clearly a linear map from R" to R*  and
we shall prove that C satisfies (2.21). In fact:

In (2.22) we are considering h € R™ with ||h|| sufficiently small so that (zo+ h) € E.
This is always possible because E is open. Thus f(xzg + h) € f(E) C F. Setting

k= f(xo+h) — f(zo),
and using the linearity of B, we obtain

H(xo + h) — H(zo) — (BA)(h) = g(f(zo + h)) — g(f(x0)) — (BA)R
= g(f(zo) + k) — g(f(20)) — (BA)h — Bk + Bk
= (g(yo + k) — g(yo) — Bk) + B(k — Ah)
= (g(yo + k) — 9(yo) — Bk) + B(f(xo + h) — f(z0) — Ah).

Therefore
| H (zo+h) = H(xo) = (BA) (W) < [lg(yo+k) —g(yo) — Bk|| + | B(f (w0 +h) — f(x0) — AR)||.

Consequently,

[H (o + h) = H(wo) = (BAM _ ll9(yo + k) = 9(y0) — BE|
7] B 7]
|B(f (w0 + ) — f(xo) — AB)]|
2] '

(2.24)
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We claim that
. Ng(yo + k) = 9(yo) — B[ _

() Jim, IR .
B o+ ) — () — AR
() Jiry 7] -

From (i) and (ii) it will follow that (2.21) holds, as desired.
Proof of (i). From (2.22), taking ¢ = 1, there exists 0; > 0 such that if |h| < 47, then
1f (w0 + ) = f(wo) — AR|| < |[A]].

Thus
[All = [[f(zo + h) = f(zo)|| — [|AR]],

and therefore
1f (o + h) = f(wo)| < [[B]] + [[AR] < [[R]| + [[A[[[2]] = ellAll,
where ¢ = 1+ ||A||. Since k = f(xo + h) — f(x0), this last inequality implies that
Ikl < c||h|| whenever |h|| < d;. (2.25)

On the other hand, from (2.23), given n > 0 there exists d > 0 such that for every
k € R™ with ||k|| < 02 we have

gty + k) = 9(y0) = BRIl < 2 [Ik].
Set 0 = min{dy, d2/c}. Then, if ||| < §, from (2.25) we obtain
k|| < c||h| < ¢85 < 06—62 = 5.
Consequently,
lo(yo + k) = g(yo) — BE| < L |[k]l < 2 cllhl] = nllA.

This proves (i).
Proof of (i1). We have

IB( (o + h) = flan) = AR _ @+ 1) — Flan) = Ah)
il - i
From (2.22),
o 10+ 1) = Fan) = AR _
h—0 Al
and therefore
o IB o+ h) — fla) = AR
h—0 [

This proves (ii), and hence the proposition. O
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2.3 Partial Derivatives

Definition 2.11 Let E C R™ be open and f : E — R™ a map. Let {e1,...,e,} and
{uy, ..., um} be the canonical bases of R™ and R™, respectively. The components of f, as
we know, are the functions fi,..., fm : E — R defined by fi(x) = m(f(x)), where m; is
the 1-th coordinate projection, so that

flo) =) filz)u. (2.25)

Foreach z € £, 1 <i<m and 1 < j <n, we define

dfi (z) = lim filw + tej) — fi(z)

0z; t—0 t ’

whenever this limit exists. This quantity is called the partial derivative of the function f;
in the direction e;.

Given x € E, the image of the path A : R — R™ defined by A(t) = x + te; is what we
call a€cethe line that passes through the point = and is parallel to the j-th axis. Since
E is open, there exists € > 0 such that, if —e <t < e, then \(t) =z + te; € E. We can
then say that the partial derivative of f; in the direction e; is the derivative, at ¢t = 0, of
the map fioA: (—e,e) — R.

Indeed, to fix ideas, consider the figure:

Figure 2.2:

We have

t—0 t t—0 t 8J;j

().

Thus we may say that f;, when restricted to the open line segment (x — ce;, x + €e;),

7

becomes a real-valued function, namely f;(x + te;) of the real variable ¢, and (x) is
L
the derivative of this function at ¢t = 0.
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Example. When n = 2 and m = 1, that is, when f : £ C R? — R, the graph of f is
a surface in R3. The restriction of f to the line segment that passes through (zg,40) € F
and is parallel to the x-axis has as its graph the plane curve obtained on this surface by

keeping y constant and equal to yo. Thus 8—f(x0, Yo) is the slope of the tangent line to
x
this curve at the point (zo, yo, f(Zo,%0)), as illustrated in Figure 2.3.

f(Xo+yo)b--- -y

Figure 2.3:

Writing fi(z1,...,z,) instead of f;(x), we see that the practical computation of the
j-th partial derivative of f; is carried out by treating all variables as constants except the
J-th, and then applying the usual rules of differentiation.

The existence of the partial derivatives a—ﬁ(a:) does not imply the differentiability of

€
f at x, as can be seen in an exercise at the end of the chapter. However, it is known
that differentiability at a point z implies the existence of the partial derivatives at x, and
that these determine the linear transformation f’(z) completely, as we shall now see in

the following result.

Proposition 2.12 Let £ C R" be open and f : E — R™ be differentiable at xq € E.

Ofi .
Then the partial derivatives ——(xq) exist and, moreover,

Zj
[ (xo)e; = i Of; (xo)u;, 1<j<m, (2.26)
’ i=1 Oz S
where {e1,...,e,} and {uy, ..., un} are the canonical bases of R™ and R™, respectively.

Proof: Since f is differentiable at zy € E, there exists a linear transformation f'(xg) :
R™ — R™ such that

h
el

flao+h) = flao) = f'(zo)h+r(h),  where Jim S
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For ¢ sufficiently small and for each e; we can write

f(xo+tej) — f(xo) = f/(l"o)(tej) + 7 (te;),

t .
where lim I (eI = 0. By linearity of f’(x),
=0 |te]|
te;) — te
f(ill'o"— ej) f(l'o) :f/<x0)€j+r( e]).
t t
However,

)

tim %) i (T(teﬂ HtejH) 0
t—0

i el ¢ )~
and therefore, from (2.27),

lim fxo + tej) — f(o)
t—0 t

= ['(z0)e;.

If we write f in terms of its components, as in (2.25), we obtain

m

fxo+te;) — f(xo) = Z(fi(xo + te;) — fi(zo))us.

=1

Thus, from (2.28) and (2.29),

lim
t—0 4

)

g filxo + tei) —fi@o) f'(xo)e;.

(2.27)

(2.28)

(2.29)

(2.30)

On the other hand, by the Chain Rule, each f; = m;0 f is differentiable as a composition
of differentiable maps. Thus we can apply to each f; the same reasoning used for f, and

obtain, as in (2.28),
filzo + tej) — fi(xo)

. _ / )
lg% P = fi(zo)e;,
where f/(zg) : R” — R is the linear map associated to f;. Hence

Ofi
8ZE]‘

(20) = fi(zo)e;.

It then follows from (2.30) that

Z 8f1 (370) U; = f’(mo)ej, Vj, 1 S] < n,

which proves the claim.
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As consequences, we have

['(xo)(e1) = g—g(xo)ul + %(IO)UQ +e %(xo)um,
oh, o s,

f/(.ilﬁo)(eQ) = al’g (,To)ul -+ axz (Qfo)UQ + -+ a—m(aso)um,

df dfs Ofm
f' (o) (€n) = 8—i($o)ul + 6’xfn (xo)ug + -+ + ain (o) U

The matrix associated to the linear transformation f’(xy) : R® — R™, obtained by
transposing the matrix of coefficients of this system, is called the Jacobian matriz and is
denoted by Jf(zo) or simply f’(z¢). It is given by

0 0f1 0
g—;(%) g—%(%) T %;;L (o)
Jf(wo) = a—m'(iﬁo) a—x%(ﬂ?o) axn'(l‘o)
Ofom Ofm Of
af:l (z0) aj;g SO ajgin (zo0)

Note. It is worth observing that if

1@ = (5E@). gatran = (GE0@). ae e = ("5 w)

are the Jacobian matrices of the maps f, g and go f at the indicated points, then, assuming
that f is differentiable at a and g is differentiable at f(a), it follows from the Chain Rule
that

J(go f)(a) = Jg(f(a))Jf(a).
2.4 Directional Derivatives

Definition 2.13 Let f : E C R"™ — R™, where E is an open subset of R™. The directional
derwative of f at a point xo € E in the direction of a vector v € R™ is, by definition,

whenever this limit exists.
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We can interpret %(mo) as follows: since FE is open, there exists ¢ > 0 such that the
line segment (xg—ev, xo+£v) is contained in E. The straighta€ “line path A : (—¢,¢) — FE
defined by A(t) = x¢+tv is mapped by f onto the path fo\ : (—¢,e) — R™ that associates
to each t the point f(x¢ + tv) in R™. The directional derivative %(:r;o) is the velocity
vector (f o A)(0). Indeed,

(f o M) = (f o N)(0) flzo+tv) — flzo) _ Of

/ R R _ ZJ

(f 2 /(0) = lim t = Jim t = ()
A f

— — m

R’ R

o

&
o +tv B o) foA
av f(xo+tv)
=&
f(xo)

Figure 2.4:
If f = (fi,..., ) then
B B of.,
8—£(x0) - (8—J2<x0), N .,%(ggo)).

0
Indeed, suppose 8—f(x0) =y € R™ and write y = (y1,...,Ym). Let {uy,...,uy} be the
v
canonical basis of R™. Then

lim f(xo +tv) — f(xo) — lim Z?il(fi(% +tv) — fi( xO Z v,

t—0 t t—0 t

and therefore

af; fizo + tv) — fi(xo)
O ( ) - 1_}0 t = Y-
Note 1. If v = e; for some j = 1,...,n, where {e;}1<j<, is the canonical basis of
0 0
R™, then a—f(xo) = 6—f(m0). Thus partial derivatives are special cases of directional
(Y X

derivatives, when the vector v is one of the canonical basis vectors.

Now suppose f: EF C R" — R™ is differentiable at the point zy € E. Then, for every
v € R™ and every t € R sufficiently small, we obtain from (2.16)

f(zo+tv) — f(xg) = L(tv) + r(tv), with 15% ||Eft:||> = 0.
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Since L(tv) = tL(v) and

iy 2020y [P0 0]

=0 ¢ [tol] ¢
we obtain
lim f(x(] + tU) f(IO) — L(U)
t—0 t
Consequently,
0 0
Lv = a—i(xo) or f(zo)v= a—‘l]j(xo). (2.32)

The relation in (2.32) allows us to conclude that if a map f : E C R* — R™ is
differentiable at a point xy € E, then all directional derivatives exist at xy and, moreover,
they can be computed simply by evaluating f’(z¢)v. On the other hand, the existence of
all directional derivatives does not imply the differentiability of f.

Since v € R™, we can write v = Y "_, aje;. Thus, from (2.26),

J=1

f(@o)v = f'(z0 (ZO@@;) = if/(xo)mj@j)

_Za]f (zo)e Z ( >
ZZ afl -(wo)aju; = i(Z Ofs (o a]>ui,

7j=1 =1 =1 j=1

Thus, if f is differentiable at o € F, the derivative of f applied to a vector v € R" is
given by

I (zo)v = i( - S:Z (xo)@j)ui, where v = iajej. (2.33)

i=1 j=1 j=1

As a consequence, from (2.32) and (2.33) we obtain

a—i(xo) _ i( ~~ Jf; (Io)aj)uz" (2.34)

=1

In fact, the relation in (2.33) or (2.34) is simply the matrix product of the Jacobian
matrix in (2.31) with the vector v, that is,

" of,
ELY
of ZCONR COA R SN
f(o)v = 2=(w) = : : L= : = :
0
’ S () - Bfm(ag) ) \a O, oy
Z@x]

(2.35)
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The vector equality

f(xo +v) = f(xo) = f'(zo)v +1(v)

is equivalent to the m scalar equalities

fi(zo +v) — fi(wo) = fi(zo)v + 1i(v),

where r(v) = (r1(v),...,rn(v)), while the vector limit
lim m =0
v=0 [|v]]

corresponds to the m scalar limits

im 70 _

=0 Jlof|

This yields the following result.

Proposition 2.14 A map f : E C R* — R™ s differentiable at a point o € E if and
only if each coordinate function f1,..., fm is differentiable at this point.

Note 2. It follows from the Chain Rule that if f : E C R” — R™ is differentiable at
xo € F, then, in order to calculate the directional derivative

i ,
5 (w0) = (£ 2 1) (0),

it is not necessary to take \(t) = xo+tv. Instead of restricting ourselves to a straighta€ “line
path, we may consider any path X : (—¢,e) — E differentiable at 0, with A(0) = x¢ and
N(0) =v = (vy,...,v,), and we still have

O (20) = (F o W/ (0) = FOOIX(0) = F (o).

Thus we may regard the derivative f’(z¢) : R™ — R™ as the linear map which assigns
to each tangent vector v = X (0) (to any differentiable curve A : (—¢,¢) — E such that
A(0) = zp) the tangent vector

(FoN(0) = 2 (g

to the curve f o \.
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Figure 2.5:

2.5 Mean Value Inequalities

Proposition 2.15 (Mean Value Inequality for Vectora€“Valued Functions) Let
f :la,b] = R™ be a map continuous on |a,b] and differentiable on (a,b). Then there exists
x € (a,b) such that

1f(0) = fla)l < (b—a) [ /()]
Proof: Set z = f(b) — f(a) € R™ and define the map
¢ :la,b] = R, t— p(t) = (z, f(t)).

Then ¢ is a reala€ “valued function, continuous on [a,b] and differentiable on (a,b).
Indeed, writing f(t) = (fi(t), ..., fm(t)) and z = (21, ..., z,,), we have

p(t) = (2, F (1)) = z:fi(1).
i=1
Since f is differentiable on (a,b), the functions fi,..., f,, are differentiable on (a,b)

and continuous on [a, b]. Thus ¢ satisfies the hypotheses of the Mean Value Theorem for
real functions of one variable. Hence, there exists x € (a,b) such that

p(b) —pla) = (b—a)¢'(z) = (b—a) (2 f'(z)). (2.36)
On the other hand,
p(b) — pla) = (2, f(b)) — (2, f(a)) = (2,2) = ||2]]*. (2.37)

Thus, from (2.36) and (2.37) we obtain

I2]* = (b = a) (2, f'(2)).
By the Cauchy-Schwarz inequality,
11> < (b= a) 2] Lf' ()],
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and therefore
2] < (b= a) [ f'()]]
(If z =0, the inequality is trivial.) In other words,
1£(0) = f(a)]l < (b—a) | f ()]l

O

Proposition 2.16 (Mean Value Inequality) Let E C R" be an open convex set and
let f: E — R™ be a differentiable map on E. If there exists a constant M > 0 such that
| f'(x)|| < M for every x € E, then

1£(0) = fla)l| < M|lb—all forallabe E.
Proof: Let a,b € E be arbitrary. Consider the straighta€“line path v : [0,1] — E

defined by 7(t) = (1 — t)a + tb, which joins the points a and b. This path is well defined
because FE is convex.

Define the map
g:[0,1] = R™,  trg(t)=(foy)()
that is, g is the restriction of f to the straighta€ “line path . Then, by the Chain Rule,
gt) = f @)Y = f )b —a), vtel01].

Hence
lg' O < [[f (y@DIb —all < M|b—all, Vte][0,1]. (2.38)

On the other hand, by the mean value inequality for vectora€ “valued functions, there
exists ty € (0, 1) such that

l9(1) = gO)I| < lg'(to)]- (2.39)
Thus, from (2.38) and (2.39),
lg(1) = g(0)]| < M}b - al.
Since g(1) = f((1)) = £(b) and g(0) = £(+(0)) = f(a), it follows that
1£(8) = F(a)ll < M [lb—al|.
O

Corollary 2.17 If f : E — R™ is differentiable on the open convex set E and f'(x) =0
for every x € E, then f is constant.

Proof: To prove this, simply note that the hypotheses of the previous proposition are
now satisfied with M = 0. O
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2.6 Continuously Differentiable Functions

Definition 2.18 A differentiable function f : E — R™, defined on an open set E C R",
is said to be continuously differentiable on E if its derivative

[ E— L(R",R™), x— f(x),

is a continuous map. More precisely, for each x € E and for every € > 0 there exists
d > 0 such that || f'(y) — f'(x)|| < &€ whenever y € E and ||z — y|| < 6.

Note. Recall that on L(R",R™) we are using the operator norm (supremum norm), while
on FE we use the norm induced from R". When f satisfies the definition above, we also
say that f is of class C*(FE).

Proposition 2.19 Let f: E C R" — R™, where E is an open subset of R". Then

f is of class C*(E) <= f; is of class C*(E) fori=1,...,m

Proof: First suppose that f is of class C'(E). Then each f; is differentiable. We shall
prove that f! : B — L(R™,R) is continuous for every ¢ = 1,...,m. Indeed, let ¢ > 0
be given and let zyo € E. By hypothesis, there exists 6 > 0 such that if x+ € E and
|z — xol| < 0, then || f'(z) — f'(z0)]] < e.

However, for each i = 1,...,m we have
fi(@)h = fi(o)h| < [[f'(x)h — f' (o)A,
since f'(x)h = (fi(x)h, ..., f; (x)h). Consequently, for each i =1,...,m,
1fi () — fi(xo)|| = sup{|fi(2)h — fi(xo)h|; h € R, [|A]| <1}
< sup{|lf'(2)h — F'zo)hll; b € B™, ] < 1}
= [[f'(z) = f'(@0)].

Therefore || f/(x) — fl(z0)]| < € whenever ||z — x¢| <.

Conversely, suppose that each f;, i = 1,...,m, is of class C*(F). Then f is differen-
tiable. We shall show that the map f’: £ — L(R",R™) is continuous.

Let ¢ > 0 and x¢p € E. For each 7+ = 1,...,m there exists §; > 0 such that if x € FE
and ||z — xo|| < d;, then
1fi(x) — fi(zo)ll <e.

Set § = min{d, ..., 0, . We shall show that || f'(z) — f'(z0)|| < € whenever ||z — x| < 0.
In fact, since

1f'(z) = (o)l = sup{ [ f'(z)h — f'(zo)R]l; h € R", ||h]| < 1},

it suffices to prove that ¢ is an upper bound for the set

A={lIf(x)h = f'(zo)h]; h € R", ||| <1},
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whenever ||z — x¢|| < §. Indeed,

1f' (@) = £ @o)hl| = I(FL@)h = Fi(@o)hs -, foal@)h — Fialao)h)]|
— max{|f}(@)h = f{(zo)hl,..., | fr (2}l = Frulwo)h |

<&,

whenever ||z — x¢|| < §, which proves the continuity of f’. O

Teorema 2.20 Let f : E — R™ be defined on an open set E C R™. Then f is of

class CY(E) if and only if the partial derivatives —— L exist and are continuous on E for

ox;
1<i<mand1<j<n.

0
Proof: First suppose that f € C'(E). Then f is differentiable, and hence a—f(x) exist
Lj

for all x € E. Moreover,

m afz
Fla)es =3 o)
=1
where {ej1,...,e,} and {uq,...,u,} are the canonical bases of R" and R™, respectively.

Thus

af; 0 0
<f, ej,uk <Z 81]: Us, k> = 8—?(1‘)( Uk, U k:> 8£k ((L’), Ve e F.

We now show that the partial derivatives are continuous on E. In fact, if x,y € F,
then

oz, (x) — 8%( y) = <f (x) ej,uz> <f 6]7ui>

<f( L)€ — )e],ul>
= ((f'( )— (y))ej, u;). (2.40)

From (2.40), using the Cauchy-Schwarz inequality,

(@) = g ()| = (' (@) = F'())esy i)
< |I(F'(x) = f'()es | s
= I(f'(=) = ['(®))e;]

< [If"(x) -

) = W) lles]
= [lf"(x) = f'(y)

Yl

Therefore,
O () = 2e(y)| < |If'(2) = £ y)ll, ¥y € PE. (2.41)
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Since f is of class C*(FE), given € > 0 and x € F there exists 6 > 0 such that if y € E
and ||z —y|| < d, then ||f'(z) — f'(y)|| < e. It follows from (2.41) that

HORETOIRE

Ox; - Ox;
whenever ||z — y|| < d, which proves the necessity.

: . .. Ofi .
To prove the sufficiency, suppose that the partial derivatives i exist and are con-
Ly

tinuous on E. We shall prove that f is of class C''(E). Without loss of generality, by the
previous proposition, it suffices to consider the case m = 1, that is, the case of a map
f+ECR"—=R.

0
Let ¢ > 0 and x € E be arbitrary. Since a—f is continuous on F for each j =1,...,n,
7

j
then, for the given € > 0 and x € F, there exists, for each j = 1,...,n, a §; > 0 such that
if y € E and ||y — z|| < 6, then

af af €
—(y) — =—(2)| < —.
Oz, ) oz, (a:)‘ n

Set § = min{dy,...,0,}. Thus

of y_9f

€
(91:]- (y) - 8LU]'

(x)‘<—, Vi=1,. .. .n (2.42)

whenever ||y — z|| < 9.

We shall first prove that f is differentiable at x, by exhibiting a candidate L, : R® — R
for the derivative of f at x. For this, we need some preliminary results.

Let h € R" with ||h]| < §. Suppose h = (hy,...,h,) and set vy = 0 and vy =
hier + - -+ hpep for 1 < k < n, that is,

UQZ(O,...,O), U1:<h1,0,...,0), U2:<h1,h2,0,...,0), ceey ’Un:(hl,...,hn):h.
Note that ||vg|| < 6 for all £ =0,1,...,n. We claim that

[[L’ + Vp—1,Z + Uk] C Bg(m), Vk>1. (2.43)

Indeed,
[iL’ + V-1, T + Uk] = {(33 + 'Uk—l)(l — t) + t(l’ + Uk); t e [0, 1]}
Let z € [x + vg_1, 2 + vg]. Then z = (x 4+ vx_1)(1 — t) + t(x + vg) for some t € [0, 1], so
Iz =2l = [[(z + ver) (1 = ) + t(z + vg) — 2
= |lx —tx +v_1(1 — t) + to + toy — z||
= [[(1 =)o + tog|

< (L= 8)[[ox—all + tllvg]
<(1—-1t)d+td =0,



78 CHAPTER 2. DIFFERENTIATION IN R¥

which proves (2.43).
We also claim that

n

fl@+h)— f(x)=) [fl@+uv)— fl@+uv)] (2.44)

k=1

In fact,

n

[flz+wv) = f@+wve)] = fla+v) = fl@+v) + flm+v) — fla+v)+ -

+ fx+v,1) = fle+v,2)+ flx+v,) — fx+v,-1)
= f(x +v,) — f(z + o)
= f(z+h)— f(2),

which proves (2.44).

Now define the auxiliary function
(5k : [O, 1] — R, t— 5k(t> = f(fII + Vg1 + t(’l}k — Uk,1>).

Notice that d;, is the restriction of f to the straighta€ “line path passing through the
point x + vx_1 and parallel to the vector v, — vi_1 = hrer. We may also write

6k(t) = f([L’ + V1 + thkek).

Therefore
s—0 S
_ f(x +op_1 + (E+ s)hkek) — f(x + vp_1 + thkek)
~ 50 s
— f((ZL' + V1 + thkek) + Shkek) — f(ZL’ + Vg1 + thkek)
=y s
of
= _1+th
8<hk€k) (m + Vp—1 + kek)
0
= hk 8_:;; (CL’ + Vg1 + thkek) .

By the Mean Value Theorem for real functions of one variable, there exists ¢, € (0, 1)
such that

0e(1) — 01(0) = 0y, ().
Equivalently,

9,
fl@+op) = flo+ o) = 8—;;@ + Vg1 + tphwer) ha,
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which implies

n

Z [f(x+u) — f(z+u-)] = g—gi(x + Vp—1 + tehier) P
P

k=1

From (2.44) we obtain

f(CB + h) — f(:v) = 8—f(CE + V1 + tkhkek) hy. (2.45)
=1 Tk

Now consider the linear map L, : R" — R defined by

From (2.45) we obtain

[f(z+h) — f(z) — Loh| = ;( (& + ve_ 1+tkhkek)—§—:i( ))hk
< - a]‘i(x#—vk 1+ tphier) — g;;(;v)
< IIhIIZ a&i(xwk 1+tkhkek>—§—£(w>
=||h||é Lot urrut—u - 2w
=||h||§nj Lottt = ) - 2L @)
However,

= (x +vp1) Hte(x v — (T +vp_1)) € [+ vp_1, T + vy,

since ¢, € (0,1), and [z + vg_1, 2 + vg] C Bs(z). Hence |lyx — z|| < 0. Therefore, from
(2.42),

[fz+h) = f(z) = Lh|<|!hHZ|axk ) — 5o (@)]

< ||h||(; -+ 2) = ||h]le,

which proves that f is differentiable at x.

[t remains to prove that f’ is continuous. Let y € E be such that ||y — z|| < 6. We
know that

1f'() = f'@)ll = sup{|f'(x)h — f'(y)hl; h € R", |[n]| < 1}.
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To obtain the desired result, it suffices to show that the given € > 0 is an upper bound
for the set
{[F/@h = f(hl; [Ib] <1, heR"}.

Indeed, let h € R™ with ||h|| <1 and write h = (hy, ..., h,). Then, using (2.42),

S (2 wyh - L)

ox
k=1 k

x|
k=1

Oy,

|f'(@)h = f'(y)h] =

@)~ 50| e

—~| af of
<Y |52 @) - 5L w)
iy | 9Tk T
€ €
<—+--+—-=5,
n n
as required. O

2.7 Differentiable Maps from R” into R

In this section we shall consider specifically differentiable maps f : £ C R” — R, where
E' is an open subset of R".

If f is differentiable at the point o € E, then, in accordance with (2.35), given v € R",
v = (vy,...,v,), we have:

o= o = (oo o) :

= Z gj (o) vi.  (2.1)

3
Un,

Definition 2.21 Let f : E — R be defined on the open set E C R™. We define the
gradient of f at the point o € E as the vector in R™ given by

Vf(zo) = (g—i(xo),...,g—i(xo)) :

Thus, from (2.46) we may write

mf(xo—i-tv) — f(wo)

t—0 t

= (foN)(0), (2.2)
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where A : (—e,e) — F is any differentiable path such that A(0) = z¢ and N'(0) = v.

The derivative of a path is a vector. In the dual situation, the role of the derivative of
a function f : R — R is played by a linear functional, namely f’(xo) : R — R, which
assigns to each vector v € R" the value f'(xo)v given as in (2.47).

Definition 2.22 If f : E — R, defined on the open set EE C R", is differentiable at the
point xo € E, the differential of f at xq is the linear functional

df (zo) : R" — R

whose value on a vector v = (vy,...,v,) is given by
of  —Of B
W) = Gyt = 3 5w = (V). )

We call the dual space of R™ the space (R™)* consisting of all linear maps, that is,
L(R™ R). A basis for this space is given by the linear functionals m; : R — R, where

m;i(z) = x;, the i-th projection of z. Indeed, note that if {eq, ..., e,} is the canonical basis
of R™, then
1, ifi=j
miej) = e
0, ifi#j.
Hence:

(i) If Y-, Ay = 0 (where 0 denotes the identically zero functional), then for every
7 =1,...,n we have

(i /\i7Ti> (€;)) =0 = i)\ﬂri(ej) =0 = )\, =0.
=1 i=1

Thus 74, ..., T, are linearly independent.

(ii) Given w € (R™)*, for every z = )., x;e; € R™ we have

T) = w(i xiei> = zj: rw(e;) = Zil: Nimi(z) = (i )\im> (x)

where \; = w(e;). Therefore, there exist A,..., A, € R such that w = """ | \;m;. This
proves that 7y, ..., m, span (R™)*.

It is common to denote the canonical basis of (R")* by {dz,...,dx,} instead of
{m,...,m}. Thus
de;-v=wv;, ifv=(v1,...,0,).
The reason for this notation is the following: since, for each point x = (x1,...,x,) €

R™, the i-th projection m; : R™ — R takes the value m;(x) = x;, computing the differential
of the i-th projection we obtain

0 i
dmi(xo)v = Z 8:7; = v;.
J
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We write x; instead of m;. Hence dz;(zg)v = v;.

Writing dx ;v instead of v; in the definition of the differential, we obtain

If (xo)v = g (o) dxjv.
&pj

Since this equality holds for every v € R, we have

Z . o (xo) dz;.

This means that the linear functional df(xy) can be written as a linear combination

L (ao).

7

of the functionals dz;, with coefficients

If we use only orthonormal bases in R", the coordinates of the gradient vector V f ()
with respect to the basis {eq,...,e,} coincide with the coordinates of the functional
df (x¢) with respect to the dual basis {dz1, ..., dz,}. Under these conditions, the gradient
becomes practically indistinguishable from the differential. This vector exhibits very
convenient geometric features, providing information about the behaviour of the function,
as we shall see below.

From now on we shall assume V f(z9) # 0. We highlight the three most important
properties of the gradient, namely:

(1) The gradient points in a direction along which the function f is increasing.

