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Chapter 1

The Compactness Method

The compactness method is one of the most e�ective and widely used tools in the theory
of Partial Di�erential Equations, primarily for establishing the existence of solutions for
initial or boundary value problems. When employing this method, the core strategy
involves two fundamental steps:

1. Construction of an approximate solution (e.g., using the Faedo-Galerkin method).

2. Obtaining a priori estimates for the sequence of approximate solutions.

The combination of the sequence of approximate solutions being bounded and
the compactness properties of the Sobolev spaces (or spaces of distributions) allows the
extraction of a subsequence that converges weakly or strongly to an element that, due to
the closure properties of the functional spaces and the a priori estimates, is identi�ed as
the weak solution to the original problem.

1.1 The Linear Equation utt −∆u = f (Weak Case)

In this section, we analyze the existence of solutions for the linear problem de�ned in the
cylinder Ω× (0, T ), where Ω ⊂ Rn is a bounded open set, with boundary ∂Ω of class C2.
The problem is given by:

utt −∆u = f in Ω× (0, T ), (1.1)

with boundary and initial conditions:

u(x, t) = 0 on ∂Ω× (0, T ), (1.2)

u(x, 0) = u0(x) in Ω, (1.3)

ut(x, 0) = u1(x) in Ω, (1.4)

where T > 0 is a given �nal time.
We denote by V the space H1

0 (Ω), equipped with the inner product

((u, v)) =

∫
Ω

∇u · ∇v dx, (1.5)

5



6 CHAPTER 1. THE COMPACTNESS METHOD

and the norm ∥u∥ =
√

((u, u)) = ∥∇u∥L2(Ω). H is the space L2(Ω), endowed with the
inner product and norm:

(u, v) =

∫
Ω

uv dx, ∥u∥ = ∥u∥L2(Ω). (1.6)

Note that the norms de�ned on V and H are equivalent, respectively, to the norms of
H1(Ω) and L2(Ω). Since Ω is bounded, the embedding V ↪→ H is compact.

1.1.1 Weak Formulation

A function u is a weak solution to problem (1.1)-(1.4) if u satis�es the following identity:

(utt(t), v) + ((∇u(t),∇v)) = (f(t), v) in D′(0, T ), (1.7)

for every test function v ∈ V , where u(t) = u(·, t) and f(t) = f(·, t).

Remark 1.1. The identity (1.7) means that, for any φ ∈ D(0, T ), we have:∫ T

0

{(utt(t), v) + ((∇u(t),∇v))}φ(t) dt =
∫ T

0

(f(t), v)φ(t) dt. (1.8)

Remark 1.2. The initial conditions must be satis�ed in the sense of functional spaces:

u(·, 0) = u0 in V, (1.9)

ut(·, 0) = u1 in H. (1.10)

The space for weak solutions is usually taken as:

u ∈ L∞(0, T ;V ) with ut ∈ L∞(0, T ;H) and utt ∈ L∞(0, T ;V ′). (1.11)

We adopt the same notation used in Lions [9]. Ω represents a bounded open set in
Rn with a smooth boundary Γ, T > 0 is an arbitrary but �xed positive real number, and
Q is the cylinder Ω× ]0, T [ whose lateral boundary Σ is given by Γ× ]0, T [. We denote,
respectively, by (·, ·) and | · |, the inner product and the norm in L2(Ω). Similarly, we
denote, respectively, by ((·, ·)) and || · ||, the inner product and the norm in H1

0 (Ω).

The linear problem
∂2u

∂t2
−∆u = f in Q

u = 0 on Σ

u(0) = u0(x);
∂u

∂t
(0) = u1(x); x ∈ Ω

(1.12)

where
u0 ∈ H1

0 (Ω); u1 ∈ L2(Ω) and f ∈ L1(0, T ;L2(Ω)) (1.13)

admits a unique weak solution u : Q→ R, in the class

u ∈ L∞(0, T ;H1
0 (Ω)); u′ =

∂u

∂t
∈ L∞(0, T ;L2(Ω)). (1.14)
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More precisely, we have

d

dt
(u′(t), v) + ((u(t), v)) = (f(t), v) (1.15)

in D′(0, T ) for every v ∈ H1
0 (Ω).

u(0) = u0 ; u′(0) = u1 . (1.16)

Proof:
Step 1: Approximate Problem

Let {ων}ν∈N be a basis of H1
0 (Ω), orthonormal in L2(Ω) (such a property can be

achieved by applying the Gram-Schmidt orthogonalization process to the basis of H1
0 (Ω)).

We de�ne
Vm = [ω1, · · · , ωm] ,

the subspace spanned by the �rst m elements of the basis, and consider the approximate
problem in [0, T ]:

Determine um(t) ∈ Vm ⇔ um(t) =
m∑
i=1

gim(t)ωi, (1.17)

(u′′m(t), ωj) + ((um(t), ωj)) = (f(t), ωj); j = 1, 2, . . . ,m, (1.18)

um(0) = u0m → u0 in H1
0 (Ω), (1.19)

u′m(0) = u1m → u1 in L2(Ω). (1.20)

We have, by virtue of (1.17) that

u0m =
m∑
i=1

αimωi = um(0) =
m∑
i=1

gim(0)ωi,

u1m =
m∑
i=1

βimωi = u′m(0) =
m∑
i=1

g′im(0)ωi.

and, hence, from (1.17)-(1.20) we can write
m∑
i=1

g′′im(t)(ωi, ωj) +
m∑
i=1

gim(t)((ωi, ωj)) = (f(t), ωj),

gjm(0) = αjm, g
′
jm(0) = βjm, j = 1, · · · ,m.

(1.21)

or alternatively
(ω1, ω1) · · · (ω1, ωm)

(ω2, ω1) · · · (ω2, ωm)

...
...

(ωm, ω1) · · · (ωm, ωm)



g′′1m(t)

g′′2m(t)

...

g′′mm(t)


︸ ︷︷ ︸

=A

+


((ω1, ω1)) · · · ((ω1, ωm))

((ω2, ω1)) · · · ((ω2, ωm))

...
...

((ωm, ω1)) · · · ((ωm, ωm))


︸ ︷︷ ︸

=B


g1m(t)

g2m(t)

...

gmm(t)

 =


(f(t), ω1)

(f(t), ω2)

...

(f(t), ωm)

 .
︸ ︷︷ ︸

=F (t)

(1.22)
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We de�ne

z(t) =


g1m(t)

g2m(t)

...

gmm(t)

⇒ z(0) =


α1m

α2m

...

αmm

 = z0 and z′(0) =


β1m

β2m
...

βmm

 = z1. (1.23)

Observe that, since ωνν∈N is orthonormal in L2(Ω), the matrix A is the identity
matrix, and therefore from (1.22) and (1.23) it follows that{

z′′(t) +Bz(t) = F (t)

z(0) = z0, z′(0) = z1
(1.24)

De�ning

Y1(t) = z(t), Y2(t) = z′(t) and Y (t) =

[
Y1(t)

Y2(t)

]
,

from (1.24) it follows that

Y ′(t) =

[
Y ′
1(t)

Y ′
2(t)

]
=

[
z′(t)

z′′(t)

]
=

[
z′(t)

F (t)−Bz(t)

]
=

[
Y2(t)

F (t)−BY1(t)

]
, (1.25)

that is,

Y ′(t) =

[
0 I

−B 0

][
Y1(t)

Y2(t)

]
+

[
0

F (t)

]
,

or further,

Y ′(t) =

[
0 I

−B 0

]
︸ ︷︷ ︸

=D

Y (t) +

[
0

F (t)

]
.︸ ︷︷ ︸

=G(t)

We thus obtain the following system:{
Y ′(t) = DY (t) +G(t)

Y (0) = Y0,
(1.26)

where Y0 =

[
z0

z1

]
, which possesses a solution in [0, T ] given by

Y (t) = etDY0 + etD
∫ t

0

e−sDG(s) ds, remembering that etD =
∞∑
k=0

tk

k!
Dk.

Note that the integral representation above is well-de�ned because the components
of G(·) belong to L1(0, T ) since f ∈ L1(0, T ;L2(Ω)). Furthermore, Y, Y ′ ∈ L1(0, T ), i.e.,
Y ∈ W 1,1(0, T ). Thus Y (·) identi�es with an absolutely continuous representative in
[0, T ]. It follows that z(t) and z′(t) are absolutely continuous with z′′(t) existing almost
everywhere in (0, T ), the same holding for gjm(t), for all j = 1, · · · ,m. We conclude,
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then, that the Dini derivatives and the distributional derivatives of gjm(t) with respect to
the variable t coincide up to the second order, for all j = 1, · · · ,m.

Step 2: A Priori Estimate
Multiplying (1.18) by g′jm(t) and summing in j from 1 to m, we obtain

(u′′m(t), u
′
m(t)) + ((um(t), u

′
m(t))) = (f(t), u′m(t)). (1.27)

Note that

(u′′m(t), u
′
m(t)) =

(
m∑
i=1

g′′im(t)ωi,
m∑
j=1

g′jm(t)ωj

)

=
m∑
i=1

g′′im(t)g
′
im(t)|ωi|2

=
1

2

d

dt

m∑
i=1

(g′im(t))
2|ωi|2

=
1

2

d

dt

(
m∑
i=1

g′im(t)ωi,
m∑
j=1

g′jm(t)ωj

)

=
1

2

d

dt
|u′m(t)|2.

(1.28)

Similarly we have

((um(t), u
′
m(t))) =

1

2

d

dt
||um(t)||2. (1.29)

Combining (1.27), (1.28) and (1.29) we obtain

1

2

d

dt
|u′m(t)|2 +

1

2

d

dt
||um(t)||2 = (f(t), u′m(t))

≤ |f(t)||u′m(t)|,
(1.30)

where the last inequality follows from the Cauchy-Schwarz inequality. Integrating (1.30)
from (0, t) with t ∈ [0, T ] and using the inequality 2ab ≤ a2 + b2, we obtain

|u′m(t)|2 + ||um(t)||2 ≤ |u′m(0)|2 + ||um(0)||2

+ 2

∫ t

0

|f(s)| |u′m(s)| ds.
(1.31)

We use the simpli�ed inequality |f(t)||u′m(t)| ≤ 1
2
|f(t)|2 + 1

2
|u′m(t)|2. Integrating

2|f(s)||u′m(s)| (from multiplying (1.30) by 2) from (0, t), and using 2ab ≤ a2 + b2, we
adjust the integration result, obtaining:

|u′m(t)|2 + ||um(t)||2 ≤ |u′m(0)|2 + ||um(0)||2

+

∫ t

0

|f(s)|2 ds+
∫ t

0

|u′m(s)|2 ds,
(1.32)

and consequently, from (1.19), (1.20) and (1.32), we have

|u′m(t)|2 + ||um(t)||2 ≤ |u1m|2 + ||u0m||2

+

∫ T

0

|f(s)|2 ds+
∫ t

0

[
|u′m(s)|2 + ||um(s)||2

]
ds,

(1.33)



10 CHAPTER 1. THE COMPACTNESS METHOD

for all t ∈ [0, T ]. Since u0m → u0 in H1
0 (Ω), u1m → u1 in L2(Ω) and f ∈ L1(0, T ;L2(Ω)),

then there exists a constant K > 0, independent of m such that

|u1m|2 + ||u0m||2 +
∫ T

0

|f(s)|2 ds ≤ K. (1.34)

Combining (1.33) and (1.34) yields

|u′m(t)|2 + ||um(t)||2 ≤ K +

∫ t

0

[
|u′m(s)|2 + ||um(s)||2

]
ds. (1.35)

Employing Gronwall's inequality in (1.35) we obtain

|u′m(t)|2 + ||um(t)||2 ≤ KeT︸︷︷︸
=C

, for all t ∈ [0, T ] and for all m ∈ N. (1.36)

The inequality in (1.36) tells us that

{um} is bounded in L∞(0, T ;H1
0 (Ω)) ≡

(
L1(0, T ;H−1(Ω))

)′
,

{u′m} is bounded in L∞(0, T ;L2(Ω)) ≡
(
L1(0, T ;L2(Ω))

)′
.

(1.37)

Consequently, from (1.37) there exists a subsequence {uµ}µ∈N of {uν}ν∈N such that

uµ
∗
⇀ u weak-star in L∞(0, T ;H1

0 (Ω)) ≡
(
L1(0, T ;H−1(Ω))

)′
,

u′µ
∗
⇀ v weak-star in L∞(0, T ;L2(Ω)) ≡

(
L1(0, T ;L2(Ω))

)′
.

(1.38)

We a�rm that v = u′. Indeed, note that from the chain of injections

L∞(0, T ;H1
0 (Ω)) ↪→ L∞(0, T ;L2(Ω)) ↪→ L2(Q) ↪→ D′(Q),

and since the di�erentiation operator is continuous in D′(Q) from (1.38) it follows that

uµ
∗
⇀ u in D′(Q)⇒ u′µ

∗
⇀ u′ in D′(Q),

u′µ
∗
⇀ v in D′(Q).

(1.39)

From the uniqueness of the limit in D′(Q) and from (1.39) it follows that u′ = v.

Step 3: Limit Process

From the convergence given in (1.38) we can write∫ T

0

⟨uµ(t), w(t)⟩H1
0 ,H

−1 dt→
∫ T

0

⟨u(t), w(t)⟩H1
0 ,H

−1 dt, when µ→ +∞, (1.40)

for every w ∈ L1(0, T ;H−1(Ω)). Taking, in particular, w = (−∆v)θ, v ∈ H1
0 (Ω) and

θ ∈ D(0, T ), we have, noting that ⟨−∆u, v⟩ = ((u, v)), for every u, v ∈ H1
0 (Ω), that∫ T

0

((uµ(t), v))θ(t) dt→
∫ T

0

((u(t), v))θ(t) dt, when µ→ +∞. (1.41)

Similarly, from (1.38) we obtain∫ T

0

〈
u′µ(t), w(t)

〉
L2,(L2)′

dt→
∫ T

0

⟨u′(t), w(t)⟩L2,(L2)′ dt, when µ→ +∞, (1.42)
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for every w ∈ L1(0, T ; (L2(Ω)′). Taking, in particular, w = vθ′, v ∈ H1
0 (Ω) and θ ∈

D(0, T ), we have∫ T

0

(u′µ(t), v)θ
′(t) dt→

∫ T

0

(u′(t), v)θ′(t) dt, when µ→ +∞. (1.43)

Let j ∈ N be arbitrary but �xed, and consider µ > j. Then from (1.18) it follows
that

(u′′µ(t), ωj) + ((uµ(t), ωj)) = (f(t), ωj). (1.44)

Multiplying (1.44) by θ ∈ D(0, T ) and integrating from 0 to T , we obtain∫ T

0

(u′′µ(t), ωj)θ(t) dt +

∫ T

0

((uµ(t), ωj))θ(t) dt =

∫ T

0

(f(t), ωj)θ(t) dt. (1.45)

But, by integration by parts (since θ ∈ D(0, T )):∫ T

0

(u′′µ(t), ωj)θ(t) dt =

∫ T

0

d

dt
(u′µ(t), ωj)θ(t) dt = −

∫ T

0

(u′µ(t), ωj)θ
′(t) dt. (1.46)

Combining (1.45) and (1.46) yields

−
∫ T

0

(u′µ(t), ωj)θ
′(t) dt+

∫ T

0

((uµ(t), ωj))θ(t) dt =

∫ T

0

(f(t), ωj)θ(t) dt. (1.47)

Taking the limit in (1.47) as µ→ +∞, and considering the convergences in (1.41)
and (1.43), we infer

−
∫ T

0

(u′(t), ωj)θ
′(t) dt+

∫ T

0

((u(t), ωj))θ(t) dt =

∫ T

0

(f(t), ωj)θ(t) dt, for all j ∈ N.

(1.48)
Consider, now, v ∈ H1

0 (Ω). Since the �nite linear combinations of the basis elements
{ων}ν∈N are dense in H1

0 (Ω), there exists a sequence {zk}k∈N, zk =
∑ν(k)

i=1 ξikωik such that
zk → v in H1

0 (Ω) when k → +∞.
Hence, from (1.48), for every k ∈ N, we have

−
∫ T

0

(u′(t), zk)θ
′(t) dt+

∫ T

0

((u(t), zk))θ(t) dt =

∫ T

0

(f(t), zk)θ(t) dt, for all k ∈ N.

(1.49)
From the strong convergence zk → v in H1

0 (Ω) and the embedding H1
0 (Ω) ↪→ L2(Ω),

the following convergences result:{
((zk, ξ))→ ((v, ξ)), when k →∞ for all ξ ∈ H1

0 (Ω),

(zk, η)→ (v, η), when k →∞ for all η ∈ L2(Ω).
(1.50)

From (1.49) and (1.50) we obtain

−
∫ T

0

(u′(t), v)θ′(t) dt+

∫ T

0

((u(t), v))θ(t) dt =

∫ T

0

(f(t), v)θ(t) dt, for all v ∈ H1
0 (Ω)

(1.51)
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and for every θ ∈ D(0, T ), or alternatively, in the sense of distributions:〈
d

dt
(u′(t), v), θ

〉
+ ⟨((u(t), v)), θ⟩ = ⟨(f(t), v), θ⟩ for all v ∈ H1

0 (Ω), (1.52)

and for every θ ∈ D(0, T ).

Step 4: Initial Conditions and Uniqueness

The initial conditions are veri�ed through the continuity of the injection H1
0 (Ω) ↪→

L2(Ω) and by the strong convergence (which will be established later) of the subsequence
{uµ} in L2(Q). The full proof of existence requires establishing strong convergence to
rigorously verify the initial data, but assuming strong convergence as a �nal step, we
obtain:

u(·, 0) = u0 in V, (1.12)

ut(·, 0) = u1 in H. (1.13)

Step 4: Localization of the 2nd Derivative

We observe, initially, that the operator−∆ de�ned by the triplet {H1
0 (Ω), L

2(Ω), ((·, ·))},
satis�es the condition:

(−∆u, v) = ((u, v)), for all u ∈ D(−∆) = H1
0 (Ω) ∩H2(Ω) and for all v ∈ H1

0 (Ω),

since Ω is a bounded open set with a smooth boundary. Moreover, the operator −∆
admits a unique continuous extension, indeed an isometry from H1

0 (Ω) to H
−1(Ω). Thus,

−∆ : H1
0 (Ω)→ H−1(Ω) is an isometric bijection, i.e.,

||∆u||H−1(Ω) = ||u||H1
0 (Ω), for all u ∈ H1

0 (Ω). (1.53)

Furthermore, such an extension veri�es the identity

⟨−∆u, v⟩H−1,H1
0
= ((u, v)), for all u, v ∈ H1

0 (Ω). (1.54)

Making the above considerations, from (1.52) and (1.54) we can write

−
∫ T

0

(u′(t), v)θ′(t) dt =

∫ T

0

⟨∆u(t), v⟩ θ(t) dt+
∫ T

0

(f(t), v)θ(t) dt, for all v ∈ H1
0 (Ω)

(1.55)
and for every θ ∈ D(0, T ), or alternatively,−

∫ T

0

u′(t)θ′(t) dt︸ ︷︷ ︸
∈L2(Ω)

, v

 =

〈∫ T

0

∆u(t)θ(t) dt︸ ︷︷ ︸
∈H−1(Ω)

, v

〉
+


∫ T

0

f(t)θ(t) dt︸ ︷︷ ︸
∈L2(Ω)

, v

 ,

for all v ∈ H1
0 (Ω) and for every θ ∈ D(0, T ). Identifying L2(Ω) with its dual, via the Riesz

Theorem, from the last identity it follows that〈
−
∫ T

0

u′(t)θ′(t) dt, v

〉
=

〈∫ T

0

∆u(t)θ(t) dt, v

〉
+

〈∫ T

0

f(t)θ(t) dt, v

〉
. (1.56)
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for all v ∈ H1
0 (Ω) and for every θ ∈ D(0, T ).

De�ning
g(t) = ∆u(t) + f(t),

from (1.56) it results that

−
∫ T

0

u′(t)θ′(t) dt =

∫ T

0

g(t)θ(t) dt in H−1(Ω). (1.57)

Furthermore, since f ∈ L1(0, T ;H−1(Ω)), from (1.53) we obtain∫ T

0

||∆u(t)||H−1(Ω) dt =

∫ T

0

||u(t)||H1
0 (Ω) dt < +∞,

which implies that g ∈ L1(0, T ;H−1(Ω)).
Let us de�ne:

v(t) = u′(t)−
∫ t

0

g(s) ds ∈ H−1(Ω).

Since v ∈ L1(0, T ;H−1(Ω)), v′ de�nes a vector distribution, and moreover,

⟨v′, θ⟩ = −⟨v, θ′⟩ = −⟨u′, θ′⟩+
〈∫ t

0

g(s) ds, θ′
〉
.

But, 〈∫ t

0

g(s) ds, θ′
〉

=

∫ T

0

∫ t

0

g(s) ds︸ ︷︷ ︸
=h(t)

θ′(t) dt

= h(t)θ(t)|T0︸ ︷︷ ︸
=0

−
∫ T

0

g(t)θ(t) dt = −
∫ T

0

g(t)θ(t) dt,

which implies

⟨v′, θ⟩ = −⟨u′, θ′⟩ −
∫ T

0

g(t)θ(t) dt. (1.58)

From (1.57) and (1.58) it follows that

⟨v′, θ⟩ = 0, for all θ ∈ D(0, T ),

and consequently, v′ = 0. Hence, v(t) = ξx = constant with respect to t.
Thus,

u′(t) = ξx +

∫ t

0

g(s) ds⇒ u′′(t) = g(t),

which leads us to
u′′ ∈ L1(0, T ;H−1(Ω)). (1.59)

Step 5: Initial Conditions

Let us note initially that due to

u ∈ L∞(0, T ;H1
0 (Ω)), u

′ ∈ L∞(0, T ;L2(Ω)), u′′ ∈ L∞(0, T ;H−1(Ω)),
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it results, by virtue of Lemma 1.2 in Lions [10] and Lemma 8.1 in Lions and Magenes [9],
that {

u ∈ C([0, T ];L2(Ω)), u ∈ Cs(0, T ;H
1
0 (Ω)),

u′ ∈ C([0, T ];H−1(Ω)), u′ ∈ Cs(0, T ), L
2(Ω).

Thus, it makes sense to refer to u(t) and u′(t) for any t ∈ [0, T ].
We will prove that:
(i) u(0) = u0
Indeed, we have previously established that

u′ν
∗
⇀ u′ in L∞(0, T ;L2(Ω)) when ν →∞.

Let θ ∈ C1([0, T ]) and v ∈ L2(Ω). Then, identifying L2(Ω) with its dual, from the
last convergence it follows that∫ T

0

(u′ν(t), v)θ(t) dt →
∫ T

0

(u′(t), v)θ(t) dt, when ν →∞,

that is, ∫ T

0

d

dt
(uν(t), v)θ(t) dt →

∫ T

0

d

dt
(u(t), v)θ(t) dt, when ν →∞,

or alternatively,

(uν(t), v)θ(t)|T0 −
∫ T

0

(uν(t), v)θ
′(t) dt→ (u(t), v)θ(t)|T0 −

∫ T

0

(u(t), v)θ′(t) dt,

when ν →∞.
Choosing θ such that θ(T ) = 0 and θ(0) = 1, and observing that∫ T

0

(uν(t), v)θ
′(t) dt→

∫ T

0

(u(t), v)θ′(t) dt, when ν →∞,

we obtain
(uν(0), v)→ (u(0), v), when ν →∞, for all v ∈ L2(Ω).

Hence,
uν(0) = u0ν ⇀ u(0), weakly in L2(Ω).

On the other hand, u0ν → u0 strongly in H1
0 (Ω) ↪→ L2(Ω). By the uniqueness of

the weak limit in L2(Ω) we conclude that u(0) = u0, as was to be proved.
We will prove next that
(ii) u′(0) = u1.
In fact, let θ ∈ C1([0, T ]) such that θ(0) = 1 and θ(T ) = 0. Returning to the

approximate problem we can write∫ T

0

(u′′ν(t), ωj)θ(t) dt+

∫ T

0

((uν , ωj))θ(t) dt =

∫ T

0

(f(t), ωj)θ(t) dt, ν ≥ j(�xed).

Integrating the above identity by parts we arrive at

(u′ν(t), ωj)θ(t)|T0 −
∫ T

0

(u′ν(t), ωj)θ
′(t) dt+

∫ T

0

((uν(t), ωj))θ(t) dt =

∫ T

0

(f(t), ωj)θ(t) dt,
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or alternatively, based on the characteristics of θ,

−(u′ν(0), ωj)−
∫ T

0

(u′ν(t), ωj)θ
′(t) dt+

∫ T

0

((uν(t), ωj))θ(t) dt =

∫ T

0

(f(t), ωj)θ(t) dt.

Taking the limit in the above identity as ν → +∞ yields

−(u1, ωj)−
∫ T

0

(u′(t), ωj)θ
′(t) dt+

∫ T

0

((u(t), ωj))θ(t) dt =

∫ T

0

(f(t), ωj)θ(t) dt.

Integrating again by parts, from the above identity it results that

− (u1, ωj)− (u′(t), ωj)θ(t)|T0 +

∫ T

0

d

dt
(u′(t), ωj)θ(t) dt+

∫ T

0

((u(t), ωj))θ(t) dt

=

∫ T

0

(f(t), ωj)θ(t) dt.

(1.60)

Since u is a weak solution to the problem in question, from (1.52) and (1.60) we

conclude that (u1, ωj) = (u′(0), ωj), for all j ∈ N. Since [ωj]j∈N
H1

0 (Ω)
= H1

0 (Ω) and

H1
0 (Ω)

L2(Ω)
= L2(Ω) and H1

0 (Ω) ↪→ L2(Ω), we have that

(u1, v) = (u′(0), v), for all v ∈ L2(Ω),

which proves the desired result.
6þ Step: Uniqueness

Let u and û be solutions to problem (1) and let us de�ne w = u− û. We have,
w′′ −∆w = 0 in L1(0, T ;H−1(Ω))

w = 0 about Σ = Γ× (0, T )

w(0) = w′(0) = 0.

Note that it makes no sense to compose w′′(t) with w′(t) in the dualityH−1(Ω), H1
0 (Ω)

since w′(t) almost always belongs to L2(Ω). To circumvent this problem we use the fol-
lowing trick: since u, û ∈ L∞(0, T ;H1

0 (Ω)) then
∫ β

α
w(t) dt ∈ H1

0 (Ω) for all α, β ∈ [0, T ].
Let's take s ∈ [0, T ] and de�ne the following auxiliary function:

ψ(t)

−
∫ s

t

w(τ) d τ, 0 ≤ t ≤ s,

0, s ≤ t ≤ T

Let us observe that for each t ∈ [0, T ], ψ(t) ∈ H1
0 (Ω) and, in addition,∣∣∣∣∣∣∣∣∣

∫ T

0

||ψ(t)|| dt =
∫ s

0

∣∣∣∣∣∣∣∣−∫ s

t

w(τ) d τ

∣∣∣∣∣∣∣∣ dt ≤ ∫ s

0

∫ s

t

||w(τ)|| dτdt ≤ supess||w||
∫ s

0

(s− t) dt

= supess||w||
[
st− t2

2

]s
0

= supess||w||
[
s2 − s2

2

]
≤ T 2

2
supess||w|| < +∞.

Therefore, ψ ∈ L1(0, T ;H1
0 (Ω)). Furthermore, as ψ′ = w ∈ C([0, s];H1

0 (Ω)) results
in ψ ∈ C([0, s];H1

0 (Ω)).
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On the other hand, observing that w′′ ∈ L∞(0, T ;H−1(Ω)) and composing the
equationção w′′ − ∆w = 0 with the functionção ψ in the duality L∞(0, T ;H−1(Ω)) ×
L1(0, T ;H1

0 (Ω)) we obtain∫ T

0

⟨w′′(t), ψ(t)⟩ dt−
∫ T

0

⟨∆w(t), ψ(t)⟩ dt = 0,

or even, ∫ T

0

⟨w′′(t), ψ(t)⟩ dt+
∫ T

0

((w(t), ψ(t))) dt = 0.

As ψ(t) = 0 for t ∈ [s, T ] of the ¨ast identity we can write∫ s

0

⟨w′′(t), ψ(t)⟩ dt+
∫ s

0

((w(t), ψ(t))) dt = 0. (1.60)

But,
d

dt
⟨w′(t), ψ(t)⟩ = ⟨w′′(t), ψ(t)⟩+ ⟨w′(t), ψ′(t)⟩ . (1.61)

Let us note, however, that ψ′(t) = w(t) almost always in [0, s] we have

⟨w′(t), ψ′(t)⟩ = ⟨w′(t), w(t)⟩ = (w′(t), w(t)) =
1

2

d

dt
|w(t)|2. (1.62)

Also, ⟨w′(t), ψ(t)⟩ = (w′(t), ψ(t)) and therefore from (1.62) we obtain

d

dt
(w′(t), ψ(t)) = ⟨w′′(t), ψ(t)⟩+ 1

2

d

dt
|w(t)|2. (1.63)

Integrating the identity (1.63) of 0 �to s we get that

(w′(s), ψ(s))|s0 −
∫ s

0

⟨w′′(t), ψ(t)⟩ dt+ 1

2

[
|w(t)|2

]s
0
,

what does it imply

(w′(s), ψ(s)︸︷︷︸
=0

)− (w′(0)︸ ︷︷ ︸
=0

, ψ(0)) =

∫ s

0

⟨w′′(t), ψ(t)⟩ dt+ 1

2

|w(s)|2 − |w(0)|2︸ ︷︷ ︸
=0

 ,
and thus: ∫ s

0

⟨w′′(t), ψ(t)⟩ dt = −1

2
|w(s)|2. (1.64)

On the other hand, since ψ′ = w almost always in [0, s] we have

((w(t), ψ(t))) = ((ψ′(t), ψ(t))) =
1

2

d

dt
||ψ(t)||2,

and then, ∫ s

0

((w(t), ψ(t))) dt =
1

2

||ψ(s)||2︸ ︷︷ ︸
=0

−||ψ(0)||2
 . (1.65)
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From (1.60), (1.64) and (1.65) it follows that

−1

2
|w(s)|2 − 1

2
||ψ(0)||2 = 0,

which implies that |w(s)| = 0, for all s ∈ [0, T ], that is, w = 0, which concludes uniqueness.
Observation: Since w ∈ C([0, T ];H1

0 (Ω)), w
′ ∈ C([0, T ];L2(Ω)) and w′′ ∈ C([0, T ];H−1(Ω))

and ψ, ψ′ ∈ C([0, T ];H1
0 (Ω)) we have that the mappings t 7→ (w(t), ψ(t)) and t 7→

(w′(t), ψ(t)) are of class C1 in [0, T ] and, therefore, it is permissible to perform integra-
tions by parts. Furthermore, the functions |w(t)|2 and |ψ(t)|2 are absolutely continuous,
which allows us to perform the calculations above.
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Chapter 2

Problem ∂2u
∂t2
−∆u + |u|ρ u = f (weak

solution)

Problem 1 ∣∣∣∣∣∣∣∣∣∣
∂2u

∂t2
−∆u+ |u|ρ u = f in Q (ρ > 0)

u = 0 on Σ

u(0) = u0(x);
∂u

∂t
(0) = u1(x); x ∈ Ω

(1)

where
u0 ∈ H1

0 (Ω) ∩ Lρ+2(Ω); u1 ∈ L2(Ω) and f ∈ L2(0, T ;L2(Ω)) (2)

admits at least one weak solution u : Q→ R, in the class

u ∈ L∞(0, T ;H1
0 (Ω) ∩ Lρ+2(Ω)); u′ =

∂u

∂t
∈ L∞(0, T ;L2(Ω)). (3)

More precisely, setting p = ρ+ 2, we have

d

dt
(u′(t), v) + ((u(t), v)) + ⟨|u|ρ u, v⟩Lp′ (Ω),Lp(Ω) = (f(t), v) (4)

in D′(0, T ) for all v ∈ H1
0 (Ω) ∩ Lp(Ω).

u(0) = u0 ; u′(0) = u1 . (5)

Furthermore, if 0 < ρ <
2

n− 2
(n ≥ 3) the solution is unique.

Proof:
1a	 Step: Approximate Problem

We endowH1
0 (Ω)∩Lp(Ω) with the natural topology ||u||H1

0∩Lp = ||u||H1
0 (Ω)+||u||Lp(Ω)

so that the linear map

T : H1
0 (Ω) ∩ Lp(Ω)→ Lp(Ω)× L2(Ω)× · · · × L2(Ω)

u 7→ Tu =

(
u,

∂u

∂x1
, . . . ,

∂u

∂xn

)
is clearly an isometry. Setting

W = T (H1
0 (Ω) ∩ Lp(Ω))

19
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it follows that W is a subspace of a separable space and therefore, it is also separable.
Since T is an isometry, it follows that T−1(W ) possesses a countable dense subset in
H1

0 (Ω)∩Lp(Ω), which proves that the latter is likewise separable. Let (ων)ν∈N be a �basis�
of H1

0 (Ω) ∩ Lp(Ω), that is:∣∣∣∣∣∀m, ω1, . . . , ωm are linearly independent

Finite linear combinations of the ωi's are dense in H
1
0 (Ω) ∩ Lp(Ω).

(2.1)

Let us set
Vm = [ω1, . . . , ωm]

the subspace spanned by the �rst m vectors of the basis. Denoting by ( · , · ) and (( · , · )),
respectively, the inner products in L2(Ω) and H1

0 (Ω), we consider in Vm the approximate
problem

um(t) ∈ Vm ⇔ um(t) =
m∑
i=1

gim(t)ωi (6)

(u′′m(t), ωj) + ((um(t), ωj)) +

∫
Ω

|um(t)|ρ um(t)ωjdx = (f(t), ωj); j = 1, 2, . . . ,m. (7)

um(0) = u0m → u0 in H1
0 (Ω) ∩ Lp(Ω) (8)

u′m(0) = u1m → u1 in L2(Ω) (9)

which, by Carathéodory, possesses a local solution in an interval [0, tm) where um and u′m
are absolutely continuous and u′′m exists a.e. The a priori estimates will serve to extend
the solution to the whole interval [0, T ]. Indeed, from (6) and (7) and assuming, via
Gram-Schmidt, that {ωj}j∈N is orthonormal in L2(Ω), we obtain

g′′jm(t) +
m∑
i=1

gim(t)((ωi, ωj)) = (f, ωj)−
∫
Ω

∣∣∣∣∣
m∑
i=1

gim(t)ωi

∣∣∣∣∣
ρ( m∑

i=1

gim(t)ωi

)
ωj dx.

Denoting F (λ) = |λ|ρλ, from the last identity we can write

g′′jm(t) +
m∑
i=1

gim(t)((ωi, ωj)) = (f, ωj)−
∫
Ω

F

(
m∑
i=1

gim(t)ωi

)
ωj dx,

or equivalently, 
g′′1m(t)
g′′2m(t)

...
g′′mm(t)

+


((ω1, ω1)) · · · ((ω1, ωm))
((ω2, ω1)) · · · ((ω2, ωm))

...
...

((ωm, ω1)) · · · ((ωm, ωm))


︸ ︷︷ ︸

=A


g1m(t)
g2m(t)

...
gmm(t)


︸ ︷︷ ︸

=Z(t)

+


∫
Ω
F (
∑m

i=1 gim(t)ωi)ω1 dx∫
Ω
F (
∑m

i=1 gim(t)ωi)ω2 dx
...∫

Ω
F (
∑m

i=1 gim(t)ωi)ωm dx

 =


(f(t), ω1)
(f(t), ω2)

...
(f(t), ωm)


︸ ︷︷ ︸

=G2(t)
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Observing that

F

(
m∑
i=1

gim(t)ωi

)
= F

[ω1, · · · , ωm]


g1m(t)
g2m(t)

...
gmm(t)




and denoting [ω1, · · · , ωm] = B it follows that

Z ′′(t) + AZ(t) +


∫
Ω
F (BZ(t))ω1 dx∫

Ω
F (BZ(t))ω2 dx

...∫
Ω
F (BZ(t))ωm dx


︸ ︷︷ ︸

=G1(Z(t))

= G2(t).

De�ning

Y1(t) = Z(t), Y2(t) = Z ′(t) and Y (t) =

[
Y1(t)
Y2(t)

]
,

we obtain

Y ′(t) =

[
Y ′
1(t)
Y ′
2(t)

]
=

[
Z ′(t)
Z ′′(t)

]
=

[
Y2(t)

G2(t)−G1(Y1(t))− AY1(t)

]
=

[
0

G2(t)

]
+

[
0

−G1(Y1(t))

]
+

[
0 I
−A 0

] [
Y1(t)
Y2(t)

]
=

[
0

G2(t)

]
+

[
0

−G1(Y1(t))

]
+

[
0 I
−A 0

]
Y (t).

Consider the following map:

h : [0, T ]× R2m → R2m

(t, Y ) 7→ h(t, Y ) =

[
0

G2(t)

]
+

[
0

−G1(Y1)

]
+

[
0 I
−A 0

]
Y,

where Y1 = (ξ1, · · · , ξm) and Y = (ξ1, · · · , ξm, ξm+1, · · · , ξ2m).
Let us note that:
(i) For each �xed Y , h(t, Y ) is measurable since f is measurable.
(ii) For almost every t, h(t, Y ) is continuous since F is continuous.
(iii) Let U ⊂ [0, T ]× R2m be a compact set and (t, Y ) ∈ U . Then:

||h(t, Y )||R2m ≤ ||G2(t)||Rm + C,

where C is a constant, since as Y ∈ U , we have that F (BY1) and Y are bounded in R
and R2m, respectively. Furthermore,∫ T

0

||G2(t)||Rm dt+ CT < +∞.

Therefore,

||h(t, Y )||R2m ≤ mU(t), where mU(t) = ||G2(t)||Rm + C, and mU ∈ L1(0, T ).
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Then, by (i), (ii) and (iii), we have that h satis�es the Carathéodory conditions,
that is, there exists a solution to the problem

(PO)

{
Y ′(t) = h(t, Y (t))

Y (0) = Y0,

where

Y0 =

[
Z(0)
Z ′(0)

]
.

Thus, there exists a solution Y (t) of problem (PO) in some interval [0, tm], tm > 0,
tm ≤ T , where Y (t) is absolutely continuous. Consequently, the maps gjm(t) and g′jm(t)
are also absolutely continuous and de�ned on the interval [0, tm]. The following a priori
estimates will serve to extend the solution Y (t) to the whole interval [0, T ].

2nd Step: A Priori Estimate

Multiplying (7) by g′jm(t) and summing over j from 1 to m, we obtain

(u′′m(t), u
′
m(t)) + ((um(t), u

′
m(t))) +

∫
Ω

|um(t)|ρum(t)u′m(t)dx = (f(t), u′m(t)). (10)

We observe that the third expression on the left side of the equality makes sense

because |um(t)|ρ um(t) ∈ Lp′(Ω). Indeed, since p = ρ + 2, then
1

p′
= 1 − 1

ρ+ 2
which

implies that
1

p′
=
ρ+ 1

ρ+ 2
and therefore p′ =

ρ+ 2

ρ+ 1
. Thus:

|| |um(t)|ρ um(t)||p
′

Lp′ (Ω)

=

∫
Ω

||um(t)|ρ um(t)|
ρ+2
ρ+1 dx =

∫
Ω

|um(t)|ρ+2 dx = ||um(t)||pLp(Ω) < +∞
(10')

which proves the assertion. It follows from this, from (6), from the fact that gjm(t) and
g′jm(t) are absolutely continuous and by virtue of Hölder's inequality that:∫

Ω

|um(t)|ρ um(t)u′m(t) dx ∈ L1(0, tm). (11)

Consequently, from (10) and (11) it follows that

(u′′m(t), u
′
m(t)) ∈ L1(0, tm). (12)

We claim that

(u′′m(t), u
′
m(t)) =

1

2

d

dt
|u′m(t)|2, (13)

where
d

dt
is understood in the distributional sense in D′(0, tm). Indeed, let θ ∈ D(0, tm).

From (12) we obtain

⟨(u′′m(t), u′m(t)), θ⟩

=

∫ tm

0

∫
Ω

u′′m(x, t)u
′
m(x, t) dx θ(t) dt =

∫
Ω

∫ tm

0

1

2

d

dt
(u′m(x, t))

2 θ(t) dtdx

=
1

2

∫
Ω

{
(u′m(x, t))

2 θ(t)
∣∣t=tm

t=0
−
∫ tm

0

(u′m(x, t))
2 θ′(t) dt

}
dx

= −1

2

∫ tm

0

∫
Ω

(u′m(x, t))
2 θ′(t) dt =

1

2

〈 d
dt
|u′m(t)|2L2(Ω) , θ

〉
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which proves (13). Similarly, we prove that

((um(t), u
′
m(t))) =

1

2

d

dt
||um(t)||2. (14)

Next, we will prove that∫
Ω

|um(t)|ρ um(t)u′m(t) dx =
1

ρ+ 2

d

dt

∫
Ω

|um(t)|ρ+2 dx. (15)

In fact, initially note that given

F (λ) = |λ|ρ λ, λ ∈ R

we have
F ′(λ) = (ρ+ 1) |λ|ρ.

It follows from this that, for each x ∈ Ω,

(F ◦ um)′ =
d

dt
(|um|ρ um) = F ′(um) · u′m = (ρ+ 1)|um|ρ u′m (16)

and from (16) we obtain

d

dt

[
(|um|ρ um)um

]
= (ρ+ 1)|um|ρ u′m · um + |um|ρ um · u′m = (ρ+ 2)|um|ρ umu′m

that is,

|um|ρ umu′m =
1

ρ+ 2

d

dt

[
(|um|ρ um)um

]
=

1

ρ+ 2

d

dt
|um|ρ+2. (17)

Let θ ∈ D(0, tm). From (11) and (17) we have

〈 ∫
Ω

|um(x, t)|ρ um(x, t)u′m(x, t)dx, θ
〉
=

∫ tm

0

∫
Ω

|um(x, t)|ρ um(x, t)u′m(x, t)θ(t)dxdt

=
1

ρ+ 2

∫
Ω

∫ tm

0

d

dt

[
(|um(x, t)|ρ+2

]
θ(t) dtdx

=
1

ρ+ 2

∫
Ω

{
|um(x, t)|ρ+2 θ(t)

∣∣t=tm

t=0
−
∫ tm

0

|um(x, t)|ρ+2 θ′(t)dt

}
dx

= − 1

ρ+ 2

∫ tm

0

∫
Ω

|um(x, t)|ρ+2 dx θ′(t)dt =

〈
1

ρ+ 2

d

dt

∫
Ω

|um(t)|ρ+2 dx, θ

〉
which proves (15). From (10), (13), (14) and (15) it follows that

1

2

d

dt
|u′m(t)|2 +

1

2

d

dt
||um(t)||2 +

1

ρ+ 2

d

dt

∫
Ω

|um(x, t)|ρ+2 dx = (f(t), u′m(t))

for a.e. t ∈ [0, tm).
Multiplying the above equality by 2 and integrating over [0, t), t ∈ (0, tm), we

obtain

|u′m(t)|2 + ||um(t)||2 +
2

p
||um(t)||pLp(Ω) = |u

′
m(0)|2 + ||um(0)||2

+
2

p
||um(0)||pLp(Ω) + 2

∫ t

0

(f(s), u′m(s)) ds.
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Using Schwarz's inequality and the fact that 2ab ≤ a2 + b2 (a, b > 0), from the
last equality it follows that

|u′m(t)|2 + ||um(t)||2 +
2

p
||um(t)||pLp(Ω) ≤ |u

′
m(0)|2 + ||um(0)||2

+
2

p
||um(0)||pLp(Ω) +

∫ T

0

|f(s)|2 ds+
∫ t

0

|u′m(s)|2 dx.

Whence

|u′m(t)|2 + ||um(t)||2 +
2

p
||um(t)||pLp(Ω) ≤ |u

′
m(0)|2 + ||um(0)||2 +

2

p
||um(0)||pLp(Ω) (18)

+ ||f ||2L2(Q) +

∫ t

0

{
|u′m(s)|2 + ||um(s)||2 +

2

p
||um(s)||pLp(Ω)

}
ds.

Now, from (8) and (9) we obtain the existence of a constant c0 > 0 such that

|u′m(0)|2 + ||um(0)||2 +
2

p
||um(0)||pLp(Ω) ≤ c0 ; ∀m ∈ N. (19)

From (18) and (19) we conclude that

|u′m(t)|2+||um(t)||2+
2

p
||um(t)||pLp(Ω)+||f ||

2
L2(Q) ≤ c1+

∫ t

0

{
|u′m(s)|2+||um(s)||2+

2

p
||um(s)||pLp(Ω)

}
ds

where c1 > 0. It follows from this, by virtue of Gronwall's inequality, that ∃ c > 0
(independent of t and m) such that

|u′m(t)|2 + ||um(t)||2 +
2

p
||um(t)||pLp(Ω) ≤ c; ∀ t ∈ [0, tm); ∀m ∈ N. (20)

From the inequality above, it follows that

(i)
m∑
j=1

[
g′jm(t)

]2
=

∣∣∣∣∣
m∑
j=1

g′jm(t)ωj

∣∣∣∣∣
2

= |u′m(t)|2 ≤ c.

Analogously, since H1
0 (Ω) ↪→ L2(Ω) we obtain

(ii)
m∑
j=1

[gjm(t)]
2 =

∣∣∣∣∣
m∑
j=1

gjm(t)ωj

∣∣∣∣∣
2

= |um(t)|2 ≤ ||um(t)||2 ≤ c̃,

where c̃ is a positive constant.
By (i) and (ii) we have that Y (t) is bounded in R2m independently of t and m,

since

||Y (t)||2R2m =
m∑
j=1

gjm(t)
2 +

m∑
j=1

g′jm(t)
2 ≤ k1,

where k1 is a positive constant, for all t ∈ [0, tm] and m ∈ N. Thus, we can prolong Y to
the whole interval [0, T ] and the inequality in (20) remains valid for all t ∈ [0, T ] and for
all m ∈ N.
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Therefore, from (20) we can extend um to the whole interval [0, T ] and furthermore
we also have that

(um) is bounded in L∞(0, T ;H1
0 (Ω)) (21)

(um) is bounded in L∞(0, T ;Lp(Ω)) (22)

(u′m) is bounded in L∞(0, T ;L2(Ω)). (23)

Note also that from (10') and (22) it follows that(
|um|ρ um

)
is bounded in Lp′(0, T ;Lp′(Ω)) = Lp′(Q). (24)

From (21), (22), (23) and (24) we obtain the existence of a subsequence (uν) of
(um) such that

uν
∗
⇀ u weak-* in L∞(0, T ;H1

0 (Ω)) (25)

uν ⇀ u weakly in Lp(0, T ;Lp(Ω)) (26)

u′ν
∗
⇀ v = u′ weak-* in L∞(0, T ;L2(Ω)) 1 (27)

|uν |ρ uν ⇀ χ weakly in Lp′(0, T ;Lp′(Ω)) (28)

3rd Step: Passage to the Limit

Setting
B0 = H1

0 (Ω)
comp.
↪→ B = L2(Ω) ↪→ B1 = L2(Ω)

and
W = {u ∈ L2(0, T ;B0); u′ ∈ L2(0, T ;B1)}

endowed with the topology

||u||W = ||u||L2(0,T ;H1
0 )
+ ||u′||L2(0,T ;L2(Ω))

it follows from (21) and (23) that

(uν) is bounded in W. (29)

Thus, by the Aubin-Lions Theorem (see Theorem 5.1 in Lions [10]), we obtain a
subsequence (uµ) of (uν) such that

uµ → u strongly in L2(0, T ;L2(Ω)). (30)

From the last convergence, we obtain the existence of a subsequence, which we will
still denote by the same notation, such that

|uµ|ρ uµ → |u|ρ u a.e. in Q. (31)

Setting
gµ = |uµ|ρ uµ and g = |u|ρ u

1It is worth noting that since uν ∈ C1([0, T ];L2(Ω)), it follows that the classical derivative and the
distributional one coincide in the sense of vector-valued distributions in D′(0, T ;L2(Ω)). Thus we can
consider u′ν in the sense of vector-valued distributions and consequently v = u′ in D′(0, T ;L2(Ω)).
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it follows from (24) and (31) that

gµ → g a.e. in Q

and
||gµ||Lp′ (Q) ≤ c; ∀µ ∈ N.

Thus, by Lions' Lemma (see Lemma 1.3 in Lions [10]), we conclude that

gµ ⇀ g weakly in Lp′(Q)

that is,
|uµ|ρ uµ ⇀ |u|ρ u weakly in Lp′(Q). (32)

From (28) and (32), by the uniqueness of the limit, we conclude that

χ = |u|ρ u. (33)

Let j ∈ N and µ ∈ N such that µ ≥ j and consider θ ∈ D(0, T ). Multiplying (7)
by θ and integrating over [0, T ], we obtain∫ T

0

(u′′µ(t), ωj)θ(t)dt+

∫ T

0

((uµ(t), ωj))θ(t)dt

+

∫ T

0

∫
Ω

|uµ(t)|ρ uµ(t)ωj(x)dx θ(t) dt

=

∫ T

0

(f(t), ωj)θ(t) dt,

which implies that

−
∫ T

0

(u′µ(t), ωj)θ
′(t)dt+

∫ T

0

((uµ(t), ωj))θ(t)dt

+

∫ T

0

∫
Ω

|uµ(t)|ρ uµ(t)ωj(x)dx θ(t) dt

=

∫ T

0

(f(t), ωj)θ(t) dt.

(34)

Now, from (25), (27), (23) and (32) we have∫ T

0

⟨uµ(t), ξ(t)⟩H1
0 ,H

−1dt→
∫ T

0

⟨u(t), ξ(t)⟩H1
0 ,H

−1 dt

∀ ξ ∈ L1(0, T ;H−1(Ω)),

(35)

∫ T

0

(u′µ(t), η(t))dt→
∫ T

0

(u′(t), η(t))dt ∀ η ∈ L1(0, T ;L2(Ω)), (36)

∫ T

0

∫
Ω

|uµ(x, t)|ρ uµ(x, t)β(x, t)dxdt→

→
∫ T

0

∫
Ω

|u(x, t)|ρ u(x, t)β(x, t)dxdt ∀ β ∈ Lp(Q).

(37)
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Taking in particular

ξ = −∆ωj θ; η = ωjθ
′ and β = ωjθ

we obtain from (35), (36) and (37)∫ T

0

⟨uµ(t),−∆ωj⟩θ(t) dt→
∫ T

0

⟨u(t),−∆ωj⟩θ(t) dt,

i.e. ∫ T

0

((uν(t), ωj))θ(t)→
∫ T

0

((u(t), ωj))θ(t) dt, (38)

∫ T

0

(u′µ(t), ωj)θ
′(t) dt→

∫ T

0

(u′(t), ωj)θ
′(t) dt, (39)

∫ T

0

∫
Ω

|uµ(x, t)|ρ uµ(x, t)ωj dxθ(t)dt→
∫ T

0

∫
Ω

|u(x, t)|ρ u(x, t)ωjdxθ(t) dt. (40)

From (34), (38), (39) and (40) in the limit; we obtain

−
∫ T

0

(u′(t), ωj)θ
′(t) dt+

∫ T

0

((u(t), ωj))θ(t) dt

+

∫ T

0

∫
Ω

|u(x, t)|ρ u(x, t)ωj dx θ(t)dt =

∫ T

0

(f(t), ωj)θ(t) dt.

(41)

Since the �nite linear combinations of the ωj's are dense in H1
0 (Ω) ∩ Lp(Ω) the

equality in (41) remains valid for all v ∈ H1
0 (Ω) ∩ Lp(Ω), i.e.,

−
∫ T

0

(u′(t), v)θ′(t) dt+

∫ T

0

((u(t), v))θ(t) dt

+

∫ T

0

∫
Ω

|u(x, t)|ρ u(x, t)v(s)ds θ(t) dt =
∫ T

0

(f(t), v)θ(t) dt,

(42)

for all v ∈ H1
0 (Ω) ∩ Lp(Ω), or even,〈 d

dt
(u′(t), v), θ

〉
+ ⟨((u(t), v)), θ⟩+

〈∫
Ω

|u(t)|ρ u(t)v dx, θ
〉

= ⟨(f(t), v), θ⟩, ∀θ ∈ D(0, T )

which leads us to conclude that

d

dt
(u′(t), v) + ((u(t), v)) +

∫
Ω

|u(t)|ρ u(t)v dx = (f(t), v) in D′(0, T ). (43)

Identifying L2(Ω) with its dual, we have the chains

H1
0 ∩ Lp(Ω) ↪→ H1

0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) ↪→ H−1(Ω) + Lp′(Ω)

H1
0 ∩ Lp(Ω) ↪→ Lp(Ω) ↪→ L2(Ω) ↪→ Lp′(Ω) ↪→ H−1(Ω) + Lp′(Ω)

By virtue of the identi�cation above from (42) we can write,〈
−
∫ T

0

u′(t)θ′(t)dt, v

〉
+

〈∫ T

0

−∆u(t)θ(t)dt, v
〉

+

〈∫ T

0

|u(t)|ρ u(t)θ(t)dt, v
〉

=

〈∫ T

0

f(t)θ(t)dt, v

〉
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where ⟨ · , · ⟩ designates the duality H−1(Ω)+Lp′(Ω), H1
0 (Ω)∩Lp(Ω). It follows then that

u′′ −∆u+ |u|ρ u = f in D′(0, T ;H−1(Ω) + Lp′(Ω)). (44)

However, since

f ∈ L2(0, T ;L2(Ω)) ⊂ L2(0, T ;H−1 + Lp′(Ω))

∆u ∈ L∞(0, T ;H−1(Ω)) ⊂ L∞(0, T ;H−1(Ω) + Lp′(Ω))

|u|ρ u ∈ L∞(0, T ;Lp′(Ω)) ⊂ L∞(0, T ;H−1(Ω) + Lp′(Ω)) (2)

from (44) it follows that

u′′ ∈ L2(0, T ;H−1(Ω) + Lp′(Ω)) (45)

and
u′′ −∆u+ |u|ρ u = f in L2(0, T ;H−1(Ω) + Lp′(Ω)). (46)

4a	 Step: Initial Conditions

Note initially that from (25), (27) and (45) we have

u ∈ C0([0, T ];L2(Ω)) ∩ Cs(0, T ;H
1
0 (Ω))

u′ ∈ C0([0, T ];H−1(Ω) + Lp′(Ω)) ∩ Cs(0, T ;L
2(Ω))

making sense to speak of u(0), u(T ), u′(0) and u′(T ). We will prove initially that

u(0) = u0 . (47)

Indeed, let θ ∈ C1([0, T ]) such that θ(0) = 1 and θ(T ) = 0. From (27) it follows
that if ν > j (j arbitrary but �xed)∫ T

0

(u′ν(t), ωj)θ(t) dt→
∫ T

0

(u′(t), ωj)θ(t) dt.

Integrating by parts

−(uν(0), ωj)−
∫ T

0

(uν(t), ωj)θ
′(t) dt→ −(u(0), ωj)−

∫ T

0

(u(t), ωj)θ
′(t) dt.

Now from (25) it follows that∫ T

0

(uν(t), ωj)θ
′(t) dt→

∫ T

0

(u(t), ωj)θ
′(t) dt,

which implies that
(uν(0), ωj)→ (u(0), ωj) ∀ j ∈ N.

It follows from this that

uν(0)⇀ u(0) weakly in L2(Ω).

2Note that from (10') and (22) we have |uµ|ρ uν is bounded in L∞(0, T ;Lp′
(Ω)).
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On the other hand, from (8) we have that

uν(0)⇀ u0 weakly in L2(Ω)

which leads us, given the uniqueness of the weak limit, to conclude what is desired in
(47).

We will prove next that:
u′(0) = u1 . (48)

Let θ ∈ C1([0, T ]) such that θ(0) = 1 and θ(T ) = 0 and consider j ∈ N. Thus for
µ > j from (7) we obtain∫ T

0

(u′′µ(t), ωj)θ(t) dt+

∫ T

0

((uµ(t), ωj))θ(t) dt

+

∫ T

0

∫
Ω

|uµ(x, t)|ρ uµ(x, t)ωj dx θ(t)dt =

∫ T

0

(f(t), ωj)θ(t) dt.

Integrating by parts

− (u′µ(0), ωj)−
∫ T

0

(u′µ(t), ωj)θ
′(t) dt+

∫ T

0

((uµ(t), ωj))θ(t) dt

+

∫ T

0

∫
Ω

|uµ(t)|ρ uµ(t)ωj dx θ(t)dt =

∫ T

0

(f(t), ωj)θ(t) dt.

Taking the limit we obtain as before

− (u1, ωj)−
∫ T

0

(u′(t), ωj)θ
′(t) dt+

∫ T

0

((u(t), ωj))θ(t) dt

+

∫ T

0

∫
Ω

|u(x, t)|ρ u(x, t)ωj dx θ(t)dt =

∫ T

0

(f(t), ωj)θ(t) dt.

By the totality of the ωj's in H1
0 (Ω) ∩ Lp(Ω) we obtain

− (u1, v)−
∫ T

0

(u′(t), v)θ′(t) dt+

∫ T

0

((u(t), v))θ(t) dt

+

∫ T

0

∫
Ω

|u(x, t)|ρ u(x, t)v dx θ(t)dt =
∫ T

0

(f(t), v)θ(t) dt, ∀ v ∈ H1
0 ∩ Lp.

Integrating by parts again, it follows that

− (u1, v) + (u′(0), v) +

∫ T

0

⟨u′′(t), v⟩θ(t)dt+
∫ T

0

((u(t), v))θ(t)dt

+

∫ T

0

∫
Ω

|u(x, t)|ρ u(x, t)v dx θ(t) dt =
∫ T

0

(f(t), v)θ(t) dt,

(49)

where ⟨ · , · ⟩ designates the duality H−1 + Lp′ , H1
0 ∩ Lp.

Now, since

⟨u′′(t), v⟩ = d

dt
(u′(t), v) ∈ L2(0, T ), (50)

it follows from (43), (49) and (50) that

(u1, v) = (u′(0), v); ∀ v ∈ H1
0 (Ω) ∩ Lp(Ω),

whence (48) is concluded.
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5a	 Step: Uniqueness

We claim that problem 1 admits a unique weak solution provided that 0 < ρ ≤
2

n− 2
· Indeed, let u and v be weak solutions of (1) and consider ω = u− v. Then as seen

previously
ω ∈ L∞(0, T ;H1

0 (Ω) ∩ Lp(Ω)); ω′ ∈ L∞(0, T ;L2(Ω))

and ω′′ ∈ L2(0, T ;H−1(Ω) + Lp′(Ω))
(51)

and satis�es the problem∣∣∣∣∣∣∣
ω′′ −∆ω = (f − |u|ρu)− (f − |v|ρv) = |v|ρv − |u|ρu in L2(0, T ;H−1 + Lp′)

ω = 0 on Σ

ω(0) = ω′(0) = 0

(52)

We will use the Visik-Ladyzenskaya method. We consider, for each s ∈ [0, T ] the
following function

ψ(t) =

−
∫ s

t

ω(ξ)dξ; 0 ≤ t ≤ s

0; s ≤ t ≤ T

(53)

Letting ψ′ be the derivative in the sense of vector-valued distributions of ψ, we
have

ψ′(t) =

{
ω(t); 0 ≤ t ≤ s

0; s ≤ t ≤ T
(54)

From the expressions above and from (51) it is evident that

ψ, ψ′ ∈ L∞(0, T ;H1
0 (Ω) ∩ Lp(Ω)) (55)

which implies that
ψ ∈ C0([0, T ];H1

0 (Ω) ∩ Lp(Ω)). (56)

Composing (52)1 with ψ in the duality L2(0, T ;H−1+Lp′)×L2(0, T ;H1
0 ∩Lp) and

observing that ψ = 0 in [s, T ] we obtain∫ s

0

⟨ω′′(t), ψ(t)⟩dt+
∫ s

0

⟨−∆ω(t), ψ(t)⟩dt =
∫ s

0

⟨|v|ρv − |u|ρu, ψ(t)⟩dt. (57)

Integrating by parts and using the fact that ⟨−∆ω, ψ⟩ = ((ω, ψ)) from (57) it
follows that

⟨ω′(s), ψ(s)⟩ − ⟨ω′(0), ψ(0)⟩ −
∫ s

0

(ω′(t), ψ′(t))dt

+

∫ s

0

((ω(t), ψ(t))) =

∫ s

0

⟨|v|ρv − |u|ρu, ψ(t)⟩dt,

or even from (52)3 , (53) and (54) we have

−
∫ s

0

(ω′(t), ω(t))dt+

∫ s

0

((ψ′(t), ψ(t))) =

∫ s

0

⟨|v|ρv − |u|ρu, ψ(t)⟩dt,

that is,

−1

2

∫ s

0

d

dt
|ω(t)|2 dt+ 1

2

∫ s

0

d

dt
||ψ(t)||2 dt =

∫ s

0

⟨|v|ρv − |u|ρu, ψ(t)⟩dt,
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which leads us to the following expression

−1

2
|ω(s)|2 + 1

2
|ω(0)|2 + 1

2
||ψ(s)||2 − 1

2
||ψ(0)||2 =

∫ s

0

⟨|v|ρv − |u|ρu, ψ(t)⟩dt,

and again thanks to (52)3 and (53) we conclude that

−1

2
|ω(s)|2 − 1

2
||ψ(0)||2 =

∫ s

0

∫
Ω

(|v|ρv − |u|ρu)ψ(t)dxdt. (58)

On the other hand, setting

F (λ) = |λ|ρ λ, λ ∈ R

then
F ′(λ) = (ρ+ 1)|λ|ρ, λ ∈ R,

which implies that F ∈ C1(R). Thus, given α, β ∈ R there exists, by virtue of the Mean
Value Theorem (M.V.T.), ξ ∈ ]α, β [ such that

|F (β)− F (α)| ≤ |F ′(ξ)| |β − α|,

or even,
|F (β)− F (α)| ≤ (ρ+ 1)|ξ|ρ |β − α|. (59)

Now from the fact that ξ ∈ ]α, β [ , ∃ θ = θ(α, β) ∈ ]0, 1 [ such that

ξ = (1− θ)α + θ · β = α + (β − α) · θ. (60)

In the particular case where α(x, t) = u(x, t), β(x, t) = v(x, t) it follows from (59)
and (60) that

| |v(x, t)|ρ v(x, t)− |u(x, t)|ρ u(x, t)|
≤ (ρ+ 1)|u(x, t) + (v(x, t)− u(x, t)) · θ(x, t)|ρ |v(x, t)− u(x, t)|
≤ (ρ+ 1)

{
|u(x, t)|+ |v(x, t)|+ |u(x, t)|

}ρ |ω(x, t)|
≤ (ρ+ 1)

{
2|u(x, t)|+ 2|v(x, t)|

}ρ |ω(x, t)|
= (ρ+ 1) · 2ρ ·

{
|u(x, t)|+ |v(x, t)|

}ρ |ω(x, t)|
≤ (ρ+ 1) · 2ρ

{
2ρ|v(x, t)|ρ |ω(x, t)| if |u(x, t)| ≤ |v(x, t)|
2ρ|u(x, t)|ρ |ω(x, t)| if |u(x, t)| ≥ |v(x, t)|

≤ (ρ+ 1)2ρ · 2ρ
{
|u(x, t)|ρ + |v(x, t)|ρ

}
|ω(x, t)|

i.e,

| |v(x, t)|ρ v(x, t)− |u(x, t)|ρ u(x, t)| ≤ (ρ+ 1)22ρ
{
|u(x, t)|ρ + |v(x, t)|ρ

}
|ω(x, t)|. (61)

From (58) and (61) it follows that

1

2
|ω(s)|2 + 1

2
||ψ(0)||2 ≤ c(ρ)

∫ s

0

∫
Ω

{
|u(x, t)|ρ + |v(x, t)|ρ

}
|ω(x, t)| |ψ(x, t)| dxdt. (62)

Note that according to the Sobolev embedding Theorem we have

H1
0 (Ω) ↪→ Lq(Ω),
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where

1 ≤ q ≤ 2n

n− 2
· (63)

It is worth noting that

ω(t) ∈ L2(Ω) a.e. in ]0, T [ (64)

ψ(t) ∈ Lq(Ω) a.e. in ]0, T [ (65)

this is because ω, ψ ∈ L∞(0, T ;H1
0 (Ω)) and H

1
0 (Ω) ↪→ Lq(Ω). We claim that:

|u(t)|ρ, |v(t)|ρ ∈ L
2(ρ+1)

ρ (Ω) a.e. in ]0, T [ . (66)

Indeed, we have by hypothesis that 0 < ρ ≤ 2

n− 2
which implies that 2 < 2(ρ+1) ≤

2n

n− 2
. Since Ω is bounded, it follows, taking q = 2(ρ+ 1) and from (63)

H1
0 (Ω) ↪→ L2(ρ+1)(Ω). (67)

Now since u(t), v(t) ∈ H1
0 (Ω) a.e. in ]0, T [, from the embedding above it follows

that u(t) ∈ L2(ρ+1) = Lρ
2(ρ+1)

ρ (Ω) a.e. in ]0, T [ and therefore

|u(t)|ρ, |v(t)|ρ ∈ L
2(ρ+1)

ρ (Ω) a.e. in ]0, T [

which proves (66). Note that,

1
2(ρ+1)

ρ

+
1

2(ρ+ 1)
+

1

2
= 1. (68)

It follows from (62), (64), (65), (66), (68) and by the generalized Hölder inequality
that

1

2
|ω(s)|2 + 1

2
||ψ(0)||2

≤ c1

∫ s

0

{(
||u(t)|ρ||

L
2(ρ+1)

ρ (Ω)
+ || |v(t)|ρ||

L
2(ρ+1)

ρ (Ω)

)
|ω(t)|L2(Ω) ||ψ(t)||

}
dt.

(69)

But from (67) and the fact that u ∈ L∞(0, T ;H1
0 (Ω)) we have

ess sup
t∈[0,T ]

|| |u(t)|ρ||
L

2(ρ+1)
ρ (Ω)

= ess sup
t∈[0,T ]

[∫
Ω

|u(t)|2(ρ+1) dx

] 1
2(ρ+1)

ρ ≤ k1 ess sup
t∈[0,T ]

||u(t)||ρ < +∞

and from (69) we conclude that

1

2
|ω(s)|2 + 1

2
||ψ(0)||2 ≤ c2

∫ s

0

|ω(t)| ||ψ(t)|| dt. (70)

Finally, setting

ω1(t) =

∫ t

0

ω(ξ) dξ (71)
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we have from (53), for all t ∈ [0, s],

ψ(t) = −
∫ s

t

ω(ξ) dξ = −
[ ∫ s

0

ω(ξ)dξ︸ ︷︷ ︸
ω1(s)

−
∫ t

0

ω(ξ)dξ︸ ︷︷ ︸
ω1(t)

]
= ω1(t)− ω1(s). (72)

Thus, from (72) we can write

ψ(0) = ω1(0)︸ ︷︷ ︸
=0

−ω1(s) = −ω1(s). (73)

Substituting (72) and (73) into (70) implies that

1

2
|ω(s)|2 + 1

2
||ω1(s)||2 ≤ c2

∫ s

0

|ω(t)| ||ω1(t)− ω1(s)|| dt

≤ c2

{∫ s

0

|ω(t)| ||ω1(t)|| dt+
∫ s

0

|ω(t) ||ω1(s)|| dt
}

= c2

{∫ s

0

|ω(t)| ||ω1(t)|| dt+
∫ s

0

√
2sc2|ω(t)|

1√
2sc2

||ω1(s)|| dt
}

≤ c2
2

{∫ s

0

|ω(t)|2dt+
∫ s

0

||ω1(t)||2dt+ 2sc2

∫ s

0

|ω(t)|2dt+ 1

2sc2
||ω1(s)||2

(∫ s

0

ds

)}
≤ c2

2

∫ s

0

|ω(t)|2dt+ c2
2

∫ s

0

||ω1(t)||2dt+ Tc22

∫ s

0

|ω(t)|2dt+ 1

4
||ω1(s)||2

≤ 1

4
||ω1(s)||2 + c3

∫ s

0

(
|ω(t)|2 + ||ω1(t)||2

)
dt,

which implies that

1

4
|ω(s)|2 + 1

4
||ω1(s)||2 ≤ c3

∫ s

0

(
|ω(t)|2 + ||ω1(t)||2

)
dt.

From the inequality above by virtue of Gronwall's inequality it follows that

1

4
|ω(s)|2 + 1

4
||ω1(s)||2 ≤ 0.

Thus, we obtain

ω(s) = 0 in L2(Ω); ∀ s ∈ (0, T )

and from the fact that ω(0) = 0 we have

ω(s) = 0 in L2(Ω); ∀ s ∈ [0, T ]

which concludes the proof.
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Chapter 3

Problem ∂2u
∂t2
−∆u + |u|ρu = f (Regular

solution)

Problem 2 ∣∣∣∣∣∣∣∣∣∣
∂2u

∂t2
−∆u+ |u|ρu = f in Q

u = 0 on Σ

u(0) = u0(x);
∂u

∂t
(0) = u1(x)

(1)

subject to the initial conditions

u0 ∈ H1
0 (Ω) ∩H2(Ω); u1 ∈ H1

0 (Ω) and f,
∂f

∂t
∈ L2(0, T ;L2(Ω)) (2)

admits a unique strong solution if 0 < ρ ≤ 2

n− 2
(n ≥ 3), in the class

u ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)); u′ ∈ L∞(0, T ;H1

0 (Ω)) and u
′′ ∈ L∞(0, T ;L2(Ω)). (3)

More precisely, setting p = ρ+ 2 we have

(u′′(t), v) + ((u(t), v)) + (|u(t)|ρu(t), v) = (f(t), v) (4)

in D′(0, T ), for all v ∈ H1
0 (Ω) ∩H2(Ω).

u(0) = u0 , u′(0) = u1 . (5)

35
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Proof:

1a	 Step: Approximate Problem

Initially we observe that by the Sobolev embedding Theorem, we have

H1
0 (Ω) ↪→ Lq(Ω); q ≤ 2n

n− 2
· (6)

Since ρ ≤ 2

n− 2
by hypothesis then

2ρ ≤ 4

n− 2
⇔ 2ρ+ 2 ≤ 4

n− 2
+ 2 ⇔ 2ρ+ 2 ≤ 2n

n− 2
·

Therefore,
H1

0 (Ω) ↪→ L2ρ+2(Ω) ↪→ Lρ+2(Ω) (7)

and consequently

|v|ρ+2 ∈ L1(Ω) and |v|ρv ∈ L2(Ω); ∀ v ∈ H1
0 (Ω). (8)

Let (ων) be a �basis� of H1
0 (Ω) ∩H2(Ω). Let us set

Vm = [ω1, . . . , ωm].

In Vm we consider the approximate problem

um(t) ∈ Vm ⇔ um(t) =
n∑

i=1

gim(t)ωi (9)

(u′′m(t), ωj) + ((um(t), ωj)) + (|um(t)|ρum(t), ωi)
(3) = (f(t), v) (10)

um(0) = u0m → u0 in H1
0 (Ω) ∩H2(Ω), (11)

u′m(0) = u1m → u1 in H1
0 (Ω), (12)

which by Carathéodory's Theorem possesses a local solution in some interval [0, tm), where
um(t), u′m(t) are absolutely continuous and u′′m(t) exists a.e. The a priori estimates will
serve to extend the solution to the whole interval [0, T ] (The proof of Carathéodory's
theorem can be found in the following reference: Coddington and Levinson, Theory of
Ordinary Di�erential Equations, Mc Graw-Hill, New York, 1955).

