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Chapter 1

The Compactness Method

The compactness method is one of the most effective and widely used tools in the theory
of Partial Differential Equations, primarily for establishing the existence of solutions for
initial or boundary value problems. When employing this method, the core strategy
involves two fundamental steps:

1. Construction of an approximate solution (e.g., using the Faedo-Galerkin method).

2. Obtaining a priori estimates for the sequence of approximate solutions.

The combination of the sequence of approximate solutions being bounded and
the compactness properties of the Sobolev spaces (or spaces of distributions) allows the
extraction of a subsequence that converges weakly or strongly to an element that, due to
the closure properties of the functional spaces and the a priori estimates, is identified as
the weak solution to the original problem.

1.1 The Linear Equation uy; — Au = f (Weak Case)

In this section, we analyze the existence of solutions for the linear problem defined in the
cylinder Q x (0,7, where  C R™ is a bounded open set, with boundary 99 of class C2.
The problem is given by:

utt—Au:f in 2 x (O,T), (11)

with boundary and initial conditions:

u(z,t) =0 on 0Q x (0,7, (1.2)
u(z,0) = ug(x) in Q, .
u(z,0) = up(x) in £, (1.4)

where 7" > 0 is a given final time.
We denote by V the space H}(f2), equipped with the inner product

((u,0)) = /Qvu Vod, (1.5)

3



6 CHAPTER 1. THE COMPACTNESS METHOD

and the norm |ul| = v/((u,u)) = ||Vul| 2. H is the space L*(), endowed with the
inner product and norm:

(u,0) = /Q wdz, |ul = lullz2). (1.6)

Note that the norms defined on V and H are equivalent, respectively, to the norms of
H'(Q) and L*(Q). Since Q is bounded, the embedding V < H is compact.

1.1.1 Weak Formulation

A function u is a weak solution to problem (1.1)-(1.4) if u satisfies the following identity:
(utt(t)7 U) + ((VU(t), VU)) = (f(t)v U) in D/(()? T)7 (17)
for every test function v € V| where u(t) = u(-,t) and f(t) = f(-,t).

Remark 1.1. The identity (1.7) means that, for any ¢ € D(0,T), we have:

T T
/ {(un(t), v) + (Vu(t), Vo)) } () dt = / (f(t), v)p(t) dt. (1.8)
0 0
Remark 1.2. The initial conditions must be satisfied in the sense of functional spaces:
u(-,0) =uy iV, (1.9)
u(,0) =w in H. (1.10)

The space for weak solutions is usually taken as:

uwe L*0,T;V) withu, € L*(0,T; H) and uy € L*(0,T;V"). (1.11)

We adopt the same notation used in Lions [9]. € represents a bounded open set in
R™ with a smooth boundary I', T" > 0 is an arbitrary but fixed positive real number, and
@ is the cylinder 2x ]0,7 [ whose lateral boundary X is given by I'x ]0,7'[. We denote,
respectively, by (-,-) and | - |, the inner product and the norm in L*(Q). Similarly, we
denote, respectively, by ((-,-)) and || - ||, the inner product and the norm in HJ(2).

The linear problem

2
% —Au=f in @
u=0 on X (1.12)
0
u(0) = up(e); F(0) =w(@); weQ
where
ug € Hy(Q); wp € L*(Q) and f e L'(0,T; L*(Q)) (1.13)
admits a unique weak solution u: () — R, in the class
u€ L®0,T; Hy(Q)); o' = Ou € L>(0,T; L*(Q)). (1.14)

ot



1.1. THE LINEAR EQUATION Uryr — AU = F (WEAK CASE) 7

More precisely, we have

L0, 0)+ (ult), ) = (F(2),v) (1.15)

in D'(0,T) for every v € H}(Q).
u(0) = ug; u'(0) = uy . (1.16)

Proof:
Step 1: Approximate Problem
Let {w, },en be a basis of Hg(Q2), orthonormal in L?(Q) (such a property can be
achieved by applying the Gram-Schmidt orthogonalization process to the basis of H}()).
We define
Vi = [wr, Wl ,

the subspace spanned by the first m elements of the basis, and consider the approximate
problem in [0, T7:

Determine u,,(t) € Vi, < un(t) = igim(t)wi, (1.17)

(W (8),3) + (0, 09)) = (F(O0y); G=1,2,..,m, (118)
U (0) = ugm — up in  Hy (), (1.19)

ul (0) = Uy, — uy in L*(92). (1.20)

We have, by virtue of (1.17) that

Uom = > Qimwi = U (0) =D gim (0)es,
=1 =1

Uim = Z Bimw; = u;n(O) = Zggm(o)wi-
i=1 i=1

and, hence, from (1.17)-(1.20) we can write

Z G (1) (Wi, wj) + Zgim(t)((wi, wj)) = (f(t),w;),

(1.21)
gjm(o) = Qjm, g;m(o) = 5jm> j=1- m
or alternatively
(Wi, wi) - (Wi, wim) | [91m(2) ((wi,wi)) - (wi,wm)) | [g1m (1) (f(t),w1)
(w2, w1) -+ (wa, W) | | 9o (t) . ((wo,w1)) -+ (W2, wm)) | | g2m(?) _ (f(t),w2)
(Win, wi) =+ (Winy W) | [ G (2) (Wi, w1)) + -+ (Wi, Win)) ] [ G (T) (f(t),wm)
— ~ e
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We define
glm(t> A1 51m
Gom (1) Q2m Bom
2(t)=1| =z0)=1| | =% and Z0)=| | ==z. (1.23)

Observe that, since w,,cy is orthonormal in L?(§2), the matrix A is the identity
matrix, and therefore from (1.22) and (1.23) it follows that

2"(t) + Bz(t) = F(t)
{Z(O) =z, 2(0)=2z (1.24)
Defining
, Yi(t)
M) = =(0), Yalt) = (1) amd Y ()= | 1
from (1.24) it follows that
N b (G I EL GO N IR EC 1 v
v = Yy (t) L”(t) P = Ba(t)|  |F(t) - Bt (1.25)
that is, i
|0 I'||Yi(t) 0
Yio=\_p vm| o]
or further,
vio=| i)] Yo+ F((z)f)
We thus obtain the following system:
Y'(t) = DY (t) + G(¢t)
{Y(()) Ly (1.26)

where Yy =

2
0] , which possesses a solution in [0, 7] given by
21

t
Y (t) = ePYy + etD/ e *PG(s)ds, remembering that e'” =
0 k=0

Note that the integral representation above is well-defined because the components
of G(-) belong to L'(0,T) since f € L*(0,T; L*(Q)). Furthermore, Y,Y’ € L'(0,7), i.e.,
Y € Wh(0,T). Thus Y(-) identifies with an absolutely continuous representative in
[0,T]. Tt follows that z(¢) and z/(t) are absolutely continuous with z”(t) existing almost
everywhere in (0,77), the same holding for g¢;,,(¢), for all j = 1,---,m. We conclude,
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then, that the Dini derivatives and the distributional derivatives of g, (t) with respect to
the variable t coincide up to the second order, for all j =1,--- ;m.

Step 2: A Priori Estimate
Multiplying (1.18) by g/, (t) and summing in j from 1 to m, we obtain

(U (), (8)) + (i (8), ur, () = (f(8), up, (2))- (1.27)
Note that

(1), () = (Z o D11, Zg;m@)wj)

m

i (£)Gin (1) i

@
Il
—

(G ())? |ei|? (1.28)

I
N | —
SIES
NNgE

=1
1d
55 <z 1 gzm w“zgﬂ" )
1d, , 9
= §E|U’m(t)|
Similarly we have
1 1d 2
t t . 1.2
(1), (1)) = 5 O (1.29)
Combining (1.27), (1.28) and (1.29) we obtain
1d , .., 1d ,
§%|Um(t)| + §E||um(t)‘| = (f(t), up, (1)) (1.30)

< |f O (®)];

where the last inequality follows from the Cauchy-Schwarz inequality. Integrating (1.30)
from (0,¢) with ¢ € [0, 7] and using the inequality 2ab < a? + b?, we obtain

(O 4+ [t ()] < [ (O + [t (0]
2 / ()] il ()] ds.

We use the simplified inequality |f(¢)]|ul,(¢)] < 1|f(¢)]* + 3|ul,(¢)]*>. Integrating
21f(s)]|ul,(s)| (from multiplying (1.30) by 2) from (0,¢), and using 2ab < a® + b?, we
adjust the integration result, obtaining:

[t (O + N (I < [, ()] + [ (0)]]?

/|f Pds+/\u () ds, (1:32)

and consequently, from (1.19), (1.20) and (1.32), we have

[t (O + ot () < fet1im]* + | [tt0rm |

+/0 ’f(5>|2d8+/0 Uulm(s)|2+||um(5)|’2} ds,

(1.31)

(1.33)
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for all t € [0,T]. Since ug,, — up in HY(Q), u1m — uy in L2(Q) and f € LY(0,T; L*(Q)),
then there exists a constant K > 0, independent of m such that

T
|ma%wmmﬁ+/|ﬂ@ﬁBSK. (1.34)
0

Combining (1.33) and (1.34) yields

t
[ (0) | + [Jum (D)|* < K +/ [t () + [l (s)|[*] ds. (1.35)
0
Employing Gronwall’s inequality in (1.35) we obtain

lul () >+ |Jum(D)||* < KeP, forall t € [0,T] and for all m € N. (1.36)
—C

The inequality in (1.36) tells us that

{tm} is bounded in L>(0,T; H}(Q)) = (L'(0,T; H1(Q)))’,

(1.37)
{ul,} is bounded in L>(0,T; L*(2?)) = (L'(0,T; LQ(Q)))

Consequently, from (1.37) there exists a subsequence {u,},en of {u, },en such that
w, = u weak-star in L=(0,T; H3(Q)) = (L'(0,T; H(Q)))’,

ul, 5 v weak-star in L(0, T; L*(Q)) = (L'(0,T; L*(Q))) .

"

(1.38)

We affirm that v = «/. Indeed, note that from the chain of injections
L>(0,T; Hy () < L=(0, T35 L*(Q)) — L*(Q) — D'(Q),

and since the differentiation operator is continuous in D’(Q) from (1.38) it follows that

u, = uin D'(Q) = u, S in D(Q),

) (1.39)
u, — v in D'(Q).
From the uniqueness of the limit in D’(Q) and from (1.39) it follows that v’ = v.

Step 3: Limit Process

From the convergence given in (1.38) we can write

/ (uu(t), w(t)) HlH y dt —>/ -1 dt, when p — +o0, (1.40)
0

for every w € LY0,7; H*(Q2)). Taking, in particular, w = (—Av)f, v € H}(Q) and
6 € D(0,T), we have, noting that (—Au,v) = ((u,v)), for every u,v € HJ (), that

/OT(( (1), 0))8(8) dt — / £)dt, when p1 — +oo. (1.41)

Similarly, from (1.38) we obtain

T T
| 000D oy = [ O 00Dy when s o0, (142
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for every w € L'(0,T;(L*(Q)"). Taking, in particular, w = vf/, v € H}(Q) and 6 €
D(0,T), we have

/OT(UL(t), v)0'(t) dt — /OT(u’(t), v)0'(t) dt, when pu — +o0. (1.43)

Let 7 € N be arbitrary but fixed, and consider g > j. Then from (1.18) it follows
that

(, (1), wj) + ((up(t), w5)) = (f(2), wj)- (1.44)
Multiplying (1.44) by 6 € D(0,T) and integrating from 0 to T', we obtain

Aumm%wmm+4<mﬁmwwwﬁ54uwwwww. (1.45)

But, by integration by parts (since 6 € D(0,T)):

/O(ug(t),wj)e(t)dt:/o %(u;(t),wj)(a(t)dt:—/o (1)) (D) b, (1.46)

Combining (1.45) and (1.46) yields

—A Mﬁ%@ﬂﬂﬁ+A(Mﬁmmwwﬁ=A(ﬂmwwwﬁ (1.47)

Taking the limit in (1.47) as yu — +o00, and considering the convergences in (1.41)
and (1.43), we infer

T T T
—/ (W (t), w;)0'(t) dt + / (ult),w;))0(t) dt = / (F(£),w,)0(t) dt, for all j € N,
0 0 0
(1.48)

Consider, now, v € H}(£2). Since the finite linear combinations of the basis elements
{w, }en are dense in HJ (), there exists a sequence {z; }ren, 2x = Z;’ikl) Eirwir such that
zx — v in H}(Q) when k — +oo0.

Hence, from (1.48), for every k € N, we have

—/0 (u’(t),zk)Q’(t)dt—l—/O ((u(t),zk))e(t)dt:/o (F(t), 2)0() dt, for all k € N,
(1.49)

From the strong convergence z; — v in Hj () and the embedding H}(Q) — L*(Q),
the following convergences result:

{((Zk,g)) — ((v,€)), when k — co for all £ € HL(Q), (1.50)

(zx,m) = (v,n), when k — oo for all n € L*(Q).

From (1.49) and (1.50) we obtain

- /0 (W (£), 0)0/(t) dt + /0 ((u(t), v))0(t) dt = /0 (F(t),0)0(t) dt, for all v € HL(Q)
(1.51)
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and for every 6 € D(0,T), or alternatively, in the sense of distributions:

<%(u'(t),v),6’> + (((u(t),v)),0) = ((f(t),v),0) forall v e Hy(Q), (1.52)

and for every 0 € D(0,T).

Step 4: Initial Conditions and Uniqueness

The initial conditions are verified through the continuity of the injection Hj(Q) <
L?(2) and by the strong convergence (which will be established later) of the subsequence
{w,} in L*(Q). The full proof of existence requires establishing strong convergence to
rigorously verify the initial data, but assuming strong convergence as a final step, we
obtain:

u(+,0) =ug inV, (1.12)
ur(-,0) =uy in H. (1.13)

Step 4: Localization of the 2"d Derivative

We observe, initially, that the operator —A defined by the triplet { H}(Q), L*(Q2), ((-, -

satisfies the condition:
(—Au,v) = ((u,v)), forallu € D(—=A) = Hy(2) N H*(Q) and for all v € Hy(Q),

since €) is a bounded open set with a smooth boundary. Moreover, the operator —A
admits a unique continuous extension, indeed an isometry from H} () to H~(Q). Thus,
—A: H}(Q) — H () is an isometric bijection, i.e.,

||AU||H71(Q) = Hu|’Hé(Q), for all u € H&(Q) (153)
Furthermore, such an extension verifies the identity
(—Au,v}HA’H& = ((u,v)), for all u,v € Hy(). (1.54)
Making the above considerations, from (1.52) and (1.54) we can write
T T T
—/ (u'(t),0)0'(t) dt = / (Au(t),v) 0(t) dt + / (f(t),v)0(t)dt, for all v € Hy(S)
0 0 0

(1.55)
and for every 6 € D(0,T), or alternatively,

_/OTuf(t)e’(t)dt,v = </0TAu(t)9 t)dt v> / f@o)de,v |,

-~ -~

€L2(Q) cH-1(Q)

for all v € H}(Q) and for every 6 € D(0,T). Identifying L*(2) with its dual, via the Riesz
Theorem, from the last identity it follows that

<_/0Tu/(t)9/<t) dt,v> B </OTAU<) t) dt U> </ F()0(t) dt v> (1.56)
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for all v € H}(Q) and for every § € D(0,T).
Defining

g(t) = Au(t) + (1),
from (1.56) it results that

—/Tu’(t)e’(t) dtz/Tg(t)e(t) dt in H1(Q). (1.57)

Furthermore, since f € L'(0,7; H '(Q)), from (1.53) we obtain

T T
| 18O llioydt = [ )l e < o
0 0

which implies that g € L'(0,T; H~(Q)).
Let us define:

v(t) = u'(t) —/0 g(s)ds € H(Q).

Since v € LY(0,T; H1(Q)), v defines a vector distribution, and moreover,

W, 0) = — (v,0) = — (0 + </0tg(s) ds,0’> .

which implies
(W, 0) =— (' 0) — /OTg(t)Q(t) dt. (1.58)
From (1.57) and (1.58) it follows that
(v',8) =0, for all § € D(0,T),

and consequently, v' = 0. Hence, v(t) = £, = constant with respect to t.
Thus,

() =€ + / g(s) ds = u"(t) = g(t),

which leads us to
u’ € LN0,T; H1(Q)). (1.59)

Step 5: Initial Conditions

Let us note initially that due to

we L2(0,T; HY(Q), u! € L(0,T; (), u" € L0, T; H-\(2),
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it results, by virtue of Lemma 1.2 in Lions [10] and Lemma 8.1 in Lions and Magenes 9],
that
{uecmwﬂw%m»uecuaﬂﬂamx

u' € C([0,T); H1(Q)), v € Cy(0,T), L*().

Thus, it makes sense to refer to u(t) and /() for any ¢ € [0, 7.
We will prove that:

(1) u(0) = ug
Indeed, we have previously established that

u, =o' in L(0,T; L*(Q)) when v — oo,

v

Let 8 € C1([0,T]) and v € L?(Q). Then, identifying L*(Q2) with its dual, from the
last convergence it follows that

/0 (ul,(t),v)0(t) dt —>/0 (u'(t),v)0(t) dt, when v — oo,

that is,
Td Td
/ —(u,(t),v)0(t) dt —>/ —(u(t),v)0(t) dt, when v — oo,
o dt o dt

or alternatively,

wmmwm%iéwmmwwﬂﬁwmmWW—Aummwm@

when v — oc0.
Choosing 6 such that (7)) = 0 and 6(0) = 1, and observing that

/O(UI,(t),v)Q'(t)dt% /O(U(t),v)Q’(t)dt, when v — oo,

we obtain
(u,(0),v) — (u(0),v), when v — oo, for all v € L*(Q).

Hence,
u,(0) = ug, — u(0), weakly in L*(Q).

On the other hand, ug, — g strongly in H}(Q) < L*(2). By the uniqueness of
the weak limit in L?*(Q2) we conclude that u(0) = ug, as was to be proved.

We will prove next that

(i) v'(0) = uy.

In fact, let 6 € C'([0,T]) such that 6(0) = 1 and 6(T) = 0. Returning to the
approximate problem we can write

/0 (u’l,'(t),wj)é’(t)dtJr/U ((ul,,wj))é’(t)dt:/() (F(1),w,)0(8) dt, v > j(fixed).

Integrating the above identity by parts we arrive at

wmmmw%—Aamme®w+A«wm%wwm:£Umwwww
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or alternatively, based on the characteristics of 6,

—(ul(0),w;) — / (ul (1), ;)0 () dt + / (n(£), ;))0(2) dt = / (F(8), w)0(t) d.

Taking the limit in the above identity as v — 400 yields

T T T
) = [ @O0 d [ (@@w)ond = [ (w0 d
0 0 0
Integrating again by parts, from the above identity it results that

T d T
— (ur,wy) = (W), w)OOlg + [ (' (t),w))0(t) dt + | ((u(t),w;))0(t) dt
/0 o /0 (1.60)

- | v a

Since u is a weak solution to the problem in question, from (1.52) and (1.60) we
1
conclude that (uy,w;) = (v/(0),w;), for all j € N. Since [w,] o _ H}(Q2) and

jJEN
2
)" @ = 12(Q) and H}(Q) < L2(Q), we have that

(ug,v) = (v/'(0),v), forallve L*(R),

which proves the desired result.
6p Step: Uniqueness
Let u and @ be solutions to problem (1) and let us define w = u — 4. We have,

w" — Aw =0 in L'(0,T; H*(Q))
w=0 about ¥ =T x (0,7)
w(0) = w'(0) = 0.

Note that it makes no sense to compose w”(t) with w'(t) in the duality H1(Q), H} ()
since w'(t) almost always belongs to L?*(€2). To circumvent this problem we use the fol-

lowing trick: since u, @ € L>(0,T; H}(2)) then ff w(t)dt € HY(Q) for all o, § € [0,T].
Let’s take s € [0, 7] and define the following auxiliary function:

Let us observe that for each t € [0, 7], v(t) € H}(2) and, in addition,

[ o= [||- [ wewan

_ 1° 5 S T
= supess||w|| |st — 7| = supess||w|| |s* — 5 < 7supess||w|| < +o0.
0

dtg/ / Hw(T)Hdetgsupessuwu/ (s — ) dt
0 t 0

Therefore, v € L*(0,T; H}(Q)). Furthermore, as ¢/ = w € C([0, s]; H}(£2)) results
in 6 € C(0, 5] HL(Q).
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On the other hand, observing that w” € L*°(0,7; H *(Q2)) and composing the
equation¢ao w” — Aw = 0 with the functiongdo ¢ in the duality L°°(0,T; H*(Q2)) x
LY0,T; H}(€2)) we obtain

/0 (w"(t), (1)) dt+/0 ((w(t), ¥ (t))) dt = 0.

As 9p(t) = 0 for t € [s,T] of the last identity we can write

| ey de+ [ i, v a o (1.60)
But,
% (w'(t),9(1)) = (W"(t),(t)) + (w'(t), (1)) - (1.61)
Let us note, however, that ¢/(t) = w(t) almost always in [0, s] we have
(! (0.0 (0) = (0 w(®) = (w/(0) w(®) = £ L u(t)P. (162)

Also, (w'(t),¥(t)) = (w'(t),¥(t)) and therefore from (1.62) we obtain

d 1d

(w0, (1)) = (W (1), 0(0) + 5 lwl0) (1.63)

Integrating the identity (1.63) of 0 to s we get that

W (e v)l - [ @ 00) it [P,

what does it imply

and thus:

[ vy de = =l (164
On the other hand, since ¢’ = w almost always in [0, s| we have
((w(t), (1)) = (1), (1)) = %%H@W)HQ,

and then,

] . (1.65)
T

AR {ww g ()1
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From (1.60), (1.64) and (1.65) it follows that

1 1
—5lw(s) = Sl =0,

which implies that |w(s)| = 0, for all s € [0, T], that is, w = 0, which concludes uniqueness.
Observation: Since w € C([0,T]; H3(Q2)), w" € C([0,T]; L*(Q)) and w” € C([0,T); H*(Q))
and ,¢' € C([0,T]; H}(2)) we have that the mappings ¢ — (w(t),%(t)) and t >
(w'(t),1(t)) are of class C' in [0, T] and, therefore, it is permissible to perform integra-
tions by parts. Furthermore, the functions |w(t)|* and |¢(t)|* are absolutely continuous,
which allows us to perform the calculations above.
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CHAPTER 1.

THE COMPACTNESS METHOD



Chapter 2

Problem 2% — Ay + lu|”u = f (weak

. ot?
solution)
Problem 1
@—Au—ﬂul’)u—f in Q (p>0)
o2 - P
u=0 on X (1)
0
u(0) = uo(); a—?m) = uy(z); 1€Q
where
ug € Hy(Q)NLP2(Q); wy € L*(Q) and  f € L*(0,T; L*(Q)) (2)
admits at least one weak solution u: () — R, in the class
u € L0, T; Hy(Q) N LF2(Q)); o = % € L>=(0,T; L*(Q)). (3)
More precisely, setting p = p + 2, we have
d .,
dt (W' (1), v) + ((u(t),v)) + <|u|pu7U>LP’(Q),LP(Q) = (f(1),v) (4)
in D'(0,7T) for all v € H}(Q) N LP(Q).
u(0) = ug; u'(0) = uy . (5)

Furthermore, if 0 < p <

Proof:
12 Step: Approximate Problem

(n > 3) the solution is unique.

We endow H (2)NLP(Q2) with the natural topology ||ul|ginre = |lull g @) +ullzr@)
so that the linear map

T: H&(Q) N LP(Q2) — LP(Q2) x LQ(Q) X oo X LQ(Q)
ur— Tu = ( Ou %)

Uy —, ...
8m1 ’ 8xn
is clearly an isometry. Setting

W =T(H;(Q) N LF(Q))

19
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it follows that W is a subspace of a separable space and therefore, it is also separable.
Since T is an isometry, it follows that T~(TW) possesses a countable dense subset in
H ()N LP(Q), which proves that the latter is likewise separable. Let (w,),en be a “basis”
of H}(Q) N LP(Q), that is:

Vm, wi,...,w, are linearly independent

. o : - . (2.1)
Finite linear combinations of the w;’s are dense in Hy(€2) N LP(Q).

Let us set
Vm = [wl, . ,wm]

the subspace spanned by the first m vectors of the basis. Denoting by (-, -) and ((-, -)),
respectively, the inner products in L?(2) and HZ (), we consider in V,, the approximate
problem

U (t) € Vi & up(t) = Zgim(t)wi (6)

(g (1), w5) + ((um (t), w))) +/Q|um(t)|”um(t)wjdfv = (f(t)w);ii=12....m.  (7)

U (0) = ugm — up in HE () N LP(Q) (8)

ul (0) = up, —u; in L*(9) (9)

m
which, by Carathéodory, possesses a local solution in an interval [0, ¢,,) where u,, and u/,
are absolutely continuous and u”, exists a.e. The a priori estimates will serve to extend
the solution to the whole interval [0,7]. Indeed, from (6) and (7) and assuming, via
Gram-Schmidt, that {w;};en is orthonormal in L?*(2), we obtain

Z Gim (t (Z gim(t>wi) w; dz.

Denoting F'(\) = |A|?A, from the last identity we can write

ng + Zgzm w“wj ) (f w] / <Z gzm z) Wy dl’,

or equivalently,

gjm +Zgzm me] ) f wj

9im(t) ((wr,01)) -+ (Wi, wm)) | | G1m(t)
Gom(t) | | (w2 00)) - (w2, 0m)) || gom(2)

o] | 0) (@ 00)] [gnt)]

=4 —Z(1)
Jo F O i1 Jim()w;) W dw (f(t),wr)

fQ z 1 gzm(t)wi) ) dx (f(t)v WQ)



21

Observing that

Gim(1)
F (Zm: gim(t)wi> =F | lwy,- - wm] gzn?(t)
G ()
and denoting [wi, -+ ,wn] = B it follows that
J, F(BZ()ur do
Z"(t) + AZ(t) + Jo F<BZ:(t))w2 . Ga(t).
Ll FBZ(0)0 |
—G1(2(1))
Defining
i) = 200, lt) = 2/0) and v() = |10,
we obtain
i) = %H - ?(?)} - [sz _ehh) - Am)]

Consider the following map:

h:[0,T] x R*™ — R*™

(£,Y) > h(t,Y) = [Gf(t)} + {_G?(YI >1 i [_OA (ﬂ Y,

where le = (517 e 7§m) and Y = (517 T 7£m7£m+17‘ o 7£2m)'
Let us note that:

(i) For each fixed Y, h(t,Y") is measurable since f is measurable.
(ii) For almost every ¢, h(t,Y) is continuous since F' is continuous.
(iii) Let U C [0,T] x R*"™ be a compact set and (¢,Y) € U. Then:

1At Y ) [rem < [|G2()]]em + C,

where C' is a constant, since as Y € U, we have that F(BY]) and Y are bounded in R
and R?*™, respectively. Furthermore,

T
/ |G2(t)||rm dt + CT < 400.
0
Therefore,

[|h(t, Y)||gzm < my(t), where my(t) = ||Ga(t)||rm + C, and my € L'(0,T).
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Then, by (i), (ii) and (iii), we have that h satisfies the Carathéodory conditions,
that is, there exists a solution to the problem

Y/(t) = h(t. Y (1)
o) {Y(O) Y

where

_ 400
o= (o)

Thus, there exists a solution Y(¢) of problem (PO) in some interval [0, ¢,,], t,, > 0,
tm < T, where Y (t) is absolutely continuous. Consequently, the maps g;,,(t) and gj,,,(t)
are also absolutely continuous and defined on the interval [0,¢,,]. The following a priori
estimates will serve to extend the solution Y'(¢) to the whole interval [0, 7).

274 Step: A Priori Estimate
Multiplying (7) by g}m(t) and summing over j from 1 to m, we obtain
(U 0,0 (8) + (O, D) + [ O 00, O = (0, (0). (10
We observe that the third expression on the left side of the equality makes sense

/ 1
because |ty (t)|? un(t) € LP(2). Indeed, since p = p + 2, then — =1 — P which

+1 + 2 v P
P and therefore p’ = P2 Thus:
p+1

[ et (81 (B2,

- / ()P ()55 d = / \u (O)17+ i = [t (1) [y < +00

which proves the assertion. It follows from this, from (6), from the fact that g;, () and
95 (t) are absolutely continuous and by virtue of Holder’s inequality that:

1
implies that — =
pop+2

(10)

/ ()17 e ()1t (£) d € L0, 1), (11)
Consequently, from (910) and (11) it follows that
(U (1), 1 (1) € L0, ). (12)
We claim that 1 d
(Ui (8), (1)) = 5 — [ (O, (13)

d
where pr is understood in the distributional sense in D'(0,t,,). Indeed, let 8 € D(0,t,,).

From (12) we obtain

(U (£), 103, (1)), 6)

/ / " (e 0l () da O(8) di — //tméc‘; 2, 6))20(t) dide
:_/ {(u (2, 1))20(2)[ = f;"—/o (Wl (1)) 0 (¢ )dt}dm
:__/tm/ (z,1))20'(t :—<dt (D720, 0)
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which proves (13). Similarly, we prove that

d 2
7 lum @11 (14)

N —

(U (1), 1, (1)) =

Next, we will prove that

[ @ w0 de = & [ ()l (15)

In fact, initially note that given
FA) =|APA, AeR
we have
F'(N) = (p+ ) AP
It follows from this that, for each = € €,

d
= (] tm) = F'(tm) - vy, = (p 4 1) [tim” i, (16)

(Foun) =5

and from (16) we obtain

d
= [l ] = (04 Dl -t + ] - 1 = (0 + 2) [l
that is,
1 d 1 d
p / — _ P = P+2 17
’uml U Uy, ot 2dl [(|um| um)um] +2 dt| m| ( )

Let 6 € D(0,t,,). From (11) and (17) we have

</ \um(:v,t)\pum(a:,t)u;n(m,t)dx,9>:/m/ﬂ|um(3:,t)|pum(x,t)u;n(x,t)H(t)dxdt

p+z//tm 2 01 00)dtt
1 {\um<x D=t /O IR dt} N

p+2

tm
_ +2 /|um )2 d 0/ (1) dt — < = dt/ g (8)[2 di, e>
)

which proves (15). From (10), (13), (14) and (15) it follows that

1d

5 35 10 OF + 5 G lnO1F + 5 % [ a0 do = (50, 0)

2t ")

for a.e. t € [0,t,,).
Multiplying the above equality by 2 and integrating over [0,t), t € (0,t,,), we
obtain

2
[t ()7 + [ (8) [ + o [m Ol 20) = [t (O)* =+ [ [ (0)]|*

2 , ¢ ,
+ » ||Um(0)HLp(Q) + 2/0 (f(s),u. (s))ds.
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Using Schwarz’s inequality and the fact that 2ab < a® +b* (a,b > 0), from the
last equality it follows that

2
[t (O + [ ($)I* + p [t (D)0 0y < [t (0)] + [t ()]

2 T t
2 (O + / Fs)Pds + / l (3)] de.

2 2
o ()P I+ s )] gy < [ OF s O+t Ol iy (18)
t 2
11 1B + / {|u;n<s>\2 ()P Hum<s>wzp(m}ds

Whence

Now, from (8) and (9) we obtain the existence of a constant ¢y > 0 such that
2
[t (O + [ (0) | + 5 [t Olfz) < co; ¥m €N, (19)
From (18) and (19) we conclude that
/ 2 2 2 P 2 ! / 2 2 2 P
[ (OF Hfum O+ tm Ol FlI 22y < 1 [ 4 ()P fum (SN2 om ($) [ s
0

where ¢; > 0. It follows from this, by virtue of Gronwall’s inequality, that d¢ > 0
(independent of ¢t and m) such that

2
[t (D) + [ (£ + o 1om oy < e VEE [0 tm); Vim €N, (20)

From the inequality above, it follows that

(i) Z Tt

Analogously, since Hj(Q) < L*(2) we obtain

Zgam

m

(i) Z gjm

where ¢ is a positive constant.
By (i) and (ii) we have that Y(¢) is bounded in R?*™ independently of ¢ and m,

since -
1Y (#)] e = Zgjm 24> g () <
j=1

where k; is a positive constant, for all ¢ € [0,t,,] and m € N. Thus, we can prolong Y to
the whole interval [0,7] and the inequality in (20) remains valid for all ¢ € [0, 7] and for
all m e N.

= [um ()" < NJum@)|* < ¢,
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Therefore, from (20) we can extend u,, to the whole interval [0, 7] and furthermore
we also have that
() is bounded in  L>(0,T; H}()) (21)
(um) is bounded in  L*°(0,T; LP(2))
(u,) is bounded in L>(0,T; L*()). (23)
Note also that from (10’) and (22) it follows that
(|tn]? u) is bounded in  L”(0,T; LP () = L”(Q). (24)

From (21), (22), (23) and (24) we obtain the existence of a subsequence (u,) of
(u,) such that

25
26

27
28

wy S weale® in L2(0, T (%)

u, —u weakly in LP(0,T; LP(2))

u, v =1 weak-*in L%(0,T;L*(Q)) !
|ty [P, — x  weakly in LP'(O’T; Lp/(Q))

(25)
(26)
(27)
(28)

374 Step: Passage to the Limit
Setting

comp.

By = Hy(Q)) — B=L*Q) — B, = L*Q)

and
W ={ue L*0,T;By); u €L*0,T;B)}

endowed with the topology
ullw = [lullz20,:m3) + '] 20,7522 (2
it follows from (21) and (23) that
(uy) is bounded in . (29)

Thus, by the Aubin-Lions Theorem (see Theorem 5.1 in Lions [10]), we obtain a
subsequence (u,) of (u,) such that

u, — u strongly in  L*(0,T; L*(Q)). (30)

From the last convergence, we obtain the existence of a subsequence, which we will
still denote by the same notation, such that

Uy’ u, = |u|’u  a.e. in .
ul” P i Q 31

Setting
9 = lupl”u, and g =|ul’u

Tt is worth noting that since u, € C1([0,T]; L*(9)), it follows that the classical derivative and the
distributional one coincide in the sense of vector-valued distributions in D’(0,T; L*(Q2)). Thus we can
consider u/, in the sense of vector-valued distributions and consequently v = u’ in D’ (0, T; L*(Q)).
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it follows from (24) and (31) that

g, — g ae in @

and
HgMHLP/(Q) <c¢ VpueN.
Thus, by Lions’ Lemma (see Lemma 1.3 in Lions [10]), we conclude that
g, — g weakly in Lf"/(Q)
that is,

|, |?u, — |ulfu weakly in  LP(Q). (32)
From (28) and (32), by the uniqueness of the limit, we conclude that

X = [ul’u. (33)

Let j € N and p € N such that x4 > j and consider § € D(0,7T). Multiplying (7)
by 6 and integrating over [0, T], we obtain

/0 (! (t), w;)0()dt + / (1 (8), ;) 0E)

[ b wnosta)dz ot a

- / (F(t).w)B(t) dt.