(2) Among all directions along which the function f increases, the direction of the
gradient is the one of fastest increase.

(3) The gradient of f at the point xy is perpendicular to the level surface of f passing
through this point.

Indeed:
First, if w = V f(x¢), then, from (3.47) we have

%W = (Vf(x0), w) = IV f(x0)||* > 0.

This means that if X : (—e,e) — E is a differentiable path taking values in the domain
E of f, such that A\(0) = zy and ' (0) = V f(z0), then the real function ¢t — f(A(¢)) has
positive derivative at the point ¢t = 0. If we assume that f and X are of class C!, then the
derivative of f o A will remain positive at every point of some open interval centred at 0.
That is, if we choose ¢ > 0 sufficiently small, then f o A : (—e,e) — R is an increasing
function. This means that f increases in the direction of the gradient (Figure 2.6).

0
Of course, we do not have —f(azo) > 0 only when v = V f(zy). Since

ov

Ui
- (20) = (9 f (o). 0)
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Figure 2.6:

the vectors v that point in directions along which the function f increases are precisely
those that form an acute angle with V f(xg), that is, those for which the inner product
(Vf(xo),v) is positive. What distinguishes the gradient is the fact that in its direction
the growth of f is faster than in any other direction. Indeed, if v € R"™ is such that
||l = |V f(zo)]], then, by the Cauchy-Schwarz inequality, we have

% (o) = (Y (ao), ) < IV F ol ol = IV @o)> = 5o

o0 i

that is, of of
00" = Gy

Finally, we clarify the third property. Given a real number ¢, we say that x € E' is at level ¢
with respect to f when f(z) = ¢. Once c is fixed, the set

7 ={z € B; f(a) =c}

is called the level surface c of the function f. In particular, when n = 2, f='({c}) is called
the level curve c of f. It is worth noting that the inverse image f~!({c}) does not always
look like a curve or a surface (for example, if f : R* — R is a constant function equal
to ¢). It would be more accurate to call f~1({c}) a ‘level set’. However, the terminology
is standard and is justified by the fact that f~!'({c}) is indeed a surface (or a curve)
whenever V f(x) # 0 for all x € E with f(z) = ¢, as can be proved, as we shall see later,
with the aid of the Implicit Function Theorem.

To say that a vector w is perpendicular to the level surface (or curve) f~({c}) at the
point xy means that w is perpendicular to the velocity vector, at xg, of any differentiable
path A : (—¢,e) — R™ at t = 0, with A\(0) = 2 and A(¢) € f~'({c}), that is, f(A(t)) = ¢
for all t € (—e,¢). From this last equality we obtain

0= (foA)(0) = f/(A0)) X(0) = (o) N'(0) = (Vf(x0), N(0)).
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Hence V f(xg) is perpendicular to X'(0) (the velocity vector at the point A\(0) = z( of
any differentiable path A contained in the level surface of f through xg).

Proposition 2.23 (Mean Value Theorem) Let f : E C R® — R be a map defined
on an open set. If

[z,yl ={(Q—t)z+ty; t€[0,1]} CE
and f is differentiable on [z,y|, then there exists z € |x,y] such that

fly) = f(@) = f(2)(y — ).
Proof: Consider the straighta€ “line path joining the points = and y:
v :10,1] — R", t— y(t) = (1 —t)x + ty.

Define
H:[0,1] — R, t— H(t) = (foy)(t).

By the Mean Value Theorem for real functions of one variable, there exists ¢, € (0, 1)
such that H'(ty) = H(1) — H(0). More precisely,

H'(to) = f(y) — f(x). (2.3)

On the other hand, by the Chain Rule we have

H'(to) = f'(7(t0)) ¥/ (to) = £ (1 = to)z + toy) (y — x) = (1 = to)x + toy)(y — ). (2.4)

Setting z = (1 — to)x + toy, it is clear that z € [z,y], and from (2.48) and (2.49) we
obtain

fy) = flx) = f'(2)(y — o).

Corollary 2.24 Let f : E C R® — R be a differentiable map defined on a convex open
set E. Given z,y € E, there exists z € [x,y] such that

fy) = flx) = f'(2)(y — o).

Definition 2.25 Let f : E — R be differentiable on the open set E C R™. A natural
question arises as to whether the functions

of

—F—R
8xj

are differentiable at a point xq. If all of them are, we say that f is twice differentiable at
xo. In this case, for all integers 1,7 = 1,2,...,n there exist the seconda€ “order partial

derivatives 5 of an( )
Oz, <85L'i (IO)> Oz 0r;
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When f is twice differentiable at every point of E, there are n® functions of the form

0*f
6xj GIZ

EF— R, 1<4,5 <n.

If all these functions are differentiable at a point xq € E, we say that f is three times differentiable
at xo, and so on.

Teorema 2.26 (Schwarz) Let f: E — R be a map defined on an open set E C R™. If
f is twice differentiable at a point p € E, then for any 0 <i,j5 <n one has

*f(p) _ 0°f(p)
013 6’@ 8@ (99[;2 ’

Proof: Without loss of generality, assume that £ C R? and set p = (xg, ). Since F
is an open set, there exists § > 0 such that the ball Bs(xg,y0) C E. Consequently, there
exists € > 0 such that the square

(w0 —&,m0 +¢) X (Yo —€,90 + €)

NG
=)

is contained in Bs(xg,yo) (for instance, take ¢ =

Yot &

Yo

Xo -& ’ Xot &

Figure 2.7:
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For every t € (—¢,¢) define
o(t) = flzo+t,yo+1t) — flxo+t,y0) — f(xo,yo + 1) + f(z0, v0)-

For each fixed t € (—¢,¢) and every = € [zg — t, 20 + t], set

h(x) = f(z,y0 +1) = f(2,90)-

In this way we see that
o(t) = h(xg +t) — h(xo).

Since, by hypothesis, f is differentiable on E, in particular h is differentiable on the
interval (xg,zo + t) and continuous on [xg,xo + t], for every 0 < ¢t < . Hence, by the
Mean Value Theorem for real functions of one variable, there exists £ € (g, xg + t) such

that " aon .
(g = Moot D =ha) _ olt)

Moreover, since £ € (g, zo +t) = {zo + st; s € (0,1)}, we have £ = z¢ + 0t for some
6 € (0,1). Thus, from (2.50) we obtain

, 0 0
o(t) = KW(Et= 8_£(x0 +0t,yo + 1) — 8_£(x0 + 0t,yo0) | t. (2.5)
On the other hand, since the map
8—f E—R
x
is differentiable at the point ¢ = (zg,yo), we have

of of 0% f (o, y 0*f (o, y
52 (20.90) + (01.)) = = (z0,50) + %(9@ + ﬁ t+r,  (26)

where lim n_ 0.
t—0 ¢

of N df (xo, yo) an(xoa Yo)
8;U (LCO + (%, yo) = 8:5 —+ 8I2 (Qt) + T2, (27)
where lim T2 _ 0.
t—0 ¢
Therefore, from (2.51), (2.52) and (2.53) we obtain
a2f<x07 yo) 2
— ST - . 2.
o(t) Dy 0 t“+ (r1 —ro)t (2.8)
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Hence, from (2.54) we have

lim () _ 0 f (0, yo)
t—0 2 Oy Ox t=0 1

o
where r = ri — 19, and therefore lim — = 0.

t—0
Thus,

: Sp(t) _ 82f<$0,y0)
lg% 2 Oyor (29)

Similarly, if we consider the function

9(y) = f(xo +t,y) — fz0,y)

and argue as before, we obtain

_p(t) 9 f(xo,v0)
11—{% 2 Oxody

(2.10)

Thus, from (2.55) and (2.56) we obtain the desired result. O

Note: We saw earlier that a map f : £ C R" — R is said to be of class C'(FE) when
the differential

df : E — (R™)”
is a continuous map on the open set £ C R™. Equivalently (see Theorem 2.20), we

0
proved that f is of class C'(F) if and only if the partial derivatives 8_f exist on F and
Z;
are continuous. In the same way, we say that a function f is of class C?(E) when the
2

mixed partial derivatives exist and are continuous on E, or, equivalently, when

8$7; 8!Ej

the first-order partial derivatives

exist on E and are of class C'(E).

axi

Corollary 2.27 Let f : E C R" — R be a map of class C*(E). Then, for any 0 <
1,7 <n one has

Pf(x) _ *f(x)
8% 8xj n al‘j (9@-’

Ve € F.

Proof: Immediate. O
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2.8 The Inverse Function Theorem

In the proof of the Inverse Function Theorem we shall use the Method of Successive
Approximations, a principle of great usefulness in proving existence and uniqueness of
solutions for differential equations, integral equations, and so on.

Definition 2.28 Let X C R". A map f: X — R™ is called a contraction if there exist
AeR, 0< A< 1, and norms on R™ and R™ such that

1f(2) = @ < AMlz —yll,  Vo,ye X

Every contraction is uniformly continuous. For example, let £ C R"™ be an open
and convex set. If f: E — R™ is a differentiable map such that || f'(z)|| < A < 1
for some constant A and every x € FE, then the Mean Value Inequality guarantees that
|f(x) — f(y)|| < Allz — y||, and therefore f is a contraction.

Definition 2.29 Let X C R". A fixed point of a map f : X — R" is a point v € X
such that f(x) = z.

Teorema 2.30 (Fixed Point Theorem for Contractions) Let F© C R™ be a closed
subset and ¢ : ' — F' a contraction. Given any point xo € F', the sequence

r1=¢(x0), T2=¢@(®1), ..., Tpr=@(T0), -

converges to a point x € F', which is the unique fixed point of ¢.

Proof: (1) Existence.

Let xy € F' and consider the sequence (zj) defined by the recurrence relation
Tpi1 = @(x), k=0,1,2,.... (2.11)
Since ¢ is a contraction, there exist 0 < C' < 1 and a norm on R"” such that
le(z) =@l < Cllz —yll,  Vo,yeF (2.12)
Note that
[eeer = 2kl = llo(en) = pap)ll < Clleg —zpall, k=12,

Hence

kaJrl —LEkH < Cka—xk,lH, k= 1,2,.... (213)
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From (2.59) we may write
2 — 21]| < Cllay — o,

l23 — za|| < Cllzg — 21| < C?|lay — o,

We claim that
lzrsr — 2| < CF||lzy — 20| Vi > 1. (2.14)

We prove this by induction on k.
(i) k =1 (already proved).
(ii) Suppose the statement holds for k, that is,

k1 — il < CFllar — o],
(iii) We prove it for k + 1. From (2.59) and (ii) we have

sz = wrsall < Cllawsr — 2l < CHHlan — o),

which proves (3.60).

We now show that (x;) is a Cauchy sequence in R™. Indeed, let r,s € N with s < r.
Then r = s + p for some p € N. Hence

|75 — || = |75 — Toqpll < |75 — Topal| + [[Tor1 — Topall + -+ + [[Tsrp1 — Tappl]-
Therefore, by (2.60) we obtain
s = ol < Cllwy = ol + C |y — wol| + -+ + O |2y — ao|

O5(1— CP)
1—-C

However, since 0 < C' < 1, we have 1 — C? < 1 and hence

= (C 4+ O o O |1y — || = |21 — ol|-

|zs — xs—i—p” < K(C°,

where K = M is a constant. As
1-C
lim (KCS) =0,
s—400

it follows that, for any ¢ > 0, there exists sy € N such that, for all s > s9, KC* < €.
Hence, given € > 0 we have

|25 — wsﬂoH <g, Vs > so,



90 CHAPTER 2. DIFFERENTIATION IN R¥

that is,

SEEFHOO |75 — 2s1pll =0

for every p € N. Thus (zy) is a Cauchy sequence in R™, and since R" is complete, we have

lim z, =2
k—+o00

and clearly x* € F, since F'is closed. As ¢ is a contraction, it is continuous on F'. Hence
p(z”) = go(lim l‘k) = lim p(zy) = limxg = 2™

(2) Uniqueness.
Suppose there is also y* € F such that ¢(y*) = y*. Then, from (2.58) we have

[ =yl = lle(@®) =y < Clla” = 7.

Hence
|z* —y*[[(1-C) <0.

Since (1—C') > 0, from the last inequality we obtain z* = y*, which proves uniqueness
and completes the proof of the theorem. O

Definition 2.31 Given sets X C R™ and Y C R™, a homeomorphism between X and Y
is a continuous bijection f : X — Y whose inverse f~1:Y — X is also continuous.
In this case, X and'Y are said to be homeomorphic.

A bijection may be continuous without its inverse being continuous. A canonical
example is given by the map
f:[0,27) — S'={(z,y) €R% 2 +y* =1}
t —— f(t) = (cost,sint).

The map f is clearly continuous and is evidently bijective. However, its inverse f=! :
St — [0,27) is discontinuous at the point p = (1,0). Indeed, for each k¥ € N let

tp = 2m — % and z; = f(tx). Then klim 2, = p, but it is not true that
—00
lim f'(2) = lim ¢
k—o0 k—o0

is equal to f~1(p) = 0.
As examples of homeomorphisms of R™ onto itself we have:

(i) The translations:

T,:R" — R", To(x) = a+ .
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Indeed, T, is actually an isometry, that is, a continuous surjective map that preserves
distance:

[Ta(2) = Ta()Il = llz = yl-

It follows that it is also injective, since if T, (z) = T,(y) then ||z — y|| = 0, hence z = y.
As (T,)™ ' = T_., we see that its inverse is also continuous.

(ii) The homotheties:
Hy :R" — R", Hy(z) =Xz, X#0.

Each homothety H) is an invertible linear transformation with (Hy)™! = Hy-1.

As examples of homeomorphic subsets of R", we may consider two open (or closed)
balls. Indeed, given B,(a) and Bjs(b), it suffices to consider the map

¢ :R" — R"
defined by
p=TyoH,,oT,.
A more sophisticated example of a homeomorphism is given by the map

P — Q
A — AL

where

Q={AcL(R"); 3A "},
as mentioned in the first section of this chapter.
Definition 2.32 Let U and V' be open subsets of R". A bijection f:U — V is called a

diffeomorphism from U onto V if it is differentiable and its inverse f~1:V — U is also
differentiable.

We say that a differentiable map f : E C R® — R" is a ‘local diffeomorphism’ if for
each x € F there exists an open set V, with = € V,, C E such that the restriction of f to
V, is a diffeomorphism onto an open set W, C R", that is, the map f : V, — W, is a
diffeomorphism.

Care must be taken not to confuse a diffeomorphism with a differentiable homeomor-
phism. An example of a homeomorphism whose inverse is not differentiable (at 0) is the
function f: R — R given by f(x) = 3.

Note: It follows from the Chain Rule that if a map f : U — R", where U is an open
subset of R", is differentiable at a point a € U and admits an inverse g = f~!: V — R"
defined on the open set V' C R”, differentiable at b = f(a), then f'(a) : R — R" is an
isomorphism whose inverse is ¢'(b) : R* — R". Indeed:
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f n g:f’1

gof=l

Figure 2.8:

From go f = Iy and f o g = Iy, it follows that
g)o fl(a) = I;:R" — R",
fl(a)og(b) = I;:R" — R™.
Hence
g () = (f'(a)™".

As a consequence of the observation above, if f : U — V is a diffeomorphism between
open subsets of R™, then for every x € U the derivative

f(z) : R" — R"
is an isomorphism. In terms of the Jacobian determinant, this means that
det(Jf(z)) # 0, Vo e U,

where J f(z) = (STf(x)) is the Jacobian matrix of f at x. It is natural to ask whether the
converse holds.

The Inverse Function Theorem will provide the converse in the case where f € C¥
(k > 1), in the sense of ‘local diffecomorphism’, as we now state.

Teorema 2.33 (Inverse Function Theorem) Let f : E C R" — R" be a continu-
ously differentiable function on the open set E, and suppose that f'(a) is invertible for

some a € E. (In other words, we are assuming that f'(a) : R — R" is an isomorphism,
or equivalently, that Jf(a) #0.) Set b= f(a). Then:

(i) There ezist open sets U and V' in R™ such that a € U, b € V, f is one-to-one on
U, and f(U) =V, that is, f is a bijection from U onto V.

(i1) If g denotes the inverse of f (which exists by (i)), defined by g(f(x)) = = for
r €U, then g € CYV) and

g =rflw)", VyeV

In other words, f is a local diffeomorphism from U onto V, with =% of class C*.
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Proof: (i) Set A= f’(a). Since f € C'(E), given € > 0 there exists § > 0 such that for
every « € E with ||z — a|| < J one has

1f'(z) — f'(a)]l <e. (2.15)
For each fixed y € R™ define the auxiliary map
p:FE — R"
v — o) =x+ Ay — f(2)). (2.16)

Note that y = f(x) if and only if x is a fixed point of ¢. Indeed, if y = f(x) then
o(z) = x + A71(0). Since A™! is linear, A71(0) = 0, thus p(x) = x. Conversely, if
o(z) = x, then p(r) = x + A~ (y — f(x)), and therefore A~'(y — f(z)) = 0. As A™!is
linear and injective, it follows that y = f(z).

On the other hand, from the expression for ¢ we may write
pla) = I(z) + A7y — f(x),
whose derivative is, by the Chain Rule,
(@) =TI'(x) + (A7) (y = f(2)) o (y — (=) (2.17)
Recall that if 7 : R" — R™ is linear, then 7"(z) = T for every x € R". Thus
I'(z)=1 and (A™Y(y— f(z))=A"
Therefore, from (2.63) we obtain

Pla) = I+A o (=f(z)) =A"0A— A" 0 f(z)
= AT (A - f(x)). (2.18)

From (2.64) we deduce that

l'@)l = AT (A= F@)Il < IATIIA = £l
= [IA7Nf (@) = F' (@)l (2.19)
If we take ¢ = m in (2.61), then from (2.65) we obtain
le" (@)l < A (@) = f(@)]] < % (2.20)

for all x € F with || — a| < 4.

Now let U = Bjs(a), which is clearly a convex open set. In view of (2.66) and by the
Mean Value Inequality, we have

l(z1) — @)l < %lel — oo (2.21)
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for all x1, x5 € U, that is,

lp(1) = (o)l = llor + A7y — f21)) = 22 = A7y — f(22))]| < %Hﬂfl — oo

for all 1,29 € U.
Thus

1
(21— x2) + A7 (f(22) — fla1))]| < gller =2, Vo2, €U
Note that if f(x;) = f(z2) then
1
0 < flzs = 2ol < Sllor — 22,

which implies 21 = x5 and consequently f|y is injective.

Let V = f(U). Then the map f: U — V is a bijection. It remains to prove that V'
is an open subset of R". Indeed, take 3y, € V. We shall show that there exists R > 0 such
that Br(yo) C V. In fact:

Since yo € V, we have yo = f(x0) for some 2o € U. Let r > 0 be sufficiently small so
that the closure of the ball B = B, () is contained in U, that is, B C U.

Set
1

A=———>0 and R =)\r
2| A

We claim that Bgr(yo) C V. Indeed, let y € Bgr(yp). Then
ly = woll < 5=
Y=Y R
2||A=H]

For this y € Bgr(yo), consider the function ¢ defined by (2.62). In particular, for
T = 1o we have

lp(zo) = zoll = [lwo + A7 (y = f(=0)) — zoll < A7 lly = f (o)

r T

oA 2

= 1A~y — woll < [IA7]

On the other hand, for any x € B C U we have ||z — 24| < 7, and from (2.67) we
obtain

1 T roor
lip(z) = woll < llole) = o)l + o) = woll < 5lle = zoll + 5 < L+ 2 =7

Hence ¢(z) € B = B,.(x) for every € B. This allows us to define the map

S5/

(Yol

5 O

H
— p(r) =z + A7y — f(x)),
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which is a contraction, as we saw in (2.67).
Since B is a closed subset of R, it follows from the Fixed Point Theorem that ¢ has
a unique fixed point z* € B, that is, there exists z* € B such that p(z*) = z*.

However, as we proved earlier, y = f(z) if and only if x is a fixed point of ¢. Thus,
since z” is a fixed point of ¢, we have f(z*) = y, and since z* € B, it follows that
y = f(z*) € f(B) C f(U) =V, which completes the proof of item (i). O

Proof: (ii) Let us now prove the differentiability of the inverse. Set g = f~1.

Figure 2.9:

Let y € V and k € R™ be such that ||k|| is sufficiently small to ensure that y + &k € V.
Since f is a bijection, there exist z,x + h € U (with h # 0) such that y = f(z) and
y+k = f(x+ h). For the chosen y € V, define, as before, the map

o) =+ Ay — f(z)), xeU.
Then

ple+h)—p(r) = (@+h)+A(y— flz+h) —z— A"y~ f(z))
h+ A"y — flz+h) —y+ f(z))
= h— A" (f(z+h)— f(z))
= h—AYk). (2.22)

On the other hand, from (2.67) we have
h) — Sy P (] 2.2
lp(@ + 1) — (@) < Sllz+h - 2] = == (2.23)

Thus, from (2.68) and (2.69) we obtain

7]

Ih— 47wl < 15,
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which implies

h
Il < a7 ey + 120
Equivalently,
1Al < 21 A7 /{1l (2.24)
Hence
[
< (2.25)
[t
On the other hand, as in item (i), we have
1
1 (x) = All < AT Va € Bs(a) = U,

which implies
_ 1
1/ () = Al AT < 5 < 1,

and by Proposition 2.6 we obtain f'(z) € 2, that is, f'(z) is invertible for every x € U.
Consider x € U = Bs(a) and f'(z), and denote

T=(f"(x)"
Let y = f(z) and consider k& € R" such that f(x + h) =y + k. Then

gy+k) —gly) =Tk = fHy+k)—f(y) —Tk
= [T(fe+h) = (@) =Tk
= z+h—ax-Tk
— h—Tk
= h=T(f(x+h)— f(z)).

Therefore
9y +k) —gly) =Tk =h=T(f(z +h) = f(z)),
and since h = T(T~(h)) = T(f'(x)h), we obtain

gy + k) —gly) =Tk = T(f'(x)h) =T(f(z +h) - f(z))
= T(f'(x)h = f(z + h) + f(z)
= —T(f(z+h)— f(z) = f'(x)h). (2.26)
Thus, from (2.71) and (2.72) we get
lg(y + k) —g(y) = Tk|| _ TI[f(z +h) = f(z) = f'(z)h]
N [1E] N il

< oo - o)

0

(2.27)
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Since (by (2.70)) k& — 0 implies h — 0, it follows from (2.73) that ¢'(y) exists and,
moreover, ¢'(y) =T, that is, ¢’(y) = (f'(z))~*. This implies

or equivalently

g =), eV

Finally, since g : V' — U is continuous (as it is differentiable), [ : U — Q C L(R") is
continuous (because f is of class C1(U)), and ¢ : 2 — Q is continuous (Proposition 2.6),
it follows that ¢’ is continuous on V| that is, g € C*(V). O

To fix ideas, consider the diagram below:

" f! " NG
R — R" — =— £R") > £R")

Vv u 0
@ f(9(y)

Figure 2.10:

Corollary 2.34 A map f : E — R" of class C* on the open set E C R" (where 1 <
k < 400) is a local diffeomorphism if and only if, for every x € E, the derivative f'(x) :
R™ — R" is an isomorphism (that is, det J f(x) #0).

We now introduce some notation that will be useful in the proof of the Implicit Func-
tion Theorem.

Ifz=(x1,...,2,) ER"and y = (y1,...,ym) € R™, we write (x,y) for the point

(xlw"axnayl?"'aym) S Rner-

Every A € £(R"" R") can be written in terms of two linear maps A, and A, defined
by
A,h = A(h,0), Ak = A0, k),

for all h € R”, k € R™. Then A, € £(R",R"), A, € £(R™ R") and

A(h k) = Agh + Ayk. (2.28)
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Proposition 2.35 Let A € £(R™™ R™) and assume that A, is invertible. Then, for
each k € R™, there exists a unique h € R™ such that A(h,k) = 0. This h is given by

h=—A'(Ak). (2.29)

Proof: TLet A : R"™ — R™ be linear. Then, by (2.74), if A(h,k) = 0 we have
A h+ Ayk = 0. Since A, is invertible, there exists A, ', and therefore

AL (Ash + Ayk) = A,7(0),
S0
h+ AN (Ak) =0 = h=-A'(Ak).
Conversely, it is clear that if h = —A_'(A,k), then A(h, k) = 0.

Moreover, for each k € R™ there is a unique A,k € R", since A, is a function; and
to each such A,k there corresponds a unique A;'(A,k), because A, ' is a bijection. It
follows that to each k € R™ there corresponds a unique h € R", given by (2.75), such
that A(h, k) = 0. O

Teorema 2.36 (Implicit Function Theorem) Let f be a C' function defined on an
open set E C R"™™ with values in R™, such that f(a,b) = 0 for some point (a,b) € E.
Let A = f'(a,b) and assume that A, is invertible. Then:

(a) There exist open sets U C R™™ and W C R™, with (a,b) € U and b € W, having
the following property: for each y € W there exists a unique x € R" such that (x,y) € U
and f(z,y) = 0.

(b) There exists (by (a)) a map g : W — R", with g € CY(W), g(b) = a and
flg(y),y) =0 for ally € W. Moreover,

Jy) = —A A,

Proof: (a) Define the auxiliary map

F:ECR""™ — R
(r,y) — Fz,y) = (f(z,y),v),
which is of class C'(F), since each coordinate function is C*.
Now consider the linear map
L:R"™ — R
(hk) — L(hk) = (A(h, k), ),
which we shall show is the derivative of F" at (a,b). Indeed, let h € R" and k£ € R™ have
sufficiently small norms so that (a + h,b+ k) € E. Then
= Hf(a+ hab+ k) - f(avb) o A(h7k)H
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Since f is differentiable at (a,b), by hypothesis,

lim
(hyk)—(0,0) | (h, &)

=0.

It follows that
_ F(a+h,b+k)— F(a,b) — L(h, k)
lim
(h,k)—(0,0) | (h, )|
and hence F'(a,b) = L.

We now show that L is an isomorphism. In fact, if L(h, k) = (0,0) then (A(h, k), k) =
(0,0), so A(h,k) = 0 and k£ = 0. Since A, is invertible, and for each k£ € R™ there is a
unique h € R™ such that A(h, k) = 0, given by

h = _A;l(Ayk)v

=0,

we obtain, for k = 0, that
h’ = _A;1<Ay0) = O?
that is, (h, k) = (0,0). Thus L is injective, and by the Ranka€ “Nullity Theorem L is an
isomorphism.
Therefore, by the Inverse Function Theorem, there exist open sets U, V' C R™" such

that F' : U — V is a bijection, with F'(z,y) invertible for all (z,y) € U. Moreover,
G=F"1:V —=UisaC" map, with (a,b) € U and F(a,b) = (0,b) € V.

bR e hR"
E
W U
b g
y
f
R
Figure 2.11:

Define
W={yecR" (0,y) e V}.

Note that W is an open subset of R™, since W is the image of V' N ({0} x R™) under
the natural identification {0} x R™ ~ R™, and V is an open subset of R"*. Now, if
y € W, then (0,y) € V and consequently

(0,y) = F(x,y)
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for some (z,y) € U. Since F(z,y) = (f(x,y),y), it follows that f(z,y) = 0 for this z.

Suppose now that for the same y we had 2’ € R with (z/,y) € U and f(2/,y) = 0.
Then

F(' y) = (@' y),y) = (f(z,9),y) = F(z,y),

and by the injectivity of F' we would have 2’ = x. Thus, to each y € W there corresponds
a unique z € R" such that (z,y) € U and f(x,y) = 0. Moreover, b € W, since (0,b) € V.
This completes the proof of part (a).

(b) By part (a) we obtain a well-defined map
g W — R"
y — gly) ==,

such that (z,y) € U and f(g9(y),y) = f(x,y) = 0 for all y € W. Clearly g(b) = a, since
(a,b) e U, b e W and f(a,b) = 0.

On the other hand, note that for every y € W we have

F(g(y),y) = F(z,y) = (f(z,y),y) = (0,y).

Hence
G(0,y) = F~1(0,y) = (9(y),v).

Since G is C' on V and (0,y) € V for all y € W, the restriction ¢ is C* on W.

Finally, set
D(y) = (9(y),y) = (9(y), La(y))-

Since

(fo®)(y) = fg9(y),y) =0,
it follows from the Chain Rule that

(@) o @'(y) =0,  VyeW.
In particular, for y = b we have
F(®(b)) o @' (b) = 0.
Since ®(b) = (g(b),b) = (a,b), this can be written as
f'(a,b) o ¥'(b) =0,

that is,

Now, for k € R™,
'(b)k = (g'(b), La)k = (d'(D)k, k),

and therefore
A(g'(b)k, k) =0, Vk ¢ R™.
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Using (2.74), we obtain
A (g (b)k) + Ak = 0, Vk € R™,

which implies
gk =—A"(Ak), Vk € R™.