2a	 Step: A Priori Estimates

(i) Estimate I

Multiplying (10) by g′jm(t) and summing over j from 1 to m, we obtain

1

2

d

dt
|u′m(t)|2 +

1

2

d

dt
||um(t)||2 +

1

p

d

dt
||um(t)||pLp(Ω) = (f(t), u′m(t))

3Note that by virtue of (8) it follows that |um|ρum ∈ L2(Ω).
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as we already did in Problem 1.
Integrating the expression above from 0 to t with t ∈ (0, tm), we have

|u′m(t)|2 + ||um(t)||2 +
2

p
||um(t)||pLp = |u1m|2 + ||u0m||2

+
2

p
||u0m||pLp(Ω) + 2

∫ t

0

(f(s), u′m(s))ds

≤ |u1m|2 + ||u0m||2 +
2

p
||u0m||pLp(Ω) + ||f ||

2
L2(Q) +

∫ t

0

|u′m(s)|2 ds.

(13)

However from (11) and (12) we obtain the existence of a constant c1 > 0 such that

|u1m|2 + ||u0m||2 +
2

p
||u0m||pLp(Ω) + ||f ||

2
L2(Q) ≤ c1 . (14)

Thus, from (13) and (14) it follows that

|u′m(t)|2 + ||um(t)||2 +
2

p
||um(t)||pLp(Ω)

≤ c1 +

∫ t

0

{
|u′m(s)|2 + ||um(s)||2 +

2

p
||um(s)||pLp(Ω)

}
ds.

Now, by Gronwall's inequality from this last inequality we conclude that

|u′m(t)|2 + ||um(t)||2 +
2

p
||um(t)||pLp(Ω) ≤ c2 ; ∀ t ∈ [0, tm); ∀m ∈ N, (15)

which allows us to extend um to the whole interval [0, T ]. Furthermore,

(um) is bounded in L∞(0, T ;H1
0 (Ω)), (16)

(um) is bounded in L∞(0, T ;Lp(Ω)), (17)

(u′m) is bounded in L∞(0, T ;L2(Ω)). (18)

From (7) and (16) it also follows that

(|um|ρum) is bounded in L∞(0, T ;L2(Ω)). (19)

(ii) Estimate II

We can, without loss of generality, consider the basis (ων) as being orthonormal in
L2(Ω). It follows from this and from (10) that

g′′jm(t) = (u′′m(t), ωj) = (f(t), ωj)− ((um(t), ωj))− (|um(t)|ρum(t), ωj). (20)

Since the right side of the equality above belongs to L2(0, T ) it follows that g′′jm ∈
L2(0, T ), where here the derivatives are understood in the sense of Dini. Thus∫ T

0

||u′′m(t)||2L2(Ω) dt =

∫ T

0

∣∣∣∣∣
m∑
j=1

g′′jm(t)ωj

∣∣∣∣∣
2

L2(Ω)

dt

≤ c(m)
m∑
j=1

||ωj||2L2(Ω)

∫ T

0

|g′′jm(t)|2 dt < +∞
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that is,
u′′m ∈ L2(0, T ;L2(Ω)) (21)

where here, again, the derivatives are understood in the sense of Dini. On the other hand,
d

dt
being the derivative in the distributional sense in D′(0, T ;L2(Ω)) and θ ∈ D(0, T ), we

have〈
d

dt
um, θ

〉
= −

∫ T

0

um(t)θ
′(t)dt = −

∫ T

0

( m∑
j=1

gjm(t)ωj

)
θ′(t) dt

=
m∑
j=1

(
−
∫ T

0

gjm(t)θ
′(t)dt

)
ωj =

m∑
j=1

−
{
gjm(t)θ(t)

∣∣T
0
−
∫ T

0

g′jm(t)θ(t)dt

}(4)

ωj

=

( m∑
j=1

∫ T

0

g′jm(t)θ(t)dt

)
ωj =

∫ T

0

u′m(t)θ(t)dt = ⟨u′m, θ⟩

which proves that the distributional derivative of um and the classical derivative coincide.
Similarly, it is proved that 〈 d

dt
u′m, θ

〉
= ⟨u′′m, θ⟩

that is, that the distributional and classical derivatives of 1a	 and 2a	 order coincide.
On the other hand, using properties of the Bochner integral it is not di�cult to

verify that

〈 d
dt

(f(t), ωj), θ
〉
= ⟨(f ′(t), ωj), θ⟩〈 d

dt
((um(t), ωj)), θ

〉
= ⟨((u′m(t), ωj)), θ⟩〈 d

dt
(|um(t)|ρum(t), ωj), θ

〉
=

〈
(ρ+ 1)

∫
Ω

|um(t)|ρu′m(t)ωjdx, θ

〉
.

From the relations above and from (20) it follows that

d

dt
(u′′m(t), ωj) = (f ′(t), ωj)− ((u′m(t), ωj))− (ρ+ 1)

∫
Ω

|um(t)|ρu′m(t)ωj dx (22)

in L2(0, T ), that is,
g′′′jm ∈ L2(0, T ) (5)

where the three derivatives are distributional. Then it follows that∫ T

0

||u′′′m(t)||2L2(Ω) dt =

∫ T

0

∣∣∣∣∣
m∑
j=1

g′′′jm(t)ωj

∣∣∣∣∣
2

L2(Ω)

dt < +∞

i.e,
u′′′m ∈ L2(0, T ;L2(Ω)) (22')

4Here we used the fact that (gjm(t) · θ(t)) is absolutely continuous.
5Note that the classical and distributional derivatives up to second order of gjm(t) coincide in the

sense of distributions in D′(0, T ).
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and from (22) we obtain

(u′′′m(t), ωj) + ((u′m(t), ωj)) + (ρ+ 1)

∫
Ω

|um(t)|ρu′m(t)ωj dx = (f ′(t), ωj). (23)

Multiplying by g′′jm and summing over j, we arrive at

1

2

d

dt
|u′′m(t)|2 +

1

2

d

dt
||u′m(t)||2 + (ρ+ 1)

∫
Ω

|um(t)|ρu′m(t)u′′m(t) dx = (f ′(t), u′′m(t)).

Whence

d

dt

{
|u′′m(t)|2 + ||u′m(t)||2

}
≤ 2(ρ+ 1)

∫
Ω

|um(t)|ρ|u′m(t)| |u′′m(t)|dx+ 2(f ′(t), u′′m(t)). (24)

Remembering that H1
0 (Ω) ↪→ Lq(Ω) where 1 ≤ q ≤ 2n

n−2
, then, from the fact that

|um|ρ ∈ L
2(ρ+1)

ρ (Ω), |u′m| ∈ Lq(Ω) and |u′′m| ∈ L2(Ω) and, furthermore, since 1
2(ρ+1)

ρ

+

1
2(ρ+1)

+ 1
2
= 1 we have, according to the generalized Hölder inequality that∫
Ω

|um(t)|ρ|u′m(t)| |u′′m(t)|dx ≤ || |um(t)|ρ||
L

2(ρ+1)
ρ (Ω)

||u′m(t)||Lq(Ω) |u′′m|L2(Ω)

= ||um(t)||ρL2(ρ+1)(Ω)
||u′m||Lq(Ω) |u′′m(t)|L2(Ω) .

(25)

We have

0 < ρ ≤ 2

n− 2
⇒ 2 < 2(ρ+ 1) ≤ 2n

n− 2
.

Whence, Ω being bounded, taking q = 2(ρ+ 1)

H1
0 (Ω) ↪→ L2(ρ+1)(Ω). (26)

From (25) and (26) we have the existence of a constant c1 > 0 such that∫
Ω

|um(t)|ρ|u′m(t)| |u′′m(t)|dx ≤ c1||um(t)||ρ ||u′m(t)|| |u′′m(t)|

which by (16) is even less than or equal to

c2||u′m(t)|| |u′′m(t)|

that is, ∫
Ω

|um(t)|ρ|u′m(t)| |u′′m(t)| dx ≤
c2
2

{
||u′m(t)||2 + |u′′m(t)|2

}
. (27)

Now, from (24) and (27) we conclude that

d

dt

{
|u′′m(t)|2 + ||u′m(t)||2

}
≤ c3

{
||u′m(t)||2 + |u′′m(t)|2

}
+ |f ′(t)|2 + |u′′m(t)|2.

Integrating from 0 to t; t ∈ [0, T ], we obtain

|u′′m(t)|2 + ||u′m(t)||2 ≤ |u′′m(0)|2 + ||u1m||2 + ||f ′||L2(Q)

+ c4

∫ t

0

{
||u′m(s)||2 + |u′′m(s)|2

}
ds.

(28)
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On the other hand, by virtue of (16), (18), (21) and (22') we have

um ∈ Cs(0, T ;H
1
0 (Ω)) ∩ C0([0, T ], L2(Ω)); u′m, u

′′
m ∈ C0([0, T ];L2(Ω))

making sense to speak of u′′m(0). From (20), in particular, we can write that

|u′′m(0)|2 = (f(0), u′′m(0))− ((um(0), u
′′
m(0)) + (|um(0)|ρum(0), u′′m(0)). (29)

From (29) it follows that

|u′′m(0)|2L2 ≤
[
|f(0)|L2(Ω) + |∆u0m|L2(Ω) + | |u0m|ρu0m|L2(Ω)

]
|u′′m(0)|

where here we used Green's and Schwarz's Theorem, i.e,

|u′′m(0)|L2(Ω) ≤
[
|f(0)|L2(Ω) + |∆u0m|L2(Ω) + ||u0m||ρ+1

L2ρ+2(Ω)

]
. (30)

It follows from (7) and (11) that there exists c5 > 0 such that

|u′′m(0)|2L2(Ω) ≤ c5 ; ∀m ∈ N (31)

and from (12), (28) and (31) it follows that

|u′′m(t)|2 + ||u′m(t)||2 ≤ c6 +

∫ t

0

[
||u′m(s)||2 + |u′′m(s)|2

]
ds

and by Gronwall's inequality we have

|u′′m(t)|2 + ||u′m(t)||2 ≤ c; ∀ t ∈ [0, T ]; ∀m ∈ N. (32)

From (32) it then follows that

(u′m) is bounded in L∞(0, T ;H1
0 (Ω)), (33)

(u′′m) is bounded in L∞(0, T ;L2(Ω)). (34)

3a	 Step: Passage to the limit

From the estimates made in (16), (17), (18), (19), (33) and (34) we can extract a
subsequence (uν) of (um) such that

uν
∗
⇀ u weak-star in L∞(0, T ;H1

0 (Ω)), (35)

uν ⇀ u weakly in Lp(Q), (36)

u′ν
∗
⇀ u′ weak-star in L∞(0, T ;L2(Ω)), (37)

u′ν
∗
⇀ u′ weak-star in L∞(0, T ;H1

0 (Ω)), (38)

u′′ν
∗
⇀ u′′ weak-star in L∞(0, T ;L2(Ω)). (39)

Let θ ∈ D(0, T ) and consider j ∈ N and µ > j. From (10) we can write∫ T

0

(u′′µ(t), ωj)θ(t) dt+

∫ T

0

((uµ(t), ωj))θ(t) dt

+

∫ T

0

(|uµ(t)|ρuµ(t), ωj)θ(t) dt =

∫ T

0

(f(t), ωj)θ(t) dt.

(40)
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It is worth noting that from (16), (18) and by virtue of the Aubin-Lions Theorem
we can extract a subsequence of (uν), which we will still denote by the same notation such
that

uν → u strongly in L2(0, T ;L2(Ω)) = L2(Q).

It follows from this the existence of a subsequence of (uν), which we persist in
denoting by the same notation, such that

uν → u a.e. in Q.

By the continuity of the map λ ∈ R 7→ F (λ) = |λ|ρλ and from this last convergence
it follows that

|uν |ρuν → |u|ρu a.e. in Q. (41)

From (19), (41) and by virtue of Lions' Lemma it follows that

|uν |ρuν ⇀ |u|ρu in L2(Q). (42)

Finally, the convergences given in (35), (39) and (42) allow us to pass to the limit
in (40) to obtain ∫ T

0

(u′′(t), ωj)θ(t) dt+

∫ T

0

((u(t), ωj))θ(t) dt

+

∫ T

0

(|u(t)|ρu(t), ωj)θ(t) dt =

∫ T

0

(f(t), ωj)θ(t) dt.

By the totality of the ωj's in H1
0 (Ω) ∩H2(Ω) we obtain∫ T

0

(u′′(t), v)θ(t) dt+

∫ T

0

((u(t), v))θ(t) dt

+

∫ T

0

(|u(t)|ρu(t), v)θ(t) dt =
∫ T

0

(f(t), v)θ(t) dt,

(43)

for all v ∈ H1
0 (Ω) ∩H2(Ω). It follows from this that

u′′ −∆u+ |u|ρu = f in D′(0, T ;L2(Ω))

and by the regularity of the functions involved we conclude that

u′′ −∆u+ |u|ρu = f in L2(Q). (44)

From (44) and (35) we have∣∣∣∣∣−∆u(t) ∈ L2(Ω) a.e. in ]0, T [

u(t) ∈ H1
0 (Ω)

which implies, given the regularity results of elliptic problems6 that

u(t) ∈ H2(Ω) for a.e. t ∈]0, T [ . (45)

6Note that Ω is su�ciently smooth.
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On the other hand, since

f ∈ C0([0, T ];L2(Ω)), |u|ρu ∈ L∞(0, T ;L2(Ω)) and u′′ ∈ L∞(0, T ;L2(Ω))

from (44) we have
∆u ∈ L∞(0, T ;L2(Ω)) (46)

which leads us to conclude that

u′′ −∆u+ |u|ρu = f in L∞(0, T ;L2(Ω)).

Thus, setting
g = f − u′′ − |u|ρu

we have, still given the regularity of elliptic problems, that

ess sup
t∈]0,T [

||u(t)||H2(Ω) = c ess sup
t∈]0,T [

|g(t)|L2(Ω) < +∞.

Therefore,
u ∈ L∞(0, T ;H2(Ω) ∩H1

0 (Ω)). (47)

4a	 Step: Initial Conditions

These are proved in an analogous manner to the 1a	 problem.

5a	 Step: Uniqueness

Let u and v be strong solutions of (1) and consider ω = u− v. Then ω veri�es∣∣∣∣∣∣∣
ω′′ −∆ω = |v|ρv − |u|ρu in L2(Q)

ω = 0 on Σ

ω(0) = ω′(0) = 0.

(48)

Composing (48)1 with ω′ implies that

(ω′′(t), ω′(t)) + (−∆ω(t), ω′(t)) = (|v(t)|ρv(t)− |u(t)|ρu(t), ω′(t)).

Since ω ∈ L∞(0, T ;H1
0 (Ω)∩H2(Ω)) and ω′ ∈ L∞(0, T ;H1

0 (Ω)) we have as a conse-
quence of Green's Theorem

1

2

d

dt
|ω′(t)|2 + 1

2

d

dt
||ω(t)||2 = (|v(t)|ρv(t)− |u(t)|ρu(t), ω′(t))

=

∫
Ω

(|v(x, t)ρv(x, t)− |u(x, t)|ρu(x, t))ω′(x, t)dx.
(49)

Setting
F (λ) = |λ|ρλ; λ ∈ R

and since
F ′(λ) = (ρ+ 1)|λ|ρ
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we have that F ∈ C1(R). Thus, given α, β ∈ R we have, by virtue of the M.V.T., the
existence of ξ ∈]α, β[ such that

|F (β)− F (α)| = (ρ+ 1)|ξ|ρ|β − α|.

Since ξ ∈]α, β[ then ξ = (1− θ)α + θβ for some θ ∈]0, 1[ . It follows then that

|F (β)− F (α)| = (ρ+ 1) |(1− θ)α + θβ|ρ|β − α|(ρ+ 1) |α + (β − α)θ|ρ|β − α|.

In particular taking β = u(x, t) and α = v(x, t) it follows that

| |v(x, t)|ρv(x, t)− |u(x, t)|ρu(x, t)|
= (ρ+ 1)|v(x, t) + (u(x, t)− v(x, t))θ(x, t)|ρ|ω(x, t)|
≤ (ρ+ 1)

{
2|v(x, t)|+ |u(x, t)|

}ρ|ω(x, t)|
≤ 2ρ(ρ+ 1)

{
|v(x, t)|+ |u(x, t)|

}ρ|ω(x, t)|
≤ 22ρ(ρ+ 1)

{
|v(x, t)|ρ + |u(x, t)|ρ

}
|ω(x, t)|

(50)

From (49) and (50) we can write

1

2

d

dt
|ω′(t)|2 + 1

2

d

dt
||ω(t)||2

≤ c1

∫
Ω

{
|v(x, t)|ρ + |u(x, t)|ρ

}
|ω(x, t)| |ω′(x, t)| dx.

(51)

Recall that

H1
0 (Ω) ↪→ Lq(Ω), where 1 ≤ q ≤ 2n

n− 2
· (52)

Now, since 0 < ρ <
2

n− 2
then 2 < 2(ρ+1) <

2n

2− n
and from (52) it follows that

H1
0 (Ω) ↪→ L2(ρ+1)(Ω). (53)

From (52) and (53) it follows then that

u(t), v(t) ∈ L
1

2(ρ+1)
ρ (Ω); ω(t) ∈ L2(ρ+1)(Ω) a.e. in ]0, T [ .

Now, since 1
2(ρ+1)

ρ

+ 1
2(ρ+1)

+ 1
2
= 1 it follows, using the generalized Hölder inequality,

from (51) that

1

2

d

dt
|ω′(t)|2 + 1

2

d

dt
||ω(t)||2

≤ c1
{
||v(t)||ρ

L2(ρ+1)(Ω)
+ ||u(t)||ρ

L2(ρ+1)(Ω)

}
||ω(t)||L2(ρ+1)(Ω) · |ω′(t)|L2(Ω) a.e. in ]0, T [ .

Now, from (52), (53) and the fact that u, v ∈ L∞(0, T ;H1
0 ) it follows that

1

2

d

dt
|ω′(t)|2 + 1

2

d

dt
||ω(t)||2

≤ c2||ω(t)|| |ω′(t)|L2(Ω) a.e. in ]0, T [ .
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Integrating this last inequality from 0 to t; t ∈ [0, T ] we obtain

|ω′(t)|2 + ||ω(t)||2 ≤ |ω′(0)|2 + ||ω(0)||2 + c2

∫ t

0

||ω(s)|| |ω′(s)|L2(Ω) ds

≤ c3

∫ t

0

[
||ω(s)||2 + |ω′(s)|2

]
ds

and by Gronwall's inequality

|ω′(t)|2 + ||ω(t)||2 ≤ 0; ∀ t ∈ [0, T ] (7)

which proves that
ω(t) = 0 in H1

0 (Ω) ∀ t ∈ [0, T ]

i.e; ω = 0 in L∞(0, T ;H1
0 (Ω)), which concludes the proof.

7Note that ω ∈ C0([0, T ];H1
0 (Ω)) and ω

′ ∈ C0([0, T ];L2(Ω)).



Chapter 4

Problem ∂2u
∂t2
−∆u + u3 = f in dimension

n = 3 (special basis)

Problem 3 ∣∣∣∣∣∣∣∣∣∣
∂2u

∂t2
−∆u+ u3 = f in Q

u = 0 on Σ

u(x, 0) = u0(x);
∂u

∂t
(x, 0) = u1(x); x ∈ Ω

(1)

where
u0 ∈ H1

0 (Ω) ∩H2(Ω); u1 ∈ H1
0 (Ω) and f ∈ L2(0, T ;H1

0 (Ω)) (2)

possesses a unique strong solution in the class

u ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)); u′ ∈ L∞(0, T ;H1

0 (Ω)) and u′′ ∈ L2(0, T ;L2(Ω)). (3)

Proof:

1a	 Step: Approximate Problem

Let us consider (ων)ν∈N a basis of H1
0 (Ω)∩H2(Ω), consisting of the eigenfunctions

of the operator −∆ de�ned by the triple {H1
0 (Ω), L

2(Ω), (( · , · ))}, thus:∣∣∣∣∣−∆ων = λν ων ; ∀ ν ∈ N
γ0(ων) = 0; ∀ ν ∈ N

(4)

It is well known, cf. Spectral Theorem, that:

(ων)ν∈N constitutes a complete orthonormal system in L2(Ω). (5)(
ων

λ
1/2
ν

)
ν∈N

constitutes a complete orthonormal system in H1
0 (Ω). (6)(

ων

λν

)
ν∈N

constitutes a complete orthonormal system in H1
0 (Ω) ∩H2(Ω). (7)

Furthermore, Ω being a su�ciently smooth bounded open set, by virtue of the
regularity of elliptic problems it follows from (4) that

ων ∈ Hm(Ω); ∀m ∈ N, ∀ ν ∈ N. (8)
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On the other hand, the Sobolev embedding Theorem tells us that if m >
n

2
and

k ∈ N is such that k < m− n

2
≤ k + 1, then

Hm(Ω) ↪→ Ck,λ(Ω), (9)

where

(i) 0 < λ < m− n

2
− k if m− n

2
− k < 1

(ii) 0 < λ < 1 if m− n

2
− k = 1

Now, given n ∈ N and k ∈ N we can choose, by virtue of (8), m su�ciently large

such that k < m− n

2
≤ k + 1 and from (9) it follows that

ων ∈ Ck(Ω); ∀ k ∈ N, ∀ ν ∈ N,

that is,
ων ∈ C∞(Ω); ∀ ν ∈ N. (10)

According to the Sobolev embedding Theorem

H1
0 (Ω) ↪→ Lq(Ω); where 1 ≤ q ≤ 2n

n− 2
·

In this case, since n = 3 it follows that

H1
0 (Ω) ↪→ H1(Ω) ↪→ Lq(Ω); ∀ q ≤ 6. (11)

Let
Vm = [ω1, . . . , ωm].

In Vm consider the approximate problem:

um(t) ∈ Vm ⇔ um(t) =
m∑
i=1

gim(t)ωi (12)

(u′′m(t), ωj) + ((um(t), ωj)) + (u3m(t), ωj)
(8) = (f(t), ωj) (13)

um(0) = u0m → u0 in H1
0 (Ω) ∩H2(Ω) (14)

u′m(0) = u1m → u1 in H1
0 (Ω) (15)

which has a local solution in some interval [0, tm) by Carathéodory. The estimates will
serve to extend the solution to the whole interval [0, T ].

2a	 Step: A Priori Estimates

• A Priori Estimate I

8Note that from (11) we have that u3m ∈ L2(Ω).
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Composing (13) with u′m(t), we obtain, as in previous problems

|u′m(t)|2 + ||um(t)||2 +
1

2
||um(t)||4L4(Ω) ≤ c; ∀ t ∈ [0, tm); ∀m ∈ N (16)

which allows us to extend um to the whole interval [0, T ] with um(t), u′m(t) absolutely
continuous functions in t and u′′m(t) existing a.e. in ]0, T [ . It follows from (16) that

(um) is bounded in L∞(0, T ;H1
0 (Ω)), (17)

(u′m) is bounded in L∞(0, T ;L2(Ω)), (18)

(um) is bounded in L∞(0, T ;L4(Ω)). (19)

• A Priori Estimate II

Multiplying (13) by g′jm(t)λj and summing over j, from (4)1 it follows

(u′′m(t),−∆u′m(t)) + ((um(t),−∆u′m(t))) + (u3m(t),−∆u′m(t)) = (f(t),−∆u′m(t)).

Now, by virtue of the regularity of the basis (ων) and by Green's Theorem we
obtain

((u′′m(t), u
′
m(t)) + (−∆um(t),−∆u′m(t)) = ((f(t), u′m(t))) + (u3m(t),∆u

′
m(t))

that is,

1

2

d

dt
||u′m(t)||2 +

1

2

d

dt
|∆um(t)|2 = ((f(t), u′m(t))) + (u3m(t),∆u

′
m(t)). (20)

However, from (10) and (12) we have that

u′m(t), u
3
m(t) ∈ C∞(Ω) for all t ∈ [0, T ].

Thus, by Green's Theorem it follows that∫
Ω

u3m(t)∆u
′
m(t) dx = −

∫
Ω

∇u3m(t) · ∇u′m(t) dx+
∫
Γ

∂u′m
∂ν

u3m dΓ. (21)

However, from (4)2, (10) and the fact that γ0(ων) = ων |Γ it follows that u3m|Γ =
γ0(u

3
m) = 0. It follows from this and from (21) that∣∣∣∣∫

Ω

u3m(t)∆u
′
m(t)dx

∣∣∣∣ =
∣∣∣∣∣

3∑
i=1

∫
Ω

∂

∂xi
(u3m(t))

∂

∂xi
(u′m(t))dx

∣∣∣∣∣
=

∣∣∣∣∣
3∑

i=1

∫
Ω

3u2m(t)
∂um
∂xi

(t)
∂u′m
∂xi

(t)

∣∣∣∣∣ .
(22)

Now, from (11) it follows that

u2m(t) ∈ L3(Ω),
∂um
∂xi
∈ L6(Ω) and

∂u′m
∂xi
∈ L2(Ω).

Noting also that

1

6
=

1

2
− 1

3
⇔ 1

6
+

1

3
+

1

2
= 1
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we obtain, by the generalized Hölder integral inequality that∣∣∣∣∫
Ω

u2m(t)
∂um
∂xi

(t)
∂u′m
∂xi

(t) dx

∣∣∣∣ ≤ ||u2m(t)||L3(Ω)

∣∣∣∣∣∣∣∣∂um∂xi
(t)

∣∣∣∣∣∣∣∣
L6(Ω)

∣∣∣∣∂u′m∂xi
(t)

∣∣∣∣
L2(Ω)

= ||um(t)||2L6(Ω)

∣∣∣∣∣∣∣∣∂um∂xi
(t)

∣∣∣∣∣∣∣∣
L6(Ω)

∣∣∣∣∂u′m∂xi
(t)

∣∣∣∣
L2(Ω)

.

(23)

Thus, from (11), (22) and (23) it follows that∣∣∣∣∫
Ω

u3m(t)∆u
′
m(t)dx

∣∣∣∣
≤ c1

3∑
i=1

||um(t)||2
∣∣∣∣∣∣∣∣∂um∂xi

(t)

∣∣∣∣∣∣∣∣
H1(Ω)

∣∣∣∣∂u′m∂xi

∣∣∣∣
L2(Ω)

.

(24)

Now from (16), (24) and Hölder's numerical inequality∣∣∣∣∫
Ω

u3m(t)∆u
′
m(t)dx

∣∣∣∣
≤ c2

3∑
i=1

∣∣∣∣∣∣∣∣∂um∂xi
(t)

∣∣∣∣∣∣∣∣
H1(Ω)

∣∣∣∣∂u′m∂xi
(t)

∣∣∣∣
L2(Ω)

≤ c2

( 3∑
i=1

∣∣∣∣∣∣∣∣∂um∂xi
(t)

∣∣∣∣∣∣∣∣2
H1(Ω)

)1/2( 3∑
i=1

∣∣∣∣∂u′m∂xi
(t)

∣∣∣∣2
L2(Ω)

)1/2

≤ c3||um(t)||H2(Ω)||u′m(t)||
≤ c4|∆um(t)|L2(Ω) ||u′m(t)||,

(25)

where the last inequality follows from the fact that in H1
0 (Ω)∩H2(Ω) the norms ||u||H2(Ω)

and |∆u|L2(Ω) are equivalent.
Thus from (20) and (25) we conclude

d

dt
||u′m(t)||2 +

d

dt
|∆um(t)|2 ≤ ||f(t)||2 + ||u′m(t)||2 + c4

[
||u′m(t)||2 + |∆um(t)|2

]
.

Integrating from 0 to t with t ∈ [0, T ] it follows that

||u′m(t)||2 + |∆um(t)|2 ≤ ||u1m||2 + |∆u0m|2 + ||f ||2L2(0,T ;H1
0 (Ω))

+ c5

∫ t

0

{
||u′m(s)||2 + |∆um(s)|2

}
ds.

(26)

However, from (14) and (15) there exists c6 > 0 such that

||u1m||2 + |∆u0m|2 + ||f ||2L2(0,T ;H1
0 (Ω)) ≤ c6 ; (27)

and from (26) and (27) it follows that

||u′m(t)||2 + |∆um(t)|2 ≤ c6 + c5

∫ t

0

{
||u′m(s)||2 + |∆um(s)|2

}
ds

and by Gronwall's inequality

||u′m(t)||2 + |∆um(t)|2 ≤ c; ∀ t ∈ [0, T ], ∀m ∈ N. (28)
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From (28) we arrive at

(u′m) is bounded in L∞(0, T ;H1
0 (Ω)) (29)

(um) is bounded in L∞(0, T ;H1
0 (Ω) ∩H2(Ω)) (30)

Also, from (17) and (11) we obtain

(u3m) is bounded in L∞(0, T ;L2(Ω)). (31)

The subsequent steps, namely, passage to the limit, initial conditions and unique-
ness are done in an analogous manner to what we did in previous problems.

In a manner analogous to what was done previously, we will treat the following
problem
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Chapter 5

Schrödinger Equation
∂u
∂t − i∆u + |u|

2 u = f (dimension 3)

In what follows Ω is a bounded and su�ciently smooth open subset of R3.

Problem 5: ∣∣∣∣∣∣∣∣
∂u

∂t
− i∆u+ |u|2 u = f in Q

u = 0 on Σ

u(x, 0) = u0(x); x ∈ Ω

(1)

where

u0 ∈ H1
0 (Ω) ∩H2(Ω); f ∈ L2(0, T ;H1

0 (Ω)) and
∂f

∂t
∈ L2(0, T ;L2(Ω)) (2)

possesses a unique strong solution in the class

u ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)); u′ ∈ L∞(0, T ;L2(Ω)).

Proof:

1a	 Step: Approximate Problem

Let (ων)ν∈N be the Hilbert basis of L2(Ω) given by the eigenfunctions of the operator
−∆ de�ned by the triple {H1

0 (Ω), L
2(Ω), (( · , · ))}. Thus,

(ων) is a complete orthonormal system in L2(Ω) (3)(
ων√
λν

)
is a complete orthonormal system in H1

0 (Ω) (4)(
ων

λν

)
is a complete orthonormal system in H1

0 (Ω) ∩H2(Ω) (5)

and (ων) is a weak solution of ∣∣∣∣∣−∆ων = λν ων

ων |Γ = 0
(6)

where (λν) is a sequence of eigenvalues that veri�es:

0 < λ1 < λ2 < · · · < λν < . . . and λν →∞ when ν → +∞. (7)
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Recall that from (6) and the fact that Ω is su�ciently smooth, it results by virtue
of the regularity of elliptic problems that

(ων) ⊂ Hm(Ω); ∀m ∈ N. (8)

It follows from (3) and the Sobolev Embedding Theorem that

(ων) ⊂ Ck(Ω); ∀ k ∈ N. (9)

Let
Vm = [ω1, ω2, . . . , ωm].

In Vm consider the approximate problem

um(t) ∈ Vm ⇔ um(t) =
m∑
j=1

gjm(t)ωj (10)

(u′m(t), ωj) + i((um(t), ωj)) + (|um(t)|2um(t), ωj) = (f(t), ωj) (11)

um(0) = u0m → u0 in H1
0 (Ω) ∩H2(Ω) (12)

which has a local solution in some interval [0, tm), by virtue of Carathéodory.

2a	 Step: A Priori Estimates

• A Priori Estimate I

Multiplying equation (11) by gjm(t) and summing over j; we have:

(u′m(t), um(t)) + i((um(t), um(t))) + (|um(t)|2um(t), um(t)) = (f(t), um(t)). (13)

Let θ ∈ D(0, tm). We prove that〈
d

dt
(um(t), um(t)), θ

〉
= ⟨(u′m(t), um(t)) + (um(t), u

′
m(t)), θ⟩

that is,

d

dt
|um(t)|2 = (u′m(t), um(t)) + (u′m(t), um(t)) = 2 Re(u′m(t), um(t)). (14)

Also

(|um(t)|2um(t), um(t)) =
∫
Ω

|um(t)|2um(t)um(t) dx =

∫
Ω

|um(t)|2|um(t)|2dx

=

∫
Ω

|um(t)|4 dx.
(15)

Considering the real part in (13) results from (13), (14) and (15) that

1

2

d

dt
|um(t)|2 + ||um(t)||4L4(Ω) = Re(f(t), um(t)) ≤ |(f(t), um(t))|.

From the inequality above it follows that

d

dt
|um(t)|2 + 2||um(t)||4L4(Ω) ≤ |f(t)|2 + |um(t)|2.
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Integrating from 0 to t, t ∈ [0, tm) we obtain

|um(t)|2 + 2

∫ t

0

||um(s)||4L4(Ω) ds ≤ |u0m|2 + ||f ||2L2(Q) +

∫ t

0

|um(s)|2 ds.

From (12) it follows that ∃ c1 > 0 such that |u0m|2 ≤ c1 and therefore

|um(t)|2 + 2

∫ t

0

||um(s)||4L4(Ω) ds ≤ c2 +

∫ t

0

[
|um(s)|2 + 2

∫ s

0

||um(τ)||4L4 dτ

]
ds.

From the inequality above and Gronwall's inequality, we conclude that

|um(t)|2 + 2

∫ t

0

||um(s)||4L4(Ω) ds ≤ c; ∀ t ∈ [0, tm); ∀m ∈ N.

The estimate above allows us to extend the solution um to the whole interval [0, T ],
with um(t) absolutely continuous on [0, T ] and u′m existing a.e. in ]0, T [. Furthermore,

(um) is bounded in L∞(0, T ;L2(Ω)) (16)

(um) is bounded in L4(0, T ;L4(Ω)) = L4(Q). (17)

Since the dimension n = 3 it follows from the Sobolev Embedding Theorem

H1
0 (Ω) ↪→ Lq(Ω); ∀ q ≤ 6. (18)

On the other hand from (17) we still have that(
|um|2 um

)
is bounded in L4/3(0, T ;L4/3(Ω)). (19)

A Priori Estimate II

Multiplying (11) by λj gjm(t) and summing over j we have

(u′m(t),−∆um(t)) + i((um(t),−∆um(t))) +
(
|um(t)|2um(t),−∆um(t)

)
= (f(t),−∆um(t)).

By virtue of the regularity of the basis and the fact that f(t) ∈ H1
0 (Ω) for a.e.

t ∈ ]0, T [ by Green's formula we can write

((u′m(t), um(t))) + i(−∆um(t),−∆um(t)) + (|um(t)|2um(t),−∆um(t)) = ((f(t), um(t))).

Taking the real part on both sides of the equality above we obtain

1

2

d

dt
||um(t)||2 + Re(|um(t)|2um(t),−∆um(t)) = Re((f(t), um(t)))

≤ |((f(t), um(t)))| ≤
1

2
||f(t)||2 + 1

2
||um(t)||2.

(20)

However from (9) we have by Green that∫
Ω

|um(t)|2um(t)(−∆um(t)) dx

=
3∑

i=1

∫
Ω

∂

∂xi

(
|um(t)|2um(t)

) ∂um(t)
∂xi

dx−
∫
Γ

∂

∂ν
(um(t))|um(t)|

2
um(t) dΓ.

(21)
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Since um(t) ∈ H1
0 (Ω) ∩ C∞(Ω) for a.e. t ∈ ]0, T [ , then

um(t)|Γ = γ0(um(t)) = 0 a.e. in ]0, T [

and from there it follows that

|um(t)|2 um(t) = 0 a.e. in ]0, T [ (22)

and from (21) and (22) we conclude that

∫
Ω

|um(t)|2um(t)(−∆um(t))dx =
3∑

i=1

∫
Ω

∂

∂xi

(
|um(t)|2um(t)

)∂um(t)
∂xi

dx

=
3∑

i=1

∫
Ω

{
∂

∂xi
(|um(t)|2)um(t) + |um(t)|2

∂um(t)

∂xi

}
∂um(t)

∂xi
dx

=
3∑

i=1

∫
Ω

{
∂

∂xi
(um(t)um(t))um(t)

∂um(t)

∂xi
+ |um(t)|2

∂um(t)

∂xi

∂um(t)

∂xi

}
dx

=
3∑

i=1

∫
Ω

{
∂um(t)

∂xi
um(t)um(t)

∂um(t)

∂xi
+ um(t)

∂um(t)

∂xi
um(t)

∂um(t)

∂xi

+ |um(t)|2
∂um(t)

∂xi

∂um(t)

∂xi

}
dx

=
3∑

i=1

∫
Ω

{
|um(t)|2

∣∣∣∣∂um(t)∂xi

∣∣∣∣2 + (um(t) ∂um(t)∂xi

)2

+ |um(t)|2
∣∣∣∣∂um(t)∂xi

∣∣∣∣2}dx.

(23)

On the other hand, we claim that

|z1|2 |z2|2 + Re
[
(z1z̄2)

2
]
= 2
[
Re(z1z̄2)

]2
; ∀ z1, z2 ∈ C. (24)

Indeed, setting z1 = a+ bi and z2 = c+ di, we obtain

|z1|2 |z2|2 + Re
[
(z1 · z̄2)2

]
= (a2 + b2)(c2 + d2) + Re[((a+ bi)(c− di))2]

= a2c2 + a2d2 + b2c2 + b2d2 + Re[((ac+ bd) + (bc− ad)i)2]
= a2c2 + a2d2 + b2c2 + b2d2 + (ac+ bd)2 − (bc− ad)2

= a2c2 + a2d2 + b2c2 + b2d2 + a2c2 + 2abcd+ b2d2 − b2c2 + 2abcd− a2d2

= 2(a2c2 + b2d2) + 4abcd

(25)

On the other hand

2(Re(z1 · z̄2))2

= 2[Re((ac+ bd) + (bc− ad)i)]2 = 2(ac+ bd)2

= 2(a2c2 + b2d2) + 4abcd.

(26)

From (25) and (26) we conclude the desired result in (24). Thus, it follows from
(23) and (24) that
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Re
∫
Ω

|um(t)|2um(t)(−∆um(t)) dx

=
3∑

i=1

∫
Ω

{
2

[
Re

(
um(t)

∂um(t)

∂xi

)]2
+ |um(t)|2

∣∣∣∣∂um(t)∂xi

∣∣∣∣2}dx ≥ 0.

(27)

From (20) and (27) we arrive at

d

dt
||um(t)||2 ≤ ||f(t)||2 + ||um(t)||2.

Integrating in [0, t]; t ∈ [0, T ], we obtain

||um(t)||2 ≤ ||u0m||2 + ||f ||2L2(0,T ;H1
0 (Ω)) +

∫ t

0

||um(s)||2 ds. (28)

Now from (12) ∃ c1 > 0 such that

||u0m||2 + ||f ||2L2(0,T ;H1
0 (Ω)) ≤ c1 ; ∀m ∈ N (29)

and from (28) and (29) it follows that

||um(t)||2 ≤ c1 +

∫ t

0

||um(s)||2 ds.

From Gronwall's inequality it follows that

||um(t)|| ≤ c; ∀ t ∈ [0, T ] and ∀m ∈ N (30)

which implies that:

(um) is bounded in L∞(0, T ;H1
0 (Ω))

(∗) (31)

Estimativa a priori III

From (3) and (11) we have

g′jm(t) = (u′m(t), ωj) = −i((um(t), ωj))− (|um(t)|2um(t), ωj) + (f(t), ωj). (32)

Now, from (10) and the fact that g′jm is absolutely continuous on [0, T ], it follows
that the right side of the equality in (32) belongs to L2(0, T ) which implies

u′m ∈ L2(0, T ;L2(Ω)). (33)

However, from (32) we have

d

dt
(u′m(t), ωj) = g′′j (t) = −i((u′m(t), ωj))−

([
|um(t)|2um(t)

]′
, ωj

)
+ (f ′(t), ωj). (34)

9Note that from (18) and (31) it follows that (|um|2um) is bounded in L∞(0, T ;L2(Ω)).
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Note that([
|um(t)|2um(t)

]′
, ωj

)
=
([
um(t)um(t)um(t)

]′
, ωj

)
=
(
(um(t)um(t)

)′
um(t) + um(t)um(t)u

′
m(t), ωj

)
=
(
u′m(t)um(t)um(t) + um(t)u′m(t)um(t) + um(t)um(t)u

′
m(t), ωj

)
=
(
u′m(t)|um(t)|2 + u2m(t)u

′
m(t) + |um(t)|2u′m(t), ωj

)
.

(35)

From (10), (33) and (35) it follows that the right side of the equality in (34) belongs
to L2(0, T ), that is, g′′j (t) ∈ L2(0, T ) which implies

u′′m ∈ L2(0, T ;L2(Ω)), (36)

where we are using arguments analogous to those employed in Problem 2.

Thus, from (34), (35), (36) and the fact that

〈
d

dt
(u′m(t), ωj), θ

〉
= ⟨(u′′m, ωj), θ⟩,

∀ θ ∈ D(0, T ), results that

(u′′m(t), ωj) = −i((u′m(t), ωj))−(u′m(t)|um(t)|2+u2m(t)u′m(t)+|um(t)|2u′m(t), ωj)+(f ′(t), ωj).

Multiplying the above equality by λj g′jm(t) we obtain

(u′′m(t), u
′
m(t)) = −i((u′m(t), u′m(t)))

− (u′m(t)|um(t)|2 + u2mu
′
m(t) + |um(t)|2u′m(t), u′m(t)) + (f ′(t), u′m(t)).

Taking the real part on both sides of the equality above, we obtain

1

2

d

dt
|u′m(t)|2 =−

∫
Ω

{
|um(t)|2|u′m(t)|2 + Re(um · u′m(t))2 + |um(t)|2|u′m(t)|2

}
dx

+ Re(f ′(t), u′m(t))

and from (24) it follows that

1

2

d

dt
|u′m(t)|2 =−

∫
Ω

≥0︷ ︸︸ ︷
{2[Re(um(t)u′m(t))]2 + |um(t)|2|u′m(t)|2} dx+ Re(f ′(t), u′m(t))

≤ 1

2
|f ′(t)|2 + 1

2
|u′m(t)|2.

Integrating in [0, t], t ∈ [0, T ] we conclude that

|u′m(t)|2 ≤ |u′m(0)|2 + ||f ′||2L2(Q) +

∫ t

0

|u′m(s)|2ds, ∀ t ∈ [0, T ], ∀m ∈ N. (37)

However, from (32) we have

(u′m(0), ωj) = i((um(0), ωj))− (|u0m|2u0m, ωj) + (f(0), ωj)

which implies by Green's Theorem

|u′m(0)|2 = i(−∆u0m, u′m(0))− (|u0m|2u0m, u′m(0)) + (f(0), u′m(0)).
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Taking the real part in the equality above

|u′m(0)|2 = Re[(−∆u0m, u′m(0))i]− Re(|u0m|2|u0m|, u′m(0)) + Re(f(0), u′m(0))

≤
[
|∆u0m|L2(Ω) + | |u0m|2u0m|L2(Ω) + |f(0)|L2(Ω)

]
|u′m(0)|,

that is,

|u′m(0)| ≤ |∆u0m|L2 + | |u0m|2u0m|L2(Ω) + |f(0)|L2(Ω)

= |∆u0m|L2(Ω) + ||u0m||6L6(Ω) + |f(0)|L2(Ω) ≤ c1,
(38)

where c1 is a positive constant resulting from (12) and (13).

From (37) and (38) it follows that

|u′m(t)|2 ≤ c2 +

∫ t

0

|u′m(s)|2 ds; ∀ t ∈ [0, T ], ∀m ∈ N,

and from Gronwall's inequality we obtain

|u′m(t)|2 ≤ c; ∀ t ∈ [0, T ], ∀m ∈ N. (39)

Thus,

(u′m) is bounded in L∞(0, T ;L2(Ω)). (40)

The estimates obtained are su�cient to pass to the limit and the procedure is
analogous to what we have done previously, the same happening for the initial condition.
Being u the solution obtained, the fact that u ∈ L∞(0, T ;H2(Ω)) is obtained in a manner
analogous to what we did in Problem 2.

Uniqueness

Let u and v be weak solutions of Problem (1). Then w = u− v veri�es

∣∣∣∣∣∣∣
w′ − i∆w = |v|2v − |u|2u in L∞(0, T ;L2(Ω))

w = 0 on Σ

w(0) = 0

(41)

Composing (41)1 with w results that

(w′(t), w(t) + i((w(t), w(t))) = (|v(t)|2v(t)− |u(t)|2u(t), w(t)).

Taking the real part on both sides of the equality above we obtain

1

2

d

dt
|w(t)|2 = Re(|v(t)|2v(t)− |u(t)|2u(t), u(t)− v(t)). (42)
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But

Re
∫
Ω

(
|v(x, t)|2v(x, t)− |u(x, t)|2u(x, t)

((
v(x, t)− u(x, t)

)
dx

=

∫
Ω

{
|v(x, t)|4 − Re

(
|v(x, t)|2v(x, t)u(x, t)

)
− Re

(
|u(x, t)|2u(x, t)v(x, t)

)
+ |u(x, t)|4

}
dx

=

∫
Ω

{
|v(x, t)|4 − |v(x, t)|2Re(v(x, t)u(x, t))

− |u(x, t)|2Re(u(x, t)v(x, t)) + |u(x, t)|4
}
dx

=

∫
Ω

{
|v(x, t)|4 − Re(u(x, t)v(x, t)) (10)

(
|u(x, t)|2 + |v(x, t)|2

)
+ |u(x, t)|4

}
dx

≥
∫
Ω

{
|u(x, t)|4 − |u(x, t)v(x, t)|(|u(x, t)|2 + |v(x, t)|2) + |v(x, t)|4

}
dx

=

∫
Ω

{
|u(x, t)|4 − |u(x, t)|3|v(x, t)| − |u(x, t)| |v(x, t)|3 + |v(x, t)|4

}
dx

=

∫
Ω

{
|u(x, t)|3

(
|u(x, t)| − |v(x, t)|

)
− |v(x, t)|3

(
|u(x, t)| − |v(x, t)

)}
dx

=

∫
Ω

(
|u(x, t)|3 − |v(x, t)|3

)(
|u(x, t)| − |v(x, t)|

)
dx ≥ 0

(43)

since ψ(s) = sρ is increasing, for ρ > 0 and s ≥ 0, given that ψ′(s) = ρ|s|ρ−2s ≥ 0, ∀s ≥ 0.

From (42) and (43) it follows then that

1

2

d

dt
|w(t)|2 ≤ 0; ∀ t ∈ [0, T ].

Integrating from 0 to t, with t ∈ [0, T ], we obtain

|ω(t)|2 − |ω(0)|2︸ ︷︷ ︸
=0

≤ 0

that is,
w(t) = 0 in L2(Ω), ∀ t ∈ [0, T ]

which concludes the proof.

Analogously, Problem 6∣∣∣∣∣∣∣∣
∂u

∂t
− i∆u+ |u|ρu = f in Q (ρ > 0)

u = 0 on Σ

u(x, 0) = u0(x)

(1)

subject to the data

u0 ∈ H1
0 (Ω) ∩H2(Ω) ∩ L2(ρ+1)(Ω), f ∈ L2(0, T ;H1

0 (Ω)) and f
′ ∈ L2(0, T ;L2(Ω)) (2)

10Here we used the fact that Re(uv̄) = Re(ūv).
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admits a unique weak solution in the class

u ∈ L∞(0, T ;H1
0 (Ω)) ∩ Lρ+2(Q), u′ ∈ L∞(0, T ;L2(Ω)). (3)

Indeed, let (ων)ν∈N be the eigenvectors of the operator A = −∆ de�ned by the triple
{H1

0 (Ω), L
2(Ω), (( · , · ))}. As we know, given the regularity results of elliptic problems

D(Ak) ⊂ H2k(Ω), k = 1, 2, . . . (4)

and, furthermore, the norms

|Aku|L2(Ω) and ||u||H2k(Ω) ; k = 1, 2, . . . (5)

are equivalent in D(Ak). Also

(ων) is total in D(Ak); k = 1, 2, . . . . (6)

We will prove that

(ων) is total in Lq(Ω); ∀ 1 ≤ q < +∞. (7)

Indeed, we have from (4) and (6)

[(ων)] ⊂ D(Ak) ↪→ H2k(Ω); ∀ k = 1, 2, . . .

However, by the Sobolev Embedding Theorem

H2k(Ω) ↪→ L∞(Ω) if k >
n

4
.

Under these conditions we have

[(ων)] ⊂ D(Ak) ↪→ H2k(Ω) ↪→ L∞(Ω) ↪→ Lq(Ω); ∀ q ∈ [1,+∞) (8)

since Ω is bounded. On the other hand,

C∞
0 (Ω) ⊂ D(Ak) ⊂ Lq(Ω); ∀ q ∈ [1,+∞) and ∀ k = 1, 2, . . . . (9)

Thus, from (5) and (8) we can write that

[(ων)]
H2k(Ω)

= D(Ak) (10)

and, from (9) and the fact that C∞
0 (Ω) is dense in Lq(Ω), we have that

D(Ak)
Lq(Ω)

= Lq(Ω). (11)

Let ε > 0 be given and u ∈ Lq(Ω). From (11) ∃u0 ∈ D(Ak) such that:

||u− u0||Lq(Ω) <
ε

2
(12)

and from (10) ∃ω∗ ∈ [ων ] such that

||u0 − ω∗||H2k(Ω) <
ε

2c
, (13)
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where c > 0 is such that

||v||Lq(Ω) ≤ c||v||H2k(Ω) ; ∀ v ∈ H2k(Ω)

by virtue of the embeddings given in (8). Therefore, from (12) and (13) we obtain

||ω∗ − u||Lq(Ω) ≤ ||ω∗ − u0||Lq(Ω) + ||u0 − u||Lq(Ω) ≤ c||ω∗ − u0||H2k(Ω) +
ε

2
< ε,

which proves (7).
Let

Vm = [ω1, ω2, . . . , ωm].

In Vm consider the approximate problem

um(t) ∈ Vm ⇔ um(t) =
m∑
i=1

gim(t)ωi (14)

(u′m(t), ωj) + i((um(t), ωj)) + (|um(t)|ρum(t), ωj) = (f(t), ωj) (15)

um(0) = u0m → u0 in H1
0 (Ω) ∩H2(Ω) ∩ L2(ρ+1)(Ω) (11) (16)

We have the following estimates

|um(t)|2 + 2

∫ t

0

||um(t)||pLp(Ω) dt ≤ c, ∀ t ∈ [0, T ]; ∀m ∈ N. (17)

Whence

(um) is bounded in L∞(0, T ;L2(Ω)) (18)

(um) is bounded in Lp(0, T ;Lp(Ω)) = Lp(Q). (19)

Now from the fact that

|| |um|ρum||p
′

Lp′ (Ω)
=

∫
Ω

||um|ρum|
ρ+2
ρ+1 dx

=

∫
Ω

|um|ρ+2 dx = ||um||ρ+2
Lρ+2(Ω) = ||um||

p
Lp(Ω),

it follows from (19) that

(|um|ρum) is bounded in Lp′(0, T ;Lp′(Ω)) = Lp′(Q). (20)

Also

1

2

d

dt
||um(t)||2 + Re(|um(t)|ρum(t),−∆um(t)) ≤

1

2
||f(t)||2 + 1

2
||um(t)||2. (21)

11Note that (ων) is total in L
q(Ω); ∀ q ≥ 1 c.f. (7) and since it is total in H1

0 (Ω) ∩H2(Ω) it is total in
the intersection H1

0 (Ω) ∩H2(Ω) ∩ Lq(Ω).
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However; by Green's Theorem∫
Ω

|um(t)|ρum(t)[−∆um(t)] dx

=
n∑

i=1

∫
Ω

∂

∂xi
(|um(t)|ρum(t))

∂um(x)

∂xi
dx

=
n∑

i=1

∫
Ω

∂

∂xi

[
(um(t)um(t))

ρ/2 um(t)
] ∂um(t)

∂xi
dx

=
n∑

i=1

∫
Ω

{
∂

∂xi
[(um(t)um(t))

ρ/2]um(t)
∂um(t)

∂xi
+ |um(t)|ρ

∂um(t)

∂xi

∂um(t)

∂xi

}
dx

=
n∑

i=1

∫
Ω

{
ρ

2
(um(t)um(t))

ρ−2
2

∂

∂xi
(um(t)um(t))um(t)

∂um(t)

∂xi

+ |um(t)|ρ
∂um(t)

∂xi

∂um(t)

∂xi

}
dx

=
n∑

i=1

∫
Ω

{
ρ

2
|um(t)|ρ−2 |um(t)|2

∣∣∣∣∂um(t)∂xi

∣∣∣∣2 + ρ

2
|um(t)|ρ−2

(
um(t)

∂um(t)

∂xi

)2

+ |um(t)|ρ
∣∣∣∣∂um(t)∂xi

∣∣∣∣2}dx
=

n∑
i=1

∫
Ω

{
ρ

2
|um(t)|ρ−2

[
|um(t)|2

∣∣∣∣∂um(t)∂xi

∣∣∣∣2 + (um(t) ∂um(t)∂xi

)2]
+ |um(t)|ρ

∣∣∣∣∂um(t)∂xi

∣∣∣∣2}dx
Recalling that

|z1|2|z2|2 + Re[(z1 z2)
2] = 2[Re(z1z2)]

2 ∀ z1, z2 ∈ C (23)

then taking the real part in (22) implies that

Re
∫
Ω

|um(t)|ρ um(t)[−∆um(t)] dx

=
n∑

i=1

∫
Ω

{
ρ|um(t)|ρ−2

[
Re

(
um(t)

∂um(t)

∂xi

)]2
+ |um(t)|ρ

∣∣∣∣∂um(t)∂xi

∣∣∣∣2}dx ≥ 0.
(24)

From (21), (24) and by Gronwall it follows that

(um) is bounded in L∞(0, T ;H1
0 (Ω)). (25)

Finally, from (15) we have

(u′′m(t), u
′
m(t)) + i((u′m(t), u

′
m(t))) + ((|um(t)|ρum(t))′, u′m(t)) = (f ′(t), u′m(t)).

Considering the real part on both sides of the equality above, we obtain

1

2

d

dt
|u′m(t)|2 + Re((|um(t)|ρum(t))′, u′m(t)) ≤

1

2
|f ′(t)|2 + 1

2
|u′m(t)|2. (26)
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Proceeding in a manner analogous to what we did in (22) and using the argument
given in (23) we obtain

Re((|um(t)|ρum(t))′, u′m(t)) ≥ 0 (27)

and from (26) and (27) we conclude that

|u′m(t)|2 ≤ |u′m(0)|2 + ||f ′||2L2(Q) +

∫ t

0

|u′m(s)|2 ds. (28)

Now from (15) we have

|u′m(0)| ≤ |∆u0m|L2(Ω) + | |u0m|ρu0m|L2(Ω) + |f(0)|L2(Ω)

and from (16) we have that

|u′m(0)| ≤ c1 . (29)

Thus, from (28), (29) and by Gronwall's inequality it follows that

(u′m) is bounded in L∞(0, T ;L2(Ω)). (30)

The estimates (18), (19), (20) and (30) allow us to pass to the limit according to
Problem 1. The proof of the initial condition is analogous to what has already been done.

Uniqueness

Let u and v be weak solutions of Problem (1). Then w = u− v veri�es

∣∣∣∣∣∣∣
w′ − i∆w = |v|ρv − |u|ρu in L∞(0, T ;H−1(Ω))

w = 0

w(0) = 0

(31)

Composing (31)1 with w implies that

(w′(t), w(t)) + i((ω(t), ω(t))) =

∫
Ω

(|v(t)|ρv(t)− |u(t)|ρu(t))w(t) dx.

Whence

1

2

d

dt
|w(t)|2 = Re

∫
Ω

(|v(t)|ρv(t)− |u(t)|ρu(t))(u(t)− v(t)) dx.
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However

Re
∫
Ω

(
|v|ρv − |u|ρu

)
(v̄ − ū) dx

=

∫
Ω

{
|v|ρ+2 − Re(|v|ρvū)− Re(|u|ρuv̄) + |u|ρ+2

}
dx

=

∫
Ω

{
|v|ρ+2 − |v|ρ Re(vū)− |u|ρ Re(uv̄) + |u|ρ+2

}
dx

=

∫
Ω

{
|v|ρ+2 − Re(uv̄) (10)(|v|ρ + |u|ρ) + |u|ρ+2

}
dx

≥
∫
Ω

{
|v|ρ+2 − |uv̄| (11)(|v|ρ + |u|ρ) + |u|ρ+2

}
dx

=

∫
Ω

{
|v|ρ+2 − |u| |v|ρ+1 − |v| |u|ρ+1 + |u|ρ+2

}
dx

=

∫
Ω

{
|v|ρ+1(|v| − |u|)− |u|ρ+1(|v| − |u|)

}
dx

=

∫
Ω

(|v|ρ+1 − |u|ρ+1)(|v| − |u|)dx ≥ 0

since F (λ) = λρ+1 is increasing, for λ ≥ 0. Thus

1

2

d

dt
|ω(t)|2 ≤ 0.

Integrating the inequality above, we have

|ω(t)|2 = |ω(0)|2︸ ︷︷ ︸
=0

≤ 0

which proves that ω = 0.

10Here we used the fact that Re(uv̄) = Re(ūv).
11Note that |v̄| = |v|.
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Chapter 6

Problem ∂2u
∂t2
−∆u + |u′|ρu′ = f

Problem 7 ∣∣∣∣∣∣∣∣∣∣
∂2u

∂t2
−∆u+ |u′|ρu′ = f in Q (ρ > 0)

u = 0 on Σ

u(x, 0) = u0(x);
∂u

∂t
(0) = u1(x); x ∈ Ω

(1)

subject to the data

u0 ∈ H1
0 (Ω)∩H2(Ω), u1 ∈ H1

0 (Ω)∩L2(ρ+1)(Ω), f ∈ L2(0, T ;H1
0 (Ω)) and f

′ ∈ L2(0, T ;L2(Ω))
(2)

possesses a unique strong solution in the class:

u ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)), u′ ∈ L∞(0, T ;H1

0 (Ω)) ∩ Lρ+2(Q),

u′′ ∈ L∞(0, T ;L2(Ω)).
(3)

Proof:
Let (ων)ν∈N be a basis of H1

0 (Ω)∩H2(Ω) given by the eigenfunctions of the operator
−∆ de�ned by the triple {H1

0 (Ω), L
2(Ω), (( · , · ))}. As we know

ων ∈
( ⋂

m∈N

Hm(Ω)

)
∩ C∞(Ω). (4)

Furthermore, as we did in Problem 6 we have that

(ων) is total in Lq(Ω); ∀ q ≥ 1. (5)

1a	 Step: Approximate Problem

Let us set:
Vm = [ω1, . . . , ωm].

In Vm consider the approximate problem

um(t) ∈ Vm ⇔ um(t) =
m∑
i=1

gim(t)ωi (6)

(u′′m(t), ωj) + ((um(t), ωj)) + (|u′m(t)|ρu′m(t), ωj) = (f(t), ωj) (7)

um(0) = u0m → u0 in H1
0 (Ω) ∩H2(Ω) (8)

u′m(0) = u1m → u1 in H1
0 (Ω) ∩ L2(ρ+1)(Ω) (9)
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which has a local solution, by virtue of Carathéodory's criterion in some interval [0, tm).

2a	 Step: A Priori Estimates

• A Priori Estimate I

From (7) it follows that

1

2

d

dt
|u′m(t)|2 +

1

2

d

dt
||um(t)||2 +

∫
Ω

|u′m(t)|ρ+2 dx = (f(t), u′m(t))

≤ 1

2
|f(t)|2 + 1

2
|u′m(t)|2.

Integrating from 0 to t; t ∈ [0, tm), we obtain

|u′m(t)|2 + ||um(t)||2 + 2

∫ t

0

||u′m(s)||
p
Lp(Ω) ds = |u1m|

2 + ||u0m||2

+ ||f ||2L2(Q) +

∫ t

0

|u′m(s)|2 ds.
(10)

From (8) and (9) ∃ c1 > 0 such that

|u1m|2 + ||u0m||2 + ||f ||2L2(Q) ≤ c1 ; ∀m ∈ N (11)

and from (10) and (11) it follows that

|u′m(t)|2 + ||um(t)||2 + 2

∫ t

0

||u′m(s)||
p
Lp(Ω) ds ≤ c1 +

∫ t

0

|u′m(s)|2 ds

and by Gronwall we obtain

|u′m(t)|2 + ||um(t)||2 + 2

∫ t

0

||u′m(s)||
p
Lp(Ω) ds ≤ c; ∀ t ∈ [0, tm); ∀m ∈ N (12)

which allows us to extend the solution um(t) to the whole interval [0, T ], with um(t),
u′m(t) absolutely continuous and u′′m(t) existing a.e. in ]0, T [ . From (12) it follows that

(u′m) is bounded in L∞(0, T ;L2(Ω)) (13)

(um) is bounded in L∞(0, T ;H1
0 (Ω)) (14)

(u′m) is bounded in Lp(0, T ;Lp′(Ω)) = Lp(Q) (15)

(|u′m|ρu′m) is bounded in Lp′(0, T ;Lp′(Ω)) = Lp′(Q) (16)

• A Priori Estimate II

Composing (7) with (−∆u′m(t)) by Green's formula implies that

((u′′m(t), u
′
m(t))) + (−∆um(t),−∆u′m(t)) + (|u′m(t)|ρu′m(t),−∆u′m(t)) = ((f(t), u′m(t))).

Now from (4), (6) and again by Green's Theorem

1

2

d

dt
||u′m(t)||2 +

1

2

d

dt
|∆um(t)|2 +

n∑
i=1

∫
Ω

∂

∂xi
(|u′m(t)|ρu′m(t))

∂u′m(t)

∂xi
dx

≤ 1

2
||f(t)||2 + 1

2
||u′m(t)||2.

(17)
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However, ∫
Ω

∂

∂xi
(|u′m(t)|ρu′m(t))

∂u′m(t)

∂xi
dx

= (ρ+ 1)

∫
Ω

|u′m(t)|ρ
∂u′m(t)

∂xi

∂u′m(t)

∂xi
dx

= (ρ+ 1)

∫
Ω

(
|u′m(t)|ρ/2

∂u′m(t)

∂xi

)2

dx.

(18)

Now, from the fact that we have

∂

∂xi

(
|u′m(t)|ρ/2 u′m(t)) =

(
ρ

2
+ 1

)
|u′m(t)|ρ/2

∂u′m(t)

∂xi
(19)

from (18) and (19) it follows that∫
Ω

∂

∂xi

(
|u′m(t)|ρ u′m(t)

) ∂u′m(t)
∂xi

dx =
(ρ+ 1)

(ρ/2 + 1)2

∫
Ω

(
∂

∂xi

(
|u′m(t)|ρ/2u′m(t)

))2

dx. (20)

Substituting (20) in (17) we obtain

1

2

d

dt

{
||um(t)||2 + |∆um(t)|2

}
+

(ρ+ 1)

(ρ/2 + 1)2

n∑
i=1

∫
Ω

[
∂

∂xi

(
|u′m(t)|ρ/2u′m(t)

)]2
dx

≤ 1

2
||f(t)||2 + 1

2
||u′m(t)||2.

Integrating from 0 to t with t ∈ [0, T ] we arrive at

||u′m(t)||2 + |∆um(t)|2 +
2(ρ+ 1)

(ρ
2
+ 1)

n∑
i=1

∫ t

0

∫
Ω

[
∂

∂xi

(
|u′m(t)|ρ/2u′m(t)

)]2
dxdt

≤ ||u1m||2 + |∆u0m|2 + ||f ||2L2(0,T ;H1
0 )
+

∫ t

0

||u′m(s)||2 ds.
(21)

However, from (8) ∃ c1 > 0 such that

||u1m||2 + |∆u0m|2 + ||f ||2L2(0,T ;H1
0 )
≤ c1 ; ∀m ∈ N (22)

and from (21) and (22) we obtain

||um(t)||2 + |∆um(t)|2 +
2(ρ+ 1)

(ρ
2
+ 1)

n∑
i=1

∫ t

0

∫
Ω

[
∂

∂xi

(
|u′m(t)|ρ/2u′m(t)

)]2
dxdt

≤ c1 +

∫ t

0

||u′m(s)||2 ds

and by Gronwall's inequality

||u′m(t)||2 + |∆um(t)|2 +
2(ρ+ 1)

(ρ
2
+ 1)

n∑
i=1

∫ t

0

∫
Ω

[
∂

∂xi

(
|u′m(t)|ρ/2 u′m(t)

)]2
dxdt ≤ c, (23)

for all t ∈ [0, T ]; ∀m ∈ N, which implies that

(u′m) is bounded in L∞(0, T ;H1
0 (Ω)) (24)
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(um) is bounded in L∞(0, T ;H1
0 (Ω) ∩H2(Ω)) (25)(

∂

∂xi
(|u′m(t)|ρ/2u′m(t)

)
is bounded in L2(0, T ;L2(Ω)); ∀ i = 1, . . . , n (26)

• A Priori Estimate III

From (7) we obtain

(u′′′m(t), u
′′
m(t)) + ((u′m(t), u

′′
m(t))) + ((|u′m(t)|ρu′m(t))′, u′′m(t)) = (f ′(t), u′′m(t))

that is,

1

2

d

dt
|u′′m(t)|2 +

1

2

d

dt
||u′m(t)||2 + (ρ+ 1)

∫
Ω

|u′m(t)|ρu′′m(t)u′′m(t)dx

≤ 1

2
|f ′(t)|2 + 1

2
|u′′m(t)|2.

Integrating from 0 to t; with t ∈ [0, T ]

|u′′m(t)|2 + ||u′m(t)||2 + 2(ρ+ 1)

∫ t

0

∫
Ω

|u′m(x, s)|ρ(u′′m(x, s))2 dx ds

≤ |u′′m(0)|2 + ||u1m||2 + ||f ′||L2(Q) +

∫ t

0

|u′′m(s)|2 ds.
(27)

However, from (7) we obtain

|u′′m(0)|2 = (f(0), u′′m(0))− (∆u0m, u
′′
m(0))− (|u1m|ρu1m, u′′m(0))

≤
[
|f(0)|+ |∆u0m|+ | |u1m|ρu1m|L2(Ω)

]
|u′′m(0)|

and from (8) and (9) ∃ c1 > 0 such that:

|u′′m(0)| ≤
[
|f(0)|+ |∆u0m|+ ||u1m||ρ+1

L2(ρ+1)

]
≤ c1 . (28)

Thus, from (9), (27) and (28) we conclude that

|u′′m(t)|2 + ||u′m(t)||2 + 2(ρ+ 1)

∫ t

0

∫
Ω

|u′m(x, s)|ρ(u′′m(x, s))2 dt ≤ c2 +

∫ t

0

|u′′m(s)|2 ds

and by Gronwall it follows that:

(u′′m) is bounded in L∞(0, T ;L2(Ω)) (29)

(u′m) is bounded in L∞(0, T ;H1
0 (Ω)). (30)

From the estimates above we obtain a subsequence (uν) of (um) such that

uν
∗
⇀ u weak-star in L∞(0, T ;H1

0 (Ω))

u′′ν
∗
⇀ u′′ weak-star in L∞(0, T ;L2(Ω))

u′ν ⇀ u′ weakly in Lp(Q)

u′ν
∗
⇀ u′ weak-star in L∞(0, T ;H1

0 (Ω))

uν
∗
⇀ u weak-star in L∞(0, T ;H1

0 (Ω) ∩H2(Ω))

(31)
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and from (29) and (30) by virtue of the Aubin-Lions Theorem it follows that

u′ν → u′ in L2(0, T ;L2(Ω)).

Thus,
u′ν(x, t)→ u′(x, t) a.e. in Q

which implies that

|u′ν(x, t)|ρ u′ν(x, t)→ |u′(x, t)|ρ u′(x, t) a.e. in Q. (32)

Now from (16) and (32) by virtue of Lions' Lemma it follows that

|u′ν |ρ u′ν ⇀ |u′|ρ u′ weakly in Lp′(Q). (33)

The convergences in (31) and (33) are su�cient to pass to the limit in the equation
as in Problem 1. The initial conditions are proved in the usual manner.

Uniqueness

Let u and v be solutions of (1) and set ω = u− v. Then w satis�es∣∣∣∣∣∣∣
ω′′ −∆ω = |v′|ρv′ − |u′|ρu′ in L∞(0, T ;L2(Ω))

ω = 0 on Σ

ω(0) = ω′(0) = 0

(34)

Composing (34)1 with ω′ implies that

(ω′′(t), ω′(t)) + ((ω(t), ω′(t))) = (|v′|ρv′ − |u′|ρu′, u′(t)− v′(t))

i.e.,
1

2

d

dt
|ω′(t)|2 + 1

2

d

dt
||ω(t)||2 =

∫
Ω

(
|v′|ρv′ − |u′|ρu′

)
(u′ − v′) dx. (35)

Since the function F (s) = |s|ρs is non-decreasing, given that F ′(s) = (ρ+1)|s|ρ ≥ 0,
we have ∫

Ω

(
|v′|ρv′ − |u′|ρu′

)
(u′ − v′) dx ≤ 0 (36)

and from (35) and (36) it follows that

1

2

d

dt
|ω′(t)|2 + 1

2

d

dt
||ω(t)||2 ≤ 0.

Integrating from 0 to t, we obtain from (34)3

|ω′(t)|2 + ||ω(t)||2 ≤ 0, ∀ t ∈ [0, T ].

Thus,
||ω(t)||2 = 0, ∀ t ∈ [0, T ]

which proves that ω = 0.
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Chapter 7

Von Kármán System

In what follows Ω will represent a bounded and su�ciently smooth open subset of R2.

Problem 8

Problem 8 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2u

∂t2
+∆2u− [u, v] = f in Q = Ω× ]0, T [

∆2v + [u, u] = 0 in Q

u = 0, v = 0 on Σ = Γ× ]0, T [

∂u

∂ν
= 0;

∂v

∂ν
= 0 on Σ

u(0) = u0(x); x ∈ Ω

∂u

∂t
(0) = u1(x); x ∈ Ω

(1)

where

[u, v] =
∂2u

∂x2
∂2v

∂y2
+
∂2u

∂y2
∂2v

∂x2
− 2

∂2u

∂x∂y

∂2v

∂x∂y
(2)

subject to the data

u0 ∈ H2
0 (Ω), u1 ∈ L2(Ω) and f ∈ L2(0, T ;L2(Ω)), (3)

possesses at least one pair (u, v), weak solution of (1) in the class

u, v ∈ L∞(0, T ;H2
0 (Ω)); u′ =

∂u

∂t
∈ L∞(0, T ;L2(Ω)). (4)

Proof:

1a	 Step: Approximate Solution

Let (ων)ν∈N be a basis of eigenfunctions of the operator ∆2 de�ned by the triple
{H2

0 (Ω), L
2(Ω); (( · , · ))H2

0 (Ω)}, where:

((u, v))H2
0 (Ω) =

∫
Ω

∆u∆v dx. (5)
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Letting (λν) be the corresponding sequence of eigenvalues, we have:

0 < λ1 ≤ λ2 ≤ · · · ≤ λν ≤ · · · , λν → +∞ when ν → +∞ and

∣∣∣∣∣∣∣∣∣
∆2ων = λνων

ων |Γ = 0

∂ων

∂ν

∣∣∣∣
Γ

= 0

(6)

Now from (6), by virtue of the regularity of elliptic problems of order 2, from the
fact that Ω is su�ciently smooth, from (6) and from Sobolev embeddings, we have:

ων ∈
( ⋂

m∈N

Hm(Ω)

)
∩ C∞(Ω) ∩H2

0 (Ω). (7)

From Spectral Theory we know that

(ων) is a complete orthonormal system in L2(Ω) (8)(
ων√
λν

)
is a complete orthonormal system in H2

0 (Ω) (9)(
ων

λν

)
is a complete orthonormal system in H2

0 (Ω) ∩H4(Ω) (10)

As is well known, the operator

∆2 : H2
0 (Ω) ∩H4(Ω)→ L2(Ω) (11)

is a bijection. Identifying L2(Ω) with its dual we can extend the biharmonic operator
given in (11) to a unique isometric extension

∆̃2 : H2
0 (Ω)→ H−2(Ω). (12)

Let us set:

G : L2(Ω)→ H2
0 (Ω) ∩H4(Ω) and G̃ : H−2(Ω)→ H2

0 (Ω) (13)

the inverses of (11) and (12), respectively; i.e, G = (∆2)−1 and G̃ = (∆̃2)−1. To not
overburden the notation, from now on we will not use the tilde (∼).

