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Binary Twisted Hessian Curve Over a Local Ring

Abdelali Grini

ABSTRACT: Let Faon be a finite field, where n is a positive integer. In this article, we will study the twisted
Hessian curve over the ring Ay = Fan [e], where the relation e? = 0. More precisely, we will give many various
explicit formulas, which describe the binary operations calculus in H Bg 4> Where H BZ 4 18 the binary twisted
Hessian curve over Az, and we will reduce the cost of the complexity of the calculus in HBg 4- In a first time,
we describe these curves over this ring. In addition, we prove that when 2 doesn’t divide #(H B (q), (a))s
then HBZ,d is a direct sum of HBr(q), x(q) and Fan, where HBq(q), n(q) is the twisted Hessian curve over
Fon. Other results are deduced from, we cite the equivalence of the discrete logarithm problem on the binary
twisted Hessian curves HBg q and HBr(q), x(d), Which is beneficial for cryptography and cryptanalysis as
well.
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1. Introduction

Elliptic curves are often used in cryptography, and this is where twisted Hessian curves have their
advantages: addition, doubling and tripling can be performed faster on twisted Hessian curves than on
curves given by a Weierstrass equation. This is because the addition law on twisted Hessian curves has
no exceptions, whereas the addition on Weierstrass curves. The normal form proposed by Bernstein and
al [1] has very desirable cryptographic properties that allow to fight against the leakage of side-channel
information from the beginning, because the group law is complete and unified. Moreover, in many
cases, the group law involves fewer operations, which means that the safer calculations involved can also
be faster. So, the twisted Hessian curve helps to efficiently foil side-channel attacks in the context of
elliptic curve cryptography. Furthermore, the operations on twisted Hessian curves are more eflicient
than the Weierstrass form of elliptic curves and the discrete logarithm problem is hard to solve. This
makes twisted Hessian curves suitable for cryptographic applications. However, there are exponential
time algorithms [8,10] that compute discrete logarithms for the cyclic subgroup of the elliptic curve. To
ensure maximum security of the cryptographic system, the elliptic curve must be properly chosen. For
this objective, we present in this paper the twisted Hessian curve over the ring Fan [X]/(X?) which verifies
this property because it increases the time needed to solve the discrete logarithm problem, we will prove
that #(HBid) = 2"#(H By (a), x(d)), SO We may reserve up memory once we do the calculations. As a
result, we can note that the time for solving the discrete logarithm problem on HB? ; is greater than
that of the twisted Hessian curve on a finite field.
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2 A. GRINI

This paper is organized as follows. In Section 2, We study the arithmetic of the ring Az, where we
establish some useful results which are necessary for the rest of this paper. In the third section, we
will define the twisted Hessian curves over Fan[e] and we will classify the elements of the binary twisted
Hessian curve H Bg - Afterwards, we will define the group law of H B> .4 and we will show that H B? a.d 18
a direct sum of HB =(a), =(d) and the maximal ideal of Az, when 2 doebn t divide #(H Br(a), r(d))-
Another purpose of this paper is the application of H Ba, 4 in cryptography. Thereby, in Section 4, we
deduce some cryptographic applications.

2. Arithmetic Over the Ring Fa. [X]/(X?)

Let Fan be a finite field. We consider the quotient ring Ay = F2n[X]/(X?). Then the ring As can be
identified by the ring Fan[e], €2 = 0. In other words,

AQ = {a + be/a,b € FQn}.

Now, we will give some results concerning the ring A,, which are useful for the rest of this work.

Let two elements in A, represented by X = xg 4+ z1e and Y = yg + y1e with coefficients x; and y; are
in the field Fan for (i = 0,1).

The arithmetic operations in Ay can be decomposed into operations in Fo» and they are calculated
as follows:

X+Y = (1‘0 +y0)+ (1‘1 +y1)e,

X.Y = (zoyo) + (zoy1 + z1Yo + 2131 )e.

Similar as in [2,4,5,6,7], we have the following results:

(A, +,.) is a finite unitary commutative ring.

e A, is a vector space over F, and has (1, e) as a basis.

As is a local ring. Its maximal ideal is M = (e) = eFan.

The non-invertible elements of A, are those in the form xe, where x € Fan.
Namely, (g + x1e) ! = xgl + xleQe, where g, z1 € Fon and z¢ # 0.

Remark 2.1 The canonical projection  defined by:

™ A2 —  Fon
To +xT1€6 — X9

18 a surjective homomorphism of rings.

3. Binary Twisted Hessian Curves Over the Ring A,

Definition 3.1 We consider the binary twisted Hessian curve over the ring As in the projective space
P2(Ay), which is given by the equation: aX® + Y3 + Z3 = dXY Z, where a,d € Ay and a(a + d3) is
invertible in As, and denoted by HBg)d, So we have:

HB] ;={[X:Y :Z]€P*(4;) \ aX’+Y’+ 2% =dXYZ}.
Lemma 3.1 Let a = ag + are, d = dy + die be elements of As.