0

which implies that

- [ o [ oo

# [ 0 o @00 a (31)
= [ s

0

Now, from (25), (27), (23) and (32) we have

/0 (uu( ) 6( HE H- 1dt —)/ H17H71 dt (35)
Vée LNO,T; H Y
/ (!, (8), (1)) dt %/ Nt Ve L0, T: L3(Q), (36)

/0 /Q|Uu($,t)|ﬁu#(x7t)ﬁ(x,t)dxdt—>
—>/0 /Q|U(I,t)|pu(x,t)ﬁ(x,t)dmdt VB e LP(Q).
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Taking in particular
§=—Aw; 0, n=w;0 and f[=uw;f
we obtain from (35), (36) and (37)

T
/0 (uu(t), —Aw;)b dt—>/ —Aw;)d

QAT«%@Lw»wu>—{/T«me%»wwdu (38)
/ ), w;)O (¢ dt—>/ ), w;)O (¢ (39)
//\uuxﬂuuxtw]dxﬁ dt—>/ /|uxt|p w(e, wsdaf(t) dt. (40)

From (34), (38), (39) and (40) in the limit; we obtain

i.e.

- [ wowprea s [ e
/ / |u(z, t)|” u(zx tw] dx 0(t)dt = / (f(t),wj)g@) dt.

Since the finite linear combinations of the w;’s are dense in Hj(Q2) N LP(Q) the
equality in (41) remains valid for all v € H}(2) N LP(Q), i.e.,

(41)

—/0 (u’(t),v)&’(t)dt+/0 (ult), v))0() dt
+/0 /Q|u(:c,t)|ﬂu(x,t)v(s)dse(t)dt:/0 (F(1), 0)0(2) dt,

for all v € H}(Q) N LP(2), or even,

<% (u/(t),v),9> + (((u(t),v)),0) + </Q lu(t)]” u(t)v dx,(9> = ((f(t),v),0), V8 € D(0,T)

which leads us to conclude that

% (W' (t),v) + ((u(t),v)) + /Q |u(t)|? u(t)vdx = (f(t),v) in D'(0,T). (43)

Identifying L?() with its dual, we have the chains
HYNLP(Q) = HY Q) — LX(Q) = H Q) = HY(Q) + L7 (Q)
HINLP(Q) < LP(Q) — L*(Q) — L7 (Q) — HY(Q) + LF ()

By virtue of the identification above from (42) we can write,

<—/0Tu/(t)9’(t)dt v> </T —Au(t)(t)dt, v>
+<Aﬂwmwm ﬁv> </tf ﬁv>
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where (-, -) designates the duality H—(Q)+L” (Q), H}(Q)NLP(Q). It follows then that

W' — Au+|uffu=f in D0,T; H Q)+ L7 (Q)). (44)

However, since

fe L0, T; L*(Q)) c L*0,T; H* 4+ LP(Q))
Au e L=(0,T; HHQ)) € L>(0,T; H(Q) + L7 (Q))
lulfu € L=(0,T; LF (Q)) € L=(0,T; H1(Q) + L* (Q)) @

from (44) it follows that
u" € L¥0,T; H-4(Q) + L7 (Q)) (45)
and
W' — Au+ulffu=f in L*0,T;H Q)+ L (Q)). (46)
42 Step: Initial Conditions
Note initially that from (25), (27) and (45) we have

u e C%([0,T; L()) N C5(0, T; Hy ()
u' e C°([0,T]; H4(Q) + L7 (Q)) N C,(0, T; L*(2))

making sense to speak of u(0), w(7"), ¥ (0) and «'(T"). We will prove initially that
u(0) = ug . (47)

Indeed, let § € C*([0,T]) such that (0) = 1 and 6(T) = 0. From (27) it follows
that if v > j (j arbitrary but fixed)

/0 (uy, (1), w;)0(t) dt — /0 (u/(t),w;)0(t) dt.

Integrating by parts

~0(0)5) = [ (wult) ) (1) dt > ~(u0).) = [ (u(t).)0 )t

Now from (25) it follows that

/0 (1 (1), w))0'(2) i — / (u(t), w;)0'(2) dt.

which implies that
(uy(0), wj) = (u(0),w;) VjeN.

It follows from this that

u,(0) = u(0) weakly in L*(Q).

?Note that from (10°) and (22) we have |u,|? u, is bounded in L*(0, T’; LY (Q)).
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On the other hand, from (8) we have that
u,(0) = uy  weakly in L*(Q)

which leads us, given the uniqueness of the weak limit, to conclude what is desired in
(47).
We will prove next that:
u'(0) = uy . (48)

Let 6 € C*([0,T7]) such that #(0) = 1 and 6(T) = 0 and consider j € N. Thus for
p > j from (7) we obtain
| s+ [ (e
+/0 /Q|uu(x,t)|”uu(:v,t)wj dx 0(t)dt = /0 (f(t),w;)0(t)dt.
Integrating by parts
— 00.0) — [ @O0+ [ ()0
—f-/o /Q\uu(t)|puu(t)wj dx 0(t)dt :/0 (f(t),w;)0(t)dt.
Taking the limit we obtain as before
~ () = [ W)@+ [ (o), @
+/0 /Q|u(:v,t)|pu(x,t)wj dr O(t)dt — /0 (F(8),w)0(0) dt.
By the totality of the w;’s in Hj(Q) N LP(2) we obtain
— (uq,v) —/0 (' (t),v)0'(t) dt —l—/o ((u(t),v))0(t) dt
+/0 /Q|u(w,t)|pu(x,t)v dx 6(t)dt :/0 (f(t),v)0(t)dt, VYve H,NnL".

Integrating by parts again, it follows that

—(ul,v)+(u’(0),v)+/0 <u”(t),v)9(t)dt+/0 ((u(t),v))0(t)dt

T T (49)
[ [t o e o dzote it = [ (s, 080)
0o Ja 0
where (-, -) designates the duality H=' + ¥, H}n L.
Now, since
d
(W"(t),v) = — (u'(t),v) € L*(0,T), (50)

dt
it follows from (43), (49) and (50) that

(u1,0) = (W/(0),v); Vv € Hy(Q) NL(Q),

whence (48) is concluded.
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52 Step: Uniqueness

We claim that problem 1 admits a unique weak solution provided that 0 < p <

- Indeed, let w and v be weak solutions of (1) and consider w = v —v. Then as seen

n p—

previously

w € L™(0,T; Hy () N LP(Q)); o' € L=(0,T; L*(Q))
and w” € L*0,T; HY(Q) + LY ()

and satisfies the problem

(51)

W= Aw = (f — |ulfu) — (f — Jv|?v) = |[v|Pv — |u|fu in L*(0,T; H ™ + Lp,)
w=0 on X (52)
w(0) =uw'(0)=0

We will use the Visik-Ladyzenskaya method. We consider, for each s € [0,7] the
following function

—/Sw(f)df; 0<t<s

U(t) = (53)
0; s<t<T
Letting ¢’ be the derivative in the sense of vector-valued distributions of 1, we
have
w(t); 0<t<s
"(t) = 54
v() {O; i 6
From the expressions above and from (51) it is evident that
U, 9" € L0, T; Hy () N LP(Q)) (55)
which implies that
W € C([0, T); Hy () N LP(Q)). (56)

Composing (52); with ¢ in the duality L?(0,T; H* + L*") x L*(0,T; H} N L) and
observing that ¢ = 0 in [s, 7] we obtain

/0 W), o))t + / (= Awo(t), (1))t = / oo — lulup()de. (57)

Integrating by parts and using the fact that (—Aw, ) = ((w,)) from (57) it
follows that

(5. 0(5) = W 0),0(0) ~ [ (0. v Bt
+ [ (v = [ uro = taeuvon,
or even from (52)s, (53) and (54) we have
- [y [(wouo)= [ Qoo o

that is,

1 d 1

s S d s
=5 [ GltoB s [ LI = [ goro - e o
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which leads us to the following expression

~5 )+ 5 RO + 3 19 = FIBOIP = [ (oo = lubu,vied

and again thanks to (52)3 and (53) we conclude that

1 1 s
3R = 51O = [ [ (oo~ uu)te)dade. (59)
0 Jo
On the other hand, setting
FO) =M\, AeR
then
F'(A) = (p+1)A", AeR,
which implies that F' € C'(R). Thus, given o, 8 € R there exists, by virtue of the Mean
Value Theorem (M.V.T.), £ €]a, 5] such that

|F(B) — F(a)| < |[F'(&]18 — o,
or even,
[F(B) = F(a)] < (p+1)[E]” |8 — al. (59)
Now from the fact that £ €|a, f[, 30 =0(c, ) €]0,1[ such that

E=(1-0a+0-F=a+(f—a)-0. (60)

In the particular case where a(z,t) = u(x,t), p(x,t) = v(z,t) it follows from (59)
and (60) that

| |v(z, )| vz, t) — [ulz, )] ulz,t)|
< (p+ Dlu(z,t) + (v(z,t) —u(z,t) - 0(x,t)|” [v(z,t) — u(x,1)]
< (o D Julw, )] + oG, 0) + lu(z, 0]} k(. 0)
< (p+ D{20u(z,t)] + 2Jv(z, )|}’ |w(z, 1)
=(p+1) -2 {Ju(z,t)| + Jv(z, )|} |w(z, t)]
, ) 20\v(z, )P lw(z, O)] if |u(z,t)] < |v(z, )]
slot)e2 {2ﬂ|u<x O e, )] i [u(z, )] = [o(, 1)
< (p+1)27 - 2°{|u(z, 1)]” + |v(z, )| }w(z, t)]

oG, O v, 1)~ hutar O u(e, 0] < (o + 12 {fular OF + oG P ol ). (61)
From (58) and (61) it follows that
S + 5 10O <o) [ [ {lute 0 + ot O Hote. O] [o(a. ] dedr. (62

Note that according to the Sobolev embedding Theorem we have
Hy () = L(9),
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ar?
where 5
n
1<¢< . 63
S4s ——5 (63)
It is worth noting that
w(t) € L*() ae. in ]0,T] (64)
Y(t) € LYN) ae. in 0,7 (65)
this is because w, 1 € L>°(0,T; H}(Q)) and HJ () — LI(2). We claim that:
(p+ ) .
lu(t)|?, |v(t)|” € L (Q) ae.in ]0,7T7. (66)

2
Indeed, we have by hypothesis that 0 < p < — which implies that 2 < 2(p+1) <
n R—
2n

n —

5 Since 2 is bounded, it follows, taking ¢ = 2(p + 1) and from (63)

HNQ) — LX) (Q). (67)

Now since u(t), ( ) € Hi(Q) a.e. in |0, T, from the embedding above it follows
p+1)

that u(t) € L2t = LP7% (Q) a.e. in |0, T[ and therefore

2(ﬁ+ )

lu(®)|?, Jv(t)|P € L™ 7 () a.e. in ]0,T]
which proves (66). Note that,

! Ll 68
0 o) 2 (68)
p

It follows from (62), (64), (65), (66), (68) and by the generalized Holder inequality

that
1 1
() + 5 ()]
s (69)
<o [Pl s+ WP 20 Ol 600t
0 L7 (@
But from (67) and the fact that u € L>°(0,T; H}(Q)) we have
Wy
esssupl|| |u(t)]”]| Xetn = = ess sup [/ |u(t)[ 2+ dx] 7 < ky esssup||u(t)]]” < +o0
t€[0,T] L »r te[0,T] t€[0,T]
and from (69) we conclude that
1 2, 1 2 ’
5 (WG + SO < e [ w@l 0] dt. (70)
0

Finally, setting
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we have from (53), for all ¢ € [0, s],

v = [ wieds = - { / sw(é“)dé; - /0 tw(ﬁ)d&] —wh—wls). (72)
e

w:(,s)

Thus, from (72) we can write

$(0) = wi(0) —wi(s) = —wi(s). (73)

Substituting (72) and (73) into (70) implies that
1

3 + 5 @I < o [ ROl (®) - n (o) d

{ [ wola@id+ [ o )

{ [ ol [ vaaluol =k}

<24 [@ra [ a2 [Tuopi g laeiR( [ o)
[ P+ 2 [Colfa+ 76 [+ g )P

JeaCI + s [ (l0)? + lln (0]F) e,

w(
< e

(VAN
=] = wl&

<

which implies that

TP + )P < e [ (WOF + lr0]P)de.

From the inequality above by virtue of Gronwall’s inequality it follows that
)P + 7 () <o.
Thus, we obtain
w(s)=0 in L*Q); Vse(0,7T)
and from the fact that w(0) = 0 we have
w(s)=0 in L*Q); Vse[0,T]

which concludes the proof.
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Chapter 3

Problem 2% — Ay + |u[Pu = f (Regular

. 8162
solution)
Problem 2
0%u ,
W—Au—ﬂu!u— in Q
u=0 on X

u(0) = wo(e); 5(0) = w(v)

subject to the initial conditions

up € Hy(Q)NH*(Q); wup € HY() and f, % € L*(0,T; L*(Q))

2
admits a unique strong solution if 0 < p < p— (n > 3), in the class

u € L0, T; Hy(Q) N H?(Q)); o € L™(0,T; Hy(Q)) and v € L>=(0,T; L*(Q)).
More precisely, setting p = p + 2 we have
(" (t), 0) + ((u(t), 0)) + (fu(t)Pu(t), v) = (£(t),v)
in D'(0,T), for all v € Hj () N H*(Q).

u(0) = ug , u'(0) = uy .

35
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Proof:
12 Step: Approximate Problem
Initially we observe that by the Sobolev embedding Theorem, we have

Hy(Q) = LUQ); ¢ < n2_n2 : (6)

2
Since p < P by hypothesis then
n p—

4 4 2n
2p<—2 <:>2p+2<—2+2<:>2p+2<_2.

Therefore,
Hy () = L*2(Q) — LF(Q) (7)

and consequently
[P e LY(Q) and |v]fv € L*(Q); Vo € Hy(Q). (8)
Let (w,) be a “basis” of H}(2) N H?(Y). Let us set
Vi = [wi, ..., wi).

In V,, we consider the approximate problem

U (1) € Vi < up(t) = Z Gim (t)w; (9)

(W (1), 5) + (), 03)) + (em (O tm(t), ) © = (£(8),0) (10)
U (0) = gy — ug in Hy(Q) N H*(Q), (11)

ul (0) = upym — uy in Hy (), (12)

which by Carathéodory’s Theorem possesses a local solution in some interval [0, ¢,,), where
um(t), u, (t) are absolutely continuous and wu/ (¢) exists a.e. The a priori estimates will
serve to extend the solution to the whole interval [0, 7] (The proof of Carathéodory’s
theorem can be found in the following reference: Coddington and Levinson, Theory of
Ordinary Differential Equations, Mc Graw-Hill, New York, 1955).

22 Step: A Priori Estimates
(i) Estimate I

Multiplying (10) by g},,(t) and summing over j from 1 to m, we obtain

1d , 1d , 1d ,
5 g1 [+ 5 G NP+ Oy = (£, (2)

*Note that by virtue of (8) it follows that |u,,| u,, € L?(£).
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as we already did in Problem 1.
Integrating the expression above from 0 to ¢ with ¢ € (0,¢,,), we have

2
[t ()% - ot (8) | + 5 [um Ol = 1] + 1200 |
2 t
2 ooy + 2 [ (F(5) i (s))ds (13)
0
2 2, 2 P 2 L
< uinl? + o+ ltonl By + 1 By + [ uin(5) .
However from (11) and (12) we obtain the existence of a constant ¢; > 0 such that
2
[t |* + [[om||* + 5 toml[250) + 1f|[Z2iq) < 1 (14)
Thus, from (13) and (14) it follows that
2
[t () + [ (8) | + 5 1m0
' 2 2, 2
!/
<ot [P + ()P + - llan(s) s
0
Now, by Gronwall’s inequality from this last inequality we conclude that
2
[t ()] + [ (8)| | + p lum @)ooy < 25 VEE[0,8); ¥m €N, (15)

which allows us to extend w,, to the whole interval [0, T]. Furthermore,

(t,) s bounded in  L>(0,T; Hy (1)), (

—_
D
~—

() is bounded in  L*(0,7T; LP(Q)), (17)
(ul,) is bounded in L>(0,T; L*(Q)). (18)

From (7) and (16) it also follows that
(|tm| 1) is bounded in  L>(0,T; L*(Q)). (19)

(i) Estimate IT

We can, without loss of generality, consider the basis (w,) as being orthonormal in
L*(Q). Tt follows from this and from (10) that

Gim () = (i, (1), wj) = (f (1), wj) = ((wm(£), wj)) = ([t () P20 (£), w5 ) (20)

Since the right side of the equality above belongs to L?(0,T) it follows that Gim €
L*(0,T), where here the derivatives are understood in the sense of Dini. Thus

T T | m 2
2
/0 o (1) 2 dt = / S gt
j=1

L*(Q)

m T
< em) 3 sl By / g (D] di < 4o
j=1

dt
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that is,
u € L*(0,T; L*(Q)) (21)
where here, again, the derivatives are understood in the sense of Dini. On the other hand,

d
7 being the derivative in the distributional sense in D’(0,T; L?(Q2)) and 6 € D(0,T), we

have

<%um,9> = — /OT un ()6 (t)dt = — /OT <§lgjm(t)wj>9/(t) dt
=3 (- f e =5 omienefs - [ o)
- (Zm? J eyt )os = [ 000t = (i)

which proves that the distributional derivative of u,, and the classical derivative coincide.
Similarly, it is proved that

(i) -

that is, that the distributional and classical derivatives of 12 and 22 order coincide.
On the other hand, using properties of the Bochner integral it is not difficult to
verify that

(D) 05),0) = (1), 7). 0)
(o Can(£),07)),8) = (i (8), ), 0
<%<Ium(t)\”um(t),wj),e> = <(p+1)/9\um<t)yﬂu;n(t)wjdx,e>.

From the relations above and from (20) it follows that

(1)) = (7/(0), ) — (W (£), ) ~ (p+1) / (D, (D de (22)

in L?(0,T), that is,
i € L(0,T) ©

where the three derivatives are distributional. Then it follows that
T
2
AT /

u" € L2(0,T; L2(Q)) (22))

l/l

dt < +00

LQ(Q)

i.e,

4Here we used the fact that (g;,,(t) - 0(¢)) is absolutely continuous.
®Note that the classical and distributional derivatives up to second order of g;,(f) coincide in the
sense of distributions in D’(0,T).
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and from (22) we obtain

(U (1), w5) + (s (1), w5)) + (p + 1)/Q|um(7f)|”u;1(t)wj dr = (f'(t),w;).  (23)

Multiplying by g7,, and summing over j, we arrive at

%% u;;(t)|2+%%||ugl(t)||2+ (p+1)/ﬂlum(t)|”u;z(t)u’r;(t> dr = (f'(t), up (1))

Whence
{IU” )P+, (D117 < 2(p+ 1) /Ium )P [t ()] [, (B)d + 2(f/(£), up (1)) (24)

Remembering that H}(Q) < L?(Q) where 1 < ¢ < 2% then, from the fact that
e )(Q), lul.| € LI(Q) and |ul,| € L*(Q) amd7 furthermore, since iy +

lum|? € L

m + 5 = 1 we have, according to the generalized Holder inequality that

/Ium(t)|”|u;1(t)l|u$;(t>|dﬂfS Hum@OPN] 2040 (g, ()| 2a@) [ui |22
Q I ())

(25)
ot (1 el 0 (820
We have
0<p<—2 = 2<2pt1)<
p= n—2 p ~—n-—2
Whence, € being bounded, taking ¢ = 2(p + 1)
HNQ) < LXPHD(Q). (26)

From (25) and (26) we have the existence of a constant ¢; > 0 such that

/Qlum(t)lplu;@(t)l [ty ()] < [t ()17 [ty ()] |20, (2))]
which by (16) is even less than or equal to

Ca [ty (0)] [ ()]
that is,
/Ium )P i ()] iy, ()| dow < —{II O + [um ()} (27)

Now, from (24) and (27) we conclude that
L OF + [ (1} < sl @1 + WOF} + [FOF + (O
Integrating from 0 to ¢; ¢ € [0,T], we obtain
[y, () + [, (D11 < [, () + e 12+ 11 [ 2200

e [ AP + i 0 s

(28)
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On the other hand, by virtue of (16), (18), (21) and (22’) we have
U, € C4(0,T; H3(Q)) N CO([0,T], L*(Q)); w,,,u’ € C°([0,T); L*(2))

m) 'm

making sense to speak of u/ (0). From (20), in particular, we can write that
[ (0)* = (£(0), u (0)) = ((un(0), 217, (0)) + ([t (0)]”21n (0), 1, (0)). (29)
From (29) it follows that
[ (0)[Z2 < [[£(0)|z2(0) + [Auomr2() + | [tom|"tom2()] |1y, (0)]
where here we used Green’s and Schwarz’s Theorem, i.e,
[, (0)] () < [1£(0)]22(@) + [Attom|L20) + [[tom 70420 ] (30)
It follows from (7) and (11) that there exists ¢5 > 0 such that
|7, (0 )’L2(Q) <c¢; VYmeN (31)

and from (12), (28) and (31) it follows that

t
[ (07 + |17, (O] < o +/ [ ()] + [y (5)*] ds
0
and by Gronwall’s inequality we have
! ()] + [Jul, (D> <e; Vte[0,T); Vm € N. (32)
From (32) it then follows that

(ul,) is bounded in L>(0,T; Hy(R)), (33)
(u”) is bounded in  L*®(0,T; L*(Q2)). (34)

32 Step: Passage to the limit

From the estimates made in (16), (17), (18), (19), (33) and (34) we can extract a
subsequence (u,) of (u,,) such that

u, = u  weak-star in  L>(0,T; Hy(f2)), (35)
u, —u weakly in LP(Q), (36)
ul, = ' weak-star in  L*(0,T; L*(2)), (37)
ul, >’ weak-star in - L>®(0,T; Hy(Q)), (38)
u S weak-star in - L>(0,T; L*(12)). (39)

v

(
(
Let 6 € D(0,T) and consider j € N and p > j. From (10) we can write

/mmmwwwﬁ+/«%@meMt
0 0 (40)

+40wwmmm%wwﬁzl<ﬂm%www
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It is worth noting that from (16), (18) and by virtue of the Aubin-Lions Theorem
we can extract a subsequence of (u,,), which we will still denote by the same notation such
that

u, — u strongly in  L*(0,T; L*(Q)) = L*(Q).

It follows from this the existence of a subsequence of (u,), which we persist in
denoting by the same notation, such that

u, = u a.e. in Q.

By the continuity of the map A € R — F(A) = |A\|?A and from this last convergence
it follows that
|uy |Pu, — JulPu ae. in Q. (41)

From (19), (41) and by virtue of Lions’ Lemma it follows that
[y Py, — JulPu in L2(Q). (42)

Finally, the convergences given in (35), (39) and (42) allow us to pass to the limit
in (40) to obtain

/0 (" (£), w))O(t) dt + / ((u(t), w;))0(E) dt
n / (lu(t) Pu(t), w))0(t) dt = / (F(£), w0))0(t) .

By the totality of the w;’s in Hj(2) N H*(2) we obtain

/(u”(t),v)&(t)dt—i—/ ((u(t),v))0(t)dt
0 0 (43)

+ /OT(IU(t)I”U(t)ijt) dt = /OT(f(t)w)@(t) dt,
for all v € H}(Q) N H?(Q). Tt follows from this that
u' — Au+|uffu=f in D(0,T;L*Q))
and by the regularity of the functions involved we conclude that
u' — Au+ uffu=f in L*Q). (44)
From (44) and (35) we have

— Au(t) € L*(Q) ae. in ]0,T]
u(t) € Hy ()

which implies, given the regularity results of elliptic problemsﬂ that

u(t) € H*(Q) for a.e. t€l0,T]. (45)

6Note that Q is sufficiently smooth.
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On the other hand, since
feC0,T); L*(2)), |ulfu € L>(0,T;L*(Q)) and v € L>(0,T; L*(Q))

from (44) we have
Au € L™®(0,T; L*(Q)) (46)

which leads us to conclude that
u" — Au+|ulfu=f in L*®(0,T;L*Q)).

Thus, setting
g=1f—u"—|ul’u

we have, still given the regularity of elliptic problems, that

esssup ||u(t)|| g2 = c esssup |g(t)|r2) < +o00.
t€]0,T'] t€]0,T']

Therefore,
u € L(0,T; H*(2) N Hy(K2)). (47)

42 Step: Initial Conditions

These are proved in an analogous manner to the 12 problem.

52 Step: Uniqueness

Let u and v be strong solutions of (1) and consider w = v — v. Then w verifies

W= Aw = |v]fv — [ulfu in L*(Q)
w=0 on X (48)
w(0) =w'(0) = 0.

Composing (48); with w’ implies that
(W'(1), 0 (1) + (=Aw(t),w'(t)) = (Jo()[Pv(t) = [u(t)]Pu(t), ' (t))-
Since w € L>(0,T; H}(Q) N H*(Q)) and ' € L>(0,T; H}(Q2)) we have as a conse-
quence of Green’s Theorem

5 7 WO + 5 lw®* = (u@)Po(t) — [u(t)] ut), o' (1))

(49)
= /Q(|v(:z:,t)pv($,t) — Ju(z, t)|Pu(z, ) (z, t)d.

Setting
FA) =|APA;, AeR

and since

F'(A) = (p+ 1A
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we have that ' € C'(R). Thus, given o, € R we have, by virtue of the M.V.T., the
existence of ¢ €]a, B[ such that

[F(8) — Fla)| = (p+ DIEPIB —al.
Since & €]a, ] then £ = (1 — 0)a + 0 for some 6 €]0, 1]. It follows then that
[F(B) — F(a)| = (p+ 1) [(1 = O)a+05°|8 — al(p+ 1) |a + (6 — a)0]?|5 — al.
In particular taking 8 = u(z,t) and a = v(z, t) it follows that

[v(z, O vz, t) = |u(z, 1) u(z, 1)
= (p+ Dol 1) + (u(z, 1) — v(x,1))0(x, 1) |w(z,1)|
(o + D {2lv(@, O] + lu(z, )]} |w(z, 1)] (50)
(p+ D{|v(z, t)] + |u(z, t)|} |w(z, t)]

<
<
< 2%(p+ D){|v(z, t)|” + |u(z, )" }w(z, t)]

2°(
2

From (49) and (50) we can write

Ld o, Ld ,
LR+ 2w
2 dt 2 dt (51)
<o / [, 01 + [u(z, 1P} w(z, 8)] 1 (z, )] da.
9]
Recall that
Hy(Q) <= LYQ), where1<g< (52)

n—2.

2
Now, since 0 < p < — then 2 < 2(p+1) < and from (52) it follows that
n J—

HYQ) < LXPHD(Q). (53)
From (52) and (53) it follows then that

1
2(p+1)

u(t),v(t) € L=7  (Q); w(t) € L*PY(Q) ae. in 0,77

Now, since 2<p+1) 4+ — 57

from (51) that

> +1) + = 1 it follows, using the generalized Holder inequality,

Ld e, Ld )
S TP + 2dtnw(m

< CI{HU(t) L2(+1)() + [Ju(t) L2(p+1) } ||w(t ||L2(P+1) - fw'(t )|L2(Q) a.e. in  ]0,77.

Now, from (52), (53) and the fact that u,v € L>(0,T; H}) it follows that

Ll ,
+ 5 ()]

< ool lw)]| |w'(t)| 2@y ae. in ]0,T7T.
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Integrating this last inequality from 0 to ¢; ¢ € [0,7] we obtain
t
W' (OF + llw@I* < &' (0)] + [lw(0)]* + Cz/o [lw($)I[1w'(s)] 2o ds

t
<o [ [P + 1/ (0)FJas
and by Gronwall’s inequality
W ()P + [[w®)| <0; vie[o,T] T

which proves that
wt)=0 in H)Q) Vtelo,T)

ie; w=01in L>(0,T; H}(Q)), which concludes the proof. O

"Note that w € C°([0,T); H}(Q)) and o’ € C°([0, T]; L3()).
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2
Problem % — Au+ v’ = f in dimension
n = 3 (special basis)

Problem 3 o
U )
W—Aquu?’:f in Q
u=0 on X (1)
ou

u(x,0) = ug(x); E(éE, 0) =u(z); =€

where
uo € HY(Q)NHQ); uy € HYQ) and  f € L2(0,T; HY(Q)) 2)

possesses a unique strong solution in the class

we€ L>(0,T; Hy () N H*(Q)); o € L®0,T; Hy(Q)) and u" € L*(0,T;L*(Q)). (3)

Proof:
12 Step: Approximate Problem

Let us consider (w,),en a basis of H}(Q) N H?(Q), consisting of the eigenfunctions
of the operator —A defined by the triple {H}(Q), L*(Q),((-, -))}, thus:

— Aw, = A\, wy; VveN (4)
Yo(wy) = 0; VveN
It is well known, cf. Spectral Theorem, that:
(wy)ven constitutes a complete orthonormal system in L*(€). (5)
(%) constitutes a complete orthonormal system in H, (). (6)
v/ veN

(%) constitutes a complete orthonormal system in Hj () N H?(2). (7)
v/ veN

Furthermore, 2 being a sufficiently smooth bounded open set, by virtue of the
regularity of elliptic problems it follows from (4) that

w, € H"(Q); VmeN, VveN. (8)

45
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On the other hand, the Sobolev embedding Theorem tells us that if m > g and
keNissuchthatk<m—ggk+1, then
H™(Q) — C*(Q), (9)
where
(i) O<)\<m—g—kif m—g—k<l
(i) 0<A<1if m—g—kzl

Now, given n € N and k € N we can choose, by virtue of (8), m sufficiently large
such that k <m — g <k +1 and from (9) it follows that

w, € C*Q); VEkeN, VveN,

that is,

w, € C*(Q); VYrveNlN. (10)
According to the Sobolev embedding Theorem

Hy(Q) — LY(Q); where 1 < g <

n—2
In this case, since n = 3 it follows that
HY(Q) — HY(Q) — LYQ); VYq<6. (11)
Let
Vin = [wi, -+, wim)-
In V,, consider the approximate problem:
U () € Vi & i (t) = gim (s (12)
i=1
(U (£),05) + ((um (), w5)) + (up (1), w5) ® = (f(1),w)) (13)
U (0) = ugm — up in Hy(2) N H?(Q) (14)
ul (0) = upy, —u; in Hy () (15)

which has a local solution in some interval [0,¢,,) by Carathéodory. The estimates will
serve to extend the solution to the whole interval [0, 7).

22 Step: A Priori Estimates
e A Priori Estimate I

8Note that from (11) we have that u2, € L?(1Q).
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Composing (13) with u! (t), we obtain, as in previous problems

1
[ (OF + fum @] + 5 llum @Iz < & V€ [0,tm); Ym eN (16)

which allows us to extend u,, to the whole interval [0,T] with w,,(t), u],(t) absolutely
continuous functions in ¢ and w/, (¢) existing a.e. in |0,7[. It follows from (16) that

(t,) is bounded in  L>(0,T; Hy (1)), (17)
(ul) is bounded in L>(0,T; L*(Q)), (18)
(u,,) is bounded in L>(0,T; L*(Q)). (19)

e A Priori Estimate II
Multiplying (13) by g},,,(t)\; and summing over j, from (4); it follows
(i (£), =D, (1)) + (i (), = Ay, (1)) + (1, (8), = Ay, (8)) = (£(2), =Dy, (1))

Now, by virtue of the regularity of the basis (w,) and by Green’s Theorem we

obtain
((uapy (£), 13, (8)) + (= A (1), =Dy, (8)) = ((F (1), 17, (8))) + (up, (), Ay, (2))
that is,
1 d / 2 1 d 2 / 3 /
5 O + 5 S [Bun(O)F = (F(2), 0, (0) + (1), A (). (20)

However, from (10) and (12) we have that

ul (t),ul, (t) € C=(Q) forall t€0,7].

m

Thus, by Green’s Theorem it follows that

/ ul (Al () de = — / Vi (t) - Vaul, (t) do + Ouy, ul, dr. (21)
Q 9] T 31/

However, from (4)y, (10) and the fact that yo(w,) = w,|r it follows that u3 |r =
Yo(u2,) = 0. Tt follows from this and from (21) that

m

/ ud (O A (t)dx
Q

Now, from (11) it follows that

ou ou’
2 L3 (9 e L5(Q —m e [2(Q).
w(1) € (), G eINQ) and T e I2(Q)
Noting also that
L N O
6 2 3 3 N
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we obtain, by the generalized Holder integral inequality that

ou ou,, ou ou,
2 m < 2 3 m m
[ G0 G < Ol | G20 (G
(23)
=l (Mo || Gz 0] | | )
Thus, from (11), (22) and (23) it follows that
/ ul () Aul (t)dw
Q
24
<c 2:\ML O |[Szo)| G .
1 m .
O ey | 0% 120
Now from (16), (24) and Hélder’s numerical inequality
[ b8, 0
Q
3
Ouyy, ou!
< m
< sz oz, oz, ) .
i=1 L2(Q)
3 1o 2 1203 oy P2 1/2 (25)
<o (% [50l,,) (Sl5Ee),,)
; Ori o) ; e, ! 2@

< s |tm () || 20 |1, (2) ]
< ca| At (1) 22(0) |uiy, ()]

where the last inequality follows from the fact that in Hj () N H?(2) the norms [|ul|g2(q)
and |Au|r2q) are equivalent.
Thus from (20) and (25) we conclude

d d
T O + = [Aun@OF < [IFOIF + [[un O + ealllu, (D1 + [Aun @]
Integrating from 0 to ¢ with ¢ € [0, 7] it follows that

[l (D17 + [ A (0)]* < urml* + [Avom]* + 1112070

! / 2 2 (26)
s [P +1un(5) ) ds.
0
However, from (14) and (15) there exists cg > 0 such that
[am|[* + [Atgm|* + HfH%Q(O,T;Hé(Q)) < C6; (27)

and from (26) and (27) it follows that
t
[l O + A () < € + 05/ {Il (I + | A ()} ds
0

and by Gronwall’s inequality
ul (O] + |Aug(B)* < e; Vt€[0,T], Vm €N, (28)
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From (28) we arrive at

(ul) is bounded in L*°(0,T; Hy(52)) (29)
(un) is bounded in L0, T; Hy(2) N H*(2)) (30)

Also, from (17) and (11) we obtain

(u?,) is bounded in L>(0,T; L*()). (31)

m

The subsequent steps, namely, passage to the limit, initial conditions and unique-
ness are done in an analogous manner to what we did in previous problems. O

In a manner analogous to what was done previously, we will treat the following
problem
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Chapter 5

Schrodinger Equation

%? 1Au + \U\zu = f (dimension 3)

In what follows 2 is a bounded and sufficiently smooth open subset of R3.

Problem 5:

Ou —iAu+ [ufu=f in Q
ot
u=0 on X (1)
u(z,0) =up(x); x €l
where
ug € Hy(Q) N H?*(Q); f e L*0,T; Hy(Q)) and g—{ € L*(0,T; L*(Q)) (2)

possesses a unique strong solution in the class

u e L®(0,T; Hy(Q) N H*(Q)); o € L>®(0,T; L*(1)).
Proof:
12 Step: Approximate Problem

Let (w, ) en be the Hilbert basis of L?(£2) given by the eigenfunctions of the operator
—A defined by the triple {HJ (), L*(Q),((-, -))}. Thus,

(wy,) is a complete orthonormal system in  L*(Q) (3)
w
— is a complete orthonormal system in  H; () 4
(%) is a complete orthonormal system in  Hj(Q) N H?*(Q) (5)
and (w,) is a weak solution of

—Aw, = A\, w,

_ (6)
w,,|p = O

where (),) is a sequence of eigenvalues that verifies:

D<M <AN<---<A<... and A\, — oo when v — +o0. (7)

o1
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Recall that from (6) and the fact that Q is sufficiently smooth, it results by virtue

of the regularity of elliptic problems that
(wy,) C H™(Q); Vm e N.
It follows from (3) and the Sobolev Embedding Theorem that
(w,) C C*(Q); VkeN.