Thus
g'(b) = —-A'A,,

as claimed. O
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Chapter 3

Multiple Integrals

3.1 The Definition of the Integral

According to Definition 1.33, an n-parallelepiped, or n-dimensional block, or cell, is the
subset A of R™ given by the Cartesian product

n

A= []las, bi] = [a1,b1] x -+ x [an, by

=1

of n compact intervals [a;, b;], each of which is called an edge of the block A. When all
the edges have the same length b, — a; = a, the block is called an na€ “dimensional cube.
When n = 1, A is an interval; for n = 2, the block reduces to a rectangle and the cube to

. : a; +b; .
a square. The point whose coordinates are ¢; = — 5 * is called the centre of the block

A. The vertices of the block A are the points p = (cy,...,¢,), where for each i =1,...,n
we have ¢; = a; or ¢; = b;. The faces of the block A are the Cartesian products

F=L x---x1L,
such that, for each ¢ = 1,...,n, we have L; = {a;}, or L; = {b;}, or L; = [a;,b;]. We say
that the face F' has dimension k when there are precisely k indices i for which L; = [a;, b;].

In particular, each vertex of the block A is a face of dimension zero, while the block A
itself is a face of dimension n.

Definition 3.1 The na€ “dimensional volume of the block A = []\_,[a;, b;] is
vol A = I_I(bI —a;).
i=1

If A is an na€ “dimensional cube whose edges have length a, then vol A = a".

103
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The n-dimensional block A =[]}, [a;, b;] is a compact subset of R™ whose interior is
the Cartesian product

int A= H(CLZ', bz)
=1

of open intervals (a;, b;), which we call the open na€ “dimensional block. By definition,
the volume of an open block is the same as that of the corresponding closed block.

Definition 3.2 A partition of the block A = [[;_,[a;, b;] is a finite set of the form
P=P x---xP,,

where each P; is a partition of the interval [a;, b;].

The elements of P are called the vertices of the partition P. A partition P = P; X

- X P, of the block A determines a decomposition of A into sub-blocks of the form

B =1, x --- x I, where each I; is an interval of the partition P;. Each of these sub-

blocks B will be called a block of the partition P. We write B € P. Let us look at an
example for n = 2.

AY
b,
B; Bs By
Y2
2
B> B/ Bs A= H [a,b]
Y1 I{
B B, B
)
a, X4 Xy by >X
Figure 3.1:

Let P, = {ay, 1, 29,01} and P = {aq, 41, ¥y, b2} be partitions of the intervals [a;, b;]
and [ag, bo], respectively. Then P = P; X P, is a partition of A. Each B; is a sub-block,
called a block of the partition P; we denote this by B; € P.

If, for each j = 1,...,n, the partition P; decomposes the interval [a;, b;] into k;
subintervals, then the partition P decomposes the block A = H?Zl laj, b;] into ky, ko, ..., Ky
sub-blocks.

In the example above, P; decomposes the interval [a;, b;] into 3 subintervals, while P,
decomposes [ag, bs] also into 3 subintervals. Hence the partition P decomposes the block
A =TT2_,[a:, bi] into 3 x 3, that is, 9 sub-blocks.

If By and B, are blocks of the same partition, then either their intersection is empty
or it is a common ka€ “dimensional face of By and By (k=0,1,...,n —1).
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Given a partition P = P, x --- x P, of the block A = [[’_,[a;,b;], the length of
each edge is the sum of the lengths of the intervals in the partition P;. It follows, by the
distributive law of multiplication, that the volume of A is the sum of the volumes of all
the blocks into which P decomposes A.

Returning to the example, we have
vol A = H b — CLl b1 — al)(bg — CLQ).

However,

by —a; = (21 —ay)+ (xa —x1) + (by — 22),
by —ay = (y1—a2)+(y2 —y1) + (b2 — y2).

Therefore,

volA = (11 —a1)(yr — az) + (z1 — a1)(ye — v1) + (21 — a1) (b2 — y2) +
+(2 — 1) (Y1 — az) + (v2 — 21) (Y2 — ¥1) + (22 — 21)(ba — y2) +
+(br — 22) (g1 — az) + (br — 22)(y2 — y1) + (b1 — 22)(b2 — ¥2),

that is, vol A = 37 vol B;.
In general, we may write

vol A = Z vol B.

BeP

Definition 3.3 Let P and ) be partitions of the block A. We say that Q) is finer than
PifPCQ. IfP=P x---xXP,and Q = Q1 X ---XQn, then P C Q if and only
if PL C Qy,...,P, C Q. In this case, each block of the partition ) is contained in a
unique block of P, and each block of P is the union of those blocks of Q) that it contains.
More precisely, if P C Q, then Q induces a partition of each block of P, and therefore the
volume of a block B € P is the sum of the volumes of the blocks of Q) that are contained
n B.

Let us look at an example:

Let P, = {ai,z1,29,b1} and Py, = {ag,ys,be} be partltlons of [ai,b1] and [ag, bsl,
respectively, and let P = P, x P, be a partition of A = [[-_,[a:,b;]. Consider Q, =
{a1, 1,29, 23,01} and Qo = {az,y1, Y2, b2}, partitions of [aq, b1] and [ag, by], respectively,
with P, C ()1 and P, C (). Clearly P C (). Notice that:

Each block B! of @) is contained in a unique block B; of P.
Each block B; of P is the union of those blocks B] of () that are contained in it.

In this case:

By = B\UB,, By=B,, Bs=B,UB, By=B} Bs=B,UBLUB,UB,, Bs=ByUB,.
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AY AY
P Q
by b.
: B\ B,
B B, B B
12
Y2 B B B
B B. B Y
B B, B
3y
b >X b
Figure 3.2:
Figure 3.3:

The volume of each block B; of P is the sum of the volumes of the blocks B] of @
contained in it.

In general, if P C (Q and B € P is a block of the partition P, and B’ € @) is a block
of the partition ) contained in B, then

vol B = Z vol B’.

B'CB

It follows that

vol A = Z vol B = Z Z vol B'. (3.1)

BeP BeP B'CB
Note 1: In Figure 3.3 we see two blocks (rectangles) decomposed as unions of sub-

blocks:

The decomposition on the left arises from a partition, but the one on the right does
not.
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If P=T[_, P, and Q = [[;_, Q; are partitions of a block A, the union P U (@ is not,
in general, a partition of A. However, there exists a partition

P+Q=[[(rnua)

=1

that refines both P and Q.

Definition 3.4 The norm |P| of a partition P = [[._, P; is the largest length of a subin-
terval of any of the partitions P;, that is, the largest length of the edges of the blocks
BeP.

Note 2: If we equip R™ with the maximum norm, then the diameter of a block will be
the length of its longest edge. To fix ideas, consider the diagram below (Figure 3.4):

Y
)
d = diameter of the block
= length of the vector v given by:
v = (b1,b2) — (a1, a2)
Go x: (bl —ay, by — @2)
an bl
Figure 3.4: Diameter of a rectangular block in R2
Thus

|v|| = max{ |b; — ai|, |b2 — az| } = length of the longest edge of the block.

In general,
diam A = max{ |b; — a1|, ..., |b, — an] }.

In this case, the norm |P| of the partition P will be the largest diameter of the blocks
BeP.

Definition 3.5 Let f : A — R be a bounded real function defined on a block A C R™.
Given a partition P of A, to each block B € P we associate the numbers

mp = inf{f(z); x € B} and Mp =sup{f(x); x € B},

with which we define, respectively, the lower sum and upper sum of f with respect to the
partition P by setting

s(f;P):ZvaolB and S(f;P):ZMBvolB. (3.2)
BeP BeP

The sums above extend over all blocks B of the partition P. Since mg < Mpg for each B,
we have s(f; P) < S(f; P).
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As in the case of functions of one variable, we shall now show that, when a partition
is refined, the lower sum does not decrease and the upper sum does not increase. Indeed,
consider the following:

Teorema 3.6 Let P and QQ be partitions of the block A C R™, with P C Q, and let
f:A—= R be a bounded function. Then

s(fiP) < s(f;Q) < S(f;Q) < S(f; P). (3.3)

Proof: It is enough to prove the first and third inequalities, since the second has
already been established. We denote by B and B’ the blocks of the partitions P and @,
respectively. From (3.1) and (3.2), we have

s(f; P) = ZvaolB = ZmB[Z volB'}

BeP BeP B'CB

- Z[Z vaolB’] < Z[Z mBlvolB’}
BeP B/'CB BeP B'CB

= Z mp vol B’
B'e@

The inequality above follows from the fact that B’ € B, and therefore mp > mp.
The third inequality is analogous, using the fact that Mg < Mp. O

Corollary 3.7 Let f : A — R be bounded. For any partitions P and Q) of the block A,
one has

s(f; P) <5(f;Q).

Proof: Since P C P+ () and Q) C P+ (@, it follows from the theorem above that
s(f;P) <s(f;P+Q) <S(f; P+Q) <S(f;Q).
O

Note 3: Any partition ) of the block A refines the trivial partition P, whose only
sub-block is A. It follows from Theorem 3.6 that if m < f(z) < M for all z € A, then

s(f; P) <s(f;Q) <S(f;Q) < S(f; P).
However,

s(f; P) = Z mpvol B = mpgvol A (since P is trivial),
BeP
S(f;P)=>_ MpvolB = Mgvol A.

BeP
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Thus
mpvol A < s(f;Q) < S(f;Q) < MgvolA,

and therefore

mvol A < s(f;Q) < S(f;Q) < Mvol A. (3.4)

Let o be the set of all partitions of A. Then the set

o={s(f;Q); Q € p}

is bounded above, and the set

2 ={S(f;Q); Q € p}

is bounded below.

Definition 3.8 Let f : A — R be a bounded function defined on a block A C R".
We define the lower integral, denoted by fAf(x) dx, and the upper integral, denoted by

f_Af(x) dx, of the function f over the block A by setting
/Af(:c) dx = supo, Zf(:c) dr = inf X. (3.5)
Note 4: It follows from Corollary 3.7 and Note 3 that, if m < f(z) < M, then
mv01A§/Af(x)deZf(:c)deMvolA. (3.6)

Indeed, the first and third inequalities follow from the fact that m vol A and M vol A
are, respectively, lower and upper bounds for the sets o and ¥. We now prove the middle
inequality.

Proof: Suppose, by contradiction, that

[ taydn> [ s)da,
Ja A
that is,
sup o > inf X.
Take e s
¢ = SupO ; inf% _ o

Then, for this € > 0, there exist partitions Fy and P; in p such that

inf ¥ < S(f; B) <infX+e=supo —e <s(f;P) <supo,
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that is,
S(f; Ro) < s(f; ),

which contradicts Corollary 3.7. O

Note 5: Let Py be an arbitrary partition of the block A. In order to compute the lower
and upper integrals of a bounded function f : A — R, it suffices to consider the partitions
that refine Py, that is,

/f(x)dx:sup{s(f;P); P> PRy} and /f(x)dx:inf{S(f;P); P D> Py}.
JA A

Indeed, for every partition @ of the block A there exists a partition P that refines both
Q and Py, namely P = Q + Py. Then s(f;Q) < s(f; P) and S(f; P) < S(f;Q), with
P D Py, and the claim follows.

Definition 3.9 Let f : A — R be bounded on the block A C R"™. We say that f is
integrable if its lower and upper integrals coincide. In that case we define the integral of

I by

/Af(x) da :Af(:c) da :Zf(:c) da. (3.7)

Teorema 3.10 A bounded function f : A — R is integrable on the block A C R™ if and
only if, for every e > 0, there exists a partition P of A such that

S(f;P)—s(fi P) <e.

Proof: Suppose that f is integrable and let € > 0 be given. Then, by hypothesis,
inf ¥ = supo,
where, as we have seen,
o={s(f;Q) Qep},  X={5(/;Q); Q€ p}.
Thus, for the given € > 0, there exist partitions Fy, P; € g such that

supa—§<s(f;P0) <supo =inf¥ < S(f; P) <inf§]+%.

To fix ideas, see Figure 3.5:

From the last relation we obtain
S(f; 1) —s(f; Po) <e
Set P = Py + P;. Then

S(f;P)—s(f; P) < S(f; Pr) —s(f; Py) <e.
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s(f; Po) S(f; Py)

Sup g —¢& inf 2 sup E*Q
*73 2

sup o

Figure 3.5:

Conversely, suppose that, for each ¢ > 0, there exists P. € p such that
S(f;P.) —s(f; P.) <e.
We must prove that inf ¥ = supo. Indeed, we have

S(f;P) <e+s(f; P)=infX < S(f; P) <e+s(f; P) =
=infY <e+s(f;P.) <e+supo=inf¥ —supo < e. (3.8)

On the other hand, since sup o < inf ¥, that is, inf ¥ —sup o > 0, it follows from (3.8)
that, for every € > 0,
0 <infX¥ —supo <e,

and, by the arbitrariness of €, we obtain the equality. O

Definition 3.11 Let f : X — R be bounded on a set X C A. We call the oscillation of
f on X the number

wy = w(f; X) =sup{|f(z) — f(y); =,y € X}. (3.9)
Lema 3.12 Let f: X — R be a bounded function. Set
mx = inf{f(z); v € X}, My =sup{f(z); x € X}.

Then wx = Mx — mx.

Proof: For each x € X we have f(z) < Mx and mx < f(x). It follows that

flx) = fly) < Mx —mx,  Va,yeX. (3.10)
In particular,

fly) — f(zr) < Mx —myx, and therefore

flx) = fly) = —(Mx —mx). (3.11)

Since Mx —myx > 0, from (3.10) and (3.11) we obtain

1f(x) = f(y)] < Mx —mx,  Va,y € X.
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Thus Mx — mx is an upper bound for the set

{1f(@) = fy)]; =,y € X},

and hence wxy < My — my.

We now show that in fact Mx — mx is the least upper bound. Indeed, given € > 0,
there exist z,y € X such that

mXSf(:E)<mX+§ and MX—§<f(y)§MX,

and we may assume f(x) < f(y). Then

fy) = f@)] = fly) - f2)
€ €

> (Mx=3) = (mx+3)

= (Afx-—TnX)-—E
Consequently,

Mx —mx <|[f(y) — f(z)| +¢
and therefore
Mx —mx <wx + €.

By the arbitrariness of € we obtain My — my < wx, as required. d

Note 6: In view of the previous lemma, we can write

S(f;P)=s(f;P) = > MgvolB—>» mpvol B

BeP BeP

= Y (Mp—mp)vol B
BeP

= Z [09) 2] VOlB. (3]‘2)
BeP

In view of this last observation and of Theorem 3.10, for a function f : A — R defined
on a block A C R™ to be integrable it is necessary and sufficient that, for every e > 0, one
can find a partition P of the block A such that

ZwB vol B < e. (3.13)

BeP

Proposition 3.13 Every continuous function f : A — R defined on a block A of R" is
integrable.

Proof: Let € > 0 be given. Since the block A is compact, the function f is uniformly
continuous. Hence, for the given € > 0 there exists 6 > 0 such that, if z,y € A and

|z —y|| <9, then
€

vol A

[f(z) = fly)] <
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Using on R” the maximum norm, and letting P € p be a partition of A with |P| < §,

we have that the largest diameter of the blocks B € P does not exceed 4. Thus, given
€

x,y € B we have ||z — y|| < |P| < § and hence |f(x) — f(y)| < — for every B € P.
v
Therefore, ﬁ is an upper bound of the set {|f(z) — f(y)|; x,y € B}, for every B € P.
VO

It follows that wg <

¢ 1 for all B € P. Consequently,

VO
€
E E 1B =
wgvol B < ol A VO €,
BeP

BeP

which proves the proposition (by (3.13)). O

Example 1.

Let A C R™ be a block and let X be the subset of A whose coordinates are rational
numbers. Define yx : A — R by

1, ifze X,

xx(2) =
0, ifz¢X.

The function xx is called the characteristic function of X. For every partition P of the
block A and every B € P, we have mp = 0 and Mp = 1. It follows that s(xx; P) = 0
and S(xx; P) = vol A, for every partition P. Thus the characteristic function xx is not
integrable.

Proposition 3.14 Let f,g: A — R be integrable functions. Then:

(a) f+ g is integrable and, moreover,
+ dr = dx + dx.
/(f(a:) g(x))dz /f(x) x /g(x) x

(b) For every ¢ € R, the function c f is integrable and

/Acf(x)dx:c/Af(az)dx.

(c) If f(xz) >0 for all x € A, then / f(z)dx > 0. Equivalently, if f(z) < g(x) for all
A

xr € A, then
/f(m)dxﬁ/g(x)dx.
A A

(d) The function |f(x)| is integrable and
[ twas| < [ 1r@as
A A
In particular, if |f(z)| < C for all x € A, then

‘/Af(a:) dx‘ < C ol A.
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(e) If f is continuous, there exists £ € A such that

/ f(zx &) vol A.
Proof:

(a) For every B C A we have mp(f) + mp(g) < mp(f + g) and Mp(f + g) <
Mpg(f) + Mg(g). Indeed, note that

mp(f)+mp(g) is alower bound of the set  {(f + g)(z); = € B},
Mpg(f)+ Mg(g) is an upper bound of the set {(f + g)(z); = € B},

since

mp(f) < f(z) and mp(g) < g(z) = mp(f) +ms(g) < f(2) + g(2),
Mp(f) = f(x) and Mg(g) > g(x) = Mzs(f)+ Ms(g) = f(2) + g(z),
for all x € B.

It follows that, for any partitions P, of the block A, we have
s(fiP)+s(g;P) <s(f+g:P) <S(f+9:Q) <5(f;Q) + S(g: Q).

Consequently,

sup{s(f; P); P € p} +sup{s(g; P); P € p} <
<sup{s(f+g;P); Pe€p} <inf{S(f+¢;Q); Q € p} <
<inf{S(f;Q); Q € p} +inf{S(g;Q); Q € p},

or, equivalently,

f Wf@)yde+ [, g(x)de <
f g(x)] dx < fA ( )] dz <
< fA ) dr + fA g\x
which gives the desired equality and shows that f + ¢ is integrable.

(b) We have

cinf{f(z); x € B} =cmp(f), ifc>0,
mp(c[f) = nf{(cf)(x); v € B} = ke e by ) ,
csup{f(z); x € B} =cMg(f), ifc<0,

and similarly
cMgp(f), ifec>0,
slcf) =
cmp(f), ife<O.
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Thus

s(cf;P)=cs(f;P) and S(cf;P)=cS(f;P), ifec>0,
s(cf; P)=c¢S(f; P) and S(cf;P)=cs(f;P), ifec<O.

Hence we have two cases:
(i) ¢ < 0:

/A(Cf)(x) dr = inf{S(cf;P); P € p} =inf{cs(f; P); P € p}
— csup{s(fiP)i Pe o} =c [ fla)d,
/A(Cf)(HU) de = sup{s(cf; P); P € p} =sup{cS(f;P); P € g}

= cinf{S(f; P); PE@}ZC/Af(a:)d:E.

Z(cf)(x) dr = f{S(cf;P); P g} =int{cS(f; P); P p}
— cimf{S(f;P): Pc o) :c/Af(x) iz,

[ en@yds = spls(cfi Py P e o) =suples(fi P)i P e 0}
— cswls(fi Py Pev)=c [ fla)de

In either case, ¢ f is integrable and

[enwar=c [ rwa

(c) If f(z) >0 for all x € A, then mp > 0 for every block B C A, hence s(f; P) =
Y gepmpvolB > 0 for all P € p. Consequently, sup{s(f;P); P € p} > 0, that is,
[ f(x)dz > 0.

If f(z) <g(z) for all z € A, then (g — f)(z) > 0 for all z, and therefore

Ja=paas = [ gz = [ sz)iz =0

/A f(@)de < /A 9(a) da.

that is,
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(d) Let P € p be a generic partition of A, and let B € P be any block of P. Then

w(f;B) = supi|f(z) = fW)]; =,y € B},
w(lfl;B) = sup{|If(@)|—IfW)]; =,y € B}.
However, since ||f(z)| — [f(y)|| < |f(z) — f(y)], it follows that w(|f|; B) < w(f;B) for
every B € P.

Thus
Zw(|f|;B)volB < Zw(f;B)volB,

BeP BeP

and since f is integrable, (3.13) implies that |f] is integrable. Moreover, from —|f(x)| <
f(x) <|f(x)| we obtain, by item (c),

—/A|f(x)|dx§/Af(x)d$S/A|f($)|d$,

[ sy < [ 1)
If |f(x)] < C for all x € A, then

‘/Af(x)dx‘g/A|f(37)’d$§/AC'CZJTIC/Ada::CvolA_

(e) Let m = inf{f(z); x € A} and M = sup{f(z); v € A}, which exist since f is
continuous on A. As f is integrable, we have

which means that

mvol A < / f(z)dx < M vol A.
A

Consequently,
[, f(z)dx
<A <M.
S U
Hence, by the Intermediate Value Theorem (and the fact that A is convex), there exists

¢ € A such that
[ f(x)da B

volA (©):
O

The first two items of the proposition above show that the set of integrable functions
on a block A C R™ is a real vector space, and the map f — [, f(x) dz is a linear functional
on that space. The third item says that this functional is positive, and the fourth implies
that the functional is continuous when we consider uniform convergence in the space of
integrable functions. In other words:

Let
R(A)={f:A—R; f Riemann integrable }
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and consider the functional
T:R(A) — R
f — T(f) :/Af(x) dz.

If we equip R(A) with the metric d(f, g) = sup{|f(z) — g(z)|; = € A}, then

7)1 < [ 1) do < supl ()] vol 4 = €],

where || f|| = sup,e |f(z)] and C' = vol A. Therefore T is continuous.

Item (c) is further complemented by the remark that, if f > 0, then [, f(z)dz =0
can only occur when f(x) = 0 at every point € A at which f is continuous.

Every integrable function f : A — R can be written as the difference f = f, — f_ of
two nonaf€ “negative integrable functions. The function f, : A — R is called the positive
part of f, whilst the function f_ : A — R is its negative part. For every x € A we set

f+(x) = max{f(z),0} and f-(z) = —min{ f(x),0}. (3.14)
Thus, when f(x) > 0 we have fi(x) = f(x) and f_(x) = 0. On the other hand, if
f(z) <0, then f,(z) = 0 and f_(x) = —f(z). The equality f = f, — f_ is evident.
Hence, if f, and f_ are integrable, then f is also integrable. Conversely, since

folw) = LEEIE g oy = VIS, (3.15)

for every x € A, the integrability of f implies that of f, and f_, by item (d) of the
previous proposition.

Note 7: Let A, B be blocks in R"” with B C A, and let xp : A — R be the characteristic
function of B, that is,

1
xs(x) =
0, ifre Aand z ¢ B.

, ifxeB,

We claim that y g is integrable and that

/ x5(z)dx = vol B.
A

Indeed, let Py be a partition of A that has B as one of its blocks. By Note 5, in order
to obtain the lower and upper integrals of a bounded function it suffices to consider the
partitions that refine Py, that is,

/XB(;E) dx = sup s(xg; P), /XB(x) dr = inf S(xp;P).
JA A

PDPy PDOP,
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If P> P, and C is a block of the partition P, then

s(xg; P) = ZWLCVOIC = vol B + Z me vol C' = vol B,
Cep CeP\{B}

since me = inf{xp(x); v € C} =0 for all C € P\ {B}.
Similarly,

S(xp;P) =Y McvolC=volB+ > McvolC = vol B,
CeP CeP\{B}

because M¢ = sup{xp(z); v € C} =0 for all C € P\ {B}.
It follows that

Amm@:Ammmzma

3.2 Sets of Measure Zero

Definition 3.15 We say that a set X C R™ has measure zero, and we write med X = 0,
if, for every € > 0, it is possible to find a sequence of open na€ “dimensional cubes
Ch,Cs, ... such that

+o0o +oo
X C U C; and Z volC; < e.
i=1 i=1

When necessary, to be more precise, we shall say in this situation that X has na€ “dimensional
measure zero or that X has measure zero in R".

Example 1. Let X = {ry,re,...,7r,,...} be a countable subset of the real line R. For
each € > 0 consider the intervals

<x <7r,+

€
[n:{xER; T — 2n+2}, n=12....

The family {I, },en is a countable covering of X and, in addition,

2n+2

—+00 “+o0 c
ZVOU” - Z on+2 <€
n=1 n=1

We conclude that any countable subset of the real line has measure zero. As a conse-
quence, any finite set has measure zero.

We now present a list of nine propositions on sets of measure zero.

Proposition 3.16 Every subset of a set of measure zero has measure zero.
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Proof: Let Z C R” be a set of measure zero and let X C Z. By the definition above, for

each € > 0 there exists a sequence of open na€ “dimensional cubes C,C5,... such that
Z C U:;of C; and 2;;0; vol C; < e. Since X C Z, the same sequence of cubes shows that
X also has measure zero. O

Proposition 3.17 Fuvery countable union of sets of measure zero is again a set of measure
zero.

Proof: Let Z = J,; Za, with I C N, and suppose med(Z,) = 0 for all @ € I. Given
e > 0, we can obtain, for each a € I, a sequence of open cubes C,q,Cys,... such that
Zy C jzoi Cy; and

+00 c
Zvol(Caj) <%
j=1
It follows that Z is contained in the countable union of all the C,;. Moreover, given any

finite subset F' C I x N, there exist m € I and n € N such that (a,j) € F' = o < m and
7 <n, and hence

Z vol(Cyj) < Z[Z VOl(Caj)} < Z 2% < e
(a.g)eF a=1 j=1 prt

Therefore, regardless of the way in which the C,; are enumerated in a sequence, we have

Z vol(Cy;) < e.

{a.g}
Hence med(Z) = 0. O

In particular, since every point has measure zero, it follows that any countable subset
of R™ has measure zero in R".

Proposition 3.18 Let A C R" be a block. Given any countable cover A C U:ff B; by

open blocks, we have
+oo

Z vol B; > vol A.

=1

Proof: Assume first that A is closed. Being bounded, A is compact. Since {B;}ien is

an open cover, there exist By, ..., By in this cover such that A C Ule B;. Take a closed
block B such that By C B,..., B, C B.
We have
k

XA < XBu-UB, < ZXBV
i=1
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It follows from Note 7 of the previous section and from Proposition 3.14 (items (a)
and (c)) that

volA = /XA(x)de/XBl(x)dx+~-~+/ka(x)dx
B B B

k
= volB, + - +vol By < ZvolBi.

i=1

If the block A is open, then for every closed block D contained in A we have

+oo
vol D < Z vol B;.

i=1
However,

vol A = sup{vol D; D is a closed block contained in A}. (3.16)

Indeed, let
S =sup{vol D; D is a closed block contained in A}.

Clearly S < vol A, since vol D < vol A for all closed D C A. It remains to show that
S > vol A. In fact, let A= []7_,(a;,b;). Note that

n

T 1
kgr—i{loo | 1<bj — Gj — E) = 1_[1<b] — CLj) = VOIA.
J= 1=

Thus, given € > 0, there exists kg € N such that, for all £ > k,

VolA—j]:[l(bj —a;— %)

<€,

that is,

- 1
V01A<€—|—H<bj—aj—%>.

7j=1

Setting
1 1
D}c(d = H[aj + %, bj — %],
j=1

we have Dy C A and
vol A < vol Dy +€ < S +e.

By the arbitrariness of € we deduce that vol A < S, hence vol A = S.
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Since ijof vol B; is an upper bound for the set
{vol D; D is a closed block contained in A},

it follows from (3.16) that vol A < > vol B;. O

Note 1: It follows from the previous result that A does not have measure zero, since
there exists €9 = vol A such that, for every countable cover A C U B; by open cubes,

we have
“+00

Zvol B; > vol A.

i=1

From Propositions 3.16 and 3.18 it follows that every set X of measure zero has empty
interior; otherwise, if int X # (), then X would contain some block, and hence X would
not have measure zero.

Proposition 3.19 In the definition of a set of measure zero, we may use closed cubes
instead of open cubes.

Proof: Suppose X C |J; C;, where each C; is a closed cube, and ), vol C; < e.
On the other hand, let C' = H?Zl[aj, aj+1] be a closed cube of edge length 1. For each

0 > 0, the set
- )
1
0 =11 (w3 0+1+3)

J=1

is an open cube of edge length (1 + §) that contains C'. Clearly,

) n
(lsl_l)T(l)VOID U (aj+143)—(a; — %)] =1" = vol C.
It follows that, given ¢ = volC' > 0, there exists dy > 0 such that, if 0 < 0 < g, then
[vol D(§) — volC| < volC. Since D(5§) D C, we have vol D(d) — volC' > 0. Thus there
exists 6 > 0 such that vol D(4) < 2vol C.

Therefore, for each ¢ we can choose an open cube D; containing C; with vol D; <
2vol C;, so that X C |, D; and, in addition,

ZVOIDZ- < ZQVOIC’Z' < 2e.

Proposition 3.20 Let X C R" be such that, for every € > 0, there exists a sequence of
closed blocks Ay, ..., A;, ... with X C |, A; and Y, volA; < e. Then med X = 0. In
other words, in the definition of a set of measure zero we may use closed blocks instead of
cubes.
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Proof: We first show the following: given a closed block A C R"™ and € > 0, there exist
closed cubes (4, ..., C} such that A C Ule C; and Zle volC; < vol A + .