If A = a(a + d3) is the discriminant of HBg’d and Ao = ao(ag + d3) is the discriminant of H By, 44,
where HBy, 4, is the binary twisted Hessian curve over Fon, then m(A) = Ag.
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Proof. Let a = ag + a1e, d = dy + die be elements of As.

So m(A) = w(a(a + d?)) = w((ap + a1e)? — (ag + are)(do + di€)?).
Then m(A) = 7((ad) + (ao + are)(di + didye)).

So m(A) = 77((10 + aopd3 + (apd3dy + a1dd)e).

Thus 7(A) = a2 + aod} = ag(ap + d3) = Ay.

Theorem 3.1 Let a =ap+ai1e, d=dop+die, X =xg+z16, Y =yg+y1e and Z = 2y + z1e be elements
of Ao, with

aX?+Y34+ 23 =dXYZ.

Then
aoTy + Yo + 25 = dowoyozo + (D + Azy + Byr + Cz1)e,

where

D = dyzoyozo + a1y,
A = doyozo + aor?,
B = dozozo + 5,
C = doyozo + 2.

Proof. Let a = ag +are, d =dy+die, X = 29+ x16, Y =yo+y1e and Z = zg + z1e be elements of As.
Then

Y? =i +yiyre
73 =23 + 222

aX?® = apxy + apririe + arzie

dXY Z = dozoyozo + diXoy120 + (doXoyoz1 + doXoy120 + doX1y020)e.
If aX3+ Y3+ 2723 =dXYZ, then

ang’ + yS’ + zg’ = dozoyozo + (D + Azxy + By; + Cz1)e,

where

D = dyzoyozo — a17},
A = doyozo + aoxj,
B = dyzo20 + Y3,

C = doyoxo + 25

Corollary 3.1 Let X = xg+ x1e, Y =yo +y1e and Z = zg + z1¢ be elements of As.
If[IX:Y:Z)e HBa 4 then [zo : Yo : 20) € HBay dy -
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3.1. Classification of elements of HBg}d

To have a clear idea of the binary twisted Hessian curves over the ring As, we can classify its elements
according to their projective coordinate.

Proposition 3.1 Every element in HBid is of the form [1 1Y : Z] (where Y or Z € Ay \ M), or
[xe, 1+ doze, 1], and we write:

HBZ ;={[1:Y:Z] € Po(A2) | a+Y?+2Z° =dYZ, and Y or Z € Ay \ M} U{[ze,1+doze,1] | x € Fan
and dy € Fon}.

Proof. Let [X :Y : Z] € HB; ;, where X, Y and Z € A,.

e If X is invertible, then [X : Y : Z] =[1: X'V : X"1Z] ~ [1:Y : Z]. Suppose that Y and Z € M;
since a + Y3 + Z3 = dY Z then a € M, which is absurd. So, Y or Z € A5\ M.

e If X is non invertible, then X € M, so X = xe, where x € Fon. Let Y = yg + y1e, Z = zp + 216,
d=dy+die and a = ag + aje.
So, [X : Y : Z] = [ze,yo + y1€,20 + z1€] € HBid. Then by Corollary 3.1: [0, yo, 20] € HBgo,d0
implies that yo = 1 and 29 = 1 (see [1], Theorem 2.2).
ie:
[X:Y:Z]=[ze,1+yie, 1+ z¢€]

= [xze, (1 + y1e)(1 + z1€),1]

= [ze, 1+ (y1 + 21)e, 1].
Hence, 1+ (y1 + z1)e + 1 = do(ze)(1 + (y1 + z1)e). Then y; + 21 = doze.
Thus [X : Y : Z] = [we, 1 + zdge, 1].

3.2. The group law over HBid

Theorem 3.2 Let P =[X;: Y1 : Z1] and Q = [Xa : Yao : Z5] two points in binary twisted Hessian curve
HBE 4

1. Define:
X3 = X7YaZy — X3Y1 21,

Vs = ZiXoYs — Z3 X1 Y1,
Z3 =Y XoZy — Y3 X 174.
If (m(X3), m(Y3),7(Z3)) # (0,0,0), then P+ Q = [X3 : Y3 : Z3].

2. Define:
Xh=2Z2X17, — Y2 XoYs,

Y] = YY1 71 — aXiXo 7,
Zh = aX3iX\Y1 — Z3Ys Z,.
If (n(X35),7(Yq),n(Z4%)) # (0,0,0), then P+ Q = [ X} : Yy : Zi].

Proof. By using [[1], Theorem 3.2 and Theorem 4.2 |, we prove the theorem.

Corollary 3.2 (HB; ;,+) is a commutative group with unity [0:1: 1].
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Lemma 3.2 The mapping

e HBg,d —  HBg, .4,
(X:Y:Z] » [ X):7n(Y):n(Z)],

s a surjective homomorphism of groups.