Let
Vin = w1, w2, -« ., W)

In V,, consider the approximate problem

Un(t) € Vi & up(t) = Zgjm(t)wj
(tr (1), w5) + i ((um (8), w7)) + ([ () Pum (8), w5) = (f (1), w5)
U (0) = Uugm — up in Hy(2) N H?()

which has a local solution in some interval [0,%,,), by virtue of Carathéodory.

22 Step: A Priori Estimates
e A Priori Estimate I

Multiplying equation (11) by g;m(t) and summing over j; we have:

(U (£); 2 (1)) + (Wi (£) 2 (£))) + ([t (8) Pt (8), um () = (f(2), i (2)).
Let 6 € D(0,t,,). We prove that

(5 00 0n(0,0) = (0,10 (0) + (00,16, 0,0

that is,

% [t (O)* = (U, (8), 1 (8)) + (i (2), um (t)) = 2 Re(u, (), wm (£))-

Also

GMWMWMMW=AMMWM®%®M=AMNWM@Wx

- /Q g (8)|* da.

Considering the real part in (13) results from (13), (14) and (15) that
1d
2 dt

From the inequality above it follows that

[ (O + [Jum ()| 1a@) = Re(f (1), um(t)) < [(F(8), um(D))].

d
7 [umOF + 2l (Ol a0) < [FOF + [um ().

(8)

(13)

(14)
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Integrating from 0 to t, ¢ € [0,t,,) we obtain

t t
un(® +2 [ ([ ds < [woml? + 171y + [ fims)?ds.
0 0

From (12) it follows that J¢; > 0 such that |ug,,|? < ¢; and therefore

t t S
()] +2 / () [y s < 2 + / @um<s>|2+2 / ||um<7>\|i4dr]ds

From the inequality above and Gronwall’s inequality, we conclude that
t
lum (B)]2 + 2/0 [t ()[4 ds < ¢ VE € [0,6,); Ym €N,

The estimate above allows us to extend the solution w,, to the whole interval [0, 77,
with w,,(t) absolutely continuous on [0, 7] and u/, existing a.e. in |0, 7. Furthermore,

() is bounded in  L>(0,T; L*(2)) (16)
(u,,) is bounded in L*(0,T; L*(Q)) = L*(Q). (17)

Since the dimension n = 3 it follows from the Sobolev Embedding Theorem
Hy(Q) = L(Q); Vg <6. (18)
On the other hand from (17) we still have that

(Jttm|?* wm) is bounded in LY3(0,T; LY3(Q)). (19)

A Priori Estimate IT
Multiplying (11) by A; Gjm(t) and summing over j we have
(ty (8) s =Dt (1)) + i (U (), =Dt (1)) + ([t (8) Prm (1), =Dt () = (£(1), =Dt (1))

By virtue of the regularity of the basis and the fact that f(t) € H}(Q) for a.e.
t €]0,T[ by Green’s formula we can write

(i (8), i (£))) + (=Dt (£), = At (£)) + ([0 (8) 1t (), =Dt () = ((f(2), (1))

Taking the real part on both sides of the equality above we obtain

e a1 Rl (0) Pt (1), ~ A (1)) = Re((/(8) (1)
] ] (20)
<|((f @) um®OD] < SN + 5 lTumOIF
However from (9) we have by Green that
/|um )2t (1) (— At (1)) da
(21)

CIR0) a%’;f Do = [ 2 ) e O 0]

3
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Since u,,(t) € H(Q) N C>(Q) for a.e. t €]0,T[, then
Um(t)|lr = Y0 (um(t)) =0 a.e. in 0,7
and from there it follows that
U ()P U (t) =0 ace. in 10, 7] (22)

and from (21) and (22) we conclude that

im0 OB = 3 [ 5 0 un) S5

5 —
_ 9 2 o O (t) | Qum(t)
=3 [ { GO e lunt B 2

5 —
B 0 Oty (t) 5 QU (t) Oty (1)
-3 /Q {(9962- (O @i (8) “F 2+ () e S -

3
B O () Oy, (1) Oy, (1) Oy, (1)
-3 /Q { 2 O (t) T+ 1) (1) 2

Ot (t) Dt (t)
2
* fum(®)] Ox; Ox; d
3 2 2 2
Oy, (1) Oy, (1) Oty (1)
_ 2 2
-3 /Q {\um(zﬁ)] Ol (um(t) D) (0 [ e
On the other hand, we claim that
’21|2 |22|2 + Re [(2122)2] = 2[Re(2122)]2; Vzl, 29 € C. (24)
Indeed, setting z; = a + bi and 2o = ¢ + di, we obtain
|21’2 ’22|2 -+ Re [(Zl . 22)2]
= (a® +b°)(® + d®) + Re[((a+bi)(c — di))?]
= a’c® + a®d* + b’ + b*d* + Re|((ac + bd) + (be — ad)i)?] (25)

= a’c® + a*d® + b’ + b*d® + (ac + bd)* — (be — ad)?
= a?? + a®d® + V2P + V2d® + a’c? + 2abed + V2 d® — b*? + 2abed — aPd?
= 2(a*c® + b?d*) + 4abed

On the other hand

2(Re(z; - 23))?
= 2[Re((ac + bd) + (bc — ad)i)]* = 2(ac + bd)? (26)
= 2(a*c® + b*d*) + 4abed.

From (25) and (26) we conclude the desired result in (24). Thus, it follows from
(23) and (24) that



Re /Q g ()Pt () (= Bt ()

e )] v

From (20) and (27) we arrive at

Dy ()

al’i

2
}dx > 0.

1P < 7@ + ()]

Integrating in [0,¢]; ¢ € [0, 7], we obtain

t
i OIF < o+ 1y + [ i (5)P s
Now from (12) J¢; > 0 such that

||U0m||2 + ||f||%2(O,T;Hé(Q)) <ca; VmeN

and from (28) and (29) it follows that

t
(I < &1 + / ()| d.

From Gronwall’s inequality it follows that

um(t)|| <¢; Vtel[0,7] and VmeN

which implies that:

(up,) is bounded in  L>=(0,T; H}(Q)) ™

Estimativa a priori II1

From (3) and (11) we have

Fim () = (13, (), wj) = —i((um (1), w5)) = (Jteon ()P (), wj) + (f(£), w))-

%)

(27)

(28)

(32)

Now, from (10) and the fact that gj,, is absolutely continuous on [0, 77, it follows

that the right side of the equality in (32) belongs to L?(0,T') which implies

ul € L*(0,T; L*(2)).

However, from (32) we have

7 U (1), wy) = g7 (1) = =i((u, (1), ;) — ([um(®Pun(®)],w;) + (F' (), ;).

®Note that from (18) and (31) it follows that (|u,,|?u,,) is bounded in L°°(0, T; L*(12)).

(33)

(34)
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Note that
([l (®) Prta(B)] s 05) = ([t (81t (Dt (1)], 05)
= (U ()t (£)) "t (t) 4 g ()t ()12, (2), w5 ) (35)
= (2t (8t (8t (8) + 2t (810, ()1t (£) + 20 (81 (B, (1), )
=t ()t () + 0, (£, (8) + [t (8) Py, (), ).
From (10), (33) and (35) it follows that the right side of the equality in (34) belongs

to L*(0,T), that is, ¢}(t) € L*(0,T) which implies
u! € L*(0,T; L*(Q2)), (36)

where we are using arguments analogous to those employed in Problem 2.

Thus, from (34), (35), (36) and the fact that <% (u’m(t),wj),9> = ((um,w;),0),
V6 € D(0,T), results that
(i (), 07) = (11 (£), 05)) = (103, (8) 1t (8) P05, ()0, (6) + 1t (8) P, (), w05) +(F (£), )

Multiplying the above equality by /\jm we obtain

(tty (£), 11, (£)) = —i( (i, (£), 1, (£)))
= (U () [t (6)* it (8) + et () P (8), 203, (1)) + (1 (1), 200, (1))
Taking the real part on both sides of the equality above, we obtain

1d

5 77 ltm( /{Ium )P (O + Re(tn -y, (6)* + [un(t) P, () }do

+ Re(f'(t), up, (1))

and from (24) it follows that

>0

D ‘/“araeum U (O + [ (D1 (0P d 4+ Re( (1), 11, (1))

2 1 2
< PP+l (B

[NSRIE

Integrating in [0,t], ¢ € [0,7] we conclude that
t
0 OF < [, OF + 1)+ [ li(o)Pds, Y€ 0T, Yme N, (37)
0

However, from (32) we have

(1, (0), w5) = (i (0),w;5)) = ([tom| *tom, w;) + (f(0),w;)
which implies by Green’s Theorem

[, (0)[* = i(— At 17, (0)) = ([tom[*tom, 17, (0)) + (£(0), 2, (0)).
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Taking the real part in the equality above

|y, (0)[* = Re[(—Augp, uy,(0))i] — Re(|vom|*[toml, ur,(0)) + Re(f(0), uj,(0))
< [|Auom|r20) + | [tom|*tom| r2@) + [£(0)|r20)] [, (0)],

that is,
|17, (0)| < [Atom| 2 + | [tom[*tiom| 2() + 1£(0)| 220 (38)
= | Auom|r2(@) + |uoml|Fs) + 1F(0)]r2(@) < 1,
where ¢; is a positive constant resulting from (12) and (13).
From (37) and (38) it follows that
t
lul (t)]* < ¢y +/ lul (s)[*ds; Yte[0,T], Vm €N,
0
and from Gronwall’s inequality we obtain
lu, ()*<e¢; Vtel0,T], VmeN., (39)
Thus,
(u),) is bounded in L>(0,T; L*()). (40)

The estimates obtained are sufficient to pass to the limit and the procedure is
analogous to what we have done previously, the same happening for the initial condition.
Being u the solution obtained, the fact that v € L>(0,T; H*(f2)) is obtained in a manner
analogous to what we did in Problem 2.

Uniqueness

Let w and v be weak solutions of Problem (1). Then w = u — v verifies
w —iAw = |[v]*v — |ul*u in  L>(0,T; L*(Q))
w=0 on X (41)
w(0) =0

Composing (41); with w results that

(w'(8), w(t) +i((w(t), w(t)) = (o) v(t) — [u(®)*u(t), w(?)).

Taking the real part on both sides of the equality above we obtain

1d 2 _ 2 2
5 7 [WOF = Re(u(®)[Pu(t) — [u(t)Pu(t), u(t) - v(t)). (42)
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But
Re/ (Jo(z, t)Po(z, t) — [u(z, t)Pu(z, t) ((v(z, t) — u(z,t) do
0

= [ {01 = Reot 0 Po(a. e, )
— Re(Ju(z, t)Pu(z, t)v(z, b)) + |u(z, t)|* }dz
= [ {10 = oG, O PRe(o(, e, )
— Ju(z, ) PRe(u(z, 1o(@ D) + u(z, 1|} do
:/{|v(:c,t)|4— Re(u(x, t)o(x, 1) O (|ulz, O + |o(z, ) + |u(z, £)[*}dz  (43)

/{Wxt ~JuCe, 00 Dlfute, OF + o, OF) + el )] de

/{\u z, )" = |u(z, t)Plo(z, 0)] — Ju(z, t)| [v(z,t)® + [v(z, 0)[* }da
:Aﬂwﬁm|W%M—W@ﬁD—M%mmW%M—W@ﬁﬂﬂ
= [ (e 0 = o)) (e )] = ol o > 0

since ¢(s) = s” is increasing, for p > 0 and s > 0, given that ¢/(s) = p|s|*~%s > 0, Vs > 0.

From (42) and (43) it follows then that

1d

5 7 [w@F <0 VieoT].

Integrating from 0 to ¢, with ¢ € [0, T], we obtain

that is,
w(t) =0 in L*Q), Yte[0,T)

which concludes the proof. O

Analogously, Problem 6

g:: iAu+ |uffu=f in Q (p>0)
u=0 on X (1)

u(z,0) = ug(x)
subject to the data

uy € HH(Q) N H2(Q) N LXPHD(Q),  fe L2(0,T; HY(Q)) and f' € L*(0,T;L*(Q)) (2)

10Here we used the fact that Re(uv) = Re(uw).



admits a unique weak solution in the class

we L0, T; Hy(Q) N LFF2(Q), ' € L=(0,T; L*(Q)).

59

(3)

Indeed, let (w,),en be the eigenvectors of the operator A = —A defined by the triple
{H3(Q), L*(Q),((-, -))}. As we know, given the regularity results of elliptic problems

D(A") c H*(Q), k=1,2,...
and, furthermore, the norms
|A*u|2)  and [ullgery; k=1,2,...
are equivalent in D(AF). Also
(w,) istotalin D(AF); k=1,2,....
We will prove that
(wy) s totalin LI(Q); V1<g< +oo.
Indeed, we have from (4) and (6)
[(w,)] € D(A*) — H*(Q); Vk=12,...
However, by the Sobolev Embedding Theorem

H*(Q) — L2(Q) itk > %

Under these conditions we have
[(w,)] C D(A*) — H?*(Q) = L®(2) = LYQ); Vq € [1,400)
since () is bounded. On the other hand,
C(Q) € D(AF) c LYQ); Vqge[l,+00)and Vk=1,2,....

Thus, from (5) and (8) we can write that

2k
(@ = (A
and, from (9) and the fact that C5°(2) is dense in L9(€2), we have that
DN = Li(q).

Let € > 0 be given and u € L(Q). From (11) Jug € D(A*) such that:

g
||u — U0||Lq(Q) < 5

and from (10) Jw* € |w,] such that

|[uo — W*HH%(Q) < i,
2c

(4)

(10)

(11)

(12)

(13)



60CHAPTER 5. SCHRODINGER EQUATION 2% —[AU+|U[?U = F (DIMENSION 3)
where ¢ > 0 is such that
10llza) < cllvllpzry; Vo € H*(Q)
by virtue of the embeddings given in (8). Therefore, from (12) and (13) we obtain
lw® = ullLe(@) < llw" = wollLai) + |Juo — ullLa@) < cllw™ — uol[m2r(q) + % <e,
which proves (7).

Let

Vm: [wl,w2,...,wm .

In V,, consider the approximate problem

U (1) € Vi & U (t) = Zgim(t)wi (14)
(U (1), w5) F (U (£), ;) A ([t () [Pum (1), wy) = (f(t),w;) (15)
U (0) = Ugm — 1o in HE(Q) N H2(Q) N LHPHD () (16)

We have the following estimates

t
un(®F +2 [ (Ol dt < c. VEE0.T] VmeN a7)
Whence
(4,) is bounded in  L>(0,T; L*()) (18)
() is bounded in  LP(0,T; LP(2)) = LP(Q). (19)

Now from the fact that

p+2
Il gy = [ Nt 7
Q

= [ lnl ™ do = Yl 525y = im0
it follows from (19) that
(|ttm|Ptty)  is bounded in  LP (0, T; L” (Q)) = LP (Q). (20)
Also
1d 9 1 5 1 2
5 77 [wm@OIF + Re(lun (@)["un(t), =Aun(t)) < S I FOI + 5 [lum O] (21)

HNote that (w,) is total in LY(Q); Vg > 1 c.f. (7) and since it is total in Hg(Q) N H?(Q) it is total in
the intersection Hg(Q) N H?(Q) N LY(Q).



However; by Green’s Theorem

:i[){gwm(t)lﬂ[lum(tﬂz

t2
o |2

Recalling that

[z1|22* + Re[(2122)*] = 2[Re(12))"

O (t) |2
&m

2
}dm

O (t)
8301-

then taking the real part in (22) implies that

Re/|um P
:2/{ 072 [Re ()

ou

[~ Aup(t)] do

axft))} ety

# S 0 (00

From (21), (24) and by Gronwall it follows that

(u,,) is bounded in  L>(0,T; H}(Q)).

Finally, from (15) we have

(U (), 1 (£)) + i (i, (1), i, (£))) +

(%)

V21,20 € C

([ ()P (£))s 1 (£)) = (f(£), 10,

O (1) Oty (1) }dm

(t))-

Considering the real part on both sides of the equality above, we obtain

1d

5 27 [ @O + Re((um (D)1 1 (1)), i,

(1) < 5 1F 0P +

1
TGS
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(23)

(24)

(26)
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Proceeding in a manner analogous to what we did in (22) and using the argument
given in (23) we obtain

Re((Jum (8)["um (1))", u,, (1)) = 0 (27)

and from (26) and (27) we conclude that
t
(O < W OF +11F ey + [ ()P ds (29)

Now from (15) we have
|t (0)] < [ AU L2(02) + | [tom| tom| 2 () + [£(0)| 20

and from (16) we have that

|t (0)] < 1. (29)
Thus, from (28), (29) and by Gronwall’s inequality it follows that

(u),) is bounded in L>(0,T; L*(Q)). (30)

m

The estimates (18), (19), (20) and (30) allow us to pass to the limit according to
Problem 1. The proof of the initial condition is analogous to what has already been done.

Uniqueness

Let u and v be weak solutions of Problem (1). Then w = u — v verifies

w —iAw = |v|fv — |ulPu in L0, T; H '(Q))
w =0 (31)
w(0) =0

Composing (31); with w implies that
(w'(t), w(t)) +i((w(t), w(t)) = /Q(\’U(t)!pv(t) — [u(®)|Pu(t))w(t) de.

Whence

N
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However

Re / (oo — |ul?u) (5 — @) da
= [ Al = Re(loloa) - Re(ulun) + [ul"*?}da
- /Q {{v]P*> = [v]” Re(vit) — |ul® Re(u) + [ul**}dx
:/Q{|U|ﬂ+2_ Re(u) 10 (Jo]? + [u]?) + [u|**?}dz
> [ AP = ] OOl )+ 2t
= 10 =l = ol
= [ Al ol = ) =l (o] ) e
= [l =)ol = e > 0

since F'(A) = A" is increasing, for A > 0. Thus

1d

2
—_— < .

Integrating the inequality above, we have

w(t)? = [w(0)2 < 0

which proves that w = 0. O

0Here we used the fact that Re(uv) = Re(uw).
UNote that o] = |v|.
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Chapter 6

Problem Z% — Au + |[u/|Pu’ = f

8162
Problem 7
@—Au+|u'|pu'—f in Q (p>0)
ot - P
u=0 on X (1)
u(z,0) = ug(x); %(0) =ui(x); =€

subject to the data

uy € HY(QNH(Q), uy € HY(QNLXPHV(Q), f e L*0,T; H (Q)) and f' € L*(0,T; L*(Q))
(2)
possesses a unique strong solution in the class:
we L>(0,T; Hy(Q) N H?(Y)), o' € L(0,T; Hy () N LFT(Q), 3)
u” € L0, T; L*(2)).

Proof:
Let (w,)yen be a basis of H} (Q)NH?($) given by the eigenfunctions of the operator
—A defined by the triple {Hj (), L*(22), ((-, -))}. As we know

€ ( N Hm(9)> NC>(Q). (4)

meN

Furthermore, as we did in Problem 6 we have that
(wy) istotalin LY(QQ); Vg=>1. (5)
12 Step: Approximate Problem

Let us set:
Vin = [wi, -+, wim)

In V,, consider the approximate problem

U (1) € Viy & up(t) = Zgim(t)wi (6)
(tty (1), w5) + ((um (1), w )) (et ()P (8), wj) = (f (£), wj) (7)
U (0) = ugy — ug in Hy(Q) N H*(Q) (8)
u, (0) = up, —u; in HY(Q)N LHPHD(Q) (9)

65
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which has a local solution, by virtue of Carathéodory’s criterion in some interval [0, t,,).

22 Step: A Priori Estimates

e A Priori Estimate I
From (7) it follows that

2dt| v ()|2+2dt||um OIF + /|u O do = (f(t), up, (1))

<3 |F0)f2 + 3 (B

Integrating from 0 to t; ¢ € [0,t,,), we obtain

o ()P + [t H2+2/ 4 ()N 2y A = ltton]? + [[iom
(10)
11 Boar + / ol (s)P ds.
0
From (8) and (9) 3¢; > 0 such that
sl + [[tioml  + [|fl22cy < @17 ¥m €N (11)

and from (10) and (11) it follows that
t t
[t (8) 1 + [ (1) + 2/0 [ () () ds < 1 +/U |y, (s)|* ds
and by Gronwall we obtain
t
[t (8) | + [ (8)][* + 2/0 um (| [Tpyds < ¢ VEEDty); VmeN  (12)

which allows us to extend the solution w,,(t) to the whole interval [0,7], with w,,(t),
ul,(t) absolutely continuous and w (t) existing a.e. in |0, 7[. From (12) it follows that

(ul) is bounded in L>(0,T; L*(Q)) (13)
(u,,) is bounded in L*(0,T; Hy(S2)) (14)
(u.) is bounded in LP(0,T; L (Q)) = LP(Q) (15)
(Ju! |Pu!)) is bounded in L (0,T; LF(Q)) = L7 (Q) (16)

e A Priori Estimate I1

Composing (7) with (—Au/,(t)) by Green’s formula implies that

(g (8), 1 (£))) + (= Bt (£), =Dty (£)) 4 ([, (8) P20, (£), = A, (£)) = ((f (£), 1 (1))

Now from (4), (6) and again by Green’s Theorem

1 d , 1d
— — | Aupy(t) 2

> (I + 5 5 A r+2/a
1
2

1O + 3 = [l (9]

(t)ou (1)) 2D g

<
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However,

0 o ou! ()
| - Qo 0) 22 o
=(p+1 / |ur, ( m(?) (%éx( ) dx (18)

Oz;

~(1) [ (wtw %@)d

Now, from the fact that we have

2 (0 0) = (5 1) it 1 2l o

from (18) and (19) it follows that

O (v o ) (o 1) O 2
/ani (g ()P 20, (1)) D al.vc_m/Q (a_xi(mm(t)’ / um(t))) dr. (20)

Substituting (20) in (17) we obtain

i (O + )+ DTG S [0 (o 0)| o

1
<3 |2 + 5 e 1

Integrating from 0 to t with ¢ € [0, 7] we arrive at

N —

t o 2
O + A () o (0P, 1) doct
Q LOT;
t e1)
< w1 + | Dviom]* + [f 1172 0,7:11) +/0 7 ()1 dis.
However, from (8) J¢; > 0 such that
[lwam|* + | Auom[* + 1720y < 15 Vm €N (22)
and from (21) and (22) we obtain
2 2 2 : 0 2 ’
[lum (E)]]|” + |Awy, (t)]° + [a—(|u;n(t)‘/’/ u;n(t))} dxdt
Q Ly
t
S TG
0
and by Gronwall’s inequality
2
e (D12 + | At (1) [ ()2, (1 >)] dudi <. (23)

for all t € [0,T]; Vm € N, which implies that

(u),) is bounded in L>(0,T; H}(S)) (24)

m
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aT?

(ty,) s bounded in  L>(0,T; Hy(Q) N H*())

(88 (|u;n(t)|p/2u'm(t)> is bounded in  L*(0,T; L*(Q)); Vi=1,...,n
Z;

e A Priori Estimate III

From (7) we obtain

(W (8), 1 (£)) + (W (), 13 (£)) + ([t () 205, (1)) 1 (£)) = (F (8), (1))

that is,
1d 2 2 p " "
5 7 [ (@) +2dt”” OIF +(p+1) | Ol (e)ud 1)
1
< Z 2 - " 2.
< S IF WP + 5 )

Integrating from 0 to ¢; with ¢ € [0, 7]
t
P + [l ()] + 200 + 1) / / ol (2, )P (s, 5))? di ds
0 Q
t
< T (O + a1 12200 + / [ (5)|? ds.
0

However, from (7) we obtain

[ (0)]* = (£(0), 1, (0)) = (Atm, 7, (0)) = ([t | "t 17, (0))
< [IFO)] + [Auom| + | [t | t1m | 2] [, (0)]

and from (8) and (9) J¢; > 0 such that:

[, (0)] < [1£(0)] + |Auom]| + [|urml[]50p)] <1

Thus, from (9), (27) and (28) we conclude that

=F

(25)

(26)

(27)

(28)

t t
() 4 [y ()P + 200 + 1) / / (e, )|P (s (1, 8) 2t < e + / i (5P ds
0 Q 0

and by Gronwall it follows that:
(u”) is bounded in  L*®(0,T; L*(Q2))

m

(ul,) is bounded in L>(0,T; H}(Q)).

m

From the estimates above we obtain a subsequence (u,) of (u,,) such that

u, = u  weak-star in  L>=(0,T; H3(f2))
" S’ weak-star in  L>(0,T; L*(Q))
— ' weakly in  LP(Q)

Sl weak-star in - L°(0,T; Hy(Q))
u, = u  weak-star in  L>=(0,T; H3(2) N H*(Q))

Q

<

v
/
v
/
v

<

(31)
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and from (29) and (30) by virtue of the Aubin-Lions Theorem it follows that
u, =’ in L*0,T; L*(Q)).

Thus,
ul(z,t) = u'(z,t) ae. in Q

which implies that
\u! (z, )P u,(z,t) — | (z, )P u/(x,t) ae in Q. (32)
Now from (16) and (32) by virtue of Lions’ Lemma it follows that
Wl |Pul, — [u')P . weakly in  LP'(Q). (33)

The convergences in (31) and (33) are sufficient to pass to the limit in the equation
as in Problem 1. The initial conditions are proved in the usual manner.

Uniqueness

Let w and v be solutions of (1) and set w = u — v. Then w satisfies

W= Aw = [V — WPy’ in L(0,T; L*(R2))
w=0 on X (34)
w(0) =uw'(0)=0

Composing (34); with w’ implies that

(W' (1), 0 (1) + ((w(t), w'(1))) = ('|PV" = [u'Pu!, ' (8) — /(1))

ie.,
1d / 2 1d 2 / 1P, 1P, / /
- = - — = — —') dx. 35
S OP+ 5 LI = [ (01 - Py - ) de (35)
Since the function F(s) = |s|’s is non-decreasing, given that F'(s) = (p+1)]s|? > 0,
we have
/ (|v']Pv" = Ju/|Pu) (v — o) dz < 0 (36)
Q
and from (35) and (36) it follows that
1d, , ., 1d ,
- — t - — t <0.
WP+ 5 S el <

Integrating from 0 to ¢, we obtain from (34);
W @OF +lw®I* <0, Vtel0,T].

Thus,
lw®)[? =0, Vtelo,T]

which proves that w = 0. O
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Chapter 7

Von Karman System

In what follows € will represent a bounded and sufficiently smooth open subset of R2.

Problem 8
Problem 8
32“+A2 —[u,v]=f in Q=0x]0,T][
BT u— |u,v] = = ,
A*v+[u,u) =0 in Q
u=0,v=0 on X =Ix]0,T]
ou ov
% = 07 % =0 on X
u(0) =up(z); x€Q
W) = mila); e
where

OPu *v  0*u 0% Pu 0™
[u,v] = — — + -2
ox? Jdy?>  Oy? O0x? 0x0y 0xdy

subject to the data
ug € HZ(Q), up € L*(Q) and f e L*(0,T; L*(Q)),

possesses at least one pair (u,v), weak solution of (1) in the class

ou

u,v € L®(0,T; HY(Q)); o = — € L>(0,T; L*(2)).

ot

Proof:
12 Step: Approximate Solution

Let (w,),en be a basis of eigenfunctions of the operator A? defined by the triple

{HS(Q)a Lz(Q); (( N ))Hg(Q)}7 where:

((u,v))Hg(Q):/AuAvda:.
0

71
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Letting (A,) be the corresponding sequence of eigenvalues, we have:

O< A< < <A\, <+ |, A, — 400 when ¥ = 400 and

(6)

T

Now from (6), by virtue of the regularity of elliptic problems of order 2, from the
fact that Q is sufficiently smooth, from (6) and from Sobolev embeddings, we have:

Wy € < N Hm(Q)) NC®(Q) N H(Q). (7)

meN

From Spectral Theory we know that

(w,) is a complete orthonormal system in  L*(Q) (8)
w
— is a complete orthonormal system in  H3 () 9
(%) is a complete orthonormal system in  HZ(Q) N H*(Q) (10)

As is well known, the operator
A% H2(Q) N HY(Q) — L*(Q) (11)

is a bijection. Identifying L?(Q2) with its dual we can extend the biharmonic operator
given in (11) to a unique isometric extension

A2 H2(Q) — H2(Q). (12)
Let us set:
G: LX(Q) — HX(Q)NHYQ) and G: H%(Q) — H2(Q) (13)

the inverses of (11) and (12), respectively; i.e, G = (A?)~! and G = (A?)"'. To not
overburden the notation, from now on we will not use the tilde (~).
Let,
Vin = [wi, -+, wi).

In V,, consider the approximate problem

U (t) € Vi & U (t) = Zgim(t)wi, (14)
(U (1), w5) + (Aunm(t), Aw;)
. (15)
+ ([um(t)7 G[um(t)v um(t)]] (*)7Wj> - (f(t)ij> J= 17 e, M
U (0) = ugm — up  in HZ(Q) (16)

121t is worth noting that from the regularity in (7) G[um, u,,] makes sense.
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ul (0) = uy, —u; in L*(Q), (17)

m

which by Carathéodory possesses a local solution in some interval [0, ¢,,). Note that from
(1); and (1) we can write

U (t) = =Glum(t), um(t)] 13) (18)

22 Step: A Priori Estimate
Composing (15) with «/, it follows from (18) that

(t (£), 13 (£)) + (A (8), Ay, (£)) = ([ (£), v (B)], 17, (£)) = (f(2), 17, (2))

ie.,
1d

[ (O + 5 7 18w (O = ([um(8), vm(B)] 1, (6) = (f(8), (1)), (19)

DN | —
&=

Analysis of the Nonlinear Term

Consider the trilinear map
b: HY(Q) x HF(Q) x HZ(Q) = R
(20)

(u,v,w) — blu,v,w) = /ﬂ[u,w]w dx

We claim that such map is symmetric. Indeed, initially observe that such map is
well defined. From (2) and the fact that u,v € H3(Q) we have

[u,v] € L*(€). (21)
Now since n = 2, we have that:
H3(Q) — C°(Q) — L™(Q). (22)

Thus from (21) and (22) it is proved that the map (20) is well defined. Now, to
prove symmetry observe that from the fact that [u,v] = [v, ] it is sufficient to prove that

/[u, vjwdr = /[u,w]v dx (23)
Q Q
Indeed, let u,v € D(2). Then:

ox? \ 0y? Ox0y \ 0x0y oy? \ 0x?

A - 0*u 0% B ot . Pu v N 0t - 0%u (9_21)
022042 0y? O0x? 0x20y>? 0x0y 0xdy  Oy?0x? 0x? Jy?
= [u, v].

13Note that from (2), (7), (14), [um,un,] € C=(Q) C L*(Q), since Q is bounded.
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Thus:

/ [u, v]w dx
Q
/ 0? [(0%u 2/ 0? 0%u p +/ 0? 82uv > di
= | — | = — v |wdx — | =— :
q 0x? \ 0y? v q 0x0y \ 0x0y q Oy? \ 0x?
Using Gauss’s formula twice, the equality above can be rewritten as

/@82—&) d _2/_82u _(92w vda:+/@82—wvdw
o Oy? 0x? var q 0x0y 0xdy o 0x? 0y?

that is,
/Q[u,v]wdm:/g[u,w}v; Vu,v,w € D(Q).
Let (u,), (v,) and (we) C D(Q2) be such that
u, —u; v, —v and we — win Hy(Q).
Now from (2) and (25) it follows that
[Uy,v,] = [u,v] in LY(Q)
and from (22) and (25) we also have that
we > w in L™(Q)

and from the convergences in (26) and (27) we obtain

/[uy,v#]wg dr — /[u,v]w dx.
Q Q

/[uu,w§}vudx—> /[u,w]vdw
Q 0

which proves (23). It follows from this in particular that

Analogously

(@wwwwwmm:/mmwwmmwm

Q

Substituting (28) in (19) results that
1d / 2 1d 2 / i /
O 5 1A () — (D). (0], 00(1)) = (F(0), 0, (1)

or even,

1d 1d

5 21 1 OF + 5 1800 = 5 ( 5 1m0 w000 )) = (700060,

2 dt 2 \dt

But from (13) and (18) we can write

A0, (t) = — [t (£), U (t)]

(24)

(24)

(25)

(26)

(27)

(28)
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which implies
d

A, (1) = = g Lum(8), wm()]. (30)

Substituting (30) in (29) results that

1d 1d 1

/ 2 2 / 1 2 1
S TP + 5 S BB + 3 (A0, (8), Avm(®) < 5 FOF + 5

>l (0

m

that is,

1d 1d

1d
e P A AN M
5 g tm O+ 5 5

1 1
A 2 Z 2 A 2<_ 2 s, 2.
un()? + 5 2 [Avn (O < SIFOF + 5l (0)

Integrating from 0 to ¢, ¢ € [0,¢,,) we obtain
1
[ (OF + [t () + 5 [Ava (D) < Juim]* + [Augm[?

1 t
+ 3180 OF + 111y + [ (o) ds

Analysis of the term |Av,,(0)|?
Since n = 2, we will prove that
LYQ) — H*(Q). (32)
Indeed, defining the operator

T: LYQ) — H2(Q)
g—Tg
given by
(Tg,v) = / gudr; v e HZ(R), (33)
Q

we have, by virtue of (22), that

[(Tg,v)| < /Q 9] [ol dz = [g][ L2 (@) [[0][L=@) < ellgllir@) [[v]laze0) -
Therefore,

T gl -2 < cllgllie (34)

which proves that
T € L(LY(Q); H2(Q)).

We note also that if g1, g» € L'(Q) and T,, = T,, we obtain

A@—wwww,We%m»

In particular
(91— 92.0) =0, Vo €DQ)
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which implies that g; = go in D’(Q2) and therefore g; = g¢» a.e. in 2, which proves the
injectivity of the map 7. In this sense (32) is proved.
We will prove next that the bilinear map

[+, ]2 H5(Q) x Hg(Q) - H*(Q)

(u,v) — [u,v] (35)

is continuous. In fact, by virtue of (21) and (32)

m%mm%mﬁqWMmeZQAﬁwmﬂ

<. / *ul| |0%v P 0%u 0%v N J*ul| | 0% i
= o L |0x2] | 0y? 0x0y| | 0x0y oy? | | 0x?
0%u 0%v 0%u 0%v

VD ) s

(]

022 8_y2 0x 0y 0xdy
. / 92w 2\ 1/2 / 520 2\ 1/2
q |0y o |Ox?