Indeed, let A = H?Zl[aj,bj]. Take ¢ € N. For every j = 1,...,n there exists an

integer p; > 0 such that
p; < q(bj —aj) <p;+1,
that is,

- 41
Zﬁ<bj—(1j§pj .
q q

The block

n

41
A’:H[aj,aj-l—pj; ]

J=1

p; +1

contains A, since b; < a; + . Moreover, A" admits a natural partition P = P; X

-+« X P,, where

1 2 p;+1
Pi=%a;, aj+—, a;+~,...,a; + -2 }
J {] J q J q J q

pj + 1}
q
Note that the blocks associated with the partition P are cubes C;, all with edges of

1
length —. We have
q

is a partition of the interval [a;, a; +

AcA = (G, with

;VOICi:VOLA/ = ﬁ(%+$><]f[1<bj_aj+é).

j=1
Since
. n 1 n
qginoo | 1<bj —a; + 5) = 1—Il(bj —aj) = vol A,
= =

for the given € > 0 there exists ¢y € N such that, for all ¢ > qo,

n

H(bj —aj+$> —vol A

j=1

< €.

Since A’ D A, we have vol A" > vol A and therefore

“ 1

H(bj —aj =+ —) < V01A+€
j=1 q

for sufficiently large q. Consequently,
ZVOlCi < volA +e.
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Returning to the statement of the proposition, for each ¢+ € N we choose closed cubes
C;; such that A; C Uj Ci; and

ZVQ]C’U <volA; + ;
J

Then X C |J;; Ci; and, moreover,
ZVOICH < ZvolAi + Z; < e+ e=2e.
0] i i

By the previous proposition, we conclude that med(X) = 0. O

Note 2: A fortiori, we may use open blocks to define measure zero.

Indeed, let X C J; Ci, where the C; are open blocks and »_; volC; < e. Clearly
X c |, C; and, in addition,

ZVOIE = ZVOICi < e.

On some occasions, in order to prove that a set has measure zero, instead of covering it
with a sequence of blocks whose sum of volumes can be made arbitrarily small, it may be
convenient to leave uncovered a subset that we already know to have measure zero. This
is the content of the proposition below. It is worth noting that the set Y may depend on
€.

Proposition 3.21 Let X C R™. Suppose that, for every e > 0, there exists a sequence of
blocks A; (open or closed) such that ), vol A; < € and

XcC <UA1> Uy,

where med(Y') = 0. Then X has measure zero.
Proof: Given € > 0, by hypothesis we obtain blocks A; and a set Y of measure zero
such that
ZVOlA,’ << and X C <UA,> uv.
i 2 i
Since med(Y’) = 0, we can find blocks B; such that Y C {J; B; and, moreover,
€
ZVOI BJ < 5
J

It follows that

X c (UA) U (UBj)
i j

5 VolAi—l—E vol B < e.

i J

Hence X has measure zero. O

and
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Definition 3.22 A map f : X C R" — R™ is said to be locally Lipschitz if, for every
x € X, there exist an open set V, C R"™ containing x and a constant k, > 0 such that,
whenever y, z € V., one has

1f () = F) < kally — =]

In other words, there exists an open covering X C |JV, such that each restriction f |y, nx
18 Lipschitz.

The next proposition shows that the notion of a set of measure zero is invariant under
locally Lipschitz maps. It is important to note that X and f(X) are required to lie in the
same Euclidean space R".

Proposition 3.23 If X C R™ has measure zero and f : X — R" s locally Lipschitz,
then f(X) has measure zero in R".

Proof: First consider the case in which f is globally Lipschitz. Then there exists K > 0
such that

1f () = F)ll < Kllz =yl

for all x,y. We shall work with the maximum norm on R". Thus, given € > 0, there exists
a countable covering

xclJa,
where each C; is an open cube of edge length a;, and
“+o0o

Za? < %

i=1
For each i € N, take z,y € C;N X. Write z = (z1,...,2,) and y = (y1,...,yn). Then
||.CE - y” = max{|x1 - y1|7 R |$n _yn|} < ay,

which implies
1f(x) = f(W)]| < Kz —yll < K a,.

It follows that each of the n coordinate projections of f(X N C;) is contained in an
interval of length K a;, since if f(z) = (21,...,2,) and f(y) = (w1, ...,w,), then

IIf(x) — f(y)]| = max{|z1 — w],..., |20 — wn|} < K a;.

Hence f(X N ;) is contained in the Cartesian product of these intervals, which is a
cube D; of volume K"a}.

To fix ideas, consider the picture below in the particular case n = 2.
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y A YA
X CI
7
X/ /7
a Y7 Ka;
g >x Ka; >x
Figure 3.6:

Since X = [J,(X N C;), we have
fx)=Jrxnac)cl o

and

Y volD =Y Kty = K" af <K"% =«

Therefore med(f(X)) = 0.

In the general case, we have X C (JV,, where each V, is open and each restriction
f |v.nx is Lipschitz. By Lindel6f’s theorem (Induced Topology, Chapter 1, Proposi-
tion 1.45), X admits a countable subcover, that is,

Xclyv

Jjel

with I C N. By the first part of the proof, f(V; N X) has measure zero for each j € N.
Hence

+o0o
§00 = U S0 x)

is a countable union of sets of measure zero, and therefore med(f(X)) = 0. O

Proposition 3.24 Let f : U C R® — R"™ be of class C' on the open set U. If X C U
has measure zero in R", then f(X) C R" also has measure zero.

Proof: For each x € X, let V, be a ball centred at x with V, C U, and set

ko = sup{||f'W)Il; y € Va}.
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Recall that the derivative map f’ is given by

U — £(RY)

y — f'),
and that on £(R™) we are using the operator norm (supremum norm). Since f is of class
C', the map f’ is continuous; and as V,, is compact and contained in U, the set f’(V}) is

compact in £(R"). Hence there exists C' > 0 such that ||f'(y)|| < C for all y € V,, so k,
is well defined.

On the other hand, since V,, is convex and || f'(y)|| < C for all y € V,,, the mean value
inequality yields

1F(2) = FWI < Eallz =yl Va,y €V

This implies that f is locally Lipschitz. Therefore, by Proposition 3.23, we obtain the
desired conclusion. O

Note 3: Let n < m and a € R™™". Then every subset
X CR"x{a} CR™

has measure zero in R™. To fix ideas, consider Figure 3.7.

%) //////A//}/%%

7
C

=V

Figure 3.7:

Indeed, since R" x {a} is a union of na€ “dimensional cubes, it suffices to prove this
for one such cube, say C' x {a}. Now, for every € > 0, the set C' x {a} is contained in the
ma€ “dimensional block

A=C x (ai . %a + g)m_” with vol A = € " vol C.

In view of Proposition 3.20 we have med(C x {a}) = 0 and, consequently, med(X) = 0.

Proposition 3.25 Ifn < m and f : U — R™ is of class C* on the open set U C R,
then f(U) has measure zero in R™.
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Proof: Consider 0 € R™™". By the previous note, U x {0} has measure zero in R”. On

the open set
W=UxR""CR™

define the map

g WcCR"™ — R™
(z,y) — glz,y) = f(2).

Clearly, g is of class C'! and, moreover,

g ‘U><{0}E f7 that iS, g<U X {O}) = f(U)
By Proposition 3.24 it follows that f(U) has measure zero in R™. O

Proposition 3.25 shows, in particular, that there are no Peano curves of class C!, that
is, the unpleasant phenomenon of a map f, defined on a subset X C R", whose image
contains a cube of R™, with n < m, may occur in class C° but not in class C*.

Definition 3.26 We say that a set X C R"™ is locally of measure zero if, for each x € X,
there exists an open set V, C R™ containing x such that med(V, N X) = 0.

Note 4: Let X C R" be such that X is locally of measure zero. From the open covering
X C U,ex Vo, Lindeléf’s theorem yields a countable subcover

xclJv

Thus
X =Jvinx)

1
is a countable union of sets of measure zero; hence med(X) = 0.

Therefore, a set X C R" is locally of measure zero if and only if it has measure zero.

Definition 3.27 An n-dimensional C* surface in R™ is a set S C R™ that can be covered
by a family of open sets U C R™ such that each V.= U NS admils a parametrisation
0 : Vo =V, of class C*, defined on an open set Vo C R™. Each such set V. =UNS is
open in S. For each p € S,V is called a parametrised neighbourhood of p.

Thus, an n-dimensional C* surface in R™ is a subset such that each of its points has
a parametrised neighbourhood via an n-dimensional C* parametrisation.

Note 5: Let S C R™ be a C* surface of dimension n < m in R™. Given a parametrisa-
tion ¢ : Vo = V of S, it follows from Proposition 3.25 that the parametrised neighbour-
hood V' C S has measure zero in R™. Since V= AN S, where A is open in R™, we see
that S is locally of measure zero and, consequently, med(S) = 0 in R™. More generally, if
X C R™ is a countable union of C* surfaces of dimension < m, then med(X) = 0 in R™.
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Figure 3.8:

3.3 Characterisation of Integrable Functions

Let X C R" and f: X — R be a bounded function. Fix z € X and, for each § > 0, set
Q(6) = wlf; X N Bs(x)] = sup{|f(y) — f(2)]; ¥,z € X N Bs(x)}, (3.17)

which is the oscillation of f on the set of points of X whose distance from z is less than
0. This defines a nona€ “negative function

Q:(0,400) — R
b — Q(9). (3.18)
Since f is bounded, so is €. Moreover, if § < ¢’ then Q(d) < Q(¢’). Hence the limit
w(fie) = limw[f; X N Bj(x)] = im Q(6) = inf Q(9)

exists, by the Monotone Sequence Theorem. We call this limit the oscillation of the
function f at the point x.

The oscillation enjoys the following properties:

[. w(f;2z) >0 for every z € X.

This is evident, since the infimum can only be nona€ “negative.

II. w(f;2) =0 if and only if f is continuous at x.

Note that w(f;x) = 0 means infs~q 2(d) = 0. Thus, given € > 0, there exists 6 > 0
such that

0 <sup{|f(y) — f(2)]; y,2 € XN Bs(x)} <e,

or, equivalently,
if y,z € X N Bs(z) then |f(y) — f(2)] <e.

This is clearly equivalent to the continuity of f at x.
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III. Ifz €Y and Y C X, then w(f;z) < w(f;Y).
Indeed, since # € Y, there exists § > 0 such that Bs(x) C Y. Hence
wlf; X N Bs(x)] = wf; Bs(x)],
since Bs(xz) C X, and consequently
w(f;z) = inf Q) =infw[f; X N Bs(z)]
>0 >0
< w[f; XN Bs(x)] = w[f; Bs(z)] <w(f;Y).
The last inequality follows from the fact that Bs(x) C Y and therefore

sup{[f(y) — f(2)I; v,z € Bs(x)} <sup{|f(y) — f(2)]; y,2 € Y}.

IV. If w(f;x) < C, then there exists § > 0 such that w(f;y) < C for every y € X with

ly = || < 4.
Since (lsiné () < C, by the definition of limit there exists ¢ > 0 such that
—

Q) =w[f; X N Bs(x)] < C.

Now, given y € X with ||y — z|| < 6, that is, y € Bs(z), take n > 0 such that
B, (y) C Bs(x); then
wifyy) = fwlf; XN B,(y)] < wlf; X N By(y)]
< w[f; XNBs(x)] <C.

V. If X C R" is closed (respectively compact), then for every C' > 0 the set
{zeX; w(fiz) =C}

is closed (respectively compact).

In fact, let (yx) be a sequence in {z € X; w(f;z) > C} such that y — y in R™.
We shall prove that y € {x € X; w(f;2z) > C}, and hence that this set is closed.

Indeed, since (yx) C X and X is closed, we have y € X. On the other hand, it
cannot happen that w(f;y) < C, because otherwise, by item IV, there would exist
d > 0 such that w(f,z) < C for all z € X with z € Bs(y), and in particular, since
yr — ¥y, there would exist kg € N such that w(f,yx) < C for all k& > kg, which
contradicts the fact that w(f,yx) > C for all k, because

(yr) C {z € X; w(f;z) > C}.

Hence w(f;y) > C and therefore y belongs to this set.

With these preliminaries in place, we now prove the characterisation theorem for
integrable functions.
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Teorema 3.28 A function f: A — R, bounded on the block A C R", is integrable if and
only if the set Dy of its points of discontinuity has measure zero.

Proof: Assume first that med(D;) = 0 and let € > 0. We must exhibit a partition P of
the block A such that

ZvaolB < €,

BeP
as in (3.13). Indeed:

For the given € > 0, and using the fact that the set D; has measure zero, there exists
a countable covering {C!} of Dy by open cubes such that

10 < &
2 lC g

where K = M — m (the difference between the supremum and infimum of f on A) is the
oscillation of f on the block A. For each z € A\ Dy, take an open cube C! containing x

such that the oscillation of f on the closure C” is less than . Since A is compact,

Ac (Uo)u( U (J>

$EA\Df

€
) 2vol A
from the open covering

we can extract a finite subcover
AcCciu---uciuciu---ucy.

Let P be a partition of A such that each (open) block B € P is contained either in one
of the cubes Cj or in one of the cubes C7. More precisely, if

A = [ak, bk],
k=1

then P = P, x --- x P,, where, for each k = 1,... n, P, is the set consisting of ay, bg,
together with the k-th coordinates of the vertices of the cubes C and C7. The picture
below illustrates how to ‘prolong the faces’ of five cubes in order to obtain a partition of

the block A.

We denote generically by B’ those blocks of P that are contained in some cube C.
The remaining blocks (necessarily contained in cubes C7) will be denoted by B”. The

sum of the volumes of the blocks B’ is less than %, and on each block B” the oscillation
€

Therefore, the partition P gives

of f does not exceed

2vol A
ZwB volB = ng, vol B’+Zw3,, vol B”
BeP B’ B
€
< K / i
< ZVOIB +2VO1AZVOIB
Bl B//
€ €
< K— 1A =e.
5K " 2volA ° ¢
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Figure 3.9:

Hence f is integrable.

Conversely, suppose that f is integrable. We shall prove that Dy has measure zero.
Let € > 0 be given. For each ¢ € N* set

(N

D, = {xeA; w(f;z) > -

~

We shall prove that
+o0
Dy =D (3.19)
i=1

Indeed, as observed above, if w(f;x) > 0 then f is discontinuous at x. Since D; collects
the points of A such that w(f;x) > — > 0, the function f is discontinuous at every point
i
of D;, for any i. Therefore D; C Dy for all ¢, and hence U:r:of D; C Dy.

1
On the other hand, if x € Dy, then w(f;z) > 0. Choose ig € N* such that 0 < — <
)
w(f;x). Then
1
r e Dy = {x €A w(f;z)> ,—},
o
and thus Dy C (J > D;, which proves (3.19).

To show that D has measure zero, it suffices to prove that, for each i € N*, med(D;) =
0. Indeed, since f is integrable, for the given € > 0 there exists a partition P of the block

A such that c
Z wpvol B < -.
BeP t

Let B’ denote those blocks of the partition P that contain some point of D; in their
interior. By item III, since x € B’ and B* C B’, we have w(f;z) < w(f;B’) and

1
therefore w(f; B') > —. Hence
i

% Z vol B’ < Z wp vol B’ < Z(,UBVOIB < S

B’'eP B'epP BeP
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Multiplying by ¢ we obtain

Z vol B’ < e.

B’epP

Now, clearly

p.c (U B)uy.
B'eP
where Y is the union of the proper faces of the blocks B € P that contain some point of D;.

We know that Y has measure zero. By Proposition 3.21 we conclude that med(D;) = 0,
which completes the proof. O

Definition 3.29 A bounded set X C R™ is said to be J-measurable (Jordan-measurable)
if, taking a block A C R™ that contains X, the characteristic function xx : A — R is
integrable.

When X is Ja€ “measurable, its volume is, by definition, the integral of its character-
istic function:

VolX:/AXX(x)d:L’. (3.20)

As a consequence of Lebesgue’s theorem, we shall now prove an important characteri-
sation of J-measurable sets. Before doing so, recall that the boundary 6 X of a set X C R"
is the set of points x € R" such that every neighbourhood of = contains points of X and
points of R™\ X. One has the disjoint union

R” = X°U§X U (R™\ X)°.

Figure 3.10:

Teorema 3.30 A bounded set X C R™ is J-measurable if and only if its boundary has
measure zero.
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Proof: Given a block A D X in R”, let D be the set of points of discontinuity of
the characteristic function yx : A — R. Note that the possible discontinuities of the
characteristic function occur on the boundary of X, that is, D C 6X, because

A=X"UXU(A\X)

and, moreover, the characteristic function is continuous on X° and on (A '\ X)°.

On the other hand, a point of 6 X which is not a point of discontinuity of xyx must
belong to dA. Indeed, suppose otherwise that x ¢ D, x € 6X and yet x ¢ JA. Since x
is a point of discontinuity of yx, it is clear that x € A; and as z ¢ JA, it follows that
x € A°. Hence there exists ¢y > 0 such that B, (x) C A.

Choose ng € N sufficiently large so that nio < €9. Then, for every n > ngy, we have
Bijn(x) C By () C A.

Since we are assuming that x € 6.X, for each n > ng there exist points y,, 2, € Bi/n(x)
with y, € X and z, € A\ X. The sequences (y,) and (z,) then converge to =, with
Xx(yn) = 1 and xx(z,) = 0. It follows that x is a point of discontinuity of yx, which is
a contradiction. Thus, a point of X is either a point of discontinuity of yx or a point
that belongs to the boundary of A. In other words,

X =DU(6X NJA).

The figure below (Figure 3.11) illustrates the case where z € 60X and x ¢ D.

Figure 3.11:

Note that if X C A° then 0X = D. Since 0 A has measure zero in R”, it follows that
med(0X)=0 <= med(D)=0.

Indeed, if med(0.X) = 0, then D C 6X implies med(D) = 0, since every subset of a
set of measure zero has measure zero. Conversely, assume that med(D) = 0. To prove
that med(dX) = 0, it suffices to show that med(6.X NdA) = 0, since a countable union
of sets of measure zero has measure zero. However, X NJA C §A and med(dA) = 0, so
med(6X NJA) = 0.

Thus med(6X) = 0 <= med(D) = 0, and, in view of Lebesguea€™s theorem, X is
J-measurable <= med(D) = 0, which proves the theorem. O
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Note 1: We have just proved that the characterisation of J-measurable sets does not
depend on the choice of the block containing them. Likewise, the value of vol X is also
independent of the block A taken in the definition.

Note 2: A block is a J-measurable set, and its volume has already been determined in
Note 7 of Section 3.1. A ball (open or closed) is Ja€ “measurable because its boundary is
a sphere, which has measure zero, according to Note 3 of Section 3.2. More generally, if
X C R"is a bounded set whose boundary is a countable union of C'-surfaces of dimension
< n, then X is J-measurable.

Definition 3.31 Given a bounded set X C R", we may consider a block A D X in R"
and define the inner volume and outer volume of X, respectively, by

vol int X = /XX(:L') dr and vol ext X = /Xx(ZB) dzx.
Ja A

Recalling the definitions of the lower and upper integrals, we see that

vol int X = sup{s(xx;P); P € p},
vol ext X = inf{S(xx;P); P € p},

where p is the set of all possible partitions of the block A.
We denote by P a partition of the block A and by B the blocks of P. Then
s(xx; P) = Z mp vol B and S(xx;P) = Z Mg vol B,
BeP BeP
where mp = inf{xx(x); x € B} and Mp = sup{xx(x); v € B}.
Observe that:

s(xx; P) is the sum of the volumes of those blocks of P which are contained in X,
since if B C X then mp = 1 and if B is not contained in X then mp = 0. Consequently,

Similarly:
S(xx; P) is the sum of the volumes of the blocks of P that have a non-empty intersec-

tion with X', because if B € P is such that BN X # () then M = 1, whereas if BNX = ()
then Mp = 0. Thus

S(xx; P) = Z vol B.

BeP
BNX#0

To fix ideas, see the figure below (Figure 3.12):

Note 3: Let X C R" be a J-measurable set. Then X has volume zero if and only if it
has outer volume zero. Indeed, if vol X = 0, then

/A vx(@) dz =0,



3.3. CHARACTERISATION OF INTEGRABLE FUNCTIONS 135

~—1

Figure 3.12:

and consequently f_AX x(x)dx =0, that is, vol ext X = 0.

Conversely, if vol ext X = 0, then, since

OSAM@MSZM@W,

it follows that vol int X = 0. Therefore vol X = 0.

From what we have seen above,
vol ext X = inf{S(xx;P); P € ¢"},

where * is the set of partitions P of the block A such that the blocks of P have some
point in common with X. In this case

S(xx; P) = Z vol B.
BeP
BNX#0D

Since vol ext X = 0, for every € > 0 one can find a block A D X and a partition P
of A such that the sum of the volumes of the blocks of P that intersect X is less than e.
This is equivalent to saying that, given € > 0, there exist blocks By, ..., By in R" with

k
X CBU---UB, and ZvolBi<e.

=1

Now consider a compact J-measurable set K C R™. Then vol K = 0 if and only if
med(K) = 0. Indeed:

If vol K = 0, then vol ext K = 0 and, as seen above, given ¢ > 0 there exist blocks
By, ..., B in R" such that

k k
Kc|JB; and ) volBi<e,

i=1 i=1

that is, med(K) = 0.
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Conversely, if med(K) = 0, then given € > 0 there exists a countable open covering
K C UBZ- with ZVOIBZ- < €.
i=1 i=1
Since K is compact, there exist blocks By, ..., B, with

k k
K C UBi and ZVOIBZ' <€,
i=1 i=1
which implies that vol ext K = 0 and consequently vol K = 0.

For example, the boundary X of a bounded set is always compact (because 0X C X,
0X is closed, and X is compact). Hence the following statements are equivalent:

(a) X is J-measurable;
(b) 0X has measure zero;

(c) 0X has volume zero.

Note 4: A set which is not compact and has measure zero is not necessarily J-measurable.
For instance, the set of points of a block A whose coordinates are rational is countable,
hence has measure zero, but is not J-measurable, as seen in Note 7 of Section 3.1, since its
characteristic function is not integrable in any block containing A. However, if X C R"”
is J-measurable and has measure zero (or more generally has empty interior), then its
volume must be zero, because, as no block is contained in X, we have vol X° = 0, and
therefore vol ext X = 0; and since X is J-measurable, vol int X = vol ext X. Thus, if
X C R™is J-measurable, we have

volX =0 <= X°=1.

Indeed:

If vol X = 0, then vol ext X = 0, which implies med(X) = 0 and consequently X° = ().
Conversely, if X° = (), then, for the reason given above (no block is contained in X and
hence vol X° = 0), we have vol X = 0.

Teorema 3.32 Let X,Y be J-measurable subsets of a block A C R™. Then:

(a) XUY, XNY and A\ X are J-measurable;
(b) vo(X UY) +vol(X NY) =vol X +volY.

Proof: Assertion (a) follows immediately from the three inclusions below, which in turn
follow from the definition of boundary:

A(XUY)CaXUaY, I(XNY)CoXudy, 9A\X)cCIAUIX.
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Assertion (b) follows from the equality

Xxuy + Xxny = Xx + Xy,

which is straightforward to verify. O

Corollary 3.33 If X,Y are J-measurable and X° NY° =), then

vol(X UY) =vol X + vol Y.

Since (X NY)° = X°NY"°, the hypothesis of the corollary means that the J-measurable
sets X and Y have at most points of their boundaries in common.

Definition 3.34 We now define the integral of a bounded function f : X — R whose
domain is a J-measurable set X C R". To this end, consider a block A C R" that
contains X and extend f to a function f : A — R by setting

(2) = flz), ifxeX,
0, ifre A\ X.

We say that f is integrable on X if the function f is integrable on A and we define

/Xf(x)dx:/Af(x)dx.

Evidently, the above definition does not depend on the choice of the block A D X.

Note 5: One sometimes writes f = fyx, meaning that f(x) = f(z)xx(z) for all x € A.
This is an abuse of notation corresponding to treating a product as zero when one factor
is zero and the other is not defined. What is actually true is that f = fxx.

Teorema 3.35 Let X C R" be a J-measurable set. A bounded function f : X — R is
integrable if and only if the set Dy of its points of discontinuity has measure zero.

Proof: First note that every point of discontinuity of f is also a point of discontinuity
of f. In fact, if f is discontinuous at a point = € X, there exists a sequence (z) of points
in X such that f(xj) does not converge to f(z). It is then clear that x is a point of
discontinuity of f, and thus D r C Dj.

Hence the points of discontinuity of f are either points of discontinuity of f or lie on
the boundary of X, since
A=X"UoXU(A\X)°,

and f is continuous on (A \ X)°. Thus

Dy € Dj € Dy UOX.
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Since X has measure zero, we see that med(Dy) = 0 if and only if med(Df) = 0. By

definition, f is integrable on X if and only if f is integrable on A, that is, if and only if
med (D) = 0. This proves the theorem, as summarised in the scheme below:

f integrable on X <= f integrable on A

I I
med(Dy) =0 <= med(Dj) =0.
O

Definition 3.36 Let f: X C R” — R be bounded on the J-measurable set X C R™. We
define the lower integral and the upper integral of f on X by

Af(:c)d:czif(:c)dx and Zf(g;)dx:Zf(x)dw,

where A is a block in R™ containing X and f : A — R is the extension of f which vanishes
on A\ X.

Clearly, f is integrable on X if and only if its lower and upper integrals coincide on
X.

Proposition 3.37 (Properties) Let f,g : X — R be integrable functions on the J-
measurable set X C R"™ and let C' € R. Then:

(a) The functions C'f and f + g are integrable on X, and
/(Cf)(x) da::C/ (@) da.
X X

(b) If f(x) < g(x) for all x € X, then

/Xf(x)dxg/Xg(x) da.

In particular, if m < f(x) < M for all z € X, then

mvong/f(x)deMvolX.
X

(¢c) The function x — |f(z)| is integrable and

/Xf(x)dm S/X|f(x)|dx.

In particular, if | f(z)] < K for all v € X, then

/X f(z)dz

< K vol X.
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If f is continuous and X s connected, then there exists xog € X such that

/Xf(x) dx = f(z9) vol X.

Proof:

(a)

Let A C R™ be a block containing X and let f,§: A — R be the extensions of f and
g which are equal to zero on A\ X. The extensions of C'f and f+g are, respectively,
Cf and f+ §. By hypothesis, f and § are integrable on A, and therefore so are C'f
and f 4 §. Hence C'f and f + g are integrable on X and, moreover,

/X(Cf)(x)dx = /Cf ydz =C /f Ydz =C /f

/X (@) + g(a)] dz = / @) + @) de = [ fa)do+ / 3(z) du

A

= Xf(x)der Xg(x)dx.

If f(z) < g(z) for all z € X, then f(z) < j(z) for all z € A. Thus

/f dx—/f dx</ (a:)d:c:/Xg(x)dyc.

If m < f(zr) < M for all z € X, then
mxx(z) < flz) < M xx(z) forallze A.

Hence

mvolX—m/AXX(x)dx—/AmXX(:U)de/Af(x)dx—/Xf(x)dx

and similarly
/ f(z)dx < M vol X.
b
Let g : X — R be defined by g(z) = |f(z)|. Clearly D, C Dy, because if z € D,
then there exists a sequence (z,) C X such that x, — = and |f(x,)| A |f(z)|. It

follows that f(z,) # f(z), that is, z € Dy. Hence g is integrable. The extension
g : A — Ris given by g(x) = |f(x)|, where f : A — R is the extension of f.

Therefore
< [ 1f@) s
A

_ /j@@) dr = /X f(2)) da

If | f(x)] < K for all # € X, then

x)dz x)dz

x)dx

§/X|f(m)|dm§KV01X.
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(d) Since X is connected, f(X) is an interval whose endpoints are m and M, where
M = max,cx f(z) and m = mingex f(x). As

1
vol X /Xf(x) d

belongs to this interval, it equals f(zo) for some zy € X.

Proposition 3.38 Let X, Y C R" be J-measurable sets. A function f: X UY — R is
integrable if and only if its restrictions f|x and f|y are integrable. In this case,

Xuyf(:v)dx+ Xﬁyf(:z:)dx:/Xf(ﬁ)dx%—/yf(x)da:.

In particular, if X and Y have no interior points in common, then

[t - /X f(e) do + /Y f(z) da.

Proof: Let D, Dx and Dy denote the sets of points of discontinuity of f, f|x and f|y,
respectively. Then
DxUDy CDC DxUDyUOX UDOY.

We know that 90X and dY have measure zero. Therefore
med(D) =0 <= med(Dyx)=med(Dy) =0,

that is, f is integrable if and only if f|x and f|y are integrable.

