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Binary Twisted Hessian Curve Over a Local Ring

Abdelâli Grini

abstract: Let F2n be a finite field, where n is a positive integer. In this article, we will study the twisted
Hessian curve over the ring A2 = F2n [e], where the relation e2 = 0. More precisely, we will give many various
explicit formulas, which describe the binary operations calculus in HB2

a,d, where HB2
a,d is the binary twisted

Hessian curve over A2, and we will reduce the cost of the complexity of the calculus in HB2
a,d. In a first time,

we describe these curves over this ring. In addition, we prove that when 2 doesn’t divide #(HBπ(a), π(d)),

then HB2
a,d is a direct sum of HBπ(a), π(d) and F2n , where HBπ(a), π(d) is the twisted Hessian curve over

F2n . Other results are deduced from, we cite the equivalence of the discrete logarithm problem on the binary
twisted Hessian curves HB2

a,d and HBπ(a), π(d), which is beneficial for cryptography and cryptanalysis as

well.
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1. Introduction

Elliptic curves are often used in cryptography, and this is where twisted Hessian curves have their
advantages: addition, doubling and tripling can be performed faster on twisted Hessian curves than on
curves given by a Weierstrass equation. This is because the addition law on twisted Hessian curves has
no exceptions, whereas the addition on Weierstrass curves. The normal form proposed by Bernstein and
al [1] has very desirable cryptographic properties that allow to fight against the leakage of side-channel
information from the beginning, because the group law is complete and unified. Moreover, in many
cases, the group law involves fewer operations, which means that the safer calculations involved can also
be faster. So, the twisted Hessian curve helps to efficiently foil side-channel attacks in the context of
elliptic curve cryptography. Furthermore, the operations on twisted Hessian curves are more efficient
than the Weierstrass form of elliptic curves and the discrete logarithm problem is hard to solve. This
makes twisted Hessian curves suitable for cryptographic applications. However, there are exponential
time algorithms [8,10] that compute discrete logarithms for the cyclic subgroup of the elliptic curve. To
ensure maximum security of the cryptographic system, the elliptic curve must be properly chosen. For
this objective, we present in this paper the twisted Hessian curve over the ring F2n [X]/(X2) which verifies
this property because it increases the time needed to solve the discrete logarithm problem, we will prove
that #(HB2

a,d) = 2n#(HBπ(a), π(d)), so we may reserve up memory once we do the calculations. As a

result, we can note that the time for solving the discrete logarithm problem on HB2
a,d is greater than

that of the twisted Hessian curve on a finite field.
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2 A. Grini

This paper is organized as follows. In Section 2, We study the arithmetic of the ring A2, where we
establish some useful results which are necessary for the rest of this paper. In the third section, we
will define the twisted Hessian curves over F2n [e] and we will classify the elements of the binary twisted
Hessian curve HB2

a,d. Afterwards, we will define the group law of HB2
a,d and we will show that HB2

a,d is
a direct sum of HBπ(a), π(d) and the maximal ideal of A2, when 2 doesn’t divide #(HBπ(a), π(d)).
Another purpose of this paper is the application of HB2

a,d in cryptography. Thereby, in Section 4, we
deduce some cryptographic applications.

2. Arithmetic Over the Ring F2n [X]/(X2)

Let F2n be a finite field. We consider the quotient ring A2 = F2n [X]/(X2). Then the ring A2 can be
identified by the ring F2n [e], e

2 = 0. In other words,

A2 = {a+ be/a, b ∈ F2n}.

Now, we will give some results concerning the ring A2, which are useful for the rest of this work.
Let two elements in A2 represented by X = x0 + x1e and Y = y0 + y1e with coefficients xi and yi are

in the field F2n for (i = 0, 1).
The arithmetic operations in A2 can be decomposed into operations in F2n and they are calculated

as follows:

X + Y = (x0 + y0) + (x1 + y1)e,

X.Y = (x0y0) + (x0y1 + x1y0 + x1y1)e.

Similar as in [2,4,5,6,7], we have the following results:

• (A2,+, .) is a finite unitary commutative ring.

• A2 is a vector space over Fq and has (1, e) as a basis.

• A2 is a local ring. Its maximal ideal is M = (e) = eF2n .