(14)
< C2{||UHH§(Q) ||UHH§(Q) + 2HUHHg(Q) HUHHE(Q) + ||UHH3(Q) HUHHg(Q)}

< csl|ul| gz 0] 520

which proves the desired result. It follows from this that
|[wom; wom]||r-2(0) < C2HU0mHHg(Q) HUOmHHg(Q) .
From (16) we guarantee the existence of a constant ¢; > 0 such that
[tom, vom]l|r-20) < c35 Ym €N (36)
and therefore, from (13) it follows that
v (0)[|m2() = [|Gluom, voml||m2) < callltom, vom]|la-2@) < cs, VmeN

that is,
|Avy (0)]2() < 65 YVm €N, (37)

Thus, from (16), (17), (31) and (37) we obtain
O + 3O + 5 180 OF < er+ [ i () ds
and by Gronwall
[ul ()% + | A, (8)[* + % |Av, (1)) <¢; Vte[0,t,) VmeN. (38)

The estimate above allows us to extend u,,(t) to the whole interval [0, 7], and from
(18) we have the same for v,,(t). Furthermore, we conclude that

(ul,) is bounded in L>(0,T; L*()) (39)
(t,,) is bounded in  L>®(0,T; H3(Q2)) (40)
(v,,) is bounded in  L*°(0,T; H3(S2)). (41)

4 Here we are using the fact that in H3() the norms [Au|2 and [|ul|g2(q) are equivalent.
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32 Step: Passage to the Limit

From the estimates in (39), (40) and (41) we can extract subsequences (u,,) of ()
and (v,) of (v,,) such that

u, = u  weak-star in  L>=(0,T; HZ()) (42)
ul, ™' weak-star in  L*(0,T; L*(Q2)) (43)
v, = v weak-star in L>(0,T; H3(Q)) (44)

On the other hand, from (39) and (40) we have, by virtue of the Aubin-Lions
Theorem, the existence of a subsequence of (u,), which we will still denote by (u, ), such
that

u, — u strongly in  L*(0,T; L*(Q)). (45)

Let j € Nand 6 € D(0,T). Then, for v > j from (15) and (18) it follows that

_ /0 (ul,(t),w;)0'(t) dt + /0 (Auy (1), Aw;)0(t) dt

T T (46)
- [ e = [ .o
From (42) it follows that
<w7ul/>L1(O,T;H*Q),LOO(O,T;Hg) — <wau>L1(0,T;H*2),L°°(O,T;H§);
Yw e LY0,T; H2()).
In particular, if we define
)y = w; € C*(Q x [0,T]) = C(Q) (47)
and consider w = A?y; = §A*w; € L'(0,T; H%(2)) we obtain
T T
/O (A% (t), un (1)) 20y m2(0) At — /0 (A% (t), ult)) y—>(pma o dt
that is,
T T
/ (A;(t), Au,(t))dt — / (A;(t), Au(t)) dt. (48)
0 0
From (43) we obtain immediately that
T T
| e — [ )i (49
0 0
e Passage to the Limit of the Nonlinear Term
We have the following relation
T T
| Qv vyde= [ () o) ar
0 0 (50)

:/OT([wj’u”]’UV)dt:/OT([QZJj,UZ,],uV)dt_
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We claim that

[0, v,] = [th;,v] weakly in L*(Q). (51)
Indeed, since

2. 92 2 2 2. 92
wj’%]zawj@vy_Q@w Ovy+8wj0vy
0x? 0y? 0xdy 0xdy  Oy? Ox?

it is sufficient to prove, for example, that

0*; 0*v, 0*; 0% 5
02 O gpdxdt—>/ 0 O pdxdt; Ve e L(Q). (52)

since for the other terms the reasoning is analogous.
From (38) it follows that

(v,) 0%v, 0%v, 9%v, 0%v,
Wi\ ez ) oy? )\ 0zoy )’ \ Oyox

are bounded in L>(0,T; L*(Q2)).

Thus,
2 2
%—;2” ~ g—yz weakly in  L2(Q). (53)
However from (47) we have that
by € CF(Q)
which implies that
D%, 0w =
o2~ Ui €7@
and, consequently,
82% 2
"6 e 12(Q) (54)

Thus, from (53) and (54) results the convergence (52) and consequently (51). It
follows from this and from (45) that

/UT(WJ,UV],UV) dt — /OT(W,].,U],U) dt.

/0 ([t 0], ) d — / ([u, o], y) dt. (55)

Finally, from (46), (48), (49) and (55) we have proved that

Oor even

T

), w;)0'(t )dt+/ (Au(t), Aw,;)0(t) dt

T

- o
)

wppOde= [ (0.0t
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By the totality of the sequence {w,} in H3() it follows that the last expression is
valid for all v € HZ(Q) and, therefore,

u” + A*u—[u,0] = f in D0, T; H*(Q)).
Since f € L*(0,T; L*(Q)), A?ue L>*(0,T; H %)) and [u,v] € L=(0,T; L} (Q))

we have

u”" € L*(0,T; H%(Q)) (56)

and
u’ + A%u—[u,0] = f in L*0,T; H2(Q)). (57)

42 Step: Initial Condition
from (42), (43) and (57) it follows that
u e C°([0,T7; L*(Q)) N Cs(0, T HF ()
u' € C°([0,T]; H(Q)) N Cs(0,T; L*(Q))

making sense, therefore, to calculate u(0) and «/(0). From there, we prove that u(0) = g
and u/(0) = u; in the usual manner.

Remark: We know that H*(Q) — C°(Q) if s > g In the present case n = 2 and,

therefore, B
H3(Q) — C°Q); Vs> 1.

Thus, if 0 < e < 1 we have
H)™(Q) — C°(Q); Ve €]o,1].
Repeating the previous arguments we prove that
LYQ) — H-9)(Q)

and since
A?v, = —[u,, u,)

it follows that
A%y, € L®(0,T; LY(Q)) c L=(0,T; H-19)(Q)).

Using the regularity results of elliptic problems of order 2 in the spaces H*(£2) it
follows that

v, € L=(0,T; H*=149(Q)) = L=(0,T; H3>#(Q)); Ve €]0,1].
Note that from (45) it follows that

[y, u,] = [u,u] in D'(Q) 1 jor even, — A%v, — [u,u] in D'(Q).

From (44) it follows that A%y, — A?v in D'(Q) and, by the uniqueness of the limit, it is
concluded that:
A*v = —[u,u. O

15 Actually, [uy,¢] = [u,¢] in L*(Q) and then [ [uy, w]e = [|u, olu, = [olu, olu = [ [u, ule.
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Chapter 8

Von Karméan System (Stationary Case)

Problem 9

Problem 9 given by
A*u—[u,v] =f in Q
A*v+ [u,u) =0 in Q

u=0, v=0 on I (1)
ou ov
5 = 0, 5 =0 on T
where
feH Q) (2)

admits at least one pair (u,v) as a weak solution, in the class,
u,v € H (). (3)

Proof:

12 Step: Approximate Problem
Let (w,),en be a basis of eigenfunctions of the operator A? < {HZ(Q); L*(); (-, + ) 2}

0

where:
((u, v))Hg(Q) = /QAuAU dzx.
As we saw in Problem 3 if (),) is the sequence of eigenvalues corresponding then
D<A < <. <A, <--- and M\, — +o0.

Furthermore,
(w,) is a complete orthonormal system in L*(2) (3)
(%) is a complete orthonormal system in HZ () (4)
() is a complete orthonormal system in Hg(2) N H*(€2). (5)

Av
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Considering that w, is a solution of the problem

Aw, = \w,

WV|F:0
0
dwr| _,
ov |n

then, by virtue of the regularity of elliptic problems of order 2, from the fact that €2 is
a bounded sufficiently smooth open set and from the Sobolev Embedding Theorem, it
follows that

@) c (N #@) nex@n s, ©

meN

Since the operators
A% HX(Q)NHY(Q) = LA(Q), A2 H2(Q) — H2(Q)
are bijections, being the second one an isometry let us define
G: LX(Q) — HZ( Q) NHYQ) G: H2(Q) — H2(Q)
G=(A?)" and G=(A2)"!

Consider
Vm = [wl, Ce ,wm].

In V,, consider the approximate problem

U, € Vm & Uy = zmzfzwz (8)
i=1
(A, Awj) + ([tm, G, U], w;) = (fiwj); 7=1,2,...,m. (9)

We observe that from (1), we can write that
U = — G, U] (10)

We will prove next that the algebraic system (8)—(9) possesses a solution. Note
that we cannot use Carathéodory’s Theorem since the problem is stationary.
Substituting (8) in (9) results that

:<f7w]>a jzly"'am

Setting
al-j:/QAwiijd:c; Z,jzl,,m, ij<f,wj>; jzl,...,m (12)

and

bj(gl,...,gm):\/ﬂ{z&wi, G[Z&wl,zngﬂwjdx, jzl,...,m, (13)
i=1 i=1 i=1
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we obtain from (11), (12) and (13)
Y Gag b6, &)= 1<ji<m. (14)
i=1

To prove the existence of solution of (14) we need a result which we state below

Lemma (Visik): Let £ — P(§) from R™ — R” be a continuous map such that for some
p > 0 we have (P(§),&)rn > 0, V& € R™ with ||{]| = p. Then, 3¢ € B,(0) such that
P(&) = 0.

Proof:
Suppose, by contradiction, that

P(€) £0; V¢ € B,(0). (15)

Since the map £ € R" — P(£) € R" is continuous, then the map

Q: B,(0) - R"

£ Q) = —Wp@“ P(¢),

which is well defined by virtue of (15), is also continuous. Furthermore, for all £ € B,(0)
we have

(16)

101 = |~ e P =2 (17

which proves that () maps B,(0) into B,(0). Thus, by Brouwer’s fixed point theorem,

3¢ € B,(0) such that

Q(&o) = &o, (18)
that is, from (16) we have equivalently that
P(&)
- p==E. (19)
1P (&)l ’
We observe that from (17) and (18) it follows that
ISl = p > 0. (20)
It follows from (19) and (20) that
P(§ P(§
(P, &) = L (g, g = JPEN e e g
p p
which is absurd! O

Returning to (14) let us define for each j =1,...,m
Ny = Zfiaij +0; &1y Em) — S
i=1

and
n = (Ula---ﬂlm)-
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We must prove that the map P: R™ — R™ given by

§>—>um:25iwz~»—>n (21)
i=1
that is, £ € R™ — P(§) = n is continuous, and furthermore, that 3 py > 0 such that:
(P(£),6) =0; VEER™ [€] =po. (22)
Indeed, we will prove initially the continuity of P. For this it is sufficient to prove
that
P;:R™ - R
§ = Pi(&) =

is continuous. In fact, let £, € R™ and consider (§,) C R™ such that
& — & in R™. (23)
We have
|1P5 (&) — P5(&)
= Z%‘(fuz’ — &) — i &y, &om) +H0;(E01s -+, Eom)
i=1

(24)
S Z |aij| |€V7, - 507,| + |bj(§V17 cee 751/771) - bj(f()l) cee 7€Om)|'
i=1
However, from (23) we have
&0i — &oi| < (Ci —&0i)? =& —&l| =0, Vi=1,...,m,
i=1
which implies that
gui_>£()i n R, VZ:]_, , M.
Therefore
i=1 i=1
Whence

li ém’wiy i guiwil — |: i foiwi, i &)iwi] in Ll (Q) — H72(Q)
i=1 i=1 i=1 i—1

and consequently

G { Z Euiwi, Z fm‘wi] -G {Z €oiwi, Z fm‘wz‘] in Hg (%)
i=1 i=1 i=1 =1
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From the convergence above and from (25) it follows that
lz Sviwi, G [ Z §uiwi, Z §Wwi] }
i=1 ; A
- |:Z éoiwla |: Z £02wz7 Z 501w1:| :| ln Ll )
i=1
Since w; € HZ(Q) — C°(Q) — L=() (since n = 2) it follows that
/ [ Z §viwi, G [ Z §viwi, Z fmwi] } wjdx
QL= i—1 =1
— / [ Z Soiwi, G [ Z Eoiwis Z fgiwi] } wjdzx
QLo i—1 i—1

that is,
|bj(€u1a>£um)_b](€017750m)| — 0. (26)

Thus, the continuity of the map P is proved. We will prove next the veracity of
(22). Indeed, from (13) we have

(P&,¢) = Zm&

Z (Z@aij +0;(&1, - Em) — fj)fj

7=1 =1

3

[
Ms

‘ <Z€'(AM,A%’)L2(Q) +/Q[umaG[umaumej dr — <f,wj>)£j

(A(Z§W%>’ (Zm:gjwj))m(m ) ”
—I—/Q[Uma (i, ti] (Z%gj)dx ,(;%‘fg‘)>

= (Aup, Auy,) — /[um,vm]um de — (f, unm)
Q

<
Il

= [Aup,[* — /Q[um,vm]um dx — (f, um).

However

/Q [ty Vot e = / s )0 (28)

Q

From (10) we have:
A2, = —[Up, Un). (29)

Therefore, from (28) and (29) we conclude that:

/[um,vm]um dr = —/ A%,,v,, dz. (30)
Q Q
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Substituting (30) in (27) results that

(P&, €)
= |Aum|2 + (AQUm, Um) - <f> Um>
= | AU > + [Avy > = (f, um)
> Aty |* + | A > = || Fll -2 |t 2(0)
> [ At * + [Avp [ = 1Aty

that is,
(PE,E) > |Aup* + |Avp)? — 1| Aup| > |Atup|? — c1| Aty . (31)

We have two cases to consider

(i) If |Au,,| = 0, then from (31) it follows that (P&, &) > 0 which proves the desired
in (22) for any p > 0.

(i) If |Auy,| # 0, then (P&, &) > 0 provided that |Aw,,| > ¢;. We will prove that
dpo > 0 such that, V& € R™, if ||| = po, then |Au,,| > ¢ and we have the desired in
(22). Indeed, we have from (3) that

| Aty [Ty = (At Attyy) = (Z&Awu Zfisz) =) &lAwilizg)- (32)
i=1 im1 i=1

Setting
B = min{|Awn 7, ... [Awy[*}

from (32) it follows that

|Aum|%2(ﬂ) 2 ﬁng = Bmllé]l?,
i=1

which implies that
|Atm|r2@) =/ Bll€]]- (33)
1

VB
| At |22 = v/ Brnbo > /B - \/% =0

which proves the desired in (22). Thus, by Visik’s Lemma 3¢, € B,,(0) such that P() =
0, that is, the system given in (11) admits a solution.

Choosing py > 0 such that pg >
€]l = po, that:

we obtain from (33), for all £ € R™ with

22 Step: A Priori Estimate
Multiplying (9) by &; and summing over j from ¢ to m, we obtain from (10) that
(Auma Aum) + ([uma Um]7 um) = <f7 um>

or even,
| At |* = ([t ], V) < || fl] -2 HumHHg -

Whence, from (29)

At |* + (A%, 0m) < 1| fll =20y | Dt
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and, therefore,
]Aum\Q + ]Avm|2 S CleHH—Q(Q) ]Aum\, Vm € N (34)

For m € N such that |Au,,| = 0 then |Au,,| is trivially bounded. When |Auw,,| # 0
we have from (34) that
|Auy,| <cp; VmeN (35)

and from (34) and (35) it follows that
|Av,| <es; VmeN. (36)
Thus, from (35) and (36) we have

(u,) is bounded in  HZ(Q) (37)
(v,,) is bounded in  HZ (). (38)

It results from (37) and (38) the existence of subsequences (u,) of (u,,) and (v,)
of (vy,) such that

u, —u weakly in  HZ2(Q) (39)
v, = v weakly in HZ (). (40)
comp

On the other hand, by virtue of HZ(Q2) — L*(Q) and (37), we can extract from
(u,) a subsequence, which we will still denote by the same notation, which verifies

u, —u in  L*Q). (41)

32 Step: Passage to the Limit
Let 7 € N and consider v > j. From (9) and (10) it results that:

(Auy, Awj) = ([uy, v ], w5) = (f, @) (42)
From (39) it follows that
(W, uy) g2 gz —> (W, W) g2z, Ywe H™2(Q).

In particular,
(A2wj, u,) — (A%wj, u)

that is,
(Auy, Aw;) — (Au, Aw,). (43)

We have
([uw, vi],wy) = ([, wi], v0) = ([wj, w], v) = ([wy, v], w). (44)

We claim that
wj,v] = [wj, 0] in LA(Q). (45)
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Indeed, we have

O*w; 0% Pw; 0%v,  w; 0%
| _ v 9 j v J v 46
lwj» v ox? 0y? dxdy dxdy o 9y? w

and
0*w; 0*v Pw; v Ow; 0%
= - + _
0x? Oy? 0xQy 0xQy  0x? 0y?
Therefore, from (6), (10) and (40) it follows that [w;,v,], [w;, v] € L*(Q). To prove
(45) then, by virtue of (46) and (47), it is sufficient to prove for example that

[wj7 U] (47)

5 pdr, Vee L*(Q), (48)

since for the other terms the procedure is analogous.
Indeed, from (36) it follows that

v\ . . )
e is bounded in  L*(Q). (50)

Consequently, from (50) we conclude that

v, 0*v .

8y2 — 8_y2 m L2(Q) (51)

However since o2

Wi
< o2 @) € L*(9), (52)
because from (6) we have that
2, |2
/aw;go dxgc/\go|2dx<+oo
ol Oz Q

from (51) and (52) the convergence in (48) follows, proving (45). It follows from this and
from the convergence in (41) that

([wjv UV]> ul/) — ([wj’ U]v u)
Thus, from (44) we can write
([, ], w5) = (lwy, v ) = ([wy,0),u) = ([u, 0], w;). (53)

In this way, from (42), (43) and (53) it follows, in the limit situation,

(Au, Aw;) — /[u,v}wj de = (f,w;), VjeN.
Q
By the totality of the sequence {w;} in HZ() it follows that

(Au, Aw) — /Q wolwde = (f,w): Ve H2(Q). (54)
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Taking w = ¢ € D(Q2) in (54) we obtain
A*u—[u,v] = f in D'(Q),
or even,
A*u—[u,v] = f in H Q). (55)
On the other hand, from (41) we have that
[uy,u,] = [u,u] in LYQ) — H*(Q),
which implies that
~Gluy,u,)) = —Glu,u] in HF(Q),

or even, from (10),
v, = —Glu,u] in HZ(Q). (56)

From the convergences in (40) and (56) and by the uniqueness of the limit we

conclude that
v =—Glu,ul. O (57)
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Chapter 9

Navier-Stokes System

Let © be a bounded and sufficiently smooth open subset of R2.
Let us define

V= {p € (DO divey =0} ()
vV — v(Hl(Q))2 2)
H— V(L2(Q))2 (3)

The set V' defined in (2) can be rewritten as
V = {u € (Hy(Q))*divu = 0}. (4)

We will endow H and V| respectively, with the inner products in (L?(2))? and
(H}(Q))?. More precisely, we have

(U, U)(LQ(Q))Q = Z(u“ Ui> (5)

and

Problem 10

Problem 10 given by

divu=0 in Q (7)
u=0 on X
u(z,0) = ug(x); = €,

91
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where

u = (uy,us);

ou Ou, Ous ou
— . — / !/ A — A A
81’]- (8.’17] ) ax] ) ot (u17 U2), u ( Uy, Ug),

subject to the data
up € H and f € L*(0,T;V") (8)

possesses a unique weak solution in the class

u€ L*0,T;V)NL®0,T; H); ' € L*0,T;V").

Variational Formulation

Composing equation (7); with an admissible function w, we obtain

<u',w>—u<Au,w>+( g 130 ) = (£10) = (V).

Applying Green’s Theorem formally it follows that

2 2 2 2
, ou; ou;
Z(ui’wi)L2(Q) + ’/Z((Ui,wi))Hg(Q) + Z / o i dl’ + Z Z ( vawz)
— — — Jr oOn — <= \Ox; L2(Q)
=1 =1 =1 i=1 j=1
2 2
dp
=S -2 (o)
i=1 Oz; L2(Q)

i=1

Now considering w; = 0 on I' and using formally Gauss’s Theorem it results that

=1 =1 =1 j=1
2 2 Ow, 2
= fis wi +/]9( Z)d:c‘— /pwmidf.
Sy . 2, Ow; .
Considering divw = ) . 0 and w; = 0 on I it follows that
i=1 OZ;

Z(UZ,W’L)LQ(Q) + VZ Ui, wi)) i) Z Z (8% uj,w1> = Z(fz,wl) (9)

i=1 i=1 i=1 j=1 L2(Q)

In truth, the variational formulation given in (9) holds for any function w € V
given in (4).

Before proceeding to the resolution of problem (7) we will make some initial con-
siderations that we will need in the unfolding of the problem. We have the following
results

Lemma 1: The trilinear form:

b:VxVxxV->R

(u,v,w) = blu,v,w) = Z/ ]8%

2,7=1
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is continuous.

Proof. Since n = 2, we have by the Sobolev Embedding Theorem that
Hy(Q) = LYQ); Vg€ [2,+o0].

Thus and, in particular, H}(Q2) — L*(2). Whence

uj € L*(); 9v € L*(Q) and w; € LY(Q).
8xj
Now, since
+ ! + L 1
2 4 4

it follows from the generalized Hélder inequality that b(u,v,w) is well defined and, fur-
thermore,

[ s g da] < lulusiey || el < enllos g el i
w; — w; dx| < |uj|za wilzay < erlluy||m Uil 1 wi ||
o J@Ij JILA(Q) axj L2(9) L LY HG( Hy () Hs ()
Thus:
2 2
b(u,v,w) ZZ/]uﬂ |w; | dx
Ly

=1 ]:

2 2
oy Z sl g il lmy o lwil [z 0
=1 j=1

2

IA

znujuzg(m) (vazum ol

j=1

2 /2, 2 1/2
<01(ZHUJ-H?{3<Q)> (Zr|w|rH01<m) (Zuwiuw) |
=1 i=1

Jj=1

that is,

|b(u,v,w)|§01||v||||u||||w|], Vu,v,w eV
which proves the lemma. O

Lemma 2. We have that  b(u,v,w) = —b(u,w,v), Yu,v,w € V.

Proof. Consider, initially, u,v,w € V. Then, by Gauss’s formula:
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b(u, v, w) + b(u,w,v)

ij=1
2
7, )i}
= U vw;) dx
z{/ ) (v
io
2 Ve Y
O
— Z{_/ﬂwwidx%—/ujviwimdF}
i1 o O r
2 2
QN5 Oz, i=1

———
=0

which proves the desired result for functions in V. Consider, then, u, v , w € V. Thus,
from (2) it follows that there exist (u,), (v,) and (w,) C V such that

u, >u; v, —v and w, —w in V.

However
by, vy, wy,) = —b(uy, w,,v,). (10)
It follows from (10) and the continuity of b(-, -, ) (cf. Lemma 1) the desired
result. ]

Lemma 3. Let Q C R? be a bounded and sufficiently smooth open set. Then for all
u € H} () we have
HU||%4(Q) < \/§||U||H3(Q) |ulL2(0) -

Proof. Let ¢ € D(Q) and consider 1 its extension by setting it to zero outside in R?\ Q.
Then,

V2 (1, 19) = / 1 % (wz(s,xg))ds = 2/ 1 W(s, o) gw(s,mg) ds, ¥ (x1,2) € R2

oo Js
Thus
9% (21, 22)|
2 a
S 2/oo|¢(87x2)‘ a_f(sa‘rQ) ds
+o0 o
< 2/_00 (s, )| ’a_f(s’“) ds.
Defining

+o0o
ven =2 [ iz \%<> ds (1)

o0

it follows that
|02 (21, 20)| < v(mg); VYV (21,22) € R (12)
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Analogously, setting

+oo
v(xy) = 2/ [P (21, 8)| ‘g—f (x1,$)] ds
we have
[V (21, 29)| < v(zy); ¥V (21,72) € R2 (13)
From (12) and (13) it follows that
[Vt (21, 29)| < v(1) - v(e); YV (21,22) € R (14)

Observing that vy, vy € L*(R) then by Tonelli’s Theorem (viv9) € L*(R?) and from
(14) we obtain

/ (21, 20) | da < / v(zy)v(xe) de < 400; & = (21, 23).
R2 R2

It follows from the inequality above, by Fubini’s Theorem, that

(21, 20)|* dz < (/v(xl)dxl) </v(x2)dx2). (14)
R? R R
However from (11) and the Cauchy-Schwarz inequality we obtain
/ v(xe)dxy
R

_ o
=2 [ [ 1wt ol [5G
2

dl’l dl’g

0

1/ " 2 2
< 2( W(a:l,:vg)\2dx) (/ — (21, 29) dm)
R2 R2 8371
o
= 2‘1ML2(R2) 8_ )
T1 | L2(R2)
that is,
0
/U(l’g)d{EQ S 2|¢|L2(]R{2) 8—w . (15)
R L1 | L2(R2)
Analogously,
o
U([I)l)dfl S 2|¢|L2(R2) a— . (16)
R o) L2(R2)

Thus, from (14), (15) and (16) we conclude that

/ ‘1/1(9517952)‘45595
]RQ

<Al (2] |22
o (R 833'1 LQ(RQ) 8.772 LZ(RQ)
2 2
< 2[9[7age) { ‘6_w o0 },
afljl L2(R2) 8372 L2(R2)
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that is,
91| 7ag2) < 2W|%2(R2)H7/JH§13(R2) :
Restricting ¢ to 2 we have
el 74y < V2l 12(0) el s Ve € DQ).

By density arguments and the fact that Hj(Q2) < L*(Q2) the result follows. O
It follows from Lemma 1 for fixed u,v € V that the map

B(u,v): V=R
w = (B(u,v),w) = b(u,v,w)

is a continuous bilinear form, that is, B(u,v) € V.

Lemma 4. If u,v € L*(0,T; V)N L>(0,T; H) then B(u,v) € L*(0,T;V").
Proof. For all w € V we have by Lemma 2 and by the generalized Hélder inequality
[(B(u(t), v(t)), w)]
= [b(u(t), v(t), w)| = [b(u(t),w,v(t))]

= c1|[u()|[ a2 [lwllv [lo(O]]za@ye -

Whence
B(u(t),v(t)) € V" a.e. in ]0,T] and

[1B(u(t), v(®)llv: < eallu(®)lzs@y> (0@l w2

for almost every ¢ € [0, 77.
On the other hand, by virtue of the numerical Holder inequality

2 2 1/2
u(®)|(za)2 = Z [wi ()| 2a) < 21/2(2 ||u,(t)||i4(9)) :
i=1 i=1

By Lemma 3, we obtain

2 1/2
() |y < 21/2(221/%%@)@@ ||uz-<t>||H01m))
=1

) 1/2 2 1/2
_ 21/22”“(2 s ()] 2o ||ui<t>\|Hg<m) <2/ <||u<t>|lv 2 |u2-<t>|L2<Q>)

=1

(18)

2

1/2 2 1/2N 1/2
=2l ( Ll ) <2022 () |

i=1 i=1

= 2l ()1
Since by hypothesis u € L>(0,7; H) we have
1/2
1/2 1/2
()]l a2 < 25/4(%?511? \u(t)\H) Ju()]1/* < esllul)|l;/. (19)
te]0,T

Analogously
1/2
o)l zs@ye < callu@)][/?. (20)



From (19) and (20) it follows that

)] oz 1o lwsays < esllal@L2 o@N1Y2 ae. in 0,77
From (18) and (21) it follows that
IBu(t), o(®)llv+ < esllu(®)IL2 [lo()][2
which implies the inequality
2
C
1BG(t), I < Sl k@l < 2 [ + o]
Thus
T T T
/0 1B(u(t), v(t)| 3 dt < g [ / u(®)]2 dt + / Hv(tm%dt} < too

which proves the lemma.
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(21)

(21°)

]

Lemma 5. Let X and Y be separable Banach spaces such that X < Y and consider

a,b € [—o00,400] with a < b. Setting
W(a,b) ={u|ue LP(a,b,X), u €L a,b,Y)} 1<p,qg<+o0
endowed with the topology

ullwap) = l[ullLo@px) + [10]| ooy

where «’ is understood in the sense of vector-valued distributions in D’(a, b; X), we have:

D([a,b]; X) 19 is dense in W (a, b).

Proof:
1%t case: a= —o0; b= +o0.

(a) Truncation
Let u € W(—o00,+00) and define

1 i | <1
t) = -
i) {0 if [t > 2

where ¢ € C°(R) and 0 < ¢(t) <1, VteR.
We claim that
Yyu—u in W(—o0,+00).
where ¥, (t) = ¥(t/v); Vv € N*.
Indeed, on one hand we have that

+0o0
b = ullTp s ooy = / | (yu)(t) — u(t)||% dt — 0 when v — +o0,

—00

YD([a, b]; X) = {ulgp) ;u € D(—00,400,X)}, —00<a<b< 400

(22)
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by virtue of the Lebesgue Dominated Convergence Theorem, that is,
You—u in LP(—o0,400,X) when v — +o0. (23)

On the other hand, note that for § € D(—o0, +00) we have

(& .0) = ) = [ uom oo

=—/ u(0)[(0,0) () = VL 000 de

+00 too
o / (£, (1)) dt + / )o(t) dt
< wl/ + uwy? >
Thus
+oo
) =y = [ Il |
oo ® e (24)
<af [ o -l [ i)
In a manner analogous to (23) we prove that
+oo
/ v’ — |[2 dt — 0 when v — +oo. (25)

1
Also, from the fact that ¢/ (t) = —@/}’(E) and 1’ is also bounded on the whole
v v

line, it follows that
/+OO ||we)l, (t)||% dt — 0 when v — +oc. (26)
From (24), (25) and (26) it follows that
(Yyu) — o' in LI(—o00,+00,Y). (27)
Consequently from (23) and (27) we have proved (22). Note that
supp(1,u) C supp(¥y) Nsupp(u) C supp(yy)
which proves that for each v € N* the function (¢, u) has compact support in R. The next
step is to approximate a function u of compact support by functions of D(—o0, 400, X).
(b) Regularization

Let u € W(—o00,+00) with compact support and consider (p,),en a regularizing
sequence. Define

mmZWwwwzﬁmm@W—@w (28)

o0

1"Note that (1,0) € D(—o0, +00).
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We will prove that
u, > u in W(—00,400). (29)

In fact, from classical integration results (Bochner) of vector-valued functions we
know that
u, > u in  LP(—o00, 400, X). (30)

[t remains to prove that
u, = (p,*u) —u in LI(—o0,+00,Y), (31)

where here the derivative is in the sense of D'(—o0, +00, X). However, to prove (31) it is
sufficient to prove that

(po xu) = p, xu. (32)
Indeed, let 8 € D(—o00, +00). We have

((po * U),7 0) = —{p, * u, 0l>

= [ ([ o - s )¢ (1)
—— [T ute- )i
18) /_:O </_:O (- S)G(t)dt)py(s) ds
[ sttt sias ot = o, 0,

which proves (32) and consequently (31). From (31) and (30) (29) is proved. Furthermore,
since
u, € C*(—00,+00,X) and supp(p, * u) C supp(p,) + supp(u)

we have that u, € D(—o0, +00, X). From (a) and (b) the 1%* Case is proved.

2rd Case: ¢ finite and b = 400.

Without loss of generality we will consider a = 0. Let u € W (0, +oc) and h > 0.
We will prove that

mu —u in W(0,+00) when h— 0, (33)

where 7, u(t) = u(t + h).
We will prove initially that

v — v in  L"(0,+00,V) (34)

where V' is a separable Banach space, 1 < r < 400 and v € L"(0, +00; V). Indeed, let & >
0 be given. Since D(0, +00, V) is dense in L"(0, +00, V') we have that 3¢ € D(0, 400, V)
such that

(35)

Wl M

[l = v[r(0,400,1) <

Bsetting f(t) = u(t—s) then f/(t) = «/(t—s) and therefore — f u(t—s)8' (t)dt = — f+°° t)dt =
+ [T @0 dt = [Tt - 5)0(1)d.
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Thus,
1Thv = 0l[Lr(0,400,v) < |00 = Th@l|Lr(0,400,v) + [|1The = @l[Lr(0,400,1) (36)
+ [l = vllr 400 -
However, from the fact that ¢ € D(0, +00, V') we have that
| = @l|r 0,400,y = 0 when h —0
and, therefore,
170 =l Lr 0 400,v) < g; 0<h<o. (37)
Also, by a change of variables it follows that
700 = Taipl 1 0s000) < 10 = @lliroubonry 55 VR >0, (38)
From (35), (36), (37) and (38) we obtain
|| Thv — || Lr(0400v) <& 0<h <0
which proves (34). Tt follows from this that
Tu —u in  LP(0,400,X) when h—0
and, therefore, to prove (33) it is sufficient to prove that
(tpu)” =« in L9(0,400,Y) when h— 0. (39)
However
(thu)’ = ' in D'(0, +o00, X). (40)

Indeed, let § € D(0, +00). We have

(), 0) = —(ryu, @) = — /0 T+ W) dt = — /h T — ) dt.

Defining
U(t) = 0(t — h),
it follows that 1) € D(h, 4+00) since supp ) = h + supp(f) and from the equality above we
can write

+o0 +oo
(' 6) == [ utowae= [ w@ua
h h
+o0o +o0
= / u'(8)0(t — h)dt = / u'(t+ h)O(t) dt = (mpu, 0),
h 0
which proves (40). Thus, from (40) and (34), (39) is proved and consequently (33). The

next step is to show that for h > 0 fixed we can approximate (7,u) by functions of
D([0,400); X). Indeed, set for h > 0 fixed

o(t) = {(1)’ i i 0<o(t) <1, 0<¢'(t) <1 such that ¢ € CF(R)
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¢(t)
/ | .
~h  —ni2 Y

Figure 9.1: Cutoff function ¢(t)

cf. figure below:
Consider now u € W (0, +00) and define

o(t) = 4 POmE; - t>—h
0; t < —h.

We claim that
v(t) = (Thu)(t) a.e. in |0,4o00[ and v € W(—00, +00). (41)

Indeed, if t > 0 > —g then ¢(t) = 1 and therefore v(t) = (7,u)(t). Now, from the
fact that |¢(t)| < 1; Vt € R, it follows that

+o0 +o00
g = [ 0O N0l de < [ lima ol d
00 +00
= [ late+ it = [ e ds < +oc.

Furthermore, from the fact that

s OB (mu)(t) + o) () (t);  t>—h
V'(t) = 0

h
and, also, since ¢/(t) =0; Vt > —3 X <= Y and |¢| <1, |¢'| <1, we have

_ —+00
1M ey < i [ @I de+ [ im0}

—h/2 1/(p/q) —h/2 a/p +o0
< ( / dt) ( [ imaor dt) o [ a0l a
—h —h —h

q

e e
<alg] () s nipa) e [ e mig a

<a®{( [l ds)w # [T IOl asf <o

which proves (41). Tt results from the inequality above and from the 1°* Case, the existence
of (v,) C D(—00,+00, X) such that:

N>

v, > v in W(—o00,+00)
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which implies that,
UV|[0’+OO) — /U‘[O’Jroo) = Tpu in W(O, +oo). (42)

From (42) and from the fact that v,|(p 1o0) C D([0,4+00); X) we have the desired
result.

374 Case: a, b finite

Let o, 3: [a,b] — R be such that

a, € D([a,b]); at)+p(t)=1; Ve |a,b] (43)
a (resp. () vanishes in a neighborhood of b (resp. a) (44)

according to the figure below:

ol a i
Figure 9.2: Partition of Unity on [a, 0]

For all u € W(a,b) we can write from (43) that

u = au+ fu.

Define
— {(au)(t); teladll L Gae {(5 (0 telad]
We have

au € W(a, +00) and Bu € W(—o0,b).