Proof. Let [zo: yo : 20] € HBa,.d,, then there exists [X : Y : Z] € HB ; such that 7([X : Y : Z]) =

[0 : Yo : Yol
By Theorem 3.1, we have
D = Ax1 + By; + Cz;

Coeflicients A, B and C' are partial derivative of a function
F(X,Y,Z)=aX*+Y*+ Z° 4+ dXY Z

at the point (xg : yo : 20), can not be all three null. We can then, at last, conclude that [z; : y1 : 21].
Finally, 7 is a surjective.

Lemma 3.3 The mapping
0: Fan — HB2Z,
x  +— [ze, 14 dyze, 1],

s an injective homomorphism.

Proof. Evidently, 0 is injective.
Let x1,29 € Fan, P = [x1e,1 4 dpx1e,1] and Q = [x2e,1 4 dpxae, 1]. By Theorem 3.2 we have:

P+Q=[(z1+z2)e: 1+ (z1 4+ x2)doe : 1].
Then 6((z1 + x2)) = 0(x1) + 0(x2), and we conclude that 6 is injective homomorphism of groups.

We definite G by G = ker(7).
Corollary 3.3 The set G is equal to 0(Fan).

Proof. Let [xe, 1+ doze, 1] € 0(Fsn), then 7([ze, 1+ doze, 1]) =[0:1:1].
We conclude that [ze, 1+ doze, 1] € G.
Thus §(F»») C G.
Let P=[X:Y:Z]€eG, then7([X:Y:Z])=[0:1:1].

We set,
X = xe,
Y =1+ ye
Z =1+ ze
and
Z7 =14z

So, P=[Z"'X:Z7'Y:1]=[ze:1+ (y1 + 21)e: 1]. We have P € HBg)d, then y; + 21 = doxe. Hence,
P =[ze,1+ dozxe, 1] € O(Fan).

Thus, G C 0(Fan).

Finally, G = 6(F2n).

We deduce the following corollary.
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Corollary 3.4 The group G is an elementary abelian 2-group.

Theorem 3.3 The sequence
0—G— HBZ ;— HByy a4, — 0

is a short exact sequence which defines the group extension HBid of HBqy, .4, by G.

Proof. By lemma 3.2, lemma 3.3 and corollary 3.3 , we deduce that the sequence
0—G— HBZ ;— HByy 4, — 0
is a short exact sequence which defines the group extension H Bg’ 4 of HBg, 4, by G.

Theorem 3.4 Let N = #(HBg, 4,) the cardinality of HBgyy 4, If 2 doesn’t divide N, then the short
exact sequence
0—G— HBZ ;— HByy a4, — 0

18 split.

Proof. If 2 doesn’t divide N, then exists an integer b such that Nb = 1mod2. So, there is an integer
m such that 1 — Nb = 2m.
Let g the homomorphism defined by:

g: HB, — HB?,
P+ (1-NbP,

There exists an unique morphism ¢, such that the following diagram commutes:

g

N

HBy, q,

HBgyd HBid

Indeed, let P € ker(7) = 6(Fan), then: Jz € Fon such that: P = [ze,1 + dyze,1]. We have:
(1-=Nb)P =2mP =1[0:1:1], then P € ker(g). It follows that ker(7) C ker(g), this prove the above
assertion.

Now we prove that 7 o ¢ = idup,, , - Let P’ € HDBq,4,, since 7 is surjective, then there exists a
P e HB? ; such that #(P) = P’. We have ¢(P') = (1 — Nb)P = P — NbP and NP’ = [0: 1 : 1], then
N7(P)=1[0:1:1] and #(NP) = [0: 1 : 1] implies that NP € ker(7) and so, NbP € ker(7); therefore
7(NbP) =[0:1:1]. On the other hand, ¢(P’) = (1 — Nb)P = P — NbP, then 7 o o(P') = 7(P)—[0:
1:1] =P’ and so, Top =idup
Hence the sequence is split.

Corollary 3.5 If 2 doesn’t divide #(H Ba, a,), then HB; ;2 HBy, 4, X Fan.

ag,dg

Proof. From the theorem 3.4 the sequence
0—G— HB. ;— HByy 4, — 0
is split, then HBgyd ~ HByy .40 X G, and since G = ker(7) = Imf = Fan, so the corollary is proved.
4. Cryptographic Applications

We present some binary twisted Hessian curves H B; 4 cryptography results in this section, but we
will also provide more practical applications in our future work.
If 2 doesn’t divide #(HBy,.4,), we deduce form the Corollary 3.5 that it allows us to acquire a large
number of points, which is greatly benefited in cryptography. As a result, we can see that the time
required to solve the discrete logarithm problem on H Bi 4 is greater than that of the binary twisted
Hessian curves over a finite field.
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5. Conclusion

In this article, we have studied the binary twisted Hessian curves on the ring As and have showed

the bijection between H Bi g and HB,, 4o x F,. For H Bi 4 cryptography applications, we deduce that
the discrete logarithm problem on H B(i 4 1s equivalent to the discrete logarithm problem on H B, 4, and
#(HB; ;) = 2"#(H Bag .y )-

10.
11.
12.
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