• The non-invertible elements of A2 are those in the form xe, where x ∈ F2n .
Namely, (x0 + x1e)

−1 = x−1
0 + x1x

−2
0 e, where x0, x1 ∈ F2n and x0 ̸= 0.

Remark 2.1 The canonical projection π defined by:

π A2 → F2n

x0 + x1e 7→ x0

is a surjective homomorphism of rings.

3. Binary Twisted Hessian Curves Over the Ring A2

Definition 3.1 We consider the binary twisted Hessian curve over the ring A2 in the projective space
P2(A2), which is given by the equation: aX3 + Y 3 + Z3 = dXY Z, where a, d ∈ A2 and a(a + d3) is
invertible in A2, and denoted by HB2

a,d. So we have:

HB2
a,d = {[X : Y : Z] ∈ P2(A2) \ aX3 + Y 3 + Z3 = dXY Z}.

Lemma 3.1 Let a = a0 + a1e, d = d0 + d1e be elements of A2.
If ∆ = a(a + d3) is the discriminant of HB2

a,d and ∆0 = a0(a0 + d30) is the discriminant of HBa0,d0
,

where HBa0,d0
is the binary twisted Hessian curve over F2n , then π(∆) = ∆0.
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Proof. Let a = a0 + a1e, d = d0 + d1e be elements of A2.
So π(∆) = π(a(a+ d3)) = π((a0 + a1e)

2 − (a0 + a1e)(d0 + d1e)
3).

Then π(∆) = π((a20) + (a0 + a1e)(d
3
0 + d20d1e)).

So π(∆) = π(a20 + a0d
3
0 + (a0d

2
0d1 + a1d

3
0)e).

Thus π(∆) = a20 + a0d
3
0 = a0(a0 + d30) = ∆0.

Theorem 3.1 Let a = a0+a1e, d = d0+d1e, X = x0+x1e, Y = y0+ y1e and Z = z0+ z1e be elements
of A2, with

aX3 + Y 3 + Z3 = dXY Z.

Then

a0x
3
0 + y30 + z30 = d0x0y0z0 + (D +Ax1 +By1 + Cz1)e,

where

D = d1x0y0z0 + a1x
3
0,

A = d0y0z0 + a0x
2
0,

B = d0x0z0 + y20 ,

C = d0y0x0 + z20 .

Proof. Let a = a0 + a1e, d = d0 + d1e, X = x0 + x1e, Y = y0 + y1e and Z = z0 + z1e be elements of A2.
Then

Y 3 = y30 + y20y1e

Z3 = z30 + z20z1e

aX3 = a0x
3
0 + a0x

2
0x1e+ a1x

3
0e

dXY Z = d0x0y0z0 + d1X0y1z0 + (d0X0y0z1 + d0X0y1z0 + d0X1y0z0)e.
If aX3 + Y 3 + Z3 = dXY Z, then

a0X
3
0 + y30 + z30 = d0x0y0z0 + (D +Ax1 +By1 + Cz1)e,

where

D = d1x0y0z0 − a1x
3
0,

A = d0y0z0 + a0x
2
0,

B = d0x0z0 + y20 ,

C = d0y0x0 + z20 .

Corollary 3.1 Let X = x0 + x1e, Y = y0 + y1e and Z = z0 + z1e be elements of A2.
If [X : Y : Z] ∈ HB2

a,d, then [x0 : y0 : z0] ∈ HBa0,d0 .
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3.1. Classification of elements of HB2
a,d

To have a clear idea of the binary twisted Hessian curves over the ring A2, we can classify its elements
according to their projective coordinate.

Proposition 3.1 Every element in HB2
a,d is of the form [1 : Y : Z] (where Y or Z ∈ A2 \ M), or

[xe, 1 + d0xe, 1], and we write:
HB2

a,d = {[1 : Y : Z] ∈ P2(A2) | a+Y 3+Z3 = dY Z, and Y or Z ∈ A2 \M}∪{[xe, 1+ d0xe, 1] | x ∈ F2n

and d0 ∈ F2n}.

Proof. Let [X : Y : Z] ∈ HB2
a,d, where X, Y and Z ∈ A2.