By the 2"¢ Case, there exist (a,) C D([a, +o0); X) and (3,) C D(] — o0, b]; X) such
that —
a, — au in W(a,+o00) and B, — fu in W(—o00,b).

Therefore
Oéu‘[a,b] — @ha,b} =ou and 6V|[a,b} — B\{L“a,b] = ﬁu in W(a, b),

that is,
(a4 B)ljap) = (au+ Bu) =u in W(a,b).

Since

(@ + B0)llap € D([a; 8]; X)

we have proved the desired result. O
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We will proceed next to the proof of the theorem.
Proof: From (1), (2) and (3), we have

VCcVCcH
which implies that
— (12 2 (72 2
R va R C e H,
ie.,
H=7""" (45)
It is not difficult to prove, by virtue of the characterization given in (4) that
vV E H (46)
Consider, then, the operator A defined by the triple {V, H,((-, - ))v}. As we know
DA)={veV;3afeHst (f,v)g = ((u,v))y;YVv eV} f=Au.
Let u € D(A). We have
(Au,v)g = ((u,v))y; YveV. (47)
Setting
Au = (&,&2)
we have
2 2
Z(fuvi)ﬂ(g) = Z((quz))
i=1 i=1

In particular, taking v = ¢ € V it follows that

2 2
Z(éﬁw ©i)D/(Q)D(Q) = Z(—Aui, ©i)D'(Q)D(Q) -
i=1 i=1
Whence
(Au, p)vrv = (—Au, vy
and, therefore,
Au=—Au in V'; Vue D(A) (48)
where —Au = (—Auy, —Auy).

On the other hand, according to the Spectral Theorem, we have the existence of a
sequence (w,),en formed by eigenfunctions of the operator A whose eigenvalues (\,),en
satisfy:

D<M <<~ <A\, A, — 400 when v — +00.

Furthermore,
(w,) is a complete orthonormal system in H (49)
(—;;2) is a complete orthonormal system in V' (50)

(%) is a complete orthonormal system in  D(A). (51)
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By virtue of (47), we have
(Awy, v)g = ((wy,v))y; YveV

ie.,
M(wy,v)g = (wy,v))y; YveV.
From (49) we can write that
+oo
u= Z(u, wy)wy; YueH
v=1
and

From (50) we have

+00
Wy Wy
= , —— ;o YueV
! ;((u V)‘V))V V>‘z/ !

and from (52) it follows that

+o0o

vt =) (( 7)), -

It is worth recalling that the operator A admits an extension

defined by N
(Au,v)v v = ((u,v))y, YveV,;

+oo
> Nww)ul’s YueV.
v=1

(55)

(56)

extension which is an isometric bijection, self-adjoint and therefore admits an isometric

inverse also self-adjoint N
A7V =V

We have, from the above, that if v € V' then from (56)

lollve = 147l = 3 Al o, = ZMUAM

v=1

)l

1
ol =D 5 Ko w)vryl*.

v=1 """

_Z)\ Z vwl,

that is,

12 Step: Approximate System

(57)
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Consider the basis (w,),en, formed by the eigenfunctions of A, mentioned above.
Set
Vin = w1, wa, . .., Wi

In V,, consider the approximate problem

Un(t) € Vin & up(t) = Zgim(t)wi (58)
(U (1), w5) + v((um(t), ws)) + b(um (1), um(t), w;) = (f(t),wi)vr v (59)
Um(0) = wgm — ug in  H, (60)

which by Carathéodory has a local solution in some interval [0, ,,).

22 Step: A Priori Estimates

e Estimate 1

Composing (59) with u,, results that

1d

5 77 [t (O + Vlum (O + bl (t), tn(t), wn () = (F(6), wm(1)).

However, from Lemma 2 we conclude that

b(Upm (1), U (L), up (t)) = 0.

Thus
L d t)]? O < |If(t t
5 77 [ @OF + vllun@)lly < [1f Ol llun@)]lv
1 1
= =@ Vo Olly < 5 IO + 5 (O
Whence

1d S Z 9 1 9
- — — < — /.
5 el P + 2 a1 < o IR

Integrating from 0 to ¢, t € [0,t,,) results that
2 ' 2 2, 1 [ 2
an®F + [ (@) < o+ [ 1101 (61)
But from (60) it follows that
[uom|* < c1; Vm €N, (62)
From (61) and (62) we obtain
2 ' 2 Lo
un®P 40 [ ln(Ifds < ot 4 1 1Bxrans YE€ D6, VmeN.  (63)
0

From the inequality above it follows that we can extend u,, to the whole interval
[0,T] with w,, absolutely continuous and w/, existing almost everywhere. Furthermore,
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as proved in other problems we have that the classical and distributional derivative of u,,

coincide and,
u,, € L*(0,T;H), Ym€N.

Now from (63) we have that

() is bounded in  L*(0,7T; H)
(t,,) is bounded in L*(0,T;V)

o Estimate II
Identifying H with its dual H' we have from (59)

(u, (), wi)vry + (At (), wi) vy + (B (t), um(t)), wi)vy

= (f(t),w)vy, j=1,2,... m.
Setting for each m € N
hn(t) = () = v A (t) = Blum(t), un(t) € V'

we have
(h(t),wi)vry = (u,(t),w;); j=1,2,...mand Vm € N.
Thus
m 1 m 1 . )
ZrWWWWﬂZZ;WWWWH
j=1 "7 j=1 "/
= 1 / 2
= 3 (0, @) YmeN.
j=1"7
Since

we obtain from (57)

O =S S 1w = S L (0
m v — )\ m s - )\ m »
. Vi s Vi
7j=1 7j=1
& ]' / 2 - ]' 2
=3 L) =3 nt),w5)]
)\J )\J
J=1 J=1
= 1 2 2
<3 5 Whm(t), )P = ()1,
Vi

that is,
lum @ < [1hm @I : Ym €N

On the other hand, from (67) and (21°) it results that

Hhm(t)NHv'
<@l + vl At ()] [vr + [ B (£), wm ()] |17
1O+ @l + el O ()[4

<
< [FOflvr + w + en)lfum(®)]]v -

(64)

(67)
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It follows from the inequality above that

1P (O < ex{[[F O+ [um (B)][7}-

Integrating from 0 to T’

/O||hm<t>|\%,dts@{/o 5O+ | ||um<t>||2vdt}; VmeN  (69)

and from (66) it follows that
(hy,) s bounded in  L*(0,T; V). (70)

From (68) and (69) we obtain

T T
/ Hu;n(t)H?V,dtg/ hm (D)3 dt < ¢; Vm e N.
0 0

Whence
(u!) is bounded in L?(0,T;V"). (71)

32 Step: Passage to the Limit

From (65), (66) and (71) we obtain the existence of a subsequence (u,) of (u,)
such that

w, ~u in  L(0,T; H) (72)
u, —~u in L*0,T;V) (73)
u, =~ in L*0,T;V"). (74)

Let @ € D(0,T) and consider j € N. Multiplying (59) by 6 and integrating in [0, 77,
we obtain for v > j that

| 0w 0yt 4 [ (Gun®) ) o0)at .
0 0 75

—|—/0 b(um(t)7um(t),wj)9(t)dt:/0 (f(t),wj)vv0(2)dt.

The convergences in (73) and (74) are sufficient to pass to the limit in the linear
part. Let’s see the nonlinear part.
By Lemma 2 we have that

b(uy (t), u,(t),w;) = —b(u,(t),w;, u,(t)) = — Z /Quw-(t) a—j“mk dz.

Identifying H = H' we have

comp.

V - H=H <V

19Note that A: V — V' is an isometry.
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Now, from (66) and (71) it follows that
() is bounded in W = {w | w € L*(0,T;V); , ' € L*(0,T;V")}.

By the Aubin-Lions Theorem there will exist a subsequence of (u,) which we will
still denote by (u,) such that

u, — u strongly in  L*(0,T; H). (76)
Therefore
u,; — u; strongly in  L*(0,T; L*(Q)) = L*(Q), i=1,2
which implies that
UpiUpp —> WU, ae. in Q; i,k=12. (77)

We claim that
(5 u,1) is bounded in  L*(Q). (78)

Indeed, by Schwarz, by Lemma 3 and by the fact that HJ(Q2) — L*(Q) we have

fori,k=1,2
/ s i dr = / tl? [ ? de
Q Q

1/2 1/2
< (/ |ul,,z-|4dx) (/ |ul,,k]4d:1c>
Q Q (79)

= |’Uu,i||2L4(Q) ||Uu,k||i4(9)
< (ﬁ‘uu,i‘LQ(Q) Huu,iHHg(Q)) (\/§|uu7k|L2(Q) Huu,kHHg(Q))

= 2|wnilL2(0) [t k|2 0) il gy @) N rl 5y @) -

It follows from (65) and (79) that 3¢; > 0 such that

/Q st < 2l L 1t -

Integrating from 0 to 7', we obtain

T T T
| [ sl asie <o [ laolBge s [Tl df <.

where such boundedness comes from the fact that (u,) is bounded in V' (cf. (66)) and,
therefore, each component is bounded in L?*(0,T; H}(Q)), which proves the assertion in
(78).

Thus, from (77) and (78) it follows by Lions’ Lemma that

Uy Uy — U U  iD LA(Q), i,k=1.2.

Ow.s
It follows from the convergence above and from the fact that Tk ¢ L?(Q) that
Ty

Ow; Ow;
/umﬂuykda:%/uiﬁuk,dx i, k=1,2. (80)
QO ’ 81:1 ’ Q 8%



Thus, from (73), (74), (75) and (80), in the limit situation, we obtain
| ooy iy [ o a
+/0 b(u(t), u(t),w;)0(t) dt:/0 (f(t),wj)v v O(t)dt, YjeN
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(81)

and by the totality of the w;»s in V' it follows that the identity in (81) is valid for all v € V.

Whence

T T
</ u’9dt,v> +u</ Au@dt,v>
0 A% 0 A%
T 20) T
+ </ B(u,u)Gdt,v> = </ f@dt,v> , Yv eV,
0 A% 0 VIV

which implies that
U 4+ vAu+ B(u,u) = f in D(0,T:V")
or even, given the regularity of the functions involved
W + vAu+ B(u,u) = f in L*0,T; V).
Before proceeding to the next steps, consider the following result
Lemma 6: Let u,v € W(0,7) = {u;u € L*(0,T;V),u’ € L*(0,T;V")}. Then

% (u(t), v(t)) = (' (8), v(t)vy + (u(t), v'(t)) vy in L'(0,T)

d
where 7 is taken in the sense of D'(0,T").

Proof: By Lemma 5, there exist (u,), (v,) C D([0,T]; V) such that
u, —uin L*(0,T;V) and u, — v in L*(0,T; V")
v, = vin L*(0,T;V) and v, — v in L*(0,T;V")

Now, for each v € N, we have by virtue of the regularity of the u,’s and v,’s:

= nlt),wult)) = L 0) 0 (0) + L 6), o 1)

Now from (85) and (86) we have

(w (1), vu(1)) = (u(t),v(t)) in L'(0,T)

(u, (1), v, () = (/' (1), 0(t)) in LY0,T)

(u (1), 0, () = (u(t),v'(t)) in  LY(0,T)
From (88) it follows that

d d : /
S (), 0,(0) = 2 (u(®),v(0) i DO,T)

20Follows from Lemma 4.

(82)

(83)

(84)
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and from (89) and (90) we have
(u, (1), 00 (1)) + (un (1), 0, (1) = (W' (£), 0(t)) + (u(t), /(1)) in LYO,T).  (92)
Finally from (87), (91), (92) and by the uniqueness of the limit in D’(0,7") we have
the desired result. O

42 Step: Initial Condition
Initially, note that by the fact that

w€ L0, T; HYN L*(0,T;V) and o € L*(0,T;V")

then
u € C[0,T]; V)N Cs(0,T; V)

making sense therefore to calculate «(0) and u(T"). We will prove that
u(0) = ug . (93)
Indeed, let € C*(]0, T]) such that #(0) = 1 and 6(T') = 0. From (73) in particular
for 0'w; € LY(0,T; H), we have

/0 (1 (), w))0' (1) dt — /0 (u(t), )6 (¢) dt. (94)

By Lemma 6

% (u(t), w;0) = (W'(£),w; 0(8)) + (u(t), w; 0'(¢))-

Integrating the equality above from 0 to 7', we obtain

—(u(0),w;) = / (0 (1), w;)0(t) dt + / (ult), w;)0'(2) d. (95)
Analogously
(o 5) = / (ul (£), ) B(1) dit + / (1 (), )0/ (1) . (96)

From (94), (95) and (96) we conclude that

T

~(tton, ;) — / (u (£), w))O(t) dt — (u(0), ;) — / (W (t),w)B(t) i, (97)

0

But from (74) it follows that

/0 (ul (£), wy)B(t) dt — / (o (1), w,)0(2) dt
and from (97) it follows

(uO,Vawj) - (U(O),Wj), \V/j eN.
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By the totality of the w;’s in H we conclude that
(uow, v) = (u(0),v), YwveH. (98)
On the other hand, from (60) we obtain
(uow,v) = (ug,v), VYove H. (99)

From (98) and (99) the desired result follows in (93). O
52 Step: Uniqueness

Let v and v be solutions of the system in question. Then w = u — v satisfies
W' + vAw + B(u,u) — B(u,v) =0 in L*(0,T;V")
w=0 on X (100)
w(0) =0

Composing (100); with w(t) we obtain
(W'(1), w(t))vry +v((w(t),w(t))v = b(v(t), v(t),w(t)) — blu(t), u(t),w(t)).  (101)
However,

b(v(t), v(t),w(t)) = b(u(t), u(t), w(t))
t v(t)) = b(u(t), u(t), u(t) — v(t))

= b(u(t), v(t), u(t)) — b(u(t), v(t), v(t)) — b(u(t), u(t), u(t)) +b(u(t), u(t), v(t))
= b(u(t), v(t), u(t)) — bu(t), v(t), u(t))
= b(u(t) — u(t),v(t), u(t)) = b(—w(t), v(t), u(t))
= b(—w(t), v(t), u(t) — v(t) + v(t)) = b(~w(t), v(t),w(t) + v(t))
= b(=w(t), v(t),w(t) + b(=w (), (1), v(1)),
that is,
b(u(t), v(t),w(t)) — bu(t), u(t),w(t)) = —bw(t), v(t),w(t)). (102)

From (101), (102) and Lemma 6 we obtain

; jt w® + vIw®I}F < llw®)ll sz [y w®)] )z (103)

However, by Lemma 3
[lws ()71 < V2lws(O) ez 0 i)z = 1,2.
Thus

lwIltzs@ z—Zsz ||L4<Q><\/_Z||w W@ lwilt) 220

<va{(; 1 Hwi(t)\lilg(m)l/z(i |wz-<t>|%z(m)l/2} = VB0l o (t)

=1

Mw

( ~
I

J/

@l (@)l a




112 CHAPTER 9. NAVIER-STOKES SYSTEM

that is,

[lw(®)l[Ezs@pe < V2l By |w(t)]- (104)

Thus, from (103) and (104) we arrive at

O+ vl < VE @y k@] @)y
f% e (®)[lv \i w®)a ()]l < vllw®)]f + i\ @ @]
Therefore

Ol < > (@)l Il

N —
S

Integrating the inequality above, we obtain

/|w i oo, s

0 (0,T) L2 (0,7)

Thus, by the Gronwall-Bellman Lemma, it follows that

which implies that

and consequently that u = v. O]
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Recovery of Pressure

In what follows we will consider two results that can be found in R. Teman [13].

Lemma 7: Let Q C R™ be an open set and consider T' = (17, ...,T,) where T; € D'(Q),
Vi=1,...,n. Then

<T, ¢>(D/(Q))n7('D(Q))n = 0, qu cV & Elp S D/(Q> such that T' = Vp in 'D,(Q)

We also have

Lemma 8: Let {2 C R™ be a Lipschitz open set.

P e L*(Q) then p €
T

(i) If a distribution p possesses all first partial derivatives

L*(Q) and furthermore,

1Pl |20y /mn < () [VDlr2(). @Y.

P ¢ H-1(Q) then

X4

(i) If a distribution p possesses all first partial derivatives

p € L2(Q) and, furthermore,
P22y /r < ¢|VDla-1(0) -

Remark: Tt follows from Lemmas 7 and 8 that if T € (H'(Q2))" and (T, ¢) = 0 for all
¢ € V then T = Vp, with p € L*(Q).

It follows from (84) that
W () + vAu(t) + B(u(t), u(t)) = f(t) in V' ae. in 0, T7]. (105)

Let us set:
U(t):/0 u(s) ds, F(zf):/0 f(s)ds and B(t):/o B(u(s),u(s))ds € V'.

Since u, f, B(u,u) € L*(0,T; V") then
U,F and 8 € C°([0,T],V’) (in fact they are absolutely continuous). (106)

Integrating (105), we obtain by virtue of (106) that

u(t) — u(0) +u/t Au(s)ds + /OtB(u(s),u(s))ds - /Otf(s) ds in V',

0

Thus: N
u(t) —ug + vAU(t) + B(t) = F(t) in V'; Vit e [0,T].

Therefore, for all ¢ € ¥V C V we have

(ult) = uo + vAU(t) + B(E) — F(t), 6}y = 0. (107)

21Tt is worth remembering that L?(Q)/R™ is isomorphic (2 bounded) to the subspace orthogonal to
the constants L?(Q)/R = {p € L*(Q); [, p(x) dz = 0}.
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Let us define
S(t) = u(t) — ug + vAU(t) + B(t) — F(t) € V'. (108)

From the fact that V is a closed subspace of (HJ(£2))? we can, thanks to the Hahn-
Banach Theorem, and for each ¢ € [0, 7] extend S(¢) to a functional T(t) € (H*(Q2))?
such that

(T(t), v) @y my@yn = (S, v)vv; YoeW (109)
But from (107) and (109) we conclude that
(T(t), &) @2mry =0, YoeEV.
By the remark after Lemma 8 it follows that 3 P(t) € L*(Q) satisfying
T(t)=VP() in (H Q)" (110)
Thus, from (109) and (110) we obtain
VP(t)y=S(t) in V', Vtel0,T]. (111)
Substituting (111) in (108) it follows that
u(t) — ug + vAU(t) + B(t) — F(t) = VP(t) in V'; Vte[0,T).

Since the expression on the left of the equality above belongs to C°([0,T],V’) we
have that VP € C°([0,T],V’) and, therefore, we can differentiate the equation above
distributionally obtaining

u’—i—Vﬁu—f—l—B(u,u)—V%—f in  L*(0,7T;V").

Consequently the equality above occurs a.e. in |0, T[. Setting

oP

p(ZL‘,t) = _E(xvt)

it results that B
u' 4+ vAu— f+ B(u,u) = —Vp in L*(0,T;V"),

that is, B
u +vAu+ B(u,u) = f —Vp in  L*(0,T;V"). O



Chapter 10

Periodic Solutions of the Navier-Stokes

System

Let Q C R? be a bounded open set with sufficiently smooth boundary.

Problem 11

Problem 11
ou " ou .
E_VAu—i_jZluja_xj—i_Vp_f in @
divu=0 in @
u=0 on X
u(z,0) =u(x,T), z€Q,

where

f e L*0,T; V"),

admits a weak solution u: ) — R in the class

w € L0, T; V)N L>®(0,T; H), u' € L*0,T;V").

More precisely

(W' (), v)vr v + v((ut), v)y + b(u(t), u(t),v)
= (f(t),v) mn D'(0,T), VoeV

Proof:
12 Step: Approximate Solution

Let (w,)yen be the basis formed by the eigenfunctions of the operator

A= {V.H; ((-, ))v}

as we saw in Problem 10. Set
Vin = [wi, -+, Wi

115
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and in V,, consider the approximate problem

Un(t) € Vin & up(t) = Zgim(t)wi (6)

(U (), @05) + v ((um (£), w5)) + b(um(8), um (1), wj) = (f(£),wj); G =1,...,m  (7)

um(0) = v € V. (8)

Evidently the approximate system above possesses a global solution®*? (which de-
pends on v), whatever v € V,,, is. Our goal is to show that among all the solutions of the
approximate equation there exists a solution u,, (at least) that satisfies the periodicity

Um (0) = wp(T).
For this, it is sufficient to prove that for each m € N, the map

T Vin = Vi
V= T (V) = (T

(9)

possesses a unique fixed point, because, in this case, there will exist a unique function
v € V,, such that
U (T) = Tn(v) = v = u,,(0), Vm e N. (10)

Thus from (10) we have a sequence (u,,) of approximate solutions such that all u,,
satisfy the periodicity condition.

Lemma 1: There exists py > 0 such that 7,,(Bpo(0)) C Bp(0).

Proof: Using in V,, the topology induced by H it is sufficient to prove that
Jpo > 0 such that |7,,,(v)|g < po; Vv €V, with |v]g < po. (11)

Indeed, composing (7) with w,,(t) we obtain

=0

% % (O + V]t (D] 2+ H et (£)s i (1), (D) = (F(2), ()1
<O i = == 17Oy Vi (1)
Whence
& ) 4 P OIP < o I OI+ 2 ()
that is,
3 o lm(OF + 2 un(OIP < - 170 (12

. 1
22Note that: |um,(t)|> + fot |t (3)|[2ds < |v]? + ;HfHL?(O,T;V/) < ¢(m). Since m is fixed we can extend
Um (t) to the whole interval [0, T.
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Now, since V — H; dc¢y > 0 such that
Colum(®)* < |lum(B)]. (13)

Therefore from (12) and (13) we arrive at

d 1
() + Al () < @I

Multiplying both sides of the inequality above by eVt it follows that

d C2l/ 1 C2V
5 (O 1) < ~1F @ .

Integrating from 0 to 7, it follows that

1

[t (D)2 0" < Jupn (0)]* + »

T 2
/0 (17 (1) 2 e84t dt.

which implies that
2 —c2vT 2 1 —c2vT T r 2
[um(T)” < e Jum(O)7 + — 7" € LF @O~ dt,
0

that is,
2y 1
[um(T)[* < €™ fum () + — [ [1Z20,m0 - (14)

Denoting

1
0=c " and c= > £ 11220501

from (14) we can write
[t (T)|* < Olum (O) + ¢,

or even,
1T ()2 < Olv]* +¢, YveV,.

Now since 0 < # < 1 then 0 < 1 —6 < 1. In this way dpy > 0, sufficiently large
such that ¢ < (1 —0)p3. Thus, if |v| < py then
Olv|Ta) +c < 0p5+ (1 —0)p5 = pp.-

Whence
|7'm(v)|2 < pg; VméeN

which proves the desired result. ]

Lemma 2: The map 7,,,: V,, — V,,, defined in (9) is continuous.

Proof: Let vy, vy € V;, and u}, and u?, be the solutions of the approximate problem with
initial data v; and vq, respectively. Then, from (7) we have
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Considering W,,(t) = u} (t) — u?,(t) then subtracting one equation from the other

results that
(W (t), w5 i+ V(Wi (£),05)); + 0(ug, (8), 1y, (1), 005) — b(ug, (1), 1z, (t), ;) = 0.

In particular

1d 2 2 1 1
5 W) + VWi (B -+ (o (8) 68, (), Won(2) -
= (1), 2, (6), Wi (1) = .

However, as we saw in the uniqueness of Problem 10
1

bty (), e, (£), Wi () = bt (£), 1 (), Wi (£)) = =b(Win(t), i, (£), Win (1)).

' m

(16)

Thus, substituting (16) in (11) we obtain

- W (O + VW (O] < (W (), 0 (), Wi (1))
(17)

2 di
< W@l za@2 [t Oy (Wi ()| 2202

= W ()l {za@y2 Nt O]V

But, by Lemma 3 of the preceding section and by numerical Holder

2
W (D121 ()2 = Z W il[Faiy < V2D Wil 20y [Winiil 12
=1

1/2
S\/é(ZHWmJH?{é(Q)) (Z|Wm,i|%2(ﬂ)>
i=1 i=1
(17) and (18) we obtain
ld 2 2 1
5 77 WOl + VW (DI < VAW @)y Wi (8)] 1 [, (8) v

Wl % W ()] |1k, (1) v

1
<YW O + 5 (Wi (Ol [ (DI

(18)
= V2([Waullv Wil -

From

Whence L d .
ia 2 1 2 2 2
= WO < = (W ()3 2, (1)1
and, therefore,
d 1
Wy — W) I (I <0
Defining
1
() = = Il (]} € L'(0,7)
we obtain
d

— W)z = O ()W (8) 7 < 0.
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Multiplying both sides of the inequality above by e~ Jo 0m($)ds it follows that

d

7 (|Wm(t)|12q e‘fotgm(s)ds) <0.

Integrating the inequality above from 0 to 7" results that
(Wi ()5 e o o0 — W, (0)1f; < 0.
that is,

T
WD)y < o PO W, (0)[F; (19)

Denoti
enoting fTH (s
Cy, = €70 m

from (19) we obtain
[t (T) = 1t (T) [y < 11, (0) — 21, (0)]

or even,
[T (V1) — T (V) |1 < |1 — 02

which concludes the proof. O

It results from Lemmas 1 and 2 by virtue of Brouwer’s Theorem that the map
Tt Bpy(0) = B,,(0) admits a fixed point, that is, 3v € B, (0) such that 7,,(v) = v, that
is, u?,(0) = ul (7).

Then, for each m € N, Ju,,: [0,T] — V,,, such that u,,(0) € B,,(0), i.e., |u,(0)| <
po and

(1t (£), w5) + ((um (t), ;) + bt (£), um (1), wj) = (f(1),wj), j=1,...,m
Um(0) = up (7).

From the fact that u,,(0) € B,,(0) we can repeat the estimates obtaining a subse-
quence (u,,) of (u,,) such that

u, >u in L®(0,T;H)
u, = u in L*0,T;V)
u, —u' in  L*0,T;V")
From the convergences above it results, by passage to the limit in the approximate

equation, the desired result in (4). In a manner analogous to the proof of the initial
condition in the previous case, we prove (5). This concludes the problem. O
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Chapter 11

Navier-Stokes System (Stationary
Case)

where

Problem 12
Problem 12 given by
2
_yAu—i-jZlaxjuJ f—=Vp in Q
divu=0 in €
u=0 on T,
fev

possesses at least one weak solution in the class

ueV.

Proof: Let (w,),en be a basis of eigenfunctions of the operator

A AV H, (-, )v}

according to previous problems. Set

Vm = [wl,...,wm].

In V,, consider the approximate problem

V((umawj))v + b(umv umij> - <f7 wj>V,V’ ; j = 17 27 cee, M

Substituting (4) in (5) results that

VZ&((WZ‘,WJ‘)) + b(Zflwz, Zgiwi,wj) = <f, wj>, \V/j = 1, e
i=1 =1 =1

121
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that is,

vEiN, —i—b(Z&wz,Z&wz,%> (fiwj), Vji=1,...,m.

Define, for each 7,

V@)\ +b(Z§szZ§zwzaw]> f,w]>

and consider the map
P:R™ —-R™
52 (5177€m>'_>P(£) :77:(7]1777]7”)

which is clearly continuous by virtue of the continuity of the trilinear form
bu,v,w): VxV xV =R
We will prove, next, that
Jpo > 0 such that (P&, &)gm >0, VEeER™ with |[£]| = po- (6)

Indeed, we have:

(P€,¢) = Zm&

NE

(VA€ + bty U, wy) — (f w;5))E;

V)\ f + b(“m;“mazgjwj) - <f,2§jwj>
j=1

Ajgj + bWy Uy Up) = U )

=0

1

<.
Il

Ms TTMS

.
I
—

Recall that

el = (b)) = ((fﬁswisw)) _ é@%- 0

Thus, from (7) and (8) we conclude that

(PE,€) = vlluml[ — [1f1lv llumllv- (9)

We have two cases to consider:
(i) If ||um|| = O then from (9) it follows that (P&, &) > 0 which proves the desired
in (6) whatever p > 0 is.

1
(i) If |Jum|| # O then (P&, &) > 0 provided that ||un,|ly > = ||f|[v = c1. We will
v
prove that 3 py > 0 such that V& € R™ with ||£]| = po then ||un,|lv > ¢1. Indeed, setting

Bm = min{ Ay, ..., Ay}



from (8) it follows that

m 2
|wm@:§jﬁyzm(§j$):@mm?
=1 =1
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Therefore, if pg > 0 is such that pg > ¢1/+/B,, then V& € R™ with |[€]|grm = po we

have )
C1 2

ltmll¥ = Bupg > B 5, @
m

which proves the desired and consequently (6). It results from there, by virtue of Visik’s
acute angle lemma, that 3¢, € B,,(0) such that P({) = 0, that is, the system (4) and

(5) possesses a solution.
Composing (5) with u,, results that

V||um||%/ + b(umvun%um) = <f7 um)
D e

=0
1 1 v
L , <+ B TIE
< 75 Wl Vol < 5 N+ 5 ol
which implies that
v 1
5 [t [7 < % f3; VmeN.

Thus
() is bounded in  V

and therefore, there exists a subsequence (u,) of (u,,) such that

u, = u weakly in V.

(10)

(11)

Also, from (10) and the fact that V' ‘2% H we have the existence of a subsequence

of (u,), which we will still denote by the same notation, such that
u, —u in H.
It follows from (12) that
Uy Uy — Uiup  a.e. in §, i, k=1,2.

However, from Lemma 3 of the previous section

1/2 1/2
/]u,,ﬁ- uy i |* dr < (/ \ul,,i|4dx) (/ |y | dx)
Q 0 Q

< il Lo il Lo

< 2f|upillmp ) [uwil 2@ wwkl 53 @) [ww k2@

< 2ffup I} s [

Now from (10), (12) and (14) we obtain

/ luyiu,p?de <c; VYveN, Vik=1,2.
Q

(12)

(13)

(15)
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From (13) and (15), by Lions’ Lemma, it follows that

Uy Uy, — U u,  weakly in L*(Q), ik=1,2. (16)
Ow; 2
It results from (16) and the fact that T € L*(Q) that
T

2

Ow; 2 ow;
Z/Quy,iﬁuy,kdx% Z/Qul (%{Zk uy, dx. (17)

ik=1 ik=1
o bt t,05) =~ 5,0
Uy, Uy, wy) = —b(Uy, wj, Uy),
b(u,u,wj)]: —b(u,wj,uj). (18)
From (17), (18) and the continuity of b(u,v,w) it follows that
by, uy,w;) — b(u, u,wj). (19)

Let j € N and consider v > j. Then, from (5), (11) and (19) we obtain, in the
limit situation

v((u,w;))v +b(u, u,wj) = (f,wi)vvs VjeN
By the totality of the w;’s in V' we conclude that
V((u,v))v—i—b(u,u,v) = <f7U>V’,V; Vv e Vva (20)

or even "
V<AU,, U>V’,V + <B(U,U>,’U>V/7V = <f7 U>V/7V; Vo e ‘/a

which implies that B
vAu+ B(u,u) = f in V' (21)

Pressure Recovery:
Define: _
S =vAu+ B(u,u)— f in V" (22)

Since S € V' and V is a closed subspace of (H}(€2))? we have, by virtue of the
Hahn-Banach Theorem the existence of T € (H~'(Q2))? such that

(T, o) a1 (@pmre = S0y, YeeV (23)
From (21) and (23) it follows that
(T,p) =0, Vopel.
By the remark after Lemma 8 (of the Navier-Stokes system) 3 P € L*(Q) such that
T=VP in H Q). (24)
Thus, from (23) and (24) we obtain
VPly =S in V'
and from (22) we conclude that:

vAu+ B(u,u) = f + VP,
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Setting p = —V P we can rewrite the equality above as
y/Tu+B(u,u) =f—Vp. ]

Remark:
The linear problem

—vAu=f—-Vp in

divu=0 in (1)
u=0 on T,
where
fev, (2)

admits a unique weak solution u: €2 — R in the class

ueV. (3)

Indeed, defining
a(u,v) =v((u,v))y; uw,veV; vr>0
it is easy to verify that a(u,v) is a bilinear, continuous and coercive form on V. Since
Lw)=(f,u)vyv; veV
belongs to V' it follows, by virtue of the Lax-Milgram Lemma, that 3'u € V that verifies
v((w,v))v = (fiv); VYveV,

or even,
vAu=f in V'

The pressure recovery is obtained in a manner analogous to the previous cases.

O
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Chapter 12

Klein-Gordon System (n < 3)

Let © be a bounded sufficiently smooth open subset of R" (n < 3).

Problem 13
Problem 13
0u 5 .
w — AU + v'u = fl n Q
62
a—t;)—AeruQv:fg n Q

u=0 and v=0 on X
u(0) = up(x), u'(0) =us(z), =€
v(0) = vo(x), v'(0) =v1(x), z€Q

subject to the initial conditions
uo,vo € Hy(Q), wi,v1 € LA(Q) and  fi, fo € L*(0,T; L*(Q))
admits a unique pair (u,v) of weak solutions of (1) in the class

u,v € L=(0,T; Hy()), u',v" € L™(0,T; L*(Q)).

Proof:
12 Step: Approximate Problem
Let (w,),en be a basis of H}(Q). Set

Vm:[wl,...,wm.

In V,, consider the approximate problem:

U (1), U () € Vi & U (t) = Z Gim(B)w; , U (t) = Z Poim ()i

(U (8), @) + ((um(t),w5)) + (v, (Bt (8), @) = (fi(t),w;), G=1,2,....m

127
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(U (), wj) + (V1) w7)) + (U (v (t), w5) = (fot),w;), 7=1,2,....m  (6)
U (0) = Ug — up  in  Hy(Q) (7)

U (0) = vo, — vo  in Hi(Q) (8)

which possesses a local solution in some interval [0, t,,) by virtue of Carathéodory’s The-
orem, with u,, , v, , v, and v/, absolutely continuous and v/, and v/ existing a.e. The a
priori estimate will serve to extend the solution to the whole [0, 7.

From the Sobolev Embedding Theorems we have:

Hy(Q) — L°(Q) if n =3,
H () < LYQ), Vq € [2,+00) if n =2,
Hy(Q) — C°%Q) if n=1

In any case
Hi(Q) < L°(Q) and n <3. (9)

Consequently
uw?v € L*(Q); Yu,v € Hy(Q). (10)

Indeed, from (9) it follows that

ut € I¥*(Q) and v? € L3(Q); Yu,v € HY(Q). (11)
) 2 1 . . o
Now, since 3 + 3= 1 then from (11) and Hoélder’s inequality it follows that
utv? € LY(Q)

which proves the desired in (10). Thus the non-linear expressions in (5) and (6) are well
defined.

32 Step: A Priori Estimate

Multiplying (5) by g},,(t) and (6) by R’ (t) and summing over j from 1 to m it
follows that

S0 + 5 P+ (A1), () = (A (0)  (12)

S W OF + 5 (O + (2 (on(t), (1) = (D)0 0)  (13)
o Qvfn(t)um(t)u;n(t) dr = % /Q v2 (1) (W2, (1)) dw (14)
| 0ot e = [ ooy (15)
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Substituting (14) and (15) in (12) and (13), respectively, and summing these two
last expressions we obtain

1d

5 77 Ut @OF + 10 OF + [um @[ + [lom (O}

+——jﬁ[v;<w<ui<w>ﬂ+zéxtin<wy}dx
— (Fu() i (8)) + (falt), v (8)),

{lur, OF + [0, O + [[um (O] + Nom ()]}

a4
dt (16)
L(vi(t)Ui(t))/dx < [ Jug, (O] + [ L) o7, ().