Let,
Vm = [ω1, . . . , ωm].

In Vm consider the approximate problem

um(t) ∈ Vm ⇔ um(t) =
m∑
i=1

gim(t)ωi , (14)

(u′′m(t), ωj) + (∆um(t),∆ωj)

+ ([um(t), G[um(t), um(t)]]
(∗), ωj) = (f(t), ωj) j = 1, . . . ,m

(15)

um(0) = u0m → u0 in H2
0 (Ω) (16)

12It is worth noting that from the regularity in (7) G[um, um] makes sense.
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u′m(0) = u1m → u1 in L2(Ω), (17)

which by Carathéodory possesses a local solution in some interval [0, tm). Note that from
(1)1 and (1)2 we can write

vm(t) = −G[um(t), um(t)] (13) (18)

2a	 Step: A Priori Estimate

Composing (15) with u′m it follows from (18) that

(u′′m(t), u
′
m(t)) + (∆um(t),∆u

′
m(t))−

(
[um(t), vm(t)], u

′
m(t)

)
= (f(t), u′m(t))

i.e.,
1

2

d

dt
|u′m(t)|2 +

1

2

d

dt
|∆um(t)|2 −

(
[um(t), vm(t)], u

′
m(t)

)
= (f(t), u′m(t)). (19)

Analysis of the Nonlinear Term

Consider the trilinear map

b : H2
0 (Ω)×H2

0 (Ω)×H2
0 (Ω)→ R

(u, v, ω) 7→ b(u, v, ω) =

∫
Ω

[u, v]ω dx
(20)

We claim that such map is symmetric. Indeed, initially observe that such map is
well de�ned. From (2) and the fact that u, v ∈ H2

0 (Ω) we have

[u, v] ∈ L1(Ω). (21)

Now since n = 2, we have that:

H2
0 (Ω) ↪→ C0(Ω) ↪→ L∞(Ω). (22)

Thus from (21) and (22) it is proved that the map (20) is well de�ned. Now, to
prove symmetry observe that from the fact that [u, v] = [v, u] it is su�cient to prove that∫

Ω

[u, v]ω dx =

∫
Ω

[u, ω]v dx (23)

Indeed, let u, v ∈ D(Ω). Then:

∂2

∂x2

(
∂2u

∂y2
v

)
− 2

∂2

∂x∂y

(
∂2u

∂x∂y
v

)
+

∂2

∂y2

(
∂2

∂x2
v

)
=

∂4u

∂x2∂y2
v +

∂2u

∂y2
∂2v

∂x2
− 2

∂4u

∂x2∂y2
v − 2

∂2u

∂x∂y

∂2v

∂x∂y
+

∂4v

∂y2∂x2
v +

∂2u

∂x2
∂2v

∂y2

= [u, v].

13Note that from (2), (7), (14), [um, um] ∈ C∞(Ω) ⊂ L2(Ω), since Ω is bounded.
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Thus: ∫
Ω

[u, v]w dx

=

∫
Ω

∂2

∂x2

(
∂2u

∂y2
v

)
ω − 2

∫
Ω

∂2

∂x∂y

(
∂2u

∂x∂y
v

)
ω dx+

∫
Ω

∂2

∂y2

(
∂2u

∂x2
v

)
ω dx.

(24)

Using Gauss's formula twice, the equality above can be rewritten as∫
Ω

∂2u

∂y2
∂2ω

∂x2
v dx− 2

∫
Ω

∂2u

∂x∂y

∂2ω

∂x∂y
v dx+

∫
Ω

∂2u

∂x2
∂2ω

∂y2
v dx

that is, ∫
Ω

[u, v]ω dx =

∫
Ω

[u, ω]v; ∀u, v, ω ∈ D(Ω). (24)

Let (uν), (vµ) and (ωξ) ⊂ D(Ω) be such that

uν → u; vµ → v and ωξ → ω in H2
0 (Ω). (25)

Now from (2) and (25) it follows that

[uν , vµ]→ [u, v] in L1(Ω) (26)

and from (22) and (25) we also have that

ωξ → ω in L∞(Ω) (27)

and from the convergences in (26) and (27) we obtain∫
Ω

[uν , vµ]ωξ dx→
∫
Ω

[u, v]ω dx.

Analogously ∫
Ω

[uν , ωξ]vµ dx→
∫
Ω

[u, ω]v dx

which proves (23). It follows from this in particular that∫
Ω

[um(t), vm(t)]u
′
m(t) dx =

∫
Ω

[um(t), u
′
m(t)]vm(t) dx. (28)

Substituting (28) in (19) results that

1

2

d

dt
|u′m(t)|2 +

1

2

d

dt
|∆um(t)|2 −

(
[um(t), u

′
m(t)], vm(t)

)
= (f(t), u′m(t))

or even,

1

2

d

dt
|u′m(t)|2 +

1

2

d

dt
|∆um(t)|2 −

1

2

(
d

dt
[um(t), um(t)], vm(t)

)
= (f(t), u′m(t)). (29)

But from (13) and (18) we can write

∆2vm(t) = −[um(t), um(t)]
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which implies

∆2v′m(t) = −
d

dt
[um(t), um(t)]. (30)

Substituting (30) in (29) results that

1

2

d

dt
|u′m(t)|2 +

1

2

d

dt
|∆um(t)|2 +

1

2
(∆v′m(t),∆vm(t)) ≤

1

2
|f(t)|2 + 1

2
|u′m(t)|2

that is,

1

2

d

dt
|u′m(t)|2 +

1

2

d

dt
|∆um(t)|2 +

1

4

d

dt
|∆vm(t)|2 ≤

1

2
|f(t)|2 + 1

2
|u′m(t)|2.

Integrating from 0 to t, t ∈ [0, tm) we obtain

|u′m(t)|2 + |∆um(t)|2 +
1

2
|∆vm(t)|2 ≤ |u1m|2 + |∆u0m|2

+
1

2
|∆vm(0)|2 + ||f ||2L2(Q) +

∫ t

0

|u′m(s)|2 ds.
(31)

Analysis of the term |∆vm(0)|2|∆vm(0)|2|∆vm(0)|2

Since n = 2, we will prove that

L1(Ω) ↪→ H−2(Ω). (32)

Indeed, de�ning the operator

T : L1(Ω)→ H−2(Ω)

g 7→ Tg

given by

⟨Tg, v⟩ =
∫
Ω

gv dx; v ∈ H2
0 (Ω), (33)

we have, by virtue of (22), that

|⟨Tg, v⟩| ≤
∫
Ω

|g| |v| dx = ||g||L1(Ω) ||v||L∞(Ω) ≤ c||g||L1(Ω) ||v||H2
0 (Ω) .

Therefore,
||Tg||H−2(Ω) ≤ c||g||L1(Ω) (34)

which proves that
T ∈ L(L1(Ω);H−2(Ω)).

We note also that if g1, g2 ∈ L1(Ω) and Tg1 = Tg2 we obtain∫
Ω

(g1 − g2)v dx = 0, ∀ v ∈ H2
0 (Ω).

In particular
⟨g1 − g2, φ⟩ = 0, ∀φ ∈ D(Ω)
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which implies that g1 = g2 in D′(Ω) and therefore g1 = g2 a.e. in Ω, which proves the
injectivity of the map T . In this sense (32) is proved.

We will prove next that the bilinear map

[ · , · ] : H2
0 (Ω)×H2

0 (Ω)→ H−2(Ω)

(u, v) 7→ [u, v]
(35)

is continuous. In fact, by virtue of (21) and (32)

||[u, v]||H−2(Ω) ≤ c1||[u, v]||L1(Ω) = c1

∫
Ω

|[u, v]| dx

≤ c1

∫
Ω

{ ∣∣∣∣∂2u∂x2

∣∣∣∣ ∣∣∣∣∂2v∂y2

∣∣∣∣+ 2

∣∣∣∣ ∂2u∂x∂y

∣∣∣∣ ∣∣∣∣ ∂2v∂x∂y

∣∣∣∣+ ∣∣∣∣∂2u∂y2
∣∣∣∣ ∣∣∣∣∂2v∂x2

∣∣∣∣ }dx
≤ c1

{(∫ ∣∣∣∣∂2u∂x2

∣∣∣∣2)1/2(∫
Ω

∣∣∣∣∂2v∂y2

∣∣∣∣2)1/2

+ 2

(∫
Ω

∣∣∣∣ ∂2u∂x∂y

∣∣∣∣2)1/2(∫
Ω

∣∣∣∣ ∂2v∂x∂y

∣∣∣∣2)1/2

+

(∫
Ω

∣∣∣∣∂2u∂y2
∣∣∣∣2)1/2(∫

Ω

∣∣∣∣∂2v∂x2

∣∣∣∣2)1/2}
≤ c2

{
||u||H2

0 (Ω) ||v||H2
0 (Ω) + 2||u||H2

0 (Ω) ||v||H2
o (Ω) + ||u||H2

0 (Ω) ||v||H2
0 (Ω)

}(14)

≤ c3||u||H2
0 (Ω) ||v||H2

0 (Ω)

which proves the desired result. It follows from this that

||[u0m, u0m]||H−2(Ω) ≤ c2||u0m||H2
0 (Ω) ||u0m||H2

0 (Ω) .

From (16) we guarantee the existence of a constant c3 > 0 such that

||[u0m, u0m]||H−2(Ω) ≤ c3 ; ∀m ∈ N (36)

and therefore, from (13) it follows that

||vm(0)||H2
0 (Ω) = ||G[u0m, u0m]||H2

0 (Ω) ≤ c4||[u0m, u0m]||H−2(Ω) ≤ c5 , ∀m ∈ N

that is,
|∆vm(0)|L2(Ω) ≤ c6 ; ∀m ∈ N. (37)

Thus, from (16), (17), (31) and (37) we obtain

|u′m(t)|2 + |∆um(t)|2 +
1

2
|∆vm(t)|2 ≤ c7 +

∫ t

0

|u′m(s)|2 ds

and by Gronwall

|u′m(t)|2 + |∆um(t)|2 +
1

2
|∆vm(t)|2 ≤ c; ∀ t ∈ [0, tm) ∀m ∈ N. (38)

The estimate above allows us to extend um(t) to the whole interval [0, T ], and from
(18) we have the same for vm(t). Furthermore, we conclude that

(u′m) is bounded in L∞(0, T ;L2(Ω)) (39)

(um) is bounded in L∞(0, T ;H2
0 (Ω)) (40)

(vm) is bounded in L∞(0, T ;H2
0 (Ω)). (41)

14Here we are using the fact that in H2
0 (Ω) the norms |∆u|L2 and ||u||H2(Ω) are equivalent.
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3a	 Step: Passage to the Limit

From the estimates in (39), (40) and (41) we can extract subsequences (uν) of (um)
and (vν) of (vm) such that

uν
∗
⇀ u weak-star in L∞(0, T ;H2

0 (Ω)) (42)

u′ν
∗
⇀ u′ weak-star in L∞(0, T ;L2(Ω)) (43)

vν
∗
⇀ v weak-star in L∞(0, T ;H2

0 (Ω)) (44)

On the other hand, from (39) and (40) we have, by virtue of the Aubin-Lions
Theorem, the existence of a subsequence of (uν), which we will still denote by (uν), such
that

uν → u strongly in L2(0, T ;L2(Ω)). (45)

Let j ∈ N and θ ∈ D(0, T ). Then, for ν > j from (15) and (18) it follows that

−
∫ T

0

(u′ν(t), ωj)θ
′(t) dt+

∫ T

0

(∆uν(t),∆ωj)θ(t) dt

−
∫ T

0

([uν(t), vν(t)], ωj)θ(t) dt =

∫ T

0

(f(t), ωj)θ(t) dt.

(46)

From (42) it follows that

⟨w, uν⟩L1(0,T ;H−2),L∞(0,T ;H2
0 )
−→ ⟨w, u⟩L1(0,T ;H−2),L∞(0,T ;H2

0 )
;

∀w ∈ L1(0, T ;H−2(Ω)).

In particular, if we de�ne

ψj = θωj ∈ C∞(Ω× [0, T ]) = C∞(Q) (47)

and consider w = ∆2ψj = θ∆2ωj ∈ L1(0, T ;H−2(Ω)) we obtain∫ T

0

⟨∆2ψj(t), uν(t)⟩H−2(Ω);H2
0 (Ω) dt −→

∫ T

0

⟨∆2ψj(t), u(t)⟩H−2(Ω);H2
0 (Ω) dt

that is, ∫ T

0

(∆ψj(t),∆uν(t))dt −→
∫ T

0

(∆ψj(t),∆u(t)) dt. (48)

From (43) we obtain immediately that∫ T

0

(u′ν(t), ψ
′
j(t)) dt −→

∫ T

0

(u′(t), ψ′
j(t)) dt. (49)

• Passage to the Limit of the Nonlinear Term

We have the following relation∫ T

0

([uν , vν ], ψj) dt =

∫ T

0

([uν , ψj], vν) dt

=

∫ T

0

([ψj, uν ], vν) dt =

∫ T

0

([ψj, vν ], uν) dt.

(50)
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We claim that

[ψj, vν ]⇀ [ψj, v] weakly in L2(Q). (51)

Indeed, since

[ψj, vν ] =
∂2ψj

∂x2
∂2vν
∂y2
− 2

∂2ψ

∂x∂y

∂2vν
∂x∂y

+
∂2ψj

∂y2
∂2vν
∂x2

it is su�cient to prove, for example, that∫
Q

∂2ψj

∂x2
∂2vν
∂y2

φdxdt→
∫
Q

∂2ψj

∂x2
∂2v

∂y2
φdxdt; ∀φ ∈ L2(Q). (52)

since for the other terms the reasoning is analogous.
From (38) it follows that

(vν),

(
∂2vν
∂x2

)
,

(
∂2vν
∂y2

)
,

(
∂2vν
∂x∂y

)
,

(
∂2vν
∂y∂x

)
are bounded in L∞(0, T ;L2(Ω)).

Thus,
∂2vν
∂y2

⇀
∂2v

∂y2
weakly in L2(Q). (53)

However from (47) we have that

ψj ∈ C∞(Q)

which implies that
∂2ψj

∂x2
= θj

∂2ωj

∂x2
∈ C∞(Q)

and, consequently,
∂2ψj

∂x2
φ ∈ L2(Q). (54)

Thus, from (53) and (54) results the convergence (52) and consequently (51). It
follows from this and from (45) that∫ T

0

([ψj, vν ], uν) dt→
∫ T

0

([ψj, v], u) dt,

or even ∫ T

0

([uν , vν ], ψj) dt→
∫ T

0

([u, v], ψj) dt. (55)

Finally, from (46), (48), (49) and (55) we have proved that

−
∫ T

0

(u′(t), ωj)θ
′(t) dt+

∫ T

0

(∆u(t),∆ωj)θ(t) dt

−
∫ T

0

([u(t), v(t)], ωj)θ(t) dt =

∫ T

0

(f(t), ωj)θ dt.
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By the totality of the sequence {ωj} in H2
0 (Ω) it follows that the last expression is

valid for all v ∈ H2
0 (Ω) and, therefore,

u′′ +∆2u− [u, v] = f in D′(0, T ;H−2(Ω)).

Since f ∈ L2(0, T ;L2(Ω)), ∆2u ∈ L∞(0, T ;H−2(Ω)) and [u, v] ∈ L∞(0, T ;L1(Ω))
we have

u′′ ∈ L2(0, T ;H−2(Ω)) (56)

and
u′′ +∆2u− [u, v] = f in L2(0, T ;H−2(Ω)). (57)

4a	 Step: Initial Condition

from (42), (43) and (57) it follows that

u ∈ C0([0, T ];L2(Ω)) ∩ Cs(0, T ;H
2
0 (Ω))

u′ ∈ C0([0, T ];H−2(Ω)) ∩ Cs(0, T ;L
2(Ω))

making sense, therefore, to calculate u(0) and u′(0). From there, we prove that u(0) = u0
and u′(0) = u1 in the usual manner.

Remark: We know that Hs(Ω) ↪→ C0(Ω) if s >
n

2
· In the present case n = 2 and,

therefore,
Hs(Ω) ↪→ C0(Ω); ∀ s > 1.

Thus, if 0 < ε < 1 we have

H1+ε
0 (Ω) ↪→ C0(Ω); ∀ ε ∈]0, 1[.

Repeating the previous arguments we prove that

L1(Ω) ↪→ H−(1+ε)(Ω)

and since
∆2vν = −[uν , uν ]

it follows that
∆2vν ∈ L∞(0, T ;L1(Ω)) ⊂ L∞(0, T ;H−(1+ε)(Ω)).

Using the regularity results of elliptic problems of order 2 in the spaces Hs(Ω) it
follows that

vν ∈ L∞(0, T ;H4−(1+ε)(Ω)) = L∞(0, T ;H3−ε(Ω)); ∀ ε ∈]0, 1[.

Note that from (45) it follows that

[uν , uν ]→ [u, u] in D′(Q) (15) ,or even, −∆2vν → [u, u] in D′(Q).

From (44) it follows that ∆2vν → ∆2v in D′(Q) and, by the uniqueness of the limit, it is
concluded that:

∆2v = −[u, u].

15Actually, [uν , φ]⇀ [u, φ] in L2(Q) and then
∫
Ω
[uν , uν ]φ =

∫
[uν , φ]uν →

∫
Ω
[u, φ]u =

∫
Ω
[u, u]φ.
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Chapter 8

Von Kármán System (Stationary Case)

Problem 9

Problem 9 given by ∣∣∣∣∣∣∣∣∣∣∣

∆2u− [u, v] = f in Ω

∆2v + [u, u] = 0 in Ω

u = 0, v = 0 on Γ

∂u

∂ν
= 0,

∂v

∂ν
= 0 on Γ

(1)

where

f ∈ H−2(Ω) (2)

admits at least one pair (u, v) as a weak solution, in the class,

u, v ∈ H2
0 (Ω). (3)

Proof:

1a	 Step: Approximate Problem

Let (ων)ν∈N be a basis of eigenfunctions of the operator∆2 ← {H2
0 (Ω);L

2(Ω); (( · , · ))H2
0
}

where:

((u, v))H2
0 (Ω) =

∫
Ω

∆u∆v dx.

As we saw in Problem 3 if (λν) is the sequence of eigenvalues corresponding then

0 < λ1 ≤ λ2 ≤ · · · ≤ λν ≤ · · · and λν → +∞.

Furthermore,

(ων) is a complete orthonormal system in L2(Ω) (3)(
ων

λ
1/2
ν

)
is a complete orthonormal system in H2

0 (Ω) (4)

(ων)

λν
is a complete orthonormal system in H2

0 (Ω) ∩H4(Ω). (5)

81
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Considering that ων is a solution of the problem∣∣∣∣∣∣∣∣∣
∆2ων = λνων

ων |Γ = 0

∂ων

∂ν

∣∣∣∣
Γ

= 0,

then, by virtue of the regularity of elliptic problems of order 2, from the fact that Ω is
a bounded su�ciently smooth open set and from the Sobolev Embedding Theorem, it
follows that

(ων) ⊂
( ⋂

m∈N

Hm(Ω)

)
∩ C∞(Ω) ∩H2

0 (Ω). (6)

Since the operators

∆2 : H2
0 (Ω) ∩H4(Ω)→ L2(Ω), ∆̃2 : H2

0 (Ω)→ H−2(Ω)

are bijections, being the second one an isometry let us de�ne

G : L2(Ω)→ H2
0 (Ω) ∩H4(Ω) G̃ : H−2(Ω)→ H2

0 (Ω)

G = (∆2)−1 and G̃ = (∆̃2)−1
(7)

Consider
Vm = [ω1, . . . , ωm].

In Vm consider the approximate problem

um ∈ Vm ⇔ um =
m∑
i=1

ξiωi (8)

(∆um,∆ωj) + ([um, G[um, um]], ωj) = ⟨f, ωj⟩; j = 1, 2, . . . ,m. (9)

We observe that from (1)2 we can write that

vm = −G[um, um]. (10)

We will prove next that the algebraic system (8)�(9) possesses a solution. Note
that we cannot use Carathéodory's Theorem since the problem is stationary.

Substituting (8) in (9) results that∫
Ω

( m∑
i=1

ξi ∆ωi

)
∆ωj dx+

∫
Ω

[ m∑
i=1

ξi ωi, G

[ m∑
i=1

ξi ωi,
m∑
i=1

ξi ωi

]]
ωj dx

= ⟨f, ωj⟩, j = 1, . . . ,m

(11)

Setting

aij =

∫
Ω

∆ωi ∆ωj dx; i, j = 1, . . . ,m; fj = ⟨f, ωj⟩; j = 1, . . . ,m (12)

and

bj(ξ1, . . . , ξm) =

∫
Ω

[ m∑
i=1

ξi ωi, G

[ m∑
i=1

ξi ωi,
m∑
i=1

ξi ωi

]]
ωj dx; j = 1, . . . ,m, (13)
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we obtain from (11), (12) and (13)

m∑
i=1

ξi aij + bj(ξ1, . . . , ξm) = fj ; 1 ≤ j ≤ m. (14)

To prove the existence of solution of (14) we need a result which we state below

Lemma (Visik): Let ξ 7→ P (ξ) from Rn → Rn be a continuous map such that for some
ρ > 0 we have (P (ξ), ξ)Rn ≥ 0, ∀ ξ ∈ Rn with ||ξ|| = ρ. Then, ∃ ξ0 ∈ Bρ(0) such that
P (ξ0) = 0.

Proof:
Suppose, by contradiction, that

P (ξ) ̸= 0; ∀ ξ ∈ Bρ(0). (15)

Since the map ξ ∈ Rn 7→ P (ξ) ∈ Rn is continuous, then the map

Q : Bρ(0)→ Rn

ξ 7→ Q(ξ) = − ρ

||P (ξ)||
P (ξ),

(16)

which is well de�ned by virtue of (15), is also continuous. Furthermore, for all ξ ∈ Bρ(0)
we have

||Q(ξ)|| =
∥∥∥∥− ρ

||P (ξ)||
P (ξ)

∥∥∥∥ = ρ, (17)

which proves that Q maps Bρ(0) into Bρ(0). Thus, by Brouwer's �xed point theorem,
∃ ξ0 ∈ Bρ(0) such that

Q(ξ0) = ξ0, (18)

that is, from (16) we have equivalently that

− P (ξ0)

||P (ξ0)||
ρ = ξ0 . (19)

We observe that from (17) and (18) it follows that

||ξ0|| = ρ > 0. (20)

It follows from (19) and (20) that(
P (ξ0), ξ0

)
= −||P (ξ0)||

ρ
(ξ0, ξ0) = −

||P (ξ0)||
ρ

||ξ0||2 < 0

which is absurd!

Returning to (14) let us de�ne for each j = 1, . . . ,m

ηj =
m∑
i=1

ξi aij + bj(ξ1, . . . , ξm)− fj

and
η = (η1, . . . , ηm).
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We must prove that the map P : Rm → Rm given by

ξ 7→ um =
m∑
i=1

ξiωi 7→ η (21)

that is, ξ ∈ Rm 7→ P (ξ) = η is continuous, and furthermore, that ∃ ρ0 > 0 such that:

(P (ξ), ξ) ≥ 0; ∀ ξ ∈ Rm |ξ| = ρ0 . (22)

Indeed, we will prove initially the continuity of P . For this it is su�cient to prove
that

Pj : Rm → R
ξ 7→ Pj(ξ) = ηj

is continuous. In fact, let ξ0 ∈ Rm and consider (ξν) ⊂ Rm such that

ξν → ξ0 in Rm. (23)

We have

|Pj(ξν)− Pj(ξ0)|

=

∣∣∣∣∣
m∑
i=1

aij(ξνi − ξ0i)− bj(ξν1, . . . , ξνm) + bj(ξ01, . . . , ξ0m)

∣∣∣∣∣
≤

m∑
i=1

|aij| |ξνi − ξ0i|+ |bj(ξν1, . . . , ξνm)− bj(ξ01, . . . , ξ0m)|.

(24)

However, from (23) we have

|ξνi − ξ0i| ≤

√√√√ m∑
i=1

(ξνi − ξ0i)2 = ||ξν − ξ0|| → 0, ∀ i = 1, . . . ,m,

which implies that
ξνi → ξ0i in R, ∀i = 1, · · · ,m.

Therefore
m∑
i=1

ξνiωi →
m∑
i=1

ξ0iωi in H2
0 (Ω). (25)

Whence[ m∑
i=1

ξνiωi,

m∑
i=1

ξνiωi

]
→
[ m∑

i=1

ξ0iωi,

m∑
i=1

ξ0iωi

]
in L1(Ω) ↪→ H−2(Ω)

and consequently

G

[ m∑
i=1

ξνiωi,
m∑
i=1

ξνiωi

]
→ G

[ m∑
i=1

ξ0iωi,
m∑
i=1

ξ0iωi

]
in H2

0 (Ω)
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From the convergence above and from (25) it follows that[ m∑
i=1

ξνiωi, G

[ m∑
i=1

ξνiωi,

m∑
i=1

ξνiωi

]]
→
[ m∑

i=1

ξ0iωi, G

[ m∑
i=1

ξ0iωi,

m∑
i=1

ξ0iωi

]]
in L1(Ω).

Since ωj ∈ H2
0 (Ω) ↪→ C0(Ω) ↪→ L∞(Ω) (since n = 2) it follows that∫

Ω

[ m∑
i=1

ξνiωi, G

[ m∑
i=1

ξνiωi,

m∑
i=1

ξνiωi

]]
ωjdx

→
∫
Ω

[ m∑
i=1

ξ0iωi, G

[ m∑
i=1

ξ0iωi,

m∑
i=1

ξ0iωi

]]
ωjdx

that is,
|bj(ξν1, . . . , ξνm)− bj(ξ01, . . . , ξ0m)| → 0. (26)

Thus, the continuity of the map P is proved. We will prove next the veracity of
(22). Indeed, from (13) we have

(Pξ, ξ) = (η, ξ) =
m∑
j=1

ηjξj

=
m∑
j=1

( m∑
i=1

ξiaij + bj(ξ1, . . . , ξm)− fj
)
ξj

=
m∑
j=1

( m∑
i=1

ξi(∆ωi,∆ωj)L2(Ω) +

∫
Ω

[um, G[um, um]]ωj dx− ⟨f, ωj⟩
)
ξj

=

(
∆

( m∑
i=1

ξiωi

)
,∆

( m∑
j=1

ξjωj

))
L2(Ω)

+

∫
Ω

[um, G[um, um]]

( m∑
j=1

ωjξj

)
dx−

〈
f,

( m∑
j=1

ωjξj

)〉
= (∆um,∆um)−

∫
Ω

[um, vm]um dx− ⟨f, um⟩

= |∆um|2 −
∫
Ω

[um, vm]um dx− ⟨f, um⟩.

(27)

However ∫
Ω

[um, vm]um dx =

∫
Ω

[um, um]vm dx. (28)

From (10) we have:
∆2vm = −[um, um]. (29)

Therefore, from (28) and (29) we conclude that:∫
Ω

[um, vm]um dx = −
∫
Ω

∆2vmvm dx. (30)
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Substituting (30) in (27) results that

(Pξ, ξ)

= |∆um|2 + (∆2vm, vm)− ⟨f, um⟩
= |∆um|2 + |∆vm|2 − ⟨f, um⟩
≥ |∆um|2 + |∆vm|2 − ||f ||H−2 ||um||H2

0 (Ω)

≥ |∆um|2 + |∆vm|2 − c1|∆um|

that is,
(Pξ, ξ) ≥ |∆um|2 + |∆vm|2 − c1|∆um| ≥ |∆um|2 − c1|∆um|. (31)

We have two cases to consider
(i) If |∆um| = 0, then from (31) it follows that (Pξ, ξ) ≥ 0 which proves the desired

in (22) for any ρ > 0.
(ii) If |∆um| ̸= 0, then (Pξ, ξ) ≥ 0 provided that |∆um| ≥ c1 . We will prove that

∃ ρ0 > 0 such that, ∀ ξ ∈ Rm, if ||ξ|| = ρ0, then |∆um| ≥ c1 and we have the desired in
(22). Indeed, we have from (3) that

|∆um|2L2(Ω) = (∆um,∆um) =

( m∑
i=1

ξi∆ωi,
m∑
i=1

ξi∆ωi

)
=

m∑
i=1

ξ2i |∆ωi|2L2(Ω) . (32)

Setting
βm = min{|∆ω1|2, . . . , |∆ωm|2}

from (32) it follows that

|∆um|2L2(Ω) ≥ βm

m∑
i=1

ξ2i = βm||ξ||2,

which implies that
|∆um|L2(Ω) ≥

√
βm||ξ||. (33)

Choosing ρ0 > 0 such that ρ0 >
c1√
βm

we obtain from (33), for all ξ ∈ Rm with

||ξ|| = ρ0, that:

|∆um|L2(Ω) ≥
√
βmρ0 >

√
βm ·

c1√
βm

= c1

which proves the desired in (22). Thus, by Visik's Lemma ∃ ξ0 ∈ Bρ0(0) such that P (ξ0) =
0, that is, the system given in (11) admits a solution.

2a	 Step: A Priori Estimate

Multiplying (9) by ξj and summing over j from t to m, we obtain from (10) that

(∆um,∆um) + ([um, vm], um) = ⟨f, um⟩

or even,
|∆um|2 − ([um, um], vm) ≤ ||f ||H−2 ||um||H2

0
.

Whence, from (29)

|∆um|2 + (∆2vm, vm) ≤ c1||f ||H−2(Ω) |∆um|
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and, therefore,

|∆um|2 + |∆vm|2 ≤ c1||f ||H−2(Ω) |∆um|; ∀m ∈ N. (34)

For m ∈ N such that |∆um| = 0 then |∆um| is trivially bounded. When |∆um| ≠ 0
we have from (34) that

|∆um| ≤ c2 ; ∀m ∈ N (35)

and from (34) and (35) it follows that

|∆vm| ≤ c3 ; ∀m ∈ N. (36)

Thus, from (35) and (36) we have

(um) is bounded in H2
0 (Ω) (37)

(vm) is bounded in H2
0 (Ω). (38)

It results from (37) and (38) the existence of subsequences (uν) of (um) and (vν)
of (vm) such that

uν ⇀ u weakly in H2
0 (Ω) (39)

vν ⇀ v weakly in H2
0 (Ω). (40)

On the other hand, by virtue of H2
0 (Ω)

comp.
↪→ L2(Ω) and (37), we can extract from

(uν) a subsequence, which we will still denote by the same notation, which veri�es

uν → u in L2(Ω). (41)

3a	 Step: Passage to the Limit

Let j ∈ N and consider ν ≥ j. From (9) and (10) it results that:

(∆uν ,∆ωj)− ([uν , vν ], ωj) = ⟨f, ωj⟩. (42)

From (39) it follows that

⟨w, uν⟩H−2,H2
0
−→ ⟨w, u⟩H−2,H2

0
, ∀w ∈ H−2(Ω).

In particular,
⟨∆2ωj, uν⟩ → ⟨∆2ωj, u⟩

that is,
(∆uν ,∆ωj)→ (∆u,∆ωj). (43)

We have

([uν , vν ], ωj) = ([uν , ωj], vν) = ([ωj, uν ], vν) = ([ωj, vν ], uν). (44)

We claim that
[ωj, vν ]⇀ [ωj, v] in L2(Ω). (45)
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Indeed, we have

[ωj, vν ] =
∂2ωj

∂x2
∂2vν
∂y2
− 2

∂2ωj

∂x∂y

∂2vν
∂x∂y

+
∂2ωj

∂x2
∂2vν
∂y2

(46)

and

[ωj, v] =
∂2ωj

∂x2
∂2v

∂y2
− 2

∂2ωj

∂x∂y

∂2v

∂x∂y
+
∂2ωj

∂x2
∂2v

∂y2
. (47)

Therefore, from (6), (10) and (40) it follows that [ωj, vν ], [ωj, v] ∈ L2(Ω). To prove
(45) then, by virtue of (46) and (47), it is su�cient to prove for example that∫

Ω

∂2ωj

∂x2
∂2vν
∂y2

φdx→
∫
Ω

∂2ωj

∂x2
∂2v

∂y2
φdx, ∀φ ∈ L2(Ω), (48)

since for the other terms the procedure is analogous.
Indeed, from (36) it follows that(

∂2vν
∂y2

)
is bounded in L2(Ω). (50)

Consequently, from (50) we conclude that

∂2vν
∂y2

⇀
∂2v

∂y2
in L2(Ω). (51)

However since (
∂2ωj

∂x2
φ

)
∈ L2(Ω), (52)

because from (6) we have that∫
Ω

∣∣∣∣∂2ωj

∂x2
φ

∣∣∣∣2 dx ≤ c

∫
Ω

|φ|2 dx < +∞

from (51) and (52) the convergence in (48) follows, proving (45). It follows from this and
from the convergence in (41) that

([ωj, vν ], uν)→ ([ωj, v], u)

Thus, from (44) we can write

([uν , vν ], ωj) = ([ωj, vν ], uν)→ ([ωj, v), u) = ([u, v], ωj). (53)

In this way, from (42), (43) and (53) it follows, in the limit situation,

(∆u,∆ωj)−
∫
Ω

[u, v]ωj dx = ⟨f, ωj⟩, ∀ j ∈ N.

By the totality of the sequence {ωj} in H2
0 (Ω) it follows that

(∆u,∆ω)−
∫
Ω

[u, v]ω dx = ⟨f, ω⟩; ∀ω ∈ H2
0 (Ω). (54)
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Taking ω = φ ∈ D(Ω) in (54) we obtain

∆2u− [u, v] = f in D′(Ω),

or even,
∆2u− [u, v] = f in H−2(Ω). (55)

On the other hand, from (41) we have that

[uν , uν ]→ [u, u] in L1(Ω) ↪→ H−2(Ω),

which implies that
−G[uν , uν ]→ −G[u, u] in H2

0 (Ω),

or even, from (10),
vν → −G[u, u] in H2

0 (Ω). (56)

From the convergences in (40) and (56) and by the uniqueness of the limit we
conclude that

v = −G[u, u]. (57)
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Chapter 9

Navier-Stokes System

Let Ω be a bounded and su�ciently smooth open subset of R2.
Let us de�ne

V = {φ ∈ (D(Ω))2; divφ = 0} (1)

V = V(H1(Ω))2

(2)

H = V(L2(Ω))2

(3)

The set V de�ned in (2) can be rewritten as

V = {u ∈ (H1
0 (Ω))

2; div u = 0}. (4)

We will endow H and V , respectively, with the inner products in (L2(Ω))2 and
(H1

0 (Ω))
2. More precisely, we have

(u, v)(L2(Ω))2 =
2∑

i=1

(ui, vi) (5)

and

((u, v))(H1
0 (Ω))2 =

2∑
i=1

((ui, vi)) =
2∑

i=1

2∑
j=1

(
∂ui
∂xj

∂vi
∂xj

)
L2(Ω)

. (6)

Problem 10

Problem 10 given by∣∣∣∣∣∣∣∣∣∣∣∣∣

∂u

∂t
− ν∆u+

2∑
j=1

∂u

∂xj
uj = f −∇p in Q (ν > 0)

div u = 0 in Q

u = 0 on Σ

u(x, 0) = u0(x); x ∈ Ω,

(7)

91
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where

u = (u1, u2);
∂u

∂xj
=

(
∂u1
∂xj

,
∂u2
∂xj

)
;

∂u

∂t
= (u′1, u

′
2), ∆u = (∆u1,∆u2),

subject to the data
u0 ∈ H and f ∈ L2(0, T ;V ′) (8)

possesses a unique weak solution in the class

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H); u′ ∈ L2(0, T ;V ′).

Variational Formulation

Composing equation (7)1 with an admissible function ω, we obtain

(u′, ω)− ν(∆u, ω) +
( 2∑

j=1

∂u

∂xj
uj, ω

)
= (f, ω)− (∇p, ω).

Applying Green's Theorem formally it follows that

2∑
i=1

(u′i, ωi)L2(Ω) + ν
2∑

i=1

((ui, ωi))H1
0 (Ω) +

2∑
i=1

∫
Γ

∂ui
∂η

ωi dΓ +
2∑

i=1

2∑
j=1

(
∂ui
∂xj

uj, ωi

)
L2(Ω)

=
2∑

i=1

(fi, ωi)−
2∑

i=1

(
∂p

∂xi
, ωi

)
L2(Ω)

.

Now considering ωi = 0 on Γ and using formally Gauss's Theorem it results that

2∑
i=1

(u′i, ωi)L2(Ω) + ν
2∑

i=1

((ui, ωi))H1
0 (Ω) +

2∑
i=1

2∑
j=1

(
∂ui
∂xj

uj, ωi

)
L2(Ω)

=
2∑

i=1

(fi, ωi) +

∫
Ω

p

( 2∑
i=1

∂ωi

∂xi

)
dx−

2∑
i=1

∫
Γ

pωi ηi dΓ.

Considering divω =
2∑

i=1

∂ωi

∂xi
= 0 and ωi = 0 on Γ it follows that

2∑
i=1

(u′i, ωi)L2(Ω) + ν

2∑
i=1

((ui, ωi))H1
0 (Ω) +

2∑
i=1

2∑
j=1

(
∂ui
∂xj

uj, ωi

)
L2(Ω)

=
2∑

i=1

(fi, ωi). (9)

In truth, the variational formulation given in (9) holds for any function ω ∈ V
given in (4).

Before proceeding to the resolution of problem (7) we will make some initial con-
siderations that we will need in the unfolding of the problem. We have the following
results

Lemma 1: The trilinear form:

b : V × V × V → R

(u, v, ω) 7→ b(u, v, ω) =
2∑

i,j=1

∫
Ω

uj
∂vi
∂xj

ωi dx
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is continuous.

Proof. Since n = 2, we have by the Sobolev Embedding Theorem that

H1
0 (Ω) ↪→ Lq(Ω); ∀ q ∈ [2,+∞[ .

Thus and, in particular, H1
0 (Ω) ↪→ L4(Ω). Whence

uj ∈ L4(Ω);
∂vi
∂xj
∈ L2(Ω) and ωi ∈ L4(Ω).

Now, since

1

2
+

1

4
+

1

4
= 1

it follows from the generalized Hölder inequality that b(u, v, ω) is well de�ned and, fur-
thermore,

∣∣∣∣∫
Ω

uj
∂vi
∂xj

ωi dx

∣∣∣∣ ≤ |uj|L4(Ω)

∣∣∣∣ ∂vi∂xj

∣∣∣∣
L2(Ω)

|ωi|L4(Ω) ≤ c1||uj||H1
0 (Ω) ||vi||H1

0 (Ω) ||ωi||H1
0 (Ω) .

Thus:

|b(u, v, ω)| ≤
2∑

i=1

2∑
j=1

∫
Ω

|uj|
∣∣∣∣ ∂vi∂xj

∣∣∣∣ |ωi| dx

≤ c1

2∑
i=1

2∑
j=1

||uj||H1
0 (Ω) ||vi||H1

0 (Ω) ||ωi||H1
0 (Ω)

≤ c1

( 2∑
j=1

||uj||2H1
0 (Ω)

)1/2( 2∑
i=1

||vi||H1
0 (Ω) ||ωi||H1

0 (Ω)

)

≤ c1

( 2∑
j=1

||uj||2H1
0 (Ω)

)1/2( 2∑
i=1

||vi||H1
0 (Ω)

)1/2( 2∑
i=1

||ωi||H1
0 (Ω)

)1/2

,

that is,

|b(u, v, ω)| ≤ c1||v|| ||u|| ||ω||, ∀u, v, ω ∈ V

which proves the lemma.

Lemma 2. We have that b(u, v, ω) = −b(u, ω, v), ∀u, v, ω ∈ V .

Proof. Consider, initially, u, v, ω ∈ V . Then, by Gauss's formula:
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b(u, v, ω) + b(u, ω, v)

=
2∑

i,j=1

{∫
Ω

uj
∂vi
∂xj

ωi dx+

∫
Ω

uj
∂ωi

∂xj
vi dx

}

=
2∑

i,j=1

{∫
Ω

uj
∂

∂xj
(viωi) dx

}

=
2∑

i,j=1

{
−
∫
Ω

∂uj
∂xj

vi ωi dx+

=0︷ ︸︸ ︷∫
Γ

uj vi ωi ηi dΓ

}

= −
∫
Ω

( 2∑
j=1

∂uj
∂xj︸ ︷︷ ︸

=0

)( 2∑
i=1

vi ωi

)
dx = 0,

which proves the desired result for functions in V . Consider, then, u, v , ω ∈ V . Thus,
from (2) it follows that there exist (uν), (vν) and (ων) ⊂ V such that

uν → u; vν → v and ων → ω in V.

However
b(uν , vν , ων) = −b(uν , ων , vν). (10)

It follows from (10) and the continuity of b( · , · , · ) (cf. Lemma 1) the desired
result.

Lemma 3. Let Ω ⊂ R2 be a bounded and su�ciently smooth open set. Then for all
u ∈ H1

0 (Ω) we have
||u||2L4(Ω) ≤

√
2 ||u||H1

0 (Ω) |u|L2(Ω) .

Proof. Let φ ∈ D(Ω) and consider ψ its extension by setting it to zero outside in R2 \Ω.
Then,

ψ2(x1, x2) =

∫ x1

−∞

∂

∂s
(ψ2(s, x2)) ds = 2

∫ x1

−∞
ψ(s, x2)

∂

∂s
ψ(s, x2) ds, ∀ (x1, x2) ∈ R2.

Thus

|ψ2(x1, x2)|

≤ 2

∫ x1

−∞
|ψ(s, x2)|

∣∣∣∣∂ψ∂s (s, x2)

∣∣∣∣ ds
≤ 2

∫ +∞

−∞
|ψ(s, x2)|

∣∣∣∣∂ψ∂s (s, x2)

∣∣∣∣ ds.
De�ning

v(x2) = 2

∫ +∞

−∞
|ψ(s, x2)|

∣∣∣∣∂ψ∂s (s, x2)

∣∣∣∣ ds (11)

it follows that
|ψ2(x1, x2)| ≤ v(x2); ∀ (x1, x2) ∈ R2. (12)
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Analogously, setting

v(x1) = 2

∫ +∞

−∞
|ψ(x1, s)|

∣∣∣∣∂ψ∂s (x1, s)

∣∣∣∣ ds
we have

|ψ2(x1, x2)| ≤ v(x1); ∀ (x1, x2) ∈ R2. (13)

From (12) and (13) it follows that

|ψ4(x1, x2)| ≤ v(x1) · v(x2); ∀ (x1, x2) ∈ R2. (14)

Observing that v1, v2 ∈ L1(R) then by Tonelli's Theorem (v1v2) ∈ L1(R2) and from
(14) we obtain∫

R2

|ψ(x1, x2)|4 dx ≤
∫
R2

v(x1)v(x2) dx < +∞; x = (x1, x2).

It follows from the inequality above, by Fubini's Theorem, that∫
R2

|ψ(x1, x2)|4 dx ≤
(∫

R
v(x1)dx1

)(∫
R
v(x2)dx2

)
. (14)

However from (11) and the Cauchy-Schwarz inequality we obtain∫
R
v(x2)dx2

= 2

∫
R

∫
R
|ψ(x1, x2)|

∣∣∣∣ ∂ψ∂x1 (x1, x2)
∣∣∣∣ dx1 dx2

≤ 2

(∫
R2

|ψ(x1, x2)|2 dx
)1/2(∫

R2

∣∣∣∣ ∂ψ∂x1 (x1, x2)
∣∣∣∣2 dx)2

= 2|ψ|L2(R2)

∣∣∣∣ ∂ψ∂x1
∣∣∣∣
L2(R2)

,

that is, ∫
R
v(x2)dx2 ≤ 2|ψ|L2(R2)

∣∣∣∣ ∂ψ∂x1
∣∣∣∣
L2(R2)

. (15)

Analogously, ∫
R
v(x1)dx1 ≤ 2|ψ|L2(R2)

∣∣∣∣ ∂ψ∂x2
∣∣∣∣
L2(R2)

. (16)

Thus, from (14), (15) and (16) we conclude that∫
R2

|ψ(x1, x2)|4 dx

≤ 4|ψ|2L2(R2)

∣∣∣∣ ∂ψ∂x1
∣∣∣∣
L2(R2)

∣∣∣∣ ∂ψ∂x2
∣∣∣∣
L2(R2)

≤ 2|ψ|2L2(R2)

{ ∣∣∣∣ ∂ψ∂x1
∣∣∣∣2
L2(R2)

+

∣∣∣∣ ∂ψ∂x2
∣∣∣∣2
L2(R2)

}
,
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that is,
||ψ||4L4(R2) ≤ 2|ψ|2L2(R2)||ψ||2H1

0 (R2) .

Restricting ψ to Ω we have

||φ||2L4(Ω) ≤
√
2 |φ|L2(Ω) ||φ||H1

0 (Ω) ; ∀φ ∈ D(Ω).

By density arguments and the fact that H1
0 (Ω) ↪→ L4(Ω) the result follows.

It follows from Lemma 1 for �xed u, v ∈ V that the map

B(u, v) : V → R
ω 7→ ⟨B(u, v), ω⟩ = b(u, v, ω)

(17)

is a continuous bilinear form, that is, B(u, v) ∈ V ′.

Lemma 4. If u, v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) then B(u, v) ∈ L2(0, T ;V ′).

Proof. For all w ∈ V we have by Lemma 2 and by the generalized Hölder inequality

|⟨B(u(t), v(t)), w⟩|
= |b(u(t), v(t), w)| = |b(u(t), w, v(t))|
= c1||u(t)||(L4(Ω))2 ||ω||V ||v(t)||(L4(Ω))2 .

Whence
B(u(t), v(t)) ∈ V ′ a.e. in ]0, T [ and

||B(u(t), v(t))||V ′ ≤ c2||u(t)||(L4(Ω))2 ||v(t)||(L4(Ω))2
(18)

for almost every t ∈ [0, T [ .
On the other hand, by virtue of the numerical Hölder inequality

||u(t)||(L4(Ω))2 =
2∑

i=1

||ui(t)||L4(Ω) ≤ 21/2
( 2∑

i=1

||ui(t)||2L4(Ω)

)1/2

.

By Lemma 3, we obtain

||u(t)||(L4(Ω))2 ≤ 21/2
( 2∑

i=1

21/2|ui(t)|L2(Ω) ||ui(t)||H1
0 (Ω)

)1/2

= 21/221/4
( 2∑

i=1

|ui(t)|L2(Ω) ||ui(t)||H1
0 (Ω)

)1/2

≤ 23/4
(
||u(t)||V

2∑
i=1

|ui(t)|L2(Ω)

)1/2

= 23/4||u(t)||1/2
( 2∑

i=1

|ui(t)|L2(Ω)

)1/2

≤ 23/4||u(t)||1/2 21/2
{( 2∑

i=1

|ui(t)|2L2(Ω)

)1/2}1/2

= 25/4||u(t)||1/2V |u(t)|
1/2
H .

Since by hypothesis u ∈ L∞(0, T ;H) we have

||u(t)||(L4(Ω))2 ≤ 25/4
(
ess sup
t∈]0,T [

|u(t)|H
)1/2

||u(t)||1/2V ≤ c3||u(t)||1/2V . (19)

Analogously
||v(t)||(L4(Ω))2 ≤ c4||u(t)||1/2V . (20)
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From (19) and (20) it follows that

||u(t)||(L4(Ω))2 ||v(t)||(L4(Ω))2 ≤ c5||u(t)||1/2V ||v(t)||
1/2
V a.e. in ]0, T [ . (21)

From (18) and (21) it follows that

||B(u(t), v(t))||V ′ ≤ c5||u(t)||1/2V ||v(t)||
1/2
V (21')

which implies the inequality

||B(u(t), v(t))||2V ′ ≤ c25||u(t)||V ||v(t)||V ≤
c25
2

[
||u(t)||2V + ||v(t)||2V

]
.

Thus∫ T

0

||B(u(t), v(t))||2V ′ dt ≤ c6

[ ∫ T

0

||u(t)||2V dt+
∫ T

0

||v(t)||2V dt
]
< +∞

which proves the lemma.

Lemma 5. Let X and Y be separable Banach spaces such that X ↪→ Y and consider
a, b ∈ [−∞,+∞] with a < b. Setting

W (a, b) = {u | u ∈ Lp(a, b,X), u′ ∈ Lq(a, b, Y )} 1 ≤ p, q < +∞

endowed with the topology

||u||W (a,b) = ||u||Lp(a,b;X) + ||u′||Lq(a,b;Y )

where u′ is understood in the sense of vector-valued distributions in D′(a, b;X), we have:

D([a, b];X) (16) is dense in W (a, b).

Proof:

1st case: a = −∞; b = +∞.

(a) Truncation
Let u ∈ W (−∞,+∞) and de�ne

ψ(t) =

{
1 if |t| ≤ 1

0 if |t| ≥ 2

where ψ ∈ C∞
0 (R) and 0 ≤ ψ(t) ≤ 1, ∀ t ∈ R.

We claim that
ψνu→ u in W (−∞,+∞). (22)

where ψν(t) = ψ(t/ν); ∀ν ∈ N∗.
Indeed, on one hand we have that

||ψνu− u||pLp(−∞,+∞,X) =

∫ +∞

−∞
||(ψνu)(t)− u(t)||pX dt→ 0 when ν → +∞,

16D([a, b];X) = {u|[a,b] ;u ∈ D(−∞,+∞, X)}, −∞ < a < b < +∞
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by virtue of the Lebesgue Dominated Convergence Theorem, that is,

ψνu→ u in Lp(−∞,+∞, X) when ν → +∞. (23)

On the other hand, note that for θ ∈ D(−∞,+∞) we have〈
d

dt
(ψνu), θ

〉
= −⟨ψνu, θ

′⟩ = −
∫ +∞

−∞
u(t)ψν(t)θ

′(t) dt

= −
∫ +∞

−∞
u(t)

[
(ψνθ)

′(t)− ψ′
ν(t)θ(t)

]
dt

(17)
=

∫ +∞

−∞
u′(t)ψν(t)θ(t) dt+

∫ +∞

−∞
u(t)ψ′

ν(t)θ(t) dt

= ⟨u′ψν + uψ′
ν , θ⟩.

Thus

||(ψνu)
′ − u′||qLq(−∞,+∞,Y ) =

∫ +∞

−∞
||ψνu

′ + uψ′
ν − u′||

q
Y dt

≤ c1

{∫ +∞

−∞
||ψνu

′ − u′||qY dt+
∫ +∞

−∞
||uψ′

ν ||
q
Y dt

}
.

(24)

In a manner analogous to (23) we prove that∫ +∞

−∞
||ψνu

′ − u′||qY dt→ 0 when ν → +∞. (25)

Also, from the fact that ψ′
ν(t) =

1

ν
ψ′
(
t

ν

)
and ψ′ is also bounded on the whole

line, it follows that ∫ +∞

−∞
||uψ′

ν(t)||
q
Y dt→ 0 when ν → +∞. (26)

From (24), (25) and (26) it follows that

(ψνu)
′ → u′ in Lq(−∞,+∞, Y ). (27)

Consequently from (23) and (27) we have proved (22). Note that

supp(ψνu) ⊂ supp(ψν) ∩ supp(u) ⊂ supp(ψν)

which proves that for each ν ∈ N∗ the function (ψνu) has compact support in R. The next
step is to approximate a function u of compact support by functions of D(−∞,+∞, X).

(b) Regularization

Let u ∈ W (−∞,+∞) with compact support and consider (ρν)ν∈N a regularizing
sequence. De�ne

uν(t) = (ρν ∗ u)(t) =
∫ +∞

−∞
ρν(s)u(t− s) ds. (28)

17Note that (ψνθ) ∈ D(−∞,+∞).
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We will prove that

uν → u in W (−∞,+∞). (29)

In fact, from classical integration results (Bochner) of vector-valued functions we
know that

uν → u in Lp(−∞,+∞, X). (30)

It remains to prove that

u′ν = (ρν ∗ u)′ → u′ in Lq(−∞,+∞, Y ), (31)

where here the derivative is in the sense of D′(−∞,+∞, X). However, to prove (31) it is
su�cient to prove that

(ρν ∗ u)′ = ρν ∗ u′. (32)

Indeed, let θ ∈ D(−∞,+∞). We have

⟨(ρν ∗ u)′, θ⟩ = −⟨ρν ∗ u, θ′⟩

= −
∫ +∞

−∞

(∫ +∞

−∞
ρν(s)u(t− s)ds

)
θ′(t) dt

= −
∫ +∞

−∞

(∫ +∞

−∞
u(t− s)θ′(t)dt

)
ρν(s)ds

(18)
=

∫ +∞

−∞

(∫ +∞

−∞
u′(t− s)θ(t)dt

)
ρν(s) ds

=

∫ +∞

−∞

(∫ +∞

−∞
ρν(s)u

′(t− s)ds
)
θ(t) dt = ⟨ρν ∗ u′, θ⟩,

which proves (32) and consequently (31). From (31) and (30) (29) is proved. Furthermore,
since

uν ∈ C∞(−∞,+∞, X) and supp(ρν ∗ u) ⊂ supp(ρν) + supp(u)

we have that uν ∈ D(−∞,+∞, X). From (a) and (b) the 1st Case is proved.

2nd Case: a �nite and b = +∞.

Without loss of generality we will consider a = 0. Let u ∈ W (0,+∞) and h > 0.
We will prove that

τhu→ u in W (0,+∞) when h→ 0, (33)

where τh u(t) = u(t+ h).
We will prove initially that

τhv → v in Lr(0,+∞, V ) (34)

where V is a separable Banach space, 1 ≤ r < +∞ and v ∈ Lr(0,+∞;V ). Indeed, let ε >
0 be given. Since D(0,+∞, V ) is dense in Lr(0,+∞, V ) we have that ∃φ ∈ D(0,+∞, V )
such that

||φ− v||Lr(0,+∞,V ) <
ε

3
· (35)

18setting f(t) = u(t−s) then f ′(t) = u′(t−s) and therefore −
∫ +∞
−∞ u(t−s)θ′(t)dt = −

∫ +∞
−∞ f(t)θ′(t)dt =

+
∫ +∞
−∞ f ′(t)θ(t)dt =

∫ +∞
−∞ u′(t− s)θ(t)dt.
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Thus,

||τhv − v||Lr(0,+∞,V ) ≤ ||τhv − τhφ||Lr(0,+∞,V ) + ||τhφ− φ||Lr(0,+∞,V )

+ ||φ− v||Lr(0,+∞,V ) .
(36)

However, from the fact that φ ∈ D(0,+∞, V ) we have that

||τhφ− φ||Lr(0,+∞,V ) → 0 when h→ 0

and, therefore,
||τhφ− φ||Lr(0,+∞,V ) <

ε

3
; 0 < h < δ. (37)

Also, by a change of variables it follows that

||τhv − τhφ||Lr(0,+∞,V ) ≤ ||v − φ||Lr(0,+∞,V )
ε

3
; ∀h > 0. (38)

From (35), (36), (37) and (38) we obtain

||τhv − v||Lr(0,+∞,V ) < ε; 0 < h < δ

which proves (34). It follows from this that

τhu→ u in Lp(0,+∞, X) when h→ 0

and, therefore, to prove (33) it is su�cient to prove that

(τhu)
′ → u′ in Lq(0,+∞, Y ) when h→ 0. (39)

However
(τhu)

′ = τhu
′ in D′(0,+∞, X). (40)

Indeed, let θ ∈ D(0,+∞). We have

⟨(τhu)′, θ⟩ = −⟨τhu, θ′⟩ = −
∫ +∞

0

u(t+ h)θ′(t) dt = −
∫ +∞

h

u(t)θ′(t− h) dt.

De�ning
ψ(t) = θ(t− h),

it follows that ψ ∈ D(h,+∞) since suppψ = h+supp(θ) and from the equality above we
can write

⟨(τhu)′, θ⟩ = −
∫ +∞

h

u(t)ψ′(t) dt =

∫ +∞

h

u′(t)ψ(t) dt

=

∫ +∞

h

u′(t)θ(t− h)dt =
∫ +∞

0

u′(t+ h)θ(t) dt = ⟨τhu′, θ⟩,

which proves (40). Thus, from (40) and (34), (39) is proved and consequently (33). The
next step is to show that for h > 0 �xed we can approximate (τhu) by functions of
D([0,+∞);X). Indeed, set for h > 0 �xed

ϕ(t) =

{
1, t ≥ −h

2

0, t ≤ −h
; 0 ≤ ϕ(t) ≤ 1, 0 ≤ ϕ′(t) ≤ 1 such that ϕ ∈ C∞(R)
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t

ϕ(t)

−h −h/2

1

0

Figure 9.1: Cuto� function ϕ(t)

cf. �gure below:
Consider now u ∈ W (0,+∞) and de�ne

v(t) =

{
ϕ(t)(τhu)(t); t ≥ −h
0; t < −h.

We claim that

v(t) = (τhu)(t) a.e. in ]0,+∞ [ and v ∈ W (−∞,+∞). (41)

Indeed, if t > 0 ≥ −h
2
then ϕ(t) = 1 and therefore v(t) = (τhu)(t). Now, from the

fact that |ϕ(t)| ≤ 1; ∀ t ∈ R, it follows that

||v||pLp(−∞,+∞,X) =

∫ +∞

−h

|ϕ(t)|p ||(τhu)(t)||pX dt ≤
∫ +∞

−h

||(τhu)(t)||pX dt

=

∫ +∞

−h

||u(t+ h)||pX dt =
∫ +∞

0

||u(s)||pX ds < +∞.

Furthermore, from the fact that

v′(t) =

{
ϕ′(t)(τhu)(t) + ϕ(t)(τhu

′)(t); t ≥ −h
0; t < −h

and, also, since ϕ′(t) = 0; ∀ t ≥ −h
2
, X ↪→ Y and |ϕ| ≤ 1, |ϕ′| ≤ 1, we have

||v′||qLq(−∞,+∞,Y ) ≤ c1

{∫ −h
2

−h

||(τhu)(t)||qX dt+
∫ +∞

−h

||(τhu′)(t)||qY dt
}

≤ c1

(∫ −h/2

−h

dt

)1/(p/q)′(∫ −h/2

−h

||(τhu)(t)||pX dt
)q/p

+ c1

∫ +∞

−h

||(τhu′)(t)||qY dt

≤ c1

[
h

2

] p−q
p
(∫ +∞

−h

||u(t+ h)||pX dt
)q/p

+ c1

∫ +∞

−h

||u′(t+ h)||qY dt

≤ c2(h)

{(∫ +∞

0

||u(s)||pX ds
)q/p

+

∫ +∞

0

||u′(s)||qY ds
}
< +∞

which proves (41). It results from the inequality above and from the 1st Case, the existence
of (vν) ⊂ D(−∞,+∞, X) such that:

vν → v in W (−∞,+∞)
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which implies that,

vν |[0,+∞) → v|[0,+∞) = τhu in W (0,+∞). (42)

From (42) and from the fact that vν |[0,+∞) ⊂ D([0,+∞);X) we have the desired
result.

3rd Case: a, b �nite

Let α, β : [a, b]→ R be such that

α, β ∈ D([a, b]); α(t) + β(t) = 1; ∀ t ∈ [a, b] (43)

α (resp. β) vanishes in a neighborhood of b (resp. a) (44)

according to the �gure below:

t
0

1

a b

α(t) β(t)

Figure 9.2: Partition of Unity on [a, b]

For all u ∈ W (a, b) we can write from (43) that

u = αu+ βu.

De�ne

α̃u =

{
(αu)(t); t ∈ [a, b]

0; t > b
and β̃u =

{
(βu)(t); t ∈ [a, b]

0; t < a.

We have
α̃u ∈ W (a,+∞) and β̃u ∈ W (−∞, b).

By the 2nd Case, there exist (αν) ⊂ D([a,+∞);X) and (βν) ⊂ D(]−∞, b];X) such
that

αν → α̃u in W (a,+∞) and βν → β̃u in W (−∞, b).

Therefore

αν |[a,b] → α̃u|[a,b] = αu and βν |[a,b] → β̃u|[a,b] = βu in W (a, b),

that is,
(αν + βν)|[a,b] → (αu+ βu) = u in W (a, b).

Since
(αν + βν)|[a,b] ∈ D([a, b];X)

we have proved the desired result.
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We will proceed next to the proof of the theorem.

Proof: From (1), (2) and (3), we have

V ⊂ V ⊂ H

which implies that

V(L2(Ω))2 ⊂ V
(L2(Ω))2 ⊂ H,

i.e.,

H = V
(L2(Ω))2

. (45)

It is not di�cult to prove, by virtue of the characterization given in (4) that

V
comp.
↪→ H. (46)

Consider, then, the operator A de�ned by the triple {V,H, (( · , · ))V }. As we know

D(A) = {v ∈ V ;∃ f ∈ H s.t. (f, v)H = ((u, v))V ;∀ v ∈ V }, f = Au.

Let u ∈ D(A). We have

(Au, v)H = ((u, v))V ; ∀ v ∈ V. (47)

Setting
Au = (ξ1, ξ2)

we have
2∑

i=1

(ξi, vi)L2(Ω) =
2∑

i=1

((ui, vi)).

In particular, taking v = φ ∈ V it follows that

2∑
i=1

⟨ξi, φi⟩D′(Ω),D(Ω) =
2∑

i=1

⟨−∆ui, φi⟩D′(Ω),D(Ω) .

Whence
⟨Au, φ⟩V ′,V = ⟨−∆u, φ⟩V ′,V

and, therefore,
Au = −∆u in V ′; ∀u ∈ D(A) (48)

where −∆u = (−∆u1,−∆u2).
On the other hand, according to the Spectral Theorem, we have the existence of a

sequence (ων)ν∈N formed by eigenfunctions of the operator A whose eigenvalues (λν)ν∈N
satisfy:

0 < λ1 ≤ λ2 ≤ · · · ≤ λν ·; λν → +∞ when ν → +∞.
Furthermore,

(ων) is a complete orthonormal system in H (49)(
ων

λ
1/2
ν

)
is a complete orthonormal system in V (50)(

ων

λν

)
is a complete orthonormal system in D(A). (51)



104 CHAPTER 9. NAVIER-STOKES SYSTEM

By virtue of (47), we have

(Aων , v)H = ((ων , v))V ; ∀ v ∈ V

i.e.,
λν(ων , v)H = ((ων , v))V ; ∀ v ∈ V. (52)

From (49) we can write that

u =
+∞∑
ν=1

(u, ων)ων ; ∀u ∈ H (53)

and

|u|2 =
+∞∑
ν=1

|(u, ων)|2; ∀u ∈ H. (54)

From (50) we have

v =
+∞∑
ν=1

((
u,

ων√
λν

))
V

ων√
λν

; ∀u ∈ V (55)

and from (52) it follows that

||v||2V =
+∞∑
ν=1

∣∣∣∣((u, ων√
λν

))
V

∣∣∣∣2 = +∞∑
ν=1

λν |(v, ων)H |2 ; ∀u ∈ V. (56)

It is worth recalling that the operator A admits an extension

Ã : V → V ′

u 7→ Ãu

de�ned by
⟨Ãu, v⟩V ′,V = ((u, v))V , ∀ v ∈ V ;

extension which is an isometric bijection, self-adjoint and therefore admits an isometric
inverse also self-adjoint

[Ã]−1 : V ′ → V.

We have, from the above, that if v ∈ V ′ then from (56)

||v||V ′ = ||A−1v||V =
+∞∑
ν=1

λν |(A−1v, ων)H |2 =
+∞∑
ν=1

λν |⟨v,A−1ων⟩|2

=
+∞∑
ν=1

λν

∣∣∣∣〈v, ων

λν

〉∣∣∣∣2 = +∞∑
ν=1

1

λν
|⟨v, ων⟩|2

that is,

||v||V ′ =
+∞∑
ν=1

1

λν
|⟨v, ων⟩V ′,V |2 . (57)

1a	 Step: Approximate System
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Consider the basis (ων)ν∈N, formed by the eigenfunctions of A, mentioned above.
Set

Vm = [ω1, ω2, . . . , ωm].

In Vm consider the approximate problem

um(t) ∈ Vm ⇔ um(t) =
m∑
i=1

gim(t)ωi (58)

(u′m(t), ωj) + ν((um(t), ωj)) + b(um(t), um(t), ωj) = ⟨f(t), ωj⟩V ′,V (59)

um(0) = u0m → u0 in H, (60)

which by Carathéodory has a local solution in some interval [0, tm).

2a	 Step: A Priori Estimates

• Estimate I

Composing (59) with um results that

1

2

d

dt
|um(t)|2 + ν||um(t)||2V + b(um(t), um(t), um(t)) = ⟨f(t), um(t)⟩.

However, from Lemma 2 we conclude that

b(um(t), um(t), um(t)) = 0.

Thus

1

2

d

dt
|um(t)|2 + ν||um(t)||2V ≤ ||f(t)||V ′ ||um(t)||V

=
1√
ν
||f(t)||V ′

√
ν||um(t)||V ≤

1

2ν
||f(t)||2V ′ +

ν

2
||um(t)||2V .

Whence
1

2

d

dt
|um(t)|2 +

ν

2
||um(t)||2V ≤

1

2ν
||f(t)||2V ′ .

Integrating from 0 to t, t ∈ [0, tm) results that

|um(t)|2 + ν

∫ t

0

||um(s)||2V ≤ |u0m|2 +
1

ν

∫ t

0

||f(t)||2V ′ dt. (61)

But from (60) it follows that

|u0m|2 ≤ c1 ; ∀m ∈ N. (62)

From (61) and (62) we obtain

|um(t)|2 + ν

∫ t

0

||um(s)||2V ds ≤ c1 +
1

ν
||f ||2L2(0,T ;V ′); ∀ t ∈ [0, tm), ∀m ∈ N. (63)

From the inequality above it follows that we can extend um to the whole interval
[0, T ] with um absolutely continuous and u′m existing almost everywhere. Furthermore,
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as proved in other problems we have that the classical and distributional derivative of um
coincide and,

u′m ∈ L2(0, T ;H), ∀m ∈ N. (64)

Now from (63) we have that

(um) is bounded in L∞(0, T ;H) (65)

(um) is bounded in L2(0, T ;V ) (66)

• Estimate II

Identifying H with its dual H ′ we have from (59)

⟨u′m(t), ωj⟩V ′,V + ν⟨Ãum(t), ωj⟩V ′,V + ⟨B(um(t), um(t)), ωj⟩V ′,V

= ⟨f(t), ωj⟩V ′,V , j = 1, 2, . . . ,m.

Setting for each m ∈ N

hm(t) = f(t)− νÃum(t)−B(um(t), um(t)) ∈ V ′ (67)

we have
⟨hm(t), ωj⟩V ′,V = ⟨u′m(t), ωj⟩; j = 1, 2, . . .m and ∀m ∈ N.

Thus
m∑
j=1

1

λj
|⟨hm(t), ωj⟩V ′,V |2 =

m∑
j=1

1

λj
|⟨u′m(t), ωj⟩V ′,V |2

=
m∑
j=1

1

λj
|(u′m(t), ωj)|2; ∀m ∈ N.

Since
(u′m(t), ωj) = 0 if j ≥ m+ 1

we obtain from (57)

||u′m(t)||2V ′ =
+∞∑
j=1

1

λj
|⟨u′m(t), ωj⟩|2 =

+∞∑
j=1

1

λj
|(u′m(t), ωj)|2

=
m∑
j=1

1

λj
|(u′m(t), ωj)|2 =

m∑
j=1

1

λj
|⟨hm(t), ωj⟩|2

≤
+∞∑
j=1

1

λj
|⟨hm(t), ωj⟩|2 = ||hm(t)||2V ′

that is,
||u′m(t)||2V ′ ≤ ||hm(t)||2V ′ ; ∀m ∈ N. (68)

On the other hand, from (67) and (21') it results that

||hm(t)||V ′

≤ ||f(t)||V ′ + ν||Ãum(t)||V ′ + ||B(um(t), um(t))||V ′

(19)

≤ ||f(t)||V ′ + ν||um(t)||V + c1||um(t)||1/2V ||um(t)||
1/2
V

≤ ||f(t)||V ′ + (ν + c1)||um(t)||V .



107

It follows from the inequality above that

||hm(t)||2V ′ ≤ c2{||f(t)||2V ′ + ||um(t)||2V }.

Integrating from 0 to T∫ T

0

||hm(t)||2V ′ dt ≤ c2

{∫ T

0

||f(t)||2V ′ dt+

∫ T

0

||um(t)||2V dt
}
; ∀m ∈ N (69)

and from (66) it follows that

(hm) is bounded in L2(0, T ;V ′). (70)

From (68) and (69) we obtain∫ T

0

||u′m(t)||2V ′ dt ≤
∫ T

0

||hm(t)||2V ′ dt < c; ∀m ∈ N.

Whence
(u′m) is bounded in L2(0, T ;V ′). (71)

3a	 Step: Passage to the Limit

From (65), (66) and (71) we obtain the existence of a subsequence (uν) of (um)
such that

uν
∗
⇀ u in L∞(0, T ;H) (72)

uν ⇀ u in L2(0, T ;V ) (73)

u′ν ⇀ u′ in L2(0, T ;V ′). (74)

Let θ ∈ D(0, T ) and consider j ∈ N. Multiplying (59) by θ and integrating in [0, T ],
we obtain for ν ≥ j that∫ T

0

⟨u′m(t), ωj⟩V ′,V θ(t) dt+ ν

∫ T

0

((um(t), ωj))V θ(t) dt

+

∫ T

0

b(um(t), um(t), ωj)θ(t) dt =

∫ T

0

⟨f(t), ωj⟩V ′,V θ(t) dt.

(75)

The convergences in (73) and (74) are su�cient to pass to the limit in the linear
part. Let's see the nonlinear part.

By Lemma 2 we have that

b(uν(t), uν(t), ωj) = −b(uν(t), ωj, uν(t)) = −
2∑

i,k=1

∫
Ω

uν,i(t)
∂ωjk

∂xi
uν,k dx.

Identifying H ≡ H ′ we have

V
comp.
↪→ H ≡ H ′ ↪→ V ′.

19Note that Ã : V → V ′ is an isometry.
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Now, from (66) and (71) it follows that

(um) is bounded in W = {ω | ω ∈ L2(0, T ;V ); , ω′ ∈ L2(0, T ;V ′)}.

By the Aubin-Lions Theorem there will exist a subsequence of (uν) which we will
still denote by (uν) such that

uν → u strongly in L2(0, T ;H). (76)

Therefore

uν,i → ui strongly in L2(0, T ;L2(Ω)) = L2(Q), i = 1, 2

which implies that

uν,i uν,k → ui uk a.e. in Q; i, k = 1, 2. (77)

We claim that
(uν,i uν,k) is bounded in L2(Q). (78)

Indeed, by Schwarz, by Lemma 3 and by the fact that H1
0 (Ω) ↪→ L4(Ω) we have

for i, k = 1, 2 ∫
Ω

|uν,i uν,k|2 dx =

∫
Ω

|uν,i|2 |uν,k|2 dx

≤
(∫

Ω

|uν,i|4 dx
)1/2(∫

Ω

|uν,k|4 dx
)1/2

= ||uν,i||2L4(Ω) ||uν,k||2L4(Ω)

≤
(√

2|uν,i|L2(Ω) ||uν,i||H1
0 (Ω)

)(√
2|uν,k|L2(Ω) ||uν,k||H1

0 (Ω)

)
= 2|uν,i|L2(Ω) |uν,k|L2(Ω) ||uν,i||H1

0 (Ω) ||uν,k||H1
0 (Ω) .

(79)

It follows from (65) and (79) that ∃ c1 > 0 such that∫
Ω

|uν,i uν,k|2 dx ≤ 2c1||uν,i||H1
0 (Ω) ||uν,k||H1

0 (Ω) .