In this case, let A be a block in R™ containing X UY and let f: A — R be the
extension of f which vanishes on A\ (X UY'). Then f = fxxuy. From the equality

Xxuy + Xxny = Xx + Xy

we obtain
[+ fxxay = fxx + fxv,

and hence

/Xuyf(x)da:Jr mef(:c)d:z: = f(x)d$+Af($)Xme(x)dx

Il
—

Flao)xx () de + / Fa)yw () de
A A
f(z)dz + /Y f(z)de.

I
—

X
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If X and Y have no interior points in common, then vol(X NY’) = 0, in view of Note 4
of this section. On the other hand, there exists K > 0 such that |f(z)] < K for all
x € XUY. Thus

flz)dz| < K vol(XNY)=0.

XNy

Consequently, [ xny J () dz = 0, which completes the proof. O

Corollary 3.39 Let f: X — R be integrable on the J-measurable set X C R". IfY C X
is Ja€ “measurable and X \'Y has empty interior, then

Aﬂ@m—ﬁﬂ@m
‘Af@Mx:Af@Mm

Proof: The corollary follows from the last part of Proposition 3.38, applied to the
equality X = (X \ Y)UY, together with the following observations:

In particular, if U = X°, then

1. The set X \ Y is J-measurable, since if we take a block A D X, then
X\Y=Xn(A\Y),
and we may apply Proposition 3.32 to X and A\ Y.

2. As the J-measurable set X \ Y has empty interior, its volume is zero (by Note 4).
Hence

f(z)dz =0.
X\Y

/Xf(x)dm: X\yf(x)d:er/Yf(x)d:p:/Yf(a;)dx.

3. If U = X°, then OU C 0X, so U is J-measurable. Moreover,

Therefore

X\ U =0X

(Lf@ﬂx:Lf@Mm

has empty interior, and thus
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O

Note 6: The corollary above shows that, when considering integrals over J-measurable
sets in R™, there is no loss of generality in assuming that such sets are open. It should be
noted, however, that not every bounded open set is J-measurable. There is a particular
case in which we can define the integral of a function f : U — R defined on an open set
U C R", even if U is not J-measurable: this happens when f has compact support, where

supp(f) = {z € U; f(z) 20} .

If supp(f) is compact, we can define

| @do= [ rwa

where K is any J-measurable set such that

supp(f) c K C U.

The integral exists provided the set of points of discontinuity of f has measure zero.
Such a compact J-measurable set K also exists. Observe that

d(supp(f),R"\U) =4d > 0.

Using the maximum norm, we can cover the compact set supp(f) by finitely many closed
cubes of edge length < § and take K as the union of these cubes.

Figure 3.13:

The integral [ « f(x)dr clearly does not depend on the set K chosen under these
conditions, since f vanishes outside supp(f).

3.4 Repeated Integration

The reduction of an integral over an n-dimensional block (multiple integral) to a sequence
of n integrals of functions of one variable (repeated or iterated integral) is an effective
computational tool.
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Clearly, to reduce an integral over a block to successive integrals over intervals, it
suffices to consider A = A; x Ay C R™", where A; C R™ and A, C R™ are blocks, and
to show that any integral over A can be obtained by integrating first over A; and then
over A; (or vice versa). This is what we shall do. Points of A; x Ay will be written as
(x,y), where x € Ay, y € Ay. If f: Aj x Ay — R is integrable, its integral will be denoted
by

Amj@wmw.

Given f: A; x Ay — R, for each € Ay we write f, : Ay — R, where f.(y) = f(x,y),
y € Ay. Thus f, is essentially the restriction of f to the na€ “dimensional block {x} x As.
Even assuming f to be integrable, the function f, may, for some values of x € Ay, fail to
be integrable. Indeed, the set of points of discontinuity of f has measure zero in R™"
but its intersection with some block {x} x Ay may fail to have na€ “dimensional measure
Zero.

Example. Let f:[0,1] x [0,1] — R be defined by
0, ifx# %,
flz,y)=<X1, ifx= % and y is rational,
1

0, ifz =3 and y is irrational.

The set of points of discontinuity of f is the vertical segment {1/2} x [0, 1], which has
measure zero in R2. Thus f is integrable. For every z # %, fz :]0,1] — R is identically
zero and hence integrable. But fy/, is discontinuous at every point of the interval [0, 1],
and therefore is not integrable.

Teorema 3.40 (Repeated Integration) Let f : A; x Ay — R be integrable on the
product of blocks Ay C R™, Ay C R"™. For each x € Ay, let f, : A5 — R be defined by

fm(y) = f(I,y) and set
_A2 A2

The functions ¢, : Ay — R thus defined are integrable and satisfy

/w(@dw: (e) di = / f () de dy,
Ay Ay A1 xAs

that is,

[ sepaa= [ @ (_AQf(%y) dy) - [ as (:f«c,y) ).
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Proof: Let P = P, X P, be an arbitrary partition of A; x As. The blocks of P are the
products By X By, where By € P, and By € P,. The lower sum of f with respect to the
partition P is

s(f; P) = ngleQ vol B; vol By

= Z < Z B, x By VOlBQ) VOlBl.

B1eP1 \B2eP

For every x € By, one has mp,xp, = mp,x5,(f) < mp,(f:). Hence

Z mp,xp, Vol By < Z mp,(f:) vol By < p(z).

BoePs BoePs

Since this inequality holds for every x € B;, we conclude that

Z mp, x5, Vol Bs < mp, (¢).
BaeP>

Therefore
s(f; P) < Z mp, () vol By = s(p; P).

BieP;

Similarly, one proves the inequality S(p; P1) < S(f; P). Thus
s(f; P) < s(p; P1) < S(p; P1) < S(f; P)

for any partition P = P, x P,. Since f is integrable, it follows immediately that ¢ is

integrable and
/ p(x) de =/ fz,y) dz dy.
Al Al ><142

The assertion concerning v is proved in the same way. O

Corollary 3.41 If f: Ay x Ay — R is integrable, then

[ sewaiy= [ a (:f(:c,y) w) = [ a (:f(:c,y) ).

and there are three further analogous equalities, obtained by taking lower and upper inte-
grals inside the parentheses. In particular, if f, and f, are continuous for all x € Ay and
y € Ay (for example, if f is continuous), then

/Amf““”y)d”y:/m dx( A2f<x,y>dy) =A2dy( A f(as,y>dx).

Proof: Indeed, everything we did with x in the previous theorem can equally well be
done with y. O



Chapter 4

Differential Forms

4.1 k-Forms

In what follows, R™ will denote a vector space of dimension n (not necessarily the usual
Euclidean space we work with). We fix an arbitrary basis {ej,...,e,} of R". Thus, if

v € R", then

U= @11+t Aptp,

that is, we can write any vector of R™ as a linear combination of the basis elements, and

this combination is unique.

Definition 4.1.1 A 1-form on R" is a map
w:R" — R
which s linear, or, in other words, a linear functional. Hence

WA + Aao) = Mw(&r) + Xow(&n), V&L, ER™, VAL €R.

We denote by (R")* the set of all 1-forms. This set is called the dual of R” and is

a vector space over R, endowed with the operations
i) (w1 +w) () = wi(§) +wa(§),

i) (Aw)(€) = Aw(§),

for all wy,ws € (R™")* and X € R.

145
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We shall now show that (R")* is a vector space of dimension n by exhibiting a basis
{X1,..., X, } of linear functionals, defined for each i = 1,...,n by
X;:R" — R
5 =a1e1+ -+ ane, +—— Xz(f) = Q;.
In fact, X;(§) = a; is the i-th coordinate of the point € R™. Note that, since
e;=0e; + -+ lej + - - + Oey,
we have
0, i#7.
In view of this, we shall prove that {X7,..., X} is a basis of (R")*. Indeed:

I, 1=y,
Xi(ej) = {

1) Xi,..., X, are linearly independent, because if
MXy+ -+ AX, =0,
(where 0 denotes the zero 1-form, the neutral element of (R™)*), then
(MX1 4+ AN Xo)(e) =0,

that is,
MXi(e) + -+ NXi(e) + -+ AN Xn(e) =0,

whence \; =0 forall i =1,...,n.

2) Xq,..., X, span (R™)* since, given w € (R")*, we have, for every

E=aeg + -+ ane, € R",

w(€) = wl(ae + -+ aney)
= aw(er) + -+ aw(ey)
= Xi(§wle) +-+ Xn(§) wlen)
= (MXi+ -+ X)),
where \; = w(e;) are real numbers.
Therefore, there exist Aq,..., A\, € R such that
w=MXi+ -+ X)),
which proves that the subspace generated by X7, ..., X,, is precisely (R™")*, that is,

X1,..., X,] = (R")".
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Example 4.1.2 Consider a uniform force field F in R3 and define
w:R> — R, E— w(é) = (F€).

The value w(§) represents the work done by the field F in displacing a particle through

z A

Figure 4.1: Force field

a distance equal to the modulus of £&. The map w is clearly a linear functional, by the

linearity of the inner product.

Definition 4.1.3 A 2-form on R" is a map
W’ R"xR" — R

which is bilinear and antisymmetric.

Thus, for all £1,&1,& € R™ and all \y, \| € R, we have

WM&+ NEL, &) = Mw? (61, &) + Mw? (€1, &),

and

W2(51752) = —W2(52>51)-

Example 4.1.4 Let R? be the plane. Given & = &1y + Exey and 1 = nieq + nges in R2,

set

W RP xR R, (1) — e =| S

mo M = &2 — M.
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Then w?* is a 2-form onR2. In fact, writing £ = &1e1+Exea, N = Ne1+12es, V = Vie1+1ses,
we have

SG+m S+m
1241 120}

§1+m)ve — (S +m2)1n

&vy — &ou) + (e — Mory)
SERES) mo

V1 Vo V1 Uy

= W& )+ Wi (n, ).

W(E+nv) =
(
=

+

Similarly, one proves that

WA M) = AW (€,m), VAER.

It remains to prove antisymmetry. Indeed,
WHE,m) = &imy — m& = —(m&a — &) = —w?(n,€).

Remark 4.1.5 Geometrically, the modulus of w?(&,n) is the area of the parallelogram
generated by the vectors & and 7.

Xz

xy

Figure 4.2:

Recall this fact:

The area of the parallelogram above is given by
nl-h=Inl - [§]sind =& Anl.

On the other hand, writing £ = &1e1 + &xe0 + Oes, n = mreq + nges + Oes, we have

ik
Enn=1& & 0| =1(0,0,&m2 — &am).
m m2 0

Hence || An|| = [§1m2 — Eam.
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n

Figure 4.3:

Example 4.1.6 Let R® be Fuclidean space and consider & = &eq + &xes + Ese3, 1 =
nier + moes + mzes in R3. Define

FROXR DR, () et = | 8
1 2

In view of the previous example, w? is a 2-form on R3. From a geometric point of view,
the modulus of w*(&,n) is the area of the projection on the xyxo-plane of the parallelogram

generated by the vectors & and 7.

Xs

&

3 %{/14%7//////&'..

Xi

Figure 4.4:

Example 4.1.7 Let R? be Euclidean space and let v be a uniform velocity field. Define

w R R — R, (&) — (& n) =[v,,m] = (v,EAn).

Indeed, writing v = viey + vaeg + v3es, § = 1eq + §aea + §3€3, N = Mier + Maez + n3e3,

we obtain
V1 Vg Vs

WEN =& & &
m mn2 73
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It is not difficult to show that w? is a bilinear, antisymmetric form and hence a 2-form.
From a physical point of view, w*(&,n) represents the flow of the fluid crossing the area

of the parallelogram generated by the vectors & and 7.

z A

Nxé&

Figure 4.5:

The set of 2-forms w? : R x R® — R, which we denote by A%(R"™), just as in the case

of (R™)*, is a vector space endowed with the operations

(Wi + w3) (&1, 62) = wi (€1, &) + w3 (61, &),

(Awi) (61, &2) = Awi (€1, &2).

As we know, if R™ is a vector space of dimension n and B : R” x R” — R is a bilinear
form, then, given a basis 5 = {e1,...,e,} of R", we associate to B a matrix [B]g, called

the matrix of the bilinear form B in the basis /3, as follows:

If&=aye;+---+ane, and n = bre; + - - - + bye,, then

B(el,el) B(el,en) b1

B =[a1 - an] : - : :
B(en,e1) -+ Blen,en)| |bn

This correspondence is bijective. Moreover, there is an isomorphism between bilinear
forms and their corresponding matrices [B]g If B:R"xR" — R is bilinear and sym-
metric, then [B]g is a symmetric matrix and vice versa. Similarly, the same holds for

antisymmetric forms.
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From the above, if w? : R" x R™ — R is a bilinear, antisymmetric form, then [w?(£, n)]

is of the type

0 By B3 <+ Bim- B,

— B 0 Bas <+ Baymo Bay,

— B3 —Bas 0 <o B3 Bz,
—Bin-1) —Bom-1) —B3m-1) - 0 Bun-1)n
L —Bin —Ba, —Bs, T _B(n—l)n 0 ]

A basis for the set of all matrices of this type is given by matrices of the form

0 0 --- 0 --- 0]
0O 0 - 1 --- 0
0 -1 «-- 0 --- 0|
0 0 oo 0
0 0 0 - 0]

where the entries 1 and —1 occupy positions which are symmetric with respect to the

main diagonal. A natural question then arises:
How many matrices of this type are there?

It is easy to see that the number of such matrices is related to the number of positions
that can be occupied by the entry 1 in the ‘upper triangle’ (or equivalently by —1 in the

‘lower triangle’). Clearly, this number is given by the sum of the arithmetic progression

(n—1,n-2,...,1),

e (5)

Therefore, in view of the isomorphism described above, the dimension of A%(R") is

(5)

Later we shall exhibit a basis for this space whose number of vectors is precisely
n
Nk

W R XRYx - x R" — R

that is,

Definition 4.1.8 A k-form is a map



152 CHAPTER 4. DIFFERENTIAL FORMS

which is k-linear and antisymmetric. In other words:
7’) wk(Alfl + )‘/1517527 s 7£k> = )\1(.(.)]{(51,52, s 7£k) + )\llwk(517627 s 75]6)7

”) wk(giufim SR 7€lk) = (_1)uwk(€1’§2’ cee >§k)7

where (i1, 1, ...,1) is a permutation of (1,2,... k) and

)0, if the permutation is even,
1, if the permutation is odd.

Generalising the previous examples, we can consider as an example of a k-form on R"
(k <n) the map

Eun &2 o e
wk:RnX"'XRn—)Rv (fl,...,gk.)»—>wk(§1,...,§k)= :521 1522 :£2k )
k1 e o Sk

where
§1 = &uer +&nea + - F ke + -+ Einen,
o =&x1e1 + gy + - -+ Eopep + - -+ Eonen,

§k = kel + Epaea + -+ &g + -+ Epnln.

(:)

ways of choosing examples of this kind, it being enough to choose k among the n directions

Note that there are

e,...,e, in R™
In fact, w*(&y,. .., &) represents the ‘oriented volume’ of the projected parallelotope
with edges &, . ..,&. (oriented because it carries a sign).

Denoting by A*(R") the set of all k-forms on R”, and using an argument analogous

to that used for 2-forms, we find that the dimension of A*(R") is
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4.2 Exterior Product

Definition 4.2.1 Let wy,ws : R” — R be 1a€ “forms and consider the map

wp Awsy : R" x R" — R,

wi (&) wa(&r) ‘
wi(&2) wa(&2) |

This map is called the exterior product of the 1-forms w, and ws.

(€1,62) > (w1 Awa)(&1,62) =

Now, setting
w:R" —RxR,  {r—w() = (wi(§), w2()),
we have, in particular,

w(&r) = (wi(&1),wa(&1)),  w(&a) = (Wi(§2), w2(82)),

and therefore (w; A ws)(&1,&2) is the area of the parallelogram with sides w(&;) and w(&5)
in R2.

2
R" ) R
gw /E)‘i>\ o SZ) w(SZ)
&
O\)z(gw) @(éw)
wl&)  wilé) @
Figure 4.6:

We observe that the exterior product w; A wy defined above is a 2-form. Indeed,
linearity follows from the fact that w; and ws are 1-forms (and hence linear maps), and
from the fact that the determinant is linear in each of its row vectors when the others
are kept fixed. Antisymmetry also follows from the determinant, as an intrinsic property

which can be found in standard analysis textbooks.

From what we have seen, it makes sense to define the map

¢ : (Rn)* X (Rn)* — A2(Rn), (wl,w2) — ¢(W1,W2) = w1 N\ wsy.
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Since the determinant of a 2 x 2 matrix is a bilinear, antisymmetric form in its row

vectors, we see that ¢ is a bilinear, antisymmetric map on (R™)*.

Let X1,...,X, be basic 1-forms, that is, for each i = 1,...,n define
X, :R" > R, arer + -+ ane, — a;,

as in the previous section.
Given i,j € {1,...,n}, what does the exterior product X; A X; represent?
By definition, for &, & € R™ we have

(Xi A XG) (61, &2) = §2E§3 %Eg; ’

which is the area of the parallelogram with sides w(&;) and w(&s).

However,

w(ér) = (Xi(&), X;(&)),  w(&) = (Xi(&), X;(&)).

&

wx@z),xl(sz)]

X [x(&)x(€0]

Figure 4.7:

Thus (X; A X;) (&, &) represents the ‘oriented area’ of the parallelogram generated by

the vectors & and &s.

Note that

(Xi A XG) (61, &) = ‘
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In particular, (X; A X;)(&1,&) = —(Xi A X;)(&1, &), which implies (X; A X;) = 0, for
all (61,6) € R* x R™.
Thus
(1) XinX;=—-(X;NX;), (2) X;ANX;=0.

We claim that the exterior forms (X; A X;) with ¢ < j are linearly independent, and

there are @ of them.

Indeed, suppose ;. a;;(X; A X;) = 0 (where 0 denotes the zero 2-form). Then, for

k.l e {l,...,n} with k <[, we have

> ai(Xi A Xj)(ex, 1) = 0. (1)

1<J
On the other hand,
(Xi AN X;)(er, e) = ‘ §2EZ€))
Let I = {i,j} and J = {k,[}. There are two cases:
(1) I=J.
In this case, if ¢+ = k then necessarily 57 = [, and if + = [ then necessarily 7 = k.

However, since ¢ < j and k < [, the only possible case would be ¢ = [ and j = k, which

would give [ =1 < j = k, a contradiction. Therefore

(Xi A X;)(ex, 1)

(2) I #J.
In this case there exists i, € I\ J. Thus iy differs from every j € J, and hence
X, (em) =0 for all m € J. Say iy =i. Then

(Xi A Xj)(ex, &) = '

because X; (ex) = X;, (e;) = 0.

Returning to (1), we obtain

Z aij(XZ- A Xj)(ei, Gj) = O,

1<J
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which implies a;; = 0 for all ¢, with ¢« < j, proving that these vectors are linearly

independent.

When we consider the exterior forms X; A X; with ¢ < j, how many such forms are
there?

There are as many as there are sets [ = {7, j} with ¢ < j, and there are

()

such sets.

0 XinXy XiNXs .0 XiNKX,
Xo N Xy 0 XoNXs ... XoNX,

: : 0o ... :
Xo N Xy XN Xy XpAXs ol 0

We shall now prove that the exterior products {X; A X, }ic; span A*(R™), that is,
[Xi A Xjlicj = A*(R").
Indeed, let w? € A%(R™) and &, € R™. Then
WiHE ) = WP (i aiei,ibje])
i=1 j=1

w(arer + - + anen, bieg + -+ byey)

arbiw?(ey, e1) + - -+ + arb,w? (e, e,)

agbiw? (e, e1) 4 - -+ + asb,w? (e, €,)

+ o+ o+

anbiw?(en, €1) + - - 4 anbpw?(en, €,)

Z Z aibjuﬂ(ei, Gj)

33 XX, (o)

= XX e e eg) + 3 X)X, () e )

= Z Xi(©)X;(mw?(eise5) + Z —Xi(E)X;(mw? (e e).

Renaming indices ¢ = k, 7 = [ in the second sum, we obtain

P(Em) = 3 XX (e e) + 3 —Xul€) Xi(mw(er, ).

1<j <k
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Setting [ = 7, k = 7 in the second sum, we have

W& = ) Xi(OXmwilene) + Y —X;(O)Xi(n)w? (e ;)

i<j i<j
= Y [Xd(OX5(n) — X5 Xi(m)w’ (e, e)
i<j
= ) (XiAX)) (&)W (ere))
i<j
= (Zw2(€i,€j) X’L/\X]> (5777)7
i<j
which proves the claim.
Definition 4.2.2 Let wy,...,wy (kK < n) be I-forms on R™ and consider the map

WA Aw R x - xR" — R
(§1a§2a"'7€k) = (W1/\"'/\Wk)(gl,é-g,..-,fk;),

where

wi(&) - wi(&)
(Wi A Awe)((&1,62, -, &) = | U
wi(e) - wr(&)

Such application is called the exterior product of the k-forms.

Now, setting
Wi R —Rx...xR, & (wi(€),...,wi()),

we have, in particular,

It follows that

(WiA. . . Awp) (€L, . .., &) = oriented volume of the parallelotope defined by w(&),...,w(&) in R,

which is precisely the determinant above.
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Note that the exterior product (wy A...Awy) defined above is a k-form, thanks to the

linearity of the maps involved and to the antisymmetry of the determinant.

In this way, the map

¢: (R x ... x (R — AR

(W1, Way e wWg) > W1 AL Awg

is well defined and is multilinear and antisymmetric.

Let Xi,..., X% be basic 1-forms on R", and let {iy,1s,...,7;} be a permutation of
{1,2,...,k}. Then, analogously to the case of A2(R™), (X;, AXi, Ao . AX; ) (&1, &2, -, &)
represents the oriented volume of the parallelotope generated by the vectors (&1, &, ..., &)

projected onto the subspace X; X, ... X

ik -
Our aim from now on is to determine a basis for A*(R™). We claim that the exterior

forms X;, A X, AL AKX, with 1 <14y <y < ... <14 < n, are linearly independent,

that they are in number and, moreover, that they span A*(R"), that is, they form

n
k
a basis of this space. Before that, however, we need some preliminary results, as we shall

see below.

Lemma 4.2.3 Let p, 9 : R" x --- X R" — R™ be k-linear maps and let G be a gener-
ating set of the vector space R™. If (&1, &, .., &) = ¥(&1,&, ..., &) for every k-tuple
(&1,&9,...,&k) of elements of G, then v = 1.

Proof:
We use induction on k.

If k=1, then p, ¢ : R® — R are linear maps. For every z € R" we have

r=Y b, &EG,

since G generates R".

Therefore

ola) = ¢ (D) =D ()
= ZO@W&) =1 (Z Oéifi) = ().

Assume now that the statement holds for (k — 1) and let us prove it for k. Indeed:
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For each £ € G, define (k — 1)-linear maps

pe :R"x - x R" — R, Pe :R" x - xR" — R

805(7717 s 77716*1) = 90(7717 s 777167175)7
7705(771» s ank—l) = ,Ivz)(nla cee 77716—175)‘

By the hypothesis of the lemma, ¢, and )¢ take the same values on all (k — 1)-tuples
of elements of G. By the induction hypothesis we conclude that ¢ = ¢, that is,

90(7717 cee 777k—17§) = ¢(7717 B ﬂ?k—h@;

for all ny,..., -1 € R" and € € G.

On the other hand, every element 7, € R” is a linear combination of elements of G.

Thus, for arbitrary ny,...,n._1 € R™, we have
Pl ome) = P, e, ) i)
= Z (s - M1, &)
= Z (- M1, &)
= @/)2(771, k),

as required. O

Lemma 4.2.4 Let ¢,1) : R" x --- x R" — R™ be k-forms and let {e1,eq,...,e,} be a
basis of R™. If for every increasing sequence i1 < ... < i of k integers between 1 and n

we have
90(62'17 S 7eik) = ¢(ei17 s 7eik)’
then o = 1.

Proof:

Let (j1,72,---,Jk) be an arbitrary k-tuple of integers between 1 and n. If there are

repeated indices in this list, then

ol€ej,...,e5) =1v(ej,...,e5,)=0.
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Indeed, suppose there exist j; # j, with e;, = e;, = ej,. Then

O(€jyeves sy €y €) =W (€15 €heye s €y €y ),

since ¢ is antisymmetric. Consequently
20(€j1s- -3 €jgy -3 €jgy---s€5,) =0, Ve, ..., ej-

Analogously, we obtain the same conclusion for .

If, however, all indices in this list are distinct, then by means of successive transpo-
sitions we can rearrange the numbers ji,..., jr into increasing order 7; < ... < ig. If v
transpositions are needed, the antisymmetry of ¢ and 1, together with the hypothesis of

the lemma, give

(p(ejlw"?ejk) = (_1)V(p(ei17"'veik>
= (_1)Vw<€i1>""eik)
= w(ejl,...,ejk).

Thus, the k-linear maps ¢ and 1 satisfy the hypothesis of Lemma 1, and are therefore
equal. O

Proposition 4.2.5 Let { X1, Xs,..., X} be a basis of (R™)*. The k-forms
X=Xy, AXy, A A X

k)

where I = {iy < ... < iy} runs over the subsets of {1,...,n} with k elements, form a
basis of A¥(R™). In particular,

dim A*(R) = < Z ) .

Proof:
Let w* € A¥(R). For each I = {i; < ... <} set

ar =wh(e;,, ..., €i.),

where {e;,, €;,, ..., e;, }C R" is the basis corresponding to the basis of the dual space (R)*,
that iS, {Xi17 Xi27 c. ,sz}c (Rn)*
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The ka€ “form

p = ZOHXI
T

= Z wk(eil,...,eik)Xil/\XiQ/\.../\Xik

1<i1<...<ip<n

is such that, for every increasing sequence J = {j; < ... < ji} of integers between 1 and

n, we have

olej,....e5) = ZaIXI(ejl, e €5,)
I

= Z (wk(eil,...,eik)Xil/\XZ-Q/\.../\Xl-k)(ejl,...,ejk)

1<it<...<ip<n

= Z wk(eil,...,eik) (X“/\XZQ/\/\X%)(eh,,ejk)

1<i1<...<ip<n

On the other hand,

Xll (eh) Xiz (611> Xlk (611>

X (e;) X (e X, (e
(Xz’l/\Xiz/\--~/\Xik)(€j17~”76jk): 1( Jz) 2( ]2) . k( J2>

Xi1 (ejk) Xi2 (ejk) Xik (ejk)

There are two cases to consider.

1) I=1J.

In this case, iy = js for all s € {1,...,k}. Indeed, we argue by induction on k. The
case k = 2 has already been proved for 2-forms. Suppose it holds for (k — 1) and let us
prove it for k.

Since iy = j, for all s € {1,...,k — 1}, we must have i), = ji. Otherwise, if iy, # jg,
then iy = j,, for some ro € {1,...,k — 1}, and also j = i, for some sy € {1,...,k—1}.
Hence

Tk = Tsy < Tp—1 <, e = Jro < Jk-1 < Jk;

which is impossible. It follows that is = js for all s € {1,...,k}, and therefore

X (ej1) Xiz(ejl) Xik(ejl)

Xi1 €4y Xiz €iq Xl €q
(Xll/\Xw/\/\Xlk)(eh,,e]k): . (]) . <]) . : k<]) =1.

Xi1<ejk) XiZ(ejk) Xik(ejk)
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2) I #J.
In this case there exists iy, € I such that iy, ¢ J, more precisely, iy, is different from

every element j € J. Hence

X, (ej) =0, Vj e J
Thus (X;, AXi, Ao AXG, ) (e, - -, €5,) = 0, since it is the determinant of a matrix whose
ka€ “th column is zero.

Therefore, going back to the computation of ¢(ej,, ..., e;, ), we obtain
k
O(€jyy..ve) =w (€, ., €j)-

By Lemma (2.1.4) it follows that ¢ = w”, that is, w* = >, a; X;. This proves that
the k-forms X7 = X;; A X;, A ... A X;, span A*(R™). Moreover, these forms are linearly
independent, because from any linear combination ¢ = ), a;X; = 0 we deduce, for every
J={j1 <...<j}, that

0= gp(ejl, .. .,€jk) = ZO{[X[(ejl, . 7€jk) = Q.
I
O
Remark 4.2.6 The previous proposition is the most important fact about k-forms. An
important special case occurs when k = n. Then dim A¥(R") = 1. This means that, up to

a constant factor, there is only one antisymmetric form of degree n on an n-dimensional

vector space.

Proposition 4.2.7 Let ¢ : R" X --- X R" — R™ be a ka€ “linear, antisymmetric map.
If &, ..., & € R™ are linearly dependent, then

@(617527 cee 7571) =0.

Proof:
One of the vectors &, ..., & is a linear combination of the others. Say
§1=ado + ... + ady.
Then

k
@(khk?v""kk) = ¢<Zai§i>§27---a€k>

=2
k

= > aip(& b &) =0,

=2



4.2. EXTERIOR PRODUCT 163

because

(2,82, 83,- - &) = (&3, 82,83, &) = o = 06k, &2, 88y - &) = 0,

since ¢ is antisymmetric. O

Corollary 4.2.8 The exterior product wi A ... A\ wg is a nonzero ka€ “form if and only

if wi,...,wi are linearly independent in (R™)*.