Observing that

<i/vfnufn dx,6’> = </(vr2nuzn)'dx,9>, V6 e D0,t,) (17)

then from (16) we conclude that

d
= I @OF + 1L OF + un @1 + [[oa (O + /Qvi(t)u;i(t) dx }
< AOF + lun, (O + [ L0 + o, (O,
Integrating the inequality above from 0 to t; ¢ € [0, t,,) results that
[t (0) 1 + 03, () + |t ()] + [om (D) * + /(vfn(t)Uil(t)) dx
Q

< + o1+ tonl P+ Joonl* + [ 48,18, do (19
Q

t
+ 1 fillZ2g) + 1 follZ2g) + / (e ()] + [vr, (5)[7) ds.
0

1/2 1/2
vzmu2mda:§(/ Um4d3:> (/ um4dx>
JR [ Joon| [ Juond )

= |[vom|[Zs(0y l1om||Z(e) -

But

Now from (7), (8), (9) and (10) follows the existence of a constant ¢; > 0 such that

WWV+MM“WWMF+WMW+/ﬁ&%mhsq;VmGNy (20)
Q

and from (18) and (20) we obtain
[ ()7 + [0, () + [Jum (O + [[om ()] + / Uy (L), (t) d
Q

et [ (un(oF + Ph()F) ds
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Observing that [, u2,v2, dz > 0 and by virtue of Gronwall’s inequality, from (21)
it follows that

[ (O + [0, O + fum I + Nom(@)|]* < ¢ VEE[0,t,) andVm eN  (22)

where ¢ > 0 is a constant independent of ¢ and m. From the boundedness above it
follows that we can prolong u,,(t), v,,(t) to the whole interval [0, 7] and the estimate in
(22) remains valid now for all ¢ € [0,T]. Therefore,

() and (v,,) are bounded in  L>(0,T; Hy(Q)) (23)

(u,) and (v))) are bounded in L*(0,T; L*(Q)). (24)

32 Step: Passage to the Limit

From (23) and (24) we obtain subsequences (u,) and (v,) of (u,,) and (v,,), respec-
tively, such that

u, > u in L(0,T; Hy(Q)) (25)
v, > v in  L=(0,T; Hy(Q)) (26)
u, >’ in L®(0,T; L*(Q)) (27)
v, 2o’ in L(0,T; L*(9)). (28)

(
Let 6 € D(0,T) and consider j € N. Multiplying (5) and (6) by 6 and integrating
in [0, 7] we obtain for v > j that

- [ @ [ oo
0 0 (29)

+ [ om0 = [ (o,wend
and

- [ wowppod [ (0.0
0 0 (30)

+A<ﬁwmm%wwﬁ=4<mm%www

We will perform the convergence in (29) since in (30) the procedure is analogous.
The convergences in (25) and (27) are sufficient to pass the limit in the linear part. Let’s
see the nonlinear part.

Analysis of the Nonlinear Term
From (23) and (24) it follows that
Upy , Uy are bounded in W = {u | u € L*(0,T; Hy(Q));u' € L*(0,T; L*())}.

Thus, by virtue of the Aubin-Lions Theorem, there exists a subsequence of (u,),
which we will still denote by the same notation such that

u, —u in  L*(0,T; L*(2)) (31)

v, =v in L*0,T;L*(Q)) (32)
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From (31) and (32) it follows that

v2u, — v*u ae. in Q. (33)
We will prove next that
(v2u,) is bounded in L*(Q). (34)

Indeed, we have, by virtue of (9), (10), (11) and Hélder’s inequality

T
/|vl2,uy|2dxdt:/ /|vy|4|ul,|2dwdt
Q 0 JQ
T

T
< [ ol sy de = [ el s oo d
0 0
T
< Cl/o “Uu(t)”j*l{g(ﬂ) Hul/(t)H?{g(Q) dt < (aT) H’UVH%,OO(O,T;H(%(Q)) ||uV||i°°(0,T;H&(Q))'

Now, from (23) and the inequality above we obtain the desired in (34). It follows
from (33) and (34) and Lions’ Lemma that

v2u, — v’u  weakly in  L*(Q). (35)
Analogously we prove that
uv, — v*v  weakly in  L*(Q) (36)

which is sufficient to pass the limit in the nonlinear part. Then, from (29) and (30) in the
limit situation it follows that

_/0 (uf(t)7wj)9’(t)dt+/0 ((u(t),w;))0(t) dt
+/0 (UQ(t)u(t),wj)Q(t)dt—/o (f1(t), w;)0(t) dt

and

- [ o [ (.o
0 0 (38)

+/O (u2(t)v(t),wj)9(t)dt—/0 (f2(t),w;)0(t) dt,

and by the totality of the w;’s, the expressions above are valid for all w € Hg (). From
(37) and (38) it follows then that

' — Au+v*u=f; in D0, T; H1(Q))
V' — Av+utv=f, in D0, T; H(Q)),

or even,

' — Au+v*u=f; in L*0,T; H *(Q)) (39)
V' — Av+utv=f, in L*0,T; H *(Q)). (40)
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42 Step: Initial Conditions

Obtained in the usual manner.

52 Step: Uniqueness
Let (uq,v1) and (ug,v2) be solutions of (1). Then

w=1u — Uy and W =v; — Uy

verif’

' w” — Aw = viuy —viuy in  L*0,T; H'(Q))
W — A = uvy —ujv; in L*(0,T; H'(Q))
w=0 w=0 on X

w(0) =0, w(0)=0 in Q
W(0) =0, @(0)=0 in Q

Let s € [0,7]. We define

)= [w@)ds; 0<t<s = aeds 0<t<s
Wﬂ_{ (ﬂ—{& s<t<T.

0; s<t<T

Letting ¢ and p’ be the distributional derivatives of ¥ and p, we have

w(t); 0<t<s w(t); 0<t<s
t) = t) =
vit) {0; s<t<T o) {O; s<t<T

From the expressions in (43) and (44) we have that

U, p, 0, p' € L=(0,T; Hy(Q))

which implies that
b, p € C([0, TT; Hy ().

Composing (42); with ¢ and (42), with p it follows that
QKW%MWMH%ﬁ+A%MWWWMt
af@@m@—ﬁmwmwmﬁ

and

A%wmmwma%w+lhmmMWMt
a[mmmw—ﬁwmmmmﬁ

Integrating by parts the first integrals in (45) and (46) it results that
w5 - [ woro)as [ @o.e)d
0 0
= / (vaug — viug, ) dt
0

(41)

(42)
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W@m@ﬁj—l%ﬂ&ﬂmﬁ+éhﬂmmmmt

:/ (uivy — ufvy, p) dt,
0

where in the second integrals we used the fact that ¢/ = w and p’ = w in [0, s|. Now since
P(s) =0, p(s) =0, w'(0) =0 and @'(0) =0 from (47) and (48) we obtain

(48)

- [(wr v [(wouo) = [ - o
- [Cwomas [ o.po) = [ o v, pa

where in the first integrals we used the fact that ¢ = w and p/ = in [0, s].
Whence

1d s
/53 DR+ [ 55w = [ = o
1 d 2 51 2 ’ 2 2
§d_ ()" dt + ; 2dt||p()|| dt = ; (ugv2 — uyvr, p) dt,
or even,
1 2 1 2 1 2 1 2 ° 2 2
= 5 [0 + 3 1OF + 5 [6()IE = IO = [ (o3ua —ofur, v

. L. 1 1 s
[@(s)* + 5 [@(0)* + 5 [lp(s)II* = 5 llp(O)* = /0 (uzvs — ujvy, p)dt

N | —

which implies:
W) + WO =2 [ (s = dus,0)at
) + 007 =2 [ dor = wdon, )t

Thus,

W@PHWUW—?/@Mﬁw+ﬁw—@%wﬁ (49)
0

M@P+WHW—g/wm W2vg + By — s, p) dt. (50)
0

However

/(vful — viuy + viuy — vaug)Y da
= 2/{2}1 up — ug) + (v} — v3)ug 3t da
< [Pl [w(6)]do+ [ fuzes + waes] [6(0)] )] d
Q Q

< k{|lv1ll7s(0) lwlz2@) @] + luzvn + uzvallza) @] 2@ [P @I]-
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Since vy, vy and uy € L>®(0,T; H}(2)) then from (9) and the inequality above it

follows that 3¢; > 0 such that
2/9(vfu1 — vius + vius — vius) Y da < 2¢ [|w| + |@|] |[¥]].
Analogously
2 / (udv) — ufvy + udvy — uivy)pda
Q

s2/ (2] {01 — vz | + [os] s + ol | s — s [] o]
Q —— ~——

Thus, d¢y > 0 such that:
2(ufvy — ujve + uivs — u3va, p)r2(0) < 26 [|w] + @] ]]pll.

From (49), (50), (51) and (52) it follows that

[w(s)* + 1 (0)]* < 2¢4 /0 @ @)1+ [0 @)] [l ()] dt

[i(s)]* + [[p(0)]|* < 2¢2 /0 [w@[ e + @) [ ()] dt
Define:

We have, for all ¢t € [0, 5],

ww=—[lﬁw&>{fw@%—zlﬁmq=m@—m@y

In this way
¥(0) = wi(0) —wi(s) = wi(s).

——
=0

Substituting (56) and (55) in (53) it follows that
w(s)” + [[wi(s)]]*
<20 /0 [[w(@) TJwa () = wi(s)]] + [ (E)] [[wi () — was)]|]dt.
Analogously, setting t
antt) = [ (e de

we have R ) X )
[(s)|" + [[w1(s)]]

< 20y /0 [w(@)] [ (8) = oy (s)]] + [ (E)] [ (£) — wn(s)]|]dt.

From (57) we can write that

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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[w(s)[* + [Jwa(s)]]*

= 201{ /0 [w (@) [wr ()] + [w(®)] [Jwi ()] + [@@)] |[wi ()] + [@(t)] ||w1(8)|”dt}
Scl{/o |w(t)|2d1t+/O ||w1(t)||2dt+2/0 |w(t)|||w1(s)||dt+/0 O
+/0 ||w1(t)||2dt+2/0 |@D(t)|||w1(5)||dt}'

(59)

But
S S 1
2 t dt =2 4 t d
qé|m>mm@m qAxfEMMN¢EaWM$HS
S S 1
§201{/ 2301|w(t)|2dt+/ —||w1(s)||2dt} (60)
0 0 8scy
8 1
— 4501/ |w(t)|2 dt + 2 ||w1(s)||2.
0
Also,

S ) S R 1
2cr [ o) lun (9l de < s [ o0 do+ 5 )] (61)
0 0
From (59), (60) and (61) we obtain

[w(s)|* + [Jwa(s)]]* < illwl(S)H2

. (62)
wea [ (F + [BOF + un(0)]) .
Analogously, from (58) we arrive at
. . L.
()" + [l (s)]I* < 7 [l ()P
(63)

+ 04/0 (ko) + [ (@)[* + [l (2)]]?) dt.
Summing (62) and (63) we obtain
2 1 2 1 2 1. 2
[w(s)I” + 5 [lw ()] + Jwls)” + 5 [l (s)l]
< 05/0 (@) + [ ()] + [ (0)|* + [Jan (2)]]7) dt.
It results from the inequality above, by Gronwall, that
2 1 2 AL . 2
w(s)” + 5 llwr ()] + |o(s) " + [l (s)|I =0, Vs €[0,T]

that is, w(s) = 0 and w(s) = 0 in L*(Q). Thus: u; = up and v; = vy which concludes
the proof. O
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Chapter 13

The Monotonicity Method

13.1 The Browder-Minty-Visik Theorem

In this paragraph we will demonstrate an important theorem due to Browder-Minty-Visik.
Before that, however, we need some definitions and preliminary results.

Definition 1. Let V' be a Banach space, V' the dual of V and A: V — V' a map.
(i) We say that A is monotone when:

(A(u) — A(v),u —v)yry >0, VuvelV.

(ii)) We say that A is hemicontinuoues when for any u,v and w in V, the map
V: R — R defined by:
Y(A) = (Alu+ \v), w)yry
18 continuous.

(1ii) We say that A is coercive if:

{(A(v),v)

m = +00.
lol|=+o0  ||v]]

(iv) We say that A is bounded when A maps bounded sets of V' into bounded sets
of V', that is, for any S C'V bounded in V we have that A(S) C V' is bounded in V'.

Lemma 1: (Visik). If the map P: R™ — R™ is continuous and (P(&),&)rm > 0,
V¢ € R™ such that ||| = p, for some p > 0; then 3¢ € B,(0) such that P(£) = 0.

Proof: See page 112.

Lemma 2: Let V be a reflexive and separable Banach space and consider A: V' — V'
a map. If A is monotone, hemicontinuous and bounded (cf. definition 1) then A is
continuous from (V, Ttrong) into (V) Tyeaks), that is, A(u,) = Au in V' whenever u, — u
strongly in V.

Proof: Let (u,) C V be such that
u, —>u in V (2)

137
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and, by contradiction, suppose that
Au, £~ A, (3)
It follows from (3) that Jvg € V such that:
a, = (Au,,v9) #— (Au,vy) = a.

Therefore, we guarantee the existence of an gy > 0 such that V& € N, Ja,y)
satisfying
layy — al > <o

that is,
|(Au,,(k), 7)0> - (Au, U0>| Z o - (4)

On the other hand, since A is bounded it follows that (Au,x))r is a bounded
sequence in V. Since V is a separable Banach space, it follows that there exists a subse-
quence of (u,x))r which we will still denote by the same symbol such that

Au,,(k)if in V,. (5)

By the property of the elements of (Au,)) given in (4), it follows that Au # f.
However, setting (Au,))r = (Au,), we claim:

(fiu—v) > (Au,u—v); VYVoveV. (6)

Indeed, let
w=(1-0u+0v; 0€]0,1].

We have, given the monotonicity of A, that
(Au,, — Aw, u, —w) > 0.

Whence
(Au, — Aw, u, — ((1 —0)u+6v)) >0,

that is,
(A, — Aw, u, — (ut 00 —u))) > 0

or even,

(Au,, — Aw, u, —u—0(v —u)) > 0.
It follows from this that

(Auy,u, —u) — 0(Au,, v —u) — (Aw, u, — u) + 0(Aw,v —u) >0
and, therefore,
0(Au,,u—v) > —(Au,,u, —u) + (Aw, u, —u) — 0(Aw,v — u).
Taking the limit in the inequality above as u — +oo results from (2) and (5) that

O(f,u—v) > —0(Aw,v — u).
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Dividing by 6 we obtain
<f,U—U>Z<Aw,U—U>; VU€V7

or better,
(fru—v) > (Alu+0(v—u)),u—v); YVvel.

By the hemicontinuity of A and taking the limit as # — 0 we obtain, from the
inequality above that
(f,u—v>Z<Au,u—v>; vve‘/a

which proves (6).
Consider A > 0 and z € V. Then, from (6) and in particular for v = u — Az, it
follows that
(f,\2) > (Au, \z).

Whence
(f,2) > (Au,z); VzeW (7)

Analogously, taking v =u — Az, A <0 and z € V, we obtain
(f,2) <(Au,2); VzeV. (8)
From (7) and (8) we conclude that
Au = f,

which is a contradiction. This concludes the proof. O]

Theorem 1. (Browder-Minty-Visik). Let V' be a reflexive and separable Banach space
and V' its dual. If A: V — V' is a monotone, hemicontinuous, bounded and coercive map
then A is surjective.

Proof: Let (w,),en be a basis of V| that is,
(i) (w,), constitutes a linearly independent set.
(ii) The subspace spanned by (w,), is dense in V.
Let f € V'. Our aim is to prove that there exists u € V such that Au = f. Set
Vin = [wy, wa, ..., wy]
and consider, initially, the finite dimensional problem:

U, € Vi
<Aum,v>%7vm = <f, U>V/,,,,Vm ) Yo € Vm

(9)
We will prove next that problem (9) admits a solution w,, for all m € N. For this,

fixed m € N, define the map

P:V, =V
v P(v) = (A(v) — f)lv,

that is, we are restricting the functional A(v) — f € V' to the space V,, .

(10)
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Thus,
P) eV

and, consequently,
(P(v), wvy v, = (A(v) = fw)vry; Vw €V, (11)

It follows from (11) that:
(i) P is hemicontinuous since, A being hemicontinuous, the map

Y(A) = (P(u+ \v),w)vr v,, =
= (A(u+ M) — fiw)yy; AER,

is continuous for any u, v and w € V,, .
(ii) P is monotone since, A being monotone, it follows that

(P(u) = P(v),u —v)vr v, = (Au) — f = A(w) + fiu—v)yry 2 0; Vu,v,w € V,.

(iii) P is bounded since, S C V;, being a bounded set, then, Vv € S we have due
to the inclusion “ V' C V! that

1P()vg, = [[(A(v) = Dlvg vy, < [[A@) = fllve
<[IA@)[lv + A llve < e + {1l -

From (i), (ii) and (iii) it follows by Lemma 2 that the map (10) is continuous from
(Vins Tstrong) into (V1. Tweakx). However, since V, has finite dimension, the strong and
weak-* topologies coincide. We conclude then that the map given in (10) is continuous.

Our aim now is to apply Lemma 1 and conclude that 4p > 0 and v,, € V,, such
that P(v,,) = 0, that is, Jv,, € V,, such that A(v,,) = f in V., which will prove the
existence of a solution to (9). Note that at this moment we are using the fact that every
vector space of finite dimension m, fixed a basis, is isomorphic to R™

We must prove then that 3p > 0 such that

(P(v),v)y,, >0; YveV, with ||v]| = p. (12)
Indeed, since f € V' we have, in particular, that
(Lol <Nl lloll < dllvll,  Voe Vi (e>0).

Whence
—(f,v) > —(||v||; VveV,. (13)

On the other hand, A being coercive, then

A
lim (A, v) = 400.
o] =+o0 ||V

Thus, given M > 0, 36 > 0 such that if v € V and ||v|| > ¢ then

(Av, v)

> M.
[[]]
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In particular, for the ¢ > 0 given above, 3p > 0 such that if v € V,, and |[v|| > p

then
(Av,v)

]|

Thus, from (13) and (14) it follows for all v € V,, such that ||v|| > p, that

(P(),v)v,, = ((A(v) = [)lvis V)vi1, Vi
= (A(w),v)v v — (f,v)v v
> cf|v]| = cl[v]| = 0.

> c. (14)

It follows from Lemma 1 that Jv,, € B,(0) C V,, such that P(v,,) = 0, that is,
Au,, = f which proves the existence of a solution to the finite dimensional problem in

(9).

Our next step is to pass the limit in the approximate problem. For this, we need
estimates as we will see next.

From (9), in particular, for v = u,, it follows that

(Aum), um) = (f, um) < clfuml[;  ¥meN. (15)

It follows from (15) that (u,,) is bounded in V. Indeed, otherwise, there would exist
a subsequence (u,) of (u,,) such that ||u,|| — +00 when v — 4o00. By the coercivity of
A it follows that p
lim (A(u), uy)

= +00.
vooeJu|

Thus, for the ¢ > 0 given above 3 p > 0 such that if ||u,|| > p then

A v v
(Almu) _ )
[luv ||
which contradicts (15).
Therefore
(um) is bounded in V. (17)

Since A is bounded, by hypothesis, it follows from (17) that
(A(uy,)) is bounded in V. (18)
Since V is reflexive and separable there exists (u,) subsequence of (u,,) such that
u, = u weaklyin V (19)

and
A(u,) = x weakly *in V. (20)

We have from (15) that, for each p € N,
<A(uu)a u,u> = <fa uu)-

Since the right side of the equality above converges to (f,u) it follows that the left
side converges to the same limit, that is,

lim (A(uy), u,) = (f,w). (21)

p——+00
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Fix j € N. Then, for all 4 > j we have from (9) that
(A, wi) = (f,wy) -
Taking the limit in the equality above it follows from (20) that
06 w;) = (fywg); VieN.
By the density of [w,] in V' we obtain
(x,v) =(f,v); YveV and, therefore, x=f. (22)

From (22), in particular, for u we have (x,u) = (f,u) and from (21) it follows that

lim (A(uy), u,) = (x,u). (23)

pn——+00

To conclude the theorem it remains to prove that
X = Au. (24)
Indeed, by the monotonicity of A:
(A(u,) — A(v),u, —v) >0, VpeNandVoveV.

Whence
(A, u) = (Alu,),v) = (A(v), 4, — ) > 0.

In the limit situation it follows from (19), (20) and (23) that
06w — (6 v) = (Av),u —v) 20,

that is,
(x —A(),u—v) >0, YvelV.

Let A > 0 and w € V. We have for v = u — Aw that
(x — Alu — Mw),w) >0, YweV.
By the hemicontinuity of A it follows in the limit as A — 0 that
(x = A(u),w) >0, YweV.
Analogously, considering v = u — Aw; A < 0 and w € v, it follows that
(x — A(u),w) <0, YweV.

Whence
(x —A(u),w) =0, YweV

and therefore
x = Au)
which proves (24). From (22) it follows that

Alw)=f in V. (25)
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This concludes the proof of the theorem. n

Naturally, equation (25) admits a unique solution if:
(A(u) — A(v),u —v)y >0, YveV, u#w.

Indeed, let u,u* € V be solutions of (25) such that u # u*. Then,
A(u) — A(u*) = f — f = 0 and therefore

0=(A(u) — A(u"),u —u") >0

which is a contradiction!
We will see, next, a more sophisticated uniqueness result.

Theorem 2: Under the hypotheses of Theorem 1 and, furthermore, assuming that

V' is strictly convex (26)

and
A(u) = A(v) = [[ul[ = [|v]] (27)

Then, equation (25) admits a unique solution.

Proof: Recall that since V is strictly convex then Vu,v € V with ||u|| = ||v|]| = 1 and
u # v we have
[[Au+ (1 —=No|ly <1, VA€]0,1], (28)
We will prove that
u is a solution of (25) if and only if (A(v) — f,v —u) > 0,YVv € V. (29)

Indeed, if (25) occurs then Au = f and, therefore,
(A@v) = fr0— ) = (A(v) — Afw),v—u) >0,

where the last inequality is satisfied given that A is monotone.
Conversely, suppose that

(A(v) = f,v—u) >0, YvelV. (30)
Consider, then A >0, w € V and v = u + Aw. Then from (30) it follows that
(A(u+ Aw) — f,w) > 0.

Letting A — 0 we deduce, due to the hemicontinuity of A, that (A(u) — f,w) > 0.
Analogously, considering A < 0, we deduce (Au — f,w) < 0. Hence

(A(u) — f,w) =0, Ywel,

that is, Au = f in V’. This proves (29).
Let us define, for each v € V, the following set

Sy ={ueV; (A(v) = fv —u) > 0}. (31)
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We claim that S, is convex. Indeed, let uj,uy € S, and A\ € [0,1]. We have:
(A(v) = f,v = (Mug + (1 = Nug))
=(A(w) = f, v+ (1= XNv—Aug — (1 — Nug)
- /\<A<U) —f,U—U1> + (1 _)\><A(U> —f,U—U2> Z 0

which proves the convexity of 9, .
Letting

E=()5 (32)

veV

it follows from (29) and (31) that:
E = ﬂSU:{UGV; Au = f}.
veV

Since S, is convex it follows that F is also convex.
Consider, finally, u,u* € E solutions of (25) and suppose that u # u*. We have

A(u) = f and A(u*) = f.

From (27) it follows that
[l [ = Jlw]- (33)

If A €]0,1] then by the convexity of the set E given in (32) it follows that
A+ (1=MNu* € E.

Consequently
Adu+ (I =Nu*) = f

and from (27) we obtain:

[Au+ (1 = N[ = [[ul| = [|[u*|] = p. (34)
We have two cases to consider:
(1) p#0. )
In this case, H—UH # ||u_*|| and from (28) it follows that
U U

U u*
/\—+(1—/\)—H<1
HHMI [u]|

and from (33) and (34) it follows that
p=[Au+ (1= Nu*| <p

which is absurd!
2) p=0
In this case, from (34) it follows that

[lull = [lu*|| =0

and, therefore, v = u* = 0. But this is absurd since u # u*. The proof is concluded.
O
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13.2 Duality Mappings

Let E be a Banach space over R, endowed with the norm || - ||, let || - ||« be the dual
norm on the (dual) Banach space E’ and consider (, ) the duality between E’ and E.
Let ¢: Ry — Ry, 7+ ¢(r) be a continuous, monotone and strictly increasing

map, such that
»(0) =0, and ¢(r) — +ooif r - +o0. (1)

Definition 1: A map J: E — E'is called a duality mapping relative to ¢ if the following
conditions are verified:

(J(w),w) = [T (W[« [lull,  VueE. (2)

(@)l = ¢(llull), YucE. (3)

Naturally this notion depends on the choice of the norm on F.

Proposition 1: Every duality mapping is monotone.

Proof: Let u,v € E and J: E — E’ a duality mapping. We have, from (2) and (3):

(J(u) = J(v),u =)
= (J(w),u) = {J(u),v) = (J(v),u) + (J(v), v)
= [[J (@[« [[ul] = (J(w),v) = (J(v),w) + [[T()]]: ||v]]
2 ([T (@)« [l | = [[T @)« (o]l = (1 )]« ]| + [T @)] ] [|v]]

)
= (17 @Il = 1 @) (el | = Jol])
= (o(l[ul) = ¢(llv D)) (lull = lv]]) = 0

where the last inequality holds since ¢ is strictly increasing. This proves the proposition.
O

Proposition 2: Let E be a strictly convex Banach space and J: £ — E’ a duality
mapping. Then, J is strictly monotone.

Proof: According to Proposition 1,
(J(u) — J(v),u—v) >0, Vu,ve€E.
Thus, it suffices to prove that
(J(u) —J(v),u—v) >0, YuvekFE u#ov. (4)
Suppose, by contradiction, that there exist, u,v € F, u # v, such that
(J(u) — J(v),u —v) =0. (5)
However, as in the proof of Proposition 1, from (5) it follows that

0= (J(u) = J(v),u—v) = (d(l[ul]) = o(llo[))([Jull = lo]]) = 0
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Thus
(@llull) = ([[o]])) (Hlull = [v][) = 0. (6)
We have two cases to consider:
(1) ollull) = o(l]v]]) = 0.
In this case, ¢(||ul]) = ¢(||v||) and therefore ||u|| = ||v||.
(i) [Jul] = [lv]| = 0.
Also we have ||ul| = ||v]].
In any case, (6) implies that

[[ul] = [fv]]- (7)

Note that ||u|| # 0 (and ||v|| # 0) because, otherwise, u = v = 0, which is absurd,
since u # v. Thus, from (7) it follows that

TETER TR Q

On the other hand, note that from the fact that E is strictly convex and J(u) € E’
(J(u) # 0) it follows that ||J(u)||. is attained at a unique point of the unit ball. Indeed,
from (2) we have that

G
il = 00 = (. ) )

[Jul]

which shows that ||J(u)||. = sup (J(u),v) is attained at the point w = ﬁ We claim
llvfI<1 u

that this point is unique. Indeed, suppose there exists w* € E; ||w*|| = 1 such that

1)l = {J(u), w) = (J(u),w"). (10)

Now, since the ball B;(0) is convex it follows that the convex combination (1 —
AMw + Aw* € By(0); A €]0,1[. Since E is strictly convex it follows that

(1= MNw+ Iw*|| < 1. (11)
But, from (10) it follows that

(J(u), (1 = Nw+ 2w*) = (1 = N){(J(u), w) + AX{J(u), w")
= (J(u),w) = |[J(u)]]«,

Thus, from (11) and (12) we have
1) = (J(w), (1 = Mw + 2w") < ||J(w)[|[[(1 = Mw + dw™[[ < || (u)|].

which is absurd! This proves that the attained point is unique.
It follows from (9) and the above that

. = () > (T ).

(J(u),v) < (J(u),u). (13)

I
<

and from (7) we obtain
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Analogously, we also show that
(J(v),u) < (J(v),v). (14)
Therefore, from (13) and (14) we arrive at

0= (J(u) = J(v),u—v) = (J(u),u) = {J(u),v) = (J(v),u) + {J(v), )

which is a contradiction! ]

Proposition 3: Let F be a Banach space. There always exists a duality mapping relative
to ¢. This map is uniquely defined if E’ is strictly convex.

Proof: Let By be the unit ball of £. For all u € 0B, there exists, according to the
Hahn-Banach Theorem an element u* € E’ such that:

|u*][« = [Jull =1 and (v, u) = ||u|]* = 1. (15)
On the other hand, given v € F; 3\ > 0 and u € 0B, such that
v = Au. (16)

Indeed, if v = 0, just take A\ = 0. Now, if v # 0 then —— € 0B, and furthermore,

[

v=pl| - (17)
|v]]
Thus, from (17) it follows that A = ||v|| > 0 and u = ﬁ
Consider, then
J: E— FE
defined according to (15) and (16) by
J(v) = J(Au) = p(A) - u* (18)

where we are making a unique choice of u* so that we have a defined map.
We will prove next, that the operator J defined in (18) satisfies (2) and (3). In
fact, from the above it follows that

(J(),0) = {6\, ) = SN ", u) (i)
= (A= 6(N) - A~ [lu]
— 60 [Pl = ()1l [Aal
— Jle()a*l. [|hul]
—[[J@ llell, Vo€ E.
7@ = leN)a']]. = oMl = $(A) (i)

= o(lull) = o([Aull) = o([o]l), Vv e E.
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Suppose, now, that E’ is strictly convex and suppose, by contradiction, that there
exist J; , Jo duality mappings relative to ¢ with J; # Jo. Thus, there exists u € E, u # 0
such that Jy(u) # Jo(u) (u # 0 since if uw = 0 then ||J1(u)||. = [|J2(u)|]« = o(||u]]) =
#(0) = 0 and therefore Jy(u) = Jo(u)). Furthermore, since u # 0 then ||J;(u)||. =
AN ()
I a(w)l. = é(]ful) # 0. Whence: #
[[71(u)]l+ [[ A2l

Then, if A €]0,1[ we have from (2) and (3

J1(u) a(u) A
<>\HJ1( )Iie LA AI [ J2(u)]], > AR {(Ji(u), w)
1 A 1
B P [ P
(AN

= P L = ul .

|2 (w)]

From (19) and the fact that £’ is strictly convex it follows that:

lull = (A e+ (1= ) 2 )

(Ja(u), u) (19)

A1 AOIA
Jl U) Jz(u)
H Tl T VW

which is absurd! Thus, the duality mapping is unique. Thus, for each u € B; there exists
a unique u* € E' satisfying (15). In this way, the map (18) is uniquely defined. This
concludes the proof. O

Proposition 4: Let E be a reflexive separable Banach space whose dual E’ is strictly
convex. The duality mapping J relative to ¢ is hemicontinuous.

Proof: We will prove a more general result:
If v, = vin E then J(v,) = J(v) in E. (20)

Recall that since E’ is strictly convex then the duality mapping J is uniquely
defined. In fact such map is given as in (18). Furthermore, according to the construction
given in (18) it is sufficient to verify that:

If (u,) C 0By and u, — u (u € OB;) then J(u,) — J(u) in E'. (21)

Indeed, suppose for a moment that (21) holds and consider v, — v in E. For each
v € N we can write:
vy = |oy|| 77— and U—||"U||
| uH

assuming v, # 0 and v # 0. Setting

Yy and u = v
o] [v]]

then (u,) C 0By, u € 0B and furthermore u, — u in E. Tt follows from (21) that
J(u,) = J(u) in E', that is,

¢(1)(uy, w) = (1) (u*,w); Vw € E.
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Since ¢(1) > 0. it follows that
(ul, w)y = (U, w); Ywe E. (22)
Since ¢ is continuous and since v, — v in E' it follows that:

o(||v.[l) — (| [v]])- (23)
From (22) and (23) we obtain, then:
o(||vu|){us, w) = (| [v]])(u", w),Yw € E.
Therefore
(O[] )uy, w) = (o(||v|)u*, w), Yw € E

that is,
(J(vy),w) = (J(v),w),YVw € E. (24)

Thus, from (24) it follows that
J(,) > Jw) in FE. (25)
Consider, now, the other possibilities:

v#0 and v, =0 for a finite number of indices
v=0 and wv,=0; VveN
v=0 and v, =0 for a finite number of indices

v=0 and v, =0 for an infinite number of indices.

In the first case, we disregard the finite number of indices and proceed as above.
Let us analyze the other cases: When v = 0, we claim that J(v,) — 0 strongly in E'.
Indeed, since
v, >0 in F

then, by the continuity of ¢ it follows that

¢(l[onl]) = ¢(0) = 0.

Thus,
1 ()]l = o(lJo]]) = 0

that is, J(v,) — 0 in E’, which proves the desired result.

In this way, it is sufficient to prove the claim made in (21).

Consider, then, (u,) C 0By, u, — ug, (up € 0B;) and suppose, by contradiction,
that J(u,) /A J(ug) weak-star in E’. It follows from this that there exists vy € E and
g0 > 0 such that VEk € N, there exists a unique index v(k) satisfying

[(J (ury), vo) = (J(uo), vo)| = €0

However, from (3) and from the fact that (u,u)) C (u,) C 0By we have

|1 (o) |1« = O(l[uwmyl]) = ¢(1) < +o0.
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Therefore, we can extract a subsequence (u,,) of (u,())r such that

J(u,) — x weakly-*in FE’

and by the contradiction hypothesis it follows that x # J(uo).
Since w,, — ug, by hypothesis, then from (26) it follows that

(J(upu),u,) = (x,up) when p — +oo.
However, from (2) we can write that
(I () w) = 11 ()]s V]| = {1 ()]
On the other hand, from (26) we have that
[Ixlls < Lim []J ()l -

Thus, from (27), (28) and (29) we obtain:

[l < T[] () [ = Tim (T (uye ), we) = O o) < s Huol| = [1x s -

Whence
(X, uo) = x|« [[uol| = [Ix]l

and
X[l = Tim [ (w) ] = o(1) = &([[uol]).
From (30) and (31) it follows that

(26)

(28)

(29)

(32)

Indeed, suppose the contrary, that is, suppose that x # J(up). From (31) and from

(3) it follows that:
[IxIl« = o[luoll) = [[J (o)l

Since ¢(||upl|) # 0 it follows from (33) that

X J(ug)
[Ix1]« |1 (uo) -
On the other hand, from (2), (30) and (33) we can write that

(J(uo), uo) = [[J (o)l = [Ix[l+ = {x; uo)-

Now, if A €]0, 1 then from (35) we obtain

<)\M+(1—)\) X ,u0>

7o)l I
A 1 A\
- m (J (o), ug) + m (X, ug) — m (X, o)
1
= <X,U0> =1.

x|

(33)

(34)

(35)
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In this way, since E’ is strictly convex,

l=(A————+ (1 -2 g ) <A+ (1= A) —=—|| |uol| <1
<\UW®W Xl 1/ (o) X111,
which is a contradiction! Thus (32) holds. This concludes the proof. []

Theorem 1: Let E be a separable, reflexive Banach space, strictly convex with strictly
convex dual. Let J be the duality mapping from F to E’ relative to ¢. Then given f € E’
there exists a unique v € F such that

J(u) = f
that is, the map J: E — E’ is a bijection.