• If X is invertible, then [X : Y : Z] = [1 : X−1Y : X−1Z] ∼ [1 : Y : Z]. Suppose that Y and Z ∈ M ;
since a+ Y 3 + Z3 = dY Z then a ∈ M , which is absurd. So, Y or Z ∈ A2 \M .

• If X is non invertible, then X ∈ M , so X = xe, where x ∈ F2n . Let Y = y0 + y1e, Z = z0 + z1e,
d = d0 + d1e and a = a0 + a1e.
So, [X : Y : Z] = [xe, y0 + y1e, z0 + z1e] ∈ HB2

a,d. Then by Corollary 3.1: [0, y0, z0] ∈ HB2
a0,d0

implies that y0 = 1 and z0 = 1 (see [1], Theorem 2.2).
i.e:

[X : Y : Z] = [xe, 1 + y1e, 1 + z1e]

= [xe, (1 + y1e)(1 + z1e), 1]
= [xe, 1 + (y1 + z1)e, 1].

Hence, 1 + (y1 + z1)e+ 1 = d0(xe)(1 + (y1 + z1)e). Then y1 + z1 = d0xe.
Thus [X : Y : Z] = [xe, 1 + xd0e, 1].

3.2. The group law over HB2
a,d

Theorem 3.2 Let P = [X1 : Y1 : Z1] and Q = [X2 : Y2 : Z2] two points in binary twisted Hessian curve
HB2

a,d.

1. Define:

X3 = X2
1Y2Z2 −X2

2Y1Z1,

Y3 = Z2
1X2Y2 − Z2

2X1Y1,

Z3 = Y 2
1 X2Z2 − Y 2

2 X1Z1.

If (π(X3), π(Y3), π(Z3)) ̸= (0, 0, 0), then P +Q = [X3 : Y3 : Z3].

2. Define:

X ′
3 = Z2

2X1Z1 − Y 2
1 X2Y2,

Y ′
3 = Y 2

2 Y1Z1 − aX2
1X2Z2,

Z ′
3 = aX2

2X1Y1 − Z2
1Y2Z2.

If (π(X ′
3), π(Y

′
3), π(Z

′
3)) ̸= (0, 0, 0), then P +Q = [X ′

3 : Y ′
3 : Z ′

3].

Proof. By using [ [1], Theorem 3.2 and Theorem 4.2 ], we prove the theorem.

Corollary 3.2 (HB2
a,d,+) is a commutative group with unity [0 : 1 : 1].
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Lemma 3.2 The mapping

π̃ : HB2
a,d → HBa0,d0

[X : Y : Z] 7→ [π(X) : π(Y ) : π(Z)],

is a surjective homomorphism of groups.

Proof. Let [x0 : y0 : z0] ∈ HBa0,d0
, then there exists [X : Y : Z] ∈ HB2

a,d such that π̃([X : Y : Z]) =
[x0 : y0 : y0].
By Theorem 3.1, we have

D = Ax1 +By1 + Cz1

Coefficients A, B and C are partial derivative of a function

F (X,Y, Z) = aX3 + Y 3 + Z3 + dXY Z

at the point (x0 : y0 : z0), can not be all three null. We can then, at last, conclude that [x1 : y1 : z1].
Finally, π̃ is a surjective.

Lemma 3.3 The mapping
θ : F2n → HB2

a,d

x 7→ [xe, 1 + d0xe, 1],

is an injective homomorphism.

Proof. Evidently, θ is injective.
Let x1, x2 ∈ F2n , P = [x1e, 1 + d0x1e, 1] and Q = [x2e, 1 + d0x2e, 1]. By Theorem 3.2 we have:

P +Q = [(x1 + x2)e : 1 + (x1 + x2)d0e : 1].

Then θ((x1 + x2)) = θ(x1) + θ(x2), and we conclude that θ is injective homomorphism of groups.

We definite G by G = ker(π̃).

Corollary 3.3 The set G is equal to θ(F2n).