Proof:
Since the map ¢ : (R")* x ... x (R")* — A¥(R") defined by (wi,ws,...,wy) =

w1 A ... Awy is ka€ “linear and antisymmetric, it follows from Proposition (1.2.7) that if
wiA...Awg # 0, then wy, ..., w; are linearly independent. Conversely, if these functionals
are linearly independent, we may extend them to a basis of (R™)*. Let {ey, es,...,e,}C R™

be the basis corresponding to this dual basis. Then for all 7, 7 between 1 and k we have

1L i—j.
“’i(ej):{o oy

Hence (w;(ej));; is the k x k identity matrix, and it follows that
(wi Ao Awg)(er,eg, ... ex) = 1.

In particular, w; A ... Aw, #0. O
Corollary 4.2.9 If k > n, then A*(R") = {0}.

Proof:

Indeed, in this case any k vectors in R™ are linearly dependent. O

Remark 4.2.10 k-forms of the type (wy A ... Awg), where wy,...,w, € (R™)*, are called
decomposable. It also follows from Proposition 1 that every k-form can be written (in
a nond€ “unique way) as a sum of decomposable k-forms.

In fact, not every ka€ “form is decomposable, but Proposition 1 shows that every ele-

ment of A*(R™) can be written as the sum of decomposable k-forms.
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Take a basis { X1, Xo,..., X, } of (R™)*, dual to the basis {ej, e, ...,e,} of R". Sup-
pose that the linear functionals wy,...,wy € (R")* are expressed in terms of the basis

{X¢}1gz’§n as
wi:ZaiSXS, (’1,:1,,k)
s=1

What are the coordinates of the exterior product w* = w; A ... A wy, with respect to

the basis {X,} (J = {ji1,... < jr}) of the space A*(R")?

We know that there is a unique expression

wl/\.../\wk:ZaJXJ
J

with
g = wk(ejl, ey ejk) = (wl VAN wk)(ejl, e ,ejk) = det(wi(ejs))lgﬁgk

for every J = {j1 < ... <jr} C{1,...,n}.
Now, the matrix A = (a;;), with k rows and n columns, determined by the coordinates

of the functionals w; relative to the basis { X}, is characterised by

Indeed, since w; = > a;s X for i =1,...,k, we have
wi(ej) = aﬂXl(ej) 4+ ...+ ainj(ej) + ...+ aan(ej) = aij.

For every subset J C {1,...,n} with k elements, the matrix A has a k x k submatrix,
denoted by A, obtained by selecting the & columns of A = (a;;) whose indices j belong
to J. Then

ay =det(A;) = det(w;(ej,)).

Thus
(wl/\.../\wk) :ZQJXJ:Zdet<AJ)XJ,
J J

the sum being taken over all subsets J C {1,...,n} with & elements.

More explicitly,

wl/\.../\wk = Z det(wi(ejs))1§i7sgk (le /\Xj2 /\/\X] )

1<j1<g2<...<jr<n
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In particular, if £ = n we obtain
Wi A Awy =det(A) (X AL A X)),
where A = (a;;) is the changea€ “ofa€ “basis matrix from { X7, Xo, ..., X, } to {wy,wo, . ..

We now use this result to establish a useful identity for determinants.

Lagrange’s Identity

Let A = (a;;) be an n x k matrix, n > k, and A* its transpose. Then

det(A"A) =) “[det(A,)]?,

where J runs over all subsets of {1,...,n} with k elements and A is the matrix obtained

from A by choosing the k rows whose indices belong to J.

Indeed, we have

apn a2 - Qg apx Q21 0 Qpl
Q21 Q2 - Q2 Q2 Q22 -+ Aap2
A= . A= "
ap1 Qp2 - Apk Q1 A2k - Ak
Let vq,...,v, € R™ be the column vectors of the matrix A. For each j = 1,...,k we
have v; = (ayj,...,a,;). If {X1,Xs,..., X, }C (R")* is the canonical basis of the dual
space, then
n n
Xi(Uj) = Xz (Z arjer) = Z arin<€r) = Q5.
r=1 r=1
As we saw earlier, for every subset J = {j1 < ... <ji} C {1,...,n} we have
XJ(Ul,’UQ, c. ,Uk) = (le VANPIRAY Xjk)<'l)1, . ,Uk)
Xj1 (Ul) J2 (Ul) T Xjk (Ul)
| X)) Xjy(v) - X ()
Xji(vk) Xjp (k) -+ Xy (vk)
Aji1 - Ajp1 @31
| G2 G2 @jy.2
Ajik - Ajak Ak
a1 Aji2 a1k
Qi1 Q452 Qo ke
= |7 ] = det(Ay).
@jp1 Gjy2 @k




166 CHAPTER 4. DIFFERENTIAL FORMS

Now consider the functionals wy, ..., w; € (R™)* given by

n
W; = E am-XT.
r=1

Then, for any 1 <1i,j5 <k,

wi(vj) = Zarin(Uj) = Z Qi Qg
r=1 r=1
so w;(v;) is the (7, j)a€ “entry of the product matrix A*A.

It follows from the expression obtained earlier,
Wi A Awg = Zdet(AJ)XJ,
J

that

det(A*A) = det (Zamarj)
1<ij<k

r=1

= (wl/\.../\wk)(vl,vg,...,vk)

= ) det(Ay) X;(v1, 00, .., v1)
J
= ) det(A,) det(A,)

= ) [det(A,)]*.

J

4.3 Exterior Product of Monomials

Let wy, ..oy Wk Wit 1, oy Wiy be 1-forms on R™. Then (wyA... Awy) and (w41 A ... Awgy;) are,
respectively, a decomposable k-form and a decomposable [-form, which we shall simply

call binomials.

We now define the exterior product of a k-form by an [a€ “form, or, in other words,
of two binomials (w; A ... Awg) and (wgi1 A ... Awgy), obtaining as a result a (k + [)-form
of the type

w1 A oA\ wg /\wk+1 VAN /\warl'

More precisely, we wish to obtain a bilinear map

oo AF(RY) x AUR™) —s AFH(RT)
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such that, in particular, for decomposable forms we have
(W1 A e AWk, W1 A oo A Wgag) = W1 A coe AWk A Wit 1-00 A Wiepg, (1)

for any 1-forms wy, ..., W, Wei1, -y Whii-

Before proceeding, let us consider two preliminary results.

Lemma 4.3.1 Let p,v : R® x R" — R¥ be bilinear maps. Let Gy and Gy be generating
sets of R™ and R™, respectively. If p(v,w) = ¥(v,w) for allv € Gy and w € G, then

p=1.

Proof:
Let Gy = {z1,...,2,} and Go = {y1,...,y,}. Take x € R" and y € R™. Then

p q
x:Zaixi, y:ijyj.
i=1 j=1
Thus
p q
plz,y) = ¢ <Z i, ijyj)
i=1 =1
p q ’
= Z Z aibjo(xi, y;)

i=1 j=1
= Zzaibj¢(xi>yj)
i=1 j=1
= 9 (Zaiiﬂi,zbjyj)
i=1 j=1

Lemma 4.3.2 Let {ej,ea,...,e,} and {€1,...,€,} be bases of R and R™, respectively.
For each pair (i,7) of integers with 1 < i < n and 1 < j < m, suppose we are given a
vector w;j € RE. Then there exists a unique bilinear map ¢ : R® x R™ — R* such that

(ei, €j) = w;; for every pair (i, ).

Proof:
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Any two vectors z € R™ and y € R™ can be written as

n m
T = E Q;€q, Yy = E Bjé]7
i=1 j=1

where the coefficients «; and 3; are uniquely determined.

Define the map ¢ : R" x R™ — R* by

Plx,y) =D aiBjwi.
(A
Clearly, ¢ is bilinear and satisfies the condition ¢(e;,€;) = w;j, since the coordinates
of e; in the basis {e;} are 0 when ¢ # k and 1 when ¢ = k, and likewise the coordinates of
€; in the basis {€;} are 0 when j # k and 1 when j = k. Uniqueness follows from Lemma
(4.3.2). O

Returning now to our problem, note that since the vector spaces AF(R™) and A'(R")
are generated by decomposable forms, Lemma (4.3.2) implies that if there exists a bilinear
map

@ AFR") x AR") — AMHR™)
satisfying (1), then it is unique.
Take an arbitrary but fixed basis { X1, Xo,..., X} of (R™)*. Foreach I = {i; < ... <

ir} and J = {igy41, ..., ik} contained in {1,...,n}, set
QO(X],XJ) == Xi1 /\Xzz VAN /\sz /\Xik+1 VAN /\Xik+l7 (2)
where X] = Xil /\ng VAN /\Xlk and XJ = Xik+1 VAN /\XikJrl‘
Recall that the k-forms X; = X;, A X, Ao A X, where [ = {i; < ... < i} runs
over the subsets of {1,...,n} with k elements, form a basis of A*(R").
Moreover, since there are < Z > ways to choose k elements among the n elements of
{1,...,n}, we can enumerate these choices by defining, for each i € {1,..., Z )}, a set

I; collecting the elements of the ia€ “th choice. Thus there is a bijective correspondence

between (i,7) € {1,..., ( Z )} X {1,..., ( fln )} and the pairs (I;,J;). Hence, by
(2) and Lemma (4.3.2), we can extend ¢ to a bilinear map from A*(R") x A'(R") into
Ak-l—l(Rn)_

Consider the diagram in Figure 4.8:
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X

n n @
R x...x(R")* e .
k+1 fatores 7T ARHxAR") — ~ — A"R")

\/

o
Figure 4.8:
where
QWi Why Wht 1y oy Whpt) = WL A AWp AWry1 A+ A Wiy,
(Wi Wy Wi 15+ Whpt) = (W1 Ao A Wy Wi A=+ A Wit

We shall prove that ¢ o a = .

According to Lemma (4.2.3) of the previous section, it suffices that these maps coincide

on any (k + [)-tuple of elements of {X;, Xs,...,X,,}. Thus it is enough to prove that

(gOOOé)(Xil,...,Xik,Xik+1,...,Xik+l) = CI)(Xil,...,X k-+17"‘7XiIc+l)

%]

Xi
or, equivalently, that
(poa)( Xy AN ANX, Xy A AKX ) =X AN X AN AN XG ) (3)

for any (k +I)-tuple (X;,,..., X;,, Xi,,» ..., Xj,,,) of basis elements.

The equality in (3) is obvious when one of the sequences (i1, ..., i) O (iki1, ..., 0511)
has repetitions, since both sides are then equal to zero. If neither sequence has repetitions
and, moreover, iy < ... < i and ig41 < ... < iy, then the equality in (3) is precisely
the definition of . Finally, if the sequences have no repetitions but at least one of them
is not in increasing order, we may rearrange both into increasing order by successive
transpositions. Since each transposition of two indices changes the sign of both sides of

(3), we conclude that the equality in question holds in all cases.

Given w* € A*(R") and w' € AY(R"), we usually write w*Aw! € A*(R") instead of
o(w*, W), In particular, if

Wr=wi A...Awp and wl:wkﬂ/\.../\wkH,
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then
WA = (W, W)
= wlA---Awk/\wk+1/\-~-/\wk+l
= WP AW
We claim that if wf = wi AL Aw}, Wy =wW? AL Aw? and w! = wpy 1 A ... Awpgy, then
(AMwh 4 AW AWt = MA(WF A wh) + XA (wh A Wh). (4)

Indeed, by the bilinearity of ¢ we have

(Al + Xwh ANt = p(Awh + Xowh, Awh)
= MAp(wh, wh) 4+ Adp(wh wh)
= MAWIAW) + Ao (WhAWh
= MAWFAWY) + A A (WhAWh).

Thus, for decomposable forms, the distributive property (4) holds.

The exterior product of decomposable forms enjoys the following properties.

(5) Anticommutativity:
WAL = (=1)M WAL

Indeed, let w* =wi A ... Awy and W' = w1 A ... A wpgs. Then

WAL = (W Wh)

= WA AW AWk AN Wy

= (=DFwppr AWt A AW AWiga A o A Wigy)

= (=D*(=DF . (=D wrpr AwWrga A AWppr Awr AL A W)
= (=DM (W'AW).

(6) Associativity:

(WA AW™ = WA (W AW™).

This is immediate.
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Now, given w* € A*(R") and w' € AY(R"), how can we characterise their exterior

product w*Aw'?

According to Proposition (1.2.5) of the previous section, we have

wk:E arXr and wl:E ay Xy,
I J

where

(i) I ={i1 <...<ix}and J = {j; < ... <} run over the subsets of {1,...,n} with

k and [ elements, respectively;
(ii) ar =w*(eiy,...,€;,) and ay = w'(ej,, ..., ej,) (where e; is the basis of R");

(111) XI:le/\ng/\/\sz andXJ:Xh/\ij/\/\Xﬂ

Thus, by the bilinearity of ¢, we have

WAL = @(Za;X[,ZaJXJ>
I J
= ZZ&J@JSD(XI,XJ)
I J

= ZZO&[G&J(X]KXJ)
I J
= ZZ&[&J(X[/\XJ).

Therefore, for (&1, .., &k, ka1, -+, &krr) ER® X ... X R™,

wkxwl(gh s 7€k7§k+17 cee a§k+l) = Z ZQIQJ(XIAXJ)(€17 cee 7€k7€/€+17 s 7§/€+l>‘
J

I

More explicitly,

wkxwl(&, cee 7€k7 §k+17 cee 7€k+l)

= Z Z wk(eil,...,eik)wl(ejl,...,ejk)(Xi /\/\Xlk/\le/\/\
1<i1 <. <, <n 1< <...<51<n
Equivalently,
wkxwl(gla-"7€k7€k+17"'7€k+l) = Z Z <_1)Vwk(ei17"'7eik)wl(€j17“

1<i1<...<ip<n 1< <...<ji<n

(X A AKX AN X AN XG) G e St -

le)(gla

: ’ejk)

s §k+l)a

RIS
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where
0, if the permutation {iy, ..., 4, J1,...,J1} is even,
UV =
1, if it is odd.

The exterior product w¥Aw' enjoys the properties

(1) Anticommutativity:
(2) Associativity:

(3) Distributivity:

(A1l + MW AN = MA(WFAWY) + A A (WEAWY).

Indeed, it suffices to prove these properties for decomposable forms, since the general
case, as we have seen, reduces to sums of decomposable forms. However, this has already

been done above.

4.4 Induced Forms

Definition 4.4.1 LetT : R" — R™, v — T.v, be a linear map and consider its transpose
T (R™)" — (R™)", w— T"w,
where

T"w:R" — R
v o— (T"w)(v) = w(T.v).

Thus T is well defined, thanks to the linearity of T and w, and moreover the relation
(T*w)(v) =w(Tw), Ywe (R™)* VveR" (1)

holds.
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Remark 4.4.2 If T :R" — R™ and S : R™ — RP? are linear maps, then
(SoT) =T"0S*.
Indeed, let w € (RP)* and v € R". Then

[(SoT)w|(v) = w[(SoT)(v)]
— w(S(rv)
(S )( v)
— (5] 0)
(7 0 5] (o)

This notion can be generalised. For every k, the linear map 7" : R® — R™ determines

a new linear map
T : AFR™) — AR
w — Trw
defined by
(T*w)(vi, ..., v) = w(Tvy, ..., Tvp), Yw € A*R™), Yvy,..., v, € R™ (2)

The transformation T is said to be induced by T on forms of degree k. The ka€ “form
T*w is called the form induced by T' on R™, or the pulla€ “back of the ka€ “form w to the

space R".

Proposition 4.4.3 Let T : R"™ — R™ be a linear map. Then:
(a) T*(wy + wy) = T*(wy) + T*(ws), for all wy,wy € AF(R™).
(b) T*(aw) = aT*(w), for all « € R and all w € A*(R™).
(c) T*(wy A wg) =T*(wy) ANT*(ws), for all wy,we € (R™)*.

Proof:

(a) Let vy, ...,vx € R" and wy, wy € A¥(R™). Then

[T (1 + w2)] (01,00, 00) = (wn + w3) (Ten, T .., To)
= wi(Tvy,Tvy, ..., Tvg) +wa(Tvy, Tvg, ..., Tug)
= (T*wl)(vl, Vo, ... ,”Uk) -+ (T*wg)(vl,vg, Ce ,Uk).
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(b) Let @ € R and w € A¥(R™). Then

[T*(aw)|(vi,va, ..., v) = (cw)(Tvy, Ty, ..., Tu)
= aw(Tv,Tvy,...,Tvy)
= o[T"(w)](v1,v2, ..., vg).

(c) Let wy, wy € (R™)* and vy, ve € R™. Then

[T (wy Awg)](v1,v2) =

Remark 4.4.4 Let T : R" — R™ be a linear transformation and denote by
T A"(R™) - A"(R")

its induced map (without specifying the degree r in the notation). Then, for w* € A¥(R™)
and w' € AY(R™), we have

T (w” Aw') = (T w™) A (T*wh).

Indeed, this relation holds, as we have seen, when w* and w' are decomposable forms.

Now, for general w* and w', we can write

Hence
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Consequently,

T (w* ANw') = ZZaIaJT*(XI/\XJ)

= i ioqoz](T*X] ANT*X )
(e (e
() o (5e)

= T*(w") AT*(wh).

Let {X1, Xo,..., X, }C (R™)* and {Y7,...,Y,,} € (R™)* be dual bases of the bases
{e1,...,en} and {f1,..., fin}, respectively. Let T' = (¢;;) be the matrix (with m rows and
n columns) of the linear transformation 7" : R — R™ with respect to these bases, that
is,

T@j :Zt”fz, ] = ]_,...,TL. (3)
i=1
Then the matrix of 7% : (R™)* — (R™)* is the transpose of the matrix 7.
Indeed, if
T =) 1;X;,  i=1...m,
j=1

then, from (1), for k € {1,...,n} we have

(T*Y;)(er) = Yi(T(ex)), i=1,...,m.

Thus
(Z %ZJXJ> (ek) = Y; <Z tlkfl) .
j=1 =1

Equivalently,

> EXilen) =) tuYi(f)-

j=1 =1
Hence

%ik:tika ViE{l,...,m}, VkE{l,,n}

Thus

T*Y; =) X, di=1,...,m. (4)
j=1
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We now determine the matrix of the induced linear transformation
T* . A¥R™) — A¥(R")

with respect to the bases (Y7) = (Y;, A...AY;,) and (X;) = (X;; A... A X},), where the
sets I = {iy < ... <ix}and J = {j; < ... < ji} run, respectively, over the subsets of
{1,...,m} and {1,...,n} with k elements.

We have T*Y; € A¥(R") and therefore

T"Y; = Z ary Xy,
J

when J = {j; < ... < jx}. Moreover,

le <€j1> e Xjk (e.jl)
XJ<6]177€jk>: =1.
le (ejk) T Xjk (ejk)

Consequently
(T*Y7)(ejys - - -5 €5,) = Qry.
Thus, from (2) and (3) we obtain
ary = (T*YI)(GJ'U s 7€jk)
= }/](Tejl, ce ,Tejk)
Y;i (Tejl) o Y;k (T€j1)
Y;i (Tejk) e Y;k (Tejk)
Yi, ZT:l trjy fr) e Y (Z:«il tm‘lfr>

Vo (S tod) o V(S o)
Z;nzl t?"jli/;l (fr) T Z:jlzl t?"J'lY;k<f7")

S Y (f) e S Y ()

ti1j1 e tikh

tiljk tikjk
= det(t,j,),
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withl <pu<kand1l<v<k.

Denoting by (77;) the k x k submatrix obtained from the matrix 7" = (¢;;) by selecting

all entries ¢;; with < € I and j € J, we have

T*Y; =Y det(Tys) X,. (4)

Thus, for each I = {i; < ... < i} C{1,...,m},

T*Y; =Y det(Tys) Xy, (5)
J
where J = {j; < ... < ji} runs over the subsets of {1,...,n} with k elements. There are

m
k
n
k
sets of type J. Consequently, the matrix of 7™ has
n
k
m
k

columns. It is the transpose of the matrix whose entries a;; = det(T;;) have as row

sets of type I and

rows and

indices the subsets I = {i; < ... <1} C{1,...,m}.
In particular, if m = n = k, then the linear map
7" : A"(R") — A"(R")
satisfies
T*(YiN...AY,) =det(T) (X1 A ... AN X)), (6)
where T = (t;;) is the matrix of 7' : R — R" as above.

More particularly, if the bases in (R™)* coincide, then

T(Xi N ANXy) =det(T) Xy AL N X).

We now examine how the coordinates of a form w* € A*(R") change when we perform

a change of basis in R".
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Let {e1,e2,...,e,} and {€1,€,...,€,} be bases in R" related by

n

ejzzawé“ ]:1,,n (8)

i=1
Their dual bases {X1, Xs,..., X, } and {X 1, X,,..., X, } in (R")* satisfy
yi:Zainj, Zzl,,n (9)
j=1
Indeed, if for each i € {1,...,n} we have X; = Z?Zl b;; X;, then, for all i,k €
{1,...,n}, we obtain:

(1) Xiler) =Y by Xj(er) = bu,

i=1

(11) 71(@@) = 71 <Z alkél> = Z alkyi(él) = k-
=1 =1
Thus, from (i) and (ii) we get a;; = b, which proves (9).

For any subsets I, J C {1,...,n} with k elements we denote by A;; the kxk submatrix
of A = (a;j) formed by the entries a;; with i € I and j € J.

From the above it follows that

7[ = Zdet(AU)XJ.
J

Indeed, X; € A*(R") and therefore X; = > ar; Xy, where ajy = X;(es). Hence
7[ = 2J71<€J)XJ- IfI= {’Ll <. .. < ’lk} and J = {jl < ... < ]k}, then, by (9),

Xil (6j1) T sz <6j1)

Y[<€J) _ XZ1 (ejz) Xik <€j2)
72'1 (ejk) ylk <€jk)
2221 &ierT(ejl) T 2?21 aikTXr(eﬁ)
Z;L:I ailTXT(ejk> T Z?:l aikTXT<€jk)
Qiyjy " Qiggy
Qiyg, 0 Qiggy,

= det(AU).
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Thus, if a form w* € A*(R™) admits the expressions
wk:ZOéJXJ and wk:ZBIYI
J I

with respect to the bases (X ;) and (X;), we have

= Zﬁ]Zdet<A1J)XJ
1 J
= ZZB[ det(AU)XJ
1 J
= Z [Zdet(A[J)ﬁ[ XJ.

Comparing the coefficients of X7, we obtain

ay = Z det(A]J)/BI.
I

Remark 4.4.5 In the language of classical tensor calculus, a k-form is described, in each
basis of R™, by its coordinates vy, so that a change of basis in R™ induces a change of

coordinates for the form according to the expression above.

It is worthwhile to note the particular case in which w € A"(R™). We then have the
bases {X} and {X} of A"(R"), with X = X; A...AX, and X = X, A... AN X, and
X = (det A)X, where A = (ay;) is the changed€ “ofd€ “basis matriz. An arbitrary n-form

w € A"(R™) can be written as

w=aX =X,

with o = (det A)S, keeping in mind the relations

n
Xi: E ainj,
j=1

which define the matriz A.
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4.5 The Volume Element

Let R™ be an n-dimensional oriented inner product space. Recall that to orient a vector
space is to choose a basis, call it positive, and declare positive every other basis whose

change-of-basis matrix has determinant greater than zero.
We now define an n-form called the volume element on R"™. First, choose a positive

orthonormal basis {ej, es,...,e,} in R™. Given a sequence of vectors &1, ...,&, € R™, for

each 7 =1,...,n we can write
n
& = E Qij€i-
i=1

Let (A;;) be the resulting n x n matrix, and define the map

w R"x ... xR*" — R

(roein) — w(&r, .o, &) = det(A).

Clearly w € A*(R") is alternating and n-linear. We claim that w does not depend on the
choice of basis we made. To prove this, we introduce the Gram matriz G = ((§;,&;)),

whose entry in the i-th row and j-th column is the inner product (;, ;). Indeed,
(& &) = <Z i€k, Za'sjes>
k=1 s=1
- Z Z AiQsy <€k7 €s>

k=1 s=1
n

= E Qi Ay -

k=1
It follows that G = A*A, where A* is the transpose of A. In fact,
D op k1R Yy Qg1
AAY = | : :
Zk ApnQrr - Zk ApnQkn

(€60 - (&6

<§m €1> T <§m §n>

Thus
det G = det(AA*) = det A - det A* = (det A).
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In particular, det G > 0, and det G = 0 if and only if the vectors &1, ..., &, are linearly
dependent.

We conclude that

w(&i,..., &) = j:\/det(@afj»v

where the sign + or — is the sign of det A. The equality above shows that the definition of

w is independent of the choice of basis. Thus w(&y,...,&,) > 0 when the vectors &, ..., &,
form a positive basis, and if &;,. .., &, are linearly dependent then
w(fl, cee 7571) = 0.

In the case where R" is the n-dimensional Euclidean space, | det(A)| is the volume of
the parallelepiped with edges &1, ..., &,, so that w(&,...,&,) is the oriented volume, as

mentioned in Section 1.

4.6 The Cross Product

Let R? be three-dimensional Euclidean space.

The cross product
x R R — R (&,n) — & xn,

is the bilinear map defined as follows.

Consider the canonical basis {ey, ez, €3} C R3. Set

€1X€1:€2X62:€3X63:O7

€] X g = —€9 X €1 = €3,
€y X €3 = —e3 X €9 = €1,
€3 X €1 = —€1 X €3 = €9.

Now, given arbitrary vectors & = (z1,x9, x3) and 1 = (y1, Y2, y3), we have

Exn = (wie; + xaeq + x3€3) X (Y1€1 + Y22 + Ys€3)
= (z2ys — z3y2)er + (z3y1 — z1y3)ea + (T1y2 — T2y1)es.
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Clearly & x € = 0. Thus the cross product is a bilinear and antisymmetric map. Note
that the inner products (£ x 1,§) and (¢ x n,n) are zero, and consequently the cross
product £ x n is perpendicular to the plane spanned by these vectors (if & and n are

linearly dependent, they do not span a plane, and in this case we have £ x n = 0).

For each n € R?, define w, : R* = R by

wy(&) = (1, €).

Then w, is a 1-form. Consider the map

p:R* — (R®*

1

N W,

(i) ¢ is linear:

Let 11,1, € R? and o, 8 € R. Then

wim—s—ﬂng (g) = <O'/771 + 57727 5)
= <O”]17 £> + <57727 €>
= Wy () +why,(€), VEER®

any

(ii) ¢ is one-to-one.

If w) = w!  then w) (€) = wl (€) for all € € R®. Thus

n2’ m
<771 _7]27£> :07 vé €R3

In particular, taking & = n; — 12, we obtain

<T]1 — T2, Th — 7]2> =0,

which implies n; = ns.
Since ¢ is surjective by construction, it follows that ¢ is an isomorphism. Hence R3

and (R3)* are isomorphic vector spaces.
Now, for each n € R3, define
wz R*xR* — R

(61,&) +— wi&1, &) = (1,6 X &).
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The map w% is a 2-form, which motivates the definition of

iR — A(RY)

2
n o w,.

Arguing as we did for the map ¢, we obtain an isomorphism between R3 and A?(R?).

In fact, n = 3 is the only dimension in which this happens, since

dim A*(R") = n <= n = 3.

Indeed,
!
: 2 R™) — n _ n! '
dm AE) =15 ) = 3 o)
Thus,
n! B n(n—1)(n—-2)! ) B -
Am—2) T T sy e o sn=0e=n=s

Given 1 = (x1, 72, 73) € R? and the projections X; : R® = R (i = 1,2, 3), we have
w}7 = [L’1X1 + JTQXQ + ZL’3X3.
Indeed, take & = (y1, Y2, y3) € R®. Then

(331X1 + 22X + 5U3X3) (€)

21X1(8) + 22 X2(€) + 23X3(E)
= 1Y + X2Y2 + 23Y3
= (0,6) = w,(&).