Integrating from 0 to T , we obtain∫ T

0

∫
Ω

|uν,i uν,k|2 dxdt ≤ c1

{∫ T

0

||uν,i(t)||2H1
0 (Ω) dt+

∫ T

0

||uν,k(t)||2H1
0 (Ω) dt

}
≤ c2

where such boundedness comes from the fact that (uν) is bounded in V (cf. (66)) and,
therefore, each component is bounded in L2(0, T ;H1

0 (Ω)), which proves the assertion in
(78).

Thus, from (77) and (78) it follows by Lions' Lemma that

uν,i uν,k ⇀ uk ui in L2(Q), i, k = 1.2.

It follows from the convergence above and from the fact that
∂ωj,k

∂xi
∈ L2(Ω) that∫

Ω

uν,i
∂ωj,k

∂xi
uν,k dx→

∫
Ω

ui
∂ωj

∂xi
uk , dx i, k = 1, 2. (80)
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Thus, from (73), (74), (75) and (80), in the limit situation, we obtain∫ T

0

⟨u′(t), ωj⟩V ′,V θ(t) dt+ ν

∫ T

0

((u(t), ωj))V θ(t) dt

+

∫ T

0

b(u(t), u(t), ωj)θ(t) dt =

∫ T

0

⟨f(t), ωj⟩V ′,V θ(t) dt, ∀ j ∈ N
(81)

and by the totality of the ω
′s
j in V it follows that the identity in (81) is valid for all v ∈ V .

Whence 〈∫ T

0

u′θ dt, v

〉
V ′,V

+ ν

〈∫ T

0

Ãu θ dt, v

〉
V ′,V

+

〈∫ T

0

B(u, u)θ dt, v

〉
V ′,V

(20)
=

〈∫ T

0

fθ dt, v

〉
V ′,V

, ∀ v ∈ V,
(82)

which implies that

u′ + νÃu+B(u, u) = f in D′(0, T ;V ′) (83)

or even, given the regularity of the functions involved

u′ + νÃu+B(u, u) = f in L2(0, T ;V ′). (84)

Before proceeding to the next steps, consider the following result

Lemma 6: Let u, v ∈ W (0, T ) = {u;u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;V ′)}. Then

d

dt
(u(t), v(t)) = ⟨u′(t), v(t)⟩V ′,V + ⟨u(t), v′(t)⟩V,V ′ in L1(0, T )

where
d

dt
is taken in the sense of D′(0, T ).

Proof: By Lemma 5, there exist (uν), (vν) ⊂ D([0, T ];V ) such that

uν → u in L2(0, T ;V ) and u′ν → u′ in L2(0, T ;V ′) (85)

vν → v in L2(0, T ;V ) and v′ν → v′ in L2(0, T ;V ′) (86)

Now, for each ν ∈ N, we have by virtue of the regularity of the uν 's and vν 's:

d

dt
(uν(t), vν(t)) = ⟨u′ν(t), vν(t)⟩+ ⟨uν(t), v′ν(t)⟩. (87)

Now from (85) and (86) we have

(uν(t), vν(t))→ (u(t), v(t)) in L1(0, T ) (88)

⟨u′ν(t), vν(t)⟩ → ⟨u′(t), v(t))⟩ in L1(0, T ) (89)

⟨uν(t), v′ν(t)⟩ → ⟨u(t), v′(t)⟩ in L1(0, T ). (90)

From (88) it follows that

d

dt
(uν(t), vν(t))→

d

dt
(u(t), v(t)) in D′(0, T ) (91)

20Follows from Lemma 4.
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and from (89) and (90) we have

⟨u′ν(t), vν(t)⟩+ ⟨uν(t), v′ν(t)⟩ → ⟨u′(t), v(t)⟩+ ⟨u(t), v′(t)⟩ in L1(0, T ). (92)

Finally from (87), (91), (92) and by the uniqueness of the limit in D′(0, T ) we have
the desired result.

4a	 Step: Initial Condition

Initially, note that by the fact that

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and u′ ∈ L2(0, T ;V ′)

then
u ∈ C0([0, T ];V ′) ∩ Cs(0, T ;V )

making sense therefore to calculate u(0) and u(T ). We will prove that

u(0) = u0 . (93)

Indeed, let θ ∈ C1([0, T ]) such that θ(0) = 1 and θ(T ) = 0. From (73) in particular
for θ′ωj ∈ L1(0, T ;H), we have∫ T

0

(uν(t), ωj)θ
′(t) dt→

∫ T

0

(u(t), ωj)θ
′(t) dt. (94)

By Lemma 6

d

dt
(u(t), ωjθ) = ⟨u′(t), ωj θ(t)⟩+ ⟨u(t), ωj θ

′(t)⟩.

Integrating the equality above from 0 to T , we obtain

−(u(0), ωj) =

∫ T

0

⟨u′(t), ωj⟩θ(t) dt+
∫ T

0

(u(t), ωj)θ
′(t) dt. (95)

Analogously

−(u0ν , ωj) =

∫ T

0

⟨u′ν(t), ωj⟩θ(t) dt+
∫ T

0

(uν(t), ωj)θ
′(t) dt. (96)

From (94), (95) and (96) we conclude that

−(u0ν , ωj)−
∫ T

0

⟨u′ν(t), ωj⟩θ(t) dt→ (u(0), ωj)−
∫ T

0

⟨u′(t), ωj)θ(t) dt. (97)

But from (74) it follows that∫ T

0

⟨u′ν(t), ωj⟩θ(t) dt→
∫ T

0

⟨u′(t), ωj⟩θ(t) dt

and from (97) it follows

(u0,ν , ωj)→ (u(0), ωj), ∀ j ∈ N.
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By the totality of the ωj's in H we conclude that

(u0ν , v)→ (u(0), v), ∀ v ∈ H. (98)

On the other hand, from (60) we obtain

(u0ν , v)→ (u0, v), ∀ v ∈ H. (99)

From (98) and (99) the desired result follows in (93).
5a	 Step: Uniqueness

Let u and v be solutions of the system in question. Then ω = u− v satis�es∣∣∣∣∣∣∣
ω′ + νÃω +B(u, u)−B(u, v) = 0 in L2(0, T ;V ′)

ω = 0 on Σ

ω(0) = 0

(100)

Composing (100)1 with ω(t) we obtain

⟨ω′(t), ω(t)⟩V ′,V + ν((ω(t), ω(t)))V = b(v(t), v(t), ω(t))− b(u(t), u(t), ω(t)). (101)

However,

b(v(t), v(t), ω(t))− b(u(t), u(t), ω(t))
= b(v(t), v(t), u(t)− v(t))− b(u(t), u(t), u(t)− v(t))

= b(v(t), v(t), u(t))−
=0︷ ︸︸ ︷

b(v(t), v(t), v(t))−
=0︷ ︸︸ ︷

b(u(t), u(t), u(t))+b(u(t), u(t), v(t))

= b(v(t), v(t), u(t))− b(u(t), v(t), u(t))
= b(v(t)− u(t), v(t), u(t)) = b(−ω(t), v(t), u(t))
= b(−ω(t), v(t), u(t)− v(t) + v(t)) = b(−ω(t), v(t), ω(t) + v(t))

= b(−ω(t), v(t), ω(t)) + b(−ω(t), v(t), v(t))︸ ︷︷ ︸
=0

,

that is,
b(v(t), v(t), ω(t))− b(u(t), u(t), ω(t)) = −b(ω(t), v(t), ω(t)). (102)

From (101), (102) and Lemma 6 we obtain

1

2

d

dt
|ω(t)|2H + ν||ω(t)||2V ≤ ||ω(t)||(L4(Ω))2 ||v(t)||V ||ω(t)||(L4(Ω))2 . (103)

However, by Lemma 3

||ωi(t)||2L4(Ω) ≤
√
2||ωi(t)||H1

0 (Ω) |ωi(t)|L2(Ω); i = 1, 2.

Thus

||ω(t)||2(L4(Ω))2 =
2∑

i=1

||ωi(t)||2L4(Ω) ≤
√
2

2∑
i=1

||ωi(t)||H1
0 (Ω) |ωi(t)|L2(Ω)

≤
√
2

{( 2∑
i=1

||ωi(t)||2H1
0 (Ω)︸ ︷︷ ︸

||ω(t)||V

)1/2( 2∑
i=1

|ωi(t)|2L2(Ω)︸ ︷︷ ︸
|ω(t)|H

)1/2}
=
√
2||ω(t)||V |ω(t)|H ,
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that is,

||ω(t)||2(L4(Ω))2 ≤
√
2||ω(t)||V |ω(t)|H . (104)

Thus, from (103) and (104) we arrive at

1

2

d

dt
|ω(t)|2H + ν||ω(t)||2V ≤

√
2||ω(t)||V |ω(t)|H ||v(t)||V

=
√
2

√
ν√
2
||ω(t)||V

√
2√
ν
|ω(t)|H ||v(t)||V ≤ ν||ω(t)||2V +

2

ν
|ω(t)|2H ||v(t)||2V .

Therefore

1

2

d

dt
|ω(t)|2H ≤

2

ν
|ω(t)|2H ||v(t)||2V .

Integrating the inequality above, we obtain

|ω(t)|2H ≤
4

ν

∫ t

0

|ω(s)|2H︸ ︷︷ ︸
L∞(0,T )

||v(s)||2V︸ ︷︷ ︸
L2(0,T )

ds.

Thus, by the Gronwall-Bellman Lemma, it follows that

|ω(t)|2H = 0; ∀ t ∈ [0, T ]

which implies that

ω = 0

and consequently that u = v.
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Recovery of Pressure

In what follows we will consider two results that can be found in R. Teman [13].

Lemma 7: Let Ω ⊂ Rn be an open set and consider T = (T1, . . . , Tn) where Ti ∈ D′(Ω),
∀ i = 1, . . . , n. Then

⟨T, ϕ⟩(D′(Ω))n,(D(Ω))n = 0, ∀ϕ ∈ V ⇔ ∃ p ∈ D′(Ω) such that T = ∇p in D′(Ω).

We also have

Lemma 8: Let Ω ⊂ Rn be a Lipschitz open set.

(i) If a distribution p possesses all �rst partial derivatives
∂p

∂xi
∈ L2(Ω) then p ∈

L2(Ω) and furthermore,

||p||L2(Ω)/Rn ≤ c(Ω) |∇p|L2(Ω).
(21).

(ii) If a distribution p possesses all �rst partial derivatives
∂p

∂xi
∈ H−1(Ω) then

p ∈ L2(Ω) and, furthermore,

||p||L2(Ω)/R ≤ c|∇p|H−1(Ω) .

Remark: It follows from Lemmas 7 and 8 that if T ∈ (H−1(Ω))n and ⟨T, ϕ⟩ = 0 for all
ϕ ∈ V then T = ∇p, with p ∈ L2(Ω).

It follows from (84) that

u′(t) + νÃu(t) +B(u(t), u(t)) = f(t) in V ′ a.e. in ]0, T [ . (105)

Let us set:

U(t) =

∫ t

0

u(s) ds, F (t) =

∫ t

0

f(s) ds and β(t) =

∫ t

0

B(u(s), u(s)) ds ∈ V ′.

Since u, f, B(u, u) ∈ L2(0, T ;V ′) then

U, F and β ∈ C0([0, T ], V ′) (in fact they are absolutely continuous). (106)

Integrating (105), we obtain by virtue of (106) that

u(t)− u(0) + ν

∫ t

0

Ãu(s) ds+

∫ t

0

B(u(s), u(s)) ds =

∫ t

0

f(s) ds in V ′.

Thus:
u(t)− u0 + νÃU(t) + β(t) = F (t) in V ′; ∀ t ∈ [0, T ].

Therefore, for all ϕ ∈ V ⊂ V we have

⟨u(t)− u0 + νÃU(t) + β(t)− F (t), ϕ⟩V ′,V = 0. (107)

21It is worth remembering that L2(Ω)/Rn is isomorphic (Ω bounded) to the subspace orthogonal to
the constants L2(Ω)/R = {p ∈ L2(Ω);

∫
Ω
p(x) dx = 0}.
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Let us de�ne

S(t) = u(t)− u0 + νÃU(t) + β(t)− F (t) ∈ V ′. (108)

From the fact that V is a closed subspace of (H1
0 (Ω))

2 we can, thanks to the Hahn-
Banach Theorem, and for each t ∈ [0, T ] extend S(t) to a functional T (t) ∈ (H−1(Ω))2

such that
⟨T (t), v⟩(H−1(Ω))n,(H1

0 (Ω))n = ⟨S(t), v⟩V ′,V ; ∀ v ∈ V. (109)

But from (107) and (109) we conclude that

⟨T (t), ϕ⟩(H−1(Ω))2,(H1
0 (Ω))2 = 0, ∀ϕ ∈ V .

By the remark after Lemma 8 it follows that ∃P (t) ∈ L2(Ω) satisfying

T (t) = ∇P (t) in (H−1(Ω))n. (110)

Thus, from (109) and (110) we obtain

∇P (t)|V ≡ S(t) in V ′, ∀ t ∈ [0, T ]. (111)

Substituting (111) in (108) it follows that

u(t)− u0 + νÃU(t) + β(t)− F (t) = ∇P (t) in V ′; ∀ t ∈ [0, T ].

Since the expression on the left of the equality above belongs to C0([0, T ], V ′) we
have that ∇P ∈ C0([0, T ], V ′) and, therefore, we can di�erentiate the equation above
distributionally obtaining

u′ + νÃu− f +B(u, u) = ∇ ∂P

∂t
in L2(0, T ;V ′).

Consequently the equality above occurs a.e. in ]0, T [ . Setting

p(x, t) = −∂P
∂t

(x, t)

it results that
u′ + νÃu− f +B(u, u) = −∇p in L2(0, T ;V ′),

that is,
u′ + νÃu+B(u, u) = f −∇p in L2(0, T ;V ′).



Chapter 10

Periodic Solutions of the Navier-Stokes
System

Let Ω ⊂ R2 be a bounded open set with su�ciently smooth boundary.

Problem 11

Problem 11 ∣∣∣∣∣∣∣∣∣∣∣∣

∂u

∂t
− ν∆u+

m∑
j=1

uj
∂u

∂xj
+∇p = f in Q

div u = 0 in Q

u = 0 on Σ

u(x, 0) = u(x, T ), x ∈ Ω,

(1)

where
f ∈ L2(0, T ;V ′), (2)

admits a weak solution u : Q→ R in the class

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), u′ ∈ L2(0, T ;V ′). (3)

More precisely

⟨u′(t), v⟩V ′,V + ν((u(t), v))V + b(u(t), u(t), v)

= ⟨f(t), v⟩ in D′(0, T ), ∀ v ∈ V
(4)

u(0) = u(T ). (5)

Proof:

1a	 Step: Approximate Solution

Let (ων)ν∈N be the basis formed by the eigenfunctions of the operator

A← {V,H; (( · , · ))V }

as we saw in Problem 10. Set
Vm = [ω1, . . . , ωm]
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and in Vm consider the approximate problem

um(t) ∈ Vm ⇔ um(t) =
m∑
i=1

gim(t)ωi (6)

(u′m(t), ωj) + ν((um(t), ωj)) + b(um(t), um(t), ωj) = ⟨f(t), ωj⟩; j = 1, . . . ,m (7)

um(0) = v ∈ Vm. (8)

Evidently the approximate system above possesses a global solution(22) (which de-
pends on v), whatever v ∈ Vm is. Our goal is to show that among all the solutions of the
approximate equation there exists a solution um (at least) that satis�es the periodicity

um(0) = um(T ).

For this, it is su�cient to prove that for each m ∈ N, the map

τm : Vm → Vm

v 7→ τm(v) = um(T )
(9)

possesses a unique �xed point, because, in this case, there will exist a unique function
v ∈ Vm such that

um(T ) = τm(v) = v = um(0), ∀m ∈ N. (10)

Thus from (10) we have a sequence (um) of approximate solutions such that all um
satisfy the periodicity condition.

Lemma 1: There exists ρ0 > 0 such that τm(Bρ0(0)) ⊂ Bρ0(0).

Proof: Using in Vm the topology induced by H it is su�cient to prove that

∃ ρ0 > 0 such that |τm(v)|H ≤ ρ0 ; ∀ v ∈ Vm with |v|H ≤ ρ0 . (11)

Indeed, composing (7) with um(t) we obtain

1

2

d

dt
|um(t)|2H + ν||um(t)||2V +

=0︷ ︸︸ ︷
b(um(t), um(t), um(t)) = ⟨f(t), um(t)⟩V ′,V

≤ ||f(t)||V ′ ||um(t)||V =
1√
ν
||f(t)||V ′

√
ν||um(t)||V .

Whence

1

2

d

dt
|um(t)|2 + ν||um(t)||2 ≤

1

2ν
||f(t)||2V ′ +

ν

2
||um(t)||2,

that is,
1

2

d

dt
|um(t)|2 +

ν

2
||um(t)||2 ≤

1

2ν
||f(t)||2V ′ . (12)

22Note that: |um(t)|2 +
∫ t

0
||um(s)||2ds ≤ |v|2 + 1

ν
||f ||L2(0,T ;V ′) ≤ c(m). Since m is �xed we can extend

um(t) to the whole interval [0, T ].
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Now, since V ↪→ H; ∃ c0 > 0 such that

c20|um(t)|2 ≤ ||um(t)||2. (13)

Therefore from (12) and (13) we arrive at

d

dt
|um(t)|2 + c20 ν|um(t)|2 ≤

1

ν
||f(t)||2V ′ .

Multiplying both sides of the inequality above by ec
2
0νt it follows that

d

dt

(
|um(t)|2 ec

2
0νt
)
≤ 1

ν
||f(t)||2V ′ ec

2
0νt .

Integrating from 0 to T , it follows that

|um(T )|2 ec
2
0νT ≤ |um(0)|2 +

1

ν

∫ T

0

(
||f(t)||2V ′ ec

2
0νt
)
dt,

which implies that

|um(T )|2 ≤ e−c20νT |um(0)|2 +
1

ν
e−c20νT ec

2
0νT

∫ T

0

||f(t)||2V ′ dt,

that is,

|um(T )|2 ≤ e−c20νT |um(0)|2 +
1

ν
||f ||2L2(0,T ;V ′) . (14)

Denoting

θ = e−c20νT and c =
1

ν
||f ||2L2(0,T ;V ′)

from (14) we can write
|um(T )|2 ≤ θ|um(0)|2 + c,

or even,
|τm(v)|2 ≤ θ|v|2 + c, ∀ v ∈ Vm .

Now since 0 < θ < 1 then 0 < 1 − θ < 1. In this way ∃ ρ0 > 0, su�ciently large
such that c < (1− θ)ρ20 . Thus, if |v| < ρ0 then

θ|v|2L2(Ω) + c ≤ θ ρ20 + (1− θ)ρ20 = ρ20 .

Whence
|τm(v)|2 ≤ ρ20 ; ∀m ∈ N

which proves the desired result.

Lemma 2: The map τm : Vm → Vm de�ned in (9) is continuous.

Proof: Let v1, v2 ∈ Vm and u1m and u2m be the solutions of the approximate problem with
initial data v1 and v2 , respectively. Then, from (7) we have

((u1m)
′(t), ωj) + ν((u1m(t), ωj)) + b(u1m(t), u

2
m(t), ωj) = ⟨f(t), ωj⟩

((u2m)
′(t), ωj) + ν((u2m(t), ωj)) + b(u2m(t), u

2
m(t), ωj) = ⟨f(t), ωj⟩.
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Considering Wm(t) = u1m(t)− u2m(t) then subtracting one equation from the other
results that

(W ′
m(t), ωj)H + ν((Wm(t), ωj))j + b(u1m(t), u

1
m(t), ωj)− b(u2m(t), u2m(t), ωj) = 0.

In particular

1

2

d

dt
|Wm(t)|2H + ν||Wm(t)||2V + b(u1m(t), u

1
m(t),Wm(t))

− b(u2m(t), u2m(t),Wm(t)) = 0.
(15)

However, as we saw in the uniqueness of Problem 10

b(u1m(t), u
1
m(t),Wm(t))− b(u2m(t), u2m(t),Wm(t)) = −b(Wm(t), u

1
m(t),Wm(t)). (16)

Thus, substituting (16) in (11) we obtain

1

2

d

dt
|Wm(t)|2H + ν||Wm(t)||2V ≤ |b(Wm(t), u

1
m(t),Wm(t))|

≤ ||Wm(t)||(L4(Ω))2 ||u1m(t)||V ||Wm(t)||(L4(Ω))2

= ||Wm(t)||2(L4(Ω))2 ||u1m(t)||V .

(17)

But, by Lemma 3 of the preceding section and by numerical Hölder

||Wm(t)||2(L4(Ω))2 =
2∑

i=1

||Wm,i||2L4(Ω) ≤
√
2

2∑
i=1

||Wm,i||H1
0 (Ω) |Wm,i|L2(Ω)

≤
√
2

( 2∑
i=1

||Wm,i||2H1
0 (Ω)

)1/2( 2∑
i=1

|Wm,i|2L2(Ω)

)1/2

=
√
2||Wm||V |Wm|H .

(18)

From (17) and (18) we obtain

1

2

d

dt
|Wm(t)|2H + ν||Wm(t)||2V ≤

√
2||Wm(t)||V |Wm(t)|H ||u1m(t)||V

=
√
2
√
ν||Wm(t)||V

1√
ν
|Wm(t)|H ||u1m(t)||V

≤ ν||Wm(t)||2V +
1

2ν
|Wm(t)|2H ||u1m(t)||2V .

Whence
1

2

d

dt
|Wm(t)|2H ≤

1

2ν
|Wm(t)|2H ||u2m(t)||2V

and, therefore,
d

dt
|Wm(t)|2H −

1

ν
|Wm(t)|2H ||u1m(t)||2V ≤ 0.

De�ning

θm(t) =
1

ν
||u1m(t)||2V ∈ L1(0, T )

we obtain
d

dt
|Wm(t)|2H − θm(t)|Wm(t)|2H ≤ 0.
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Multiplying both sides of the inequality above by e−
∫ t
0 θm(s)ds it follows that

d

dt

(
|Wm(t)|2H e−

∫ t
0 θm(s)ds

)
≤ 0.

Integrating the inequality above from 0 to T results that

|Wm(T )|2H e−
∫ T
0 θm(s)ds − |Wm(0)|2H ≤ 0.

that is,
|Wm(T )|2H ≤ e

∫ T
0 θm(s)ds |Wm(0)|2H . (19)

Denoting
cm = e

∫ T
0 θm(s)ds

from (19) we obtain

|u1m(T )− u2m(T )|2H ≤ cm|u1m(0)− u2m(0)|H ,

or even,
|τm(v1)− τm(v2)|H ≤ cm|v1 − v2|

which concludes the proof.

It results from Lemmas 1 and 2 by virtue of Brouwer's Theorem that the map
τm : Bρ0(0)→ Bρ0(0) admits a �xed point, that is, ∃ v ∈ Bρ0(0) such that τm(v) = v, that
is, uvm(0) = uvm(T ).

Then, for eachm ∈ N, ∃um : [0, T ]→ Vm such that um(0) ∈ Bρ0(0), i.e., |um(0)| ≤
ρ0 and ∣∣∣∣∣(u′m(t), ωj) + ((um(t), ωj)) + b(um(t), um(t), ωj) = ⟨f(t), ωj⟩, j = 1, . . . ,m

um(0) = um(T ).

From the fact that um(0) ∈ Bρ0(0) we can repeat the estimates obtaining a subse-
quence (uν) of (um) such that

uν
∗
⇀ u in L∞(0, T ;H)

uν ⇀ u in L2(0, T ;V )

u′ν ⇀ u′ in L2(0, T ;V ′)

From the convergences above it results, by passage to the limit in the approximate
equation, the desired result in (4). In a manner analogous to the proof of the initial
condition in the previous case, we prove (5). This concludes the problem.
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Chapter 11

Navier-Stokes System (Stationary
Case)

Problem 12

Problem 12 given by ∣∣∣∣∣∣∣∣∣∣
− ν∆u+

2∑
j=1

∂u

∂xj
uj = f −∇p in Ω

div u = 0 in Ω

u = 0 on Γ,

(1)

where
f ∈ V ′ (2)

possesses at least one weak solution in the class

u ∈ V. (3)

Proof: Let (ων)ν∈N be a basis of eigenfunctions of the operator

A↔ {V,H, (( · , · ))V }

according to previous problems. Set

Vm = [ω1, . . . , ωm].

In Vm consider the approximate problem

um ∈ Vm ⇔ um =
m∑
i=1

ξiωi (4)

ν((um, ωj))V + b(um, um, ωj) = ⟨f, ωj⟩V,V ′ ; j = 1, 2, . . . ,m. (5)

Substituting (4) in (5) results that

ν
m∑
i=1

ξi((ωi, ωj)) + b

( m∑
i=1

ξiωi,
m∑
i=1

ξiωi, ωj

)
= ⟨f, ωj⟩, ∀ j = 1, . . . ,m
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that is,

ν ξjλj + b

( m∑
i=1

ξiωi,

m∑
i=1

ξiωi, ωj

)
= ⟨f, ωj⟩, ∀ j = 1, . . . ,m.

De�ne, for each j,

ηj = ν ξjλj + b

( m∑
i=1

ξiωi,

m∑
i=1

ξiωi, ωj

)
− ⟨f, ωj⟩

and consider the map

P : Rm → Rm

ξ = (ξ1, . . . , ξm) 7→ P (ξ) = η = (η1, . . . , ηm)

which is clearly continuous by virtue of the continuity of the trilinear form

b(u, v, ω) : V × V × V → R.

We will prove, next, that

∃ ρ0 > 0 such that (Pξ, ξ)Rm ≥ 0, ∀ ξ ∈ Rm with ||ξ|| = ρ0 . (6)

Indeed, we have:

(Pξ, ξ) = (η, ξ) =
m∑
j=1

ηjξj

=
m∑
j=1

(νλjξj + b(um, um, ωj)− ⟨f, ωj⟩)ξj

=
m∑
j=1

νλjξ
2
j + b

(
um, um,

m∑
j=1

ξjωj

)
−
〈
f,

m∑
j=1

ξjωj

〉

=
m∑
j=1

νλjξ
2
j + b(um, um, um)︸ ︷︷ ︸

=0

−⟨f, um⟩.

(7)

Recall that

||um||2V = ((um, um)) =

(( m∑
j=1

ξjωj,

m∑
i=1

ξiωi

))
=

m∑
j=1

ξ2jλj . (8)

Thus, from (7) and (8) we conclude that

(Pξ, ξ) ≥ ν||um||2V − ||f ||V ′ ||um||V . (9)

We have two cases to consider:
(i) If ||um|| = 0 then from (9) it follows that (Pξ, ξ) ≥ 0 which proves the desired

in (6) whatever ρ > 0 is.

(ii) If ||um|| ̸= 0 then (Pξ, ξ) ≥ 0 provided that ||um||V ≥
1

ν
||f ||V ′ = c1. We will

prove that ∃ ρ0 > 0 such that ∀ ξ ∈ Rm with ||ξ|| = ρ0 then ||um||V ≥ c1. Indeed, setting

βm = min{λ1, . . . , λm}
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from (8) it follows that

||um||2V =
m∑
j=1

ξ2jλj ≥ βm

( 2∑
j=1

ξ2j

)
= βm||ξ||2.

Therefore, if ρ0 > 0 is such that ρ0 > c1/
√
βm then ∀ ξ ∈ Rm with ||ξ||Rm = ρ0 we

have

||um||2V ≥ βmρ
2
0 > βm

c21
βm

= c21

which proves the desired and consequently (6). It results from there, by virtue of Visik's
acute angle lemma, that ∃ ξ0 ∈ Bρ0(0) such that P (ξ0) = 0, that is, the system (4) and
(5) possesses a solution.

Composing (5) with um results that

ν||um||2V + b(um, um, um)︸ ︷︷ ︸
=0

= ⟨f, um⟩

≤ 1√
ν
||f ||V ′

√
ν||um|| ≤

1

2ν
||f ||2V ′ +

ν

2
||um||2,

which implies that
ν

2
||um||2V ≤

1

2ν
||f ||2V ′ ; ∀m ∈ N.

Thus
(um) is bounded in V (10)

and therefore, there exists a subsequence (uν) of (um) such that

uν ⇀ u weakly in V. (11)

Also, from (10) and the fact that V
comp.
↪→ H we have the existence of a subsequence

of (uν), which we will still denote by the same notation, such that

uν → u in H. (12)

It follows from (12) that

uν,i uν,k → ui uk a.e. in Ω, i, k = 1, 2. (13)

However, from Lemma 3 of the previous section∫
Ω

|uν,i uν,k|2 dx ≤
(∫

Ω

|uν,i|4 dx
)1/2(∫

Ω

|uν,k|4 dx
)1/2

≤ ||uν,i||2L4(Ω) ||uν,k||2L4(Ω)

≤ 2||uν,i||H1
0 (Ω) |uν,i|L2(Ω) ||uν,k||H1

0 (Ω) |uν,k|L2(Ω)

≤ 2||uν ||2V |uν |2H .

(14)

Now from (10), (12) and (14) we obtain∫
Ω

|uν,i uν,k|2 dx ≤ c; ∀ ν ∈ N, ∀ i, k = 1, 2. (15)
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From (13) and (15), by Lions' Lemma, it follows that

uν,i uν,k ⇀ ui uk weakly in L2(Ω), i, k = 1, 2. (16)

It results from (16) and the fact that
∂ωj

∂xi
∈ L2(Ω) that

2∑
i,k=1

∫
Ω

uν,i
∂ωj,k

∂xi
uν,k dx→

2∑
i,k=1

∫
Ω

ui
∂ωj,k

∂xi
uk dx. (17)

But
b(uν , uν , ωj) = −b(uν , ωj, uν),

b(u, u, ωj) = −b(u, ωj, u).
(18)

From (17), (18) and the continuity of b(u, v, ω) it follows that

b(uν , uν , ωj)→ b(u, u, ωj). (19)

Let j ∈ N and consider ν ≥ j. Then, from (5), (11) and (19) we obtain, in the
limit situation

ν((u, ωj))V + b(u, u, ωj) = ⟨f, ωj⟩V ′,V ; ∀ j ∈ N.

By the totality of the ωj's in V we conclude that

ν((u, v))V + b(u, u, v) = ⟨f, v⟩V ′,V ; ∀ v ∈ V, (20)

or even
ν⟨Ãu, v⟩V ′,V + ⟨B(u, u), v⟩V ′,V = ⟨f, v⟩V ′,V ; ∀ v ∈ V,

which implies that
νÃu+B(u, u) = f in V ′. (21)

Pressure Recovery:
De�ne:

S = νÃu+B(u, u)− f in V ′. (22)

Since S ∈ V ′ and V is a closed subspace of (H1
0 (Ω))

2 we have, by virtue of the
Hahn-Banach Theorem the existence of T ∈ (H−1(Ω))2 such that

⟨T, φ⟩(H−1(Ω))2,(H1
0 (Ω))2 = ⟨S, φ⟩V ′,V , ∀φ ∈ V. (23)

From (21) and (23) it follows that

⟨T, ϕ⟩ = 0, ∀ϕ ∈ V .

By the remark after Lemma 8 (of the Navier-Stokes system) ∃P ∈ L2(Ω) such that

T = ∇P in H−1(Ω). (24)

Thus, from (23) and (24) we obtain

∇P |V = S in V ′

and from (22) we conclude that:

νÃu+B(u, u) = f +∇P.
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Setting p = −∇P we can rewrite the equality above as

νÃu+B(u, u) = f −∇p.

Remark:
The linear problem ∣∣∣∣∣∣∣

− ν∆u = f −∇p in Ω

div u = 0 in Ω

u = 0 on Γ,

(1)

where
f ∈ V ′, (2)

admits a unique weak solution u : Ω→ R in the class

u ∈ V. (3)

Indeed, de�ning

a(u, v) = ν((u, v))V ; u, v ∈ V ; ν > 0

it is easy to verify that a(u, v) is a bilinear, continuous and coercive form on V . Since

L(v) = ⟨f, v⟩V ′,V ; v ∈ V

belongs to V ′ it follows, by virtue of the Lax-Milgram Lemma, that ∃!u ∈ V that veri�es

ν((u, v))V = ⟨f, v⟩ ; ∀ v ∈ V,

or even,
νÃu = f in V ′.

The pressure recovery is obtained in a manner analogous to the previous cases.
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Chapter 12

Klein-Gordon System (n ≤ 3)

Let Ω be a bounded su�ciently smooth open subset of Rn (n ≤ 3).

Problem 13

Problem 13 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2u

∂t2
−∆u+ v2u = f1 in Q

∂2v

∂t2
−∆v + u2v = f2 in Q

u = 0 and v = 0 on Σ

u(0) = u0(x), u
′(0) = u1(x), x ∈ Ω

v(0) = v0(x), v
′(0) = v1(x), x ∈ Ω

(1)

subject to the initial conditions

u0, v0 ∈ H1
0 (Ω), u1, v1 ∈ L2(Ω) and f1, f2 ∈ L2(0, T ;L2(Ω)) (2)

admits a unique pair (u, v) of weak solutions of (1) in the class

u, v ∈ L∞(0, T ;H1
0 (Ω)), u′, v′ ∈ L∞(0, T ;L2(Ω)). (3)

Proof:

1a	 Step: Approximate Problem

Let (ων)ν∈N be a basis of H1
0 (Ω). Set

Vm = [ω1, . . . , ωm].

In Vm consider the approximate problem:

um(t), vm(t) ∈ Vm ⇔ um(t) =
m∑
i=1

gim(t)ωi , vm(t) =
m∑
i=1

him(t)ωi (4)

(u′′m(t), ωj) + ((um(t), ωj)) + (v2m(t)um(t), ωj) = (f1(t), ωj), j = 1, 2, . . . ,m (5)
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(v′′m(t), ωj) + ((vm(t), ωj)) + (u2m(t)vm(t), ωj) = (f2(t), ωj), j = 1, 2, . . . ,m (6)

um(0) = u0m → u0 in H1
0 (Ω) (7)

vm(0) = v0m → v0 in H1
0 (Ω) (8)

which possesses a local solution in some interval [0, tm) by virtue of Carathéodory's The-
orem, with um , vm , u′m and v′m absolutely continuous and u′′m and v′′m existing a.e. The a
priori estimate will serve to extend the solution to the whole [0, T ].

From the Sobolev Embedding Theorems we have:

H1
0 (Ω) ↪→ L6(Ω) if n = 3,

H1
0 (Ω) ↪→ Lq(Ω), ∀ q ∈ [2,+∞) if n = 2,

H1
0 (Ω) ↪→ C0(Ω) if n = 1

In any case
H1

0 (Ω) ↪→ L6(Ω) and n ≤ 3. (9)

Consequently
u2v ∈ L2(Ω); ∀u, v ∈ H1

0 (Ω). (10)

Indeed, from (9) it follows that

u4 ∈ L3/2(Ω) and v2 ∈ L3(Ω); ∀u, v ∈ H1
0 (Ω). (11)

Now, since
2

3
+

1

3
= 1 then from (11) and Hölder's inequality it follows that

u4v2 ∈ L1(Ω)

which proves the desired in (10). Thus the non-linear expressions in (5) and (6) are well
de�ned.

3a	 Step: A Priori Estimate

Multiplying (5) by g′jm(t) and (6) by h′jm(t) and summing over j from 1 to m it
follows that

1

2

d

dt
|u′m(t)|2 +

1

2

d

dt
||um(t)||2 + (v2m(t)um(t), u

′
m(t)) = (f1(t), u

′
m(t)) (12)

1

2

d

dt
|v′m(t)|2 +

1

2

d

dt
||vm(t)||2 + (u2m(t)vm(t), v

′
m(t)) = (f2(t), v

′
m(t)) (13)

However ∫
Ω

v2m(t)um(t)u
′
m(t) dx =

1

2

∫
Ω

v2m(t)(u
2
m(t))

′ dx (14)

∫
Ω

u2m(t)vm(t)v
′
m(t) dx =

1

2

∫
Ω

u2m(t)(v
2
m(t))

′ dx (15)
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Substituting (14) and (15) in (12) and (13), respectively, and summing these two
last expressions we obtain

1

2

d

dt

{
|u′m(t)|2 + |v′m(t)|2 + ||um(t)||2 + ||vm(t)||2

}
+

1

2

∫
Ω

[
v2m(t)(u

2
m(t))

′ + u2m(t)(v
2
m(t))

′] dx
= (f1(t), u

′
m(t)) + (f2(t), v

′
m(t)),

or even
1

2

d

dt

{
|u′m(t)|2 + |v′m(t)|2 + ||um(t)||2 + ||vm(t)||2

}
+

1

2

∫
Ω

(v2m(t)u
2
m(t))

′ dx ≤ |f1(t)| |u′m(t)|+ |f2(t)| |v′m(t)|.
(16)

Observing that〈
d

dt

∫
Ω

v2mu
2
m dx, θ

〉
=

〈∫
Ω

(v2mu
2
m)

′ dx, θ

〉
, ∀ θ ∈ D(0, tm) (17)

then from (16) we conclude that

d

dt

{
|u′m(t)|2 + |v′m(t)|2 + ||um(t)||2 + ||vm(t)||2 +

∫
Ω

v2m(t)u
2
m(t) dx

}
≤ |f1(t)|2 + |u′m(t)|2 + |f2(t)|2 + |v′m(t)|2.

Integrating the inequality above from 0 to t; t ∈ [0, tm) results that

|u′m(t)|2 + |v′m(t)|2 + ||um(t)||2 + ||vm(t)||2 +
∫
Ω

(v2m(t)u
2
m(t)) dx

≤ |u1m|2 + |v1m|2 + ||u0m||2 + ||v0m||2 +
∫
Ω

v20m u
2
0m dx

+ ||f1||2L2(Q) + ||f2||2L2(Q) +

∫ t

0

(
|u′m(s)|2 + |v′m(s)|2

)
ds.

(18)

But ∫
Ω

v20m u
2
0m dx ≤

(∫
Ω

|v0m|4 dx
)1/2(∫

Ω

|u0m|4 dx
)1/2

= ||v0m||2L4(Ω) ||u0m||2L4(Ω) .

(19)

Now from (7), (8), (9) and (10) follows the existence of a constant c1 > 0 such that

|u1m|2 + |v1m|2 + ||u0m||2 + ||v0m||2 +
∫
Ω

u20m v
2
0m dx ≤ c1 ; ∀m ∈ N, (20)

and from (18) and (20) we obtain

|u′m(t)|2 + |v′m(t)|2 + ||um(t)||2 + ||vm(t)||2 +
∫
Ω

u2m(t)v
2
m(t) dx

≤ c2 +

∫ t

0

(
|u′m(s)|2 + |v′m(s)|2

)
ds.

(21)
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Observing that
∫
Ω
u2mv

2
m dx ≥ 0 and by virtue of Gronwall's inequality, from (21)

it follows that

|u′m(t)|2 + |v′m(t)|2 + ||um(t)||2 + ||vm(t)||2 ≤ c; ∀ t ∈ [0, tm) and ∀m ∈ N (22)

where c > 0 is a constant independent of t and m. From the boundedness above it
follows that we can prolong um(t), vm(t) to the whole interval [0, T ] and the estimate in
(22) remains valid now for all t ∈ [0, T ]. Therefore,

(um) and (vm) are bounded in L∞(0, T ;H1
0 (Ω)) (23)

(u′m) and (v′m) are bounded in L∞(0, T ;L2(Ω)). (24)

3a	 Step: Passage to the Limit

From (23) and (24) we obtain subsequences (uν) and (vν) of (um) and (vm), respec-
tively, such that

uν
∗
⇀ u in L∞(0, T ;H1

0 (Ω)) (25)

vν
∗
⇀ v in L∞(0, T ;H1

0 (Ω)) (26)

u′ν
∗
⇀ u′ in L∞(0, T ;L2(Ω)) (27)

v′ν
∗
⇀ v′ in L∞(0, T ;L2(Ω)). (28)

Let θ ∈ D(0, T ) and consider j ∈ N. Multiplying (5) and (6) by θ and integrating
in [0, T ] we obtain for ν ≥ j that

−
∫ T

0

(u′ν(t), ωj)θ
′(t) dt+

∫ T

0

((uν(t), ωj))θ(t) dt

+

∫ T

0

(v2ν(t)uν(t), ωj)θ(t) dt =

∫ T

0

(f1(t), ωj)θ(t) dt

(29)

and

−
∫ T

0

(v′ν(t), ωj)θ
′(t) dt+

∫ T

0

((vν(t), ωj))θ(t) dt

+

∫ T

0

(u2ν(t)vν(t), ωj)θ(t) dt =

∫ T

0

(f2(t), ωj)θ(t) dt.

(30)

We will perform the convergence in (29) since in (30) the procedure is analogous.
The convergences in (25) and (27) are su�cient to pass the limit in the linear part. Let's
see the nonlinear part.

Analysis of the Nonlinear Term

From (23) and (24) it follows that

um , vm are bounded in W = {u | u ∈ L2(0, T ;H1
0 (Ω));u

′ ∈ L2(0, T ;L2(Ω))}.

Thus, by virtue of the Aubin-Lions Theorem, there exists a subsequence of (uν),
which we will still denote by the same notation such that

uν → u in L2(0, T ;L2(Ω)) (31)

vν → v in L2(0, T ;L2(Ω)) (32)
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From (31) and (32) it follows that

v2νuν → v2u a.e. in Q. (33)

We will prove next that

(v2νuν) is bounded in L2(Q). (34)

Indeed, we have, by virtue of (9), (10), (11) and Hölder's inequality∫
Q

|v2νuν |2 dxdt =
∫ T

0

∫
Ω

|vν |4 |uν |2 dxdt

≤
∫ T

0

||v4ν ||L3/2(Ω) ||u2ν ||L3(Ω) dt =

∫ T

0

||vν ||4L6(Ω) ||uν ||2L6(Ω) dt

≤ c1

∫ T

0

||vν(t)||4H1
0 (Ω) ||uν(t)||

2
H1

0 (Ω) dt ≤ (c1T ) ||vν ||4L∞(0,T ;H1
0 (Ω)) ||uν ||

4
L∞(0,T ;H1

0 (Ω)).

Now, from (23) and the inequality above we obtain the desired in (34). It follows
from (33) and (34) and Lions' Lemma that

v2νuν ⇀ v2u weakly in L2(Q). (35)

Analogously we prove that

u2νvν ⇀ u2v weakly in L2(Q) (36)

which is su�cient to pass the limit in the nonlinear part. Then, from (29) and (30) in the
limit situation it follows that

−
∫ T

0

(u′(t), ωj)θ
′(t) dt+

∫ T

0

((u(t), ωj))θ(t) dt

+

∫ T

0

(v2(t)u(t), ωj)θ(t) dt =

∫ T

0

(f1(t), ωj)θ(t) dt

(37)

and

−
∫ T

0

(v′(t), ωj)θ
′(t) dt+

∫ T

0

((v(t), ωj))θ(t) dt

+

∫ T

0

(u2(t)v(t), ωj)θ(t) dt =

∫ T

0

(f2(t), ωj)θ(t) dt,

(38)

and by the totality of the ωj's, the expressions above are valid for all ω ∈ H1
0 (Ω). From

(37) and (38) it follows then that

u′′ −∆u+ v2u = f1 in D′(0, T ;H−1(Ω))

v′′ −∆v + u2v = f2 in D′(0, T ;H−1(Ω)),

or even,

u′′ −∆u+ v2u = f1 in L2(0, T ;H−1(Ω)) (39)

v′′ −∆v + u2v = f2 in L2(0, T ;H−1(Ω)). (40)



132 CHAPTER 12. KLEIN-GORDON SYSTEM (N ≤ 3)

4a	 Step: Initial Conditions

Obtained in the usual manner.

5a	 Step: Uniqueness

Let (u1, v1) and (u2, v2) be solutions of (1). Then

w = u1 − u2 and ŵ = v1 − v2 (41)

verify ∣∣∣∣∣∣∣∣∣∣∣∣

w′′ −∆w = v22u2 − v21u1 in L2(0, T ;H−1(Ω))

ŵ′′ −∆ŵ = u22v2 − u21v1 in L2(0, T ;H−1(Ω))

w = 0, ŵ = 0 on Σ

w(0) = 0, ŵ(0) = 0 in Ω

w′(0) = 0, ŵ′(0) = 0 in Ω.

(42)

Let s ∈ [0, T ]. We de�ne

ψ(t) =

{
−
∫ s

t
w(ξ)dξ; 0 ≤ t ≤ s

0; s ≤ t ≤ T
ρ(t) =

{
−
∫ s

t
ŵ(ξ)dξ; 0 ≤ t ≤ s

0; s ≤ t ≤ T.
(43)

Letting ψ′ and ρ′ be the distributional derivatives of ψ and ρ, we have

ψ(t) =

{
w(t); 0 ≤ t ≤ s

0; s ≤ t ≤ T
ρ(t) =

{
ŵ(t); 0 ≤ t ≤ s

0; s ≤ t ≤ T
(44)

From the expressions in (43) and (44) we have that

ψ, ρ, ψ′, ρ′ ∈ L∞(0, T ;H1
0 (Ω))

which implies that
ψ, ρ ∈ C0([0, T ];H1

0 (Ω)).

Composing (42)1 with ψ and (42)2 with ρ it follows that∫ s

0

⟨w′′(t), ψ(t)⟩H−1,H1
0
dt+

∫ s

0

((w(t), ψ(t))) dt

=

∫ s

0

(v22(t)u2(t)− v21(t)u1(t), ψ(t)) dt
(45)

and ∫ s

0

⟨ŵ′′(t), ρ(t)⟩H−1,H1
0
dt+

∫ s

0

((ŵ(t), ρ(t))) dt

=

∫ s

0

(u22(t)v2(t)− u21(t)v1(t), ρ(t)) dt
(46)

Integrating by parts the �rst integrals in (45) and (46) it results that

⟨w′(t), ψ(t)⟩
∣∣t=s

t=0
−
∫ s

0

(w′(t), ψ′(t)) dt+

∫ s

0

((ψ′(t), ψ(t))) dt

=

∫ s

0

(v22u2 − v21u1, ψ) dt
(47)
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⟨ŵ′(t), ρ(t)⟩
∣∣t=s

t=0
−
∫ s

0

(ŵ′(t), ρ′(t)) dt+

∫ s

0

((ρ′(t), ρ(t))) dt

=

∫ s

0

(u22v2 − u21v1, ρ) dt,
(48)

where in the second integrals we used the fact that ψ′ = w and ρ′ = ŵ in [0, s]. Now since
ψ(s) = 0, ρ(s) = 0, w′(0) = 0 and ŵ′(0) = 0 from (47) and (48) we obtain

−
∫ s

0

(w′(t), w(t)) dt+

∫ s

0

((ψ′(t), ψ(t))) dt =

∫ s

0

(v22u2 − v21u1, ψ) dt

−
∫ s

0

(ŵ′(t), ŵ(t)) dt+

∫ s

0

((ρ′(t), ρ(t))) dt =

∫ s

0

(u22v2 − u21v1, ρ) dt

where in the �rst integrals we used the fact that ψ′ = w and ρ′ = ŵ in [0, s].
Whence

−
∫ s

0

1

2

d

dt
|w(t)|2 dt+

∫ s

0

1

2

d

dt
||ψ(t)||2 dt =

∫ s

0

(v22u2 − v21u1, ψ) dt

−
∫ s

0

1

2

d

dt
|ŵ(t)|2 dt+

∫ s

0

1

2

d

dt
||ρ(t)||2 dt =

∫ s

0

(u22v2 − u21v1, ρ) dt,

or even,

− 1

2
|w(s)|2 + 1

2
|w(0)|2 + 1

2
||ψ(s)||2 − 1

2
||ψ(0)||2 =

∫ s

0

(v22u2 − v21u1, ψ)dt

− 1

2
|ŵ(s)|2 + 1

2
|ŵ(0)|2 + 1

2
||ρ(s)||2 − 1

2
||ρ(0)||2 =

∫ s

0

(u22v2 − u21v1, ρ)dt

which implies:

|w(s)|2 + ||ψ(0)||2 = 2

∫ s

0

(v21u1 − v22u2, ψ) dt

|ŵ(s)|2 + ||ρ(0)||2 = 2

∫ s

0

(u21v1 − u22v2, ρ) dt.

Thus,

|w(s)|2 + ||ψ(0)||2 = 2

∫ s

0

(v21u1 − v21u2 + v21u2 − v22u2, ψ) dt (49)

|ŵ(s)|2 + ||ρ(0)||2 = 2

∫ s

0

(u21v1 − u21v2 + u21v2 − u22v2, ρ) dt. (50)

However

2

∫
Ω

(v21u1 − v21u2 + v21u2 − v22u2)ψ dx

= 2

∫
Ω

{v21(u1 − u2) + (v21 − v22)u2}ψ dx

≤
∫
Ω

|v1|2|ω| |ψ(t)| dx+
∫
Ω

|u2v1 + u2v2| |ω̂(t)| |ψ(t)| dx

≤ k
[
||v1||3L6(Ω) |ω|L2(Ω) ||ψ(t)||+ ||u2v1 + u2v2||L3(Ω) |ω̂|L2(Ω) ||ψ(t)||

]
.
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Since v1, v2 and u2 ∈ L∞(0, T ;H1
0 (Ω)) then from (9) and the inequality above it

follows that ∃ c1 > 0 such that

2

∫
Ω

(v21u1 − v21u2 + v21u2 − v22u2)ψ dx ≤ 2c1
[
|w|+ |ŵ|

]
||ψ||. (51)

Analogously

2

∫
Ω

(u21v1 − u21v2 + u21v2 − u22v1)ρ dx

≤ 2

∫
Ω

[
|u21| | v1 − v2︸ ︷︷ ︸

ŵ

|+ |v2| |u1 + u2| |u1 − u2︸ ︷︷ ︸
w

|
]
||ρ||.

Thus, ∃ c2 > 0 such that:

2(u21v1 − u21v2 + u21v2 − u22v2, ρ)L2(Ω) ≤ 2c2
[
|w|+ |ŵ|

]
||ρ||. (52)

From (49), (50), (51) and (52) it follows that

|w(s)|2 + ||ψ(0)||2 ≤ 2c1

∫ s

0

[
|w(t)| ||ψ(t)||+ |ŵ(t)| ||ψ(t)||

]
dt (53)

|ŵ(s)|2 + ||ρ(0)||2 ≤ 2c2

∫ s

0

[
|w(t)| ||ρ(t)||+ |ŵ(t)| ||ψ(t)||

]
dt (54)

De�ne:

ω1(t) =

∫ s

0

(ω(ξ) dξ.

We have, for all t ∈ [0, s],

ψ(t) = −
∫ s

t

ω(ξ) dξ = −
[ ∫ s

0

ω(ξ) dξ −
∫ t

0

ω(ξ) dξ

]
= ω1(t)− ω1(s). (55)

In this way
ψ(0) = ω1(0)︸ ︷︷ ︸

=0

−ω1(s) = ω1(s). (56)

Substituting (56) and (55) in (53) it follows that

|w(s)|2 + ||w1(s)||2

≤ 2c1

∫ s

0

[
|w(t)| ||w1(t)− w1(s)||+ |ŵ(t)| ||w1(t)− w1(s)||

]
dt.

(57)

Analogously, setting

ω̂1(t) =

∫ t

0

ω̂(ξ) dξ

we have
|ŵ(s)|2 + ||ŵ1(s)||2

≤ 2c2

∫ s

0

[
|w(t)| ||ŵ1(t)− ŵ1(s)||+ |ŵ(t)| ||ŵ1(t)− ŵ1(s)||

]
dt.

(58)

From (57) we can write that
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|w(s)|2 + ||w1(s)||2

≤ 2c1

{∫ s

0

[
|w(t)| ||w1(t)||+ |w(t)| ||w1(s)||+ |ŵ(t)| ||w1(t)||+ |ŵ(t)| ||w1(s)||

]
dt

}
≤ c1

{∫ s

0

|w(t)|2dt+
∫ s

0

||w1(t)||2dt+ 2

∫ s

0

|w(t)| ||w1(s)|| dt+
∫ t

0

|ŵ(t)|2dt

+

∫ s

0

||w1(t)||2dt+ 2

∫ s

0

|ŵ(t)| ||w1(s)|| dt
}
.

(59)

But

2c1

∫ s

0

|w(t)| ||w1(s)|| dt = 2c1

∫ s

0

√
4sc1 |w(t)|

1√
4sc1

||ω1(s)|| ds

≤ 2c1

{∫ s

0

2sc1|w(t)|2 dt+
∫ s

0

1

8sc1
||ω1(s)||2 dt

}
= 4sc1

∫ s

0

|w(t)|2 dt+ 1

4
||ω1(s)||2.

(60)

Also,

2c1

∫ s

0

|ŵ(t)| ||w1(s)|| dt ≤ 4sc1

∫ s

0

|ŵ(t)|2 dt+ 1

4
||ω1(s)||2. (61)

From (59), (60) and (61) we obtain

|w(s)|2 + ||w1(s)||2 ≤
1

4
||w1(s)||2

+ c3

∫ s

0

(
|w(t)|2 + |ŵ(t)|2 + ||w1(t)||2

)
dt.

(62)

Analogously, from (58) we arrive at

|ŵ(s)|2 + ||ŵ1(s)||2 ≤
1

4
||ŵ1(s)||2

+ c4

∫ s

0

(
|w(t)|2 + |ŵ(t)|2 + ||ŵ1(t)||2

)
dt.

(63)

Summing (62) and (63) we obtain

|w(s)|2 + 1

2
||w1(s)||2 + |̂w(s)|2 +

1

2
||ŵ1(s)||2

≤ c5

∫ s

0

(
|w(t)|2 + |ŵ(t)|2 + ||w1(t)||2 + ||ŵ1(t)||2

)
dt.

It results from the inequality above, by Gronwall, that

|ω(s)|2 + 1

2
||ω1(s)||2 + |ŵ(s)|2 + ||ŵ1(s)||2 = 0, ∀ s ∈ [0, T ]

that is, w(s) = 0 and ŵ(s) = 0 in L2(Ω). Thus: u1 = u2 and v1 = v2 which concludes
the proof.
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Chapter 13

The Monotonicity Method

13.1 The Browder-Minty-Visik Theorem

In this paragraph we will demonstrate an important theorem due to Browder-Minty-Visik.
Before that, however, we need some de�nitions and preliminary results.

De�nition 1. Let V be a Banach space, V ′ the dual of V and A : V → V ′ a map.
(i) We say that A is monotone when:

⟨A(u)− A(v), u− v⟩V ′,V ≥ 0, ∀u, v ∈ V.

(ii) We say that A is hemicontinuoues when for any u, v and w in V , the map
ψ : R→ R de�ned by:

ψ(λ) = ⟨A(u+ λv), w⟩V ′,V

is continuous.
(iii) We say that A is coercive if:

lim
||v||→+∞

⟨A(v), v⟩
||v||

= +∞.

(iv) We say that A is bounded when A maps bounded sets of V into bounded sets
of V ′, that is, for any S ⊂ V bounded in V we have that A(S) ⊂ V ′ is bounded in V ′.

Lemma 1: (Visik). If the map P : Rm → Rm is continuous and (P (ξ), ξ)Rm ≥ 0,
∀ ξ ∈ Rm such that ||ξ|| = ρ, for some ρ > 0; then ∃ ξ ∈ Bρ(0) such that P (ξ) = 0.

Proof: See page 112.

Lemma 2: Let V be a re�exive and separable Banach space and consider A : V → V ′

a map. If A is monotone, hemicontinuous and bounded (cf. de�nition 1) then A is
continuous from (V, τstrong) into (V ′, τweak*), that is, A(uν)

∗
⇀ Au in V ′ whenever uν → u

strongly in V .

Proof: Let (uν) ⊂ V be such that

uν → u in V (2)

137
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and, by contradiction, suppose that

Auν
∗
̸⇀ Au. (3)

It follows from (3) that ∃ v0 ∈ V such that:

aν = ⟨Auν , v0⟩ ̸−→ ⟨Au, v0⟩ = a.

Therefore, we guarantee the existence of an ε0 > 0 such that ∀ k ∈ N, ∃ aν(k)
satisfying

|aν(k) − a| ≥ ε0

that is,
|⟨Auν(k), v0⟩ − ⟨Au, v0⟩| ≥ ε0 . (4)

On the other hand, since A is bounded it follows that (Auν(k))k is a bounded
sequence in V ′. Since V is a separable Banach space, it follows that there exists a subse-
quence of (uν(k))k which we will still denote by the same symbol such that

Auν(k)
∗
⇀ f in V ′. (5)

By the property of the elements of (Auν(k)) given in (4), it follows that Au ̸= f .
However, setting (Auν(k))k = (Auµ)µ we claim:

⟨f, u− v⟩ ≥ ⟨Au, u− v⟩ ; ∀ v ∈ V. (6)

Indeed, let
w = (1− θ)u+ θv; θ ∈ ]0, 1 [ .

We have, given the monotonicity of A, that

⟨Auµ − Aw, uµ − w⟩ ≥ 0.

Whence
⟨Auµ − Aw, uµ − ((1− θ)u+ θv)⟩ ≥ 0,

that is,
⟨Auµ − Aw, uµ − (u+ θ(v − u))⟩ ≥ 0

or even,
⟨Auµ − Aw, uµ − u− θ(v − u)⟩ ≥ 0.

It follows from this that

⟨Auµ, uµ − u⟩ − θ⟨Auµ, v − u⟩ − ⟨Aw, uµ − u⟩+ θ⟨Aw, v − u⟩ ≥ 0

and, therefore,

θ⟨Auµ, u− v⟩ ≥ −⟨Auµ, uµ − u⟩+ ⟨Aw, uµ − u⟩ − θ⟨Aw, v − u⟩.

Taking the limit in the inequality above as µ→ +∞ results from (2) and (5) that

θ⟨f, u− v⟩ ≥ −θ⟨Aw, v − u⟩.
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Dividing by θ we obtain

⟨f, u− v⟩ ≥ ⟨Aw, u− v⟩; ∀ v ∈ V,

or better,
⟨f, u− v⟩ ≥ ⟨A(u+ θ(v − u)), u− v⟩; ∀ v ∈ V.

By the hemicontinuity of A and taking the limit as θ → 0 we obtain, from the
inequality above that

⟨f, u− v⟩ ≥ ⟨Au, u− v⟩; ∀ v ∈ V,

which proves (6).
Consider λ > 0 and z ∈ V . Then, from (6) and in particular for v = u − λz, it

follows that
⟨f, λz⟩ ≥ ⟨Au, λz⟩.

Whence
⟨f, z⟩ ≥ ⟨Au, z⟩; ∀ z ∈ V. (7)

Analogously, taking v = u− λz, λ < 0 and z ∈ V , we obtain

⟨f, z⟩ ≤ ⟨Au, z⟩; ∀ z ∈ V. (8)

From (7) and (8) we conclude that

Au = f,

which is a contradiction. This concludes the proof.

Theorem 1. (Browder-Minty-Visik). Let V be a re�exive and separable Banach space
and V ′ its dual. If A : V → V ′ is a monotone, hemicontinuous, bounded and coercive map
then A is surjective.

Proof: Let (ων)ν∈N be a basis of V , that is,

(i) (wν)ν constitutes a linearly independent set.

(ii) The subspace spanned by (wν)ν is dense in V .

Let f ∈ V ′. Our aim is to prove that there exists u ∈ V such that Au = f . Set

Vm = [w1, w2, . . . , wm]

and consider, initially, the �nite dimensional problem:∣∣∣∣∣um ∈ Vm⟨Aum, v⟩V ′
m,Vm = ⟨f, v⟩V ′

m,Vm ; ∀ v ∈ Vm.
(9)

We will prove next that problem (9) admits a solution um for all m ∈ N. For this,
�xed m ∈ N, de�ne the map

P : Vm → V ′
m

v 7→ P (v) = (A(v)− f)|Vm

(10)

that is, we are restricting the functional A(v)− f ∈ V ′ to the space Vm .
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Thus,
P (v) ∈ V ′

m

and, consequently,

⟨P (v), w⟩V ′
m,Vm = ⟨A(v)− f, w⟩V ′,V ; ∀w ∈ Vm . (11)

It follows from (11) that:
(i) P is hemicontinuous since, A being hemicontinuous, the map

ψ(λ) = ⟨P (u+ λv), w⟩V ′
m,Vm =

= ⟨A(u+ λv)− f, w⟩V ′,V ; λ ∈ R,

is continuous for any u, v and w ∈ Vm .
(ii) P is monotone since, A being monotone, it follows that

⟨P (u)− P (v), u− v⟩V ′
m,Vm = ⟨A(u)− f − A(v) + f, u− v⟩V ′,V ≥ 0; ∀u, v, w ∈ Vm .

(iii) P is bounded since, S ⊂ Vm being a bounded set, then, ∀ v ∈ S we have due
to the inclusion � V ′ ⊂ V ′

m� that

||P (v)||V ′
m
= ||(A(v)− f)|V ′

m
||V ′

m
≤ ||A(v)− f ||V ′

≤ ||A(v)||V ′ + ||f ||V ′ ≤ c+ ||f ||V ′ .

From (i), (ii) and (iii) it follows by Lemma 2 that the map (10) is continuous from
(Vm, τstrong) into (V ′

m, τweak*). However, since Vm has �nite dimension, the strong and
weak-* topologies coincide. We conclude then that the map given in (10) is continuous.

Our aim now is to apply Lemma 1 and conclude that ∃ ρ > 0 and vm ∈ Vm such
that P (vm) = 0, that is, ∃ vm ∈ Vm such that A(vm) = f in V ′

m which will prove the
existence of a solution to (9). Note that at this moment we are using the fact that every
vector space of �nite dimension m, �xed a basis, is isomorphic to Rm

We must prove then that ∃ ρ > 0 such that

(P (v), v)Vm ≥ 0; ∀ v ∈ Vm with ||v|| = ρ. (12)

Indeed, since f ∈ V ′ we have, in particular, that

|⟨f, v⟩| ≤ ||f ||V ′ ||v|| ≤ c||v||, ∀ v ∈ Vm (c > 0).

Whence
−⟨f, v⟩ ≥ −c||v||; ∀ v ∈ Vm . (13)

On the other hand, A being coercive, then

lim
||v||→+∞

⟨Av, v⟩
||v||

= +∞.

Thus, given M > 0, ∃ δ > 0 such that if v ∈ V and ||v|| ≥ δ then

⟨Av, v⟩
||v||

≥M.
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In particular, for the c > 0 given above, ∃ ρ > 0 such that if v ∈ Vm and ||v|| ≥ ρ
then

⟨Av, v⟩
||v||

≥ c. (14)

Thus, from (13) and (14) it follows for all v ∈ Vm such that ||v|| ≥ ρ, that

(P (v), v)Vm = ⟨(A(v)− f)|Vm , v⟩V ′
m,Vm

= ⟨A(v), v⟩V ′,V − ⟨f, v⟩V ′,V

≥ c||v|| − c||v|| = 0.

It follows from Lemma 1 that ∃ vm ∈ Bρ(0) ⊂ Vm such that P (vm) = 0, that is,
Aum = f which proves the existence of a solution to the �nite dimensional problem in
(9).

Our next step is to pass the limit in the approximate problem. For this, we need
estimates as we will see next.

From (9), in particular, for v = um it follows that

⟨A(um), um⟩ = ⟨f, um⟩ ≤ c||um||; ∀m ∈ N. (15)

It follows from (15) that (um) is bounded in V . Indeed, otherwise, there would exist
a subsequence (uν) of (um) such that ||uν || → +∞ when ν → +∞. By the coercivity of
A it follows that

lim
ν→+∞

⟨A(uν), uν⟩
||uν ||

= +∞.

Thus, for the c > 0 given above ∃ ρ > 0 such that if ||uν || > ρ then

⟨A(uν)uν⟩
||uν ||

> c (16)

which contradicts (15).
Therefore

(um) is bounded in V. (17)

Since A is bounded, by hypothesis, it follows from (17) that

(A(um)) is bounded in V ′. (18)

Since V is re�exive and separable there exists (uµ) subsequence of (um) such that

uµ ⇀ u weakly in V (19)

and
A(uµ)

∗
⇀ χ weakly * in V ′. (20)

We have from (15) that, for each µ ∈ N,

⟨A(uµ), uµ⟩ = ⟨f, uµ⟩.

Since the right side of the equality above converges to ⟨f, u⟩ it follows that the left
side converges to the same limit, that is,

lim
µ→+∞

⟨A(uµ), uµ⟩ = ⟨f, u⟩. (21)
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Fix j ∈ N. Then, for all µ ≥ j we have from (9) that

⟨Auµ, wj⟩ = ⟨f, wj⟩ .

Taking the limit in the equality above it follows from (20) that

⟨χ,wj⟩ = ⟨f, wj⟩; ∀ j ∈ N.

By the density of [wν ] in V we obtain

⟨χ, v⟩ = ⟨f, v⟩; ∀ v ∈ V and, therefore, χ = f. (22)

From (22), in particular, for u we have ⟨χ, u⟩ = ⟨f, u⟩ and from (21) it follows that

lim
µ→+∞

⟨A(uµ), uµ⟩ = ⟨χ, u⟩. (23)

To conclude the theorem it remains to prove that

χ = Au. (24)

Indeed, by the monotonicity of A:

⟨A(uµ)− A(v), uµ − v⟩ ≥ 0, ∀µ ∈ N and ∀ v ∈ V.

Whence
⟨A(uµ), uµ⟩ − ⟨A(uµ), v⟩ − ⟨A(v), uµ − v⟩ ≥ 0.

In the limit situation it follows from (19), (20) and (23) that

⟨χ, u⟩ − ⟨χ, v⟩ − ⟨A(v), u− v⟩ ≥ 0,

that is,
⟨χ− A(v), u− v⟩ ≥ 0, ∀ v ∈ V.

Let λ > 0 and w ∈ V . We have for v = u− λw that

⟨χ− A(u− λw), w⟩ ≥ 0, ∀w ∈ V.

By the hemicontinuity of A it follows in the limit as λ→ 0 that

⟨χ− A(u), w⟩ ≥ 0, ∀w ∈ V.

Analogously, considering v = u− λw; λ < 0 and w ∈ v, it follows that

⟨χ− A(u), w⟩ ≤ 0, ∀w ∈ V.

Whence
⟨χ− A(u), w⟩ = 0, ∀w ∈ V

and therefore
χ = A(u)

which proves (24). From (22) it follows that

A(u) = f in V ′. (25)
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This concludes the proof of the theorem.

Naturally, equation (25) admits a unique solution if:

⟨A(u)− A(v), u− v⟩ > 0, ∀ v ∈ V, u ̸= v.

Indeed, let u, u∗ ∈ V be solutions of (25) such that u ̸= u∗. Then,
A(u)− A(u∗) = f − f = 0 and therefore

0 = ⟨A(u)− A(u∗), u− u∗⟩ > 0

which is a contradiction!
We will see, next, a more sophisticated uniqueness result.

Theorem 2: Under the hypotheses of Theorem 1 and, furthermore, assuming that

V is strictly convex (26)

and

A(u) = A(v)⇒ ||u|| = ||v|| (27)

Then, equation (25) admits a unique solution.

Proof: Recall that since V is strictly convex then ∀u, v ∈ V with ||u|| = ||v|| = 1 and
u ̸= v we have

||λu+ (1− λ)v||V < 1, ∀λ ∈ ]0, 1 [, (28)

We will prove that

u is a solution of (25) if and only if ⟨A(v)− f, v − u⟩ ≥ 0,∀ v ∈ V . (29)

Indeed, if (25) occurs then Au = f and, therefore,

⟨A(v)− f, v − u⟩ = ⟨A(v)− A(u), v − u⟩ ≥ 0,

where the last inequality is satis�ed given that A is monotone.
Conversely, suppose that

⟨A(v)− f, v − u⟩ ≥ 0, ∀ v ∈ V. (30)

Consider, then λ > 0, w ∈ V and v = u+ λw. Then from (30) it follows that

⟨A(u+ λw)− f, w⟩ ≥ 0.

Letting λ→ 0 we deduce, due to the hemicontinuity of A, that ⟨A(u)− f, w⟩ ≥ 0.
Analogously, considering λ < 0, we deduce ⟨Au− f, w⟩ ≤ 0. Hence

⟨A(u)− f, w⟩ = 0, ∀w ∈ V,

that is, Au = f in V ′. This proves (29).
Let us de�ne, for each v ∈ V , the following set

Sv = {u ∈ V ; ⟨A(v)− f, v − u⟩ ≥ 0}. (31)



144 CHAPTER 13. THE MONOTONICITY METHOD

We claim that Sv is convex. Indeed, let u1, u2 ∈ Sv and λ ∈ [0, 1]. We have:

⟨A(v)− f, v − (λu1 + (1− λ)u2)⟩
= ⟨A(v)− f, λv + (1− λ)v − λu1 − (1− λ)u2⟩
= λ⟨A(v)− f, v − u1⟩+ (1− λ)⟨A(v)− f, v − u2⟩ ≥ 0

which proves the convexity of Sv .
Letting

E =
⋂
v∈V

Sv (32)

it follows from (29) and (31) that:

E =
⋂
v∈V

Sv = {u ∈ V ; Au = f}.

Since Sv is convex it follows that E is also convex.
Consider, �nally, u, u∗ ∈ E solutions of (25) and suppose that u ̸= u∗. We have

A(u) = f and A(u∗) = f.

From (27) it follows that
||u|| = ||u∗||. (33)

If λ ∈ ]0, 1 [ then by the convexity of the set E given in (32) it follows that

λu+ (1− λ)u∗ ∈ E.

Consequently
A(λu+ (1− λ)u∗) = f

and from (27) we obtain:

||λu+ (1− λ)u∗|| = ||u|| = ||u∗|| = ρ. (34)

We have two cases to consider:

(1st ) ρ ̸= 0.

In this case,
u

||u||
̸= u∗

||u∗||
and from (28) it follows that∥∥∥∥λ u

||u||
+ (1− λ) u∗

||u∗||

∥∥∥∥ < 1

and from (33) and (34) it follows that

ρ = ||λu+ (1− λ)u∗|| < ρ

which is absurd!
(2nd ) ρ = 0

In this case, from (34) it follows that

||u|| = ||u∗|| = 0

and, therefore, u = u∗ = 0. But this is absurd since u ̸= u∗. The proof is concluded.
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13.2 Duality Mappings

Let E be a Banach space over R, endowed with the norm || · ||, let || · ||∗ be the dual
norm on the (dual) Banach space E ′ and consider ⟨ , ⟩ the duality between E ′ and E.

Let ϕ : R+ → R+ , r 7→ ϕ(r) be a continuous, monotone and strictly increasing
map, such that

ϕ(0) = 0, and ϕ(r)→ +∞ if r → +∞. (1)

De�nition 1: A map J : E → E ′ is called a duality mapping relative to ϕ if the following
conditions are veri�ed:

⟨J(u), u⟩ = ||J(u)||∗ ||u||, ∀u ∈ E. (2)

||J(u)||∗ = ϕ(||u||), ∀u ∈ E. (3)

Naturally this notion depends on the choice of the norm on E.

Proposition 1: Every duality mapping is monotone.

Proof: Let u, v ∈ E and J : E → E ′ a duality mapping. We have, from (2) and (3):

⟨J(u)− J(v), u− v⟩
= ⟨J(u), u⟩ − ⟨J(u), v⟩ − ⟨J(v), u⟩+ ⟨J(v), v⟩
= ||J(u)||∗ ||u|| − ⟨J(u), v⟩ − ⟨J(v), u⟩+ ||J(v)||∗ ||v||
≥ ||J(u)||∗ ||u|| − ||J(u)||∗ ||v|| − ||J(v)||∗ ||u||+ ||J(v)||∗ ||v||

= (||J(u)||∗ − ||J(v)||∗)(||u|| − ||v||)
= (ϕ(||u||)− ϕ(||v||))(||u|| − ||v||) ≥ 0

where the last inequality holds since ϕ is strictly increasing. This proves the proposition.