Proof: Initially, observe that the existence of the duality mapping J is given by Propo-
sition 3. Furthermore, such map is the unique duality mapping. From (3) we have that

1 (W)ll« = ¢(llull), VueE. (36)

Since S C F is a bounded subset, it follows from (36) that J(S) is bounded in E'.
Indeed, from the boundedness of S it follows that there exists ¢ > 0 such that ||u|| < ¢
Vu e S. Whence ¢(||ul|) < ¢(c); Yu € S, which proves that

J: E— E' is bounded. (37)

On the other hand, from (1), (2) and (3) we also have that:

im T @l = T 6(][u]]) = oo (38)

llul>+oo|[ul] [l oo [l =+
that is, J is coercive. By Proposition 1 we have that
J: E— E' is monotone (39)
and by Proposition 4 it follows that
J: E— E' is hemicontinuous. (40)

Thus, by Browder’s Theorem (Theorem 1 §1) and by Proposition 2 of this para-
graph, we have that given f € E'; Jlu € E such that

Ju=f
which concludes the proof. O

Example 1: Let £ = L(Q), 2<p< +oo and ¢(r) = rP~1,
Let LP () be the topological dual of LP(Q2). Thus

1 1
p p
Define

J: LP(Q) — LP(Q)

u s Ju = |ulP"?u.
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Note that J is well defined, since if u € LP(£2), we have that

221
@Iy = [ 2l gz~ [ (wvﬂ) d = [l

It follows from this that:

-1
HJ(U)HLP’(Q) = HUHip(Q)’ (41)
that is,
()] 1 ) = ¢(l[ullLr @) (42)
Furthermore, from (41)

() = [ i = [t do = lall
= lulls oy el

= [l (u )||LP(§2)||UHLPQ

(43)

Therefore, from (42) and (43) we conclude that J is a duality mapping relative to
0.

Example 2: Let F = W,"(Q); 2<p<+oo; ¢(r)=r"", where we are endowing E
with the topology

au p 1/p
||ul| = ( dx) )
; 0| Lo(ey
Define
J: WaP(Q) = W (Q)
u ou |P? du
u— Ju=— 2:: ( 3z, &Bi)
Observe that J is well defined since
Au 1”2 oul” B ou |2 8upldx_/ aupdx<+oo
ox; ox;|| ox; ox;  Jo |0z
LY (Q)
and, therefore,
Ju e W' (Q).
On the other hand, for all ¢ € D(€2) we obtain
L0 [|ou]P? du
J —( _
(T, ¢) < Z&% ( o axi),¢>
_Z > Hu 8g0
8% 8 3@
that is,
- ou |P* ou Oy
= d 44
;/Q ox; ox; 0x; v (44)
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Consider, then, v € W,?(€Q). Thus, 3 (¢,) C D(Q) such that

o, = v in WiP(Q). (45)

Therefore 5 p

Pv v
LP(2). 46
oz, (©2) (46)

But from (44), for each v € N, we can write that
- P72 Qu duy
v) = Y dz.

Taking the limit in the expression above it follows from (45) and (46) that

::jizb/* T
1 JQ 8:62 0951 833'1
that is,
u ou Pt | dv
\<J<u>,v>\§2/ ol o
i=1 ! !
1/p ov |7 1/p
<
Z(/ 7 ) (Ll *)
ou ‘ ov
Ox; LP(Q) Oz || 1o (q)
ou )1/p’( " o |IP )1/p
<
= (; al‘z Lr(Q) ZZ:; 81‘, Lr(Q)

< lullpro oy IWllwp ey s Vv € We(Q),

: -1
where %+ ]% = 1. Thus, we obtained that, [|J(u)|[y -1 ) < ||u||€v§,p(m. On the other

hand, since we also have the inverse inequality, given that,
ou [P ou du

u —
H HWlp Z/ 0& / ‘ 8@ ﬁx,

:_Z<8x,< %)’U>:<JU’U>

< [|Jullyw-10 () HUHWOI’T'(Q)’

dx

ox;

that is,
~1
ey < 1l
then

-1
(@) [wr-10 0y = [[ull};,

Ly = Olllullga), YU W)

The relations above show that the map J is a duality mapping relative to ¢.
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Remark: Theorem 1 leads us naturally to “reflexive” spaces and “strictly convex spaces
as well as their dual”. In truth, this last hypothesis is not a special restriction as the
following result shows, whose proof we will omit in this text.

Theorem 2: Let E be a reflexive Banach space with norm || - ||. There exists a norm
|| - ||| equivalent to || - || such that, for this new norm, F is strictly convex as well as its
dual endowed with the dual norm ||| - |||..

In order to complement the result above consider the next result.

Theorem 3: (Brézis-Crandall-Pazy). Let E be a reflexive Banach space with norm || -||.

For all a > 1 there exists a norm || - ||, on E that verifies the following conditions:

(i) Endowed with the norm || ||, F is strictly convex as well as its dual (endowed
with the dual norm || - |]o.. );

oy 1 1

@ —M-lle<Il-T=all-flas Al o < 111l < all -flow m

Example 3: Let
A WP (Q) — W (Q)

uHA(u)——iél(

i=1

ou
3@»

P72 du
8l’i
be the operator of Example 2. From the above, given f € W1 (Q) there exists by
Theorem 1 a unique u € W, 7(Q) such that
P72 du
)=

"0

Thus, the stationary problem is solved

n p72
_260 (8u 6u):f 00
— Ty

ou
3@-

when f € WP (Q).

13.3 Gateaux Derivative - Stationary Problems

In this paragraph, we will present a technique to solve stationary problems that do not
involve duality operators relative to maps. In truth, we will use Browder’s Theorem
conjugated to a new type of operator, namely the Gateaux derivative (or differential).
This is what we will see next.

Definition 1: Let E be a Banach space and J: £ — R a map. If for each u,v € F there

exists the limit ; \ ;
lim (u+ v) — J(u)

A—0 A
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which we will denote by J'(u,v), we say that J'(u,v) is the first variation of J at u in
the direction v.

Definition 2: Let E be a Banach space and J: EF — R a map. If for each fixed u € £
there exists u* € E’ such that

<u*7U>E’,E = ‘]l(u’v); VveE

we say that J is Gateaux differentiable at u and u* is called the Gateauz derivative (or
differential) of J at u and we denote

u* = J'(u).
If J: E — R is Gateaux differentiable for all u € E, then the operator is defined

J:E—FE
u— J'(u)

where

(J'(w), v) = J'(u,v) = lim J(u + M;) —J(),

Vu,veFE. (1)

Proposition 1: Let F be a Banach space and K a convex subset of F. Consider
J: K — R a Gateaux differentiable map. Then, each of the statements are equivalent:

(i) J is convex
(i) J(v) — J(u) > (J'(u),v —u); Yu,veK

(iii) (J'(v) — J'(u),v —u) > 0; Vu,v € K, that is , J' is a monotone operator.

Proof:
(i) = (ii)

Suppose that J: K — R is convex and let u,v € K and X €10, 1]. By the convexity
of K it follows that (1 — A)u 4+ Av € K and by the convexity of J it follows that

J((1 = Nu+ M) < (1= N)J(u) + A\ (v)

Oor even

J(u~+ Av—u)) < J(u)+ A(J(v) — J(u)).
Thus:

J(u~+ A(v ;\u)) — J(u) < J() — J(u).
Since J is Gateaux differentiable, by hypothesis, taking the limit in the inequality
above as A — 0 we obtain

(J'(u),v—u) < J(w)— J(u)

which proves (ii).
(ii) = (iii)
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Suppose that (ii) holds and let u,v € K. Then

(J'(u),v —u) < J(w)— J(u)
(J'(v),u—v) < J(u) — J(v).

Summing the inequalities above member by member it follows that
(J'(u),v —u) + (J'(v),u —v) <0.

Whence
(J'(u),v —u) = (J'(v),v—u) <0,

that is,
(J'(v) = J'(u),v—u) 20

which proves (iii).

(iii) = (i)

Suppose that (iii) happens and let u,v € K. Set
[u,v] ={(1 = Nu+v; Ae€l0,1]} C K.
Define, then

¢:[0,1] = R
A= o(A) = J(u+ Av—u))

that is J|,. . Now, for each A €]0,1[ let h > 0 be sufficiently small such that (A +h) €
10,1[. In this way:

¢(A+h) — o(N)

PN = liny h
— lim Ju+N+h)(v—u)) — J(u+ ANv—u))
h—0 h
— lim J[(u+ Av—u))+h(v—u)] — J(u+ Av—1u)) ‘
h—0 h

Since J is Gateaux differentiable in K then the limit above exists and it follows
that
&N ={(J(u+Av—u)),v—u). YAe]0,1]. (2)

Now, if A = 0 or A = 1 then consider, respectively, the limit from the left and from
the right so as to obtain:

#(0) = lim Ju+h(v—u)) — J(u)

h—0 h
h>0

= (J'(u),v —u) (3)

and

h—0 h
h<0

From (2), (3) and (4) we can write

= (J'(v),v —u) (4)

N =(J(u+ v —u)),v—u); VAIe][0,1]. (5)
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We will prove next that ¢’ is increasing. Indeed, let A\, Ay € [0, 1] with A\; < As.
Then, from (5) it follows that

¢'(A2) — ¢'(\1)
= (J'(u+ X(v—u)),v—u) — (J(u+\(v—1u)),v—u) (6)
= (J'(u+ (v —u)) = J(u+ \(v—u)),v—u)

Setting
wi=u+Mwv—u)e K and wy=u+ N(v—u)eK

it follows that
Wo — W1 = ()\2 — /\1)(?) — U)

However, by hypothesis
<J/(U)2) — J/<U)1),’w2 - U)1> Z 0

that is,
(J'(u+Xa(v—1u)) = J(u+ (v —u)), (A2 — A1) (v —u)) > 0.

Since (Ay — A1) > 0 it follows from the inequality above that
(J'(u+ (v —u)) = J'(u+ (v —u)),v—u) >0

and from (6) it follows that
¢'(A2) = ¢' (A1)

Thus, ¢’ is increasing and, consequently, ¢ is convex.
Therefore

H((L=A)-04+X-1) < (1=XN)o(0) + Ap(1); VAe]0,1],

that is,
P(A) < (1= X)p(0) + Ap(1); VA€ [0,1],
or even,
J((IT=XNu+ ) < (1=XN)J(u)+NJ(v); VAel0,1],
which proves (i) and concludes the proof of the proposition. O

In what follows, we will prove the hemicontinuity of the operator J': E — E’ when
J: F — R is convex and Gateaux differentiable. Before that, however, we need some
preliminary results.

Lemma 1: Let E be a Banach space and A: F — E’ a map satisfying the following
property: For each v € F,

(A(u),u — v) g g is bounded below on bounded sets (7)

(as a function of u).
Then, for each uy € E, there exist ¢,¢ > 0 such that if v € E and ||u — ug|| <
e = (A(u),u —ug) <c.
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Proof: Suppose, by contradiction, that there exists ug such that for each ,¢ > 0,
Ju. . € E such that ||u.,. — uo|| < e and yet (A(uc.), ue . — up) > c.
In particular, for each n € N, Ju,, € E such that

1
||un —uol|] < = and  (A(uy), u, — ug) > n.
n
Then,
[|un —uol| = 0 and (A(uy), u, — up) — +00, when n — +oo. (8)

Since 0 < n < (A(up), up — uo) < ||A(un)||& ||tn — wo|| then

L Al

0<
||un - UOH o <A(un)7un - u0>
But from (8) it follows that

1

4
[[tn — o]
and, therefore, from (9) it follows that

Aluy)
(A(up), up — ug)

By the Banach-Steinhaus Theorem there exists w € F such that

is unbounded in F’.

Un —

sup |(vp, w)| = +oc.
neN

Thus, there exists (v,) subsequence of (v,) such that
(vy,w) = 400 or (v, w) - —o0.

Without loss of generality we can assume that only the 1** case happens because,
otherwise, if we replace w by —w the analysis is the same as the first case. Thus, suppose
that

(v, w) = +00 (10)

Therefore,

(Aluy), (w, = uo) = w) = (Aluy), u, = uo) = (Auy), w)

1
= (A(uy), u, — ug) — TAG) w0, — ) (A(uy), u, — ug)(A(u,), w)
(A(y)uy — ) |1 — Ay (1 = (v, w0)).

Aluy ), uy, — ug)

However, from (8) and (10) it follows that the last expression above tends to —oo,
when v — 400, that is,

(A(uy), (uy, — ug) —w) — —o0, when v — +o0.

But this contradicts (7), which concludes the proof. O
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Proposition 2: Let E be a Banach space and A: F — E’ a map verifying the property
mentioned in (7). Then, A is locally bounded, that is,

Given ug € E, Jeg >0 such that [|A(u)||g is bounded for all u € B, (uo).

Proof: Let up € E. Since A satisfies (7) then by Lemma 1 there exist ¢ > 0 and ¢ > 0
such that
fueFE and ||Ju—wl| <eo= (A(u),u —up) <ec. (11)

Consider w € E. We have
(A(u), (u—uo) — w) = (A(u),u — up) — (A(u), w).

Whence
(A(u), w) = (A(u),u — ug) — (A(u), u — ug — w).

From (7) and (11) it follows that the right side of the equality above is bounded
above, that is, there exists ¢; > 0 such that

(A(u),w) < ¢ .
Replacing w by —w in the inequality above, it follows that
{(Aw), w) = —ei,
which leads us to conclude that for each w € E, there exists ¢;(w) > 0 such that
[{(A(u), w)] < er(w); Vu € Bey(uo),

where B.,(ug) designates the closed ball centered at uy with radius &g .
This means that the image of the ball B, (uo) is weak-* bounded. By the Banach-
Steinhaus Theorem it follows that

sup ||A(w)||g < 400,
u€Be (uo)

which proves the desired result. O

Proposition 3: Let E be a Banach space and A: E — E’ a monotone map. Then A is
locally bounded.

Proof: By the monotonicity of A it follows that:
(A(u) — A(w),u —v)pp >0; Vu,v€E.
Thus, for each v € E
(A(u),u —v) > (A(v),u —v); Yue€E.

Thus, fixing v € E, if we let “u” traverse a bounded set of E it follows that the
right side of the last inequality is bounded below with respect to u. Indeed, we have

—[[A@)[[ e[l = ]| < (A(v), u = v).
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Whence
—[[A@)|[& ([lull + [v]]) < (A(v),u —v). (12)

But, considering
llu|| < L; Ywu €S, where S is a bounded set of E,
then from (12) it follows that
—[[A@)|e (L + [[o]]) < (A(v), u—v)

which proves the desired result. Then, the property in (7) is verified and, consequently,
from Proposition 2 we conclude that A is locally bounded. O

Proposition 4: Let F be a Banach space and K a convex subset of E. Consider
J: K — R a convex and Gateaux differentiable map on K. Then, given u,v € K, the
map

P(A) = (J(u+ Ao —u),v—u), A€[0,1],
is continuous on [0, 1].
Proof: Set, according to the proof of Proposition 1 the following map

¢:[0,1] = R
A= o(N) = J(u+ Av —u)).
We have
&' (N) = (J(u+ Av—u)),v—u); VIe][0,1].

Since J is convex, it follows by Proposition 1 that J’ is monotone. Thus, if A\;, Ay €
[0, 1] and )\1 < /\2 then
¢'(A2) = ¢'(M).
Thus ¢’ is increasing, besides being defined on the whole [0, 1]. It follows from this

that ¢’ does not admit discontinuities of any kind, that is, ¢’ = v is continuous. This
proves the proposition. L]

Theorem 1: Let E be a separable Banach space and J: E — R a convex and Gateaux
differentiable map. Then, the map u — J'(u) from E to E’ is hemicontinuoues.

Proof: We will prove, in truth, something more general, that is, that J’ is continuous
from (E, Tgirong) into (E', Tyear*). Indeed, let (u,) C E be such that

U, > u in E (13)
and, by contradiction, suppose that

T (un) £ J'(u). (14)

According to Proposition 1, J' is a monotone map. From Proposition 3 it follows
then that J’ is locally bounded, that is, for all v € E; there existse, > 0 such that
||.J'(v)]| g is bounded; for all v € B, (u).
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In particular, for u € E given in (13), there exists € > 0 such that
1I@)lle < e Vo e Buu), (15)
where ¢ > 0. From (13) it follows that 3ny € N such that Vn > ng we have
Uy, € Be(u),

where B.(u) designates the open ball centered at u with radius e. It follows from (15)
that
T (un)||r < ¢ Vn>mng. (16)

Let us define

() = (Un)n>no -

Evidently, this subsequence, except for a finite number of terms, continues verifying
the properties given in (13) and (14).
It results from (14) the existence of vy € E such that

a, = (J'(u,),v0) 4 (J'(u),v9) = a.
Therefore, there exists 0 > 0 such that for all k € N Ja,) such that
layy — al > 9,

that is,
(" (ury), vo) — (J'(w), vo)| = 6. (17)

On the other hand, from (16) it follows that (J'(u,u)))ken is a bounded sequence
of E'. Since E is separable Banach, there exists (u,).en subsequence of (u,k))ren such
that

J'(u,) > f in FE. (18)

By the property of the elements of (J'(u,)) given in (17) it follows that
J'(u) # f. (19)
We will prove, next that
(fiu—v)y > (J'(u),u—v); VYveE. (20)

Indeed, let
w=(1-0)u+0v; 6€]0,1].

We have, by the monotonicity of J’ that
(J'(up) = J'(w), uy, —w) > 0.

Whence
(J'(u,) — J'(w),u, —u—0(v—u)) >0.

It follows from this that

(J'(up),uy —u)y — 0(J (uy), v —u) — (J'(w),u, —u) + 0{J (w),v —u) >0
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and, therefore,
O(J (uy),u—v) > —(J (u), u, — u) + (J'(w),u, —u) — 0(J (w),v — u).

Taking the limit in the inequality above as yu — +oo results from (13) and (18)

that
O(f,u—v)y > —0(J(w),v—u).
Dividing by 6, we obtain
(fiu—v) > (J(w),u—v); VYveFE
or better,

(fyu—v) > (J'(u+60(v—u)),u—v); YveEE.
Taking the limit in the inequality above as # — 0 results from Proposition 4 that
(f,u—v)E(J'(u),u—v), VU€E7

which proves (20).
Consider, now, A > 0 and z € E. Then, taking in (20) v = u — Az, it results that

(f,\z) > (J'(u), \2).

Whence
(f,2) > (J'(u),2); VzeE. (21)

Analogously, taking v =u — Az, A <0, in (20) we obtain
(f,2) <{(J'(u),2); VzeE. (22)
From (21) and (22) we conclude that
J'(u) = f,
which contradicts (19). This proves the theorem. O

It follows from Propositions 1 and 3 and from Theorem 1 the central result of this
paragraph which we state in the form of the following Theorem:

Theorem 2: Let E be a separable Banach space and J: E — R a convex and Gateaux
differentiable map. Then, the map u +— J'(u) from E to E’ is monotone, hemicontinuous
and locally bounded.

Example 1: Consider £ = R and J: E — R differentiable. Then, for each x € E and
h > 0 we have

J(z + Ah) — J(x)

(J'(x),h) = lim

A—0 A
A£0
T = J(x)
=h- (\h) = @),

2£0
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that is,

J(z): E—>R
h— (J'(z),h) = J'(x)-h,

where J'(z) is the derivative of J at .

Example 2: Let £ = R" and J: E — R be differentiable in £. Then, for all u,v € R”
we have

(), 0) = tim 2T 0,0 = 30 2 )
that is,
J(u): E—=TR

v (J'(u),v) = (VJ(u),v).
Example 3: Let £ = LP(Q2), © C R" open and 2 < p < +00. Consider g: R — R of
class C'(R) such that
(1) lg(s)| < alslP;  a>0,
(ii) |g'(s)| < BlsfP~5 B >0.
Define
J:EF—R

u— J(u) = / g(u(z))de.
Q
J is well defined since, from item (i) it follows that
l9(u(2))] < alu(@)[’; Ve,

and since (g o u) is measurable and u € LP(Q) it follows that (g o u) € L'(Q). We will
calculate, next, the Gateaux derivative of J. Given u,v € LP(2), let us evaluate the first
variation of J at u in the direction v. We have

J(u+ ) — J(u)

I, v) = Jim A (23)
o1
~ i [ fotute) + 20(0)) — (o)) e

However, given £, € R such that n < £, by the Mean Value Theorem there exists
& €n, [ such that

9(&) —g(n) = g'(§)(E& —n).

Since & €]n,&[, then & = (1 — 0)n + 0 = (£ — n)0 + n for some 6 €]0,1[. In
particular, supposing without loss of generality that v(x) > 0 for each x € Q and A > 0,
there exists 6, (x) with 0 < 6,(z) < 1 such that

g(u(x) + Mv(x)) — g(u(z)) = ¢ (Ao(2)0(2) + u(@)) (A (z)).
f \\nf/
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Thus, the last expression in (23) becomes:

lim { /Q (4 (u() + M (2)o(z))] Ao(z) d:p}. (24)

A—=0 A\

Since 6, (x) is bounded, the product A -60,(z) — 0 when A — 0; whatever x € Q is.
By the continuity of ¢’ it follows that, for all z € €,

g'(u(@) + M (w)o(@))o() 2= ¢ (u(@))o(x). (25)
However, for each A € [0, 1], we have from (ii) that

|9 (u(z) + AOx(z)o(x))] [v(2)] <ﬁ|ﬂ( ) + M (@)o(@)[" o(@)]
5 {lu(@)P + @)} (@) (26)
B {lu@)"™" - (@) + [o(@)["}

Note that |u[P~' € L”(Q), where 5+ 1% = 1, since
/ [|u(m)|p_l]p, dex = / |u(x)|P dz < +o0.
Q Q
Thus, by Hélder’s inequality the product |u|P~'|v| € L'(Q). Therefore, the last

expression in (26) is integrable. Thus, from (25), (26) and from the Lebesgue Dominated
Convergence Theorem it follows that the integral in (24) converges to

/Q o (u(z))o(a) de.
Therefore
T, v) = /Q g (@) - v(@)de, Yu,v € D). (27)
Define,
' I2(Q) = R

v (u¥ vy = J'(u,v).

We will prove that u* € L' (Q) = [L?(Q)]". Indeed, u* is clearly linear by virtue of
the linearity of the integral in (27). Now, let (v,) C LP(2) be such that v, — 0 in L?(92).
We have, by Holder’s inequality that

[{u, 0] < /Q g (u(z))] - |v, ()| dw
= 5/52 w@)”" - o (2)] d

<5 [ ltyras) /( [Iutra) ”

= BHUH%}EQ) ||Uu||Lp(Q) — 0, when v — 400,
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that is,
v, = 0in LP(Q) = (u*,v,) — 0 in R.

Thus, u* € L' (Q). Setting u* = J'(u) results that

(J'(u),v) = /Qg'(u(x))v(x) dx; Yu,v € LP(Q)

= (¢ ou,v)

(28)

Example 4: Let A: LP(2) — LP(Q2) be a linear operator of LP(2) whose domain is given
by
W(Q,A) ={ue LP(Q);Au € LP(Q)}.

We will endow W (2, A) with the graph norm
1ol By = 1020 + 140l Faey -
Let g: R — R, be continuously differentiable satisfying the following properties:
(1) lg(s)| < alsl’; o> 0.
(i) 1g'(s)l < BlslP~h B> 0.
Define, then the functional
J:W(Q,A) - R
ur J(u) = /Qg(Au(x)) dz.
Note that J is well defined. Indeed, from (i) we have
lg(Au(x))| < a|Au(x)|P; Ve Q. (29)

Since u € W (2, A) then Au € LP(Q) and, consequently, |Aul? € L'(Q2). Further-
more, since g o Au is measurable and, by (29), bounded by an integrable function then
go Au e L'().

We will calculate, next, the first variation of J at w in the direction v, where
u,v € W(, A). We have

J(u+ Av) — J(u)

J (u,v) = lim :
_ %i { /Q [g(Au(z) + Auv(x)) — g(Au(a:))]d:c}.

By the Mean Value Theorem this last expression becomes

A—0

lim % { /Q [ (Au(z) + Ax(2) Av(2))] )\Av(x)]dx},

where 0 < 6,(z) < 1. In a manner analogous to what was done in the previous example
we prove, given the Lebesgue Dominated Convergence Theorem, that the integral above
converges to

/Q o (Au(z)) Av(z) da.
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Therefore
J' (u,v) :/g’(Au(x))Av(x) dr; Vu,v e W(Q,A).
Q

Define

u : W(Q,A) - R
v (u ) = J (u,v).

We will prove that u* is a linear and continuous form on W (2, A), that is,
u* € (W(Q,A)). Indeed, the linearity is obvious. Let us prove continuity. Consider,
then (v,) C W(Q, A) such that v, — 0 in W(Q, A). We have

[(u”, v,)| SZ]Q|9’C4(U))|L4UV($)|d$
§/3/QL4UQQP1L4u(dex

/

Lp

<o [ |Au(x)|pdx)“p’( [ 1awiopa) "

= BllAull?o, l|Avlzooy
< Bl|Aul[2¥ v llwie,a) = 0, when v — +o0.
Thus, (u*,v,) — 0 which proves that
u* e (W(Q,A))".
Therefore, for each u € W(£2, A) we have that

(J'(u),v) = /Qg’(Au(x))Av(x) de, YveW(Q,A), (30)

where J'(u) is defined by the operator

T W(Q,A) = (W(Q,A)
u— J'(u) = u’.

We will see, next, some particular cases of the previous example.

Example 5: The Pseudo-Laplacian operator.

Consider for each i =1,...,n
W, = W(Q,A) = { e () 2 e LP(Q)} 2<p<too,
: ov ||
endowed with the topology: [|ul[fy, = [[v[},q) + . Define
¢ 8% LP(Q)
A W(Q,A) — LP(Q)
ov

v Av =

8@- )
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Let p > 0 and consider

. . 1.
F@) = Isls = {S”S’ 220 _ {SPS’ 520 - {Sﬁ oo

(—s)Ps; s <0 —(=s)P(=s); s <0 —(—=s)Ptt s <0
Whence
ey = J (P17 520 _ ) p+1)s%5 s=0 _ o
e {—<p+1> SENEIRET {<p+1><—s>p; s<o ~PTDI

Thus, setting
g(s) = sl = (Is|"2 %) = (|s|"2s)s,
it follows that
g(s)=[(p—2) +1|sP" > s + (|s]"*s) = pls["?s.

In this way, g € C'(R) since ¢’ € C°(R). Furthermore,
lg(s)| = |s|”
|9'(s)| = Ipls|"™* s| = pls|"~",

which proves that g satisfies properties (i) and (ii) alluded to in the previous example.
We are, then, within the hypotheses of Example 4. Thus, defining for each ¢ =
1,....n

u— Ji(u) :/Q

then J; is Gateaux differentiable and for each u € W (), A;) we have that

p

ou iz,

81,3

" Ou

ou
E)xi

(T (), v) = p/Q de: Ve W(Q,A). (31)

Consider, now,

ou
6@

E=(\W(QA4) = {ueLp(Q); GLP(Q);z':l,...,n},

that is,
E =W"(Q).

We will endow E with the natural topology

p

8LUZ'

'8u

iy = [[ull), 0 + :
i=1 Lr(Q)

Define
J:EFE—R

u s J(u) = %Z Ji(u). (32)
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J is clearly well defined. We will calculate, next, the first variation of J at w in the
direction v, where u,v € E. We have

J(u+ M) — J(u)

(J'(u),v) = lim

A0 A
1 "L Ji(u A4 ) — Ji(u)
EUTPT
1 . Ji(u+ Av) — J;(u)
p &= A0 A
1 n
= Jl(u),v
p;( (u),v)
1 n ou p=2 ou Ov
pp;/ﬂ 0x; Ox; Ox; !
Set
v E =R
n p—2
ou Ov
CoN dz.
= (ut,v) = J'(u,v) ;/ﬂ o, B, 01y

We have that u* is clearly linear. By the Holder and Minkowski inequalities it
follows that

dx

(u* v|<Z/

—Z(/

3917,

s(Z

i=1

ox; 8%

) ()

ov

ov
6@»

P 1/p
dx)

P ) 1/p
Lr(S)

where :712+1% = 1, which proves the continuity of u*. Therefore, J is Gateaux differentiable
and, furthermore,

ox;
o

L ( Q) Ox; LP(Q)
ou

)Uﬂ(i
0% || (e i=1

/
< |Jul " [[0] | s

ov
8IZ‘

n p—2
U ou Ov
where
J:E—FE

ur— J(u) =u”.
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Remark: Tt is worth noting that the dual of £ = W?(Q) is not a “space of distributions”.

We can then consider
E =W, (Q)

whose dual E' = W= (Q) < D/(Q). thus, if u € E = W,?(Q) then J'(u) € E' =
W=7 (Q) < D'(Q). Furthermore, for all ¢ € D(Q) we obtain

(), ) Z/ ou Ju Oy

ox; ox; 0x;
B Z ou 2 ou
- 8951 P
D'(2),D(2)
_ _i 0
N i=1 Oz;

ox;
P72 du
axi Y (10 °
D'(Q),D(2)
By density we conclude:

dx

ou
8@»

) "0 [|oul"? du
(1) Vhy s W”’_<_Zaxi( ox; 8xi)’v> Vo 1l 7
=1 w-—Lp (9)7WO VP(Q)
in this way,
L0 [ouPPouN .
- _Z O ( O 8x-> in W (Q) (34)
i=1 7 7 1

Finally, note that the second derivative of the function g(s) = |s|? mentioned at
the beginning of this example is given by

g"(s) = p{(IsP2)'s + [s]P~?}

—p{(p—2| P45 + s~}
=p{lp—2)|s]" >+ |s]"?}
=p(p— )! P2

Thus,
g"(s) >0; VseR,

which implies that
g(s) = [s[”,
is a convex function. Thus, the functional given in (32) is convex. Indeed, whatever

VueFl .
=3 iw)
P4
where 9 I?
u
Ji(u) = /Q o dr.
Let u,v € E and X € [0,1]. We have
p
Ji(Au+ (1= XNv) = / 0 (M4 (1= Xv)| d
|0
ou v |
_ 1 —
A o, +(1-=X) o de,
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p
}dx;

Ji(Au+ (1 = Nv) < XN Ji(u) + (1 = N)Ji(v), Yu,ve€E.

which by the convexity of ¢ is less than or equal to

v

that is, foreachi=1,....n

ou
&%’i

ov
8:62-

p+(1—A)’

Therefore,
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Conclusion:
The map
J: WyP(Q) = R
1 n
wes J(u) == Ji(u),
L
where 9 I?
u
(u) /Q o x p < +o0

is convex and Gateaux differentiable. Then, by Theorem 2, the map

P72 Oy
3@

J' WP (Q) — WP (Q)
ou
3302-

' ~ 9
UHJ(U):_Z(%-
i=1 v

is monotone and hemicontinuous.

Example 6: The Pseudo-biharmonic operator.
Consider 2 < p < 400 and define

W(Q,A) ={ue LP(Q);—Au € LP(Q)},
endowed with the topology

allly = I[ull2, q +1Au

p
Lr(Q)

and

A: W(Q,A) — LP(Q)
u = Au = —Au.

Let
g: R—-NR

1
s g(s) =—|s|”
(s) = 2 Isl

whose derivative is given by
g(s) =I5 s

In this way, g € C'(R). Furthermore,
1
g(s)| = —1s|P
|9(s)] p| |

g/ ()] = Is|",

which proves that ¢ satisfies properties (i) and (ii) alluded to in Example 4. We are,
therefore, within the hypotheses of that example. Defining

J:W(Q,A4) >R

35
UI—>J(u):1/|Au|pdx, (35)
D Ja
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then J is Gateaux differentiable and given u,v € W (2, A) it follows that
(J'(u) / |AulP™? Au Av dz. (36)

In particular, if we consider W (Q) instead of W (Q, A) whose dual is W ~2# (Q) <
D'(Q) then, given u € WZP(Q) and ¢ € D(Q), it follows that
) oo = [ 187 Audpds
= <A(‘Aufp 2A“)v >D’(Q),D(Q)’
that is, by density we have that
(J'(u),0) -2 wer = (A(|AulP™? Au),v) oy W for all v € WZP(Q).

Thus,
J'(u) = A(|AufP2 Au) in WE(Q). (37)

1
Analogously, as in the previous example we also have that the map g(s) = — |s|?
p

is convex. Therefore, the functional given in (35) is also convex.

Conclusion:
The map

J: WeP(Q) - R
u— J(u / |Au|P dx

is convex and Gateaux differentiable. Then, by Theorem 2, the map

J' WP (Q) — W2P(Q)
urs J'(u) = A(|Au[P7? Au)

is monotone and hemicontinuous.
We will see, next, some applications of the exposed theory for the resolution of
stationary problems.

Application 1:
Consider the stationary problem

G,

U‘F = O,

—2
P72 ou

3932-

ou
al’i

):f in

where f € W=17(Q); 2 < p < 4o0. It follows from Example 5 that the operator

P72 Oy
a.’lfi

I WyP(Q) = WP (Q)

u— J'(u Z@x(

ou
837i
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is monotone and hemicontinuous, since it is the Gateaux differential of the convex func-
tional

J: WyP(Q) = R
1 n
u— J(u) = - /
(u) pz )

Our aim is to use Browder’s Theorem and conclude that the stationary problem
(38) possesses a weak solution. We already have the monotonicity and hemicontinuity of
J'. It remains to prove that J’ is bounded and coercive. Indeed:

ou
81‘2'

p
dx.

(i) J'is bounded. Indeed, we have that

T W10y = sup  [{J'(u),v)].
HUHW&,p(Q)Sl

However, from (33) it follows that

p—1

- u v
[(J'(w), )] S;/Q ool B e K
- ulr  \Y v P\ P
S;(/a O, dx) (/Q oz, d"”)
B " u 1P/ o
_; O; Lr(Q) O 2(Q)
S(En: ou |IP )1/p’(zn: v IIP )1/p
— Ox; Lr(Q) — ox; Lp(@)
= [[ul 180 g 101l
= [lull}y s g 1Vl 7y -
Whence
1T (W) lw -1 ) < ||UH§;011,I)(Q); Yu € WP (Q). (39)

The inequality above proves the desired result; that is, that J' maps bounded sets
of Wy P(Q) into bounded sets of W =1 ().

(ii) J'is coercive. Indeed, we have from (33) that

. = oul’ [ ou\’ = ou |?
(J'(u),u) = ;/Q . (8961) dr = ;/Q . dx,
that is,
(7). ) = [l
Whence:

J/
lim < (U),’LL> _ lim ||U||p_11_p — o -
el 1.9 ) =00 HuHWOl,p(Q) a1 ) +00 WP (Q)
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Application 2:
Consider the stationary problem

A(|Auf?Au) = f in Q

U‘F = 0,

(40)

where f € W=27(Q); 2 < p < 4o0. It follows from Example 6 that the operator

J' WP (Q) — W2P(Q)
urs J'(u) = A(|Au[P7? Au)

is monotone and hemicontinuous, since it is the Gateaux differential of the convex func-
tional

J: WP (Q) = R
1
u— J(u) = —/ |Aul? dz.
D Ja

We have
(i) J'is bounded. Indeed, from (36) it follows that

(J'(u),v) = /Q |AulP~2 AuAvdz; Yu,v e WSP(Q).
Whence

KJ%M,MISL/IAUW“IAth
Q

< (/ |Au\pdx)p (/ ]Av|pdx>p
Q Q

D
= |[Aul[ Loy | Ao ()

-1 —1
= 11l 18l g0 = Il ity o el oy
Thus,
—1
1T (@2 @y = sup (T (w), )] < [l g (41)
o2,

The inequality in (41) shows us that J’ is bounded.
(ii) J'is coercive. Indeed, we have:

(J’(u),u>:/|Au|p_2AuAudx
0

— _ p
_A\Auypdx_\|uyng,p(g).
Thus

(J'(u),u)

HuHWS,p(Q)—Hroo Hu||W02’p(Q) ‘|“HW§7P(Q)_>+°°

||l = +00.