Thus we have the isomorphism
T1€1 + Toes + T3e3 € R?’ ~ l’le + .I‘QXQ + I3X3 € (RS)*
For n = (z1, 22, x3) we claim that

w,27 = .’131<X2 A Xg) -+ .Z'Q(Xl A X3) + l’g(Xl A XQ)
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Indeed, with & = (y1, y2,y3) and & = (21, 22, 23),

(21(X2 A X3) + 29(X1 A X3) 4 23(X1 A Xz)) (&1,&)

(&) Xs(&) ’ (&) Xs(&) ‘4—95 X1(61) Xa(&)

Xz(& X3 52 X1 52) X3(§2) ’ Xl(fz) X2(§2)
— Y2 Y3 o Y1 Y3 oz Y1 Y2
- Z9 23 2 Z1 23 3 Z1 22

= 21 (Yoz3 — 22y3) + T2(y123 — 21Y3) + T3(Y122 — 2192)
= <777§1 X §2>
= w727(£1762)'

Therefore we have the isomorphism

Tri1€1 + Toeo + T3€3 € Rg =~ [E1<X2 VAN Xg) + I’Q(Xl A X3) + JJg(Xl N XQ) € A2(R3)

On the other hand, given 7, = (y1, 2, y3) and n> = (21, 22, 23),

W7171 A W%Q = (X1 +1Xo +ysXs) A (21 X7 + 20X + 23X3)
y122(X1 A Xo) + y123(X0 A X3) + 9221 (X2 A X0)
+y223(Xa A Xz) + Y321 (X3 A X1) + y322(X3 A Xo)
= (122 — 2192) (X1 A Xo) + (Y223 — 22y3) (X2 A X3)
+(y123 — 2193) (X1 A X3)

2

= wm Xn2°

Thus

1 1 _
Wy, A Wpy = Wy iy

From now on, our aim is to generalise the cross product.
We define the ‘cross product’
§1 X X &y
of n vectors in R™*! as the vector £ € R"™! such that, for every n € R*!,

<777£> - det(777€1a s 7571)7

where det(n, &1, ..., &,) is the determinant of the (n+ 1) x (n + 1) matrix whose columns
are the vectors 1, &1, ...,&,, in this order. That is, if

n= (yh < 7yn+1>7
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&1 = ($11, Tog, - - - 7I(n+1)1)7
§2 = (112, T2, - - - 7$(n+1)2),
£n = (Ilna Tony e - 7x(n+1)n>7

then the cross product & x --- x &, is the vector ¢ € R™"! such that, for every n € R**!,

Y1 T S AT
Y2 21 o Top

(777 €> =
Ynt1 Tmant o Tlathn |00y (ns)

The coordinates of the vectors

n+1

gjz § Tij€i, j:]-a"'7n)
=1

with respect to the canonical basis of R"*! form a matrix M = (x;;) with (n + 1) rows

and n columns. We denote by M; the n X n matrix obtained from M by omitting its
i-th row.

By the definition of the cross product, for each i = 1,...,n 4+ 1 we have

<€i7€1 X X §n> = det(ei7£17- .. 7571)

0 z T12 cee T
0 xo X22 st Top
1 zp X2 o Tin
0 Tn+1)1 T(m+1)2 " T(ntl)n

- (—l)i—H det(M(i)),

where the last equality follows from expanding the determinant along the first column.

Therefore
n+1

€ x G = S (=1)H det(Miy)es

i=1
is the expression of the vector &; x --- x &, in the canonical basis of R**.
From this, or directly from the definition, we see that the cross product is an n-linear

antisymmetric map from R"*! x ... x R** to R+
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The cross product enjoys the following properties:
(1) & x -+ x &, = 0 whenever the vectors 1, ..., &, are linearly dependent.

Indeed, this follows from the fact that the determinant in the definition is alternating

(and hence vanishes when two of the columns coincide).
(2) & x -+ - x &, is perpendicular to each &;.

In fact, by definition

<§j7£1 X X £n> - det(&j?fla"wgn) - 07

since this determinant has two equal columns.
(3) [|&1 %+ - - x &, ]| is the volume of the parallelepiped generated by the vectors &1, . . ., &,.
We know that the volume of the parallelepiped [&, ..., &,] is Vdet G, where the Gram

matrix G has as its (7, j)-entry the inner product

n+1

<§z’, fj> = Z ThiTs-
k=1

Hence

n+1 n+1
Zkzl Tp1Trl Zkzl Tk1Tkn

(€, &) - (&, &)
= | L =G.
(&, &) o (G a)

Thus, by Lagrange’s identity we can write

VOl[gl, ce ,fn} = VvV detG
= /det(M*M)

n+1

= | D _[det(M;)]?

=1

1€ % -+ X &l

(4) det (& X -+ X &ny &1, - .., &q) > 0 whenever the vectors &, . .., &, are linearly inde-
pendent.
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Indeed, observe that by definition (in particular when n =¢& =& x -+ X &,),

det(glx"'xgnvflv"'afn) = <fl><“'><§m§1><"'><fn>
= & x - x &? = det G,

and det G # 0 if and only if {&;,...,&,} is linearly independent.

We now show that the properties above characterise the cross product. Indeed:

By property (1) it suffices to consider the case where &, ..., &, are linearly indepen-
dent. Property (2) determines the direction of the vector & x --- X &,, that is, the line
through the origin containing it. Property (3) gives its length, while property (4) tells us
which of the two non-zero vectors with that length is the cross product, namely the one
for which (& X -+ x &,,&1,...,&,) is a positive basis of R"*!; in other words, it fixes the

‘sense’ of this vector along that direction.

Thus, from all the above, the cross product & X - - - x &, does not depend on the positive
orthonormal basis chosen to define it. The cross product is an na€ “linear antisymmetric

map

XZR”+1X-'-XRR+1 — Rn+1
n+1

(517 s 7§n) — é-l X X gn = Z(_1>’L+1 det(M(Z))el

=1

We can generalise the isomorphisms constructed at the beginning of this section by

defining the following maps.
For each n € R"! | define

w% R — R
& — wy(§) = ¢
and the map
o RTL (RO
no— W,
This is an isomorphism between R"*! and (R"*1)*.
Now, for each n € R"! define
wp R xR — R

(517"'7671) = w:;(gla"wgn) = <777€1 Xoeee X€n>
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and the map

YR — AMRMH)
n w;‘ .
This is an isomorphism between R and A"(R"*1).

In an analogous way, given 7 = (71, ...,%,41) € R™" and the projections
X, :R"™ SR, i=1,....,n+1,

we have
n+1

i=1

<n+1)
=n-+1
n

subsets of the form I = {i; < --- < i,,} running through the set {1,...,n + 1}. Thus

Note that we have

there are as many such subsets as there are coordinates of the vector n = (x1,..., Zn1).
Therefore, for each ¢ € {1,...,n + 1} we choose one of the I; in such a way that I; does

not contain the element 7. Then
Xr=>"zXy,
i

More precisely,

Xg = .Tl(XQ/\Xg/\' . '/\Xn+1)+l’2(X1 /\Xg/\ : /\Xn+1)+ : '+.I'n+1(X1/\X2/\' . /\Xn)

Finally, given 7y, ...,n, € R"™! we also have

n

1 1
w /\"'/\wnn_wn1><--~x7m'

m

We leave the proof of these results to the reader.



Chapter 5

Differential Forms in R"

5.1 Differential Forms in R"

Definition 5.1.1 Let p € R™ be an arbitrary but fived point. The set of vectors attached
at p is called the tangent space of R™ at p, denoted by R. More precisely,

R = {(p,v); v E ]R”}.

We sometimes use the notation v(p) or simply v, to represent the elements (p,v) € R}.

To fix ideas, consider the diagram below:

R R,

|

Figure 5.1:

R} is a vector space endowed with the operations

(p,v1) + (p,v2) = (p,v1 + v2),
a(p,v1) = (p,avy), Yovp,ve € R" and Va € R,

that is, the natural addition and scalar multiplication.

189
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In fact, R} is a vector space isomorphic to R". Indeed, consider the linear bijection
from R"™ onto R} given by v + (p,v) = v,. Through this isomorphism the vectors of the
canonical basis {ey, ..., e,} of R" can be ‘identified’ with their translates {(e;),, ..., (€,),}

at the point p.
Definition 5.1.2 We define an inner product on RY by setting, for vy, w, € R7,
(Vp, wp)p = (v, W).

Definition 5.1.3 A vector field on R" is a map v : R" — R} which associates to each
point p € R a vector v(p) € R7.

In view of the identification above, v can be written in the form

n

v(p) =) aip)es.

i=1

The vector field v is said to be differentiable when the functions a; : R® — R for

1 =1,...,n are differentiable.

Definition 5.1.4 Let f : R" — R be a differentiable map. We denote by df, the
differential of the function f at the point p in R} and define

df, R — R
(pv) =vp > (df)(p)(vp) = Df(p)(v),

where Df(p) : R — R is the (Fréchet) differential of f at the point p in R"™. Clearly,
(df )(p) is a linear map and therefore df, € (R})*.

For each tangent space R}, consider the dual space (R}))*. A basis for (R}})" is obtained
by taking
dX;)(p), i=1,...,n,

where X; : R® — R is the ¢-th coordinate projection.

Indeed, if v, € R} then v, = (p,v) and v = Y 7" | v;e;. Thus, by the previous definition

we have

(AX:)(p) () = (DX Z 5
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However,
aXz 17 1= ja
9. P) = o
x; 0, ©# 7.

Hence

(dX3)(p)(vp) = vi. (1)
In particular, for v, = (e;), we get

L=y,

@ ={ g 1,7

Thus {(dX;)y; 1 < i < n} is the ‘dual basis’ of {(e;),; 1 < i < n}, that is, the dual
basis of RY.

Proposition 5.1.5 If f : R" — R s differentiable, then

_9f of
df = go-dXi -+ 5o

dX,.

Proof:For every v, = (p,v) with v = Y, v;e;, by Definition (2.1.4) and (1),

(df)(p)(vp) = Df(p)(v)

By the arbitrariness of v, € R} we obtain

n

(df)(p) = > (ELdX;) (),

i=1

and, by the arbitrariness of p € R", we conclude

df =) 8%Xm-.
=1
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Remark 5.1.6 The differential df can be understood as the map which to each p € R"
associates df, € (R})*, where
dfp : Ry — R,
n (9f
vy — (df)(p)(vy) = D 50X | 0)(wp) = Df(p)(v),

=1

and which, by a slight abuse of terminology, we also call the differential of f.

Let A*(R”) be the vector space of k-forms

W RY X x R — R (2)
If wy,...,wg are 1-forms, we can obtain from them a ka€ “form as in (2),

I IANERAY Wi,
(called decomposable) defined by

wl/\---/\wk:Rgx---xRZ — R

(Uh'"avk) — (Wl/\“-/\w;g)('l}l,...,l)k),

where

(Wi A Awg) (v, .oy vk) = det(wi(vj))lgi’jgk. (3)
As seen in the previous chapter, wy A - -+ A wy is a k-form. In particular,

(dxh )p ARERRA (dxlk )p € ‘Ak(R;:D

We denote this element by

In accordance with Proposition (4.2.5) we have the analogous result:
Proposition 5.1.7 The set
{(dxh/\"'/\dxik)P}’ i1<'..<ik’

where i; € {1,...,n}, forms a basis of A*(R?).

Definition 5.1.8 An exterior ka€ “form on R™ is a map which to each p € R™ associates
w(p) € Ak(Rg).
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In view of Proposition (4.1.7) we can write
w(p) = Z iy (D) (diy N - Ndzy,), 15 €{1,2,...,n}, (4)
11 <t <-<ip
where a;,..;, are functions from R" into R. If these functions are differentiable, w is called

a differentiable k-form.

As before, we denote by I the k-tuple
T= (i1, i), 1< <ip, i;€{l,....n},

and, for simplicity, we use the notation

or simply
W = Z (l[dX],
I

when there is no risk of confusion.

By convention, a differential O-form on R" is a differentiable function.

Example 5.1.9 In R* we have the following types of exterior forms:

06€ “forms: functions on R,

1a€ “forms:
alXm + CLQdXQ + CL3dX3 + CL4dX4.

2a4€ “forms:

alg(Xm VAN ng) + Cng(Xm A ng) + a14(dX1 VAN dX4)
+ a23(dX2 VAN ng) + (124(ng VAN dX4) + CL34(dX3 N dX4)
3a€ “forms:
algg(Xm A dX2 A\ ng) -+ a124(dX1 A dXQ N dX4>

+ a134(dX1 VAN ng N dX4) + a234(dX2 N ng A dX4)

4a€ “forms:
a1234(dX1 A dX2 A ng A\ dX4)
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Unless otherwise stated, from now on we shall deal only with differentiable k-forms.
If w¥ and wk are two k-forms:
w’f:ZaIdX[ and wI;:Zb[dX[, I:(il,...,ik),
I I
with 4; < -+ < i}, we define the sum w? + w§ by

Wi +wh = (ar +b)dX ). (5)
1

If w* is a ka€“form and w' is an /-form, we can also, as in Section 3 of the previous
chapter, define the exterior product w® A w' as follows:

Ifwk = Zla[dX[, I = (il,...,ik), << ik, andwl = ZJb]dXJ, J = (jl,...,jl),
g1 < - < g, we set

wlwaé:Za[bJ(dX[AdXJ). (6)
1,J

The exterior product, as in Section 3 of the previous chapter, enjoys the following prop-

erties:
(1) (WF AW = (=1)¥(w! A WF) (anticommutativity);
(2) (W AW Aw™ =Wk A (W Aw™) (associativity);
(3) (wh +wh) At = (W Aw!) + (WE Aw!) (distributivity).
We also recall that the exterior product defined in (6) has the crucial property that if

wi, ... ,wg are 1-forms, then the exterior product (wy A--- Awy) (which is a decomposable
ka€ “form) coincides with the form defined in (3).

Definition 5.1.10 Let f : R® — R™ be a differentiable map. We denote by df, the
derivative of the function f at the point p in R7, defined by

dfy : Ry — RY,
v, > (df)(p)(vp) = (f'(p) “ V) f(p)s

where f'(p) : R™ — R™ is the derivative of f at p.

Sometimes, instead of df,,, we also denote this map by f.. Such a map is clearly linear,

because f'(p) is linear. Therefore df, € L(R}, R )) and we obtain a map

p € R" — df, € L(R),RY(,)).
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Let f: R™ — R™ be a differentiable map. Given an exterior ka€ “form w on R™, we
define an exterior k-form f*w on R™ by setting, for each p € R™ and each list of vectors

v, .., € RY,
[(F) D] (01, o) = w(f (D) (dfyp (1), - dfp(vr)). (7)

In this way we obtain a map f*w which to each p € R™ associates
(f*w)(p) € A*(R7?) defined as in (7), that is, an exterior ka€ “form on R".

On the other hand, as we know, the derivative df,, : R — ]R?l(p), being linear, induces

a linear transformation

)7+ AMRY,) — AF(RY) ®)
given by
w s [dfy )" ()
where
[df,)"(w) R x - X RY — R (9)

is defined by
U — [dfy]" (w) (V) = w(dfp(vl), . ,dfp(vk)),
as seen in Section 4 of Chapter 1.

Thus, from (7) and (9) we obtain, in particular for w(f(p)) € A"”(R?(p)),

(fw)(p) = df]"(w(f(p)))- (10)

Conclusion

Every differentiable map f : R" — R™ induces a linear transformation f* which
sends exterior forms on R™ to exterior forms on R™. This transformation is one of the
main reasons why differential forms are so useful for studying maps between surfaces, as

we shall see later.

In the case of a 0a€ “form, that is, a map g : R™ — R, we set f*g = g o f, which is

clearly a differentiable O-form on R", i.e. an exterior 0a€ “form.

Proposition 5.1.11 If f : R* — R™ is differentiable, then:

(a) f*(wr +w2) = f*(w1) + f*(w2), where wy,ws are k-forms on R™.
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(b) f*(gw) = f*(9) f*(w), where g is a 06€ “form and w is a ka€ “form on R™.

(c) [*(wiAws) = f*(w1) A f*(we), where wy,ws are differential forms on R™ (of degrees
adding up to the degree of the wedge product).

Proof:

Items (a) and (c) have already been proved in the general case in Section 4 of Chapter

1. We now prove item (b).
Let p € R" and vy, ..., vy € R}, Then, by (10),

(
fgw)p)(@) = [df,]" (9 )(f(p))(vh---,vk)
= (9)(f)(dfy(vr),... dfy(vr))
= g(f(p)w (f(p))(dfp(vl) - dfp(vr))
= (9o N)p)[df,]" (w(f(p)(v1, ..., vk)
= (9o f)p) (ff'w)(®)(v1,-..,v%)

(
- f*(g)(p) (f*w ( )(Ulv" 7vk>'

Proposition 5.1.12 If f : R" — R™ is a diﬁer@ntiable map, then

8fZ
8

j=1

f*(dXi) = df; = dX

Proof:
Let p € R" and v, € R}. Then

S dX)p(v) = dX; fp))(dfp(vp))

— dX; fp))(Dfl() < Dfm(p)v) 5
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Remark 5.1.13 In fact, the map f* (which sends exterior k-forms on R™ to exterior

k-forms on R™) is equivalent to a change of variables.

Indeed, let w = ) ;a;dY; be a k-form on R™. Using the properties in Proposition
(2.1.11), we obtain:

= (aro f) fH(dYi) A+ A fH(dY,). (11)

On the other hand, by Proposition (5.1.12),

Fav,) = i, = 2

k=1

dYy.

Hence, from (11) we obtain

Frw) = (aro fydfs, A+ Adfy,.

1

More explicitly,
f*(w> - Zal(fl(ajla- .- wxn)a o 7fm(x17 o e wfn)) dle AN /\dfzka
I

where the f; and df; are functions of the variables x;.

Therefore, to apply f* to w is equivalent to substituting, in w, the variables Y; and

their differentials dY; by the functions of xp and dxy given by

n = fl(mla-”axn)a
?./m = fm(xl,...,xn).
5.2 The Exterior Differential

We now define an operation on differentiable exterior k-forms which generalises the usual

differentiation of functions.
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If f:R" — R is a 0-form (a C? differentiable function), its differential

df =
2.5

which is an identity in (R})*, is a differentiable exterior 1-form. Recall that df is the map

I3

p € R"— df, € (Rg)*,
where

df, R" — R

v = dfy(v,) = Df(p)(v) = Y (55 dX) (p)(vy)-

=1

We wish to define, by analogy, an operation which sends a differentiable exterior k-form

to a differentiable exterior (k + 1)-form.

Definition 5.2.1 Let w be a differentiable exterior k-form of class C*, that is, a map
w:p€R" — w(p) € A*RY)

such that
Z CL[ dX[
with functions a; € C*(R™).

We define the exterior differential of w to be the differentiable exterior (k + 1)-form of class C*71,

that is, the map
dw:p € R" — dw(p) € AkH(RZ)

such that

Remark 5.2.2 (i) If w is a form of degree zero, that is a function
w=f:R" =R,

then

Z 83:1
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(ii) If w is a 1-form, then for each p € R™ we can write
w = Z a; dXZ,

and therefore

dw = Z da; A\ dX;

da;
= X X; X; X;
8 d Ad —i—E 8 d ANd

j<t 1<j

0 8@'
- >4 “JdX AdX; — Zaz dX; A dX,
J

1<j 1<j

Gaj 8@1-
= — X X
Z(@wl a$])d l/\d 77

1<j

where all quantities above are evaluated at the point p € R™.
For simplicity, from now on we shall omit the point p in the notation.

In particular:

If w= Mdx+ N dy, then

or 0Oy oy 0
OR OP

Proposition 5.2.3 Let wy,w, be exterior differential forms of class C* and let
f:R"™ = R™ be a map of class C? (a 0-form of class C?). Then:

(a) If w : R" — R is a differentiable 04 € “form, then dw is the usual differential of a
function.

(b) d(wy + wq) = dwy + dws, for wy,ws kd€ “forms.

(c) If w is of class C?, then d(dw) = d*w = 0.
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(d) d(w; A wy) = dwy A ws + (—=1)Fwy A dws, where wy is a ka€ “form and wy is an

La€ “form.
(e) d(f*w) = [*(dw).
Proof:

(a) Obvious.

(b) Let wy,wy be two k- forms. Then, for each p € R",
wi =y ;ardXyand wy =Y, bydX;. Thus wy +we = ) ;(ar + br)dX; and hence

d(wl + LUQ) = Zd(a[ + b]) N dX[
1

= day NdXp+ Y db AdX;
I I
= dwl + dLUQ.
As seen in earlier sections, to establish the remaining properties it suffices to treat the
case in which, for each p € R", w; = adX; and wy, = bdX; are monomials.
Let us proceed.

(c) If w is as above and of class C?, then for each p we have w = a dX;. Hence

n

dw = Zj—“dxj AdX7,

- T
J=1
and therefore
_ 0%a
d(dw) = dXi NdX;| ANdX
- 3xk8xj
Lk,j=1
[ 0%a d%a
= — dX; NdX,| NdX; =0
_; <8x]8xk al’kax]> J k] ! ’

by Schwarz’s theorem on the equality of mixed partial derivatives.
(d) For each p € R"™ we have w; = adX; and wy = bdX ;. Thus
w1 Awy = ab(dX; NdXy).

Hence
d(wy A ws) = d(ab) NdX1 ANdX;
=(da-b+a-db) A (dX;NdX))
=bda N (dX; NdXy)+adb A (dXp NdX))
=b(da NdX;) NdX;+ (=1)Fa (dX; A db) AdX;. (1)
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On the other hand, dw; = da N dX;. Thus
dwy Nwe = (da NdX;) NbdX; =b(da NdX;) NdX,. (2)
Similarly, dws, = db A dX;, so

wi Adws = adX; AdbAdX. (3)

Combining (1), (2) and (3), we obtain

d(wl A (JJQ) = dwl N wo + (—1)kw1 A dOJQ.

(e) Finally, to prove the last property, we begin with the case where the form w reduces

to a function ¢g : R™ — R. Then, by the chain rule, at every point p € R"™ we have

dg(f(p)) - f'(p) =d(go f)(p).

Therefore, for any v € R",

f*(dg)(p)(v) = dg(f(p))(dfy(v)) = dg(f(p))(f'(p)v) =d(go f)(p)v.

Hence

f*(dg) =d(go f)=d(f"g).

Now consider a form w = adX; = a(dx;, A--- Adx;, ) of arbitrary degree k. From (d),
(c) and a straightforward induction one shows that if

a:R™ — Ris of class C' and gy, ..., g are of class C?, then
d(a(dgy A -+ Ndgr)) = da Ndgy A -+ A dgy.
We also recall that f*(a A 5) = f*(a) A f*(5). Thus
fro=fra- (fdX; A - AfdX;,) = ffa-d(Xi o f) A+ Ad(Xi, o f).
Therefore

d(f*w) =d(f*a) Nd( Xy, 0 f) A ANd(Xy, 0 f)
— f(da NdXiy A--- AdX,) = f*(dw),

as claimed.
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Chapter 6

Differentiable Surfaces

6.1 Differential Forms on Surfaces

Although differential forms were introduced in the previous chapter on R", they, like
everything related to differentiability, naturally live on differentiable surfaces (manifolds).

Let us recall this concept.

A surface of class C* and dimension m < n in R" is a subset S C R" such that for
each p € S there exists a neighbourhood V of pin R* and amap f: U CR™ -V NS
of class C* on the open set U such that

i) f is a differentiable diffeomorphism;

ii) the differential D f(q) : R™ — R™ is injective for every ¢ € U.

The map f: U C R™ — S is called a parametrisation of S. To fix ideas, consider the

diagram of a surface S in R3:

Figure 6.1:

203
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Given a surface S C R" of dimension m and class C* (k > 1) and a point p € S, the
tangent space to S at p in R" is the vector subspace T,(S). We can describe it in the

following ways:

i) Take a parametrisation ¢ : Vy — V NS of class C* of a neighbourhood V' of p with
©(q) = p. We then set

T,(9) = ¢'(g)(R™).

ii) Consider all curves A : (—e,e) — S with A(0) = p, differentiable at 0. Then T,(5)

is defined as the set of velocity vectors X'(0) of these curves.

By the first definition we obtain 7,(S) as an m-dimensional vector subspace of R",
but this description depends on the parametrisation . The second definition does not
depend on the choice of parametrisation, although it is not immediately obvious from it
that T,,(S) is a vector space. However, one proves that the two definitions are equivalent

and therefore
T,(S) = ¢'(q)(R™) = {N(0) € R"; A : (—¢,6) = SNV, A\0) = p},

with A differentiable at 0.

The most important fact that follows from the definition of a surface is that the change

of parameters is a diffeomorphism of class C*.

More precisely, if ¢ : Uy — ¢(Uy) and 1 : Wy — 1h(W) are two parametrisations such
that
e(Uo) NY(Wo) =W # 0,

that is, they both contain the point p, then the maps
v lop:i (W) —=R™ and ¢ tov:yp H(W)— R™

are diffeomorphisms of class C*.

As a consequence, we can introduce the concept of differentiable maps between sur-

faces. Indeed, a map
f:8 —R"

is said to be differentiable at a point p € S if there exists a parametrisation ¢ of class C*,

v : Vo — V, of a neighbourhood V' of p in S such that

fogp:%—)Rk
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Figure 6.2:

(Vo open in R™) is differentiable at the point ¢ = p~!(p). If we take another parametrisa-
tion v : Wy — W of class C* of a neighbourhood W of p in S, then f o ¢ is differentiable
at ¢ 1(p) if and only if f o) is differentiable at ¥ ~*(p), since

fow=(fop)o(p o),

and
gpfl o1 : z/Jfl(V NW) — gpfl(v NW)

is a diffeomorphism of class C*.

/—5\ fvnw)

W{
Vo Wo

(- @

R ~

Figure 6.3:

If f:S — R* is differentiable at p € S, its derivative at p is the linear transformation
f'(p) : T,(8) — R* (1)

given by
v— f'(p)

defined as follows:
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Take a parametrisation ¢ : Vj — V such that ¢(¢) = p. Given a vector v € T),(S5), we

have v = ¢'(q)vy for some vy € R™. We then set
f'p)v = (f o 9) (@)vo.
The linear map (1) is well defined, because if
Wy - W
is another parametrisation with p = 1(¢') and v = /(¢ )wy for some wy € R™, then
(f e @) (@)vo = (f o) (¢ )wo.
Indeed, we know that ¥ = p o &, where
= oV NW) = o (VNW)
is a diffeomorphism of class C* with £(¢') = ¢. Then
' (q)vo = v = (¢")wo = (¢ 0 &)'(¢")wo = ¢'(q) §'(¢)wo.
Since ¢'(q) is injective, it follows that &'(¢’)wo = vg, and therefore

(f o) (q)wo = (fowol)(d)wo= (fop)(q) & (qd)wo
= (f © @)l(Q)Uo-

Any velocity vector v € T,,S is the velocity vector v = N'(0) of a curve
A (—e,e) = S with A(0) = p. Then the image

f'(p)v = (f o A)(0)

is the velocity vector at 0 of the curve (f o \) : (—¢,e) — R”.
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Figure 6.4:

If S C R* is another C*-surface and the map
f:8 — R~
is differentiable at p and satisfies f(S) C S, we shall say that
f:5—=29 (2)

is differentiable at p. The observation we have just made about f'(p)v as the velocity
vector of a curve shows that if (2) is differentiable at p € S, then the derivative f'(p) is a

linear map from 7,(S) to Ty, (S):

f/(p>3Tp(S) — Tf(p)(g)

v —  f(p).

B\

A

Figure 6.5:

Note that the chain rule holds: if f: S — S is differentiable at p € S and g : S — R®
is differentiable at f(p), then

gof:8 —R®
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is differentiable at p and
(go f)(p) =g (f(p)) o f'(p)-

In complete analogy with the previous setting, we may define an exterior k-form on a

surface S of dimension m in R™ as a map

w:pe S — wp) e AT,9). (3)
If £ =0, an exterior 0a€ “form on S is simply a real-valued function w : S — R.

Let ¢ : Uy — U be a parametrisation of an open set U C S. At each point
p = ¢(q) € U we have the basis

d(q) 9v(q)
{6u1 O C T,S. (4)
Indeed,
dplq) dplq)
9, =¢'(q)e1,. .., oo = ' (q)em

Since the derivative of the parametrisation

¢'(@):R" — R"

v o— (g

is linear and injective (by definition), the family in (4) is indeed a basis of T),(S). Now, if
Y : Vo — V is another parametrisation of S such that U NV # () and p = ¢(q) = ¥(¢'),

then we also have the basis

(o)

) T,
ovy ’avm( )}C S

There is, of course, a relation of the form

m

au] Z ij 81}1

To determine the coefficients a;;, we again use the diffeomorphism (see Figure 6.6)
E=¢lop:p (UNV) — ¢~ (UNV).
If &,...,&, are the coordinate functions of &, the equality ¢ = 1 o £ yields

@' (x) =Y (&) &' (x) = ' (q) =¥ () € (q)
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=
-
Figure 6.6:
Consequently,
m Oy O&; m oY1 0§
g_ii gu% Zi:l ai 351 Zz‘:1 6151' afm
bon  Ben |\ <wm owpoe | <wm oua 0k
a%l ﬁ Z¢:1 81)1-% Zizl aﬁiﬁ
Thus
_ 0@1 0pn
ﬁuj 8Uj Y 0uj
_ Z 0y 0¢; Z Oy, 0§,
— Qu; Juj’ 0v; Ou;
_ Zm: 851 81/11 81/}71 (q/)
— (9u] ov; 7 O,
Xl
Hence
i o, 0

a_uj@ = 2 3, () P, (9),

and therefore
0= 520
iy auj q).