Proposition 2: Let E be a strictly convex Banach space and J : E → E ′ a duality
mapping. Then, J is strictly monotone.

Proof: According to Proposition 1,

⟨J(u)− J(v), u− v⟩ ≥ 0, ∀u, v ∈ E.

Thus, it su�ces to prove that

⟨J(u)− J(v), u− v⟩ > 0, ∀u, v ∈ E; u ̸= v. (4)

Suppose, by contradiction, that there exist, u, v ∈ E, u ̸= v, such that

⟨J(u)− J(v), u− v⟩ = 0. (5)

However, as in the proof of Proposition 1, from (5) it follows that

0 = ⟨J(u)− J(v), u− v⟩ ≥ (ϕ(||u||)− ϕ(||v||))(||u|| − ||v||) ≥ 0.
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Thus (
ϕ(||u||)− ϕ(||v||)

)(
||u|| − ||v||

)
= 0. (6)

We have two cases to consider:
(i) ϕ(||u||)− ϕ(||v||) = 0.
In this case, ϕ(||u||) = ϕ(||v||) and therefore ||u|| = ||v||.
(ii) ||u|| − ||v|| = 0.
Also we have ||u|| = ||v||.
In any case, (6) implies that

||u|| = ||v||. (7)

Note that ||u|| ≠ 0 (and ||v|| ≠ 0) because, otherwise, u = v = 0, which is absurd,
since u ̸= v. Thus, from (7) it follows that

u

||u||
̸= v

||v||
· (8)

On the other hand, note that from the fact that E is strictly convex and J(u) ∈ E ′

(J(u) ̸≡ 0) it follows that ||J(u)||∗ is attained at a unique point of the unit ball. Indeed,
from (2) we have that

||J(u)||∗ =
⟨J(u), u⟩
||u||

=

〈
J(u),

u

||u||

〉
(9)

which shows that ||J(u)||∗ = sup
||v||≤1

⟨J(u), v⟩ is attained at the point w =
u

||u||
· We claim

that this point is unique. Indeed, suppose there exists w∗ ∈ E; ||w∗|| = 1 such that

||J(u)||∗ = ⟨J(u), w⟩ = ⟨J(u), w∗⟩. (10)

Now, since the ball B1(0) is convex it follows that the convex combination (1 −
λ)w + λw∗ ∈ B1(0); λ ∈ ]0, 1 [ . Since E is strictly convex it follows that

||(1− λ)w + λw∗|| < 1. (11)

But, from (10) it follows that

⟨J(u), (1− λ)w + λw∗⟩ = (1− λ)⟨J(u), w⟩+ λ⟨J(u), w∗⟩
= ⟨J(u), w⟩ = ||J(u)||∗ ,

(12)

Thus, from (11) and (12) we have

||J(u)||∗ = ⟨J(u), (1− λ)w + λw∗⟩ ≤ ||J(u)||∗ ||(1− λ)w + λw∗|| < ||J(u)||∗

which is absurd! This proves that the attained point is unique.
It follows from (9) and the above that

||J(u)||∗ =
〈
J(u),

u

||u||

〉
>

〈
J(u),

v

||v||

〉
.

and from (7) we obtain
⟨J(u), v⟩ < ⟨J(u), u⟩. (13)
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Analogously, we also show that

⟨J(v), u⟩ < ⟨J(v), v⟩. (14)

Therefore, from (13) and (14) we arrive at

0 = ⟨J(u)− J(v), u− v⟩ = ⟨J(u), u⟩ − ⟨J(u), v⟩ − ⟨J(v), u⟩+ ⟨J(v), v⟩
> ⟨J(u), u⟩ − ⟨J(u), u⟩ − ⟨J(v), v⟩+ ⟨J(v), v⟩ = 0,

which is a contradiction!

Proposition 3: Let E be a Banach space. There always exists a duality mapping relative
to ϕ. This map is uniquely de�ned if E ′ is strictly convex.

Proof: Let B1 be the unit ball of E. For all u ∈ ∂B1 there exists, according to the
Hahn-Banach Theorem an element u∗ ∈ E ′ such that:

||u∗||∗ = ||u|| = 1 and ⟨u∗, u⟩ = ||u||2 = 1. (15)

On the other hand, given v ∈ E; ∃λ ≥ 0 and u ∈ ∂B1 such that

v = λu. (16)

Indeed, if v = 0, just take λ = 0. Now, if v ̸= 0 then
v

||v||
∈ ∂B1 and furthermore,

v = ||v|| · v

||v||
· (17)

Thus, from (17) it follows that λ = ||v|| > 0 and u =
v

||v||
·

Consider, then
J : E → E ′

de�ned according to (15) and (16) by

J(v) = J(λu) = ϕ(λ) · u∗ (18)

where we are making a unique choice of u∗ so that we have a de�ned map.
We will prove next, that the operator J de�ned in (18) satis�es (2) and (3). In

fact, from the above it follows that

⟨J(v), v⟩ = ⟨ϕ(λ)u∗, λu⟩ = ϕ(λ)λ⟨u∗, u⟩ (i)

= ϕ(λ)λ = ϕ(λ) · λ · ||u||
= ϕ(λ) ||λu|| = ϕ(λ)||u∗||∗ ||λu||
= ||ϕ(λ)u∗||∗ ||λu||
= ||J(v)||∗ ||v||, ∀ v ∈ E.

||J(v)||∗ = ||ϕ(λ)u∗||∗ = ϕ(λ)||u∗||∗ = ϕ(λ) (ii)

= ϕ(λ||u||) = ϕ(||λu||) = ϕ(||v||), ∀ v ∈ E.
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Suppose, now, that E ′ is strictly convex and suppose, by contradiction, that there
exist J1 , J2 duality mappings relative to ϕ with J1 ̸= J2 . Thus, there exists u ∈ E, u ̸= 0
such that J1(u) ̸= J2(u) (u ̸= 0 since if u = 0 then ||J1(u)||∗ = ||J2(u)||∗ = ϕ(||u||) =
ϕ(0) = 0 and therefore J1(u) = J2(u)). Furthermore, since u ̸= 0 then ||J1(u)||∗ =

||J2(u)||∗ = ϕ(||u||) ̸= 0. Whence:
J1(u)

||J1(u)||∗
̸= J2(u)

||J2(u)||∗
·

Then, if λ ∈]0, 1[ we have from (2) and (3)〈
λ

J1(u)

||J1(u)||∗
+ (1− λ) J2(u)

||J2(u)||∗
, u

〉
=

λ

||J1(u)||∗
⟨J1(u), u⟩

+
1

||J2(u)||∗
⟨J2(u), u⟩ −

λ

||J2(u)||∗
⟨J2(u), u⟩ =

1

||J2(u)||∗
⟨J2(u), u⟩

=
||J2(u)||∗ ||u||
||J2(u)||∗

= ||u||.

(19)

From (19) and the fact that E ′ is strictly convex it follows that:

||u|| =
〈
λ

J1(u)

||J1(u)||∗
+ (1− λ) J2(u)

||J2(u)||∗
, u

〉
≤
∥∥∥∥λ J1(u)

||J1(u)||∗
+ (1− λ) J2(u)

||J2(u)||∗

∥∥∥∥
∗
||u|| < ||u||

which is absurd! Thus, the duality mapping is unique. Thus, for each u ∈ B1 there exists
a unique u∗ ∈ E ′ satisfying (15). In this way, the map (18) is uniquely de�ned. This
concludes the proof.

Proposition 4: Let E be a re�exive separable Banach space whose dual E ′ is strictly
convex. The duality mapping J relative to ϕ is hemicontinuous.

Proof: We will prove a more general result:

If vν → v in E then J(vν)
∗
⇀ J(v) in E ′. (20)

Recall that since E ′ is strictly convex then the duality mapping J is uniquely
de�ned. In fact such map is given as in (18). Furthermore, according to the construction
given in (18) it is su�cient to verify that:

If (uν) ⊂ ∂B1 and uν → u (u ∈ ∂B1) then J(uν)
∗
⇀ J(u) in E ′. (21)

Indeed, suppose for a moment that (21) holds and consider vν → v in E. For each
ν ∈ N we can write:

vν = ||vν ||
vν
||vν ||

and v = ||v|| v

||v||
,

assuming vν ̸= 0 and v ̸= 0. Setting

uν =
vν
||vν ||

and u =
v

||v||

then (uν) ⊂ ∂B1 , u ∈ ∂B1 and furthermore uν → u in E. It follows from (21) that
J(uν)

∗
⇀ J(u) in E ′, that is,

ϕ(1)⟨u∗ν , w⟩ → ϕ(1)⟨u∗, w⟩; ∀w ∈ E.
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Since ϕ(1) > 0. it follows that

⟨u∗ν , w⟩ → ⟨u∗, w⟩; ∀w ∈ E. (22)

Since ϕ is continuous and since vν → v in E it follows that:

ϕ(||vν ||)→ ϕ(||v||). (23)

From (22) and (23) we obtain, then:

ϕ(||vν ||)⟨u∗ν , w⟩ → ϕ(||v||)⟨u∗, w⟩,∀w ∈ E.

Therefore
⟨ϕ(||vν ||)u∗ν , w⟩ → ⟨ϕ(||v||)u∗, w⟩,∀w ∈ E

that is,
⟨J(vν), w⟩ → ⟨J(v), w⟩,∀w ∈ E. (24)

Thus, from (24) it follows that

J(vν)
∗
⇀ J(v) in E ′. (25)

Consider, now, the other possibilities:

v ̸= 0 and vν = 0 for a �nite number of indices

v = 0 and vν = 0; ∀ ν ∈ N
v = 0 and vν = 0 for a �nite number of indices

v = 0 and vν = 0 for an in�nite number of indices.

In the �rst case, we disregard the �nite number of indices and proceed as above.
Let us analyze the other cases: When v = 0, we claim that J(vν) → 0 strongly in E ′.
Indeed, since

vν → 0 in E

then, by the continuity of ϕ it follows that

ϕ(||vν ||)→ ϕ(0) = 0.

Thus,
||J(vν)||∗ = ϕ(||vν ||)→ 0

that is, J(vν)→ 0 in E ′, which proves the desired result.
In this way, it is su�cient to prove the claim made in (21).
Consider, then, (uν) ⊂ ∂B1 , uν → u0, (u0 ∈ ∂B1) and suppose, by contradiction,

that J(uν) ̸⇀ J(u0) weak-star in E ′. It follows from this that there exists v0 ∈ E and
ε0 > 0 such that ∀ k ∈ N, there exists a unique index ν(k) satisfying

|⟨J(uν(k)), v0⟩ − ⟨J(u0), v0⟩| ≥ ε0 .

However, from (3) and from the fact that (uν(k)) ⊂ (uν) ⊂ ∂B1 we have

||J(uν(k))||∗ = ϕ(||uν(k)||) = ϕ(1) < +∞.
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Therefore, we can extract a subsequence (uµ) of (uν(k))k such that

J(uµ)⇀ χ weakly-* in E ′ (26)

and by the contradiction hypothesis it follows that χ ̸= J(u0).
Since uµ → u0 , by hypothesis, then from (26) it follows that

⟨J(uµ), uµ⟩ → ⟨χ, u0⟩ when µ→ +∞. (27)

However, from (2) we can write that

⟨J(uµ), uµ⟩ = ||J(uµ)||∗ ||uµ|| = ||J(uµ)||∗ . (28)

On the other hand, from (26) we have that

||χ||∗ ≤ lim ||J(uµ)||∗ . (29)

Thus, from (27), (28) and (29) we obtain:

||χ||∗ ≤ lim ||J(uµ)||∗ = lim⟨J(uµ), uµ⟩ = ⟨χ, u0⟩ ≤ ||χ||∗ ||u0|| = ||χ||∗ .

Whence
⟨χ, u0⟩ = ||χ||∗ ||u0|| = ||χ||∗ (30)

and
||χ||∗ = lim ||J(uµ)||∗ = ϕ(1) = ϕ(||u0||). (31)

From (30) and (31) it follows that

χ = J(u0). (32)

Indeed, suppose the contrary, that is, suppose that χ ̸= J(u0). From (31) and from
(3) it follows that:

||χ||∗ = ϕ(||u0||) = ||J(u0)||∗ . (33)

Since ϕ(||u0||) ̸= 0 it follows from (33) that

χ

||χ||∗
̸= J(u0)

||J(u0)||∗
· (34)

On the other hand, from (2), (30) and (33) we can write that

⟨J(u0), u0⟩ = ||J(u0)||∗ = ||χ||∗ = ⟨χ, u0⟩. (35)

Now, if λ ∈ ]0, 1[ then from (35) we obtain〈
λ

J(u0)

||J(u0)||∗
+ (1− λ) χ

||χ||∗
, u0

〉
=

λ

||J(u0)||∗
⟨J(u0), u0⟩+

1

||χ||∗
⟨χ, u0⟩ −

λ

||χ||∗
⟨χ, u0⟩

=
1

||χ||∗
⟨χ, u0⟩ = 1.
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In this way, since E ′ is strictly convex,

1 =

〈
λ

J(u0)

||J(u0)||∗
+ (1− λ) χ

||χ||∗
, u0

〉
≤
∥∥∥∥λ J(u0)

||J(u0)||∗
+ (1− λ) χ

||χ||∗

∥∥∥∥
∗
||u0|| < 1

which is a contradiction! Thus (32) holds. This concludes the proof.

Theorem 1: Let E be a separable, re�exive Banach space, strictly convex with strictly
convex dual. Let J be the duality mapping from E to E ′ relative to ϕ. Then given f ∈ E ′

there exists a unique u ∈ E such that

J(u) = f

that is, the map J : E → E ′ is a bijection.

Proof: Initially, observe that the existence of the duality mapping J is given by Propo-
sition 3. Furthermore, such map is the unique duality mapping. From (3) we have that

||J(u)||∗ = ϕ(||u||), ∀u ∈ E. (36)

Since S ⊂ E is a bounded subset, it follows from (36) that J(S) is bounded in E ′.
Indeed, from the boundedness of S it follows that there exists c > 0 such that ||u|| ≤ c;
∀u ∈ S. Whence ϕ(||u||) ≤ ϕ(c); ∀u ∈ S, which proves that

J : E → E ′ is bounded. (37)

On the other hand, from (1), (2) and (3) we also have that:

lim
||u||→+∞

⟨J(u), u⟩
||u||

= lim
||u||→+∞

||J(u)||∗ = lim
||u||→+∞

ϕ(||u||) = +∞ (38)

that is, J is coercive. By Proposition 1 we have that

J : E → E ′ is monotone (39)

and by Proposition 4 it follows that

J : E → E ′ is hemicontinuous. (40)

Thus, by Browder's Theorem (Theorem 1 �1) and by Proposition 2 of this para-
graph, we have that given f ∈ E ′; ∃!u ∈ E such that

Ju = f

which concludes the proof.

Example 1: Let E = Lp(Ω), 2 ≤ p < +∞ and ϕ(r) = rp−1.
Let Lp′(Ω) be the topological dual of Lp(Ω). Thus

1

p
+

1

p′
= 1.

De�ne

J : Lp(Ω)→ Lp′(Ω)

u 7→ Ju = |u|p−2 u.
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Note that J is well de�ned, since if u ∈ Lp(Ω), we have that

||J(u)||p
′

Lp′ (Ω)
=

∫
Ω

∣∣|u|p−2 u
∣∣p′ dx =

∫
Ω

(
|u|p−1

) p
p−1

dx = ||u||pLp(Ω) .

It follows from this that:

||J(u)||Lp′ (Ω) = ||u||
p−1
Lp(Ω), (41)

that is,
||J(u)||Lp′ (Ω) = ϕ(||u||Lp(Ω)). (42)

Furthermore, from (41)

⟨J(u), u⟩Lp′ ,Lp =

∫
Ω

|u|p−2u2 dx =

∫
Ω

|u|p dx = ||u||pLp(Ω)

= ||u||p−1
Lp(Ω) ||u||Lp(Ω)

= ||J(u)||Lp′ (Ω) ||u||Lp(Ω)

(43)

Therefore, from (42) and (43) we conclude that J is a duality mapping relative to
ϕ.

Example 2: Let E = W 1,p
0 (Ω); 2 ≤ p < +∞; ϕ(r) = rp−1, where we are endowing E

with the topology

||u|| =
( n∑

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p
Lp(Ω)

dx

)1/p

.

De�ne

J : W 1,p
0 (Ω)→ W−1,p′(Ω)

u 7→ Ju = −
n∑

i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
Observe that J is well de�ned since∥∥∥∥∥

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∥∥∥∥∥
p′

Lp′ (Ω)

=

∫
Ω

∣∣∣∣∣
∣∣∣∣ ∂u∂xi

∣∣∣∣p−2
∂u

∂xi

∣∣∣∣∣
p

p−1

dx =

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx < +∞

and, therefore,
Ju ∈ W−1,p′(Ω).

On the other hand, for all φ ∈ D(Ω) we obtain

⟨J(u), φ⟩ =

〈
−

n∑
i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
, φ

〉

=
n∑

i=1

〈∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi
,
∂φ

∂xi

〉
that is,

⟨J(u), φ⟩ =
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∂φ

∂xi
dx. (44)
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Consider, then, v ∈ W 1,p
0 (Ω). Thus, ∃ (φν) ⊂ D(Ω) such that

φν → v in W 1,p
0 (Ω). (45)

Therefore
∂φν

∂xi
→ ∂v

∂xi
in Lp(Ω). (46)

But from (44), for each ν ∈ N, we can write that

⟨J(u), φν⟩ =
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∂uφν

∂xi
dx.

Taking the limit in the expression above it follows from (45) and (46) that

⟨J(u), v⟩ =
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∂v

∂xi
dx,

that is,

|⟨J(u), v⟩| ≤
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−1 ∣∣∣∣ ∂v∂xi

∣∣∣∣ dx
≤

n∑
i=1

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx)1/p′(∫

Ω

∣∣∣∣ ∂v∂xi
∣∣∣∣p dx)1/p

=
n∑

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p/p′
Lp(Ω)

·
∥∥∥∥ ∂v∂xi

∥∥∥∥
Lp(Ω)

≤
( n∑

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p
Lp(Ω)

)1/p′( n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥p
Lp(Ω)

)1/p

≤ ||u||p−1

W 1,p
0 (Ω)

||v||W 1,p
0 (Ω) ; ∀ v ∈ W 1,p

0 (Ω),

where 1
p
+ 1

p′
= 1. Thus, we obtained that, ||J(u)||W−1,p′ (Ω) ≤ ||u||

p−1

W 1,p
0 (Ω)

. On the other

hand, since we also have the inverse inequality, given that,

||u||pW1,p(Ω) =
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx =

n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∂u

∂xi
dx

= −
n∑

i=1

〈
∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
, u

〉
= ⟨Ju, u⟩

≤ ||Ju||W−1,p′ (Ω) ||u||W 1,p
0 (Ω),

that is,
||u||p−1

W 1,p
0 (Ω)

≤ ||Ju||W−1,p′ (Ω),

then
||J(u)||W−1,p′ (Ω) = ||u||

p−1

W 1,p
0 (Ω)

= ϕ(||u||W 1,p
0 (Ω)), ∀u ∈ W 1,p

0 (Ω).

The relations above show that the map J is a duality mapping relative to ϕ.
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Remark: Theorem 1 leads us naturally to �re�exive� spaces and �strictly convex spaces
as well as their dual�. In truth, this last hypothesis is not a special restriction as the
following result shows, whose proof we will omit in this text.

Theorem 2: Let E be a re�exive Banach space with norm || · ||. There exists a norm
||| · ||| equivalent to || · || such that, for this new norm, E is strictly convex as well as its
dual endowed with the dual norm ||| · |||∗ .

In order to complement the result above consider the next result.

Theorem 3: (Brézis-Crandall-Pazy). Let E be a re�exive Banach space with norm || · ||.
For all a > 1 there exists a norm || · ||a on E that veri�es the following conditions:

(i) Endowed with the norm || · ||a, E is strictly convex as well as its dual (endowed
with the dual norm || · ||a,∗ );

(ii)
1

a
|| · ||a ≤ || · || ≤ a|| · ||a ;

1

a
|| · ||a,∗ ≤ || · ||∗ ≤ a|| · ||a,∗ .

Example 3: Let

A : W 1,p
0 (Ω)→ W−1,p′(Ω)

u 7→ A(u) = −
n∑

i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
be the operator of Example 2. From the above, given f ∈ W−1,p′(Ω) there exists by
Theorem 1 a unique u ∈ W 1,p

0 (Ω) such that

A(u) = −
n∑

i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
= f.

Thus, the stationary problem is solved−
n∑

i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
= f in Ω

u = 0 on Γ

(48)

when f ∈ W−1,p′(Ω).

13.3 Gateaux Derivative - Stationary Problems

In this paragraph, we will present a technique to solve stationary problems that do not
involve duality operators relative to maps. In truth, we will use Browder's Theorem
conjugated to a new type of operator, namely the Gateaux derivative (or di�erential).
This is what we will see next.

De�nition 1: Let E be a Banach space and J : E → R a map. If for each u, v ∈ E there
exists the limit

lim
λ→0

J(u+ λv)− J(u)
λ



13.3. GATEAUX DERIVATIVE - STATIONARY PROBLEMS 155

which we will denote by J ′(u, v), we say that J ′(u, v) is the �rst variation of J at u in
the direction v.

De�nition 2: Let E be a Banach space and J : E → R a map. If for each �xed u ∈ E
there exists u∗ ∈ E ′ such that

⟨u∗, v⟩E′,E = J ′(u, v); ∀ v ∈ E

we say that J is Gateaux di�erentiable at u and u∗ is called the Gateaux derivative (or
di�erential) of J at u and we denote

u∗ = J ′(u).

If J : E → R is Gateaux di�erentiable for all u ∈ E, then the operator is de�ned

J ′ : E → E ′

u 7→ J ′(u)

where

⟨J ′(u), v⟩ = J ′(u, v) = lim
λ→0

J(u+ λv)− J(u)
λ

; ∀u, v ∈ E. (1)

Proposition 1: Let E be a Banach space and K a convex subset of E. Consider
J : K → R a Gateaux di�erentiable map. Then, each of the statements are equivalent:

(i) J is convex

(ii) J(v)− J(u) ≥ ⟨J ′(u), v − u⟩; ∀u, v ∈ K

(iii) ⟨J ′(v)− J ′(u), v − u⟩ ≥ 0; ∀u, v ∈ K, that is , J ′ is a monotone operator.

Proof:
(i) ⇒ (ii)

Suppose that J : K → R is convex and let u, v ∈ K and λ ∈ ]0, 1]. By the convexity
of K it follows that (1− λ)u+ λv ∈ K and by the convexity of J it follows that

J((1− λ)u+ λv) ≤ (1− λ)J(u) + λJ(v)

or even
J(u+ λ(v − u)) ≤ J(u) + λ(J(v)− J(u)).

Thus:
J(u+ λ(v − u))− J(u)

λ
≤ J(v)− J(u).

Since J is Gateaux di�erentiable, by hypothesis, taking the limit in the inequality
above as λ→ 0 we obtain

⟨J ′(u), v − u⟩ ≤ J(v)− J(u)

which proves (ii).
(ii) ⇒ (iii)
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Suppose that (ii) holds and let u, v ∈ K. Then

⟨J ′(u), v − u⟩ ≤ J(v)− J(u)
⟨J ′(v), u− v⟩ ≤ J(u)− J(v).

Summing the inequalities above member by member it follows that

⟨J ′(u), v − u⟩+ ⟨J ′(v), u− v⟩ ≤ 0.

Whence
⟨J ′(u), v − u⟩ − ⟨J ′(v), v − u⟩ ≤ 0,

that is,
⟨J ′(v)− J ′(u), v − u⟩ ≥ 0

which proves (iii).

(iii) ⇒ (i)
Suppose that (iii) happens and let u, v ∈ K. Set

[u, v] = {(1− λ)u+ λv; λ ∈ [0, 1]} ⊂ K.

De�ne, then

ϕ : [0, 1]→ R
λ 7→ ϕ(λ) = J(u+ λ(v − u))

that is J |[u,v] . Now, for each λ ∈ ]0, 1[ let h > 0 be su�ciently small such that (λ+ h) ∈
]0, 1[ . In this way:

ϕ′(λ) = lim
h→0

ϕ(λ+ h)− ϕ(λ)
h

= lim
h→0

J(u+ (λ+ h)(v − u))− J(u+ λ(v − u))
h

= lim
h→0

J [(u+ λ(v − u)) + h(v − u)]− J(u+ λ(v − u))
h

·

Since J is Gateaux di�erentiable in K then the limit above exists and it follows
that

ϕ′(λ) = ⟨J ′(u+ λ(v − u)), v − u⟩. ∀λ ∈ ]0, 1[ . (2)

Now, if λ = 0 or λ = 1 then consider, respectively, the limit from the left and from
the right so as to obtain:

ϕ′(0) = lim
h→0
h>0

J(u+ h(v − u))− J(u)
h

= ⟨J ′(u), v − u⟩ (3)

and

ϕ′(1) = lim
h→0
h<0

J(v + h(v − u))− J(v)
h

= ⟨J ′(v), v − u⟩ (4)

From (2), (3) and (4) we can write

ϕ′(λ) = ⟨J ′(u+ λ(v − u)), v − u⟩; ∀λ ∈ [0, 1]. (5)
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We will prove next that ϕ′ is increasing. Indeed, let λ1, λ2 ∈ [0, 1] with λ1 < λ2 .
Then, from (5) it follows that

ϕ′(λ2)− ϕ′(λ1)

= ⟨J ′(u+ λ2(v − u)), v − u⟩ − ⟨J ′(u+ λ1(v − u)), v − u⟩
= ⟨J ′(u+ λ2(v − u))− J ′(u+ λ1(v − u)), v − u⟩

(6)

Setting

w1 = u+ λ1(v − u) ∈ K and w2 = u+ λ2(v − u) ∈ K

it follows that
w2 − w1 = (λ2 − λ1)(v − u).

However, by hypothesis

⟨J ′(w2)− J ′(w1), w2 − w1⟩ ≥ 0

that is,
⟨J ′(u+ λ2(v − u))− J ′(u+ λ1(v − u)), (λ2 − λ1)(v − u)⟩ ≥ 0.

Since (λ2 − λ1) > 0 it follows from the inequality above that

⟨J ′(u+ λ2(v − u))− J ′(u+ λ1(v − u)), v − u⟩ ≥ 0

and from (6) it follows that
ϕ′(λ2) ≥ ϕ′(λ1).

Thus, ϕ′ is increasing and, consequently, ϕ is convex.
Therefore

ϕ((1− λ) · 0 + λ · 1) ≤ (1− λ)ϕ(0) + λϕ(1); ∀λ ∈ [0, 1],

that is,
ϕ(λ) ≤ (1− λ)ϕ(0) + λϕ(1); ∀λ ∈ [0, 1],

or even,
J((1− λ)u+ λv) ≤ (1− λ)J(u) + λJ(v); ∀λ ∈ [0, 1],

which proves (i) and concludes the proof of the proposition.

In what follows, we will prove the hemicontinuity of the operator J ′ : E → E ′ when
J : E → R is convex and Gateaux di�erentiable. Before that, however, we need some
preliminary results.

Lemma 1: Let E be a Banach space and A : E → E ′ a map satisfying the following
property: For each v ∈ E,

⟨A(u), u− v⟩E′,E is bounded below on bounded sets (7)

(as a function of u).
Then, for each u0 ∈ E, there exist ε, c > 0 such that if u ∈ E and ||u − u0|| ≤

ε⇒ ⟨A(u), u− u0⟩ ≤ c.
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Proof: Suppose, by contradiction, that there exists u0 such that for each ε, c > 0,
∃uε,c ∈ E such that ||uε,c − u0|| ≤ ε and yet ⟨A(uε,c), uε,c − u0⟩ > c.

In particular, for each n ∈ N, ∃un ∈ E such that

||un − u0|| ≤
1

n
and ⟨A(un), un − u0⟩ > n.

Then,

||un − u0|| → 0 and ⟨A(un), un − u0⟩ → +∞, when n→ +∞. (8)

Since 0 < n < ⟨A(un), un − u0⟩ ≤ ||A(un)||E′ ||un − u0|| then

0 <
1

||un − u0||
≤ ||A(un)||E′

⟨A(un), un − u0⟩
· (9)

But from (8) it follows that

1

||un − u0||
→ +∞

and, therefore, from (9) it follows that

vn =
A(un)

⟨A(un), un − u0⟩
is unbounded in E ′.

By the Banach-Steinhaus Theorem there exists w ∈ E such that

sup
n∈N
|⟨vn, w⟩| = +∞.

Thus, there exists (vν) subsequence of (vn) such that

⟨vν , w⟩ → +∞ or ⟨vν , w⟩ → −∞.

Without loss of generality we can assume that only the 1st case happens because,
otherwise, if we replace w by −w the analysis is the same as the �rst case. Thus, suppose
that

⟨vν , w⟩ → +∞ (10)

Therefore,

⟨A(uν), (uν − u0)− w⟩ = ⟨A(uν), uν − u0⟩ − ⟨A(uν), w⟩

= ⟨A(uν), uν − u0⟩ −
1

⟨A(uν), uν − u0⟩
⟨A(uν), uν − u0⟩⟨A(uν), w⟩

= ⟨A(uν), uν − u0⟩
[
1− ⟨A(uν), w⟩

A(uν), uν − u0⟩

]
= ⟨A(uν), uν − u0⟩ · (1− ⟨vν , w⟩).

However, from (8) and (10) it follows that the last expression above tends to −∞,
when ν → +∞, that is,

⟨A(uν), (uν − u0)− w⟩ → −∞, when ν → +∞.

But this contradicts (7), which concludes the proof.
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Proposition 2: Let E be a Banach space and A : E → E ′ a map verifying the property
mentioned in (7). Then, A is locally bounded, that is,

Given u0 ∈ E, ∃ ε0 > 0 such that ||A(u)||E′ is bounded for all u ∈ Bε0(u0).

Proof: Let u0 ∈ E. Since A satis�es (7) then by Lemma 1 there exist ε > 0 and c > 0
such that

If u ∈ E and ||u− u0|| ≤ ε0 ⇒ ⟨A(u), u− u0⟩ ≤ c. (11)

Consider w ∈ E. We have

⟨A(u), (u− u0)− w⟩ = ⟨A(u), u− u0⟩ − ⟨A(u), w⟩.

Whence
⟨A(u), w⟩ = ⟨A(u), u− u0⟩ − ⟨A(u), u− u0 − w⟩.

From (7) and (11) it follows that the right side of the equality above is bounded
above, that is, there exists c1 > 0 such that

⟨A(u), w⟩ ≤ c1 .

Replacing w by −w in the inequality above, it follows that

⟨A(u), w⟩ ≥ −c1,

which leads us to conclude that for each w ∈ E, there exists c1(w) > 0 such that

|⟨A(u), w⟩| ≤ c1(w) ; ∀u ∈ Bε0(u0),

where Bε0(u0) designates the closed ball centered at u0 with radius ε0 .
This means that the image of the ball Bε0(u0) is weak-∗ bounded. By the Banach-

Steinhaus Theorem it follows that

sup
u∈Bε0 (u0)

||A(u)||E′ < +∞,

which proves the desired result.

Proposition 3: Let E be a Banach space and A : E → E ′ a monotone map. Then A is
locally bounded.

Proof: By the monotonicity of A it follows that:

⟨A(u)− A(v), u− v⟩E′,E ≥ 0; ∀u, v ∈ E.

Thus, for each v ∈ E

⟨A(u), u− v⟩ ≥ ⟨A(v), u− v⟩; ∀u ∈ E.

Thus, �xing v ∈ E, if we let �u� traverse a bounded set of E it follows that the
right side of the last inequality is bounded below with respect to u. Indeed, we have

−||A(v)||E′||u− v|| ≤ ⟨A(v), u− v⟩.



160 CHAPTER 13. THE MONOTONICITY METHOD

Whence
−||A(v)||E′

(
||u||+ ||v||

)
≤ ⟨A(v), u− v⟩. (12)

But, considering

||u|| ≤ L; ∀u ∈ S, where S is a bounded set of E,

then from (12) it follows that

−||A(v)||E′(L+ ||v||) ≤ ⟨A(v), u− v⟩

which proves the desired result. Then, the property in (7) is veri�ed and, consequently,
from Proposition 2 we conclude that A is locally bounded.

Proposition 4: Let E be a Banach space and K a convex subset of E. Consider
J : K → R a convex and Gateaux di�erentiable map on K. Then, given u, v ∈ K, the
map

ψ(λ) = ⟨J ′(u+ λ(v − u)), v − u⟩, λ ∈ [0, 1],

is continuous on [0, 1].

Proof: Set, according to the proof of Proposition 1 the following map

ϕ : [0, 1]→ R
λ 7→ ϕ(λ) = J(u+ λ(v − u)).

We have
ϕ′(λ) = ⟨J ′(u+ λ(v − u)), v − u⟩; ∀λ ∈ [0, 1].

Since J is convex, it follows by Proposition 1 that J ′ is monotone. Thus, if λ1, λ2 ∈
[0, 1] and λ1 < λ2 then

ϕ′(λ2) ≥ ϕ′(λ1).

Thus ϕ′ is increasing, besides being de�ned on the whole [0, 1]. It follows from this
that ϕ′ does not admit discontinuities of any kind, that is, ϕ′ = ψ is continuous. This
proves the proposition.

Theorem 1: Let E be a separable Banach space and J : E → R a convex and Gateaux
di�erentiable map. Then, the map u 7→ J ′(u) from E to E ′ is hemicontinuoues.

Proof: We will prove, in truth, something more general, that is, that J ′ is continuous
from (E, τstrong) into (E ′, τweak*). Indeed, let (un) ⊂ E be such that

un → u in E (13)

and, by contradiction, suppose that

J ′(un)
∗
̸⇀ J ′(u). (14)

According to Proposition 1, J ′ is a monotone map. From Proposition 3 it follows
then that J ′ is locally bounded, that is, for all u ∈ E; there exists εu > 0 such that
||J ′(v)||E′ is bounded; for all v ∈ Bεu(u).



13.3. GATEAUX DERIVATIVE - STATIONARY PROBLEMS 161

In particular, for u ∈ E given in (13), there exists ε > 0 such that

||J ′(v)||E′ ≤ c; ∀ v ∈ Bε(u), (15)

where c > 0. From (13) it follows that ∃n0 ∈ N such that ∀n ≥ n0 we have

un ∈ Bε(u),

where Bε(u) designates the open ball centered at u with radius ε. It follows from (15)
that

||J ′(un)||E′ ≤ c; ∀n ≥ n0 . (16)

Let us de�ne
(uν) = (un)n≥n0 .

Evidently, this subsequence, except for a �nite number of terms, continues verifying
the properties given in (13) and (14).

It results from (14) the existence of v0 ∈ E such that

aν = ⟨J ′(uν), v0⟩ ̸→ ⟨J ′(u), v0⟩ = a.

Therefore, there exists δ > 0 such that for all k ∈ N ∃ aν(k) such that

|aν(k) − a| ≥ δ,

that is,
|⟨J ′(uν(k)), v0⟩ − ⟨J ′(u), v0⟩| ≥ δ. (17)

On the other hand, from (16) it follows that (J ′(uν(k)))k∈N is a bounded sequence
of E ′. Since E is separable Banach, there exists (uµ)µ∈N subsequence of (uν(k))k∈N such
that

J ′(uµ)
∗
⇀ f in E ′. (18)

By the property of the elements of (J ′(uµ)) given in (17) it follows that

J ′(u) ̸= f. (19)

We will prove, next that

⟨f, u− v⟩ ≥ ⟨J ′(u), u− v⟩; ∀ v ∈ E. (20)

Indeed, let
w = (1− θ)u+ θv; θ ∈]0, 1[ .

We have, by the monotonicity of J ′ that

⟨J ′(uµ)− J ′(w), uµ − w⟩ ≥ 0.

Whence
⟨J ′(uµ)− J ′(w), uµ − u− θ(v − u)⟩ ≥ 0.

It follows from this that

⟨J ′(uµ), uµ − u⟩ − θ⟨J ′(uµ), v − u⟩ − ⟨J ′(w), uµ − u⟩+ θ⟨J ′(w), v − u⟩ ≥ 0
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and, therefore,

θ⟨J ′(uµ), u− v⟩ ≥ −⟨J ′(uµ), uµ − u⟩+ ⟨J ′(w), uµ − u⟩ − θ⟨J ′(w), v − u⟩.

Taking the limit in the inequality above as µ → +∞ results from (13) and (18)
that

θ⟨f, u− v⟩ ≥ −θ⟨J ′(w), v − u⟩.

Dividing by θ, we obtain

⟨f, u− v⟩ ≥ ⟨J ′(w), u− v⟩; ∀ v ∈ E

or better,
⟨f, u− v⟩ ≥ ⟨J ′(u+ θ(v − u)), u− v⟩; ∀ v ∈ E.

Taking the limit in the inequality above as θ → 0 results from Proposition 4 that

⟨f, u− v⟩ ≥ ⟨J ′(u), u− v⟩, ∀ v ∈ E,

which proves (20).
Consider, now, λ > 0 and z ∈ E. Then, taking in (20) v = u− λz, it results that

⟨f, λz⟩ ≥ ⟨J ′(u), λz⟩.

Whence
⟨f, z⟩ ≥ ⟨J ′(u), z⟩; ∀ z ∈ E. (21)

Analogously, taking v = u− λz, λ < 0, in (20) we obtain

⟨f, z⟩ ≤ ⟨J ′(u), z⟩; ∀ z ∈ E. (22)

From (21) and (22) we conclude that

J ′(u) = f,

which contradicts (19). This proves the theorem.

It follows from Propositions 1 and 3 and from Theorem 1 the central result of this
paragraph which we state in the form of the following Theorem:

Theorem 2: Let E be a separable Banach space and J : E → R a convex and Gateaux
di�erentiable map. Then, the map u 7→ J ′(u) from E to E ′ is monotone, hemicontinuous
and locally bounded.

Example 1: Consider E = R and J : E → R di�erentiable. Then, for each x ∈ E and
h > 0 we have

⟨J ′(x), h⟩ = lim
λ→0
λ ̸=0

J(x+ λh)− J(x)
λ

= h · lim
λ→0
λ ̸=0

J(x+ λh)− J(x)
(λh)

= J ′(x) · h,
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that is,

J ′(x) : E → R
h 7→ ⟨J ′(x), h⟩ = J ′(x) · h,

where J ′(x) is the derivative of J at x.

Example 2: Let E = Rn and J : E → R be di�erentiable in E. Then, for all u, v ∈ Rn

we have

⟨J ′(u), v⟩ = lim
λ→0

J(u+ λv)− J(u)
λ

= ⟨∇J(u), v⟩ =
n∑

i=1

∂J

∂xi
(u) · vi

that is,

J ′(u) : E → R
v 7→ ⟨J ′(u), v⟩ = ⟨∇J(u), v⟩.

Example 3: Let E = Lp(Ω), Ω ⊂ Rn open and 2 ≤ p < +∞. Consider g : R → R of
class C1(R) such that

(i) |g(s)| ≤ α|s|p ; α > 0,

(ii) |g′(s)| ≤ β|s|p−1 ; β > 0.

De�ne

J : E → R

u 7→ J(u) =

∫
Ω

g(u(x))dx.

J is well de�ned since, from item (i) it follows that

|g(u(x))| ≤ α|u(x)|p; ∀x ∈ Ω,

and since (g ◦ u) is measurable and u ∈ Lp(Ω) it follows that (g ◦ u) ∈ L1(Ω). We will
calculate, next, the Gateaux derivative of J . Given u, v ∈ Lp(Ω), let us evaluate the �rst
variation of J at u in the direction v. We have

J ′(u, v) = lim
λ→0

J(u+ λv)− J(u)
λ

= lim
λ→0

1

λ

{∫
Ω

[
g(u(x) + λv(x))− g(u(x))

]
dx

}
.

(23)

However, given ξ, η ∈ R such that η < ξ, by the Mean Value Theorem there exists
ξ0 ∈ ]η, ξ[ such that

g(ξ)− g(η) = g′(ξ0)(ξ − η).
Since ξ0 ∈]η, ξ[ , then ξ0 = (1 − θ)η + θξ = (ξ − η)θ + η for some θ ∈]0, 1[ . In

particular, supposing without loss of generality that v(x) > 0 for each x ∈ Ω and λ > 0,
there exists θλ(x) with 0 < θλ(x) < 1 such that

g(u(x) + λv(x)︸ ︷︷ ︸
ξ

)− g(u(x)︸︷︷︸
η

) = g′(λv(x)θλ(x) + u(x))(λv(x)).
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Thus, the last expression in (23) becomes:

lim
λ→0

1

λ

{∫
Ω

[
g′(u(x) + λθλ(x)v(x))

]
λv(x) dx

}
. (24)

Since θλ(x) is bounded, the product λ · θλ(x)→ 0 when λ→ 0; whatever x ∈ Ω is.
By the continuity of g′ it follows that, for all x ∈ Ω,

g′(u(x) + λθλ(x)v(x))v(x)
λ→0−−→ g′(u(x))v(x). (25)

However, for each λ ∈ [0, 1], we have from (ii) that

|g′(u(x) + λθλ(x)v(x))| |v(x)| ≤ β|u(x) + λθλ(x)v(x)|p−1 |v(x)|
≤ c(p) · β ·

{
|u(x)|p−1 + |v(x)|p−1

}
|v(x)|

= c(p) · β ·
{
|u(x)|p−1 · |v(x)|+ |v(x)|p

}
.

(26)

Note that |u|p−1 ∈ Lp′(Ω), where 1
p
+ 1

p′
= 1, since∫

Ω

[
|u(x)|p−1

]p′
dx =

∫
Ω

|u(x)|p dx < +∞.

Thus, by Hölder's inequality the product |u|p−1 |v| ∈ L1(Ω). Therefore, the last
expression in (26) is integrable. Thus, from (25), (26) and from the Lebesgue Dominated
Convergence Theorem it follows that the integral in (24) converges to∫

Ω

g′(u(x))v(x) dx.

Therefore

J ′(u, v) =

∫
Ω

g′(u(x)) · v(x) dx, ∀u, v ∈ Lp(Ω). (27)

De�ne,

u∗ : Lp(Ω)→ R
v 7→ ⟨u∗, v⟩ = J ′(u, v).

We will prove that u∗ ∈ Lp′(Ω) = [Lp(Ω)]′. Indeed, u∗ is clearly linear by virtue of
the linearity of the integral in (27). Now, let (vν) ⊂ Lp(Ω) be such that vν → 0 in Lp(Ω).
We have, by Hölder's inequality that

|⟨u∗, vν⟩| ≤
∫
Ω

|g′(u(x))| · |vν(x)| dx

≤ β

∫
Ω

|u(x)|p−1︸ ︷︷ ︸
Lp′

· |vν(x)|︸ ︷︷ ︸
Lp

dx

≤ β

(∫
Ω

|u(x)|p dx
)1/p′(∫

Ω

|vν(x)|p dx
)1/p

= β||u||p/p
′

Lp(Ω) ||vν ||Lp(Ω) → 0, when ν → +∞,
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that is,
vν → 0 in Lp(Ω)⇒ ⟨u∗, vν⟩ → 0 in R.

Thus, u∗ ∈ Lp′(Ω). Setting u∗ = J ′(u) results that

⟨J ′(u), v⟩ =
∫
Ω

g′(u(x))v(x) dx; ∀u, v ∈ Lp(Ω)

= ⟨g′ ◦ u, v⟩
(28)

Example 4: Let A : Lp(Ω)→ Lp(Ω) be a linear operator of Lp(Ω) whose domain is given
by

W (Ω, A) = {u ∈ Lp(Ω);Au ∈ Lp(Ω)}.
We will endow W (Ω, A) with the graph norm

||v||pW = ||v||pLp(Ω) + ||Av||
p
Lp(Ω) .

Let g : R→ R, be continuously di�erentiable satisfying the following properties:

(i) |g(s)| ≤ α|s|p; α > 0.

(ii) |g′(s)| ≤ β|s|p−1; β > 0.

De�ne, then the functional

J : W (Ω, A)→ R

u 7→ J(u) =

∫
Ω

g(Au(x)) dx.

Note that J is well de�ned. Indeed, from (i) we have

|g(Au(x))| ≤ α|Au(x)|p; ∀x ∈ Ω. (29)

Since u ∈ W (Ω, A) then Au ∈ Lp(Ω) and, consequently, |Au|p ∈ L1(Ω). Further-
more, since g ◦ Au is measurable and, by (29), bounded by an integrable function then
g ◦ Au ∈ L1(Ω).

We will calculate, next, the �rst variation of J at u in the direction v, where
u, v ∈ W (Ω, A). We have

J ′(u, v) = lim
λ→0

J(u+ λv)− J(u)
λ

= lim
λ→0

1

λ

{∫
Ω

[
g(Au(x) + λAv(x))− g(Au(x))

]
dx

}
.

By the Mean Value Theorem this last expression becomes

lim
λ→0

1

λ

{∫
Ω

[
g′(Au(x) + λθλ(x)Av(x))

]
λAv(x)

]
dx

}
,

where 0 < θλ(x) < 1. In a manner analogous to what was done in the previous example
we prove, given the Lebesgue Dominated Convergence Theorem, that the integral above
converges to ∫

Ω

g′(Au(x))Av(x) dx.
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Therefore

J ′(u, v) =

∫
Ω

g′(Au(x))Av(x) dx; ∀u, v ∈ W (Ω, A).

De�ne

u∗ : W (Ω, A)→ R
v 7→ ⟨u∗, v⟩ = J ′(u, v).

We will prove that u∗ is a linear and continuous form on W (Ω, A), that is,
u∗ ∈ (W (Ω, A))′. Indeed, the linearity is obvious. Let us prove continuity. Consider,
then (vν) ⊂ W (Ω, A) such that vν → 0 in W (Ω, A). We have

|⟨u∗, vν⟩| ≤
∫
Ω

|g′(A(u))| |Avν(x)| dx

≤ β

∫
Ω

|Au(x)|p−1︸ ︷︷ ︸
Lp′

|Avν(x)|︸ ︷︷ ︸
Lp

dx

≤ β

(∫
Ω

|Au(x)|p dx
)1/p′(∫

Ω

|Avν(x)|p dx
)1/p

= β||Au||p/p
′

Lp(Ω) ||Avν ||Lp(Ω)

≤ β||Au||p/p
′

Lp(Ω) ||vν ||W (Ω,A) → 0, when ν → +∞.

Thus, ⟨u∗, vν⟩ → 0 which proves that

u∗ ∈ (W (Ω, A))′.

Therefore, for each u ∈ W (Ω, A) we have that

⟨J ′(u), v⟩ =
∫
Ω

g′(Au(x))Av(x) dx, ∀ v ∈ W (Ω, A), (30)

where J ′(u) is de�ned by the operator

J ′ : W (Ω, A)→ (W (Ω, A))′

u 7→ J ′(u) = u∗.

We will see, next, some particular cases of the previous example.

Example 5: The Pseudo-Laplacian operator.
Consider for each i = 1, . . . , n

Wi = W (Ω, Ai) =

{
v ∈ Lp(Ω);

∂v

∂xi
∈ Lp(Ω)

}
; 2 ≤ p < +∞,

endowed with the topology: ||u||pWi
= ||v||pLp(Ω) +

∥∥∥∥ ∂v∂xi
∥∥∥∥p
Lp(Ω)

. De�ne

Ai : W (Ω, Ai)→ Lp(Ω)

v 7→ Aiv =
∂v

∂xi
.
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Let ρ > 0 and consider

f(x) = |s|ρ s =

{
sρs; s ≥ 0

(−s)ρs; s < 0
=

{
sρs; s ≥ 0

−(−s)ρ(−s); s < 0
=

{
sρ+1; s ≥ 0

−(−s)ρ+1; s < 0.

Whence

f ′(s) =

{
(ρ+ 1)sρ; s ≥ 0

−(ρ+ 1) · (−s)ρ · (−1); s < 0
=

{
(ρ+ 1)sρ; s ≥ 0

(ρ+ 1)(−s)ρ; s < 0
= (ρ+ 1)|s|ρ.

Thus, setting
g(s) = |s|p =

(
|s|p−2 s2

)
=
(
|s|p−2 s

)
s,

it follows that
g′(s) = [(p− 2) + 1]|s|p−2 s+

(
|s|p−2 s

)
= p|s|p−2 s.

In this way, g ∈ C1(R) since g′ ∈ C0(R). Furthermore,

|g(s)| = |s|ρ

|g′(s)| = |p|s|p−2 s| = p|s|p−1,

which proves that g satis�es properties (i) and (ii) alluded to in the previous example.
We are, then, within the hypotheses of Example 4. Thus, de�ning for each i =

1, . . . , n

Ji : W (Ω, Ai)→ R

u 7→ Ji(u) =

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx,

then Ji is Gateaux di�erentiable and for each u ∈ W (Ω, Ai) we have that

⟨J ′
i(u), v⟩ = p

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∂v

∂xi
dx; ∀ v ∈ W (Ω, Ai). (31)

Consider, now,

E =
n⋂

i=1

W (Ω, Ai) =

{
u ∈ Lp(Ω);

∂u

∂xi
∈ Lp(Ω); i = 1, . . . , n

}
,

that is,
E = W 1,p(Ω).

We will endow E with the natural topology

||u||pE = ||u||pLp(Ω) +
n∑

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p
Lp(Ω)

.

De�ne
J : E → R

u 7→ J(u) =
1

p

n∑
i=1

Ji(u).
(32)
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J is clearly well de�ned. We will calculate, next, the �rst variation of J at u in the
direction v, where u, v ∈ E. We have

⟨J ′(u), v⟩ = lim
λ→0

J(u+ λv)− J(u)
λ

= lim
λ→0

1

p

n∑
i=1

Ji(u+ λv)− Ji(u)
λ

=
1

p

n∑
i=1

lim
λ→0

Ji(u+ λv)− Ji(u)
λ

=
1

p

n∑
i=1

⟨J ′
i(u), v⟩

=
1

p
p

n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∂v

∂xi
dx.

Set

u∗ : E → R

v 7→ ⟨u∗, v⟩ = J ′(u, v) =
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∂v

∂xi
dx.

We have that u∗ is clearly linear. By the Hölder and Minkowski inequalities it
follows that

|⟨u∗, v⟩| ≤
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−1 ∣∣∣∣ ∂v∂xi

∣∣∣∣ dx
≤

n∑
i=1

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx)1/p′(∫

Ω

∣∣∣∣ ∂v∂xi
∣∣∣∣p dx)1/p

=
n∑

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p/p′
Lp(Ω)

·
∥∥∥∥ ∂v∂xi

∥∥∥∥
Lp(Ω)

≤
( n∑

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p
Lp(Ω)

)1/p′( n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥p
Lp(Ω)

)1/p

≤ ||u||p/p
′

E ||v||E,

where 1
p
+ 1

p′
= 1, which proves the continuity of u∗. Therefore, J is Gateaux di�erentiable

and, furthermore,

⟨J ′(u), v⟩ =
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∂v

∂xi
dx; ∀u, v ∈ E, (33)

where

J ′ : E → E ′

u 7→ J ′(u) = u∗.
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Remark: It is worth noting that the dual of E = W 1,p(Ω) is not a �space of distributions�.
We can then consider

E = W 1,p
0 (Ω)

whose dual E ′ = W−1,p′(Ω) ↪→ D′(Ω). thus, if u ∈ E = W 1,p
0 (Ω) then J ′(u) ∈ E ′ =

W−1,p′(Ω) ↪→ D′(Ω). Furthermore, for all φ ∈ D(Ω) we obtain

⟨J ′(u), φ⟩D′(Ω),D(Ω) =
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∂φ

∂xi
dx

= −
n∑

i=1

〈
∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
, φ

〉
D′(Ω),D(Ω)

=

〈
−

n∑
i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
, φ

〉
D′(Ω),D(Ω)

.

By density we conclude:

⟨J ′(u), v⟩W−1,p′ ,W 1,p
0

=

〈
−

n∑
i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
, v

〉
W−1,p′(Ω),W 1,p

0 (Ω)

,

in this way,

J ′(u) = −
n∑

i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
in W−1,p′(Ω) (34)

Finally, note that the second derivative of the function g(s) = |s|p mentioned at
the beginning of this example is given by

g′′(s) = p
{(
|s|p−2

)′
s+ |s|p−2

}
= p
{
(p− 2)|s|p−4s2 + |s|p−2

}
= p
{
(p− 2)|s|p−2 + |s|p−2

}
= p(p− 1)|s|p−2 .

Thus,
g′′(s) ≥ 0; ∀ s ∈ R,

which implies that
g(s) = |s|p,

is a convex function. Thus, the functional given in (32) is convex. Indeed, whatever
∀u ∈ E

J(u) =
1

p

n∑
i=1

Ji(u)

where

Ji(u) =

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx.

Let u, v ∈ E and λ ∈ [0, 1]. We have

Ji(λu+ (1− λ)v) =
∫
Ω

∣∣∣∣ ∂∂xi (λu+ (1− λ)v
)∣∣∣∣p dx

=

∫
Ω

∣∣∣∣λ ∂u

∂xi
+ (1− λ) ∂v

∂xi

∣∣∣∣p dx,
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which by the convexity of g is less than or equal to∫
Ω

{
λ

∣∣∣∣ ∂u∂xi
∣∣∣∣p + (1− λ)

∣∣∣∣ ∂v∂xi
∣∣∣∣p}dx;

that is, for each i = 1, . . . , n

Ji(λu+ (1− λ)v) ≤ λ Ji(u) + (1− λ)Ji(v), ∀u, v ∈ E.

Therefore,

J(λu+ (1− λ)v) = 1

p

n∑
i=1

Ji(λu+ (1− λ)v)

≤ 1

p

{ n∑
i=1

(
λ Ji(u) + (1− λ)Ji(v)

)}
= λ J(u) + (1− λ)J(v).
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Conclusion:
The map

J : W 1,p
0 (Ω)→ R

u 7→ J(u) =
1

p

n∑
i=1

Ji(u),

where

Ji(u) =

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx; 2 ≤ p < +∞,

is convex and Gateaux di�erentiable. Then, by Theorem 2, the map

J ′ : W 1,p
0 (Ω)→ W−1,p(Ω)

u 7→ J ′(u) = −
n∑

i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
is monotone and hemicontinuous.

Example 6: The Pseudo-biharmonic operator.
Consider 2 ≤ p < +∞ and de�ne

W (Ω, A) = {u ∈ Lp(Ω);−∆u ∈ Lp(Ω)},

endowed with the topology

||u||pW = ||u||pLp(Ω) + ||∆u||
p
Lp(Ω) ,

and

A : W (Ω, A)→ Lp(Ω)

u 7→ Au = −∆u.

Let

g : R→ R

s 7→ g(s) =
1

p
|s|p

whose derivative is given by
g′(s) = |s|p−2 s.

In this way, g ∈ C1(R). Furthermore,

|g(s)| = 1

p
|s|p

|g′(s)| = |s|p−1,

which proves that g satis�es properties (i) and (ii) alluded to in Example 4. We are,
therefore, within the hypotheses of that example. De�ning

J : W (Ω, A)→ R

u 7→ J(u) =
1

p

∫
Ω

|∆u|p dx,
(35)
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then J is Gateaux di�erentiable and given u, v ∈ W (Ω, A) it follows that

⟨J ′(u), v⟩ =
∫
Ω

|∆u|p−2∆u∆v dx. (36)

In particular, if we considerW 2,p
0 (Ω) instead ofW (Ω, A) whose dual isW−2,p′(Ω) ↪→

D′(Ω) then, given u ∈ W 2,p
0 (Ω) and φ ∈ D(Ω), it follows that

⟨J ′(u), φ⟩D′(Ω),D(Ω) =

∫
Ω

|∆u|p−2∆u∆φdx

=
〈
∆
(
|∆u|p−2∆u

)
, φ
〉
D′(Ω),D(Ω)

,

that is, by density we have that

⟨J ′(u), v⟩W−2,p′ ,W 2,p
0

=
〈
∆
(
|∆u|p−2∆u

)
, v
〉
W−2,p′ ,W 2,p

0
for all v ∈ W 2,p

0 (Ω).

Thus,
J ′(u) = ∆

(
|∆u|p−2∆u

)
in W−2,p′(Ω). (37)

Analogously, as in the previous example we also have that the map g(s) =
1

p
|s|p

is convex. Therefore, the functional given in (35) is also convex.

Conclusion:
The map

J : W 2,p
0 (Ω)→ R

u 7→ J(u) =
1

p

∫
Ω

|∆u|p dx

is convex and Gateaux di�erentiable. Then, by Theorem 2, the map

J ′ : W 2,p
0 (Ω)→ W−2,p′(Ω)

u 7→ J ′(u) = ∆
(
|∆u|p−2∆u

)
is monotone and hemicontinuous.

We will see, next, some applications of the exposed theory for the resolution of
stationary problems.

Application 1:
Consider the stationary problem∣∣∣∣∣∣∣

−
n∑

i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
= f in Ω

u|Γ = 0,

(38)

where f ∈ W−1,p′(Ω); 2 ≤ p < +∞. It follows from Example 5 that the operator

J ′ : W 1,p
0 (Ω)→ W−1,p′(Ω)

u 7→ J ′(u) = −
n∑

i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
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is monotone and hemicontinuous, since it is the Gateaux di�erential of the convex func-
tional

J : W 1,p
0 (Ω)→ R

u 7→ J(u) =
1

p

n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx.

Our aim is to use Browder's Theorem and conclude that the stationary problem
(38) possesses a weak solution. We already have the monotonicity and hemicontinuity of
J ′. It remains to prove that J ′ is bounded and coercive. Indeed:

(i) J ′ is bounded. Indeed, we have that

||J ′(u)||W−1,p′ (Ω) = sup
||v||

W
1,p
0 (Ω)

≤1

|⟨J ′(u), v⟩|.

However, from (33) it follows that

|⟨J ′(u), v⟩| ≤
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−1 ∣∣∣∣ ∂v∂xi

∣∣∣∣ dx
≤

n∑
i=1

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx)1/p′(∫

Ω

∣∣∣∣ ∂v∂xi
∣∣∣∣p dx)1/p

=
n∑

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p/p′
Lp(Ω)

∥∥∥∥ ∂v∂xi
∥∥∥∥
Lp(Ω)

≤
( n∑

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p
Lp(Ω)

)1/p′( n∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥p
Lp(Ω)

)1/p

= ||u||p/p
′

W 1,p
0 (Ω)

||v||W 1,p
0 (Ω)

= ||u||p−1

W 1,p
0 (Ω)

||v||W 1,p
0 (Ω) .

Whence
||J ′(u)||W−1,p′ (Ω) ≤ ||u||

p−1

W 1,p
0 (Ω)

; ∀u ∈ W 1,p
0 (Ω). (39)

The inequality above proves the desired result; that is, that J ′ maps bounded sets
of W 1,p

0 (Ω) into bounded sets of W−1,p′(Ω).

(ii) J ′ is coercive. Indeed, we have from (33) that

⟨J ′(u), u⟩ =
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2 (

∂u

∂xi

)2

dx =
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p dx,

that is,
⟨J ′(u), u⟩ = ||u||p

W 1,p
0 (Ω)

.

Whence:

lim
||u||

W
1,p
0 (Ω)

→+∞

⟨J ′(u), u⟩
||u||W 1,p

0 (Ω)

= lim
||u||

W
1,p
0 (Ω)

→+∞
||u||p−1

W 1,p
0 (Ω)

= +∞.
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Application 2:
Consider the stationary problem∣∣∣∣∣∆

(
|∆u|p−2∆u

)
= f in Ω

u|Γ = 0,
(40)

where f ∈ W−2,p′(Ω); 2 ≤ p < +∞. It follows from Example 6 that the operator

J ′ : W 2,p
0 (Ω)→ W−2,p′(Ω)

u 7→ J ′(u) = ∆
(
|∆u|p−2∆u

)
is monotone and hemicontinuous, since it is the Gateaux di�erential of the convex func-
tional

J : W 2,p
0 (Ω)→ R

u 7→ J(u) =
1

p

∫
Ω

|∆u|p dx.

We have
(i) J ′ is bounded. Indeed, from (36) it follows that

⟨J ′(u), v⟩ =
∫
Ω

|∆u|p−2∆u∆v dx; ∀u, v ∈ W 2,p
0 (Ω).

Whence

|⟨J ′(u), v⟩| ≤
∫
Ω

|∆u|p−1 |∆v| dx

≤
(∫

Ω

|∆u|p dx
) 1

p′
(∫

Ω

|∆v|p dx
) 1

p

= ||∆u||
p
p′

Lp(Ω)||∆v||Lp(Ω)

= ||∆u||p−1
Lp(Ω)||∆v||Lp(Ω) = ||u||p−1

W 2,p
0 (Ω)

||v||W 2,p
0 (Ω) .

Thus,
||J ′(u)||W−2,p′ (Ω) = sup

||v||
W

2,p
0 ≤1

|⟨J ′(u), v⟩| ≤ ||u||p−1

W 2,p
0 (Ω)

. (41)

The inequality in (41) shows us that J ′ is bounded.
(ii) J ′ is coercive. Indeed, we have:

⟨J ′(u), u⟩ =
∫
Ω

|∆u|p−2∆u∆u dx

=

∫
Ω

|∆u|p dx = ||u||p
W 2,p

0 (Ω)
.

Thus

lim
||u||

W
2,p
0 (Ω)

→+∞

⟨J ′(u), u⟩
||u||W 2,p

0 (Ω)

= lim
||u||

W
2,p
0 (Ω)

→+∞
||u||p−1

W 2,p
0 (Ω)

= +∞.

By Browder's Theorem we conclude then that problem (40) possesses a weak solu-
tion.



Chapter 14

Evolution Problems

14.1 Monotone Parabolic Problem

Consider the parabolic problem∣∣∣∣∣∣∣∣∣∣
∂u

∂t
−

n∑
i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
= f in Q = Ω× (0, T ) (p ≥ 2)

u = 0 on Σ = ∂Ω× (0, T )

u(x, 0) = u0(x); x ∈ Ω,

(1)

where Ω is a bounded open set of Rn with regular boundary ∂Ω.
We have the following result:

Theorem 1: Given f ∈ Lp′(0, T ;W−1,p′(Ω)), u0 ∈ L2(Ω) there exists a unique function
u : Q→ R, weak solution of (1) in the class

u ∈ L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω));u′ ∈ Lp′(0, T ;W−1,p′(Ω)) (2)

verifying

d

dt
(u(t), w)−

〈 n∑
i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
, w

〉
= ⟨f(t), w⟩ in D′(0, T ), (3)

for all w ∈ W 1,p
0 (Ω) and

u(0) = u0 . (4)

Proof:
1a	 Step: Approximate Solution.
Since W 1,p

0 (Ω) is a separable Banach space 1C∞
0 (Ω) is dense in W 1,p

0 (Ω) by def-
inition. there exists (vν)ν∈N a countable dense subset in W 1,p

0 (Ω). We can, from this,
construct a new sequence (wν)ν∈N orthonormal in L2(Ω), by the Gram-Schmidt process,
such that

(i) (wν)ν∈N constitutes a linearly independent set.

(ii) [(wν)ν∈N] is dense in W
1,p
0 (Ω).

1(∗)

175
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Indeed, note that the sequence (wν)ν∈N is obtained from (vν)ν∈N through the Gram-
Schmidt orthogonalization process. Thus, the wν 's can be written in terms of the vν 's
and consequently we also have the reciprocal. From there, it follows that

(vν)ν∈N ⊂ [(wν)ν∈N] ⊂ W 1,p
0 (Ω).

Whence, taking the closure in W 1,p
0 (Ω) it follows that

(vν)ν ⊂ [(wν)ν∈N] ⊂ W 1,p
0 (Ω)

that is,
[(wν)ν∈N] = W 1,p

0 (Ω),

which proves (ii).
According to the preceding chapter we know that the pseudo-Laplacian operator

is de�ned by

A : W 1
0 (Ω)→ W−1,p′(Ω)

u 7→ Au = −
n∑

i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
.

Set, then
Vm = [w1, . . . , wm]

and consider the approximate problem: Fixed m ∈ N, determine um(t) ∈ Vm such that

(u′m(t), wj) + ⟨Aum(t), wj⟩ = ⟨f(t), wj⟩; j = 1, . . . ,m (5)

um(0) = u0m → u0 in L2(Ω). (6)

Since um(t) ∈ Vm then

um(t) =
m∑
i=1

gim(t)wi ; gim(t) to be determined. (7)

Substituting (7) in (5) we obtain( m∑
i=1

g′im(t)wi, wj

)
+

〈
A

( m∑
i=1

gim(t)wi

)
, wj

〉
= ⟨f(t), wj⟩; 1 ≤ j ≤ m.

By the orthonormality of the wj's in L2(Ω) it follows that

g′jm(t) +

〈
A

( m∑
i=1

gim(t)wi

)
, wj

〉
= ⟨f(t), wj⟩; 1 ≤ j ≤ m. (8)

Now, from (6) and (7) it follows that

um(0) =
m∑
i=1

gim(0)wi = u0m → u0 in L2(Ω). (9)
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However, since [(wν)ν∈N] is dense in W 1,p
0 (Ω) and this in turn is dense in L2(Ω)

then [(wν)ν∈N] is dense in L2(Ω). Furthermore, since the (wν)ν are orthonormal in L2(Ω)
we have

u0 =
+∞∑
ν=1

(u0, wν)wν . (10)

From (9) and (10) it follows that

m∑
i=1

gim(0)wi =
m∑
i=1

(u0, wi)wi

and from the orthonormality of the wi's we obtain

gjm(0) = (u0, wj); ∀ j = 1, . . . ,m. (11)

Thus, from (8) and (11) the system of O.D.E.:∣∣∣∣∣∣∣
g′jm(t) +

〈
A

( m∑
i=1

gim(t)wi

)
, wj

〉
= ⟨f(t), wj⟩

gjm(0) = (u0, wj); 1 ≤ j ≤ m.

(12)

We will use Carathéodory's Criterion to determine a local solution of (12).
Set

Y (t) =

g1m(t)...
gmm(t)

 ; Y (0) =

 (u0, w1)
...

(u0, wm)

 = Y0 . (13)

De�ne

h : ]0, T [×Rm → Rm (14)

(t, y) 7→ h(t, y) =

[
⟨f(t), wj⟩ −

〈
A

( m∑
i=1

yiwi

)
, wj

〉]
1≤j≤m

, (14.1)

that is,

h(t, y) =


⟨f(t), w1⟩ −

〈
A

(
m∑
i=1

yiwi

)
, w1

〉
...

⟨f(t), wm⟩ −
〈
A

(
m∑
i=1

yiwi

)
, wm

〉
.


Then, from (12), (13) and (14) we can write∣∣∣∣∣Y ′(t) = h(t, Y (t))

Y (0) = Y0

We will prove, next, that the map (14) is in the Carathéodory conditions. Indeed,
since f ∈ Lp′(0, T ;W−1,p′(Ω)) then the map

t 7→ ⟨f(t), v⟩W−1,p′ ;W 1,p
0

from [0, T [ to R (15)
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is measurable ∀ v ∈ W 1,p
0 (Ω) and, furthermore, the map

t 7→ ||f(t)||W−1,p′ (Ω) from ]0, T [ to R

belongs to Lp′(0, T ).
Thus, for almost every y ∈ Rm �xed, the map h given in (14) is measurable in t

because the map (15) is.
On the other hand, from what was seen previously, we have that the operator A is

monotone, hemicontinuous, bounded and coercive. Thus, A is continuous from

(W 1,p
0 (Ω), τstrong) into (W−1,p′(Ω), τweak*).

This being so, if (yν) ⊂ Rm and yν → y in Rm then

m∑
i=1

yν,iwi
ν→+∞−−−−→

m∑
i=1

yiwi in W 1,p
0 (Ω)

and, therefore,〈
A

( m∑
i=1

yν,iwi

)
, wj

〉
ν→+∞−−−−→

〈
A

( m∑
i=1

yiwi

)
, wj

〉
; ∀ j = 1, . . . ,m. (16)

Thus, for almost every t ∈ ]0, T [ �xed, the map h given in (14) is continuous in y
by virtue of (16).

On the other hand, setting

g(t) =

 ⟨f(t), w1⟩
...

⟨f(t), wm⟩

 and D(y) =



〈
A

(
m∑
i=1

yiwi

)
, w1

〉
...〈

A

(
m∑
i=1

yiwi

)
, wm

〉


then
h(t, y) = g(t)−D(y).

Thus,

||h(t, y)||Rm = ||g(t)−D(y)||Rm ≤ ||g(t)||Rm + ||D(y)||Rm . (17)

However, K being a compact of ]0, T [×Rm, we have for all (t, y) ∈ K that

||D(y)||2 =
m∑
j=1

∣∣∣∣∣
〈
A

(∑
i

yiwi

)
, wj

〉∣∣∣∣∣
2

≤
m∑
j=1

∥∥∥∥∥A
(∑

i

yiwi

)∥∥∥∥∥
2

W−1,p′ (Ω)

||wj||2W 1,p
0 (Ω)

. (18)

Recall that A maps bounded sets into bounded sets. Thus, since y ∈ projyK then
||y|| ≤ c1 and, therefore,∥∥∥∥∥∑

i

yiwi

∥∥∥∥∥
W 1,p

0 (Ω)

≤
∑
i

|yi| ||wi||W 1,p
0 (Ω) ≤ max

1≤i≤m
||wi||W 1,p

0 (Ω)

m∑
i=1

|yi| ≤ c2 .
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Thus, ∥∥∥∥∥A
(∑

i

yiwi

)∥∥∥∥∥
2

W−1,p′

≤ c3 ,

and from (13) it follows that

||D(y)||2Rm ≤ m
(
max
1≤j≤m

||wj||2W 1,p
0 (Ω)

)
c3 = c24 .

It follows from (17) that

||h(t, y)||Rm ≤
m∑
j=1

|⟨f(t), wj⟩|2 + c4 ≤
m∑
j=1

||f(t)||2
W−1,p′ ||wj||2W 1,p

0
+ c4 (19)

≤
(
max
1≤j≤m

||wj||2W 1,p
0

)
||f(t)||2

W−1,p′ + c4 . (14.2)

Since f ∈ Lp′(0, T ;W−1,p′(Ω)) it follows from the inequality above that the map
on the right of the inequality in (19) is integrable on projtK.

Thus, by Carathéodory's Theorem there exists a solution Y (t) of the problem∣∣∣∣∣Y ′(t) = h(t, Y (t))

Y (0) = Y0,
(20)

in some interval [0, tm); 0 < tm ≤ T . Thus, Y (t) is absolutely continuous and di�er-
entiable almost everywhere in [0, tm). This entails that the maps gjm(t) are absolutely
continuous and di�erentiable a.e. in [0, tm). We will make, next, a priori estimates that
will help us extend the solution Y (t) to the whole interval [0, T ].

2a	 Step: A Priori Estimate.

Multiplying (5) by gjm(t), t ∈ [0, tm) and summing over j, we obtain

(u′m(t), um(t)) + ⟨Aum(t), um(t)⟩ = ⟨f(t), um(t)⟩. (21)

However,

⟨Aum(t), um(t)⟩ =
n∑

i=1

∫
Ω

∣∣∣∣∂um∂xi

∣∣∣∣p−2
∂um
∂xi

∂um
∂xi

dx

=
n∑

i=1

∫
Ω

∣∣∣∣∂um∂xi

∣∣∣∣p dx = ||um(t)||pW 1,p
0 (Ω)

and from (21) it follows that

1

2

d

dt
|um(t)|2 + ||um(t)||pW 1,p

0

≤ ||f(t)||W−1,p′ (Ω) ||um(t)||W 1,p
0 (Ω) .