Proof. Let [xe, 1 + d0xe, 1] ∈ θ(F2n), then π̃([xe, 1 + d0xe, 1]) = [0 : 1 : 1].
We conclude that [xe, 1 + d0xe, 1] ∈ G.
Thus θ(F2n) ⊂ G.
Let P = [X : Y : Z] ∈ G, then π̃([X : Y : Z]) = [0 : 1 : 1].
We set,

X = xe,

Y = 1 + y1e

Z = 1 + z1e

and
Z−1 = 1 + z1e

So, P = [Z−1X : Z−1Y : 1] = [xe : 1 + (y1 + z1)e : 1]. We have P ∈ HB2
a,d, then y1 + z1 = d0xe. Hence,

P = [xe, 1 + d0xe, 1] ∈ θ(F2n).
Thus, G ⊂ θ(F2n).
Finally, G = θ(F2n).

We deduce the following corollary.
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Corollary 3.4 The group G is an elementary abelian 2-group.

Theorem 3.3 The sequence
0 → G → HB2

a,d → HBa0,d0
→ 0

is a short exact sequence which defines the group extension HB2
a,d of HBa0,d0 by G.

Proof. By lemma 3.2, lemma 3.3 and corollary 3.3 , we deduce that the sequence

0 → G → HB2
a,d → HBa0,d0

→ 0

is a short exact sequence which defines the group extension HB2
a,d of HBa0,d0 by G.

Theorem 3.4 Let N = #(HBa0,d0
) the cardinality of HBa0,d0

. If 2 doesn’t divide N , then the short
exact sequence

0 → G → HB2
a,d → HBa0,d0 → 0

is split.

Proof. If 2 doesn’t divide N , then exists an integer b such that Nb = 1mod2. So, there is an integer
m such that 1−Nb = 2m.
Let g the homomorphism defined by:

g : HB2
a,d → HB2

a,d

P 7→ (1−Nb)P,

There exists an unique morphism φ, such that the following diagram commutes:

HB2
a,d

g //

π̃
$$

HB2
a,d

HBa0,d0

φ

::

Indeed, let P ∈ ker(π̃) = θ(F2n), then: ∃x ∈ F2n such that: P = [xe, 1 + d0xe, 1]. We have:
(1 −Nb)P = 2mP = [0 : 1 : 1], then P ∈ ker(g). It follows that ker(π̃) ⊆ ker(g), this prove the above
assertion.
Now we prove that π̃ ◦ φ = idHBa0,d0

. Let P ′ ∈ HBa0,d0 , since π̃ is surjective, then there exists a

P ∈ HB2
a,d such that π̃(P ) = P ′. We have φ(P ′) = (1 −Nb)P = P −NbP and NP ′ = [0 : 1 : 1], then

Nπ̃(P ) = [0 : 1 : 1] and π̃(NP ) = [0 : 1 : 1] implies that NP ∈ ker(π̃) and so, NbP ∈ ker(π̃); therefore
π̃(NbP ) = [0 : 1 : 1]. On the other hand, φ(P ′) = (1−Nb)P = P −NbP , then π̃ ◦ φ(P ′) = π̃(P )− [0 :
1 : 1] = P ′ and so, π̃ ◦ φ = idHBa0,d0

.
Hence the sequence is split.

Corollary 3.5 If 2 doesn’t divide #(HBa0,d0
), then HB2

a,d
∼= HBa0,d0

× F2n .

Proof. From the theorem 3.4 the sequence

0 → G → HB2
a,d → HBa0,d0

→ 0

is split, then HB2
a,d

∼= HBa0,d0
×G, and since G = ker(π̃) ∼= Imθ ∼= F2n , so the corollary is proved.

4. Cryptographic Applications

We present some binary twisted Hessian curves HB2
a,d cryptography results in this section, but we

will also provide more practical applications in our future work.
If 2 doesn’t divide #(HBa0,d0), we deduce form the Corollary 3.5 that it allows us to acquire a large
number of points, which is greatly benefited in cryptography. As a result, we can see that the time
required to solve the discrete logarithm problem on HB2

a,d is greater than that of the binary twisted
Hessian curves over a finite field.
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5. Conclusion

In this article, we have studied the binary twisted Hessian curves on the ring A2 and have showed
the bijection between HB2

a,d and HBa0,d0
× Fq. For HB2

a,d cryptography applications, we deduce that

the discrete logarithm problem on HB2
a,d is equivalent to the discrete logarithm problem on HBa0,d0 and

#(HB2
a,d) = 2n#(HBa0,d0

).
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