Note that the change-of-basis matrix (a;;) from the basis <8v1 (q’)> to the basis <g_zi (q))
in the vector space T,(S) is precisely the Jacobian matrix J(£(q)), where £ = ¢p' o ¢ is

the diffeomorphism mentioned above.
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We use the notation
{duy, ... ,duy,} C (T,9)"

(0.5

Indeed, duq,...,du,, are exterior 1-forms on U; that is, for each

for the dual basis of

i€ {l,...,m}, du; is the map
du; : p € U — du;(p) € T,(S)".
For each p € U we shall write du; instead of du;(p) when there is no risk of confusion.
Thus, at each point p = ¢(gq) € U the ka€ “forms
dU]:dUil /\/\duzk, ]:{21 < - <Zk} C {]_,2, ,m},

form a basis of A*(T,(9)).

Given an exterior ka€ “form w on S, we can write, at each point p = ¢(q) € U,

w(p) = = o) (6)

Thus the exterior form determines, for each parametrisation ¢ : Uy — U in S, a family

()

called the coordinates of the form w with respect to the parametrisation ¢. Indeed,

of functions a; : Uy — R, in number

according to Proposition (1.2.5),

or() = (@) (@) 3

i

(@), Vae U (7)
Now let v : V; — V be another parametrisation of S, with U NV # (. For each
p=(q) =v¥(¢) € UNV we have the dual bases

(o) g

o q .,%(q')} CT,(S) and {dvy,...,dv,} C (T,(9))",

which are related to the bases determined by ¢ as follows:

81}1 81& 81}1
8u3 Z ou; (%Z and - dv; = Z 8uj (8)

=1 =
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The first identity follows from (4) and (5), and the second from what we saw in Section
4 of Chapter 1.

In these equalities, (g;’ﬂ) is the Jacobian matrix of the change of parameters ¢~! o ¢,

evaluated at ¢; the derivative gf—j is taken at ¢, and (w at ¢ = v (¢(q)).

The parametrisation ¢ determines in A*(T,S) the basis consisting of the k-forms
dvr = dv, N\ -+ N\dv,.

From Chapter 1 we know that if p = ¢(q) = ¥(¢’) € UNV and, in addition,

w(p) Z dUJ = Zb[ d’U], (9)

J

then
Zd ¢ (gZ) (), (10)

where (m) is the k x k matrix formed by the entries g”’ (q) such that i € I and j € J.

In terms of classical tensor calculus, an exterior k-form on a surface S may be thought
of as an assignment which, to each parametrisation ¢ : Uy — U in 5, associates the (’z)
functions ay : Uy — R, called the coordinates of the form with respect to ¢, in such a
way that if to another parametrisation ¢ : V; — V correspond the functions b; : V5 — R

and ¢(q) = 1¥(q'), then the coordinate change formulas (10) hold.

It is worth highlighting the important particular case k = m, that is, when the degree
of the form equals the dimension of the surface. In this case the form has only one

coordinate in each parametrisation. Thus:

For every point p = p(q) = ¥(¢') € U NV, we have
w(p) = alq) duy A -+ A duy, = b(¢") dvy A -+ A doy, (11)

where the functions a : Uy — R and b : Vj — R satisfy

ofa) = det (524 ) o), (12)

where ¢ € ¢ (UNV), ¢ = (v~ op)(q), and det (8”3> is the Jacobian determinant of
the diffeomorphism ()~ o ) evaluated at gq.

Let S be a surface of class C™. An exterior k4€ “form on S is said to be of class C¥
(k < m) if S can be covered by images U of C™a€ “parametrisations ¢ : Uy — U, with

respect to which w = Y~ a; duy, where all functions a; : Uy — R are of class C*.
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The coordinate change formulas (10) show that if the coordinates of w in a parametri-
sation ¢p € C™ are functions of class C* (k < m), then they remain of class C* in any
other parametrisation ¢ € C™ with Im(¢) N Im(z)) # (). An exterior 0-form of class C*
on S is simply a function f: S — R of class C*.

The coordinate change formulas express the ‘invariance of differential forms’. The sim-
plest case, given in (12), ensures, for instance, that the integral of an exterior ma€ “form

is well defined on an m- dimensional surface, as we shall see next.

6.2 Integration of Differential Forms
We begin this section by defining the support of a top-degree form on a surface.

Definition 6.2.1 The support of an exterior form w on a surface S is the closure
(relative to S) of the set of points p € S such that w(p) #Z 0. Denoting the support
of w by supp(w), we set

supp(w) = {p € S; w(p) Z 0} .

Equivalently,

supp(w) = {p € 5; w(p) Z0} NS

Thus, p € supp(w) means that every neighbourhood of p contains points p’ such that
w(p') £ 0. Observe that, by definition, the support of w is always a closed subset of S.
Hence, if the form

w:peS— wp) € A¥T,S)

is continuous and w(p) # 0, then w # 0 in some neighbourhood of p. Thus p €
int(supp(w)) (relative to S). In other words, if p € S and p ¢ int(supp(w)), then w(p) = 0.

It follows that if w € C° and p € S is a boundary point of supp(w), then w(p) = 0,
although p € supp(w).
We now define the integral of a continuous exterior ma€l “form w with compact sup-

port on an oriented ma€ “dimensional surface S, in the particular case where supp(w) is

contained in the image of a positive parametrisation ¢ : Uy — U.

Definition 6.2.2 Let S be an oriented surface of class C' and dimension m, and let

w:p€S— w(p) e ANT,S) be a continuous exterior ma€ “form. Suppose that supp(w)
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1s a compact set, contained in the image of a positive parametrisation ¢ : Uy — U. In

terms of this parametrisation we can write
w(p) = alq)duy A -+ A duy,
for every p = p(q) € U, where the continuous function
a:Uy—R

has compact support equal to o~ (supp(w)). By definition,

/Sw:/Ka(u)du, (13)

where K C R™ is any compact Jordan-measurable subset contained in Uy and containing

supp(a).
We now make some remarks concerning this definition:

i) One may drop the requirement that K C Uy (still assuming that supp(a) C K),
provided we regard a as a continuous function defined on K, vanishing at the points of
K\ Up. In this way a ceases to be continuous only on a set of measure zero in R™, which

does not affect the value of the integral in (13).

ii) Since S is orientable, there exists a family of parametrisations ¢ : Uy — U (of class
C') such that any two of them are always coherent.

More precisely, if ¢ : Uy — U and ¢ : Vj — V are two parametrisations of this family,
then either UNV = or, if UNV # (), the Jacobian determinant of the diffeomorphism
between the two parametrisations is positive at every point

q € ¢ (UNYV). The parametrisations in this family are called positive.

We must still show that |, ¢ w, as defined above, is independent of the choice of positive
parametrisation .

Indeed, let ¥ : Vi — V' be another positive parametrisation of S, with supp(w) C V
and

w(p) =b(q)dvy A -+ A duy,

for every p = ¥(q¢’) € V. The function b : V5 — R is continuous, its support is equal to
Y~ (supp(w)), and for every ¢ € 1 (U NV) we have

a(q) = J(q) b(d), (14)
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where J(q) is the Jacobian determinant of ()1 o ) at ¢, and ¢’ = "' ((q)). Note that
J(q) >0forall g€ (UNV).
To compute |, ¢ w in terms of the parametrisation ¢, let K be a compact Jordana€ “measurable
set such that
¢~ (supp(w)) C K C o~ (UNV),

and to compute [ w in terms of 1, let L = ¢! (¢(K)) be the compact Jordana€ “measurable

set (its boundary has measure zero).

A .
4 Ve

Figure 6.7:

By an ordinary change of variables we obtain
/ b(v) do — / b () J () du / a(u) du.
L K K

Thus the surface integral | gw is well defined whenever w is a continuous exterior
m-form with compact support contained in some parameterised neighbourhood of an
oriented m-dimensional surface. Later we shall define the integral |. ¢ w under more general

assumptions on the form w.

Now consider a continuous k-form w whose support K is not contained in a single

coordinate neighbourhood, and let us define the surface integral |, g W-

Roughly speaking, we take a covering {V,} of the oriented surface S by coordinate
neighbourhoods, and a smooth partition of unity subordinate to this covering {V,}, that

is, a family of differentiable functions ¢y, ..., ¢, : S — R such that

Z) 27;1 v =1

ii) 0 < ¢; <1 and the support of ¢; is contained in some V,, = V;;



6.3. SURFACES WITH BOUNDARY 215

and we then define the integral of the k-form w on S.

For each i, let w; = p; w. Then

m m m
E W; = E QOZ'(U:LUE @; = W.
=1 i=1 i=1

Moreover, the support of each form w; is contained in the parameterised neighbourhood
V; associated with ¢;. Indeed, if ¢;(a) # 0 and w(a) # 0, then a € supp(y;) N supp(w),
so that supp(w;) C supp(y;) C V;. Since supp(w;) is a closed subset of supp(y;), it is

compact. Hence, by the previous definition, [ ¢ wi makes sense.

In view of these considerations, we set

/s“’:

It remains to show that this definition is independent of the particular partition of

m

1=

unity chosen.

In fact, let {W;3} be another covering of S that induces on S the same orientation
as {V,} and let {1;}3_; be the corresponding partition of unity. Thus {V, N Wp} is a
covering of S, and the family of functions ¢;1); is a partition of unity subordinated to this

covering. In this case, we have

3 [ = % [(30)-
- ;j/s%%w-

Similarly,

m

;/S%W:§L¢j<2¢i>w=;[qwiij,

=1

and this shows the desired independence.

In summary, the integral of a differential form with compact support reduces to a

multiple integral.

6.3 Surfaces with boundary

From now on, we shall enlarge the concept of a surface, so that it will come to include,
for example, closed balls in the Euclidean space. For this, we shall allow parametrisations

to have open subsets of subspaces as domains.
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Definition 6.3.1 A half-space in R™ is a set of the form
H ={z e R"; a(x) <0},

where a € (R™)* is a non-zero linear functional. The boundary of the half-space is the set

OH = {z € R™; a(z) = 0}.

If A C H is open in the half-space H C R", we say that f : A — R™ is differentiable
if there exists a function f : U — R™, where U C R™ is open, U O A, such that the

restriction of f to A coincides with f.

Observe that, if f : A — R™ is differentiable, then for each = € A, the derivative
f'(x) : R" — R™ is well defined. In fact, if x € int(H) there is nothing to prove. Now
let x € ANOH, and let {vy,...,v,} be a basis of R" such that v; € H for 1 < i < n.
Note that such a basis exists, since for any v € R® we have v € H or —v € H. Thus, if

x € OH, then for every t < 0 we have x + tv; € H, because, as
H={y eR" aly) <0},

we obtain
alx + ty;) = a(z) + ta(v;) <0, vt <0.

In particular, letting ¢ — 0 through positive values,

flx 4 ty;) — (o)

—/

f(x)vy; = lim

t—0t+ t
~ im [z +tvy) —f(x)
t—0+ t

In view of the above, we now enlarge the notion of parametrisation.

Definition 6.3.2 A parametrisation (of class C* and dimension m) of a set U C R™ is
a homeomorphism ¢ : Uy — U of class C*, defined on an open set Uy of a half-space of
R™, such that ¢'(u) : R™ — R™ is an injective linear map for each u € Uy.

Definition 6.3.3 A set S C R" is called a surface with boundary (of dimension m and
class C*) if every x € S belongs to an open set U C R™ which is the image of a parametri-
sation ¢ : Uy — U, of class CF, defined on an open set Uy of some half-space of R™.
If S is a surface with boundary, the boundary of S is the set consisting of those points
x € S such that, for every parametrisation ¢ : Uy — U of class C* onto some open
U C S with x € p(Uyp), one has x € 0Uy. Moreover, this definition does not depend on

the parametrisation chosen.
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Given z € S, it suffices that there exists a parametrisation of class C* of an open set
U C S with x = ¢(u) and u € 9Uy, in order to have x € 9S. Indeed, let v : Uy — U be a
parametrisation of class C* such that = ¢(u) and u € U,. Suppose, by contradiction,
that there exists another parametrisation ¢ : Vo — V of class C* such that z = ¢(v) but
v ¢ IVj.

Consider W = U NV, which is clearly non-empty since x € U NV, and the map

p o T W) = T (W),

which is a diffeomorphism. Since v ¢ 9V}, there exists a neighbourhood B of v such that
B C ¢ W) and
BNOoH =),

that is, B does not intersect the hyperplane e = 0. Say that

B C H={z e R"; a(z) <0}.

Restricting ¢! 04 to B, we have a differentiable map
o loy:B— H,

with Jacobian non-zero at some point ¢» € U. By the Inverse Function Theorem, there
exists a diffeomorphism between a neighbourhood G C B of v and a neighbourhood of
@ tot(v) in R™. But, since u € dUy, for any neighbourhood V' of u we have VNOH # (),
and in particular,

el o(G)NOH #0,

which is a contradiction, because
p~toy(B) C e (W) C H.
This proves the claim.

We now examine the relation between the dimension of a surface with boundary and

the dimension of its boundary, and how these objects are related.

Proposition 6.3.4 IfS is a surface with boundary of class C* and dimension m (m < n),

then its boundary 0S is a (boundaryless) surface of class C* and dimension m — 1.
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Proof:

Indeed, the parametrisations that characterise 0.5 as a surface are the restrictions to
the boundary oU, = UyNOH of the parametrisations ¢ : Uy — U, of class C* on S, whose
image is an open set U C R™ and such that U N 9S # ). To verify that the dimension of
0S5 is m— 1, note that another way to parametrise OU is the following: write the elements
of R™ as u = (ug, ..., Un_1), set Hy = {u € R™; ug < 0} and identify 0H, with R™™! via
the correspondence

(0, %1y« o s 1) = (U, e ey Upp1).
Next, we standardise the parametrisations of class C* on S by considering only those
defined on open subsets of the half-space Hy. If ¢ : Uy — U is standard and U N 9S # (),
the restriction ¢|gy, : OUy — OU is a parametrisation of the surface 05, defined on an
open subset Uy C R™~1. In this way, dim(dS) =m — 1. O

As in the case of regular surfaces, for surfaces with boundary one also has the notion

of ‘tangent plane’, a notion which is likewise local.

Definition 6.3.5 Let S C R™ be a surface with boundary of class C' and dimension m
(m < n). To each point x € S we associate a vector subspace T,,S C R™ of dimension m,
called the tangent space to S at x, defined as the image ¢'(u)(R™), where ¢ : Uy — U is

any parametrisation of class C* of an open set U C S such that x = ¢(u).

If z € 95, then Uy is open in a half-space H C R™ with u = ¢~ '(z) € OH. The
image ¢'(u)(0H) = T,(05) is the tangent space to the boundary 95 at x. Obviously,
T.(0S) C T,.S, and it is a subspace of dimension m — 1. As seen earlier, the tangent space

TS = ¢'(u)(R™) does not depend on the parametrisation used to define it.

Definition 6.3.6 Let S C R" be a surface with boundary and let x € 0S. We say that
a vector w € T,S points outwards from the surface S if there exists a parametrisation
0 : Uy — U of class C' on an open set Uy of a half-space H C R™, with image an open
set U C S, such that x = ¢(u) € U and w = ¢'(u)wy, where wy € R™ points outwards
from the half-space H. Moreover, this concept does not depend on the parametrisation

chosen.

For z € 0S5, the tangent space T,S contains not only the distinguished subspace
T,.(0S) but also a half-space, formed by the vectors that point outwards from the surface
S.
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oH

Figure 6.8:

At each point x € 95, the vectors tangent to S together with the vectors that point
outwards from S at z form a half-space of T, S. Among the vectors that point outwards
from S at z, there is a unique one of length 1 which is normal to 7,(0S). We denote this

vector by v(z). In this way, we obtain a field of unit vectors v : 9S — R" normal to 05S.

Indeed, if ¢ : Uy — U is a parametrisation of class C* defined on the open set U, of
the half-space H C R™, choose a basis {vo, ..., vn_1} C R™ such that vy points outwards
from H and {vy,...,v,_1} C OH. Then:

) = L )
i (@)or % x o

for every x = p(u) € OU = 0SNU (here we are assuming that the basis {¢'(u)vy, ..., ¢ (W) vy,_1}
is positive).
Thus, if S is a surface with boundary of class C* and dimension m in R", then its

boundary 95 is an orientable surface.

Definition 6.3.7 A surface with boundary is said to be orientable if it admits a coherent
atlas of class C1, that is, given parametrisations o, of S, the change of parametrisation

has positive Jacobian at each point of its domain.
From the above, we conclude that the boundary of a surface is endowed with a natural
orientation. Furthermore, if the surface S is an oriented surface, then it induces an

orientation on its boundary.

Proposition 6.3.8 If S is an orientable surface, then its boundary is also orientable.
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Proof:

Let A be the set of parametrisations ¢ : Uy — U of S, of class C*, with the following

properties:
i) Uy is connected;
ii) Up is open in the half-space Hy = {u = (ug, ..., Um—1) € R™; uy < 0};
ii1) @ is positive with respect to the orientation of S.

Note that A, under the above conditions, is an atlas on S. Identifying, as before,
R™ ! with 9Hy, let Ay be the set of restrictions ¢y = ¢jay, of the parametrisations ¢ € A
such that OUy = Uy N R™~! #£ (). Note that Ay is a C! atlas on 95, and moreover it is
coherent. In fact, if ¢y : OUy — U and vy : OV — V belong to Ay, with 9U N OV # (),
then the change of parametrisation ;"' o ¢g is the restriction to the boundary of the
diffeomorphism 1) ' o on its domain. Let u € OUNIV and A = (¢ 'op) (u) : R™ — R™.
Since A is coherent, we have det A > 0. As 1)~ o ¢ is a diffeomorphism from the open set
¢ 1 (UNV) C Hy onto the open set ¢~ (UNV) C Hy, it follows that A(0H,) = 0Hy,
ie., Av; = (0,a14,...,am-1;) for every i =1,2,...,m — 1. Since ey = (1,0, ...,0) points
outwards from H,, we have Aey = (ano, @10, - - -, @m—1,0) also pointing outwards from Hy,

hence agy > 0. Thus, the matrix of A has the form

Qoo O cee 0
aio a1 crr Q1m—1
Am—1,0 Gm—-11 " Gm—1m—1

with agg > 0, and therefore
det A = apo det Ao,

where Ay = Ajgm-1 is the Jacobian of ™1 o p at the point u. Hence det Ay > 0, so Ay is

coherent. O

The orientation defined on 05 by the atlas Aq is said to be induced by the orientation
of S.

With respect to the orientation induced by S on 95, a basis {wq,...,w,_1} C
T.(0S) is positive if and only if, for any vector wy that points outwards from S, the
set {wo, wy, ..., w,_1} is a positive basis of T,.5.

In particular, if v(z) € T,S is the unit vector tangent to S and normal to 0S5 at z,

pointing outwards from S, then {wy,...,w,_1} C T,(0S) is a positive basis if and only
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if the basis {v(x), w1, ..., wn_1} C T,S is positive.
Indeed, we have {wy, ..., w,—1} C T,(0S) positive if and only if
wj = Zaij%(u), j=1,...,m—1,
i=1 t

where the (m — 1) x (m — 1) matrix Ay = (a;;) has positive determinant and ¢ : Uy — U

is a parametrisation defined on an open set Uy of the half-space
Hy = {(ug, ..., um-1) € R™; ug <0},

with u € 0Hy and p(u) = .

Since ey = (1,0,...,0) points outwards from H,,

90

g W = ¢'(u)eg € TS

points outwards from the surface S. Hence, if wy € TS is any vector pointing outwards
from S, then

Oy i Oy

Wy = CLOOa—UO(U) + aloa—UI(U> + -+ Clm_LOa T (U), agy > 0,
and for j =1,2,...,m — 1 we have
I Oy d¢
05 =0 G+ g (0t ot ()

Thus, the matrix A of the change of basis from

dp i dp
{8—UO<U/), a—m(U), ceey aum_l ('LL)
to the basis
{wo, e ,wm,l}
has the form
anpo 0 0
A 10 :
Ag
Am—1,0 :

Hence det A = agg det A, that is, det A > 0 < det Ag > 0.

This means that, when wy € TS points outwards from S, the set {wy,..., w1} C

T,(0S) is a positive basis if and only if {wg, wy, ..., wy_1} C TS is a positive basis.
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6.4 Stokes’s Theorem and applications

We are now in a position to state Stokes’s Theorem, which allows the computation of

surface integrals, and to reformulate it in the classical cases.

Teorema 6.4.1 (Stokes’s Theorem) Let w be a differential form of class C1, of degree
m, with compact support on an oriented surface S of dimension m + 1, whose boundary

0S s endowed with the induced orientation. Then:

/dw:/ w.
S as

Let K be the support of w. If w =w; + -+ 4+ wy and the theorem holds for each term

Proof:

wj, then it holds for the sum w, since dw = Y dw; and

o fua=5 [ [

We consider the following cases:

(i) K is contained in the image of a positive parametrisation ¢ : Uy — U and UNOS =

In this case, for every x = ¢(u) € U we have

m
w(z) = Z a;(w)dug A -+ ANdui—g N dugqg Ao A dig g,
=0

with a;(u) differentiable functions. Hence

dw(z) = [i(—l)ng:] dug A - N duy,.

1=0

Since U N 0S = ), w vanishes on 95, and therefore i*w = 0, so that

/ 7w =0.
as
We now show that

- iaai
/de:/Uo (;(—1) aui> dug A -+ A duy, = 0.




6.4. STOKES’S THEOREM AND APPLICATIONS 223

Indeed, extend each function a; to Hy by setting

a;(u), wu € U,
a;(u) =
O7 u € HO \ Uo,

so that, as ¢ '(K) C Uy, the functions a; thus defined are differentiable on Hy. Let
QQ C Hy be the m-dimensional parallelepiped given by u! < u; < u?, 0 < i < m,

containing ¢ ~'(K) in its interior. Then

8a2
/5 dw = Z /U 8ul w)dug A -+ A dug,

- Z(—ni 0% ) g A -+ A dtg,

i=0 vo Ot

_ da;

- Q 8uz

=0

m

= Z(_l)z/ [a'i<u07 s 7ui717u?7ui+17 s 7um)
i=0 Q@
—a;(Ugy -+, Ui, UGy Uiy 1, - - - ,um)] dug - - - du;_1du;yq - - - dug, =0,
because a;(ug, ..., ud, ... Uy) = a;(ug, ..., u}, ... Uy) = 0.

(71) Now suppose that U N39S # (). Then the inclusion map is written as
i(UQ):O, i(Uj):Uj, j:1,2,...,m.

By the definition of the induced orientation, the restriction of ¢ to Uy = Uy N Hy is a
positive parametrisation of 95, whose image is OU. As in case (i), consider the extension
of the functions a; by

a;(u) = a;(u), u € U,

a;(u) =0, we€ Hy\ Uy,
which are differentiable. Let K = [[" [y, 8i] be a rectangle containing ¢~ *(K) with
Bo = 0, so that K C Hy. For each ¢ = 0,1,...,m let K; be the Cartesian product of the
intervals [o;, B;], 7 # ¢. In particular, Ky = Hi_ [a;, Bi] is a rectangle in OH, containing
o ' (supp(i*w)). For every z = ¢(u) = ¢(0,uy,...,uy,) € OU, clearly (by the induced
orientation)

("w)(x) = ap(0,uy, ..., up) dug A -+ A dity,,

/w—/ i*w—/ ag(0, U1, .oy Up) dug A -+ A dtigy,.
8 8s Ko

and hence
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It follows that

/dw
s

Since

and

Z/ gzl(u) duoduy - - - diy,

/B’L
Z/ |: aal dUZ:| duo dui_lduiﬂ cee dum
o 8u,

i

Z/ [(li(UO, e ,ﬁi, Ce ,um) — CLZ'<U0, ey Oy e ,Um)} dUO cee dui_lduiﬂ N dum

ai(o, .oy By ytm) = ai(ugy ooy Uy) =0, i=1,2,...,m,

for uy < 0, we obtain

/dw:/ ao(O,ul,...,um)dul---dum:/ w.
S Ko as

(i7i) Finally, consider the general case. Let {V,} be a covering of S by coordinate

neighbourhoods, and let ¢, ..., ¢, be a differentiable partition of unity subordinated to

V,}. The forms w; = p;w, 7 = 1,2,...,m, satisfy the hypotheses of either case (i) or
i = ¥j

case (ii). Moreover, since

> dip; =0,
J

we have ) w; = w and ) | dw; = dw. Therefore

oo $fo

From now on, our aim is to reformulate Stokes’s Theorem in its classical forms.
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6.4.1 The divergence theorem

Let X = (ag,...,an) be a vector field of class C*, defined on an open set U C R™*! by
its m + 1 coordinate functions a; : U — R. To the field X we associate the differential

form
m

ax = Z(—l)iai deg N\ -+ Ndx;_ 1 N\ dajiJrl A A dl’m,
i—0
of class C* on the open set U. Expansion of a determinant along the first column shows

that, for x € U and wy, ..., w,, € R™*!,

ax(x)(wy, ..., wy) =det(X(x),wy, ..., wy).

Indeed,
ax(x)(wy, ..., wy,) = Z(—l)iai(a:) (dxo A -+ ANdxi—y Ndxipq A+ AN day,)
wy, >wm)
dxo(wy) dro(w;) -+ dxo(wy)
dl’l (wl) : :
m dx;_1(w
= Y (~1ai(x) det 1(wn)
i=0 dlerl (wl)
dog(w) . c dag(wp)
ap(r) wor -r Wom
C et a(z) wn o Wi
am<x) S Wmm

= det(X(x),wy,..., wpn).

If M C U is an oriented surface and the vector field X has compact support, we define
Jy X as [,,(X,v)w, where w is the m-form element of volume on M and v is the unit
normal vector field determining the orientation of M. Observe that at each point x € M
this form coincides with the previously defined ax(z). In fact, given any positive basis

{wy, ..., wy,} C T, M, we have:

ax(x)(wy, ..., wy) = det(X(z),w,..., wy)
= (X(z),wy X -+ X wp)
= (X(2), w(x))[lwy X - -+ X wn|
= (X(2),v(z)) wlz)(ws, ..., wn)
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Hence, ax = (X, v)w.
The volume element on a surface is always denoted by dM. Thus, if X = (ag,...,an)

is a vector field with compact support, continuous on the open set U C R™*! and M c U

is an oriented surface, then

/ <X, l/> dM = / Z(li d.l'()"'d.]?i_ld]}i+1"'d1]m.
M M=o

When X is a vector field of class C! on the open set U C R™*! and Q C U is a
compact domain with regular boundary of class C* (k > 1) (that is, Q is a compact
surface with boundary, of dimension m + 1 and class C*, contained in U), the interior of
Q is a bounded open subset of R™*! and its boundary 952 is a compact oriented surface

in R™*1. The differential of the form ay is

dax = (Z(—l)@j) dzg A -+ A dxy,.

=0

We define the function div X : U — R by

@ao

div X (x) = a—xo(x) + (x),

the divergence of the vector field X. Stokes’s Theorem allows us to conclude that, under
these conditions, if M = 0f) then:

/M (X, v)dM = /Q (div X) dz,

where, in the second member, we have the integral of the continuous function div X on

Oam
0T,

the Jordan-measurable compact set Q C R™*!,

6.4.2 Stokes’s Theorem (vector form)

Let X = (a,b,c) be a vector field of class C! on the open set U C R® containing the
compact oriented surface M (of dimension 2), whose boundary C' is endowed with the
induced orientation. To the field X we associate the 1-form Sx = adx 4+ bdy + cdz of
class C* on U. Stokes’s Theorem can be written explicitly as

/M (g—; — %) dyndz+ (% — %) dzNdx+ (% — g—;) dzNdy = /Cadx+b dy+cdz.
We want to express the above identity in vector notation. To this end, consider the curl
of X, which is the field rot X : U — R? given by

rot X — (80 ob da  Jc Ob 8a>

Oy 0z 0z 0x dx Oy
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Then the first member of the previous equality can be written as

/ (rot X, v) dM,
M

where v is the unit normal vector field to M and dM is the area element. For the second
member, let ds denote the arc length element of C. For x € C' and v € T,C, we have
ds(v) = £|v| (depending on the direction of v). If 7(z) € T,C' is the unit tangent vector
pointing in the positive direction of C, then 7(z) = iﬁT for all v # 0 in T,C. Thus, if
0 # v e T,C, we obtain

Bx(v) = (X,v) = <X,i|> lv| = (X, £7) £ ds(v) = (X, ) ds(v).

lv

Hence fx = (X, 7) ds, and therefore
/ (rot X,v)dM = / (X, 7)ds.
M c

The first member represents the flux of the field rot X across the surface M, and the
second member is the circulation of the field X along the boundary C' = dM.

6.4.3 Green’s Theorem

Green’s Theorem concerns a compact surface with boundary, of class C'* and dimension 2
in R?, that is, a compact domain M C R? with regular boundary of class C'!. The domain
M has the natural orientation of R?, and its boundary M is endowed with the induced
orientation. Let f,g: M — R be functions of class C'. Green’s Theorem states that

/(Q—ﬁ) dx dy = fdx+ gdy.
v \Oz Oy oM

This is precisely Stokes’s Theorem applied to the 1-form g = f dx + g dy, defined on the

surface with boundary M.
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