From Young's inequality

1

2

d

dt
|um(t)|2 + ||um(t)||pW 1,p

0 (Ω)
≤ 1

p′
||f(t)||p

′

W 1,p′ (Ω)
+

1

p
||um(t)||pW 1,p

0 (Ω)
.
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Whence

1

2

d

dt
|um(t)|2 +

(
1− 1

p

)
||um(t)||pW 1,p

0 (Ω)
≤ 1

p′
||f(t)||p

′

W−1,p′ (Ω)
.

Integrating this last inequality from 0 to t < tm ; it follows that

1

2
|um(t)|2 +

1

p′

∫ t

0

||um(s)||pW 1,p
0 (Ω)

ds ≤ 1

2
|um(0)|2 +

1

p′

∫ t

0

||f(s)||p
′

W−1,p′ (Ω)
ds. (22)

From (6) we guarantee the existence of a constant c1 > 0 such that

|u0m|2 ≤ c1 ; ∀m.

Thus, from (22) we arrive at

|um(t)|2 +
2

p′

∫ t

0

||um(s)||pW 1,p
0

ds ≤ c1 +
2

p′
||f ||p

′

Lp′ (0,T ;W 1,p′ (Ω))
(23)

∀ t ∈ [0, tm).
Thus, there exists c2 > 0 such that

|um(t)|2 +
1

p′

∫ t

0

||um(s)||pW 1,p
0 (Ω)

ds ≤ c2 ; ∀ t ∈ [0, tm). (24)

It follows from (24) that:

m∑
j=1

g2jm(t) = (um(t), um(t)) = |um(t)|2 ≤ c2 ; ∀ t ∈ [0, tm); ∀m.

From there it follows that

||Y (t)||2Rm =
m∑
j=1

g2jm(t) ≤ c2 ; ∀ t ∈ [0, tm) and ∀m

It follows from this that the solution Y (t) of (20) can be prolonged to the whole
interval [0, T ]. Thus, for each m ∈ N there exists a solution um(t) of (5) and (6) in [0, T ].
Using what we did to obtain (24) we obtain, analogously

|um(t)|2 +
1

p′

∫ t

0

||um(s)||pW 1,p
0

ds ≤ c; ∀ t ∈ [0, T ], ∀m. (25)

Thus

(um) is bounded in L∞(0, T ;L2(Ω)) (26)

(um) is bounded in Lp(0, T ;W 1,p
0 (Ω)) (27)

(um(T )) is bounded in L2(Ω) (28)

Recall that

⟨Au, v⟩ ≤ ||u||p−1

W 1,p
0 (Ω)

||v||W 1,p
0 (Ω) ; ∀u, v ∈ W 1,p

0 (Ω).
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Whence

||Au||W−1,p′ (Ω) = sup
||v||≤1
v ̸=0

⟨|Au, v⟩|
||v||

≤ ||u||p−1
W q,p

0 (Ω)
; ∀u ∈ W 1,p

0 (Ω).

Also,

||Au||W−1,p′ (Ω) ≥
|⟨Au, u⟩|
||u||

= ||u||p−1

W 1,p
0 (Ω)

; ∀u ∈ W 1,p
0 (Ω); u ̸= 0

Therefore,

||Au||W−1,p′ (Ω) = ||u||
p−1

W 1,p
0 (Ω)

; ∀u ∈ W 1,p
0 (Ω). (29)

In particular,
||Aum(t)||W−1,p′ (Ω) = ||um(t)||

p−1

W 1,p
0 (Ω)

and from (27) it follows that∫ T

0

||Aum(t)||p
′

W−1,p′ (Ω)
dt =

∫ T

0

||um(t)||(p−1)p′

W 1,p
0 (Ω)

dt =

∫ T

0

||um(t)||pW 1,p
0 (Ω)

dt < c.

Thus,
(Aum) is bounded in Lp′(0, T ;W−1,p′(Ω)). (30)

From (26), (27), (28) and (30) we obtain a subsequence (uµ)µ∈N of (uν)ν∈N such
that

uµ
∗
⇀ u weak* in L∞(0, T ;L2(Ω)) (31)

Auµ
∗
⇀ χ weak* in Lp′(0, T ;W−1,p′(Ω)) (32)

uµ ⇀ u weakly in Lp(0, T ;W 1,p
0 (Ω)) (33)

uµ(T )⇀ ξ weakly in L2(Ω) (34)

3a	 Step: Passage to the Limit

Let θ ∈ D(0, T ) and j ∈ N. Multiplying (5) by θ and integrating in [0, T ], we
obtain, in particular, for the sequence (uµ) µ > j:∫ T

0

(u′µ(t), wj)θ(t) dt+

∫ T

0

⟨Auµ(t), wj⟩θ(t) dt =
∫ T

0

⟨f(t), wj⟩θ(t) dt.

Whence

−
∫ T

0

(uµ(t), wj)θ
′(t) dt+

∫ T

0

⟨Auµ(t), wj⟩θ(t) dt =
∫ T

0

⟨f(t), wj⟩θ(t) dt. (35)

From (31) we obtain∫ T

0

(uµ(t), wj)θ
′(t) dt

µ→+∞−−−−→
∫ T

0

(u(t), wj)θ
′(t) dt (36)
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and from (32) we have that∫ T

0

⟨Auµ(t), wj⟩θ(t) dt
µ→+∞−−−−→

∫ T

0

⟨χ(t), wj⟩θ(t) dt. (37)

In this way, from (35), (36) and (37) in the limit situation, it follows that

−
∫ T

0

(u(t), wj)θ
′(t) dt+

∫ T

0

⟨χ(t), wj⟩θ(t) dt =
∫ T

0

⟨f(t), wj⟩θ(t) dt. (38)

Since the �nite linear combinations of the elements of the basis (wν)ν∈N are dense
in W 1,p

0 (Ω), it follows that the equality in (38) is valid for all w ∈ W 1,p
0 (Ω). Thus,

−
∫ T

0

(u(t), w)θ′(t) dt+

∫ T

0

⟨χ(t), w⟩θ(t) dt =
∫ T

0

⟨f(t), w⟩θ(t) dt, (39)

for all w ∈ W 1,p
0 (Ω), for all θ ∈ D(0, T ).

Identifying L2(Ω) with its dual we have the following chain:

W 1,p
0 (Ω) ↪→ L2(Ω) ≈ (L2(Ω))′ ↪→ W 1,p′(Ω),

so that
⟨h, g⟩W−1,p′ (Ω);W 1,p

0 (Ω) = (h, g); ∀h, g ∈ L2(Ω).

It follows from this that (39) can be rewritten as

−
∫ T

0

⟨u(t), w⟩θ′(t) dt+
∫ T

0

⟨χ(t), w⟩θ(t) dt =
∫ T

0

⟨f(t), w⟩θ(t) dt.

Therefore,〈
−
∫ T

0

u(t)θ′(t) dt, w

〉
+

〈∫ T

0

χ(t)θ(t) dt, w

〉
=

〈∫ T

0

f(t)θ(t) dt, w

〉
,

for all w ∈ W 1,p
0 (Ω) and for all θ ∈ D(0, T ). It follows from the identity above that

−
∫ T

0

u(t)θ′(t) dt+

∫ T

0

χ(t)θ(t) dt =

∫ T

0

f(t)θ(t) dt

in W−1,p′(Ω) for all θ ∈ D(0, T ). In this way,〈
du

dt
, θ

〉
+ ⟨χ, θ⟩ = ⟨f, θ⟩ in W−1,p′(Ω); ∀ θ ∈ D(0, T )

that is,
du

dt
+ χ = f in D′(0, T ;W−1,p′(Ω)).

Considering f, χ ∈ Lp′(0, T ;W−1,p′(Ω)) it follows that

du

dt
∈ Lp′(0, T ;W−1,p′(Ω)) (40)

and
du

dt
+ χ = f in Lp′(0, T ;W−1,p′(Ω)). (41)
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The next step is to prove the initial condition

4a	 Step: Initial Condition.

Since u ∈ Lp(0, T ;W 1,p
0 (Ω)) and u′ ∈ Lp′(0, T ;W−1,p′(Ω)) then

u ∈ Cs(0, T ;W
1,p
0 (Ω)) ∩ C0([0, T ];W−1,p′(Ω)).

Let θ ∈ C1([0, T ]) and w ∈ W 1,p
0 (Ω). Then θw ∈ Lp(0, T ;W 1,p

0 (Ω)) and from (41)
we obtain ∫ T

0

⟨u′(t), w⟩θ(t) dt+
∫ T

0

⟨χ(t), w⟩θ(t) dt =
∫ T

0

⟨f(t), w⟩θ(t) dt. (42)

We claim that

d

dt

[
⟨u(t), w⟩θ(t)

]
= ⟨u′(t), w⟩θ(t) + ⟨u(t), w⟩ dθ(t)

dt
; ∀w ∈ W 1,p

0 (Ω). (43)

Indeed, set

W (0, T ) =

{
u ∈ Lp(0, T ;W 1,p

0 (Ω));
du

dt
∈ Lp′(0, T ;W−1,p′(Ω))

}
endowed with the topology

||u||W = ||u||Lp(0,T ;W 1,p
0 (Ω)) +

∥∥∥∥dudt
∥∥∥∥
Lp′ (0,T ;W−1,p′ (Ω))

,

which makes it a Banach space.
Since D([0, T ];W 1,p

0 (Ω)) is dense in W (0, T ), given u ∈ W (0, T ) there exists (uν) ⊂
D([0, T ];W 1,p

0 (Ω)) such that
uν → u in W (0, T ).

Whence

uν → u in Lp(0, T ;W 1,p
0 (Ω)) and u′ν → u′ in Lp′(0, T ;W−1,p′(Ω)). (44)

We have, given the regularity of the uν 's,

d

dt
[(uν(t), w)θ(t)] = (u′ν(t), w)θ(t) + (uν(t), w)

dθ(t)

dt
·

Now, identifying L2(Ω) with its dual we can write

d

dt
[⟨uν(t), w⟩θ(t)] = ⟨u′ν(t), w⟩θ(t) + ⟨uν(t), w⟩θ′(t). (45)

The next step is to pass the limit in (45) to obtain (43). Given the convergences
in (44), we have that the right side of (45) converges.

Indeed, we have that

⟨u′ν(t), w⟩θ(t)→ ⟨u′(t), w⟩θ(t) in L1(0, T ) (46)
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since ∫ T

0

|⟨u′ν(t)− u′(t), wθ⟩| dt ≤
∫ T

0

||u′ν(t)− u′(t)||W−1,p′ (Ω) ||wθ||W 1,p
0 (Ω) dt

≤
(∫ T

0

||u′ν(t)− u′(t)||
p′

W−1,p′ (Ω)

)1/p′(∫ T

0

||wθ||p
W 1,p

0 (Ω)

)1/p

→ 0,

since u′ν → u′ in Lp′(0, T ;W−1,p′(Ω)).
Analogously,

⟨uν(t), w⟩θ′(t)→ ⟨u(t), w⟩θ′(t) in L1(0, T ) (47)

because ∫ T

0

|⟨uν(t)− u(t), wθ′⟩| dt ≤
∫ T

0

||uν(t)− u(t)||W−1,p′ (Ω) ||wθ′(t)||W 1,p
0 (Ω) dt

≤
(∫ T

0

||uν(t)− u(t)||p
′

W−1,p′ (Ω)
dt

)1/p′(∫ T

0

||wθ′(t)||p
W 1,p

0 (Ω)
dt

)1/p

→ 0,

since if uν → u in Lp(0, T ;W 1,p
0 (Ω)) then uν → u in Lp′(0, T ;W−1,p′(Ω)) (note that

Lp(0, T ;W 1,p
0 (Ω)) ↪→ Lp′(0, T ;W−1,p′(Ω)).

From (46) and (47) we conclude that

⟨u′ν(t), w⟩θ(t) + ⟨uν(t), w⟩θ′(t)→ ⟨u′(t), w⟩θ(t) + ⟨u(t), w⟩θ′(t) (48)

in L1(0, T ).
On the other hand, we also have in a manner analogous to (46) that

⟨uν(t), w⟩θ(t)→ ⟨u(t), w⟩θ(t) in L1(0, T )

and, consequently,

d

dt

[
⟨uν(t), w⟩θ(t)

]
→ d

dt

[
⟨u(t), w⟩θ(t)

]
in D′(0, T ). (49)

Thus, from (45), (48) and (49) we conclude, given the uniqueness of the limit in
D′(0, T ), that

d

dt

[
⟨u(t), w⟩θ(t)

]
= ⟨u′(t), w⟩θ(t) + ⟨u(t), w⟩θ′(t)

which proves (43). Assuming that θ(0) = 1 and θ(T ) = 0, considering the fact that
u ∈ C0(0, T ;W−1,p′(Ω)) and integrating in [0, T ], it follows that

⟨u(T ), w⟩θ(T )− ⟨u(0), w⟩θ(0) =
∫ T

0

⟨u′(t), w⟩θ(t) dt+
∫ T

0

⟨u(t), w⟩θ′(t) dt,

that is, ∫ T

0

⟨u′(t), w⟩θ(t) dt = −⟨u(0), w⟩ −
∫ T

0

⟨u(t), w⟩θ′(t) dt. (50)

Substituting (50) in (42) we obtain

−⟨u(0), w⟩ −
∫ T

0

⟨u(t), w⟩θ′(t) dt+
∫ T

0

⟨χ(t), w⟩θ(t) dt =
∫ T

0

⟨f(t), w⟩θ(t) dt. (51)
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Let j ∈ N. Multiplying the approximate equation given in (5) by θ and integrating
in [0, T ] we obtain in particular for (uµ)23, µ > j,∫ T

0

(u′µ(t), wj)θ(t) dt+

∫ T

0

⟨Auµ(t), wj⟩θ(t) dt =
∫ T

0

⟨f(t), wj⟩θ(t) dt. (52)

However,

d

dt
(uµ(t), wj)θ(t) = (u′µ(t), wj)θ(t) + (uµ(t), wj)θ

′(t).

Integrating in [0, T ] we obtain

−(uµ(0), wj) =

∫ T

0

(u′µ(t), wj)θ(t) dt+

∫ T

0

(uµ(t), wj)θ
′(t) dt. (53)

Substituting (53) in (52) results that

−⟨u0µ, wj⟩ −
∫ T

0

⟨uµ(t), wj⟩θ′(t) dt+
∫ T

0

⟨Auµ(t), wj⟩θ(t) dt

=

∫ T

0

⟨f(t), wj⟩θ(t) dt.

In the limit situation, given the convergences in (6), (31) and (32), we obtain

−⟨u0, wj⟩ −
∫ T

0

⟨u(t), wj⟩θ′(t) dt+
∫ T

0

⟨χ(t), wj⟩θ(t) dt

=

∫ T

0

⟨f(t), wj⟩θ(t) dt.

By density the expression above remains valid for all w ∈ W 1,p
0 (Ω). Whence

−⟨u0, w⟩ −
∫ T

0

⟨u(t), w⟩θ(t) dt+
∫ T

0

⟨χ(t), w⟩θ(t) dt =
∫ T

0

⟨f(t), w⟩θ(t) dt. (54)

Finally, from (51) and (54) we obtain

⟨u(0), w⟩ = ⟨u0, w⟩; ∀w ∈ W 1,p
0 (Ω),

that is,
u(0) = u0 in W−1,p′(Ω), in truth, in L2(Ω). (55)

The Theorem will be proved, except for uniqueness, if we show that

χ = Au. (56)

This is what we will do next. Consider (uµ) the subsequence of (uν) given in (31)-(34).
Then, by the monotonicity of the operator A we can write

0 ≤
∫ T

0

⟨Auµ − Av, uµ − v⟩ dt; ∀ v ∈ Lp(0, T ;W 1,p
0 (Ω)).

23Here (uµ) is the sequence obtained in (31)-(34).
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Whence

0 ≤
∫ T

0

⟨Auµ, uµ⟩ dt−
∫ T

0

⟨Auµ, v⟩ dt−
∫ T

0

⟨Av, uµ − v⟩ dt. (57)

On the other hand, returning to the approximate equation given in (5) we obtain

1

2

d

dt
|uµ(t)|2 + ⟨Auµ, uµ⟩ = ⟨f, uµ⟩.

Integrating the expression above from 0 to T it follows that∫ T

0

⟨Auµ, uµ⟩ dt =
1

2
|uµ(0)|2 −

1

2
|uµ(T )|2 +

∫ T

0

⟨f, uµ⟩ dt. (58)

Substituting (58) in (57) results that

0 ≤ 1

2
|u0µ|2 −

1

2
|uµ(T )|2 +

∫ T

0

⟨f, uµ⟩ dt−
∫ T

0

⟨Auµ, v⟩ dt

−
∫ T

0

⟨Av, uµ − v⟩ dt.
(59)

We observe that if we use the same technique applied to prove that u(0) = u0 , we
can also prove that

u(T ) = ξ, (60)

where ξ is given in (34). Indeed, it su�ces to consider θ ∈ C1[0, T ] such that θ(0) = 0
and θ(T ) = 1 and proceed as in the 4a	 step.

Thus from (34) and (60) we obtain

uν(T )⇀ u(T ) in L2(Ω). (61)

Taking the lim in (59) results that

0 ≤ lim
1

2
|u0µ|2 − lim

1

2
|uµ(T )|2 + lim

∫ T

0

⟨f, uµ⟩ dt

− lim

∫ T

0

⟨Auµ, v⟩ dt− lim

∫ T

0

⟨Av, uµ − v⟩ dt.

However from the convergences in (6), (32), (33) and (61)24 we obtain

0 ≤ 1

2
|u0|2 −

1

2
|u(T )|2 +

∫ T

0

⟨f, u⟩ dt−
∫ T

0

⟨χ, v⟩ dt−
∫ T

0

⟨Av, u− v⟩ dt. (62)

On the other hand, from (41) we can write∫ T

0

⟨u′(t), u(t)⟩ dt+
∫ T

0

⟨χ(t), u(t)⟩ dt =
∫ T

0

⟨f(t), u(t)⟩ dt. (63)

24Use Banach-Steinhaus: |u(T )| ≤ lim |uν(T )| ⇒ |u(T )|2 ≤ lim |uν(T )|2
(lim |uν |)2 = (lim |uν |)(lim |uν |) ≤ lim |uν |2
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However, proceeding in a manner analogous to the proof of the identity in (43) we
prove, identifying L2(Ω) with its dual, that

d

dt
(u(t), u(t)) = 2⟨u′(t), u(t)⟩

that is,
1

2

d

dt
|u(t)|2 = ⟨u′(t), u(t)⟩. (64)

Substituting (64) in (63) we conclude that

1

2

∫ T

0

d

dt
|u(t)|2 dt+

∫ T

0

⟨χ(t), u(t)⟩ dt =
∫ T

0

⟨f(t), u(t)⟩ dt,

that is,
1

2
|u(T )|2 − 1

2
|u(0)|2 +

∫ T

0

⟨χ(t), u(t)⟩ dt =
∫ T

0

⟨f(t), u(t)⟩ dt. (65)

Thus, from (55), (62) and (65) it results that

0 ≤
∫ T

0

⟨χ, u⟩ dt−
∫ T

0

⟨χ, v⟩ dt−
∫ T

0

⟨Av, u− v⟩ dt,

that is,

0 ≤
∫ T

0

⟨χ− Av, u− v⟩ dt; ∀ v ∈ Lp(0, T ;W 1,p
0 (Ω)). (66)

Let w ∈ Lp(0, T ;W 1,p
0 (Ω)) and λ > 0. Then, taking v = u − λw in (66) it follows

that

0 ≤
∫ T

0

⟨χ− A(u− λw), w⟩ dt

and, by the hemicontinuity of A, we conclude when λ→ 0 that

0 ≤
∫ T

0

⟨χ− Au,w⟩ dt, ∀w ∈ Lp(0, T ;W 1,p
0 (Ω)). (67)

In the same way, taking v = u−λw; where λ < 0, we obtain the opposite inequality

0 ≥
∫ T

0

⟨χ− Au,w⟩ dt; ∀w ∈ Lp(0, T ;W 1,p
0 (Ω)). (68)

Whence, from (67) and (68)∫ T

0

⟨χ− Au,w⟩ dt = 0; ∀w ∈ Lp(0, T ;W 1,p
0 (Ω)),

that is,

⟨χ− Au,w⟩Lp′ (0,T ;W−1,p′ (Ω)),Lp(0,T ;W 1,p
0 (Ω)) = 0; ∀w ∈ Lp(0, T ;W 1,p

0 (Ω)).

The equality above leads us to conclude that

χ = Au in Lp′(0, T ;W−1,p′(Ω)),
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which proves (56).

5a	 Step: Uniqueness

Let u1 and u2 be solutions of Theorem 1. Then, from (41)

W = u1 − u2

satis�es

dW

dt
=

d

dt
(u1 − u2) = (f − Au1)− (f − Au2) in Lp′(0, T,W−1,p′(Ω)).

Whence
dW

dt
+ Au1 − Au2 = 0 in Lp′(0, T ;W−1,p′(Ω)). (69)

Also
W (0) = 0. (70)

It follows from (69) that for almost all q ∈ [0, T ]

W ′(t) + Au1(t)− Au2(t) = 0 in W−1,p′(Ω).

Composing the identity above with W (t) results that

⟨W ′(t),W (t)⟩+ ⟨Au1(t)− Au2(t),W (t)⟩ = 0. (71)

However, in a manner analogous to (64), we can write that

1

2

d

dt
|W (t)|2 = ⟨W ′(t),W (t)⟩

and, from (71), it results that

1

2

d

dt
|W (t)|2 + ⟨Au1(t)− Au2(t),W (t)⟩ = 0. (72)

By the monotonicity of the operator A we have that

⟨Au1(t)− Au2(t),W (t)⟩ ≥ 0; a.e. in [0, T [

and, from (72), it follows that

1

2

d

dt
|W (t)|2 ≤ 0 a.e. in ]0, T [ .

Integrating the inequality above we obtain

|W (t)|2 − |W (0)|2 ≤ 0; ∀ t ∈ [0, T ]

and, from (70), it results that

0 ≤ |W (t)|2 ≤ 0; ∀ t ∈ [0, T ].

Whence,
W (t) = 0; ∀ t ∈ [0, T ],

that is, u1(t) = u2(t); ∀ t ∈ [0, T ].
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14.2 Hyperbolic Problem with Viscosity

Let Ω ⊂ Rn be an open, bounded subset with su�ciently regular boundary Γ. Consider
the problem ∣∣∣∣∣∣∣∣∣∣∣

∂2u

∂t2
−

n∑
i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
−∆

(
∂u

∂t

)
= f in Q

u = 0 on Σ

u(x, 0) = u0(x);
∂u

∂t
(x, 0) = u1(x); x ∈ Ω,

(1)

where 2 ≤ p < +∞.
Before we determine a solution for (1) we will make some initial considerations

essential to its understanding. Initially, we will prove that

W 1,p
0 (Ω) ⊂ H1

0 (Ω); for all 2 ≤ p < +∞. (2)

Indeed, let u ∈ W 1,p
0 (Ω). Then, ∃ (φν) ⊂ D(Ω) such that φν → u inW 1,p(Ω). Since

2 ≤ p < +∞ and Ω is bounded it results that W 1,p(Ω) ↪→ H1(Ω) since Lp(Ω) ↪→ L2(Ω).
Thus, φν → u in H1(Ω) which proves that u ∈ H1

0 (Ω) and, consequently, (2) is proved.
Moreover, we will prove that the embedding is continuous. In fact, let u ∈ W 1,p

0 (Ω).
Then

||u||H1
0 (Ω) =

( n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2
L2(Ω)

)1/2

≤
{
|u|2L2(Ω) +

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2
L2(Ω)

}1/2

≤ c1

{
|u|L2(Ω) +

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
L2(Ω)

}
≤ c2

{
|u|Lp(Ω) +

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
Lp(Ω)

}

≤ c3

{
|u|pLp(Ω) +

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p
Lp(Ω)

}1/p

≤ c4

( n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p
Lp(Ω)

)1/p

= c4||u||W 1,p
0 (Ω),

that is,
||u||H1

0 (Ω) ≤ c4||u||W 1,p
0 (Ω) , ∀u ∈ W 1,p

0 (Ω); 2 ≤ p < +∞. (3)

Since W 1,p
0 (Ω) is a re�exive Banach space then, identifying L2(Ω) with its dual, we

have the following chain of embeddings:

W 1,p
0 (Ω) ↪→ H1

0 (Ω) ↪→ L2(Ω) ≈ (L2(Ω))′ ↪→ H−1(Ω) ↪→ W−1,p′(Ω), (4)

where 1
p
+ 1

p′
= 1.

Our goal is to obtain a �special basis� to solve problem (1). However, sinceW 1,p
0 (Ω)

is Banach we cannot make use of the Spectral Theorem. We must, then, obtain a Hilbert
space contained in W 1,p

0 (Ω) in order to apply the Spectral Theorem and thus obtain a
special basis. From Sobolev embeddings we have

W s,q
0 (Ω) ↪→ W s−r,qr

0 (Ω),
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where
1

qr
=

1

q
− r

n
· In this way, choosing

q = 2; qr = p

we obtain
r

n
=

1

2
− 1

p
⇒ r =

(p− 2) · n
2p

> 0.

Consequently, setting
s = r + 1

we have s− r = 1 > 0 and, therefore,

Hs
0(Ω) = W s,2

0 (Ω) ↪→ W 1,p
0 (Ω). (5)

Since Hs
0(Ω) is a Hilbert space we have from (4) and (5) the following chain of

continuous and dense embeddings:

Hs
0(Ω) ↪→ W 1,p

0 (Ω) ↪→ H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) ↪→ W−1,p′(Ω) ↪→ H−s(Ω). (6)

However, since the embedding of H1
0 (Ω) in L

2(Ω) is compact (thanks to Rellich's
Theorem), it follows that the embedding of Hs

0(Ω) in L
2(Ω) is also compact. In this way,

letting B be the operator de�ned by the triple

{Hs
0(Ω), L

2(Ω); (( · , · ))s},

where (( · , · ))s denotes the inner product in Hs
0(Ω), we have by the �Spectral Theorem�

the existence of a collection (wν)ν∈N of eigenvectors of the operator B whose associated
eigenvalues (λν)ν∈N are positive and such that λν ≤ λν+1 and λν → +∞ when ν → ∞.
Furthermore,

(wν) is a complete orthonormal system in L2(Ω) (7)(
wν√
λν

)
is a complete orthonormal system in Hs

0(Ω). (8)

Thus, for each ν ∈ N, we have

(Bwν , v) = ((wν , v))s ; ∀ v ∈ Hs
0(Ω),

that is,
λν(wν , v) = ((wν , v))s ; ∀ v ∈ Hs

0(Ω). (9)

In what follows we will prove the result below.

Theorem 2: Given

u0 ∈ W 1,p
0 (Ω); u1 ∈ L2(Ω) and f ∈ L2(0, T ;L2(Ω))

there exists a unique function u : Q = Ω×]0, T [→ R in the class

u ∈ L∞(0, T ;W 1,p
0 (Ω)) (10)

u′ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) (11)
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u′′ ∈ Lp′(0, T ;W−1,p′(Ω)) (12)

verifying

d

dt
(u′(t), w)−

〈 n∑
i=1

∂

∂xi

( ∣∣∣∣ ∂u∂xi
∣∣∣∣p−1

∂u

∂xi

)
, w

〉
+ (∇u′(t),∇w) = (f(t), w), (13)

∀w ∈ W 1,p
0 (Ω),

u(0) = u0 ; u′(0) = u1 . (14)

Proof:
1a	 Step: Approximate System.

Let (wν)ν∈N be the �special basis� of Hs
0(Ω) mentioned previously and consider

Vm = [w1, . . . , wm].

In Vm we have the approximate problem

um(t) ∈ Vm (15)

(u′′m(t), wj) + ⟨Aum(t), wj⟩+ a(u′m(t), wj) = (f(t), wj); j = 1, . . . ,m (16)

um(0) = u0m → u0 in W 1,p
0 (Ω); u0m ∈ Vm (17)

u′m(0) = u1m → u1 in L2(Ω); u1m ∈ Vm. (18)

From (15) it follows that

um(t) =
m∑
i=1

gim(t)wi ; gim(t) to be determined. (19)

Substituting (19) in (15), it follows from (7) that

g′′jm(t) +

〈
A

( m∑
i=1

gim(t)wi

)
, wj

〉
+ a

( m∑
i=1

g′im(t)wi, wj

)
= (f(t), wj), j = 1, . . . ,m.

(20)

However from (8) we have that (wν) is complete in Hs
0(Ω). Since this in turn is

dense in W 1,p
0 (Ω) then we also have that (wν) is total (or complete) in W 1,p

0 (Ω).

Thus, since u0 is inW
1,p
0 (Ω), there will exist (ην)ν , ην =

m(ν)∑
j=1

αjmwj ∈ [(wν)ν ] such

that
m(ν)∑
j=1

αjmwj
ν→+∞−−−−→ u0 in W 1,p

0 (Ω). (21)

Analogously, since u1 ∈ L2(Ω) and (wν) is total in L2(Ω) it follows that there will

exist (ξν)ν ; ξν =
m(ν)∑
j=1

βjmwj such that

m(ν)∑
j=1

βjmwj
ν→+∞−−−−→ u1 in L2(Ω). (22)
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But, from (17) and (18) we have that

u0m =
m∑
j=1

gjm(0)wj → u0 in W 1,p
0 (Ω) (23)

u1m =
m∑
j=1

g′jm(0)wj → u1 in L2(Ω). (24)

It results from (21)-(24) that

m(ν)∑
j=1

αjmwj =
m∑
j=1

gjm(0)wj (25)

and
m(ν)∑
j=1

βjmwj =
m∑
j=1

g′jm(0)wj . (26)

Note, initially, that since the wj's are linearly independent we can consider, without
loss of generality, m = m(ν) and, by the orthonormality of the system in L2(Ω), we have
from (25) and (26) that

gjm(0) = αjm ; ∀ j = 1, . . . . ,m (27)

g′jm(0) = βjm ; ∀ j = 1, . . . . ,m. (28)

Thus, from (20), (27) and (28) we have the system of O.D.E.∣∣∣∣∣∣∣
g′′jm(t) +

〈
A

( m∑
i=1

gim(t), wi

)
, wj

〉
+

m∑
i=1

g′im(t)a(wi, wj) = (f(t), wj)

gjm(0) = αjm ; g′jm (0) = βjm; j = 1, . . . ,m.

(29)

The problem above is equivalent to

 g
′′
im(t)
...

g′′mm(t)

+


〈
A
( m∑
i=1

gimwi), w1

〉
...〈

A
( m∑
i=1

gimwi), wm

〉


︸ ︷︷ ︸
G(Z(t))

+

 a(w1, w1) . . . a(wm, w1)
...

a(w1, wm) . . . a(wm, wm)


︸ ︷︷ ︸

C

g
′
1m(t)
...

g′mm(t)

 =

 (f(t), w1)
...

(f(t), wm)


︸ ︷︷ ︸

F (t)

,

g1m(0)...
gmm(0)

 =

α1m
...

αmm

 and

g
′
1m(0)
...

g′mm(0)

 =

β1m...
βmm

 .
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De�ning

Z(t) =

g1m(t)...
gmm(t)


it follows that ∣∣∣∣∣Z ′′(t) +G(Z(t)) + CZ ′(t) = F (t)

Z(0) = Z0 ; Z ′(0) = Z1;
(30)

where

Z0 =

α1m
...

αmm

 and Z1 =

β1m...
βmm

 . (31)

Setting

Y1(t) = Z(t), Y2(t) = Z ′(t) and Y (t) =

[
Y1(t)
Y2(t)

]
it follows that

Y ′(t) =

[
Y ′
1(t)
Y ′
2(t)

]
=

[
Z ′(t)
Z ′′(t)

]
=

[
Z ′(t)

F (t)−G(Z(t))− CZ ′(t)

]
=

[
0

−G(Z(t))

]
+

[
Z ′(t)
−CZ ′(t)

]
+

[
0

F (t)

]
.

Thus,

Y ′(t) =

G(Y (t))︷ ︸︸ ︷[
0

−G(Z(t))

]
+

D︷ ︸︸ ︷[
0 1
0 −C

] Y︷︸︸︷[
Y1
Y2

]
+

F(t)︷ ︸︸ ︷[
0

F (t)

]
and

Y (0) =

[
Y1(0)
Y2(0)

]
=

[
Z0

Z1

]
= Y0,

that is, ∣∣∣∣∣Y ′(t) = G(Y (t)) +DY (t) + F(t)
Y (0) = Y0.

Let us de�ne, now, the auxiliary function

h : [0, T ]× R2m → R2m

(t, y) 7→ h(t, y) = G(y) +Dy + F(t).
(32)

We will prove, next, that h satis�es the Carathéodory conditions. Indeed, since
f ∈ L2(0, T ;L2(Ω), the map

t 7→ (f(t), wj) (33)

is measurable; for all j = 1, . . . ,m. Moreover, the map

t 7→ |f(t)|2L2(Ω)

belongs to L1(0, T ). Thus, for almost every y ∈ R2m �xed, the map h given in (32) is
measurable in t because map (33) is.
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On the other hand, we saw in Chapter 1, that the pseudo-Laplacian operator A is
monotone, hemicontinuous, bounded and coercive. Thus, A is continuous from

(W 1,p
0 , τstrong) to (W−1,p′ ; τweak*).

This being so, if (yν) ⊂ R2m and yν → y in R2m then

m∑
i=1

yν,iwi →
m∑
i=1

yiwi in W 1,p
0 (Ω)

and, therefore,〈
A

( m∑
j=1

yν,iwi

)
, wj

〉
→
〈
A

( m∑
i=1

yiwi

)
, wj

〉
, ∀ j = 1, . . . ,m. (34)

It follows from this that
G(yν)→ G(y)

and, from the fact that
D · yν → D · y,

we have that the map h given in (32) is continuous in y.
Finally, let K be a compact of ]0, T [×R2m. For all (t, y) ∈ K, we have

||h(t, y)||2m = ||G(y) +D(y) + F(t)|| ≤ ||G(y)||+ ||D|| ||y||+ ||F(t)||. (35)

But

||G(y)||22m = ||G(y)||2m =
m∑
j=1

∣∣∣∣∣
〈
A

(∑
i

yiwi

)
, wj

〉∣∣∣∣∣
2

≤
m∑
j=1

∥∥∥∥∥A
(∑

i

yiwi

)∥∥∥∥∥
2

W−1,p′

||wj||2W 1,p
0
.

(36)

However, since projyK is a compact set then ||y||m ≤ c1 and then∥∥∥∥∥∑
i

yiwi

∥∥∥∥∥
W 1,p

0

≤
∑
i

|yi| ||wi||W 1,p
0
≤ c1

(∑
i

|yi|2
)
≤ c2 .

Since A maps bounded sets into bounded sets, from (36) we have

||G(y)||2m ≤ c3 .

Therefore, from (35) it follows that

||h(t, y)||2m ≤ k + ||F(t)||. (37)

However

||F(t)||22m = ||F (t)||2m =
m∑
j=1

|(f(t), wj)|2 ≤
m∑
j=1

|f(t)|2L2 |wj|2L2

≤ c̄1|f(t)|2L2 ,
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whence
||F(t)||2m ≤ c2|f(t)|L2(Ω) .

Since f ∈ L2(Q) it follows from the inequality above that ||F(t)||2m is integrable
on projtK.

Thus, by Carathéodory's Theorem there exists a solution Y (t) of the problem∣∣∣∣∣Y ′(t) = h(t, Y (t))

Y (0) = Y0

in some interval [0, tm), 0 < tm ≤ T . Thus, Y (t) is absolutely continuous and dif-
ferentiable a.e. in [0, tm). This entails that the maps gjm(t) and g′jm(t) are absolutely
continuous and g′′jm(t) exists a.e. in [0, tm). We will make, next, an a priori estimate that
will allow us to extend the solution Y (t) to the whole interval [0, T ].

2a	 Step: A Priori Estimate

Multiplying (19) by g′jm(t), t ∈ [0, tm) and summing over j, we obtain

1

2

d

dt
|u′m(t)|2 + ⟨Aum(t), u′m(t)⟩+ |∇u′m(t)|2 = (f(t), u′m(t)). (38)

But,

⟨A(u), v⟩ =
n∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

∂v

∂xi
dx; ∀u, v ∈ W 1,p

0 (Ω). (39)

In particular,

⟨Aum(t), u′m(t)⟩ =
n∑

i=1

∫
Ω

∣∣∣∣∂um∂xi

∣∣∣∣p−2
∂um
∂xi

∂u′m
∂xi

dx

and

⟨Aum(t), um(t)⟩ =
n∑

i=1

∫
Ω

∣∣∣∣∂um∂xi

∣∣∣∣p dx = ||um(t)||pW 1,p
0 (Ω)

. (40)

From this last expression it follows that

d

dt
||um(t)||pW 1,p

0 (Ω)
=

n∑
i=1

∫
Ω

d

dt

∣∣∣∣∂um(t)∂xi

∣∣∣∣p dx
= p

n∑
i=1

∫
Ω

∣∣∣∣∂um(t)∂xi

∣∣∣∣p−2
∂um(t)

∂xi

∂u′m(t)

∂xi
dx

= p⟨Aum(t), u′m(t)⟩,

whence

⟨Aum(t), u′m(t)⟩ =
1

p

d

dt
||um(t)||pW 1,p

0 (Ω)
. (41)

Substituting (41) in (38), we obtain

1

2

d

dt
|u′m(t)|2 +

1

p

d

dt
||um(t)||pW 1,p

0 (Ω)
+ ||u′m(t)||2 = (f(t), u′m(t))

≤ |f(t)| |u′m(t)| ≤
1

2

(
|f(t)|2 + |u′m(t)|2

)
.

(42)
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Integrating (42) from 0 to t, t ∈ [0, tm), it follows from (17) and (18) that

1

2
|u′m(t)|2 +

1

p
||um(t)||pW 1,p

0

+

∫ t

0

||u′m(s)||2 ds ≤
1

2
|u1m|2

+
1

p
||u0m||pW 1,p

0

+
1

2

∫ T

0

|f(s)|2 ds+ 1

2

∫ t

0

|u′m(s)|2 ds.
(43)

But, from (17) and (18) the existence of a positive constant c1 > 0 follows such
that

1

2
|u1m|2 +

1

p
||u0m||pW 1,p

0

≤ c1 . (44)

Thus, from (43) and (44) we conclude that

1

2
|u′m(t)|2 +

1

p
||um(t)||pW 1,p

0

+

∫ t

0

||u′m(s)||2 ds

≤ c2 +

∫ t

0

{
1

2
|u′m(s)|2 +

1

p
||um(s)||pW 1,p

0

+

∫ s

0

||u′m(τ)||2 dτ
}
ds

and from Gronwall's inequality it follows that

|u′m(t)|2 + ||um(t)||
p

W 1,p
0

+

∫ t

0

||u′m(s)||2 ds ≤ c; ∀ t ∈ [0, tm) and ∀m. (45)

Thus, from (19) and (45) it follows that

m∑
j=1

g2jm(t) = (um(t), um(t)) = |um(t)|2L2(Ω) ≤ k||um(t)||pW 1,p
0

≤ c̄, (46)

∀ t ∈ [0, tm) and ∀m ∈ N.
Also, from (45) it follows that

m∑
j=1

(
g′jm(t)

)2
= (u′m(t), u

′
m(t)) = |u′m(t)|2L2(Ω) ≤ c; ∀ t ∈ [0, tm) and ∀m ∈ N. (47)

Thus, from (46) and (47) we obtain

||Y (t)||22m = ||Y1(t)||2 + ||Y2(t)||2 = ||z(t)||2 + ||z′(t)||2

=
m∑
j=1

|gjm(t)|2 +
m∑
j=1

|g′jm(t)|2 ≤ c′,

∀ t ∈ [0, tm) and ∀m.
It results from this that the solution Y (t) of problem (29) can be prolonged to the

whole interval [0, T ]. The same happens then for um(t). Thus, for each m ∈ N there
exists a solution um(t) of (15)-(18), absolutely continuous, with u′m absolutely continuous
and u′′m existing a.e. in ]0, T [. Carrying out the same calculation we did to obtain (45)
we conclude, analogously, that

|u′m(t)|2 + ||um(t)||
p

W 1,p
0 (Ω)

+

∫ t

0

||u′m(s)||2 ds ≤ c; ∀ t ∈ [0, T ] and m ∈ N. (48)
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On the other hand, as seen previously

||Aum(t)||W−1,p′ (Ω) = ||um(t)||
p−1

W 1,p
0 (Ω)

. (49)

Thus, from (48) and (49) we conclude that

(um) is bounded in L∞(0, T ;W 1,p
0 (Ω)) (50)

(u′m) is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) (51)

(Aum) is bounded in L∞(0, T ;W−1,p′

0 (Ω)) (52)

(u′m(T )) is bounded in L2(Ω) (53)

(um(T )) is bounded in W 1,p
0 (Ω) (54)

Consequently there will exist (uµ) a subsequence of (um) such that

uµ
∗
⇀ u weak* in L∞(0, T ;L2(Ω)) (55)

Auµ
∗
⇀ χ weak* in Lp′(0, T ;W−1,p′(Ω)) (56)

uµ ⇀ u weakly in Lp(0, T ;W 1,p
0 (Ω)) (57)

uµ(T )⇀ ξ weakly in L2(Ω) (58)

3a	 Step: Passage to the Limit

Let θ ∈ D(0, T ) and µ ∈ N such that j ≤ µ. Multiplying (16) by θ and integrating
in [0, T ] it results that∫ T

0

(u′′µ(t), wj)θ(t) dt+

∫ T

0

⟨Auµ(t), wj⟩θ(t) dt+
∫ T

0

a(u′µ(t), wj)θ(t) dt

=

∫ T

0

(f(t), wj)θ(t) dt.

Whence

−
∫ T

0

(u′µ(t), wj)θ
′(t) dt+

∫ T

0

⟨Auµ(t), wj⟩θ(t) dt+
∫ T

0

a(u′µ(t), wj)θ(t) dt

=

∫ T

0

(f(t), wj)θ(t) dt

From (56)-(58) it follows, in the limit situation, that

−
∫ T

0

(u′(t), wj)θ
′(t) dt+

∫ T

0

⟨χ(t), wj⟩θ(t) dt+
∫ T

0

a(u′(t), wj)θ(t) dt

=

∫ T

0

(f(t), wj)θ(t) dt

(61)

∀ θ ∈ D(0, T ); ∀ j ∈ N.
Since the �nite linear combinations of the elements of the basis (wν) are dense in

W 1,p
0 (Ω), it follows from (61) that

−
∫ T

0

(u′(t), w)θ′(t) dt+

∫ T

0

⟨χ(t), w⟩θ(t) dt+
∫ T

0

a(u′(t), w)θ(t) dt

=

∫ T

0

(f(t), w)θ(t) dt

(62)
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∀w ∈ W 1,p
0 (Ω) and ∀ θ ∈ D(0, T ).

Identifying L2(Ω) with its dual we have that

(u, v) = ⟨u, v⟩, ∀u ∈ L2(Ω), ∀ v ∈ W 1,p
0 (Ω) (63)

where ⟨ · , · ⟩ designates the duality W−1,p′ , W 1,p
0 .

On the other hand, recall also that

a(u, v) = ⟨−∆u, v⟩; ∀u, v ∈ H1
0 (Ω). (64)

In particular, from (63) and (64) we obtain

(u′(t), w) = ⟨u′(t), w⟩W−1,p′ ,W 1,p
0

and (f(t), w) = ⟨f(t), w⟩W−1,p′ ,W 1,p
0

; ∀w ∈ W 1,p
0 (Ω)

(65)
and

a(u(t), w) = ⟨−∆u′(t), w⟩H−1;H1
0
= ⟨−∆u′(t), w⟩W−1,p′ ;W 1,p

0
; ∀w ∈ W 1,p

0 (Ω). (66)

This last equality follows from the fact that

W 1,p
0 (Ω) ↪→ H1

0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) ↪→ W−1,p′(Ω).

Thus, from (62), (65) and (66) it follows that〈
−
∫ T

0

u′(t)θ′(t)dt, w

〉
+

〈∫ T

0

χ(t)θ(t), w

〉
+

〈∫ T

0

−∆u′(t)θ(t)dt, w
〉

=

〈∫ T

0

f(t), θ(t) dt, w

〉
that is,

−
∫ T

0

u′(t)θ′(t) dt+

∫ T

0

χ(t)θ(t) dt+

∫ T

0

−∆u′(t)θ(t) dt

=

∫ T

0

f(t)θ(t) dt in W−1,p′(Ω),

for all θ ∈ D(0, T ).
Therefore,

⟨u′′, θ⟩+ ⟨χ, θ⟩+ ⟨∆u′, θ⟩ = ⟨f, θ⟩ in W−1,p′(Ω)

for all θ ∈ D(0, T ), whence

u′′ + χ−∆u′ = f in D′(0, T ;W−1,p′(Ω)). (67)

In truth, since

∆u′ ∈ L2(0, T ;H−1(Ω)); χ ∈ L∞(0, T ;W−1,p′(Ω)) and f ∈ L2(0, T ;L2(Ω))

from (67) we have
u′′ ∈ L2(0, T ;W−1,p′(Ω)) (68)
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and, moreover,
u′′ + χ−∆u′ = f in L2(0, T ;W−1,p′(Ω)). (69)

4a	 Step: Initial Conditions

These are proved in the usual manner as in the previous problem. Analogously we
also prove from (59) and (60) that

ξ = u(T ) and η = u′(T ). (70)

We will obtain, next, an estimate for the second derivative using a technique dif-
ferent from the usual one without it being necessary to impose stronger initial conditions.

Since Vm is a closed subspace of L2(Ω), given that it has �nite dimension, we can
write

L2(Ω) = Vm ⊕ V ⊥
m .

Consider then, for each m ∈ N, the projection Pm on the subspace Vm , that is,
consider the linear map

Pm : L2(Ω)→ Vm

u→ Pmu =
m∑
j=1

(u,wj)wj .
(71)

Note that

|Pmu|2L2(Ω) =

∣∣∣∣∣
m∑
j=1

(u,wj)wj

∣∣∣∣∣
2

L2(Ω)

=
m∑
j=1

|(u,wj)|2

≤
+∞∑
j=1

|(u,wj)|2 ≤ |u|2L2(Ω),

where the last inequality is due to Bessel. Thus,

|Pmu|2L2(Ω) ≤ |u|2L2(Ω) ; ∀u ∈ L2(Ω),

which proves the continuity of the map Pm .
On the other hand, if u ∈ Hs

0(Ω) then from (9) it follows that

Pmu =
m∑
j=1

(u,wj)wj =
m∑
j=1

λj

(
u,

wj√
λj

)
wj√
λj

=
m∑
j=1

((
u,

wj√
λj

))
s

wj√
λj
.

From (8) it results that

||Pmu||2Hs
0(Ω) =

∥∥∥∥∥
m∑
j=1

((
u,

wj√
λj

))
s

wj√
λj

∥∥∥∥∥
2

Hs
0(Ω)

=
m∑
j=1

∣∣∣∣∣
((

u,
wj√
λj

))
s

∣∣∣∣∣
2

≤
+∞∑
j=1

∣∣∣∣∣
((

u,
wj√
λj

))
s

∣∣∣∣∣
2

≤ ||u||2Hs
0(Ω) .
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Thus,
||Pmu||Hs

0(Ω) ≤ ||u||Hs
0(Ω) ; ∀u ∈ Hs

0(Ω) (72)

and consequently,

||Pm||L(Hs
0 ,H

s
0)
= sup

u∈Hs
0

||u||s ̸=0

||Pmu||Hs
0

||u||Hs
0

≤ 1; ∀m ∈ N. (73)

Consider, now, P ∗
m the adjoint map of Pm . Recall that

P ∗
m : H−s(Ω)→ H−s(Ω)

f → Pmf

where
⟨P ∗

mf, u⟩ = ⟨f, Pmu⟩; ∀u ∈ Hs
0(Ω) and ∀ f ∈ H−s(Ω). (74)

We have, from (72) that

||P ∗
mf ||H−s(Ω) = sup

||u||s=1

|⟨P ∗
mf, u⟩| = sup

||u||s=1

|⟨f, Pmu⟩|

≤ sup
||u||s=1

||f ||H−s ||Pmu||Hs
0
≤ sup

||u||s=1

||f ||H−s ||u||Hs
0
= ||f ||H−s ∀m ∈ N,

that is,
||P ∗

mf ||H−s(Ω) ≤ ||f ||H−s(Ω) ; ∀m ∈ N. (75)

In this way,

||P ∗
m||L(H−s,H−s) = sup

f∈H−s

||f ||̸=0

||P ∗
mf ||H−s

||f ||H−s

≤ 1; ∀m ∈ N. (76)

Returning to (16) we obtain

(u′′m(t), wj) = ⟨−Aum(t), wj⟩+ ⟨∆u′m(t), wj⟩+ (f(t), wj); j = 1, . . . ,m

or even, identifying L2(Ω) with its dual

⟨u′′m(t), w⟩H−s;Hs
0
= ⟨−Aum(t) + ∆u′m(t) + f(t), w⟩H−s;Hs

0
; ∀w ∈ Vm . (77)

However, if v ∈ Hs
0(Ω) we can write

⟨u′′m(t), v⟩H−s;Hs
0
=

( m∑
j=1

g′′jm(t)wj,
+∞∑
i=1

(vi, wi)wi

)
=

( m∑
j=1

g′′jm(t)wj,
m∑
i=1

(v, wi)wi

)
= (u′′m(t), Pmv) = ⟨u′′m(t), Pmv⟩H−s;Hs

0
,

that is,
⟨u′′m(t), v⟩H−s;Hs

0
= ⟨u′′m(t), Pmv⟩H−s;Hs

0
; ∀ v ∈ Hs

0(Ω). (78)

On the other hand, given v ∈ Hs
0(Ω) we have that Pmv ∈ Vm and from (77) it

follows that
⟨u′′m(t), Pmv⟩ = ⟨−Aum(t) + ∆u′m(t) + f(t), Pmv⟩
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and from (78) and (74) it results that

⟨u′′m(t), v⟩ = ⟨P ∗
m(−Aum(t) + ∆u′m(t) + f(t)), v⟩; ∀ v ∈ Hs

0 .

Consequently

u′′m(t) = −P ∗
m(Aum(t)) + P ∗

m(∆u
′
m(t)) + P ∗

m(f(t)) in H
−s(Ω). (79)

In this way, u′′m(t) ∈ H−s(Ω) for a.e. t ∈]0, T [. Furthermore, we have,

||u′′m(t)||H−s(Ω) ≤ ||P ∗
m(Aum(t))||H−s(Ω) + ||P ∗

m(∆u
′
m(t))||H−s(Ω) + ||P ∗

m(f(t))||H−s(Ω)

≤ ||P ∗
m||L(H−s)

{
||Aum(t)||H−s(Ω) + ||∆u′m(t)||H−s(Ω) + ||f(t)||H−s(Ω)

}
.

Then, from (76) it results that

||u′′m(t)||H−s ≤ ||Aum(t)||H−s + ||∆u′m(t)||H−s + ||f(t)||H−s ; a.e. in [0, T [ .

Thus,

||u′′m(t)||2H−s(Ω) ≤ c
{
||Aum(t)||2H−s(Ω) + ||∆u′m(t)||2H−s(Ω) + ||f(t)||2H−s(Ω)

}
≤ c′

{
||Aum(t)||2W−1,p(Ω) + ||∆u′m(t)||2H−1(Ω) + ||f(t)||2L2(Ω)

}
a.e. in ]0, T [.

From the inequality above and from (51), (52) and the fact that f ∈ L2(Q) it
follows that ∫ T

0

||u′′m(t)||2H−s(Ω) dt < +∞.

Thus,
(u′′m) is bounded in L2(0, T ;H−s(Ω)). (80)

In particular, for the subsequence (uµ) of (um) given previously we have the same
boundedness.

It remains to prove that
χ = Au.

In fact, by the monotonicity of A we have that

0 ≤
∫ T

0

⟨A(uµ)− A(v), uµ − v⟩ dt; ∀ v ∈ L2(0, T ;W 1,p
0 (Ω)),

whence,

0 ≤
∫ T

0

⟨A(uµ), uµ⟩ dt−
∫ T

0

⟨A(uµ), v⟩ dt−
∫ T

0

⟨A(v), uµ − v⟩ dt (81)

∀ v ∈ L2(0, T ;W 1,p
0 (Ω)).

Returning to the approximate equation given in (16), we obtain

(u′′µ(t), uµ(t)) + ⟨Auµ(t), uµ(t)⟩+ a(u′µ(t), uµ(t)) = (f(t), uµ(t)).

Integrating the last identity in [0, T ] follows that∫ T

0

(u′′µ(t), uµ(t)) dt+

∫ T

0

⟨Auµ(t), uµ(t)⟩ dt+
1

2

∫ T

0

d

dt
||uµ(t)||2 dt =

∫ T

0

(f(t), uµ(t)) dt
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that is,∫ T

0

(u′′µ(t), uµ(t))dt+

∫ T

0

⟨Auµ(t), uµ(t)⟩dt+
1

2
||uµ(T )||2−

1

2
||uµ(0)||2 =

∫ T

0

(f(t), uµ(t))dt.

(82)
But, ∫ T

0

d

dt
(u′µ(t), uµ(t)) dt =

∫ T

0

(u′′µ(t), uµ(t)) dt+

∫ T

0

(u′µ(t), u
′
µ(t)) dt.

Thus,∫ T

0

(u′′µ(t), uµ(t)) dt = (u′µ(T ), uµ(T ))− (u′µ(0), uµ(0))−
∫ T

0

|u′µ(t)|2 dt.

Substituting the equality above in (82) results that

(u′µ(T ), uµ(T ))− (u′µ(0), uµ(0))−
∫ T

0

|u′µ(t)|2 dt+
∫ T

0

⟨Auµ(t), uµ(t)⟩ dt+

+
1

2
||uµ(T )||2 −

1

2
||uµ(0)||2 =

∫ T

0

(f(t), uµ(t)) dt.

(83)

However, we have from (51) and (80) that

(u′µ) is bounded in L2(0, T ;H1
0 (Ω)),

(u′′µ) is bounded in L2(0, T ;H−s(Ω)).

Since H1
0 (Ω)

c
↪→ L2(Ω) ↪→ H−s(Ω) then, by Aubin-Lions, it follows that there exists

a subsequence of (uµ) which we will still denote by the same symbol such that

u′µ → u′ in L2(0, T ;L2(Ω)). (84)

On the other hand, substituting (83) in (81) results that

0 ≤
∫ T

0

(f(t), uµ(t))dt+
1

2
||uµ(0)||2 −

1

2
||uµ(T )||2 + (u′µ(0), uµ(0))− (u′µ(T ), uµ(T ))

+

∫ T

0

|u′µ(t)|2 dt−
∫ T

0

⟨Auµ(t), v⟩ dt−
∫ T

0

⟨Av(t), uµ(t)− v(t)⟩ dt

for all v ∈ Lp′(0, T ;W 1,p
0 (Ω)).

Taking the lim in the inequality above we obtain

0 ≤ lim

∫ T

0

(f(t), uµ(t))dt+
1

2
lim ||u0µ||2

− 1

2
lim ||uµ(T )||2 + lim(u1µ, u0µ)

− lim(u′µ(T ), uµ(T )) + lim

∫ T

0

|u′µ(t)|2 dt

− lim

∫ T

0

⟨Auµ(t), v(t)⟩ dt− lim

∫ T

0

⟨Av(t), uµ(t)− v(t)⟩ dt.

(85)
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However,
u0µ → u0 in W 1,p

0 ↪→ H1
0 ⇒ ||u0µ|| → ||u0||. (86)

But, from (60) and by Banach-Steinhaus

||u(T )|| ≤ lim ||uµ(T )||

and, therefore,
||u(T )||2 ≤ lim ||uµ(T )||2,

or even,
− lim ||uµ(T )||2 ≤ −||u(T )||2. (87)

Now, since u0µ → u0 in W
1,p
0 ↪→ L2 and u1µ → u1 in L2 it results that

(u1µ, u0µ)
µ→+∞−−−−→ (u1, u0). (88)

Finally, from (54) we have that

(uµ(T )) is bounded in W 1,p
0 (Ω) ↪→ H1

0 (Ω)
c
↪→ L2(Ω).

Thus, the embedding of W 1,p
0 (Ω) in L2(Ω)) is compact there will exist a subsequence of

(uµ), which we will still denote by the same symbol, such that

uµ(T )
µ→+∞−−−−→ u(T ) in L2(Ω). (89)

In this way, from (89) and (59) we have that

(u′µ(T ), uµ(T ))
µ→+∞−−−−→ (u′(T ), u(T )). (90)

Then, from (55), (58), (84), (85), (87), (88), (89) and (90) we conclude that

0 ≤
∫ T

0

(f(t), u(t))dt+
1

2
||u0||2 −

1

2
||u(T )||2 + (u1, u0)− (u′(T ), u(T ))

+

∫ T

0

|u′(t)|2 dt+
∫ T

0

⟨χ(t), v(t)⟩ dt−
∫ T

0

⟨Av(t), u(t)− v(t)⟩ dt.
(91)

On the other hand, from (69) we obtain

⟨u′′, u⟩+ ⟨χ, u⟩ − ⟨∆u′, u⟩ = ⟨f, u⟩,

where ⟨ · , · ⟩ designates the duality L2(0, T ;W−1,p′(Ω))× L2(0, T ;W 1,p
0 (Ω)).

Equivalently, we have∫ T

0

⟨u′′(t), u(t)⟩ dt+
∫ T

0

⟨χ(t), u(t)⟩ dt+
∫ T

0

⟨−∆u′(t), u(t)⟩ dt =
∫ T

0

⟨f(t), u(t)⟩ dt. (92)

However, analogously to the parabolic case

d

dt
(u′(t), u(t)) = ⟨u′′(t), u(t)⟩+ (u′(t), u′(t)).

Integrating the last identity in [0, T ], we obtain

(u′(T ), u(T ))− (u′(0), u(0)) =

∫ T

0

⟨u′′(t), u(t)⟩ dt+
∫ T

0

|u′(t)|2 dt. (93)
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Substituting (93) in (92) results that

(u′(T ), u(T ))− (u′(0), u(0))−
∫ T

0

|u′(t)|2 dt+
∫ T

0

⟨χ(t), u(t)⟩ dt

+

∫ T

0

⟨−∆u′(t), u(t)⟩ dt =
∫ T

0

⟨f(t), u(t)⟩ dt.

However,∫ T

0

⟨−∆u′(t), u(t)⟩ dt =
∫ T

0

a(u′(t), u(t)) dt =

∫ T

0

1

2

d

dt
||u(t)||2 dt = 1

2
||u(T )||2−1

2
||u(0)||2.

(94)
From (93) and (94) it follows that

(u′(T ), u(T ))− (u1, u0) +
1

2
||u(T )||2 − 1

2
||u0||2 −

∫ T

0

|u′(t)|2 dt

+

∫ T

0

⟨χ(t), u(t)⟩ dt =
∫ T

0

⟨f(t), u(t)⟩ dt.
(95)

Finally, substituting (95) in (91) it follows that∫ T

0

⟨χ(t)− Av(t), u(t)− v(t)⟩ dt ≥ 0. (96)

Let w ∈ W 1,p
0 (Ω). Considering, initially, v equal to u− λw, with λ > 0, and, next,

with λ < 0, it results that∫ T

0

⟨χ− A(u− λw), w⟩ dt = 0; ∀w ∈ W 1,p
0 (Ω).

By the hemicontinuity of A it follows that

χ = Au.

14.3 Elasticity System

In this section, we will address an elliptic problem fundamental regarding its applications
in Solid Mechanics: The elasticity system.

Let Ω be a bounded connected open set of Rn with a smooth boundary Γ, rep-
resenting the volume occupied by an elastic body. Let Γ0 be a part of Γ, with strictly
positive surface measure, and let Γ1 be the complement of Γ0 in Γ. Let us assume that
the body is �xed along Γ0 and that a force f⃗ = (fi)1≤i≤n acts on the body and that a
surface force g⃗ = (gi)1≤i≤n acts on Γ1 as illustrated in the �gure below:

Let u⃗ = (uj); 1 ≤ j ≤ n, be the displacement vector. The Strain Tensor (εij) is
de�ned by

εij(u⃗) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
; 1 ≤ i, j ≤ n. (1)
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Figure 14.1: Elastic body con�guration

If σij is the stress tensor, then we need a law relating both tensors; a law that
will describe the properties constituting the material. Assuming that the solid is elastic,
homogeneous, and isotropic, the law relating the tensors is linear; more precisely, it is
Hooke's Law

σij(u⃗) = λ

( n∑
k=1

εkk(u⃗)

)
δij + 2µ εij(u⃗); 1 ≤ i, j ≤ n, (2)

where λ ≥ 0 and µ > 0 are called Lamé Coe�cients. Here, δij is the Kronecker delta.
The elasticity system consists of the following boundary value problem:

−
n∑

j=1

∂

∂xj
σij(u⃗) = fi in Ω, 1 ≤ i ≤ n

u⃗ = 0 on Γ0

n∑
j=1

σij(u⃗)νj = gi on Γ1 ; 1 ≤ i ≤ n.

(3)

Let us set
H = (L2(Ω))n (4)

endowed with the inner product

(u, v)H =
n∑

i=1

(ui, vi)L2(Ω) (5)
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and
V = (H1(Ω))n (6)

endowed with the inner product

((u, v))V =
n∑

i=1

((ui, vi))H1(Ω) . (7)

De�ne
V0 = {v ∈ V ; γ⃗0v = 0 on Γ0}, (8)

where γ⃗0 is the trace map given by

γ⃗0 : V → (H1/2(Γ))n

v 7→ γ⃗0v = (γ0v1, γ0v2, . . . , γ0vn),
(9)

with γ0 : H1(Ω)→ H1/2(Γ) being the trace map for functions in H1(Ω).
Our goal is to show that the map

v ∈ V0 7→ [v] =

( n∑
i,j=1

∫
Ω

|εij(v)|2 dx
)1/2

=

(∑
i,j

|εij(v)|2L2(Ω)

)1/2

(10)

de�nes a norm on V0, and that in V0 this norm is equivalent to the norm induced by V .
However, we need some preliminary results as we will see next.

Lemma 1. Let v ∈ (H1(Ω))n. Then, for all 1 ≤ i, j ≤ n we have

εij(v⃗) = 0 ⇔ v⃗(x) = a+ b · x,

where a ∈ Rn and b ∈ L(Rn) with b = −b∗, where b∗ is the transpose of b.

Proof. Let v⃗(x) = (v1, v2, . . . , vn) and suppose that v⃗(x) = a+ b · x, that is,

vi(x) = ai +
n∑

j=1

bij xj ; 1 ≤ i ≤ n.

From the hypothesis on b, i.e., from the fact that b = −b∗, it follows that

bij = −bji

and, therefore,
∂vi
∂xj

= bij = −bji = −
∂vj
∂xi

; 1 ≤ i, j ≤ n.

Thus

εij(v⃗) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
= 0; 1 ≤ i, j ≤ n.

Conversely, suppose that

εij(u) = 0, 1 ≤ i, j ≤ n; (11)
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then
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
= 0; 1 ≤ i, j ≤ n.

In this way,
∂

∂xk

(
∂ui
∂xj

+
∂uj
∂xi

)
= 0; 1 ≤ i, j, k ≤ n,

that is,
∂

∂xk

(
∂ui
∂xj

)
+

∂

∂xk

(
∂uj
∂xi

)
= 0; 1 ≤ i, j, k ≤ n.

But, in the sense of distributions, we can also write that

∂

∂xj

(
∂ui
∂xk

)
+

∂

∂xi

(
∂uj
∂xk

)
= 0. (12)

On the other hand, from (11) we have that

∂ui
∂xk

= −∂uk
∂xi

and
∂uj
∂xk

= −∂uk
∂xj
· (13)

Thus, substituting (13) into (12) implies that

∂

∂xj

(
− ∂uk
∂xi

)
+

∂

∂xi

(
− ∂uk
∂xj

)
= 0,

that is,

2
∂2uk
∂xi∂xj

= 0⇒ ∂2uk
∂xi∂xj

= 0; 1 ≤ i, j, k ≤ n,

which implies that
∂uk
∂xj

= bkj , 1 ≤ j, k ≤ n; (14)

where bkj is a constant that depends on k and j.
But from (11) it follows that

bkj = −bjk . (15)

Integrating (14) with respect to xj we obtain

uk = bkj xj + akj + f(x1, x2, . . . , xj−1, xj+1, . . . , xn);

where akj is a constant that depends on k and j.
It results for i ̸= j that

∂uk
∂xi

=
∂f

∂xi

and from (14) it follows that
∂f

∂xi
= bki ; ∀ i ̸= j.

Thus,

f =
n∑

i=1,i ̸=j

(bki xi + aki)
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and, therefore,

uk = bkj xj + akj +
∑

i=1,i ̸=j

(bki xi + aki)

that is,

uk =
n∑

j=1

(bkj xj + akj) =
n∑

j=1

bkj + ak ; where ak =
n∑

j=1

akj .

Then,

u = (u1, . . . , un) = (a1, . . . , an) +

( n∑
j=1

b1j xj, . . . ,

n∑
j=1

bnj xj) =

= a⃗+


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
bn1 bn2 . . . bnn



x1
x2
...
xn

 = a+ b · x.
(14.3)

According to (15) it follows that b = −b∗, which proves the lemma.

Lemma 2. Let Ω be a bounded open set with a smooth boundary Γ. Let Γ0 ⊂ Γ such that
the surface measure of Γ0 is strictly positive. If v(x) = a+ b · x; ∀x ∈ Ω, where a ∈ Rn,
b ∈ L(Rn) such that b = −b∗ and v(x) = 0, ∀x ∈ Γ0 then v(x) = 0⃗ ∀x ∈ Ω.

Proof. We will perform the proof in the cases where n = 2 or n = 3. However, generally,
due to the fact that the surface measure is positive, we guarantee the existence of n
linearly independent vectors x⃗1, . . . , x⃗n in Rn such that x1, x2, . . . , xn ∈ Γ0 . We claim
that

a = 0⃗ and b = (0)n×n .

Indeed,

• Case n = 2n = 2n = 2
Let x⃗1 and x⃗2 be l.i. in R2 such that x1, x2 ∈ Γ0 . Then

v(x1) = a+ b · x1 = 0

v(x2) = a+ b · x2 = 0

and, therefore,
b · (x1 − x2) = 0.

Since b is a skew-symmetric matrix we have that b =

(
0 k
−k 0

)
, whence being

x1 = (a1, b1) and x2 = (a2, b2) it follows that

[
0 k
−k 0

] [
a1 − a2
b1 − b2

]
=

0...
0

 ,
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that is,

k(b1 − b2) = 0

−k(a1 − a2) = 0.

Since x1 and x2 are l.i. we have that x1 ̸= x2 and, therefore, a1 − a2 ̸= 0 or
b1 − b2 ̸= 0. Consequently, k = 0 and thus

b = 0.

Thus, v(x) = a; ∀x ∈ Ω and, in particular, v(x) = a; ∀x ∈ Γ0. Since v(x) = 0
on Γ0 it results that a = 0 and in this way,

v(x) = 0; ∀x ∈ Ω.

• Case n = 3n = 3n = 3

Let x1 = (a1, b1, c1); x2 = (a2, b2, c2) and x3 = (a3, b3, c3) be l.i. vectors in R3 such
that x1, x2, x3 ∈ Γ0 . Let, further,

b =

 0 k1 k2
−k1 0 k3
−k2 −k3 0

 .
Since v(x) = 0 on Γ0, it follows that v(xi) = a+ b xi = 0; i = 1, 2, 3. Therefore,

b(xi − xj) = 0; i, j = 1, 2, 3 and i ̸= j

that is,
b(x1 − x2) = b(x2 − x3) = b(x1 − x3) = 0.

Thus 
k1(b1 − b2) + k2(c1 − c2) = 0

−k1(a1 − a2) + k3(c1 − c2) = 0

−k2(a1 − a2)− k3(b1 − b2) = 0

(16)


k1(b2 − b3) + k2(c2 − c3) = 0

−k1(a2 − a3) + k3(c2 − c3) = 0

−k2(a2 − a3)− k3(b2 − b3) = 0

(17)


k1(b1 − b3) + k2(c2 − c3) = 0

−k1(a1 − a3) + k3(c1 − c3) = 0

−k2(a1 − a3)− k3(b1 − b3) = 0

(18)

Since x⃗1 , x⃗2 and x⃗3 are linearly independent vectors we have that

x1 − x2 = (a1 − a2, b1 − b2, c1 − c2); x2 − x3 = (a2 − a3, b2 − b3, c2 − c3);

x1 − x3 = (a1 − a3, b1 − b3, c1 − c3)
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possess at least one non-zero coordinate because, otherwise, x1 = x2 and/or x2 = x3
and/or x1 = x3 . Suppose, then, without loss of generality that a1 − a2 ̸= 0. From (16) it
follows

k1 = k3
c1 − c2
a1 − a2

(19)

k2 = −k3
b1 − b2
a1 − a2

· (20)

We have, now, two cases to consider:

1st Case: a2 − a3 ̸= 0.
From (17) it results that

k1 = k3
c2 − c3
a2 − a3

(21)

k2 = −k3
b2 − b3
a2 − a3

· (22)

We have two subcases to consider

a1 − a3 ̸= 0 or a1 − a3 = 0.

If a1 − a3 ̸= 0, from (18) it follows that

k1 = k3
c1 − c3
a1 − a3

(23)

and

k2 = −k3
b1 − b3
a1 − a3

· (24)

From (19), (21) and (23) we obtain

k3
c1 − c2
a1 − a2

= k3
c2 − c3
a2 − a3

= k3
c1 − c3
a1 − a3

· (25)

From (20), (22) and (24) it results that

k3
b1 − b2
a1 − a2

= k3
b2 − b3
a2 − a3

= k3
b1 − b3
a1 − a3

· (26)

(27) If k3 = 0 then k1 = k2 = 0 and, therefore, b = [0]3×3 .
If k3 ̸= 0 we obtain from (25) and (26) that

c1 − c2
a1 − a2

=
c2 − c3
a2 − a3

=
c1 − c3
a1 − a3

= m1

b1 − b2
a1 − a2

=
b2 − b3
a2 − a3

=
b1 − b3
a1 − a3

= m2,

or even,
c1 − c2 = m1(a1 − a2) b1 − b2 = m2(a1 − a2)
c2 − c3 = m1(a2 − a3) and b2 − b3 = m2(a2 − a3)
c1 − c3 = m1(a1 − a3) b1 − b3 = m2(a1 − a3).

(28)
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If m1 = m2 = 0 we have that

c1 − c2 = c2 − c3 = c1 − c3 = 0

b1 − b2 = b2 − b3 = b1 − b3 = 0

and, therefore,

x1 − x2 = (a1 − a2, 0, 0) and x2 − x3 = (a2 − a3, 0, 0).

Thus, there exists a constant k satisfying

x1 − x2 = k(x2 − x3),

which is a contradiction, since the vectors are linearly independent.
Consider, now, the case where m1 = 0 or m2 = 0. Suppose, without loss of

generality, that m1 = 0 and m2 ̸= 0, from (28) it comes that

c1 − c2 = c2 − c3 = c1 − c3 = 0,

whence,

x1 − x2 = (a1 − a2,m2(a1 − a2), 0) = (a1 − a2)(1,m2, 0)

x2 − x3 = (a2 − a3,m2(a2 − a3), 0) = (a2 − a3)(1,m2, 0)

x1 − x3 = (a1 − a3,m2(a1 − a3), 0) = (a1 − a3)(1,m2, 0).

Thus,

x1 − x2 =
a1 − a2
a2 − a3

(x2 − x3),

which is a contradiction!
Suppose, now, that m1,m2 ̸= 0. From (18) it comes that:

x1 − x2 = (a1 − a2,m2(a1 − a2),m1(a1 − a2)) = (a1 − a2)(1,m2,m1)

x2 − x3 = (a2 − a3,m2(a2 − a3),m1(a2 − a3)) = (a2 − a3)(1,m2,m1)

x1 − x3 = (a1 − a3,m2(a1 − a3),m1(a1 − a3)) = (a1 − a3)(1,m2,m1).

Then,

x2 − x3 =
a1 − a2
a1 − a3

(x1 − x3),

which is a contradiction!
Thus, k3 ̸= 0 cannot occur. We must have, then, k3 = 0 and from (27) it comes

that
b = [0]3×3.

Let's pass to the case where a1 − a3 = 0. We have two subcases to consider:

b1 − b3 ̸= 0 or b1 − b3 = 0.

If b1 − b3 ̸= 0 then from (18)3 we obtain

k3(b1 − b3) = 0.
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Thus, k3 = 0 and from (21) and (22) it follows that k1 = k2 = 0. Whence

b = [0]3×3.

On the other hand, if b1 − b3 = 0 then c1 − c3 ̸= 0 since a1 − a3 = 0, by hypothesis
and the vectors x1 and x3 are linearly independent. From (17)2 it results that k3 = 0 and
therefore from (21) and (22) it comes that k1 = k2 = 0, that is,

b = [0]3×3.

2nd Case: a2 − a3 = 0
We have two subcases to consider

b2 − b3 ̸= 0 and b2 − b3 = 0.

If b2 − b3 ̸= 0 from (17)3 we obtain k3 = 0 and, therefore, from (21) and (22) we
have that k1 = k2 = 0 and then,

b = [0]3×3.

If b2 − b3 = 0, since a2 − a3 = 0 then c2 − c3 ̸= 0, given that the vectors x2 and x3
are linearly independent. From (17)2 we obtain k3 = 0 and, then, from (21) and (22), we
conclude that k1 = k2 = 0. Thus,

b = [0]3×3.

Lemma 3. Let v ∈ V0 = {v ∈ (H1(Ω))n; γ⃗0v = 0 on Γ0} where the surface measure of
Γ0 is positive. Then, εij(v⃗) = 0; i, j = 1, . . . , n⇔ v⃗ = 0⃗.

Proof. If v⃗ = 0⃗ then, trivially, εij(v⃗) = 0; ∀ i, j = 1, . . . , n.
Conversely, suppose that εij(v⃗) = 0; ∀ i, j = 1, . . . , n. Then, by Lemma 1, there

exist a ∈ Rn and b ∈ L(Rn); b = (bij) with bij = −bji such that

v(x) = a+ b · x; ∀x ∈ Ω.

Note that the function ṽ(x) = a+ b · x, x ∈ Ω is such that

ṽ ∈ (C∞(Ω))n ∩ (H1(Ω))n.

Thus,
γ⃗0ṽ = ṽ|Γ .

However, since ṽ(x) = v(x) in Ω, we have that γ⃗0ṽ = γ⃗0v and, therefore,

ṽ(x) = (γ⃗0v)(x); for almost every x ∈ Γ.

In particular,

ṽ(x) = (γ⃗0v)(x); for almost every x ∈ Γ0 .

Since v ∈ V0 , then (γ0v)(x) = 0 for almost every x ∈ Γ0 and then

ṽ(x) = 0; ∀x ∈ Γ0.
(∗)

By Lemma 2 it follows that ṽ(x) = 0, ∀x ∈ Ω which implies that v = 0 in Ω.

13Note that ṽ ∈ (C∞(Ω))n and ṽ = 0 a.e. on Γ0 then ṽ = 0, ∀x ∈ Γ.
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From the previous lemmas we obtain the following result.

Proposition 1. The map v ∈ V0 7→ [v] =

(
n∑

i,j=1

|εij(v)|2L2(Ω)

)1/2

where

εij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
is a norm on V0 .

Next, we will prove that in V0 the norms || · ||V and [ · ] are equivalent. Before that,
however, we need two results that we will state in the form of lemmas.

Lemma 4. Let Ω = Rn; Ω = Rn
+ or a bounded open set with smooth boundary of Rn. If

v ∈ D′(Ω) such that v ∈ H−1(Ω) and
∂v

∂xi
∈ H−1(Ω); i = 1, . . . , n then v ∈ L2(Ω).

Proof. We will perform the proof for the case Ω = Rn. The proof for the other cases will
be omitted as it is beyond the scope of these notes, but can be found in Duvaut-Lions.

Initially, recall that for each s > 0 the set

H−s(Rn) = {u ∈ S ′(Rn); (1 + ||ξ||2)−s/2 û(ξ) ∈ L2(Rn)}

endowed with the topology,

||u||2H−s(Rn) =

∫
Rn

(1 + ||ξ||2)−s |û(ξ)|2 dξ

is a Hilbert space.

Let, then, v ∈ D′(Rn) such that v,
∂v

∂xi
∈ H−1(Ω); i = 1, . . . , n. Thus, for s = 1,

∫
Rn

(1 + ||ξ||2)−1 |v̂(ξ)|2 dξ < +∞ (29)

and ∫
Rn

(1 + ||ξ||2)−1

∣∣∣∣∣ ∂̂v∂xj (ξ)
∣∣∣∣∣
2

< +∞; j = 1, . . . , n.

However
∂̂v

∂xj
(ξ) = (2πi)ξj v̂(ξ).

Thus, for all j = 1, . . . , n we have

2π

∫
Rn

(1 + ||ξ||2)−1 |ξj|2 |v̂(ξ)|2 dξ < +∞

whence, summing over j and dividing by 2π results∫
Rn

(1 + ||ξ||2)−1 ||ξ||2 |v̂(ξ)|2 dξ < +∞. (30)
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Summing (29) and (30) we obtain∫
Rn

(1 + ||ξ||2)−1 (1 + ||ξ||2) |v̂(ξ)|2 dξ < +∞,

that is,
v̂ ∈ L2(Rn).

Due to Plancherel's Theorem it follows that

v ∈ L2(Rn).

Admitting the veracity of the lemma for the case Ω = Rn
+ , we prove, via local charts,

that the same continues to be valid for Ω a bounded open set with smooth boundary.

Lemma 5 (Korn's Inequality). There exists c > 0 such that for all v ∈ V = (H1(Ω))n

we have
n∑

i,j=1

∫
Ω

(εij(v(x)))
2 dx+

n∑
i=1

∫
Ω

(vi(x))
2 dx ≥ c||v||2.

Proof. Consider

E = {v ∈ (L2(Ω))n; εij(v) ∈ L2(Ω), ∀ i, j = 1, . . . , n}

and

V = (H1(Ω))n =

{
v ∈ (L2(Ω))n; vi,

∂vi
∂xj
∈ L2(Ω), ∀ i, j = 1, . . . , n

}
.

I claim: V = E. Indeed,
Evidently, V ⊂ E. Endowing E with the topology

||v||2E =
n∑

i,j=1

∫
Ω

(εij(v))
2 dx+

n∑
i=1

∫
Ω

v2i dx,

it results that the canonical map

τ : V → E

u 7→ τu = u,

which is clearly linear and injective, is also continuous, since

||τu||2E = ||u||2E ≤ c1||u||2; ∀u ∈ V.

We will prove, next, that E ⊂ V . Indeed, let v ∈ E. Then

v ∈ (L2(Ω))n and εij(v) ∈ L2(Ω); ∀ i, j = 1, . . . , n.

However, the following identity is valid

∂

∂xk
(εij(v)) +

∂

∂xj
(εjk(v))−

∂

∂xi
(εjk(v)) =

∂

∂xj

(
∂vi
∂xk

)
∀ v ∈ E and ∀ i, j, k = 1, . . . , n.



14.3. ELASTICITY SYSTEM 215

Since εij(v) ∈ L2(Ω) and, therefore, any derivative of it of 1st order belongs to
H−1(Ω), then from the identity above it comes that

∂

∂xj

(
∂vi
∂xk

)
∈ H−1(Ω); ∀ i, j, k = 1, . . . , n.

Furthermore, since

∂vi
∂xk
∈ H−1(Ω); ∀ i, k = 1, . . . , n,

by Lemma 4 it results that
∂vi
∂xk
∈ L2(Ω); ∀ i, k = 1 . . . , n. Furthermore, since vi ∈ L2(Ω);

∀ i = 1, . . . , n it follows that v ∈ V . Which proves that V = E.
Therefore, τ : V → E is a linear, continuous and bijective map. Thus, ∃ τ−1 : E →

V which is linear and continuous.
Thus, ∃ c2 > 0 such that

||v|| = ||τ−1v|| ≤ c2||v||E ; ∀ v ∈ E,

that is,

||v||E ≥
1

c2
||v||; ∀ v ∈ V.

Lemma 6. The space V0 = {v ∈ V ; γ⃗0v = 0 on Γ0} endowed with the inner product
(( · , · )) given in (7) is a closed subspace of V .

Proof. Let (vν) ⊂ V0 such that vν → v in V . Then,

γ⃗0vν → γ⃗0v in (H1/2(Γ))n ↪→ (L2(Γ))n.

Thus, there exists a subsequence (vµ) ⊂ (vν) verifying

(γ⃗0vµ)(x)→ (γ⃗0v)(x) for almost every x ∈ Γ.

In particular,

(γ⃗0vµ)(x)→ (γ⃗0v)(x) for almost every x ∈ Γ0.

Since γ⃗0vµ = 0 a.e. on Γ0, ∀µ ∈ N, we have that γ⃗0v = 0 on Γ0, which proves the
desired result.

Proposition 2. The norms || · || and [ · ] are equivalent in V0 , where

||v|| =
( n∑

j=1

||vi||2H1(Ω)

)1/2

and

[v] =

( n∑
i,j=1

|εij(v)|2L2(Ω)

)1/2

.
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Proof. As already seen previously (Proposition 1), the map v ∈ V0 → [v] de�nes a norm
on V0 . We will prove, next, the equivalence between || · || and [ · ]. Indeed, let v ∈ V0 .
On one hand, we have that

[v]2 =
n∑

i,j=1

1

4

∣∣∣∣ ∂vi∂xj
+
∂vj
∂xi

∣∣∣∣2
L2(Ω)

≤ c1

n∑
i,j=1

{ ∣∣∣∣ ∂vi∂xj

∣∣∣∣2
L2(Ω)

+

∣∣∣∣∂vj∂xi

∣∣∣∣2
L2(Ω)

}

≤ c1

n∑
i,j=1

{
||vi||2H1(Ω) + ||vj||2H1(Ω)

}
≤ nc1

{ n∑
i=1

||vi||2H1(Ω) +
n∑

j=1

||vj||2H1(Ω)

}
= 2nc1||v||2.

Thus, ∃ c > 0 such that
[v] ≤ c||v||. (31)

Conversely, suppose that there exists k0 > 0 such that

[v] ≥ k0|v|; ∀ v ∈ V0 . (32)

By Korn's inequality, ∃ k1 > 0 such that

[v]2 + |v|2 ≥ k1||v||2. (33)

Thus, from (32) and (33) we obtain

k1||v||2 ≤ [v]2 + |v|2 ≤ [v]2 +

(
1

k0

)2

[v]2 =

(
1 +

1

k20

)
[v]2

that is, ∃ k2 > 0 verifying
k2||v|| ≤ [v]. (34)

Therefore, from (31) and (34) the desired result follows. It remains, then, to show
inequality (32). Indeed, note that if v = 0 the inequality in (32) follows trivially. Consider
v ̸= 0. In this case, (32) is equivalent to

[v]

|v|
≥ k0 ⇔

[
v

|v|

]
≥ k0 where

∣∣∣∣ v|v|
∣∣∣∣ = 1.

From the above it is su�cient to prove that

∃ k0 > 0; ∀ v ∈ V0 s.t. |v| = 1 we have [v] ≥ k0 . (35)

Suppose, by contradiction, that (35) does not happen. Thus, for each n ∈ N,
∃ vn ∈ V0 ; |vn| = 1 and [vn] <

1

n
·

It follows from this that
lim

n→+∞
[vn] = 0. (36)
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But, for each n ∈ N, from (33) we have that

k1||vn||2 ≤ [vn]
2 + |vn|2 <

1

n2
+ 1 < 2; ∀n ∈ N,

which implies that

(vn) ⊂ V0 is a bounded sequence in the norm of V. (37)

Since the topological space (V0, || · ||) is a Hilbert space, given that it is closed,
according to Lemma 6, we have that ∃ (vν) ⊂ (vn) and v ∈ V0 such that

vν ⇀ v weakly in V0 . (38)

Furthermore, the map v ∈ V0 7→ [v] is a seminorm on V0 , which implies that such
map is convex and l.s.c. on V0 endowed with the weak topology. It results that

[v] ≤ lim inf
ν→+∞

[vν ].

But, from (36) we conclude that

lim inf
ν→+∞

[vν ] = 0,

consequently,
[v] = 0. (39)

From (39), from the fact that v ∈ V0 and since [ · ] is a norm on V0 it follows that

v = 0. (40)

On the other hand, since H1(Ω)
c
↪→ L2(Ω) we have that V

c
↪→ H and, therefore,

from (37) we conclude that there exists a subsequence of (vν), which we will continue
denoting by (vν), such that

vν → v in H.

Thus
|vν | → |v| in R.

Since we have that |vν | = 1; ∀ ν ∈ N, it follows that |v| = 1. But this contradicts
what was obtained in (40), proving inequality (32), which concludes the proof.

Next, we will solve the mathematical problem given in (3).

Let Ω ⊂ Rn, be a bounded open set, with su�ciently smooth boundary Γ. Let
Γ0,Γ1 ⊂ Γ, such that Γ0 has positive surface measure and Γ1 = Γ\Γ0 . Given

f = (f1, . . . , fn) ∈ (L2(Ω))n and g = (g1, . . . , gn) ∈ (L2(Γ))n,

determine u : Ω→ Rn verifying

−
n∑

j=1

∂σij(u)

∂xj
= fi in Ω, 1 ≤ i ≤ n

ui = 0 on Γ0

n∑
j=1

σij(u)νj = gi on Γ1 ; 1 ≤ i ≤ n.

(41)
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where σij(u) = λ div u δij + 2µ εij(u); λ, µ > 0 and εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Let us set as before

H = (L2(Ω))n; V = (H1(Ω))n and V0 = {v ∈ V ; γ⃗0v = 0}.

In what follows we will proceed formally. Multiplying equation (41)1 by vi , where
v = (v1, . . . , vn) ∈ V0 , summing over i and integrating over Ω, we obtain

−
∑
i,j=1

∫
Ω

∂σij(u)

∂xj
vi dx =

n∑
i=1

∫
Ω

fivi dx. (42)

However, by Gauss∫
Ω

∂

∂xj
(σij(u)vi)dx =

∫
Γ

σij(u)viνj dΓ =

∫
Γ0

σij(u)viνj dΓ +

∫
Γ1

σij(u)viνj dΓ,

that is, ∫
Ω

∂

∂xj
(σij(u))vi dx+

∫
Ω

σij(u)
∂vi
∂xj

dx =

∫
Γ1

σij(u)viνj dΓ. (43)

Substituting (43) in (42) results that
n∑

i,j=1

∫
Ω

σij(u)
∂vi
∂xj

dx =
n∑

i=1

∫
Ω

fivi dx+
n∑

i,j=1

∫
Γ1

σij(u)viνj dΓ. (44)

Analogously,
n∑

i,j=1

∫
Ω

σji(u)
∂vj
∂xi

dx =
n∑

j=1

∫
Ω

fjvj dx+
n∑

i,j=1

∫
Γ1

σji(u)vjνi dΓ

=
n∑

i=1

∫
Ω

fivi dx+
n∑

i,j=1

∫
Γ1

σij(u)viνj dΓ.

(45)

Summing (44) and (45) and observing that σij(u) = σji(u) we obtain

n∑
i,j=1

∫
Ω

σij(u)

[
∂vi
∂xj

+
∂vj
∂xi

]
dx = 2

[ n∑
i=1

∫
Ω

fivi dx+
n∑

i,j=1

∫
Γ1

σij(u)viνj dΓ

]
.

Whence
n∑

i,j=1

∫
Ω

σij(u)
1

2

[
∂vi
∂xj

+
∂vj
∂xi

]
dx =

n∑
i=1

∫
Ω

fivi dx+
n∑

i=1

∫
Γ1

( n∑
j=1

σij(u)νj

)
vi dΓ,

or even,
n∑

i,j=1

∫
Ω

σij(u)εij(v)dx =
n∑

i=1

∫
Ω

fivi dx+
n∑

i=1

∫
Γ1

givi dΓ. (46)

Now, setting

a(u, v) =
n∑

i,j=1

∫
Ω

σij(u)εij(v) dx (47)

L(v) =
n∑

i=1

(∫
Ω

fivi dx+

∫
Γ1

givi dΓ

)
, (48)
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we arrive at the weak problem{
Determine u ∈ V0 such that

a(u, v) = L(v); ∀ v ∈ V0 .
(49)

Our goal is to use the Lax-Milgram Lemma. For this, we must show that a(u, v)
is a bilinear, continuous and coercive form on V0 and L ∈ V ′

0 . Indeed, from (47) and the
de�nition of σij it follows that

a(u, v) =
n∑

i,j=1

∫
Ω

λ div u δij εij(v)dx+
n∑

i,j=1

∫
Ω

2µεij(u)εij(v)dx, (50)

whence,

a(u, v) = λ

∫
Ω

div u

( n∑
j=1

∂vj
∂xj

)
dx+

n∑
i,j=1

∫
Ω

2µεij(u)εij(v)dx,

that is,

a(u, v) = λ

∫
Ω

(div u)(div v)dx+
n∑

i,j=1

∫
Ω

2µεij(u)εij(v)dx. (51)

The bilinearity of a(u, v) is clear. We will prove its continuity and coercivity. Let
u, v ∈ V0 . Note, initially, that

| div u| ≤
n∑

i=1

∣∣∣∣∂ui∂xi

∣∣∣∣ = n∑
i=j=1

|εij(u)| ≤
n∑

i=j=1

|εij(u)|+
n∑

i ̸=j
i,j=1

|εij(u)|

that is,

| div u| ≤
n∑

i,j=1

|εij(u)|. (52)

Thus, from (50) and (52) given the Hölder and Minkowski inequalities, we obtain

|a(u, v)| ≤ λ

n∑
i,j=1

∫
Ω

( n∑
i,j=1

|εij(u)|
)
|εij(v)|dx+ 2µ

n∑
i,j=1

∫
Ω

|εij(u)| |εij(v)|dx

= λ

∫
Ω

( n∑
i,j=1

|εij(u)|
)( n∑

i,j=1

|εij(v)|
)
dx+ 2µ

n∑
i,j=1

∫
Ω

|εij(u)| |εij(v)|dx

≤ λ

(∫
Ω

( n∑
i,j=1

|εij(u)|
)2

dx

)1/2(∫
Ω

( n∑
i,j=1

|εij(v)|
)2

dx

)1/2

+ 2µ
n∑

i,j=1

(∫
Ω

|εij(u)|2dx
)1/2(∫

Ω

|εij(v)|2dx
)1/2

≤ c1

{(∫
Ω

n∑
i,j=1

|εij(u)|2dx
)1/2(∫

Ω

n∑
i,j=1

|εij(v)|2dx
)1/2

+

( n∑
i,j=1

∫
Ω

|εij(u)|2dx
)1/2( n∑

i,j=1

∫
Ω

|εij(v)|2dx
)1/2}

.
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Thus,

|a(u, v)| ≤ c2

( n∑
i,j=1

∫
Ω

|εij(u)|2dx
)1/2( n∑

i,j=1

∫
Ω

|εij(v)|2dx
)1/2

= c2[u][v]

which proves continuity.
We will show, now, that a(u, v) is coercive. Indeed, let v ∈ V0. Then from (51) it

follows that

a(v, v) = λ

∫
Ω

(div v)2 dx+ 2µ
n∑

i,j=1

∫
Ω

|εij(v)|2 dx

≥ 2µ
n∑

i,j=1

∫
Ω

|εij(v)|2 dx = 2µ[v]2,

which proves coercivity. It remains to show that L ∈ V ′
0 . Indeed, linearity is obvious. We

will prove, then that L is bounded in V0 . We have, ∀ v ∈ V0 :

|L(v)| ≤
n∑

i=1

∫
Ω

|fi| |vi|dx+
n∑

i=1

∫
Γ1

|gi| |γ0vi|dΓ

≤
n∑

i=1

(∫
Ω

|fi|2dx
)1/2(∫

Ω

|vi|2dx
)1/2

+
n∑

i=1

(∫
Γ1

|gi|2dΓ
)1/2(∫

Γ1

|γ0vi|2dΓ
)1/2

≤
( n∑

i=1

∫
Ω

|fi|2dx
)1/2( n∑

i=1

∫
Ω

|vi|2dx
)1/2

+

( n∑
i=1

∫
Γ1

|gi|2dΓ
)1/2( n∑

i=1

∫
Γ1

|γ0vi|2dΓ
)1/2

= |f | |v|+ |g|(L2(Γ))n |γ⃗0v|(L2(Γ))n

≤ c1
{
|f | |v|+ |g|(L2(Γ))n |γ⃗0v|(H1/2(Γ))n

}
≤ c2

{
|f | ||v||V + |g|(L2(Γ))n||v||V

}
= c2

{
|f |+ |g|(L2(Γ))n

}
||v||.

Whence,
|L(v)| ≤ c3

{
|f |H + |g|(L2(Γ))n

}
[v], (53)

where the last inequality follows from Proposition 2.
In this way, we have by the Lax-Milgram Lemma∣∣∣∣∣∃!u ∈ V0 such that

a(u, v) = L(v); ∀ v ∈ V0

or, equivalently,∣∣∣∣∣∣∣
∃!u ∈ V0 verifying

n∑
i,j=1

∫
Ω

σij(u)εij(v)dx =
n∑

i=1

(∫
Ω

fividx+

∫
Γ1

gividΓ

)
; ∀ v ∈ V0 .

(54)
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Characterization of the Obtained Result

Let φ ∈ (D(Ω))n. From (54) it follows that

n∑
i,j=1

∫
Ω

σij(u)
1

2

(
∂φi

∂xj
+
∂φj

∂xi

)
dx =

n∑
i=1

∫
Ω

fiφi dx. (55)

However, from the fact that σij(u) = σji(u),

n∑
i,j=1

∫
Ω

σij(u)
1

2

(
∂φi

∂xj
+
∂φj

∂xi

)
dx (56)

=
1

2

{ n∑
i,j=1

∫
Ω

σij(u)
∂φi

∂xj
+

n∑
i,j=1

∫
Ω

σij(u)
∂φj

∂xi
dx

}

=
1

2

{ n∑
i,j=1

∫
Ω

σij(u)
∂φi

∂xj
+

n∑
i,j=1

∫
Ω

σji(u)
∂φj

∂xi
dx

}

=
1

2

{ n∑
i,j=1

∫
Ω

σij(u)
∂φi

∂xj
+

n∑
i,j=1

∫
Ω

σij(u)
∂φi

∂xj
dx

}

=
n∑

i,j=1

∫
Ω

σij(u)
∂φi

∂xj

Thus, from (55) and (56) we obtain

n∑
i,j=1

∫
Ω

σij(u)
∂φi

∂xj
dx =

n∑
i=1

∫
Ω

fiφi dx,

that is,
n∑

i=1

〈
−

n∑
j=1

∂

∂xj
σij(u), φi

〉
=

n∑
i=1

⟨fi, φi⟩.

Then, setting

σi = −
n∑

j=1

∂

∂xj
σij(u) and σ = (σ1, . . . , σn)

we have
n∑

i=1

⟨σi, φi⟩ =
n∑

i=1

⟨fi, φi⟩.

Whence
⟨σ, φ⟩ = ⟨f, φ⟩, ∀φ ∈ (D(Ω))n

and, therefore,
σ = f in (D′(Ω))n;

or even,
σi = fi in D′(Ω), i = 1, 2, . . . , n.
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Since fi ∈ L2(Ω) we conclude that

σi = fi in L2(Ω).

Thus,

−
n∑

j=1

∂

∂xj
σij(u) = fi in L2(Ω) (57)

and then a.e. in Ω.

• Boundary Condition

Returning to (54) we have

1

2

n∑
i,j=1

∫
Ω

σij(u)

(
∂vi
∂xj

+
∂vj
∂xi

)
dx =

n∑
i=1

∫
Ω

fivi dx+
n∑

i=1

∫
Γ1

givi dΓ.

Using the same arguments used previously, we obtain

n∑
i,j=1

∫
Ω

σij(u)
∂vi
∂xj

dx =
n∑

i=1

∫
Ω

fivi dx+
n∑

i=1

∫
Γ1

givi dΓ. (58)

Substituting (57) in (58) it follows that

n∑
i,j=1

∫
Ω

σij(u)
∂vi
∂xj

dx =
n∑

i=1

∫
Ω

(
−

n∑
j=1

∂

∂xj
σij(u)

)
vi dx+

n∑
i=1

∫
Γ1

givi dΓ. (59)

Suppose that
∂

∂xj
σij(u) ∈ L2(Ω); i, j = 1, . . . , n we have that

σiju ∈ H1(Ω); i, j = 1, . . . , n. (60)

Given the hypothesis above, in what follows we will proceed formally. From equality
(59), by virtue of the Gauss Lemma it follows that

n∑
i,j=1

{
−
∫
Ω

∂

∂xj
σij(u)vi dx+

∫
Γ

σij(u)viνj dΓ

}
=
∑
i,j=1

−
∫
Ω

∂

∂xj
σij(u)vi dx+

n∑
i=1

∫
Γ1

givi dΓ,

that is,
n∑

i=1

∫
Γ1

( n∑
j=1

γ0(σij(u))νj

)
(γ0vi) dΓ =

n∑
i=1

∫
Γ1

gi(γ0vi) dΓ.

De�ne

σ = (σ1, . . . , σn) where σi =
n∑

j=1

γ0(σij(u))νj ∈ H1/2(Γ).

Then, σ ∈ (H1/2(Γ))n and, furthermore,

n∑
i=1

∫
Γ1

σi(γ0vi) dΓ =
n∑

i=1

∫
Γ1

gi(γ0vi) dΓ,
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that is,
(σ, γ⃗0v)(L2(Γ1))n = (g, γ⃗0v)(L2(Γ1))n .

In this way,
(σ, γ⃗0v)(L2(Γ))n = (g, γ⃗0v)(L2(Γ))n , (61)

since γ⃗0v = 0 on Γ0 .
On the other hand, since V0 is a closed subspace of V it follows that γ⃗0(V0) is closed

in (H1/2(Γ))n. Indeed, let (vν) ⊂ V0 such that

γ⃗0(vν)→ w in (H1/2(Γ))n.

Then, by the surjectivity of γ̃0 it follows that ∃ v ∈ V such that γ⃗0v = w and,
therefore,

γ⃗0(vν)→ γ⃗0(v) in (H1/2(Γ))n.

It remains to prove that v ∈ V0 . In fact, from the convergence above it follows
that

γ⃗0(vν)→ γ⃗0(v) a.e. on Γ

and since (vν) ⊂ V0 it follows that γ⃗0(vν)(x) = 0 a.e. on Γ0, for all ν ∈ N, and then

(γ⃗ov)(x) = 0 a.e. on Γ0 .

Thus, w = γ⃗0v where v ∈ V0 and therefore

γ⃗0(V0) is closed in (H1/2(Γ))n.

Since (H1/2(Γ))n is a Hilbert space then γ⃗0(V0) is also one. Identifying L2(Γ) with
its dual, we have the following embeddings

γ⃗0(V0) ↪→ (L2(Γ))n ↪→ (γ⃗0(V0))
′

and from (61) it follows that

⟨σ, γ⃗0v⟩(γ⃗0(V0))′,γ⃗0(V0) = ⟨g, γ⃗0v⟩(γ0(V0))′,γ⃗(V0) ; ∀ v ∈ V0 .

Consequently,
σ = g in (γ⃗0(V0))

′

and since σ ∈ (H1/2(Γ))n we have that

σi = gi in H1/2(Γ),

that is, ∑
j

γ0(σij(u))νj = gi in H1/2(Γ); i = 1, 2, . . . , n.

Observe that g was considered in (L2(Γ))n. However, according to the equality above and
the hypothesis of regularity given in (60), we should choose g in (H1/2(Γ))n.
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14.4 Hyperbolic-Parabolic Problem

Let k1(x), k2(x) ∈ L∞(Ω) and Ω ⊂ Rn be a bounded open set with su�ciently smooth
boundary Γ. Suppose that

k2(x) ≥ 0; k1(x) ≥ β > 0 a.e. in Ω. (1)

Let T > 0, Q = Ω×]0, T [ and Σ = Γ×]0, T [ . In the cylinder Q consider the
problem 

k2(x)
∂2u

∂t2
+ k1(x)

∂u

∂t
−∆u = f in Q

u = 0 on Σ

u(0) = u0(x); (k2u
′)(0) = (k2u1)(x).

(2)

Theorem: Given u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω), f ∈ L2(0, T ;L2(Ω)) and k1 and k2 verifying

the previous hypotheses, there exists a unique u : Q→ R, weak solution of (2) in the class

u ∈ L∞(0, T ;H1
0 (Ω)); u′ ∈ L∞(0, T ;L2(Ω)); k2u

′′ ∈ L2(0, T ;H−1(Ω)).

Proof: Let 0 < ε < 1. Consider the perturbed problem
(k2(x) + ε)u′′ε + k1(x)u

′
ε −∆uε = f in Q

uε = 0 on Σ

uε(0) = u0(x); ((k2(x) + ε)u′ε)(0) = (k2(x) + ε)u1.

(P2)

• Solution of (P2):
Let (wν)ν∈N be a basis of H1

0 (Ω) which we can consider, without loss of generality,
orthonormal in L2(Ω). Furthermore, consider

Vm = [w1, . . . , wm].

In Vm consider the approximate problem, where a(., .) is the Dirichlet form.

(AP)



uεm(t) ∈ Vm ⇔ uεm(t) =
m∑
i=1

giεm(t)wi

([k2 + ε]u′′εm(t), wj) + (k1u
′
εm(t), wj) + a(uεm(t), wj) = (f(t), wj)

uεm(0) = u0m → u0 in H
1
0 (Ω); (k2 + ε)u′εm(0)→ (k2 + ε)u1 in L

2(Ω)(∗)

j = 1, . . . ,m

Justi�cation for (AP)(∗)3 :

Since (wν) is total in H1
0 (Ω), there exist (u0m), (u1m) ⊂ [wν ]ν∈N such that u0m → u0

in H1
0 (Ω) and u1m → u1 in L2(Ω). Thus, let us set

uεm(0) = u0m and u′εm(0) = u1m . (3)

Now, since u1m → u1 in L2(Ω) and k2 ∈ L∞(Ω) and k2 ≥ 0, then√
k2 + ε u1m →

√
k2 + ε u1 in L2(Ω)
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and from (3) it follows that, for each 0 < ε < 1, we have√
k2 + ε u′εm(0)→

√
k2 + ε u1 in L2(Ω), (4)

as well as,
(k2 + ε)u′εm(0)→ (k2 + ε)u1 in L2(Ω). (5)

From (AP)1 and (AP)2 we obtain

m∑
i=1

(
[k2 + ε]g′′iεm(t)wi, wj

)
+

m∑
i=1

(k1g
′
iεm(t)wi, wj) +

m∑
i=1

((giεm(t)wi, wj))

= (f(t), wj) j = 1, . . . ,m

Since (u0m), (u1m) ⊂ [wν ]ν∈N, we can write

u0m =
m∑
j=1

αjmwj and u1m =
m∑
j=1

βjmwj .

From the orthogonality of the wν 's in L2(Ω) it follows that

gjεm(0) = αjm and g′jεm(0) = βjm .

In this way we arrive at the system

m∑
i=1

([k2(x) + ε]g′′iεm(t)wi, wj) +
m∑
i=1

(k1(x)g
′
iεm(t)wi, wj)

+
m∑
i=1

((giεm(t)wi, wj)) = (f(t), wj)

gjεm(0) = αjm ; g′jεm(0) = βjm; j = 1, . . . ,m

(6)

or, equivalently,

 ((k2(x) + ε)w1, w1) . . . ((k2(x) + ε)wm, w1)
...

...
((k2(x) + ε)w1, wm) . . . ((k2(x) + ε)wm, wm)


g

′′
1εm(t)
...

g′′mεm(t)

+

+

 (k1(x)w1, w1) . . . (k1(x)wm, w1)
...

...
(k1(x)w1, wm) . . . (k1(x)wm, wm)


g

′
1εm(t)
...

g′mεm(t)


+

 ((w1, w1)) . . . ((wm, w1))
...

...
((w1, wm)) . . . ((wm, wm))


g1εm(t)...
gmεm(t)

 =

 (f(t), w1)
...

(f(t), wm)


g1εm(0)...
gmεm(0)

 =

α1m
...

αmm

 and

g
′
1εm(0)
...

g′mεm(0)

 =

β1m...
βmm



(7)
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Let us set

A =

 ((k2(x) + ε)w1, w1) . . . ((k2(x) + ε)wm, w1)
...

...
((k2(x) + ε)w1, wm) . . . ((k2(x) + ε)wm, wm)

 ;

B =

 (k1(x)w1, w1) . . . (k1(x)wm, w1)
...

...
(k1(x)w1, wm) . . . (k1(x)wm, wm)

 ;

C =

 ((w1, w1) . . . ((wm, w1))
...

...
((w1, wm) . . . ((wm, wm))

 ; F (t) =

 (f(t), w1)
...

(f(t), wm)



Z(t) =

g1εm(t)...
gmεm(t)

 ; Z(0) =

α1m
...

αmm

 = Z0 and Z ′(0) =

β1m...
βmm

 = Z1

Thus, from (7) we arrive at the system of equations{
AZ ′′(t) +BZ ′(t) + CZ(t) = F (t)

Z(0) = Z0 ; Z ′(0) = Z1.
(8)

Note that A is invertible. Indeed, let ξ = (ξ1, . . . , ξm) ∈ Rm and suppose that

Aξ = 0,

that is,
m∑
i=1

((k2(x) + ε)wi, wj)ξi = 0; ∀ j = 1, . . . ,m.

Whence ( m∑
i=1

(k2(x) + ε)wiξi, wj

)
= 0; ∀ j = 1, . . . ,m.

Multiplying by ξj and summing over j results that( m∑
i=1

(k2(x) + ε)1/2wiξi,
m∑
j=1

(k2(x) + ε)1/2wjξj

)
= 0,

which implies

(k2(x) + ε)
m∑
i=1

wiξi = 0 in L2(Ω)

and, therefore, a.e. in Ω. Considering that (k2(x) + ε) > 0, ∀x ∈ Ω, we obtain

m∑
i=1

wiξi = 0 in L2(Ω).

Since the wi's are linearly independent in L2(Ω) it follows that

ξi = 0; ∀ i = 1, . . . ,m
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which proves that ξ = 0. Therefore, the matrix A is invertible. It follows from this that
we can rewrite (8) in the form{

Z ′′(t) + A−1BZ ′(t) + A−1CZ(t) = A−1F (t)

Z(0) = Z0 ; Z ′(0) = Z1.
(9)

Next, we reduce the order of the system above. For this, consider

Y1(t) = Z ′(t); Y2(t) = Z(t) and Y (t) =

[
Y1(t)
Y2(t)

]
. (10)

Thus

Y ′(t) =

[
Y ′
1(t)
Y ′
2(t)

]
=

[
Z ′′(t)
Z ′(t)

]
=

[
A−1F (t)− A−1BZ ′(t)− A−1CZ(t)

Z ′(t)

]
=

[
A−1F (t)− A−1BY1(t)− A−1CY2(t)

Y1(t)

]
,

or even,

Y ′(t) =

[
−A−1B −A−1C

I 0

] [
Y1(t)
Y2(t)

]
+

[
A−1F (t)

0

]
. (11)

Denoting

D =

[
−A−1B −A−1C

I 0

]
; G(t) =

[
A−1F (t)

0

]
from (9), (10) and (11) it follows that{

Y ′(t) = DY (t) +G(t)

Y (0) = Y0,
(12)

where Y0 =

[
Z1

Z0

]
. Consider the map

h : [0, T ]× R2m → R2m

(t, Y ) 7→ DY +G(t).

The function h enjoys the following properties:

(i) For all Y ∈ R2m �xed, h(t, Y ) is measurable in t;

(ii) For a.e. t ∈ [0, T ] �xed, h(t, Y ) is continuous in Y ;

(iii) If K ⊂ [0, T ]× R2m is compact, then ∀ (t, , y) ∈ K we have

|h(t, Y )|2m = |DY +G(t)|2m ≤ ||D|| |Y |2m ≤ k1 + |G(t)|2m

where k1 > 0. However, the function on the right of the inequality above is integrable
on projtK, since f ∈ L2(0, T ;L2(Ω)).
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Thus, from (i), (ii) and (iii) we have, by Carathéodory's Theorem that ∃Y : [0, tεm)→
R2m local solution of (12), 0 < tεm ≤ T , where Y (t) is absolutely continuous in [0, tεm) and
di�erentiable a.e. in [0, tεm). It follows that the system of ordinary di�erential equations
given in (8) possesses a local solution in the same interval, with Z(t), Z ′(t) being abso-
lutely continuous and Z ′′(t) existing a.e.. The regularity of the function Z(t) is inherited
by the gjεm(t). The a priori estimate below will serve to extend the solution to the whole
interval [0, T ].

A Priori Estimate

Multiplying (AP)2 by g′jεm(t) and summing over j, we obtain(
[k2 + ε]u′′εm(t), u

′
εm(t)

)
+ (k1u

′
εm(t), u

′
εm(t)) + ((uεm(t), u

′
εm(t)))

= (f(t), u′εm(t)).
(13)

Note that if k ∈ L∞(Ω) and k ≥ 0 the following equality is valid:

(ku′′εm(t), u
′
εm(t)) = (k1/2 u′′εm(t), k

1/2 u′εm(t)).

On the other hand,

d

dt
(k1/2 u′εm(t), k

1/2 u′εm(t)) = 2(k1/2 u′′εm(t), k
1/2 u′εm(t)).

Whence

(k u′′εm(t), u
′
εm(t)) =

1

2

d

dt
|k1/2 u′εm(t)|2. (14)

Thus, from (13) and (14) it follows that

1

2

d

dt
|(k2 + ε)1/2 u′εm(t)|2 + |k

1/2
1 u′εm(t)|2 +

1

2

d

dt
||uεm(t)||2 = (f(t), u′εm(t)).

Integrating from 0 to t with t < tεm we obtain

|(k2 + ε)1/2 u′εm(t)|2 + ||uεm(t)||2 + 2

∫ t

0

|k1/21 u′εm(s)|2 ds

= |(k2 + ε)1/2 u′εm(0)|2 + ||uεm(0)||2 + 2

∫ t

0

(f(s), u′εm(s))ds.

Since u′εm(0) = u1m → u1 in L2(Ω); ∃ c1 > 0 such that

|u′εm(0)|2 ≤ c1 .

Now, since, 0 < ε < 1 and k ∈ L∞(Ω) ∃ c2 > 0 independent of ε and m verifying

|(k2 + ε)1/2 u′εm(0)|2 ≤ |(k2 + 1)1/2 u′εm(0)|2 ≤ c2 ; ∀m ∈ N; ∀ ε ∈]0, 1[ .

Also, since uεm(0) = u0m → u0 in H1
0 (Ω), ∃ c3 > 0 such that

||uεm(0)||2 ≤ c3 ; ∀m ∈ N; ∀ ε ∈]0, 1[ .
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Therefore, there exists c4 > 0, independent of ε and m satisfying

|(k2 + ε)1/2 u′εm(t)|2 + ||uεm(t)||2 + 2

∫ t

0

|k1/21 u′εm(s)|2 ds

≤ c4 +

∫ t

0

(f(s), u′εm(s))ds.

But, by hypothesis, k1(x) ≥ β > 0 and, therefore,∫ t

0

|k1/21 u′εm(s)|2 ds ≥
∫ t

0

k1|u′εm(s)|2 ds ≥ β

∫ t

0

|u′εm(s)|2 ds.

Thus,

|(k2 + ε)1/2 u′εm(t)|2 + ||uεm(t)||2 + 2β

∫ t

0

|u′εm(s)|2 ds ≤ c4

+ 2

∫ t

0

(f(s), u′εm(s))ds.

(15)

On the other hand, let λ > 0. Then

2

∫ t

0

(f(s), u′εm(s))ds = 2

∫ t

0

(
1

λ1/2
f(s), λ1/2 u′εm(s)

)
ds

≤ 1

λ

∫ T

0

|f(s)|2ds+ λ

∫ t

0

|u′εm(s)|2ds.
(16)

Choosing λ = β it results from (15) and (16) that ∃ c > 0 such that

|(k2 + ε)1/2 u′εm(t)|2 + ||uεm(t)||2 + β

∫ t

0

|u′εm(s)|2 ds ≤ c; (17)

∀ t ∈ [0, tm); ∀m ∈ N and ∀ ε ∈]0, 1[ .
From (17), we obtain the existence of a constant c(ε) > 0 which veri�es

|u′εm(t)|2 + ||uεm(t)||2 +
∫ t

0

|u′εm(s)|2 ds ≤ c(ε), ∀ t ∈ [0, tm);∀m ∈ N. (18)

We have

|uεm(t)|2L2(Ω) =

∣∣∣∣∣
m∑
j=1

gjεm(t)wj

∣∣∣∣∣
2

L2(Ω)

=
m∑
j=1

|gjεm(t)|2m .

Thus, from (17) we have then that there exists c > 0 such that

|Z(t)|2m =
m∑
j=1

|gjεm(t)|2 = |uεm(t)|2L2(Ω) ≤ c′||uεm(t)||2 ≤ c (19)

∀ t ∈ [0, tεm), ∀m ∈ N, ∀ ε ∈]0, 1[ .
Also

|u′εm(t)|2L2(Ω) =

∣∣∣∣∣
m∑
j=1

g′jεm(t)wj

∣∣∣∣∣
2

L2(Ω)

=
m∑
j=1

|g′jεm(t)|2m .
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From (18) it results that there exists c(ε) > 0 verifying

|Z ′(t)|2m =
m∑
j=1

|g′jεm(t)|2m = |u′εm(t)|2L2(Ω) ≤ c(ε) (20)

∀ t ∈ [0, tεm), ∀m ∈ N and ∀ ε ∈]0, 1] .
From (19) and (20) it follows that ∃ c̄(ε) > 0 such that

|Y (t)|22m = |Y1(t)|2m + |Y2(t)|2m = |Z(t)|2m + |Z ′(t)|2m ≤ c̄(ε),

∀ t ∈ [0, tεm), ∀m ∈ N and ∀ ε ∈]0, 1[ .
It results that we can extend the solution Y (t) of the system (12) to the whole

interval [0, T ]. Consequently, for each 0 < ε < 1, we can extend gjεm(t) and therefore
uεm(t) to the whole interval [0, T ].

Repeating the calculations made to obtain (17) we conclude that

|(k2 + ε)1/2 u′εm(t)|2 + ||uεm(t)||2 +
∫ t

0

|u′εm(s)|2 ds ≤ c; (21)

∀ t ∈ [0, T ]; ∀m ∈ N; and ∀ ε ∈]0, 1[ .
Consequently

(uεm) is bounded in L∞(0, T ;H1
0 (Ω)). (22)

(u′εm) is bounded in L2(0, T ;L2(Ω)). (23)

Passage to the Limit

From the estimates (22) and (23) there exists (uεν) ⊂ (uεm) such that, for each
ε ∈]0, 1[,

uεν
∗
⇀ uε weak * in L∞(0, T ;H1

0 (Ω)) (24)

u′εν ⇀ u′ε weakly in L2(0, T ;L2(Ω)). (25)

Let j ∈ N and ν ≥ j. Consider θ ∈ D(0, T ). Multiplying (AP)2 by θ and integrating
in [0, T ], results that∫ T

0

([k2 + ε]u′′εν(t), wj)θ(t)dt+

∫ T

0

(k1u
′
εν(t), wj)θ(t)dt+

∫ T

0

((uεν(t), wj))θ(t)dt

=

∫ T

0

(f(t), wj)θ(t)dt

Whence

−
∫ T

0

([k2 + ε]u′εν(t), wj)θ
′(t)dt+

∫ T

0

(k1u
′
εν(t), wj)θ(t)dt+

∫ T

0

((uεν(t), wj))θ(t)dt

=

∫ T

0

(f(t), wj)θ(t)dt.

(26)

Note that

(k2 + ε)wjθ
′ ∈ L2(0, T ;L2(Ω))

k1wjθ ∈ L2(0, T ;L2(Ω))

−∆wjθ ∈ L1(0, T ;H−1(Ω)),
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where the last inclusion comes from the fact that ∆ ∈ L(H1
0 (Ω), H

−1(Ω)).
Therefore, from (24) and (25) we conclude that∫ T

0

([k2 + ε]u′εν(t), wj)θ
′(t)dt

ν→+∞−−−−→
∫ T

0

([k2 + ε]u′ε(t), wj)θ
′(t)dt (27)

∫ T

0

(k1u
′
εν(t), wj)θ(t)dt

ν→+∞−−−−→
∫ T

0

(k1u
′
ε(t), wj)θ(t)dt (28)

∫ T

0

⟨−∆wj, uεν(t)⟩θ(t)dt
ν→+∞−−−−→

∫ T

0

⟨−∆wj, uε(t)⟩θ(t)dt. (29)

Since ⟨−∆wj, v⟩ = a(wj, v), ∀ v ∈ H1
0 (Ω), it follows from (26), (27), (28) and

(29), in the limit situation, when ν → +∞, that

−
∫ T

0

([k2 + ε]u′ε(t), wj)θ
′(t)dt+

∫ T

0

(k1u
′
ε(t), wj)θ(t)dt+

∫ T

0

((uε(t), wj))θ(t)dt

=

∫ T

0

(f(t), wj)θ(t)dt.

By the arbitrariness of j and the totality of the (wν)
′
ν∈Ns in H

1
0 (Ω) it follows that

−
∫ T

0

([k2 + ε]u′ε(t), v)θ
′(t)dt+

∫ T

0

(k1u
′
ε(t), v)θ(t)dt

+

∫ T

0

((uε(t), v))θ(t)dt =

∫ T

0

(f(t), v)θ(t)dt

(30)

∀ v ∈ H1
0 (Ω), or even,

d

dt
([k2 + ε]u′ε(t), v) + (k1u

′
ε(t), v) + ((uε(t), v)) = (f(t), v) (31)

in D′(0, T ), ∀ v ∈ H1
0 (Ω).

Taking v = φ ∈ D(Ω) in (30) we obtain〈
d

dt
[(k2 + ε)u′ε], φθ

〉
+ ⟨k1u′ε, φθ⟩+ ⟨−∆uε, φθ⟩ = ⟨f, φθ⟩;

∀φ ∈ D(Ω) and ∀ θ ∈ D(0, T ) and, by the totality of {φθ;φ ∈ D(Ω), θ ∈ D(0, T )} in
D(Ω×]0, T [), it follows that

d

dt
([k2 + ε]u′ε) + k1u

′
ε −∆uε = f in D′(Q). (32)

Recalling that ∆ ∈ L(H1
0 (Ω), H

−1(Ω)), uε ∈ L∞(0, T,H1
0 (Ω)), k1 ∈ L∞(Ω),

u′ε ∈ L2(0, T ;L2(Ω)) and f ∈ L2(0, T ;L2(Ω)) from (32) we conclude that

d

dt
([k2 + ε]u′ε) ∈ L2(0, T ;H−1(Ω)) (33)

and, therefore,

d

dt
([k2 + ε]u′ε) + k1u

′
ε −∆uε = f in L2(0, T ;H−1(Ω)). (34)
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• Initial Conditions

Note, initially, that from (24) and (25) we have that

uε ∈ C0([0, T ];L2(Ω)) ∩ Cs([0, T ];H
1
0 (Ω))

and, from (25) and (33) we also have that

(k2 + ε)u′ε ∈ C0([0, T ];H−1(Ω)) ∩ Cs([0, T ];L
2(Ω));

making sense to speak of uε(0), ((k2 + ε)u′ε)(0), uε(T ) and ((k2 + ε)u′ε)(T ).

Lemma 1: Let k ∈ L∞(Ω) and T ∈ D′(0, T ;L2(Ω)). Then the map

kT : D(0, T )→ L2(Ω)

θ 7→ ⟨kT, θ⟩ = k⟨T, θ⟩

is linear and continuous, that is, kT ∈ D′(0, T ;L2(Ω)).

Proof: Observe that the map above is well de�ned since as k ∈ L∞(Ω) and ⟨T, θ⟩ ∈ L2(Ω)
then k · ⟨T, θ⟩ ∈ L2(Ω). Furthermore, kT is clearly linear and if θν → 0 in D(0, T ) then
⟨kT, θν⟩ → 0 in L2(Ω). Indeed, from the fact that θν → 0 in D(0, T ) it results that
⟨T, θν⟩ → 0 in L2(Ω) and therefore k⟨T, θν⟩ → 0 in L2(Ω).

Lemma 2: Under the previous hypotheses we have that

(kT )′ = kT ′.

Proof: Let θ ∈ D(0, T ). We have:

⟨(kT )′, θ⟩ = −⟨kT, θ′⟩ = −k⟨T, θ′⟩ = k(−⟨T, θ′⟩) = k⟨T ′, θ⟩ = ⟨kT ′, θ⟩.

By virtue of Lemma 2 we can write

(k2 + ε)u′ε = ((k2 + ε)uε)
′.

Furthermore, in particular,

[(k2 + ε)u′ε](0) = ((k2 + ε)uε)
′(0) and [(k2 + ε)u′ε](T ) = ((k2 + ε)uε)

′(T ).

Remark: It is worth observing that if T ∈ D′(0, T ;L2(Ω)) then T ∈ D′(0, T ;H−1(Ω))
and from Lemma 2 it follows that

(kT )′ = kT ′,

where now the derivative is in the sense of vector-valued distributions in D′(0, T ;H−1(Ω)).

(i) uε(0) = u0
Let θ ∈ C1([0, T ]) such that θ(0) = 1 and θ(T ) = 0 and consider v ∈ L2(Ω). Then

vθ ∈ L2(0, T ;L2(Ω)) and from (25) it follows that∫ T

0

(u′εν(t), v)θ(t)dt
ν→+∞−−−−→

∫ T

0

(u′ε(t), v)θ(t)dt.
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Integrating by parts we have

−(uεν(0), v)−
∫ T

0

(uεν(t), v)θ
′(t)dt

ν→+∞−−−−→ −(uε(0), v)−
∫ T

0

(uε(t), v)θ
′(t)dt.

Since ∫ T

0

(uεν(t), v)θ
′(t)dt

ν→+∞−−−−→
∫ T

0

(uε(t), v)θ
′(t)dt

then:
(uεν(0), v)

ν→+∞−−−−→ (uε(0), v).

Since uεν(0) = u0ν → u0 in H1
0 (Ω) ↪→ L2(Ω), then

(uεν(0), v)
ν→+∞−−−−→ (ũ0, v); ∀ v ∈ L2(Ω).

Thus
(uε(0), v) = (ũ0, v); ∀ v ∈ L2(Ω)

and, then,
uε(0) = u0 .

(ii) ((k2 + ε)u′ε)(0) = (k2 + ε)u1
Let θ ∈ C1([0, T ]) such that θ(0) = 1 and θ(T ) = 0. Consider j ∈ N and ν ≥ j.

Multiplying (AP)2 by θ and integrating in [0, T ] we obtain

∫ T

0

((k2 + ε)u′′εν(t), wj)θ(t)dt+

∫ T

0

(k1u
′
εν(t), wj)θ(t)dt+

∫ T

0

((uεν(t), wj))θ(t)dt (14.4)

=

∫ T

0

(f(t), wj)θ(t)dt. (14.5)

Integrating by parts the �rst integral on the left of the equality above results that

−((k2 + ε)u′εν(0), wj)−
∫ T

0

((k2 + ε)u′εν(t), wj)θ
′(t)dt+

∫ T

0

(k1u
′
εν(t), wj)θ(t)dt (14.6)

+

∫ T

0

((uεν(t), wj))θ(t)dt =

∫ T

0

(f(t), wj)θ(t)dt. (14.7)

Taking the limit when ν → +∞ then from (5), (24) and (25) it follows that

−((k2 + ε)u1, wj)−
∫ T

0

((k2 + ε)u′εν(t), wj)θ
′(t)dt+

∫ T

0

(k1u
′
εν(t), wj)θ(t)dt

+

∫ T

0

((uε(t), wj))θ(t)dt =

∫ T

0

(f(t), wj)θ(t)dt.

(35)

On the other hand, from (34) it follows that

∫ T

0

〈
d

dt
([k2 + ε]u′ε(t), wj

〉
θ(t)dt+

∫ T

0

(k1u
′
ε(t), wj)θ(t)dt (14.8)

+

∫ T

0

((uε(t), wj))θ(t)dt =

∫ T

0

(f(t), wj)θ(t)dt. (14.9)
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Integrating by parts the �rst integral on the left of the equality follows that

−(([k2 + ε]u′ε)(0), wj)−
∫ T

0

([k2 + ε]u′ε(t), wj)θ
′(t)dt+

∫ T

0

(k1u
′
ε(t), wj)θ(t)dt

+

∫ T

0

((uε(t), wj))θ(t)dt =

∫ T

0

(f(t), wj)θ(t)dt.

(36)

From (35) and (36) and from the fact that {wν} is total in L2(Ω) it follows that

((k2 + ε)uε)
′(0) = (k2 + ε)u1 .

In this way, for each ε ∈]0, 1[, ∃uε : Q→ R in the class

uε ∈ L∞(0, T ;H1
0 (Ω)); u′ε ∈ L2(0, T ;L2(Ω)) and [k2 + ε]u′′ε ∈ L2(0, T ;H−1(Ω)) (37)

weak solution of (P2), that is,∣∣∣∣∣∣∣∣
d

dt
([k2 + ε]u′ε) + k1u

′
ε −∆uε = f in L2(0, T ;H−1(Ω))

uε = 0 on Σ

uε(0) = u0 ; ((k2 + ε)u′ε)(0) = (k2 + ε)u1

(38)

From (24) and (25) we have

||uε||L∞(0,T ;H1
0 (Ω)) ≤ lim inf

ν→+∞
||uεν ||L∞(0,T ;H1

0 (Ω)).

and
||u′ε||L∞(0,T ;L2(Ω)) ≤ lim inf

ν→+∞
||u′εν ||L∞(0,T ;L2(Ω))

It follows from the inequalities above, from (22) and (23) that

(uε) is bounded in L∞(0, T ;H1
0 (Ω))

(u′ε) is bounded in L∞(0, T ;L2(Ω)).
(39)

Thus, there will exist a subnet of (uε) which we will still designate by (uε) such
that

uε
∗
⇀ u weak * in L∞(0, T ;H1

0 (Ω)) (40)

u′ε
∗
⇀ u′ weak * in L∞(0, T ;L2(Ω)). (41)

Note also that due to the fact that k2 ∈ L∞(Ω), given v ∈ L2(Ω) and θ ∈ L2(0, T ),
we have that

(k2 + ε)vθ → k2vθ in L2(0, T ;L2(Ω)), when ε→ 0. (42)

Indeed,∫
Q

|(k2 + ε)vθ − k2vθ|2 dxdt =
∫
Q

(εvθ)2 dxdt = ε2
∫
Q

|vθ|2 dxdt = cε2 → 0, when ε→ 0.

Thus, from (41) and (42) we conclude that

(u′ε, (k2 + ε)vθ)L2(0,T ;L2(Ω))
ε→0−−→ (u′, k2vθ)L2(0,T ;L2(Ω)) ; ∀ v ∈ L2(Ω) and ∀ θ ∈ L2(0, T ),
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that is,∫ T

0

((k2 + ε)u′ε, v)θ(t)dt
ε→0−−→

∫ T

0

(k2u
′, v)θ(t)dt; ∀ v ∈ L2(Ω) and ∀ θ ∈ L2(0, T ). (43)

Consider, then, v ∈ H1
0 (Ω) and θ ∈ D(0, T ). Then vθ ∈ L2(0, T ;H1

0 (Ω)) and from
(34) we can write

∫ T

0

〈
d

dt
[(k2 + ε)u′ε](t), v

〉
θ(t)dt+

∫ T

0

⟨k1u′ε, v⟩θ(t)dt+
∫ T

0

⟨−∆uε(t), v⟩θ(t)dt (14.10)

=

∫ T

0

⟨f(t), v⟩θ(t)dt, (14.11)

or even,

−
∫ T

0

((k2 + ε)u′ε(t), v)θ
′(t)dt+

∫ T

0

(k1u
′
ε(t), v)θ(t)dt+

∫ T

0

((uε(t), v))θ(t)dt (14.12)

=

∫ T

0

(f(t), v)θ(t)dt. (14.13)

From (40), (41) and (43), in the limit situation, we obtain

−
∫ T

0

(k2u
′(t), v)θ′(t)dt+

∫ T

0

(k1u
′(t), v)θ(t)dt+

∫ T

0

((u(t), v))θ(t)dt

=

∫ T

0

(f(t), v)θ(t)dt,

(44)

that is,

d

dt
(k2u

′(t), v) + (k1u
′(t), v) + ((u(t), v)) = (f(t), v) in D′(0, T ); ∀ v ∈ H1

0 (Ω). (45)

Taking v = φ ∈ D(Ω) in (44) results that

d

dt
(k2u

′) + k1u
′ −∆u = f in D′(Q).

But since f ∈ L2(0, T ;L2(Ω)), ∆u ∈ L∞(0, T ;H−1(Ω)) and k1u′ ∈ L∞(0, T ;L2(Ω))
it follows that

d

dt
(k2u

′) ∈ L2(0, T ;H−1(Ω)) (46)

and, therefore,

d

dt
(k2u

′) + k1u
′ −∆u = f in L2(0, T ;H−1(Ω)). (47)

But, by Remark 1, we have

d

dt
(k2u

′) = k2u
′′,
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whence from (46) and (47) we conclude that

k2u
′′ ∈ L2(0, T ;H−1(Ω)) (48)

and
k2u

′′ + k1u
′ −∆u = f and L2(0, T ;H−1(Ω)). (49)

Initial Conditions

Note that from (40), (41) and (46) we have

u ∈ C0([0, T ];L2(Ω)) ∩ Cs([0, T ];H
1
0 (Ω)) (14.14)

k2u
′ ∈ C0([0, T ];H−1(Ω)) ∩ Cs([0, T ];L

2(Ω)) (14.15)

making sense therefore to speak of u(0) and (k2u
′)(0) = (k2u)

′(0); u(T ) and
(k2u

′)(T ) = (k2u)
′(T ).

(i) u(0) = u0 .
Let θ ∈ C1([0, T ]) such that θ(0) = 1 and θ(T ) = 0 and consider v ∈ L2(Ω). Then,

from (21) it follows that∫ T

0

(u′ε(t), v)θ(t)dt
ε→0−−→

∫ T

0

(u′(t), v)θ(t)dt.

Integrating by parts we have

−(uε(0), v)−
∫ T

0

(uε(t), v)θ
′(t)dt

ε→0−−→ −(u(0), v)−
∫ T

0

(u(t), v)θ′(t)dt.

Since ∫ T

0

(uε(t), v)θ
′(t)dt

ε→0−−→
∫ T

0

(u(t), v)θ′(t)dt

then:
(uε(0), v)

ε→0−−→ (u(0), v).

Since uε(0) = u0 ; ∀ ε > 0 we have that

(u0, v) = (u(0), v); ∀ v ∈ L2(Ω),

that is,
u(0) = u0 .

(ii) (k2u
′)(0) = k2u1 .

Let θ ∈ C1([0, T ]) such that θ(0) = 1 and θ(T ) = 0 and consider v ∈ H1
0 (Ω). Then,

vθ ∈ L2(0, T ;H1
0 (Ω)) and from (34) it results that

∫ T

0

〈
d

dt
([k2 + ε]u′ε), v

〉
θ(t)dt+

∫ T

0

(k1u
′
ε, v)θ(t)dt+

∫ T

0

((uε(t), v))θ(t)dt (14.16)

=

∫ T

0

(f(t), v)θ(t)dt. (14.17)
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Integrating by parts

−(([k2 + ε]u′ε)(0), v)−
∫ T

0

([k2 + ε]u′ε, v)θ
′(t)dt+

∫ T

0

(k1u
′
ε, v)θ(t)dt (14.18)

+

∫ T

0

((uε(t), v))θ(t)dt =

∫ T

0

(f(t), v)θ(t)dt. (14.19)

Since ([k2 + ε]u′ε)(0) = [k2 + ε]u1, taking the limit in the equality above we obtain
from (40), (41) and (43) that

−(k2u1, v)−
∫ T

0

(k2u
′(t), v)θ′(t)dt+

∫ T

0

(k1u
′(t), v)θ(t)dt

+

∫ T

0

((u(t), v))θ(t)dt =

∫ T

0

(f(t), v)θ(t)dt.

(50)

On the other hand, from (49) we can write

∫ T

0

〈
d

dt
(k2u

′), v

〉
θ(t)dt +

∫ T

0

(k1u
′(t), v)θ(t)dt+

∫ T

0

((u(t), v))θ(t)dt (14.20)

=

∫ T

0

(f(t), v)θ(t)dt. (14.21)

Integrating by parts

−((k2u′)(0), v)−
∫ T

0

(k2u
′(t), v)θ′(t)dt+

∫ T

0

(k1u
′(t), v)θ(t)dt

+

∫ T

0

((u(t), v))θ(t)dt =

∫ T

0

(f(t), v)θ(t)dt.

(51)

From (50) and (51) it follows that

(k2u
′)(0) = k2u1 .

Uniqueness
Let u and v be weak solutions of (2) in the class

u, v ∈ L∞(0, T ;H1
0 (Ω)) ∩ C0([0, T ];L2(Ω)) (14.22)

u′, v′ ∈ L2(0, T ;L2(Ω)) (14.23)

k2u
′′, k2v

′′ ∈ L2(0, T ;H−1(Ω)). (14.24)

Then, w = u− v satis�es∣∣∣∣∣∣∣
k2w

′′ + k1w
′ −∆w = 0 in L2(0, T ;H−1(Ω))

w = 0 on Σ

w(0) = 0, (k2w
′)(0) = 0.

(52)
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Let s ∈ [0, T ] be arbitrary, but �xed, and de�ne

z(t) =

−
∫ s

t

w(ξ)dξ; 0 ≤ t ≤ s

0; s < t ≤ T.

(53)

We have, for all t ∈ [0, T ],

||z(t)|| ≤
∫ s

t

||w(ξ)||dξ ≤
∫ T

0

||w(ξ)||dξ ≤ T · supess
t∈[0,T ]

||w(t)|| < +∞.

Thus,
z ∈ L∞(0, T ;H1

0 (Ω)). (54)

We claim that

z′(t) =

{
w(t); 0 ≤ t ≤ s

0; s < t ≤ T.

Indeed, let φ ∈ D(0, T ). Then

⟨z′, φ⟩ = −⟨z, φ′⟩ = −
∫ T

0

z(t)φ′(t)dt = −
∫ s

0

z(t)φ′(t)dt. (55)

However, for t ∈ [0, s],

z(t) = −
∫ s

t

w(ξ)dξ. (56)

Whence
z′(t) = w(t), a.e. in t ∈ [0, s] (57)

where z′ is the classical (Dini) derivative.
Let t1, t2 ∈ [0, s] such that t1 < t2 , without loss of generality. From (56) it follows

that

||z(t1)− z(t2)|| (14.25)

=

∥∥∥∥∫ s

t1

w(ξ)dξ −
∫ s

t2

w(ξ)dξ

∥∥∥∥ =

∥∥∥∥∫ t2

t1

w(ξ)dξ +

∫ s

t2

w(ξ)dξ −
∫ s

t2

w(ξ)dξ

∥∥∥∥ (14.26)

=

∥∥∥∥∫ t2

t1

w(ξ)dξ

∥∥∥∥ ≤ ∫ t2

t1

||w(ξ)||dξ ≤ ||w||L∞(0,T ;H1
0 (Ω))|t2 − t1| (14.27)

that is, z is Lipschitz and, therefore, absolutely continuous in [0, s].
But,

(zφ)′ = z′φ+ zφ′ a.e. in [0, s].

Integrating in [0, s] results that∫ s

0

(zφ)′dt =

∫ s

0

z′φdt+

∫ s

0

zφ′dt.

Since zφ is absolutely continuous and H1
0 (Ω) is re�exive, we obtain

(zφ)(s)− (zφ)(0) =

∫ s

0

z′φdt+

∫ s

0

zφ′ dt.
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Since z(s) = 0 and φ(0) = 0 then

−
∫ s

0

z(t)φ′(t) dt =

∫ s

0

z′(t)φ(t) dt. (58)

From (55), (57) and (58) we conclude that

⟨z′, φ⟩ =
∫ s

0

z′(t)φ(t)dt =

∫ s

0

w(t)φ(t)dt.

Let us de�ne

v(t) =

{
w(t); t ∈ [0, s]

0; t ∈ [s, T ];
(59)

then: ∫ s

0

w(t)φ(t)dt =

∫ T

0

v(t)φ(t)dt

and, therefore,

⟨z′, φ⟩ =
∫ T

0

v(t)φ(t)dt = ⟨v, φ⟩; ∀φ ∈ D(0, T ),

that is, z′ = v, or even,

z′(t) =

{
w(t); t ∈ [0, s]

0; t ∈ [s, T ],
(60)

as we wanted to demonstrate. It results from (40) that for all t ∈ [0, T ]

||z′(t)|| ≤ ||w(t)|| ≤ →
0≤t≤T

supess||w(t)|| = ||w(t)|| < +∞,

that is,
z′ ∈ L∞(0, T ;H1

0 (Ω)). (61)

Thus, from (54) and (61) we have that

z ∈ C0([0, T ];H1
0 (Ω)). (62)

Composing (52)1 with z in the duality L2(0, T ;H−1(Ω))×L2(0, T ;H1
0 (Ω)) we obtain∫ T

0

⟨(k2w′′)(t), z(t)⟩dt+
∫ T

0

(k1w
′(t), z(t))dt+

∫ T

0

((w(t), z(t)))dt = 0.

Due to the fact that z = 0 in [s, T ], we rewrite the expression above as∫ s

0

⟨(k2w′′)(t), z(t)⟩dt+
∫ s

0

(k1w
′(t), z(t))dt+

∫ s

0

((w(t), z(t)))dt = 0. (63)

Next, we will make some evaluations of the integrals in (63). We have by Remark
1,

d

dt
⟨k2w′(t), z(t)⟩ = ⟨(k2w′′)(t), z(t)⟩+ ⟨k2w′(t), z′(t)⟩,

or even,
d

dt
(k2w

′(t), z(t)) = ⟨(k2w′′)(t), z(t)⟩+ (k2w
′(t), z′(t)).
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Integrating in [0, s] it comes that∫ s

0

d

dt
(k2w

′(t), z(t))dt =

∫ s

0

⟨(k2w′′)(t), z(t)⟩dt+
∫ s

0

(k2w
′(t), z′(t))dt. (64)

Since (k2w
′(t), z(t)) ∈ H1(0, T ) we have that (k2w

′(t), z(t)) ∈ C0([0, T ]) and
d

dt
(k2w

′(t), z(t)) ∈ L2(0, T ). Thus, (k2w′(t), z(t)) is absolutely continuous and, there-

fore, ∫ s

0

d

dt
(k2w

′(t), z(t))dt = (k2w
′(s), z(s))− ((k2w

′)(0), z(0)) = 0 (65)

since z(s) = 0 and (k2w
′)(0) = 0.

Substituting (65) in (64) and observing that z′(t) = w(t) in [0, s], we obtain

∫ s

0

⟨(k2w′′)(t), z(t)⟩dt = −
∫ s

0

(k2w
′(t), z′(t))dt = −

∫ s

0

(k2w
′(t), w(t))dt (14.28)

= −
∫ s

0

(
√
k2w

′(t),
√
k2w(t))dt = −

∫ s

0

1

2

d

dt
|
√
k2w(t)|2dt (14.29)

= −1

2
{|
√
k2w(s)|2 − |

√
k2w(0)|2} = −

1

2
|
√
k2w(s)|2, (14.30)

since w(0) = 0. Thus,∫ s

0

⟨(k2w′′)(t), z(t)⟩dt = −1

2
|
√
k2w(s)|2. (66)

We have

d

dt
(k1w(t), z(t)) = (k1w

′(t), z(t)) + (k1w(t), z
′(t)).

Integrating in [0, s] it comes that

(k1w(s), z(s))− (k1w(0), z(0)) =

∫ s

0

(k1w
′(t), z(t))dt+

∫ s

0

(k1w(t), z
′(t))dt.

But, since z(s) = 0, w(0) = 0 and z′(t) = w(t) in [0, s]; we obtain

∫ s

0

(k1w
′(t), z(t))dt = −

∫ s

0

(k1w(t), w(t))dt = −
∫ s

0

(
√
k1w(t),

√
k1w(t))dt (14.31)

= −
∫ s

0

|
√
k1w(t)|2dt (14.32)

that is, ∫ s

0

(k1w
′(t), z(t))dt = −

∫ s

0

|
√
k1w(t)|2 dt. (67)

Finally, since z′(t) = w(t) a.e. in [0, s] we have

∫ s

0

((w(t), z(t)))dt =

∫ s

0

((z′(t), z(t)))dt =
1

2

∫ s

0

d

dt
||z(t)||2 dt (14.33)

=
1

2

[
||z(s)||2 − ||z(0)||2

]
= −1

2
||z(0)||2 (14.34)
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since z(s) = 0, that is, ∫ s

0

((w(t), z(t))) dt = −1

2
||z(0)||2. (68)

In this way, from (63), (66), (67) and (68) it follows that

1

2
|
√
k2w(s)|2 +

∫ s

0

|
√
k1w(t)|2 dt+

1

2
||z(0)||2 = 0.

Therefore ∫ s

0

|
√
k1w(t)|2 dt = 0

and, due to the fact that
√
k1 ≥

√
β > 0 a.e. in Ω, it follows that∫ s

0

|w(t)|2 dt = 0.

Consequently
w(t) = 0 a.e. in [0, s].

By the arbitrariness of s ∈ [0, T ] we conclude that

w(t) = 0 a.e. in [0, T ],

that is, w = 0, which proves the desired result.



242 CHAPTER 14. EVOLUTION PROBLEMS

14.5 Problems in Non-Cylindrical Domains

Consider the linear problem∣∣∣∣∣∣∣∣∣∣
∂2u

∂t2
−∆u = f in Q

u = 0 on Σ

u(0) = u0(x);
∂u

∂t
(0) = u1(x) in Ω0,

(1)

where Q is a non-cylindrical domain, which we will need below. Σ will denote the lateral
boundary of Q and Ω0 is the �base� of Q, as illustrated in the �gure below.

Figure 14.2: Figure 2

• About the Domain QQQ
Let Q be a bounded connected open set of Rn

x ×R+
t . Consider, for each s ∈]0, T [ :

Ωs = {t = s} ∩Q

and let Ω0 and ΩT , respectively, be the �open ends�, corresponding to t = 0 and t = T .
Let, also,

Γs = ∂Ωs ; 0 ≤ s ≤ T

and
Σ =

⋃
s∈]0,T [

Γs

be the lateral boundary of Q, so that

∂Q = Ω0 ∪ Σ ∪ ΩT .

Let O be a bounded open set of Rn
x, with regular boundary, such that

Q ⊂ O× ]0, T [ .
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We will denote by Ω∗
t the projection of Ωt onto the hyperplane t = 0. Note that

L2(Ω∗
t ) (respectively H1

0 (Ω
∗
t )) is a closed subspace of L2(O) (respectively H1

0 (O)). In
this way, we can identify L2(Ωt) (respectively H1

0 (Ωt)) with a closed subspace of L2(O)
(respectively H1

0 (O)).

Figure 14.3: Figure 3

We de�ne, for 1 ≤ p ≤ +∞

Lp(0, T ;L2(Ωt)) = {u ∈ Lp(0, T ;L2(O));u(t) ∈ L2(Ωt) a.e. in ]0, T [}
Lp(0, T ;H1

0 (Ωt)) = {u ∈ Lp(0, T ;H1
0 (O));u(t) ∈ H1

0 (Ωt) a.e. in ]0, T [}

We make the following hypotheses on Q∣∣∣∣∣Ωt increases with t, that is, if Ω
∗
t is the projection of Ωt onto

the hyperplane t = 0, then, Ω∗
t ⊂ Ω∗

t′ , if t ≤ t′ (see �g. above)
(2)∣∣∣∣∣∀ t ∈]0, T [ if v ∈ H1

0 (O) and v = 0 a.e. in O\Ω∗
t

then v ∈ H1
0 (Ωt)

(3)

It follows from (3) that if v ∈ H1
0 (O) and v = 0 a.e. in O\Ω∗

t0
then

v ∈ H1
0 (Ωt); ∀ t ≥ t0 .

Indeed, let t ≥ t0 . Then, by property (2), Ω∗
t0
⊂ Ω∗

t and, therefore, O\Ω∗
t ⊂ O\Ω∗

t0
.

Thus, if v = 0 a.e. in O\Ω∗
t0
it follows that v = 0 a.e. in O\Ω∗

t . Thus, v ∈ H1
0 (O) and

v = 0 a.e. in O\Ω∗
t . Whence, by property (3) it follows that v ∈ H1

0 (Ωt).
We have the following result

Theorem: Given

u0 ∈ H1
0 (Ω0), u1 ∈ L2(Ω0) and f ∈ L2(Q)

there exists u : O× ]0, T [→ R such that

u ∈ L∞(0, T ;H1
0 (Ωt)); u′ ∈ L∞(0, T ;L2(Ωt))
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weak solution of problem 1.

Proof: Let

M(x, t) =

{
0 in Q

1 in Qc = O× ]0, T [\Q

Then, M ∈ L∞(O× ]0, T [). Consider ũ0 , ũ1 extensions of u0 and u1 zero outside
Ω0 and f̃ extension of f zero outside Q. For each ε > 0, consider the cylindrical problem∣∣∣∣∣∣∣∣

u′′ε −∆uε +
1

ε
M u′ε = f̃ in O× ]0, T [

uε = 0 on Σ′ (lateral boundary of O× ]0, T [)

uε(0) = ũ0 ; u′ε(0) = ũ1

(Pε)

• Resolution of Pε

Fix ε > 0 and let (wν)ν∈N be a basis of H1
0 (O). Set

Vm = [w1, . . . , wm]

and consider in Vm the approximate problem

(AP)



uεm(t) ∈ Vm ⇔ uεm(t) =
m∑
i=1

gεmi(t)wi

(u′′εm(t), wj) + a(uεm(t), wj) +
1

ε

∫
O
M(x, t)u′εm(t)wj dx = (f̃(t), wj)

j = 1, . . . ,m

uεm(0) = u0m → ũ0 in H1
0 (O)

u′εm(0) = u1m → ũ1 in L2(O),

which possesses a local solution uεm(t) in some interval [0, tεm[ , where uεm and u′εm are
absolutely continuous and u′′εm exists a.e., by Carathéodory's Theorem. The a priori
estimates will serve to extend uεm(t) to the whole interval [0, T ].

• A Priori Estimate

Multiplying the approximate equation by g′εmj(t) and summing over j results that

d

dt

{
1

2
|u′εm(t)|2 +

1

2
||uεm(t)||2

}
+

1

ε

∫
O
M(x, t)

(
u′εm(t)

)2
dx = (f̃(t), u′εm(t))

≤ 1

2
|f̃(t)|2 + 1

2
|u′εm(t)|2.

Integrating in ]0, T [ , with 0 < t < tεm , it follows that

1

2
|u′εm(t)|2 +

1

2
||uεm(t)||2 +

1

ε

∫ t

0

∫
O
M(u′εm(s))

2 dxds

≤ 1

2
|u1m|2 +

1

2
||u0m||2 +

1

2
||f̃ ||L2(0,T ;L2(O)) +

1

2

∫ t

0

|u′εm(s)|2 ds.

However from (AP) we obtain c1 > 0 such that

1

2
|u1m|2 +

1

2
||u0m||2 +

1

2
||f̃ ||L2((0,T )×O) ≤

c1
2
·
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Thus

1

2
|u′εm(t)|2 +

1

2
||uεm(t)||2 +

1

ε

∫ t

0

∫
O
M(u′εm)

2 dxds

≤ c1
2
+

1

2

∫ t

0

{
|u′εm(s)|2 + ||uεm(s)||2 +

1

ε

∫ s

0

∫
O
M(u′εm)

2 dxdσ

}
ds.

By Gronwall's Inequality it follows that

1

2
|u′εm(t)|2 +

1

2
||uεm(t)||2 +

1

ε

∫ t

0

∫
O
M(x, s)(u′εm(s))

2 dxds ≤ k, (4)

∀ t ∈ [0, tεm); ∀ ε > 0; ∀m ∈ N where k is independent of t, ε and m. It results that
we can extend uεm(t) to the whole interval [0, T ] and proceeding as before we obtain the
same inequality obtained in (4), being now valid for all t ∈ [0, T ], ε > 0 and m ∈ N.

• Passage to the Limit

We obtain, therefore, from (4) the existence of a subsequence (uεν) ⊂ (uεm) such
that

uεν
∗
⇀ uε weak-* in L∞(0, T ;H1

0 (O)) (5)

u′εν
∗
⇀ u′ε weak-* in L∞(0, T ;L2(O)) (6)

Let j ∈ N and consider ν ≥ j. Then from (AP) it follows that

(u′′εν(t), wj) + a(uεν(t), wj) +
1

ε

∫
O
M(x, t)u′εν(t)wj dx = (f̃(t), wj).

Multiplying the equation above by θ ∈ D(0, T ) and integrating from 0 to T we
have∫ T

0

(u′′εν(t), wj)θ(t)dt+

∫ T

0

a(uεν(t), wj)θ(t)dt+
1

ε

∫ T

0

∫
O
M(x, t)u′εν(t)wj dx θ(t)dt

=

∫ T

0

(f̃(t), wj)θ(t)dt.

Whence

−
∫ T

0

(u′εν(t), wj)θ
′(t)dt+

∫ T

0

a(uεν(t), wj)θ(t)dt+
1

ε

∫ T

0

∫
O
M(x, t)u′εν(t)wj dx θ(t)dt

=

∫ T

0

(f̃(t), wj)θ(t)dt.

Taking the limit in the equality above as ν → +∞ we obtain from (5) and (6) that

−
∫ T

0

(u′ε(t), wj)θ
′(t)dt+

∫ T

0

a(uε(t), wj)θ(t)dt+
1

ε

∫ T

0

∫
O
M(x, t)u′ε(t)wj dx θ(t)dt

(7)

=

∫ T

0

(f̃(t), wj)θ(t)dt.
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Since j was taken arbitrarily in N, we conclude that (7) is valid for any j ∈ N.
From the totality of (wj)j∈N in H1

0 (O) it follows that the equality above remains valid for
all v ∈ H1

0 (O), that is,

−
∫ T

0

(u′ε(t), v)θ
′(t)dt+

∫ T

0

a(uε(t), v)θ(t)dt+

+
1

ε

∫ T

0

∫
O
M(x, t)u′ε(t)v(x)dx θ(t)dt =

∫ T

0

(f̃(t), v)θ(t)dt;

(8)

∀ v ∈ H1
0 (O) and ∀ θ ∈ D(0, T ).
Whence

d

dt
(u′ε(t), v) + a(uε(t), v) +

1

ε
(Mu′ε(t), v) = (f̃(t), v) (9)

in D′(0, T ); ∀ v ∈ H1
0 (O).

Resuming (8) with v = φ ∈ D(O) we also obtain

⟨u′′ε , θφ⟩+ ⟨−∆uε, θφ⟩+
〈
1

ε
Mu′ε, θφ

〉
= ⟨f̃ , θφ⟩; (10)

∀ θ ∈ D(0, T ) and ∀φ ∈ D(O). Since the set {φθ;φ ∈ D(O) and θ ∈ D(0, T )} is total
in D(O×]0, T [) it follows that the equality in (10) is valid for all ψ ∈ D(O×]0, T [) and,
therefore,

u′′ε −∆uε +
1

ε
Mu′ε = f̃ in D′(O×]0, T [). (11)

Since∆uε ∈ L∞(0, T ;H−1(O)), 1

ε
Mu′ε ∈ L∞(0, T ;L2(O)) and f̃ ∈ L2(0, T ;L2(O))

it follows that
u′′ε ∈ L2(0, T ;H−1(O)), (12)

that is,

u′′ε −∆uε +
1

ε
Mu′ε = f̃ in L2(0, T ;H−1(O)). (13)

• Initial Conditions

Note, initially, that due to the fact that

uε ∈ L∞(0, T ;H1
0 (O)), u′ε ∈ L∞(0, T ;L2(O)) and u′′ε ∈ L2(0, T ;H−1(O))

then

uε ∈ C0([0, T ];L2(O)) ∩ Cs(0, T ;H
1
0 (O)),

u′ε ∈ C0([0, T ];H−1(O)) ∩ Cs(0, T ;L
2(O)),

making sense therefore to speak of uε(0) and u′ε(0). We will prove, next, that

uε(0) = ũ0 (i)

u′ε(0) = ũ1 (ii)

Proof of (i)
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Let θ ∈ C1([0, T ]) such that θ(T ) = 0 and θ(0) = 1. From (6), in particular, for
w = vθ, with v ∈ L2(O) it follows that〈

u′εν , w
〉
L∞(0,T ;L2(O)),L1(0,T ;L2(O))

ν→+∞−−−−→
〈
u′ε, w

〉
L∞(0,T ;L2(O)),L1(0,T ;L2(O))

that is, ∫ T

0

(u′εν(t), v)θ(t)dt
ν→+∞−−−−→

∫ T

0

(u′ε(t), v)θ(t)dt; ∀ v ∈ L2(O).

Integrating by parts

−(uεν(0), v)−
∫ T

0

(uεν(t), v)θ
′(t)dt

ν→+∞−−−−→ −(uε(0), v)−
∫ T

0

(uε(t), v)θ
′(t)dt. (14)

From (5) we have that∫ T

0

(uεν(t), v)θ
′(t)dt

ν→+∞−−−−→
∫ T

0

(uε(t), v)θ
′(t)dt

and, therefore, from (14) it follows that

(uεν(0), v)→ (uε(0), v); ∀ v ∈ L2(O).

But, we also have that

uεν(0) = u0ν → ũ0 in H1
0 (O).

Whence
(uεν(0), v)

ν→+∞−−−−→ (ũ0, v); ∀ v ∈ L2(O).

Thus
(uε(0), v) = (ũ0, v); ∀ v ∈ L2(O)

and, then,
uε(0) = ũ0.

Proof of (ii)
Consider, analogously to item (i), θ ∈ C1([0, T ]), θ(0) = 1 and θ(T ) = 0. Let

j ∈ N and ν ≥ j. Multiplying the approximate equation by θ and integrating in [0, T ],
we obtain ∫ T

0

(u′′εν(t), wj)θ(t) dt+

∫ T

0

a(uεν(t), wj)θ(t)dt

+
1

ε

∫ T

0

∫
O
M(x, t)u′εν(t)wj dx θ(t)dt =

∫ T

0

(f̃(t), wj)θ(t)dt;

Integrating the 1st term of the expression above by parts, it follows that

− (u′εν(0), wj)−
∫ T

0

(u′εν(t), wj)θ
′(t)dt+

∫ T

0

a(uεν(t), wj)θ(t)dt

+
1

ε

∫ T

0

∫
O
M(x, t)u′εν(t)wj dx θ(t)dt =

∫ T

0

(f̃(t), wj)θ(t)dt.
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Taking the limit in the equality above when ν → +∞, it follows from (5) and (6)
that

− (ũ1, wj)−
∫ T

0

(u′ε(t), wj)θ
′(t)dt+

∫ T

0

a(uε(t), wj)θ(t)dt

+
1

ε

∫ T

0

∫
O
M(x, t)u′ε(t)wj dx θ(t)dt =

∫ T

0

(f̃(t), wj)θ(t)dt.

(15)

On the other hand, from (13) and the fact that (wjθ) ∈ L2(0, T ;H1
0 (O)) it follows

that 〈
u′′ε −∆uε +

1

ε
Mu′ε, wjθ

〉
= ⟨f̃ , wjθ⟩,

or even,∫ T

0

⟨u′′ε(t), wj⟩θ(t)dt+
∫ T

0

⟨−∆uε(t), wj⟩θ(t)dt+
1

ε

∫ T

0

⟨Mu′ε(t), wj⟩θ(t)dt

=

∫ T

0

⟨f̃(t), wj⟩θ(t)dt.

Integrating by parts the 1st term of the equality above and recalling that
⟨−∆uε(t), wj⟩ = a(uε(t), wj), we obtain

− (u′ε(0), wj)−
∫ T

0

(u′ε(t), wj)θ
′(t)dt+

∫ T

0

a(uε(t), wj)θ(t)dt

+
1

ε

∫ T

0

∫
O
M(x, t)u′ε(t)wj dx θ(t)dt =

∫ T

0

(f̃(t), wj)θ(t)dt.

(16)

From (15) and (16) we conclude that

(ũ1, wj) = (u′ε(0), wj); ∀ j ∈ N.

By the �totality� of {wj}j∈N in L2(O) it follows that

u′ε(0) = ũ1 .

Thus, for each ε > 0, ∃uε : O×]0, T [→ R in the class

uε ∈ L∞(0, T ;H1
0 (O)); u′ε ∈ L∞(0, T ;L2(O)) and u′′ε ∈ L2(0, T ;H−1(O)) (17)

solution of (Pε), that is,∣∣∣∣∣∣∣∣
u′′ε −∆uε +

1

ε
Mu′ε = f̃ in L2(0, T ;H−1(O))

uε = 0 on Σ′

uε(0) = ũ0 ; u′ε(0) = ũ1.

(18)

• Uniqueness
Fix ε > 0 and let u = uε and v = vε in the class (17), weak solutions of (Pε), that

is, satisfying (18). Then w = u− v satis�es∣∣∣∣∣∣∣∣
w′′ −∆w +

1

ε
Mw′ = 0 in L2(0, T ;H−1(O))

w = 0 on Σ′

w(0) = w′(0) = 0

(19)
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Let s ∈ [0, T ] and de�ne

z(t) =

at2−
∫ s

t

w(τ)dτ ; 0 ≤ t ≤ s

0; s < t ≤ T.

at (20)

We have that z ∈ L∞(0, T ;H1
0 (O)) 2 since w also belongs to this set. Indeed,

||z(t)|| =
∥∥∥∥∫ s

t

w(τ)dτ

∥∥∥∥ ≤ ∫ s

t

||w(τ)|| dτ ≤
∫ T

0

||w(τ)|| dτ

≤ T ess sup
τ∈[0,T ]

||w(τ)|| = T · ||w||L∞(0,T ;H1
0 (O)); ∀ t ∈ [0, T ].

Thus
ess sup
t∈[0,T ]

||z(t)|| ≤ T · ||w||L∞(0,T ;H1
0 (O)) < +∞.

Therefore, from (19)1 we can write that〈
w′′ −∆w +

1

ε
Mw′, z

〉
L2(0,T ;H−1(O)),L2(0,T ;H1

0 (O))

= 0,

that is, ∫ T

0

⟨w′′(t), z(t)⟩dt+
∫ T

0

⟨−∆w(t), z(t)⟩dt+ 1

ε

∫ T

0

⟨Mw′(t), z(t)⟩dt = 0.

Since z(t) = 0, ∀ t ∈ [s, T ] it follows that∫ s

0

⟨w′′(t), z(t)⟩dt+
∫ s

0

((w(t), z(t)))dt+
1

ε

∫ s

0

(Mw′(t), z(t))dt = 0. (21)

Set

w1(s) =

∫ s

0

w(τ)dτ. (22)

Note that if t ∈ [0, s] we have∫ s

0

w(τ)dτ =

∫ t

0

w(τ)dτ +

∫ s

t

w(τ)dτ.

Whence

−
∫ s

t

w(τ)dτ =

∫ t

0

w(τ)dτ −
∫ s

0

w(τ)dτ,

that is,
z(t) = w1(t)− w1(s). (23)

• Calculation of the Integrals in (21)
We have, integrating by parts∫ s

0

⟨w′′(t), z(t)⟩dt = (w′(s), z(s))− (w′(0), z(0))−
∫ s

0

(w′(t), z′(t))dt.

2In fact since z′(t) = w(t) and w ∈ L∞(0, T ;H1
0 (O)) then z′ ∈ L∞(0, T ;H1

0 (O)) and, therefore,
z ∈ C0([0, T ];H1

0 (O)).
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However, from (19)3 and (23) it follows that w′(0) = 0 and z(s) = 0. Thus∫ s

0

⟨w′′(t), z(t)⟩dt = −
∫ s

0

(w′(t), z′(t))dt.

But from (20) it follows that z′(t) = w(t). Returning to the equality above results
that ∫ s

0

⟨w′′(t), z(t)⟩dt = −
∫ s

0

(w′(t), w(t))dt

= −1

2

∫ s

0

d

dt
|w(t)|2 dt = −1

2

[
|w(s)|2 − |w(0)|2

]
= −1

2
|w(s)|2

since w(0) = 0 according to (19)3.
Then ∫ s

0

⟨w′′(t), z(t)⟩dt = −1

2
|w(s)|2. (24)

Using again the fact that z′(t) = w(t) in [0, s] it follows that∫ s

0

((w(t), z(t))dt =

∫ s

0

((z′(t), z(t)))dt =
1

2

∫ s

0

d

dt
||z(t)||2dt = 1

2

[
||z(s)||2 − ||z(0)||2

]
.

But from (23) we obtain∫ s

0

((w(t), z(t)))dt = −1

2
||z(0)||2. (25)

Finally ∫ s

0

(Mw′(t), z(t))dt =

∫ s

0

∫
O
M(x, t)w′(x, t)z(x, t)dxdt

=

∫ s

0

∫
O
w′(x, t)z(x, t)dxdt.

Integrating the last integral by parts it follows that

∫ s

0

(w′(t), z(t)) dt =

=0︷ ︸︸ ︷
(w(s), z(s))−

=0︷ ︸︸ ︷
(w(0), z(0))−

∫ s

0

(w(t), z′(t))dt

= −
∫ s

0

(w(t), w(t))dt = −
∫ s

0

|w(t)|2 dt.

Thus, ∫ s

0

(w′(t), z(t))dt = −
∫ s

0

|w(t)|2 dt. (26)

Therefore, from (21), (24), (25) and (26) we conclude that

−1

2
|w(s)|2 − 1

2
||z(0)||2 − 1

ε

∫ s

0

|w(t)|2 dt = 0.

Thus
|w(s)|2 = 0 ⇒ w(s) = 0.



14.5. PROBLEMS IN NON-CYLINDRICAL DOMAINS 251

By the arbitrariness of s ∈ [0, T ] we have that w(s) = 0, ∀ s ∈ [0, T ], which proves
uniqueness.

We have proved then that for each ε > 0 there exists a unique function uε : O×]0, T [→
R, weak solution of (Pε), in the class given in (17).

• Passage to the Limit in (Pε)

It results from (5) and (6), given the Banach-Steinhaus Theorem

||uε||L∞(0,T ;H1
0 (O)) ≤ lim ||uεν ||L∞(0,T ;H1

0 (O)), (27)

||u′ε||L∞(0,T ;L2(O)) ≤ lim ||u′εν ||L∞(0,T ;L2(O)), (28)

and from (4) it follows that

(uε) is bounded in L∞(0, T ;H1
0 (O)),

(u′ε) is bounded in L∞(0, T ;L2(O)).

Thus, there exists a subsequence of the �net� (uε) which we will still denote by (uε)
such that

uε
∗
⇀ w in L∞(0, T ;H1

0 (O)), (29)

u′ε
∗
⇀ w′ in L∞(0, T ;L2(O)). (30)

However, from (4) we have that

1

ε

∫ T

0

∫
O
M(x, t)|u′εν(x, t)|2 dxdt ≤ k; ∀ ν ∈ N and ε > 0,

and from (6) it follows that

Mu′εν
∗
⇀Mu′ε in L∞(0, T ;L2(O))

and, in this way, we conclude that

Mu′εν
∗
⇀Mu′ε in L2(0, T ;L2(O)).

Thus

1

ε

∫ T

0

∫
O
|Mu′ε|2 dxdt ≤ inf

ν
sup

1

ε

∫ T

0

∫
O
|Mu′εν |2 dxdt ≤ k; ∀ ε > 0. (31)

Thus,

0 ≤
∫ T

0

∫
O
|Mu′ε|2 dxdt ≤ kε; ∀ ε > 0.

It follows then that

Mu′ε
ε→0−−→ 0 strongly in L2(0, T ;L2(O)). (32)

However from (30)

Mu′ε
ε→0−−→Mw′ weakly * in L∞(0, T ;L2(O)). (33)
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From (32) and (33) it follows that

Mw′ = 0 in L2(O× ]0, T [).

Therefore
M(x, t)w′(x, t) = 0 a.e. in O× ]0, T [ . (34)

Now, since M = 0 in Q and M = 1 in Qc it results from (34) that

w′(x, t) = 0 a.e. in Qc. (35)

On the other hand from (18)1 , we have

u′′ε −∆uε +
1

ε
Mu′ε = f̃ in L2(0, T ;H−1(O)).

It follows from (27), (31) and from the fact that −∆ ∈ L(H1
0 (O), H−1(O)) that

||u′′ε ||L2(0,T ;H−1(O)) ≤ c1||uε||L2(0,T ;H1
0 (O)) + c2 + c3||f̃ ||L2(0,T ;L2(O)) ≤ k0 ; ∀ ε > 0.

Thus
u′′ε ⇀ w′′ in L2(0, T ;H−1(O)). (36)

From (29), (30) and (36) it follows that

w ∈ C0([0, T ];L2(O)) ∩ Cs(0, T ;H
1
0 (O)),

w′ ∈ C0([0, T ];H−1(O)) ∩ Cs(0, T ;L
2(O)).

Therefore, it makes sense to speak of w(0), w(T ), w′(0) and w′(T ). We will prove
next that

w(0) = ũ0, (37)

w′(0) = ũ1. (38)

Indeed, let θ ∈ C1([0, T ]); θ(0) = 1 and θ(T ) = 0. Then, given v ∈ L2(O),
(vθ) ∈ L1(0, T ;L2(O)) and from (30) we obtain∫ T

0

(u′ε(t), v)L2(O) θ(t)dt
ε→0−−→

∫ T

0

(w′(t), v)L2(O) θ(t)dt.

Integrating by parts, it follows that

−(uε(0), v)−
∫ T

0

(uε(t), v)θ
′(t)dt

ε→0−−→ (w(0), v)−
∫ T

0

(w(t), v)θ′(t)dt.

Now, from (29) we have that∫ T

0

(uε(t), v)θ
′(t)dt

ε→0−−→
∫ T

0

(w(t), v)θ′(t)dt.

Then
(uε(0), v)

ε→0−−→ (w(0), v); ∀ v ∈ L2(O).
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Since uε(0) = ũ0 ; ∀ ε > 0, it results that

w(0) = ũ0 .

Considering θ in the same previous conditions and v ∈ H1
0 (O), from (36) it follows

that ∫ T

0

⟨u′′ε(t), v⟩θ(t)dt
ε→0−−→

∫ T

0

⟨w′′(t), v⟩θ(t)dt.

Integrating by parts, we obtain

−(u′ε(0), v)−
∫ T

0

(u′ε(t), v)θ
′(t)dt

ε→0−−→ −(w′(0), v)−
∫ T

0

(w′(t), v)θ′(t)dt.

However, due to the fact that∫ T

0

(u′ε(t), v)θ
′(t)dt

ε→0−−→
∫ T

0

(w′(t), v)θ′(t)dt

we have that
(u′ε(0), v)→ (u′(0), v); ∀ v ∈ H1

0 (O).
By the density of H1

0 (O) in L2(O) and by the fact that u′ε(0) = ũ1 we obtain

w′(0) = ũ1 .

On the other hand, from (35), we obtain

w(x, t) = w(x) a.e. in Qc =
(
O× ]0, T [

)
\Q.

Since w ∈ C0([0, T ];L2(O)) it follows that

w(x, t) = w(x), for almost all (x, t) ∈ O × {t}\Ωt and ∀ t ∈ [0, T ]. (39)

But from (37) we have then that

w(x, 0) = w(x) = ũ0 , for a.e. x ∈ O\Ω0 .

However,

ũ0(x) =

{
u0(x); x ∈ Ω0

0; x ∈ O\Ω0

which implies that
w(x) = 0 a.e. in O\Ω0 .

It follows from (39) that

w(t)(x) = w(x, t) = 0, for a.e. (x, t) ∈ O × {t}\Ωt and ∀ t ∈ [0, T ]. (40)

Recalling that Ωt is identi�ed with Ω∗
t it follows that

w(t)(x) = 0 a.e. x ∈ O\Ω∗
t and ∀ t ∈ [0, T ].

This together with hypothesis (3) leads us to conclude that if we de�ne u as the
restriction of w to Q then

u ∈ L∞(0, T ;H1
0 (Ωt)). (41)
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Also from (39) it results that

u′ ∈ L∞(0, T ;L2(Ωt)). (42)

Consider, now, ψ ∈ D(Q) and de�ne

ψ̃ =

{
ψ in Q

0 in Qc

Then, ψ̃ ∈ D (O× ]0, T [) and therefore ψ̃ ∈ L2(0, T ;H1(O)), ψ̃′ ∈ L2(0, T ;L2(O)).
It results from (13) that 〈

u′′ε −∆uε +
1

ε
Mu′ε, ψ̃

〉
= ⟨f̃ , ψ̃⟩

where ⟨ · ⟩ designates the duality L2(0, T ;H−1(O))× L2(0, T ;H1
0 (O)), or even,

=0︷ ︸︸ ︷
(u′ε(T ), ψ̃(T ))−

=0︷ ︸︸ ︷
(u′ε(0), ψ̃(0))−

∫ T

0

(u′ε(t), ψ̃
′(t))L2(O) dt

+

∫ T

0

a(uε(t), ψ̃(t))dt+
1

ε

∫ T

0

(Mu′ε(t), ψ̃(t))L2(O) dt

=

∫ T

0

(f̃(t), ψ̃(t))L2(O) dt.

(43)

But, since M(x, t) = 0 if (x, t) ∈ Q and ψ = 0 in Qc, it follows that

1

ε

∫ T

0

(Mu′ε(t), ψ̃(t))L2(O) dt

=
1

ε

[ ∫
Q

M(x, t)u′ε(x, t)ψ̃(x, t)dxdt+

∫
Qc

M(x, t)u′ε(x, t)ψ̃(x, t)dxdt

]
= 0.

Whence, from (43)

−
∫ T

0

(u′ε(t), ψ̃
′(t))L2(O) dt+

∫ T

0

a(uε(t), ψ̃(t))dt =

∫ T

0

(f̃(t), ψ̃(t))L2(O) dt.

Taking the limit as ε→ 0 results from (29) and (30) that

−
∫ T

0

(w′(t), ψ̃′(t))L2(O) dt+

∫ T

0

a(w(t), ψ̃(t) dt =

∫ T

0

(f̃(t), ψ̃(t))L2(O) dt,

that is,

−
∫
Q

u′(x, t)ψ′(x, t)dxdt+
n∑

i=1

∫
Q

∂u

∂xi
(x, t)

∂ψ

∂xi
(x, t)dxdt =

∫
Q

f(x, t)ψ(x, t)dxdt.

It follows from there that

⟨u′′ −∆u, ψ⟩ = ⟨f, ψ⟩, ∀ψ ∈ D(Q).

Therefore
u′′ −∆u = f in D′(Q).
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14.6 Problem with Nonlinear Vibrations

Let Ω be a bounded open set with su�ciently smooth boundary Γ. Let Q = Ω× ]0, T [ and
Σ = Γ× ]0, T [ , with T > 0 and M : [0,+∞[→ R, M ∈ C1([0,+∞[) and M ≥ m0 > 0.

We wish to �nd u : Q→ R weak solution of∣∣∣∣∣∣∣∣∣∣

∂2u

∂t2
−M

(∫
Ω

|∇u|2 dx
)
∆u = f in Q

u = 0 on Σ

u(0) = u0(x),
∂u

∂t
(0) = u1.

(1)

Instead of solving problem 1 speci�cally, we will obtain a solution for the abstract
problem. For this, let V and H be separable Hilbert spaces such that dimH = +∞, V ⫋
H,

V
c→ ↪→H and V is dense in H.

Let (( · , · )) and ( · , · ), respectively, be the inner products of V and H, consider

A← {V,H, (( · , · ))}.

As is well known A is a self-adjoint, positive and unbounded operator of H. We
also have the existence of a sequence of eigenvectors (wν)ν∈N of A and corresponding
eigenvalues (λν)ν∈N such that

(wν) is a complete orthonormal system of H(
wν√
λν

)
is a complete orthonormal system of V.

Also
0 < λ1 ≤ λ2 ≤ . . . and λν → +∞ when ν → +∞. (2)

Now, if α ∈ R, we de�ne the powers of A by

D(Aα) =

{
u ∈ H;

+∞∑
ν=1

λ2αν |(u,wν)|2 < +∞
}

(3)

and

Aαu =
+∞∑
ν=1

λαν (u,wν)wν . (4)

We have that Aα is equally self-adjoint and positive, ∀α ∈ R, making sense there-
fore to speak of the root of Aα. It follows from this that if we de�ne

D(T ) =

{
u ∈ H;

+∞∑
ν=1

λαν |(u,wν)|2 < +∞
}

and

Tu =
+∞∑
ν=1

λα/2ν (u,wν)wν
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then,
T = Aα/2.

We can also prove that T is the unique positive self-adjoint operator that veri�es

T 2 = Aα. (5)

Thus

(Aαu, u) = (T 2u, u) = (Tu, Tu) = (Aα/2u,Aα/2u); ∀u ∈ D(Aα). (6)

We note further that the powers of A satisfy the following property

If α1 ≤ α2 then D(Aα2) ⊂ D(Aα1). (7)

We can prove from (3) and (4) that

D(Aα1+α2) =
{
u ∈ H;u ∈ D(Aα1) ∩D(Aα2), Aα1u ∈ D(Aα2) and Aα2u ∈ D(Aα1)

}
. (8)

It follows from (8) and (4) that:

Aα1 ◦ Aα2 = Aα1+α2 = Aα2+α1 = Aα2 ◦ Aα1 in D(Aα1+α2). (9)

Now, if α ≥ 0 it is veri�ed that there exists c > 0 such that

(Aαu, u) ≥ c|u|2; ∀u ∈ D(Aα). (10)

We endow D(Aα) with the inner product

(u, v)D(Aα) = (u, v) + (Aαu,Aαv); u, v ∈ D(Aα),

which makes it a Hilbert space since Aα is closed given that it is self-adjoint. Since α ≥ 0,
it follows from (10) that the norms

||u||D(Aα) =
(
|u|2 + |Aαu|2

)1/2
(11)

and
|||u|||D(Aα) = |Aαu| (12)

are equivalent in D(Aα). Therefore, the topological space (D(Aα); ||| · |||D(Aα)) is also a
Hilbert space. In what follows, we will work with the topology given in (12). Furthermore,
endowed with this topology, if α1 ≤ α2 then D(Aα2) ↪→ D(Aα1).

If α > 0 we note that

A−α is a compact operator of H. (13)

Finally, we also observe that the following properties are satis�ed

The embedding of D(Aα), α > 0, in H is compact. (14)

If ρ ≥ 0, α > 0 then the embedding of D(Aα+ρ) in D(Aρ) is compact. (15)
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Consider, now, the abstract problem∣∣∣∣∣u′′ +M(a(u))Au = f

u(0) = u0 , u
′(0) = u1,

(16)

where a(u, v) = ((u, v)); u, v ∈ V .
A natural question that arises is whether we can solve the problem above subject

to the following initial data

u0 ∈ D(A1/2) = V ; u1 ∈ H and f ∈ L2(0, T ;H). (17)

In what follows we will proceed formally. Composing (16)1 with 2u′ results that

2(u′′, u′) +M(a(u))(Au, 2u′) = 2(f, u′). (18)

We have

2(Au, u′) = 2a(u, u′) = 2((u, u′)) =
d

dt
||u||2.

Setting

M̂(λ) =

∫ λ

0

M(ξ)dξ; λ ∈ [0,+∞[ (19)

then

d

dt
(M̂(a(u)) =M(a(u)) · d

dt
a(u) =M(a(u))

d

dt
||u||2 =M(a(u))2(Au, u′). (20)

Thus, from (18) and (20) we conclude that:

d

dt

{
|u′|2 + M̂(a(u))

}
= 2(f, u′).

Integrating from 0 to t, we obtain

|u′|2 + M̂(a(u)) ≤ |u1|2 + M̂(a(u0)) +

∫ T

0

|f |2 ds+
∫ t

0

|u′|2 ds. (21)

However, due to the fact that

M̂(a(u)) =

∫ a(u)

0

M(ξ)dξ ≥ m0 a(u)

from (21) it follows that

|u′|2 +m0 a(u) ≤ |u1|2 + M̂(a(u0)) +

∫ T

0

|f |2 ds+
∫ t

0

|u′|2 ds.

By Gronwall's Lemma it follows that

|u′|2 + a(u) ≤ c; ∀ t. (22)

We observe that, until now, the choice of initial data as in (17) has been satisfactory
and su�cient to pass the limit in the linear part of the problem. However, to pass the
limit in the nonlinear part of the problem it is necessary that we have strong convergence
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in L2(0, T ;D(A1/2)). However, the estimate in (22) guarantees us only, given the Aubin-
Lions theorem, strong convergence in L2(0, T ;H) which is insu�cient to pass the limit.
We need, therefore, a new a priori estimate.

Let 0 < ε < 1 to be determined later. Consider the scalar product of (16)1 with
2Aεu′. We have

2(u′′, Aεu′) + 2M(a(u))(Au,Aεu′) = 2(f, Aεu′). (23)

But,
2(u′′, Aεu′) = 2(Aε/2u′′, Aε/2u′) = 2(u′′, u′)D(Aε/2)

=
d

dt
|u′(t)|2D(Aε/2) =

d

dt
|Aε/2u′|2

(24)

Also,

2(Au,Aεu′) = 2(A1/2A1/2u,Aε/2Aε/2u′) = 2
(
A

ε+1
2 u,A

ε+1
2 u′)

= 2(u, u′)
D(A

1+ε
2 )

=
d

dt
|u|

D(A
ε+1
2 )

=
d

dt
|A

ε+1
2 u|2.

(25)

Thus, from (23), (24) and (25) we obtain

d

dt
|Aε/2u′|2 +M(a(u))

d

dt
|A

ε+1
2 u|2 = 2(f, Aεu′). (26)

Since

d

dt

(
M(a(u))|A

ε+1
2 u|2

)
=

d

dt
M(a(u))|A

ε+1
2 u|2 +M(a(u)) · d

dt
|A

ε+1
2 u|2

then from (26) it follows that

d

dt

{
|Aε/2u′|2 +M(a(u))|A

ε+1
2 u|2

}
= 2(f, Aεu′) +

d

dt
M(a(u))|A

ε+1
2 u|2. (27)

However,

d

dt
(M(a(u))) =M ′(a(u))

d

dt
a(u) =M ′(a(u))

d

dt
||u||2 =M ′(a(u))2((u, u′))

= 2M ′(a(u))(Au, u′).

Therefore, from (22)∣∣∣∣ ddt (M(a(u))

∣∣∣∣ = 2|M ′(a(u))| |(Au, u′)| ≤ 2

(
max

0≤a(u)≤c
|M ′(a(u))|

)
|(Au, u′)|,

that is, there exists c1 > 0 such that:∣∣∣∣ ddt (M(a(u))

∣∣∣∣ ≤ c1|(Au, u′)|. (28)

Consider, now, 0 < γ < 1. We have

(Au, u′) = (AγA1−γu, u′) = (A1−γu,Aγu′). (29)
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From (28) and (29) we arrive at∣∣∣∣ ddt (M(a(u)))

∣∣∣∣ ≤ c1|A1−γu| |Aγu′| (30)

and from (27) and (30) we can write

d

dt

{
|Aε/2u′|2 +M(a(u))|A

ε+1
2 u|2

}
≤ 2(f, Aεu′) + c1|A1−γu| |Aγu′| |A

ε+1
2 u|2

= 2(Aε/2f, Aε/2u′) + c1|A1−γu| |Aγu′| |A
ε+1
2 u|2

≤ |Aε/2f |2 + |Aε/2u′|2 + c1|A1−γu| |Aγu′| |A
ε+1
2 u|2.

Integrating the previous inequality we obtain

|Aε/2u′|2 +M(a(u))|A
ε+1
2 u|2

≤ |Aε/2u1|2 +M(a(u0))|A
ε+1
2 u0|2 +

∫ T

0

|Aε/2f |2 dt

+

∫ t

0

|Aε/2u′|2 ds+ c1

∫ t

0

|A1−γu| |Aγu′| |A
ε+1
2 u|2 ds.

We would like there to exist k0 > 0 and k1 > 0 satisfying

|A1−γu| ≤ k0|A
ε+1
2 u|,

and

|Aγu′| ≤ k1|Aε/2u′|.
(31)

Assuming that (31) is true we obtain

|Aε/2u′|2 +M(a(u))|A
ε+1
2 u|2

≤ |Aε/2u1|2 +M(a(u0))|A
ε+1
2 u0|2 +

∫ T

0

|Aε/2f |2 dt

+

∫ t

0

|Aε/2u′|2 ds+ c2

∫ t

0

|A
ε+1
2 u| |Aε/2u′| |A

ε+1
2 u|2 ds.

(32)

Therefore, for us to have (31) it is necessary that the following embeddings hold:

D

(
A

ε+1
2

)
↪→ D(A1−γ),

and
D(Aε/2) ↪→ D(Aγ).

For the embeddings above to occur we must have that

1− γ ≤ 1 + ε

2
and γ ≤ ε

2
.

Summing the two inequalities we must have

1 ≤ 1

2
+ ε ⇒ ε ≥ 1

2
·
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Choosing ε =
1

2
(which is the best choice since the smaller the ε the larger the set

D(Aε/2) and, therefore, we are being less restrictive) it follows that γ ≤ 1

4
·

Returning to (32) with the choice above, we obtain

|A1/4u′|2 +M(a(u))|A3/4u|2

≤ |A1/4u1|2 +M(a(u0))|A3/4u0|2 +
∫ t

0

|A1/4f |2 dt

+

∫ t

0

|A1/4u′|2 ds+ c2

∫ t

0

|A3/4u| |A1/4u′| |A3/4u|2 ds.

The inequality above indicates the ideal place to consider the initial data, that is,
we must consider

u0 ∈ D(A3/4), u1 ∈ D(A1/4) and f ∈ L2(0, T ;D(A1/4)). (34)

Note that
D(A3/4) ↪→ D(A1/2) = V ↪→ D(A1/4)

Suppose, then (34), there exists c3 > 0 such that

|A1/4u′|2 +M(a(u))|A3/4u|2 ≤ c3 +

∫ t

0

|A1/4u′|2 ds+ c2

∫ t

0

|A3/4u| |A1/4u′| |A3/4u|2 ds.

Since M(λ) ≥ m0 > 0; ∀λ ∈ [0,+∞[ we obtain

|A1/4u′|2 + |A3/4u|2 ≤ k3 + k1

∫ t

0

|A1/4u′|2 + k2

∫ t

0

|A3/4u| |A1/4u′| |A3/4u|2 ds, (35)

where

k3 =
c3

min{1,m0}
; k2 =

c2
min{1,m0}

and k1 =
1

min{1,m0}
·

However, despite the new choice of initial data, we cannot bound the expression
on the left of the inequality in (35) for all t belonging to the �eld of de�nition of u, as we
will see next.

Set
Y = |A1/4u′|2 + |A3/4u|2.

We have
|A3/4u|2 ≤ Y and |A1/4u′| ≤ Y.

Thus, from (35) it follows that

Y (t) ≤ k3 + k2

∫ t

0

Y 1/2(s)Y 1/2(s)Y ds+ k1

∫ t

0

Y (s)ds

≤ k3 + k4

∫ t

0

(Y 2(s) + Y (s))ds,

that is,

Y (t) ≤ k3 + k4

∫ t

0

(Y 2 + Y )ds. (36)
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Setting

h(t) =

∫ t

0

(Y 2 + Y )ds (37)

it follows from (36) that
Y (t) ≤ k3 + k4 h(t). (38)

From (37) and (38) we obtain

h′(t) = Y 2 + Y ≤ (k3 + k4 h(t))
2 + (k3 + k4 h(t)),

or even,
k4 h

′(t) ≤ k4
{
(k3 + k4 h(t))

2 + (k3 + k4 h(t))
}
. (39)

Since
(k3 + k4 h(t))

′ = k4 h
′(t)

we have from (39) that

(k3 + k4 h(t))
′ ≤ k4

{
(k3 + k4 h(t))

2 + (k3 + k4 h(t))
}
.

Setting
ψ(t) = k3 + k4 h(t) (40)

then we have
ψ′(t) ≤ k4{ψ(t)2 + ψ(t)}.

Whence
ψ′(t)− k4 ψ(t) ≤ k4 ψ

2(t).

Multiplying the inequality above by e−k4t it follows that(
ψ′(t)e−k4t − k4 e−k4t ψ(t)

)
≤ k4 ψ

2(t)e−k4t,

that is, (
ψ(t)e−k4t

)′ ≤ k4 ψ
2(t)e−k4t.

Integrating from 0 to t, we obtain from (37) and (40) that

ψ(t)e−k4t − k3 ≤
∫ t

0

k4 ψ
2(s)e−k4s ds.

Whence

ψ(t) ≤ ek4t
{
k3 + k4

∫ t

0

ψ2(s)e−k4s ds

}
. (41)

Now, de�ning

z(t) =

∫ t

0

e−k4s ψ2(s)ds, (42)

from (41) we can write
ψ(t) ≤ ek4t{k3 + k4 z(t)}. (43)

From (42) and (43) we obtain

z′(t) = e−k4t ψ2(t) ≤ e−k4t e2k4t{k3 + k4 z(t)}2 = ek4t{k3 + k4 z(t)}2
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and, therefore, from the fact that k3, k4 > 0, we have

z′(t)

(k3 + k4 z(t))2
≤ ek4t.

Integrating from 0 to t we arrive at:∫ t

0

z′(s)

(k3 + k4 z(s))2
ds ≤

∫ t

0

ek4s ds.

Consider the following change of variables:

u = k3 + k4 z(s) ⇒ du = k4 z
′(s)ds

and when

s = 0 ⇒ u = k3

s = t ⇒ u = k3 + k4 z(t).

Thus ∫ t

0

z′(s)

(k3 + k4 z(s))2
ds =

1

k4

∫ k3+k4 z(t)

k3

u−2 du = −u
−1

k4

∣∣∣∣k3+k4 z(t)

k3

=
1

k4

{
1

k3
− 1

k3 + k4 z(t)

}
.

Also, ∫ t

0

ek4s ds =
1

k4
ek4s
∣∣∣∣t
0

=
1

k4
(ek4t − 1)

whence
1

k3
− 1

k3 + k4 z(t)
≤ ek4t − 1

that is,

− 1

k3 + k4 z(t)
≤ − 1

k3
+ ek4t − 1.

Therefore,
1

k3 + k4 z(t)
≥ 1− ek4t + 1

k3
· (44)

On the other hand,

1− ek4t + 1

k3
> 0⇔ ek4t < 1 +

1

k3
⇔ ℓn(ek4t) < ℓn

(
1 +

1

k3

)
⇔

⇔ k4t < ℓn

(
1 +

1

k3

)
⇔ t <

1

k4
ℓn

(
1 +

1

k3

)
.

Setting

T ∗ =
1

k4
ℓn

(
1

k3
+ 1

)
then if t ≤ T0 and T0 < T ∗ we have

1

k3
− ek4t + 1 > 0; ∀ t ∈ [0, T0].
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From (44) it follows that

k3 + k4 z(t) ≤
(
1− ek4t + 1

k3

)−1

; ∀ t ∈ [0, T0]

and, from (43), it results that

ψ(t) ≤ ek4T0

(
1− ek4T0 +

1

k3

)−1

= L; ∀ t ∈ [0, T0].

From this last inequality and from (40) we obtain

h(t) ≤ L− k3
k4

=M ; ∀ t ∈ [0, T0].

Finally from (38) we conclude that

Y (t) ≤ k3 + k4M = c; ∀ t ∈ [0, T0],

that is,
|A1/4u′|2 + |A3/4u|2 ≤ c; ∀ t ∈ [0, T0]. (45)

From the above, we have the following result

Theorem: Given:

u0 ∈ D(A3/4); u1 ∈ D(A1/4) and f ∈ L2(0, T ;D(A1/4))

there exists 0 < T0 ≤ T and a unique solution u : [0, T0]→ H of (16) in the class

u ∈ L∞(0, T0;D(A3/4)); u′ ∈ L∞(0, T0;D(A1/4)) and u′′ ∈ L2(0, T0;V
′)

verifying

d

dt
(u′(t), v) +M(a(u(t)))a(u(t), v) = (f(t), v) in L2(0, T0); ∀ v ∈ V

u(0) = u0 ; u
′(0) = u1 .

Proof:
1a	 Step: Approximate Solution
Let (wν)ν∈N be the sequence of eigenvectors associated with the operator

A← {V,H; ((· , · ))}

whose corresponding eigenvalues (λν)ν∈N verify

0 < λ1 ≤ λ2 ≤ . . . and λν → +∞, when ν → +∞. (46)

We know that, by virtue of the Spectral Theorem

(wν) is a complete orthonormal system of H (47)(
wν√
λν

)
is a complete orthonormal system of V = D(A1/2) (48)(

wν

λν

)
is a complete orthonormal system of D(A) (49)
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Note that
D(A) ↪→ D(A3/4) ↪→ D(A1/2) = V ↪→ D(A1/4) ↪→ H. (50)

We claim that

(wν)ν∈N is orthogonal complete in D(Aα); 0 ≤ α ≤ 1. (51)

Indeed, let ν, µ ∈ N such that ν ̸= µ. Then:

(wν , wµ)D(Aα) = (Aαwν , A
αwµ) = λανλ

α
µ(wν , wµ)− 0.

Furthermore, let u ∈ D(Aα) such that (u,wν)D(Aα) = 0; ∀ ν ∈ N. We have:

0 = (Aαu,Aαwν) = λαν (A
αu,wν) = λαν (u,A

αwν) = λ2αν (u,wν); ∀ ν ∈ N.

Since λν > 0, ∀ ν ∈ N it follows that (u,wν) = 0; ∀ ν ∈ N. Therefore, from (47)
it follows that u = 0 which proves (51).

But,
||wν ||2D(Aα) = (Aαwν , A

αwν) = λ2αν |wν |2 = λ2αν . ∀ ν ∈ N.

Whence (
wν

λαν

)
is orthonormal complete in D(Aα). (52)

It results from this that for all u ∈ D(Aα) we have

u =
+∞∑
ν=1

((
u,
wν

λαν

))
D(Aα)

wν

λαν

that is,
n∑

ν=1

((
u,
wν

λαν

))
D(Aα)

wν

λαν

n→+∞−−−−→ u in D(Aα). (53)

However, since((
u,
wν

λ2αν

))
D(Aα)

=

(
Aαu,

Aαwν

λ2αν

)
=

1

λαν
(Aαu,wν) =

1

λαν
(u,Aαwν) = (u,wν)

we have from (53) that

n∑
ν=1

(u,wν)wν
n→+∞−−−−→ u in D(Aα)

that is,

lim
n→+∞

n∑
ν=1

(u,wν)wν = u; ∀u ∈ D(Aα), 0 ≤ α ≤ 1. (54)

Set
Vm = [w1, . . . , wm].
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In Vm and by virtue of (54) consider the approximate problem

(AP)



um(t) =
m∑
i=1

gim(t)wi ∈ Vm,

(u′′m(t), wj) +M(a(um(t)))a(um(t), wj) = (f(t), wj); j = 1, 2, . . . ,m,

um(0) = u0m =
m∑
i=1

(u0, wν)wν → u0 in D(A3/4),

u′m(0) = u1m =
m∑
i=1

(u1, wν)wν → u1 in D(A1/4).

Whence 
g′′jm(t) +M

( m∑
i=1

g2im(t)λ
2
i

)
gjmλj = (f(t), wj)

gjm(0) = (u0, wj)

g′jm(0) = (u1, wj), j = 1, . . . ,m,

(55)

that is, 

g
′′
1m(t)
...

g′′mm(t)

+


M

(∑m
j=1 g

2
jm(t)λ

2
j

)
g1mλ1

...

M

(∑m
j=1 g

2
jm(t)λ

2
j

)
gmmλm

 =

 (f(t), w1)
...

(f(t), wm)



gjm(0) =

 (u0, w1)
...

(u0, wm)

 ; g′jm(0) =

 (u1, w1)
...

(u1, wm)

 .

(56)

Set

z(t) =

g1m(t)
...

gmm(t)

 ;

A(z(t)) =



M

(
m∑
j=1

g2jm(t)λ
2
j

)
g1mλ1 0 . . . 0

0 M

(
m∑
j=1

g2jm(t)λ
2
j

)
g2mλ2 . . . 0

...
...

...

0 0 . . .M

(
m∑
j=1

g2jm(t)λ
2
j

)
gmmλm


and

F (t) =

 (f(t), w1)
...

(f(t), wm)

 ; z0 =

 (u0, w1)
...

(u0, wm)

 and z1 =

 (u1, w1)
...

(u1, wm)

 . (57)
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From (56) and (57) it follows that{
z′′(t) + A(z(t)) · z(t) = F (t)

z(0) = z0 ; z′(0) = z1.
(58)

Set
Y1(t) = z′(t); Y2(t) = z(t) (59)

and

Y (t) =

[
Y1(t)
Y2(t)

]
(60)

In this way, it follows from (58), (59) and (60) that

Y ′(t) =

[
Y ′
1(t)
Y ′
2(t)

]
=

[
z′′(t)
z′(t)

]
=

[
F (t)− A(z(t)).z(t)

z′(t)

]
=

[
F (t)
0

]
+

[
0 −A(z(t))
I 0

] [
z′(t)
z(t)

]
.

Thus {
Y ′(t) = F(t) +A(Y (t)).Y (t)

Y (0) = Y0
(61)

where

F(t) =
[
F (t)
0

]
, A(Y (t)) =

[
0 −A(z(t))
I 0

]
and Y0 =

[
z1
z0

]
.

De�ne the following function

h : [0, T ]× R2m → R2m

(t, y)→ h(t, y) = F(t) +A(y).y
(62)

where

A(y) =
[
0 −A(ȳ)
I 0

]
where ȳ = (ym+1, . . . , y2m) if y = (y1, . . . , ym, ym+1, . . . , y2m).

Then {
y′(t) = h(t, y(t))

y(0) = Y0.
(63)

Note that
(i) For each �xed y ∈ R2m, h(t, y) is measurable in t, since F(t) is measurable since

f ∈ L2(0, T ;D(A1/4) and therefore the coordinate functions (f(t), wj) are measurable.
(ii) For a.e. t ∈ [0, T ], the map h(t, y) is continuous in y because the product

A(y) · y is. We observe that the continuity of A(y).y comes from the fact that A(y) is
continuous and the continuity of this results from the fact that M ∈ C1(R+).

(iii) Let K be a compact set of [0, T ]×R2m. Thus, ∀ (t, y) ∈ K we have that ∃ c > 0
such that

||h(t, y)||2m ≤ ||F(t)||2m + ||A(y)|| ||y||2m ≤ ||F(t)||2m + c.

Since ||F(t)||2m ∈ L1(projtK), it results from Carathéodory's Theorem that the
system of O.D.E. given in (63) admits a local solution y(t) in some interval [0, tm), such
that y(t) is absolutely continuous and y′(t) exists a.e. in [0, tm). It follows, that the system
(58) has a local solution z(t) in the same interval considered and from (59) and (60) it
follows that z(t) and z′(t) are absolutely continuous and z′′ exists a.e. in [0, tm). Finally,
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from (57) we conclude that the functions gjm(t), g′jm(t) are absolutely continuous and
g′′jm(t) exists a.e. in [0, tm), verifying the system (55). The a priori estimates will serve to
extend gjm(t) and therefore um(t), to the whole interval [0, T ].

2a	 Step: A Priori Estimates

It is worth observing that from (50) and from the fact that (um) ⊂ D(A) everything
that was done formally remains valid in the interval [0, tm), that is, from (22) we obtain

|u′m(t)|2 + ||um(t)||2 ≤ c; ∀ t ∈ [0, tm) and ∀m ∈ N. (64)

From this it follows that

c ≥ ((um(t), um(t))) =
m∑
j=1

g2jm(t) · λj ≥
( m∑

j=1

g2jm(t)

)
λ1

that is,

|z(t)|2m =
m∑
j=1

g2jm(t) ≤ c1 =
c

λ1
; ∀ t ∈ [0, tm). (65)

Also,

c ≥ (u′m(t), u
′
m(t)) =

m∑
j=1

g′
2
jm(t)

whence

|z′(t)|2 =
m∑
j=1

|g′jm(t)|2 ≤ c. (66)

From (65) and (66) we conclude that

|Y (t)|22m = |Y1(t)|2m + |Y2(t)|2m = |z′(t)|2m + |z(t)|2m ≤ K; ∀ t ∈ [0, tm) and ∀m ∈ N.

Given this last inequality, we can prolong Y (t) to the whole interval [0, T ]. It
follows from this that gjm(t) and therefore um(t) can be prolonged to the whole interval
[0, T ]. Thus, we can retrace the same calculations of the 1a	 a priori estimate and obtain
as in (64)

|u′m(t)|2 + ||um(t)||2 ≤ c; ∀ t ∈ [0, T ] and ∀m ∈ N. (67)

However, despite extending um to the whole interval [0, T ], the second a priori
estimate is only valid in an interval [0, T0], as we obtain in (45), that is,

|A1/4 u′m(t)|2 + |A3/4 um(t)|2 ≤ c0 ; ∀ t ∈ [0, T0] and ∀m ∈ N (68)

where T0 < T ∗ =
1

k4
ℓn

(
1 +

1

k3

)
.

It follows from (67) and (68) that

(um) is bounded in L∞(0, T0, D(A3/4)),

(um) is bounded in L∞(0, T, V ),

(u′m) is bounded in L∞(0, T0, D(A1/4)),

(u′m) is bounded in L∞(0, T ;H).
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Consequently, ∃ (uν) ⊂ (um) such that

uν
∗
⇀ u in L∞(0, T0, D(A3/4)) (69)

uν
∗
⇀ u in L∞(0, T ;V ) (70)

u′ν
∗
⇀ u′ in L∞(0, T0, D(A1/4)) (71)

u′ν ⇀ u′ in L∞(0, T ;H) (72)

3a	 Step: Passage to the Limit

Let j ∈ N and ν ≥ j. Consider θ ∈ D(0, T0). Multiplying (AP)1 by θ and
integrating over [0, T0] results that

−
∫ T0

0

(u′ν(t), wj)θ
′(t)dt+

∫ T0

0

M(a(uν(t)))a(uν(t), wj)θ(t)dt

=

∫ T0

0

(f(t), wj)θ(t)dt.

(73)

From (72) we obtain∫ T

0

(u′ν(t), wj)θ
′(t)dt

ν→+∞−−−−→
∫ T0

0

(u′(t), wj)θ
′(t)dt. (74)

Analysis of the Nonlinear Term

From (15), in particular, for α =
1

4
and ρ =

1

2
we have that

D(A3/4)
c
↪→ D(A1/2). (75)

Set
B0 = D(A3/4); B = D(A1/2); B1 = H

and consider the space

W = {v ∈ L2(0, T0, B0); v
′ ∈ L2(0, T0, B1)}

endowed with the topology

||v||W = ||v||L2(0,T0,B0) + ||v′||L2(0,T0,B1) .

From (75) due to the Aubin-Lions Theorem we have that:

W
c
↪→ L2(0, T0, D(A1/2)).

It results from this and the above that there will exist a subsequence of (uν), which
we will continue denoting by (uν), such that

uν → u strongly in L2(0, T0, V ) (76)

and then
||uν(t)||2 → ||u(t)||2 in L1(0, T0).
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On the other hand, since M ∈ C1(R+) we have that:

M(a(uν(t)))→M(a(u(t))) in L2(0, T0). (77)

Indeed, since M ∈ C1(R+) we have for a.e. t ∈ [0, T0]

M(a(uν(t)))−M(a(u(t))) =

∫ a(u(t))

a(uν(t))

M ′(ξ)dξ. (78)

However, from (67) we have that ∃ c1 > 0 such that

a(uν(t)) ≤ c1 ; ∀ t ∈ [0, T0] and ∀ ν ∈ N,

and from the fact that u ∈ L∞(0, T0;V ) it follows that ∃ c2 > 0 such that

a(u(t)) ≤ c2 ; for a.e. t ∈ [0, T0].

Taking c = max{c1, c2} we have

0 ≤ a(uν(t)), a((u(t)) ≤ c; a.e. t ∈ [0, T0] and ∀ ν ∈ N, (79)

that is,
a(uν(t)), a(u(t)) ∈ [0, c]; a.e. t ∈ [0, T0] and ν ∈ N.

On the other hand, since M ′ ∈ C0(R+), ∃L > 0 such that |M ′(ξ)| ≤ L;
∀ ξ ∈ [0, c].

Thus, from (78) it follows that:

|M(a(uν(t)))−M(a(u(t)))| ≤ L|a(uν(t))− a(u(t))|; ∀ ν ∈ N and a.e. t ∈ [0, T0]. (80)

So, from (80) it comes that:

|M(a(uν(t)))−M(a(u(t)))|2 ≤ L2| ||uν(t)||2 − ||u(t)||2 |2

= L2|(||uν(t)|| − ||u(t)||)(||uν(t)||+ ||u(t)||)|2

= L2| ||uν(t)|| − ||u(t)|| |2 [ ||uν(t)||+ ||u(t)|| ]2

≤ 4cL2| ||uν(t)|| − ||u(t)|| |2 ≤ 4cL||uν(t)− u(t)||2,

∀ ν ∈ N and a.e. t ∈ [0, T0].
Integrating the last inequality from 0 to T0 it comes that∫ T0

0

|M(a(uν(t)))−M(a(u(t)))|2 dt

≤ 4cL2

∫ T0

0

||uν(t)− u(t)||2 dt = 4cL2||uν − u||2L2(0,T0;V
.

But from (76), we have that the right side of the inequality above converges to zero
when ν → +∞. Thus∫ T0

0

|M(a(uν(t)))−M(a(u(t)))|2 dt→ 0 when ν → +∞

which proves the desired result.
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On the other hand, from (76) we also have

uν ⇀ u in L2(0, T0;V ).

Whence
⟨η, uν⟩ → ⟨η, u⟩; ∀ η ∈ L2(0, T0, V

′).

In particular, if η = Awj v where v ∈ L2(0, T0) results that∫ T0

0

(Awj, uν(t))v(t)dt
ν→+∞−−−−→

∫ T0

0

(Awj, u(t))v(t)dt,

that is, ∫ T0

0

a(uν(t), wj)v(t)dt
ν→+∞−−−−→

∫ T0

0

a(u(t), wj)v(t)dt.

Thus,
a(uν(t), wj)⇀ a(u(t), wj) in L2(0, T0). (81)

It follows from (77) that:

ωM(a(uν(t)))→ ωM(a(u(t))) in L2(0, T0); ∀w ∈ L∞(0, T0). (82)

From (81) and (82) we obtain

(ωM(a(uν(t))), a(uν(t), wj))L2(0,T0)
ν→+∞−−−−→ (ωM(a(u(t))), a(u(t), wj))L2(0,T0) ,

for all w ∈ L∞(0, T0).
In particular, for w = θ ∈ D(0, T0) it follows that∫ T0

0

M(a(uν(t)))a(uν(t), wj)θ(t)dt→
∫ T0

0

M(a(u(t)))a(u(t), wj)θ(t)dt. (83)

From (73), (74) and (83) in the limit situation, we obtain

−
∫ T0

0

(u′(t), wj)θ
′(t)dt+

∫ T0

0

M(a(u(t)))a(u(t), wj)θ(t)dt

=

∫ T0

0

(f(t), wj)θ(t)dt, ∀ j ∈ N.
(84)

Since the system (wν)ν is complete in V it follows that

−
∫ T0

0

(u′(t), v)θ′(t)dt+

∫ T0

0

M(a(u(t)))a(u(t), v)θ(t)dt =

=

∫ T0

0

(f(t), v)θ(t)dt; ∀ v ∈ V,
(85)

or even,

d

dt
(u′(t), v) +M(a(u(t))a(u(t), v) = (f(t), v) in D′(0, T0), ∀ v ∈ V. (86)

Furthermore, identifying H with its dual comes that

⟨u, v⟩V ′,V = a(u, v); ∀u ∈ H and ∀ v ∈ V.
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In what follows Ã : V → V ′ will represent the isometric extension of the operator
A : D(A)→ H de�ned by

⟨Ãu, v⟩ = a(u, v) = ((u, v)); ∀u, v ∈ V.

From the above and from (85) we can write〈
−
∫ T0

0

u′(t)θ′(t)dt, v

〉
+

〈∫ T0

0

M(a(u(t)))Ãu(t)θ(t)dt, v

〉
=

〈∫ T0

0

f(t)θ(t)dt, v

〉
; ∀ v ∈ V and ∀ θ ∈ D(0, T0),

that is,
u′′ +M(a(u))Ãu = f in D′(0, T0;V

′). (87)

But, since f ∈ L2(0, T0;D(A1/4)) and M(a(u))Ãu ∈ L∞(0, T0, V
′), (since

a(u) ∈ L∞(0, T0) and, therefore, M(a(u)) ∈ L∞(0, T0)) we have from (87) that

u′′ ∈ L2(0, T0, V
′) (88)

and
u′′ +M(a(u))Ãu = f in L2(0, T0, V

′). (89)

4a	 Step: Initial Conditions

Note initially that

u ∈ C0([0, T0], D(A1/4)) ∩ Cs([0, T0];D(A3/4))

u′ ∈ C0([0, T0];V
′) ∩ Cs([0, T0], D(A1/4)),

making sense therefore to speak of u(0), u′(0), u(T ) and u′(T ).
(i) u(0) = u0
Let θ ∈ C1([0, T0]) such that θ(0) = 1 and θ(T0) = 0. Consider v ∈ H; then

vθ ∈ L2(0, T0, H) and, consequently, from (72) comes that∫ T0

0

(u′ν(t), v)θ(t)dt
ν→+∞−−−−→

∫ T0

0

(u′(t), v)θ(t)dt.

Integrating by parts

−(uν(0), v)−
∫ T0

0

(uν(t), v)θ(t)dt
ν→+∞−−−−→ −(u(0), v)−

∫ T0

0

(u(t), v)θ′(t)dt.

Since ∫ T0

0

(uν(t), v)θ(t)dt
ν→+∞−−−−→

∫ T0

0

(u(t), v)θ(t)dt

it results that
(u0ν , v)→ (u(0), v); ∀ v ∈ H. (90)

But, u0ν → u0 in D(A3/4) ↪→ H. Thus,

(u0ν , v)→ (u0, v); ∀ v ∈ H. (91)
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From (90) and (91) we conclude that

u(0) = u0 . (92)

(ii) u′(0) = u1
Let δ > 0. Consider the auxiliary function

θδ(t) =

{
− t

δ
+ 1; if 0 ≤ t ≤ δ

0; if δ ≤ t ≤ T0.

Let j ∈ N and consider ν ≥ j. Multiplying both sides of (AP)2 by θδ and integrating
in [0, T0] results that∫ δ

0

(u′′ν(t), wj)θδ(t)dt+

∫ δ

0

M(a(uν(t)))a(uν(t), wj)θδ(t)dt

=

∫ δ

0

(f(t), wj)θδ(t)dt.

(93)

Recalling that if g ∈ H1(0, T0) we have〈(
g|[0,δ]

)′
, θ
〉
=
〈
g′|[0,δ], θ

〉
; ∀ θ ∈ D(0, δ),

then since (u′ν(t), wj) ∈ H1(0, T0) comes that

d

dt
(u′ν(t), wj) =

d

dt

(
u′ν |[0,δ], wj

)
=

(
d

dt

(
u′ν |[0,δ]

)
, wj

)
=
(
u′′ν |[0,δ], wj

)
.

Furthermore, since θδ ∈ C1([0, δ]) then the derivative of θδ in the sense of distribu-
tions in [0, δ] coincides with the classical derivative. Thus,

d

dt

[
(u′ν(t), wj)θδ(t)

]
= (u′′ν(t), wj)θδ(t) + (u′ν(t), wj)θ

′
δ(t).

Integrating by parts the �rst integral of (93) comes

=0︷ ︸︸ ︷
(u′ν(t), wj)θδ(δ)−(u′ν(0), wj) θδ(0)︸ ︷︷ ︸

=1

−
∫ δ

0

(u′ν(t), wj)θ
′
δ(t)dt

+

∫ δ

0

M(a(uν(t)))a(uν(t), wj)θδ(t)dt =

∫ δ

0

(f(t), wj)θδ(t)dt,

that is,

−(u′ν(0), wj)−
∫ δ

0

(u′ν(t), wj)θ
′
δ(t)dt+

∫ δ

0

M(a(uν(t))a(uν(t), wj)θδ(t)dt

=

∫ δ

0

(f(t), wj)θδ(t)dt.

Taking the limit in ν in the expression above comes that

−(u1, wj)−
∫ δ

0

(u′(t), wj)θ
′
δ(t)dt+

∫ δ

0

M(a(u(t))a(u(t), wj)θδ(t)dt

=

∫ δ

0

(f(t), wj)θδ(t)dt.
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Observing that in [0, δ], θ′δ(t) = −
1

δ
and θδ(t) = −

t

δ
+ 1 we obtain

− (u1, wj) +
1

δ

∫ δ

0

(u′(t), wj)dt+

∫ δ

0

M(a(u(t))a(u(t), wj)dt

− 1

δ

∫ δ

0

M(u(t)))a(u(t), wj)t dt =

∫ δ

0

(f(t), wj)dt−
1

δ

∫ δ

0

(f(t), wj)t dt.

(94)

Observing that∣∣∣∣1δ
∫ δ

0

g(t)t dt

∣∣∣∣ ≤ 1

δ

∫ δ

0

|g(t)|t dt ≤ 1

δ

∫ δ

0

|g(t)|δ dt =
∫ δ

0

|g(t)|dt; ∀ g ∈ L1(0, T0)

we have that
1

δ

∫ δ

0

g(t)t dt→ 0 when δ → 0+

since ∫ δ

0

|g(t)|dt→ 0 when δ → 0+.

Furthermore, since u′ ∈ Cs([0, T0];D(A1/4)) ⊂ Cs([0, T ];H) we have that every
t ∈ [0, T ] is a Lebesgue point of the function (u′(t), wj) and, therefore, in particular for
t = 0, we have that

1

δ

∫ δ

0

(u′(t), wj)dt
δ→0+−−−→ (u′(0), wj).

In this way, taking the limit in (94) when δ → 0+ we obtain

−(u1, wj) + (u′(0), wj) = 0; ∀ j ∈ N

that is,
(u′(0), wj) = (u1, wj); ∀ j ∈ N.

By the totality of the (wj)ν∈N in H it follows that:

u′(0) = u1 . (95)
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APPENDIX

1. Let I be a bounded interval of the real line and f ∈ W 1,p(I), 1 ≤ p ≤ +∞. Then f
is absolutely continuous.

Indeed, observe that W 1,p(I) ↪→ W 1,1(I) since I is bounded. Thus, if f ∈ W 1,p(I)
then f ∈ W 1,1(I) and, therefore, f, f ′ ∈ L1(I).

Let us de�ne

v(x) =

∫ x

a

f ′(ξ)dξ; a ∈ I.

Then, v is absolutely continuous, v′ (Dini derivative) exists a.e. and v′(x) = f ′(x)
a.e.. Furthermore, the Dini derivative of v and the derivative in the sense of distributions
coincide. Thus

(v − f)′ = 0 (derivative in the sense of distributions)

and, therefore, v − f = constant = c, a.e. in I. Due to the fact that W 1,1(I) ↪→ C0(I)
we have that f ∈ C0(I) and then v − f ∈ C0(I). Whence,

v − f = c in I,

that is,
f = v + c in I.

Since v is absolutely continuous, v + c is absolutely continuous and in this way f
is also.

2. Let f be absolutely continuous on [a, b] such that f ′ ∈ L1(a, b) where f ′ repre-
sents the Dini derivative. Let φ ∈ D(a, b), then (fφ) is absolutely continuous and

⟨f ′, φ⟩ = −⟨f, φ′⟩ = −
∫ b

a

f(ξ)φ′(ξ)dξ = −(fφ)
∣∣∣b
a
+

∫ b

a

f ′(ξ)φ(ξ)dξ = ⟨f ′, φ⟩.

Thus, the distributional derivative of f coincides with the classical one.
In particular, considering the approximate problem

(u′′m(t), wj) + ((um(t), wj)) = (f(t), wj); f ∈ L2(0, T ;L2(Ω)),

where (wν)ν is a basis of H1
0 (Ω) orthonormal in L2(Ω) and um(t) =

m∑
i=1

gim(t)wi. By

Carathéodory's Theorem we have that

gjm(t), g
′
jm(t) are absolutely continuous and g′′jm(t) exists a.e.

We claim that g′′jm(t) ∈ L2(0, T ). Indeed, let j = 1, · · · ,m, we have

g′′jm(t) =
m∑
i=1

g′′im(t)(wi, wj) = (u′′m(t), wj) = (f(t), wj)− ((um(t), wj)) ∈ L2(0, T ).

Thus, g′jm is absolutely continuous and g′′jm ∈ L2(0, T ). From what was seen
previously, g′′jm in the classical sense coincides with g′′jm in the sense of distributions.
Furthermore, since gjm, g′jm and g′′jm ∈ L2(0, T ) then gjm ∈ H2(0, T ).
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that is,
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f(ξ)φ′(ξ)dξ = −(fφ)
∣∣∣b
a
+

∫ b

a

f ′(ξ)φ(ξ)dξ = ⟨f ′, φ⟩.

Thus, the distributional derivative of f coincides with the classical one.
In particular, considering the approximate problem

(u′′m(t), wj) + ((um(t), wj)) = (f(t), wj); f ∈ L2(0, T ;L2(Ω)),

where (wν)ν is a basis of H1
0 (Ω) orthonormal in L2(Ω) and um(t) =

m∑
i=1

gim(t)wi. By

Carathéodory's Theorem we have that

gjm(t), g
′
jm(t) are absolutely continuous and g′′jm(t) exists a.e.

We claim that g′′jm(t) ∈ L2(0, T ). Indeed, let j = 1, · · · ,m, we have

g′′jm(t) =
m∑
i=1

g′′im(t)(wi, wj) = (u′′m(t), wj) = (f(t), wj)− ((um(t), wj)) ∈ L2(0, T ).

Thus, g′jm is absolutely continuous and g′′jm ∈ L2(0, T ). From what was seen
previously, g′′jm in the classical sense coincides with g′′jm in the sense of distributions.
Furthermore, since gjm, g′jm and g′′jm ∈ L2(0, T ) then gjm ∈ H2(0, T ).
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