-1
Wi (Q)

By Browder’s Theorem we conclude then that problem (40) possesses a weak solu-
tion. [



Chapter 14

Evolution Problems

14.1 Monotone Parabolic Problem

Consider the parabolic problem
ou " du

ou = 0

u=0 on X =00x(0,T)
u(z,0) = up(z); =z €Q,

):f i Q=0x(0,7) (p=2)
1)

where (2 is a bounded open set of R™ with regular boundary 0.
We have the following result:

Theorem 1: Given f € LY (0,T; W7 (Q)), wug € L*(Q) there exists a unique function
u: @ — R, weak solution of (1) in the class

we L=(0,T; L3(Q) N LP0, T; WP (Q));u' e LP (0, T; W1 (Q)) (2)
verifying
d "0 ou " ou , ,
- (u(t),w) - <; Fo. ( o, axi)’“’> = (f(t),w) in D(0,T), (3)
for all w € W, *(Q2) and
w(0) = ug . (4)

Proof:

12 Step: Approximate Solution.

Since W,?(Q) is a separable Banach space 5’0(9) is dense in W,?(Q) by def-
inition. there exists (v,),en a countable dense subset in Wy*(€2). We can, from this,
construct a new sequence (w,),ey orthonormal in L?(2), by the Gram-Schmidt process,
such that

(i) (wy,)yen constitutes a linearly independent set.

(ii) [(w,)yen] is dense in W, ().
L(x)

175
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Indeed, note that the sequence (w, ), ey is obtained from (v, ),en through the Gram-
Schmidt orthogonalization process. Thus, the w,’s can be written in terms of the v,’s
and consequently we also have the reciprocal. From there, it follows that

(,UI/>ZIEN C [(wu)ueN] - W()lm(Q)

Whence, taking the closure in W, (Q) it follows that

(UV)V C [(wl/)l/EN] C W()LP(Q)

that is,
[(w,)ven] = Wy (9),

which proves (ii).
According to the preceding chapter we know that the pseudo-Laplacian operator
is defined by

A: WHQ) — WP (Q)

"9 (| oul]"? ou
Set, then
Vm:[wl,...,wm]

and consider the approximate problem: Fixed m € N, determine u,,(t) € V,,, such that

(ul, (t),w;) + (Aup (t),w;) = (f(t),w;); j=1,...,m (5)
U (0) = gy — v in  L*(Q). (6)

Since u,,(t) € Vj, then
Um(t) = Zm:gim(t)wi; gim(t) to be determined. (7)
i=1
Substituting (7) in (5) we obtain
(iggmu)whwj) ¥ <A(igm<t>wi),wj> () 1<j<m.
=1 i=1
By the orthonormality of the w;’s in L*(Q) it follows that
i)+ (A E gn0) ) = GO 15 <m 8
i=1
Now, from (6) and (7) it follows that

U (0) = Zgim(O)wi = Upm — ug  in L*(Q). (9)
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However, since [(w,)yen] is dense in W, ”(Q) and this in turn is dense in L?(1)
then [(w,),en] is dense in L?(Q2). Furthermore, since the (w,), are orthonormal in L?(()

we have
—+oo

Uy = Z(uo,wy)wy. (10)

v=1
From (9) and (10) it follows that

Zgim(o)wi = Z(UO, wi)wi
i=1 i=1
and from the orthonormality of the w;’s we obtain

gim(0) = (ug,w;); Vj=1,...,m. (11)

Thus, from (8) and (11) the system of O.D.E.:

T (t) + <A(§;gim(t)wi>,wj> = (f(t),w;) (12)
() = (1o y); 15 <m

We will use Carathéodory’s Criterion to determine a local solution of (12).

Set
gim(t) (uo, wr)
Yi)y=| + | Y(0)= : =Y. (13)
Grmm (1) (w0, win)
Define
h: 10, T[ xR™ — R™ (14)

m

<t,y>~>h<t,y>={<f<t>,wj>—<A(;yiwi),wj>] RNCPRY

(10w = (A S ) o)
h(t,y) = S

(10~ (A £ ) ).

Then, from (12), (13) and (14) we can write

that is,

Y'(t) = h(t,Y(t))
Y(0) =Yo

We will prove, next, that the map (14) is in the Carathéodory conditions. Indeed,
since f € LY (0, T; W=7 (Q)) then the map

tH(f(t),v)W,l’p/;Wé,p from [0,7] to R (15)
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is measurable Vv € Wol’p(Q) and, furthermore, the map
t— Hf(t)HW_l,p/(Q) from 10,7 to R
belongs to L¥' (0, 7).
Thus, for almost every y € R™ fixed, the map h given in (14) is measurable in ¢
because the map (15) is.

On the other hand, from what was seen previously, we have that the operator A is
monotone, hemicontinuous, bounded and coercive. Thus, A is continuous from

(W()17P<Q)a7—strong) into <W717PI(Q)7Tweak*)-

This being so, if (y,) C R™ and y, — y in R™ then

zm:yy,iwz —— Zyzwz in Wy (Q)
1= =1

and, therefore,

< (;ymwz) w]> L. < <Zyzwz> wj> Vi=1,...,m. (16)

Thus, for almost every t €]0,7] fixed, the map h given in (14) is continuous in y
by virtue of (16).
On the other hand, setting

(F(1),wn) <A(iy“’)“’>
gy=1] and  D(y) = '

(F(8), wn) <A( iyw)wm>

h(t,y) = g(t) — D(y).

then

Thus,

[t y)l[em = [lg(t) = D(W)llem < [lg(@)|lrm + [[D(y)]|rm - (17)

However, K being a compact of |0, 7[ x R™, we have for all (¢,y) € K that

DI = Z< (Zy@wz) wj>2 A(Zyzwz)

7j=1
Recall that A maps bounded sets into bounded sets. Thus, since y € proj, K then
lly|| < ¢1 and, therefore,

m

53

ey - (19)
w-1r'(Q)

< Z il szHW(} () = Max |w1HW1P Z lyil <o

- 1< <m
Wy P (Q) i
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()

Thus,
2

w—Lp
and from (13) it follows that

1D < m( mass g a0 )es = €5
It follows from (17) that
HhtyHngz ), wi)|* +C4<Z|\f -1 w5l + €4 (19)
i=
< (max [Jwsl[f.) [1£(2 )wal,p/ +eq (14.2)

Since f € LY (0,T;W~'#(Q)) it follows from the inequality above that the map
on the right of the inequality in (19) is integrable on proj, K.
Thus, by Carathéodory’s Theorem there exists a solution Y () of the problem

Y'(t) = h(t,Y (1))

Y(0) = Yo, (20

in some interval [0,%,,); 0 < t,, < T. Thus, Y(t) is absolutely continuous and differ-
entiable almost everywhere in [0,%,,). This entails that the maps g;,(¢) are absolutely
continuous and differentiable a.e. in [0,¢,,). We will make, next, a priori estimates that
will help us extend the solution Y () to the whole interval [0, 7).

22 Step: A Priori Estimate.

Multiplying (5) by gjm(t), t € [0,¢,,) and summing over j, we obtain

(tt (£), U (1)) + (A (2), um (8)) = (f (1), um (1)) (21)
However,
=5 [
ou,, |

= ()

and from (21) it follows that

5 77 [ OF + em @ < (1 Ollw-107 @) lm Ol o) -

From Young’s inequality

1d

2
5 () + ()0 ) <

1
EH ()||W1p ]_)Hum( )||W1p
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Whence

1d , 1
L 0l +(1—5)|\um<>||wlp <

th /|| ()||W lp

1

p
Integrating this last inequality from 0 to ¢ < t,,, ; it follows that

S+ [ iy 5 < SO+ 5 [ IOy s 22

From (6) we guarantee the existence of a constant ¢; > 0 such that
[uom|* < e Vm.

Thus, from (22) we arrive at

(1) /Hum Mg ds < 1t — Iy e (23)

Vit el0,ty).
Thus, there exists co > 0 such that

1 t
]umﬁﬂ2+—gu£|h%&sﬂﬁﬁmm)d9§ca; Vi e [0,tm). (24)

It follows from (24) that:
Zgjm U (1), U (1)) = |um(D)> < co5 ¥Vt € [0,t0); Y

From there it follows that

1Y (#)

[ = Zng ) <co; Vtel0,t,) and Vm

It follows from this that the solution Y'(¢) of (20) can be prolonged to the whole
interval [0, T]. Thus, for each m € N there exists a solution w,,(t) of (5) and (6) in [0, 7.
Using what we did to obtain (24) we obtain, analogously

1 t
“%@F+EA”%$N%*@SQ Wt e (0,7, ¥m. (25)
Thus
(4,,) is bounded in  L*°(0, T; L*(2)) (26)
() is bounded in  LP(0,T; W, 7(Q)) (27)
(um(T)) is bounded in  L*(Q) (28)

Recall that

-1 1,
<AU, U> S Hu”;/()l,P(Q) ||U||W01’p(Q) ; VU, v e WO p(Q>
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Whence
(\Au,v>| —1 1
A o) = — =< D o Yu € W P(Q).
|| u||W Lp () Hiﬁ‘gl ||U|| = ||uHW6”’(Q) u 0 ( )
v#£0
Also,
[(Au, u)| -1 Lp(()).
HAun—lm’(Q) = W = [|ul Whr (@) Vue WyP(Q); u#0
Therefore,
My ) = Nl oy Vo € WEP(9), (29)

In particular,
~1
At ()l ) = ot (O

and from (27) it follows that

T T T
i _ (p—1)p' _ p
1A O sy = [ O30 e = [ D1y, <

Thus,
(Au,,) is bounded in  LP' (0, T; W=7 (Q)). (30)
From (26), (27), (28) and (30) we obtain a subsequence (u,)en of (u,),en such

that

u, —u weak*in L®(0,T; L*()) (31)
Au, = x weak* in  LP(0,T; W1 (Q)) (32)
u, —u weakly in  LP(0,T; W, "(Q)) (33)
u,(T) — & weakly in  L*(Q) (34)

32 Step: Passage to the Limit

Let 6 € D(0,T) and 5 € N. Multiplying (5) by 6 and integrating in [0,7], we
obtain, in particular, for the sequence (u,) > j:

| o war+ [ aue.wiom = [ ro.wo i
Whence
_ /0 (8, ;)0 (8) dt + /0 (Au (), w;)0(t) dt = /0 F(8),w;)0(t) dt. (35)

From (31) we obtain

|t w2 [ oo d (30

0
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and from (32) we have that

/0 (Auy, (t), w;)O(t) dt =122 /0 (x(t), w;)0(t) dt. (37)

In this way, from (35), (36) and (37) in the limit situation, it follows that

- / (ult), wy)6(t) dt + / (x(t), wy)6(t) dt = / 0wy d. (38)

Since the finite linear combinations of the elements of the basis (w,),en are dense
in W, (), it follows that the equality in (38) is valid for all w € W, ?(Q). Thus,

_ /0 (u(t), ) (1) di + /0 (), w)O(t) dt — /0 P, w)O(8) dt, (39)

for all w € W, ?(Q), for all 8 € D(0,T).
Identifying L*(€2) with its dual we have the following chain:

Wo () = L(Q) = (LA(Q)) — W' (),

so that
<h79>w—1,p’(9);wg’l’(g) = (h79)§ Vh,g e L2<Q)-

It follows from this that (39) can be rewritten as

—/0 (u(t),w)@’(t)dt+/0 (X(t),w>6(t)dt:/0 P, )0t dt.

Therefore,

<—/0Tu(t)9’(t)dt,w>+</0Tx( )o(t) dt w> </ F(O() dt w>

for all w € W,?(Q) and for all € D(0,T). Tt follows from the identity above that

- /O Lo d+ /0 o) di - /0 oo a

in W= (Q) for all # € D(0,T). In this way,

<d—“,9> +(00) = (f,8) in W (Q); V9 € D(0,T)

dt
that is,
du . , 1
a—i—x foin DO, T, WP (Q)).
Considering f,x € L (0, T; W~ (Q)) it follows that
d
d—lt‘ e LV (0, T; W=7 (Q)) (40)
and
du . ’ 1
—+x=f in LP(0,T; W1 (Q)). (41)

dt
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The next step is to prove the initial condition

42 Step: [Initial Condition.
Since u € LP(0,T; Wy*(Q)) and v’ € LP (0, T; W% (Q)) then

u e Cy(0,T; WP () N C([0, T); W= (Q)).

Let 6§ € C([0,T]) and w € Wy*(Q). Then fw € LP(0,T; W,*(€)) and from (41)

we obtain

T T T
[ wwemas [ @ = [o.womd @)
0 0 0
We claim that
d , ot
@ T u(e), w)on)] = w0, w00 + (). w) D vwewro) (1)
Indeed, set
d / /
wi0.7) = {ue PO.TW@) G e 0w @)
endowed with the topology
du
|ullw = HUHLP(O,T;W(}’P(Q))"‘ all o
LY (0,73 W 1 (Q2))

which makes it a Banach space.
Since D([0, T]; Wy P (2)) is dense in W (0, T), given u € W (0, T) there exists (u,) C
D([0,T]; Wy P(2)) such that
u, »u in W(0,T).

Whence
w, — win LP(0,T; Wy *(Q)) and  ul, — o' in L7 (0, T; W17 (Q)). (44)

We have, given the regularity of the u,’s,

d L do(t)
L (1), w)0(0)] = (0. )00) + (1), ) 2.
Now, identifying L?(Q2) with its dual we can write
% [, (1), w)O(1)] = (uy, (£), w)O() + (uy (L), w)0' (L) (45)

The next step is to pass the limit in (45) to obtain (43). Given the convergences
in (44), we have that the right side of (45) converges.
Indeed, we have that

(! (t),w)0(t) — (' (t),w)0(t) in L'(0,T) (46)
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since

/| . >we\dt</ (1) = ()] 13y 10 g

p
p
<( [ o - ||W1,,(Q) (/ ) 0

since u/, — o/ in L' (0, T; W~17(Q)).
Analogously,

(u, (1), W) () — (u(t),w)0'(t) in L(0,T) (47)

because

/|ul, — u(t), wd') ydt</ [l () = w(t)lyyr-1.0 ) [0 ()] [y Ut

1/p
/ p
<( [ 1) w011 ) (/ ||we<t>||W3,p(mdt) S0,

since if u, — w in LP(0,T; W, ?(Q)) then u, — u in L¥(0,T;W~17(Q)) (note that
LP(0,T5 Wo " () < LP (0, T; W17 (9)).
From (46) and (47) we conclude that
(u, (8), w)O(t) + (un, (£), w)0' () = (u'(), w)O(t) + (u(t), w)d'(¢) (48)

in L'(0,7).
On the other hand, we also have in a manner analogous to (46) that

(uy, (t), w)0(t) — (u(t),w)(t) in LY0,7T)
and, consequently,

d
dt

[(u,(t), w)0(1)] %%[(u(t),wﬁ(t)} in D'(0,7). (49)

@F

Thus, from (45), (48) and (49) we conclude, given the uniqueness of the limit in
D'(0,T), that
d
= [u(®), w)0(0)] = ('), w)(t) + (u(t), w)'(t)
which proves (43). Assuming that #(0) = 1 and 6(T)) = 0, considering the fact that
u € C°0,T; W (Q)) and integrating in [0, 7], it follows that

(u(T), w)O(T) — (u(0), w)0(0) = / (W (1), w)O(t) di + / (u(t), w)' (1) dt.
that is, . .
/0 (), wO(E) dt = —(u(0), w) — /O (u(t), w)0'(t) dt. (50)

Substituting (50) in (42) we obtain

— (w(0), w) — /0 (), we (1) di + /O (), w)O() dt — /0 ), w)0@) A (51)
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Let j € N. Multiplying the approximate equation given in (5) by # and integrating
in [0, 7] we obtain in particular for (“uﬁ > 7,

/0 (u, (1), w;)0(t) dt+/0 (Au, (1), w;)0(t) dt :/0 (f(t),w;)0(t) dt. (52)
However,
% (up(8), w;)O(t) = (uy,(8), w;)0(t) + (up(t), w;)0'(2)-
Integrating in [0, 7] we obtain

4w@mwzﬁommww@m+ﬁumme®w. (53)

Substituting (53) in (52) results that
%ww@—%«mmwwwﬁ+g<mmmww@ﬁ
=A<ﬂmwwwﬁ

In the limit situation, given the convergences in (6), (31) and (32), we obtain
T T
)~ [ @+ [l d
0 0
T
= [ (0wt a
0

By density the expression above remains valid for all w € I/VO1 P(Q2). Whence

—(ug, w) _/o (u(t), w)o(t) dt —l—/o (x(t),w)0(t)dt = /0 (f(t),w)0(t)dt. (54)
Finally, from (51) and (54) we obtain
(u(0),w) = (up, w); Yw e WP (Q),

that is,
w(0) =ug in WH(Q), in truth, in L*(Q). (55)

The Theorem will be proved, except for uniqueness, if we show that
X = Au. (56)

This is what we will do next. Consider (u,) the subsequence of (u,) given in (31)-(34).
Then, by the monotonicity of the operator A we can write

T
OS/ (Au, — Av,u, —v)dt; Vv € LP(0,T; Wy P(Q)).
0

#3Here (u,,) is the sequence obtained in (31)-(34).



186 CHAPTER 14. EVOLUTION PROBLEMS

Whence
T T T
0< / (Auy,, u,) dt — / (Auy,,v) dt — / (Av,u, —v) dt. (57)
0 0 0
On the other hand, returning to the approximate equation given in (5) we obtain
1d
9 dt |Uu(t)|2 + (Auy, uy) = (f,up)-

Integrating the expression above from 0 to T it follows that

1

T 1
| e =
0 2

uO) = 5

|u,L(T)|2+/0 (f,uy,)dt. (58)

Substituting (58) in (57) results that

1 ) 1 ) T T
0< 5 |wou|® — 5 lu, (T +/ (f,uy,)dt — / (Auy,, v) dt
0 0

T
- / (Av,u, — v) dt.
0

We observe that if we use the same technique applied to prove that u(0) = ug, we
can also prove that

(59)

u(T) = &, (60)

where £ is given in (34). Indeed, it suffices to consider § € C'[0,T] such that 6(0) = 0
and 6(T) = 1 and proceed as in the 42 step.
Thus from (34) and (60) we obtain

w(T) = w(T) in L*). (61)

Taking the lim in (59) results that

O<hm ]uoﬂ| —hm \u“( )|2—|—hm/ L uy,) dt

—hm/ (Auy,,v dt—hm/ (Av,u, —

However from the convergences in (6), (32), (33) and (61)F4 we obtain

O<—]u0|2—§\u(T)|2+/0 (f,u)dt—/o <X,U)dt—/0 (Av,u—o)dt.  (62)

On the other hand, from (41) we can write

z<wmwmﬁ+4<mmmmﬁzé<ﬂmmmﬁ. (63)

24Use Banach-Steinhaus: |u(T)| < lim |u, (T)| = |u(T)|? < lim |u, (T)[?
(tin [, |)? = (timn s ) (tn [t ) < Lirm [, 2
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However, proceeding in a manner analogous to the proof of the identity in (43) we
prove, identifying L?(Q) with its dual, that

d /
= (u(®), u(t) = 2(u'(£), u(1))
that is, 1d
=l = (1) u(t). (64

Substituting (64) in (63) we conclude that

3 Flwras [ a@amia = [ oo
that is, . .
FIF = 5 OF + [ o) a = [ 0.ue)a (65)

Thus, from (55), (62) and (65) it results that

OS/0T<X,u>dt—/0T<X,v>dt—/0T<Av,u—v>dt,

that is,
T
0< / (x — Av,u — v) dt; Vo e LP(0, T; Wy P(Q)). (66)
0

Let w € LP(0,T; W, ?(€)) and A > 0. Then, taking v = v — Aw in (66) it follows
that

0< /OT<X—A(U— Aw), w) dt

and, by the hemicontinuity of A, we conclude when A\ — 0 that
T
0< / (x — Au,w) dt, Yw e LP(0,T; Wy P(Q)). (67)
0
In the same way, taking v = u— Aw; where A < 0, we obtain the opposite inequality
T
0> / (x — Au,w) dt; Yw e LP(0,T; Wy P(Q)). (68)
0
Whence, from (67) and (68)
T
/ (x— Au,w)dt =0;  Vw e LP0, T WEP(Q)),
0

that is,
17
(x — Au, w)LP'(O,T;W*LP’(Q)),LP(O,T;W(}’F(Q)) =0; Vw e L(0,T; Wy (Q)).
The equality above leads us to conclude that

x=Au in LF(0,T; W=7 (Q)),
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which proves (56).

52 Step: Uniqueness

Let u; and uy be solutions of Theorem 1. Then, from (41)

W = u; — us

satisfies
dW d ) / 1
= e =) = (= Aw) = (= Aw) i I(0,7,W (@),
Whence
dW . y L1y
e + Auy — Aug =0 in LP (0, T; WP (Q)). (69)
Also

W(0) = 0. (70)
It follows from (69) that for almost all ¢ € [0, 7]
W'(t) + Auy(t) — Aug(t) =0 in WH(Q).
Composing the identity above with W (t) results that
(W'(t), W(t)) + (Auy(t) — Aua(t), W(t)) = 0. (71)
However, in a manner analogous to (64), we can write that

1d

5 77 WP = (W(@), W(t)
and, from (71), it results that
1d 2 —
5 77 WP + (Aua(t) — Aus(t), W (1)) = 0. (72)

By the monotonicity of the operator A we have that
(Auq (t) — Aus(t), W(t)) > 0; a.e. in [0,T]
and, from (72), it follows that

Ld W(t)* <0 ae. in ]0,77.
2 dt

Integrating the inequality above we obtain
W)= WO <0;  Vtelo,T]
and, from (70), it results that
0<|W@)*<0; Vtelo,T].

Whence,
W(t) =0; Vtel0,T],

that is, ui(t) = ua(t); Vit € [0,T]. O
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14.2 Hyperbolic Problem with Viscosity

Let 2 C R™ be an open, bounded subset with sufficiently regular boundary I'. Consider
the problem

Pu = 9 [|Oul"? ou ou ,

W_;&:Z(@xl axi)_A(E>_me

u=0 on X (1)
ou

u(z,0) = ug(x); e (,0) =ui(z); = €Q,

where 2 < p < 4o00.
Before we determine a solution for (1) we will make some initial considerations

essential to its understanding. Initially, we will prove that
W, P(Q) € HE(Q); forall 2<p< +oo. (2)

Indeed, let u € W,P(Q). Then, 3(¢,) C D(Q) such that ¢, — uin W(Q). Since
2 < p < 400 and Q is bounded it results that W?(Q) — H'(Q) since LP(Q) — L*().
Thus, ¢, — u in H'(Q2) which proves that u € H}(Q) and, consequently, (2) is proved.
Moreover, we will prove that the embedding is continuous. In fact, let u € W, 7 ().
HUHH(}(Q) = (Z

Then
2 1/2 1/2
)" < -2
i=1 L2(Q) L2()
" | ou
< Cl{|u|L2(Q) + }
Z amz L2(Q)
ou
uliogey + }
{ Z Ox; LP(Q)
au p 1/1’
[l + }
{ Z ox; Lr(Q)
<e(S
i=1

)

ou
(9:131-

Z

p

ou
a.ﬁl:i

1/p
) = el
()

Lp

that is,
HFU’HH1 < C4Hu||W1 P(Q) Yue Wol’p(Q), 2 S p < “+00. (3)

Since W, 7 (Q) is a reflexive Banach space then, identifying L*(Q) with its dual, we
have the following chain of embeddings:

Wo () = Hy(Q) = L*(Q) = (LX(Q)) = H}(2) = W7 (1), (4)

where % + 1% =1

Our goal is to obtain a “special basis’ to solve problem (1). However, since W, ()
is Banach we cannot make use of the Spectral Theorem. We must, then, obtain a Hilbert
space contained in Wol’p(Q) in order to apply the Spectral Theorem and thus obtain a
special basis. From Sobolev embeddings we have

We () = Wy (),
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1 7
where — = — — — - In this way, choosing
dr q n
=2 ¢ =p
we obtain L )
7"‘ —_— .
_:___ﬁr:u>0.
n 2 p 2p
Consequently, setting
s=r+1

we have s —r =1 > 0 and, therefore,
H3 () = W™ (Q) — W™ (Q). (5)

Since H(Q) is a Hilbert space we have from (4) and (5) the following chain of
continuous and dense embeddings:

HE(Q) = WoP(Q) = HY Q) — LAQ) = H Q) = W (Q) = H3(Q). (6)

However, since the embedding of H}(2) in L?(2) is compact (thanks to Rellich’s
Theorem), it follows that the embedding of H3(2) in L*(Q) is also compact. In this way,
letting B be the operator defined by the triple

{H5<Q)7 LZ(Q>; ((7 '))s}a

where ((-, -))s denotes the inner product in H(£2), we have by the “Spectral Theorem”
the existence of a collection (w,),en of eigenvectors of the operator B whose associated
eigenvalues (\,),en are positive and such that A\, < A\, 1 and A\, — 400 when v — oo.
Furthermore,

(w,) is a complete orthonormal system in  L*(Q) (7)
w
- is a complete orthonormal system in  H{(€2). 8

Thus, for each v € N, we have
(Bw,,v) = ((w,,v))s; Yve Hy(Q),

that is,
Ao (wy,v) = ((wy,v))s; Vv e HS(Q). (9)

In what follows we will prove the result below.

Theorem 2: Given
uy € WyP(Q); wy € L*(Q) and  f € L*0,T; L*(Q))
there exists a unique function u: @ = Qx]0, T[— R in the class

we L=(0,T; WyP(Q)) (10)

u' € L0, T; L*(Q)) N L*(0,T; Hy(Q)) (11)
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u" e LY (0,7, W= (Q)) (12)
verifying
G0~ ) w)r o=,
Yw e W,*(Q),
uw(0) =wug; u'(0)=uy. (14)

Proof:
12 Step: Approximate System.
Let (w,)yen be the “special basis” of H{(§2) mentioned previously and consider

Vin = [wi, .., W)
In V,, we have the approximate problem

um(t) € Vi,
(U (1), ;) + (A (t), w)) + aluy, (t),w;) = (f(),wy); =1,...,m
(0) = ugm —> up in Wol’p(Q); Uom € Vin

U,
ul (0) = Uy — uy in L*(Q); Uiy € Vi

From (15) it follows that

0)
0)

U (t) = Zgim(t)w,-; Gim(t) to be determined. (19)
i=1

Substituting (19) in (15), it follows from (7) that

G (1) + <A ( zz; gz-m(t)wi) , wj>
H(gggm(”wv%) = (fw), j=1..m. 20)

However from (8) we have that (w,) is complete in H§(Q2). Since this in turn is
dense in W,”(Q) then we also have that (w,) is total (or complete) in W, ().

m(v)

Thus, since ug is in Wy (Q), there will exist (1,),, 7, = 3. ajmw; € [(w,),] such
j=1

that o
Z Qjmw; Z25 g in WP(Q). (21)

=1
Analogously, since u; € L*(Q) and (w,) is total in L?(Q) it follows that there will

m(v)

exist (§,),; & = Y. Bjmw; such that
i—1

J

(v)
> Bmw; F g in o LX(Q). (22)
j=1
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But, from (17) and (18) we have that

Ugm = Zgjm(O)wj —uy in WyP(Q) (23)
j=1

Ul = Zg;m(O)wj —u; in L*(Q). (24)
j=1

It results from (21)-(24) that

m(v) m
D jmw; = gim(0)w; (25)
j=1 j=1

and
m(v) m
> Bimwi = g (0w, (26)
j=1 j=1

Note, initially, that since the w;’s are linearly independent we can consider, without
loss of generality, m = m(v) and, by the orthonormality of the system in L?(Q2), we have
from (25) and (26) that

gim(0) =ajm; Vi=1,.....m (27)
g;m(()) = Bjm; Vi=1,....,m. (28)

Thus, from (20), (27) and (28) we have the system of O.D.E.

)4 (A S )00 )03 )+ 3 (Ot 3) = (£10) )
9im(0) = Q3 Gl (0) = Bjm;  J=1,...,m,

The problem above is equivalent to

<A( i_n: GimWi), w1>

g;;n(t) =1
o+

Q;f@m(t) <A( igimwi)a wm>

G(Z(1)
a(wy, wy) . .. a(wpm, wy) Gim (1) (f(t),wr)
+ L | = ,
a(wi, W) . (Wi, W) | | G (1) (f (), wm)
. iy , Ly
& Flt)
91m(0) Qim 91m(0) Bim
: = : and : = :
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Defining
glm(t)
Z() =1
gmm(t>

it follows that
Z"t)+ G(Z(t))+ CZ'(t) = F(t)

Z0)=Zy; Z'(0) = Zy; (30)
where p
Zy = }m and Z; = }m . (31)
O[mm /Bmm
Settin
: ) - M
B =20, V=210 wd ve- [0
it follows that
i |YA@ |2 _ Z'(t)
YiH) = {Y;(w] - {Z”(t)} - [F(t) —Gz() - ozm]
= Lotz + [-eoto) * )
-G(Z(t)) —CZ'(t) F(t)
Thus,
440 D y F(t)
0 0 1] ? 0
V0= etz o Ze] )+ Lreo)
and
Y1(0) Zy]
vo= o= 2] =n
that is,
Y'(t) = G(Y (1)) + DY (t) + F(t)
Y (0) =Y.
Let us define, now, the auxiliary function
h:[0,7T] x R*™ — R*™ (32)

(t,y) = h(t,y) = G(y) + Dy + F(t).

We will prove, next, that h satisfies the Carathéodory conditions. Indeed, since
f e L*0,T; L*(2), the map
t = (f(t), wy) (33)

is measurable; for all j = 1,..., m. Moreover, the map
t= [f(0)]720

belongs to L'(0,7). Thus, for almost every y € R?*™ fixed, the map h given in (32) is
measurable in ¢ because map (33) is.
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On the other hand, we saw in Chapter 1, that the pseudo-Laplacian operator A is
monotone, hemicontinuous, bounded and coercive. Thus, A is continuous from

(W()LpaTstrong) to (W_17p,;7_weak*)~

This being so, if (y,) C R*™ and y, — y in R?*™ then

i Yy iW; — i Y; W; in Wol’p(Q)
=1 =1

and, therefore,

<A(f;yy,iwi>,wj> = <A(iyw)w> Vi=l..m  (34)

It follows from this that
G(yy) = G(y)
and, from the fact that
Dy, = D -y,

we have that the map h given in (32) is continuous in y.
Finally, let K be a compact of ]0,T[ xR*™. For all (t,y) € K, we have

At 9)llam = 11G(y) + D(y) + F @O < [IGWI + D[yl + |7 @] (35)

V()]

2

m

1G5 = IG5, = Z

B (36)
<y (Zyzw,) -
Jj=1 w—1p
However, since proj, K is a compact set then ||y||,, < ¢; and then
‘ v <Yl o Siuf) <
Since A maps bounded sets into bounded sets, from (36) we have
NG W)]2m < c5.
Therefore, from (35) it follows that
A Y)l2m < K+ (| F@)]]- (37)

However

IF Oz = 1FE®)Il = ZI wj)IQSZIf(t)Iiz Jwjl72
Scllf( )z2
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whence
IF(@)ll2m < c2l F) 22
Since f € L*(Q) it follows from the inequality above that ||F(¢)||2, is integrable
on proj, K.
Thus, by Carathéodory’s Theorem there exists a solution Y (t) of the problem
Y'(t) = h(t,Y (1))
Y(0) = Y
in some interval [0,¢,,), 0 < t, < T. Thus, Y(¢) is absolutely continuous and dif-
ferentiable a.e. in [0,%,,). This entails that the maps g;,,(t) and ¢/, (t) are absolutely

continuous and g7, (t) exists a.e. in [0,%,,). We will make, next, an a priori estimate that
will allow us to extend the solution Y (¢) to the whole interval [0, 7).

22 Step: A Priori Estimate
Multiplying (19) by g},,,(t), t € [0,%,,) and summing over j, we obtain
1d

> q ! ()2 4+ (A (), ul, (1)) + |Vl ([0))? = (f(1),ul,(t)). (38)
But,
n p—2
= Z/Q gs gg g; dr; Vu,v €& WOLP(Q)' (39)
=1 ? % i

In particular,

ou,, |”~2 ou,, ou,,
(Aum(t) Z / ox; Ox; Ox; du
and
(9um
(At (£), um Z dz = [|up(t )||p Lr(q) (40)
(%)
From this last expression it follows that
d D (t)
@ a0, Z/dt 0" g
X [ | 0un®)]7 Oun(t) Ou (2)
= p<Aum(t), u;n(t»v
whence 14
(A (00, (8) = 1Dl (41)
Substituting (41) in (38), we obtain
1d 1d , ,
5 77 (O + P [um (117 1p(Q + [, (D117 = (f(1), 1, (1) )
42

SHOACIES PR + 1, ().
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Integrating (42) from 0 to ¢, t € [0,t,,), it follows from (17) and (18) that
SO+ 2 @l + [ I ds < 5
2 m p m W()l’p 0 m — 2 1m

+ D luonls + 5 [ 1P as + 3 [ o
—Nuom|[¥ 1, + = S s+ = u,. (s S.
p 0 WO’ 2 0 2 0

But, from (17) and (18) the existence of a positive constant ¢; > 0 follows such

(43)

that
|u1m| +—HuOmH 1 SC (44)

Thus, from (43) and (44) we conclude that
L @F + L @1 +/Ww<@ww
2 m p m Wol’p 0 m

t 1 1 s
<c —|—/ {—u;nSQ—l—— U ( pl,p—ir/ un, (1 2d7’}d8
o+ | 5 [t ()74 Hlum ()l i [l (7]

and from Gronwall’s inequality it follows that
t
[ ()17 + [ (B)][7,1.0 +/ lup(8)|[Pds < e; Vit €[0,ty) and Vm. (45)
0 0

Thus, from (19) and (45) it follows that
Zg]m U (£), tn (1)) = [t ()] 1200y < Kllum (B[} < (46)

Vte[0,t,) and YVm € N.
Also, from (45) it follows that

> (gt (g, (1)l (1) = [ul, (D)o S & VEE[0,ty) and Vm €N, (47)
7j=1

Thus, from (46) and (47) we obtain
1Y ()2 = HYI( I+ [[Ya(t )||2 = |l + 112 ®)II*

_Z|g]m |2+Z|g]m |2 < C

Vte[0,t,) and Vm.

It results from this that the solution Y (¢) of problem (29) can be prolonged to the
whole interval [0,7]. The same happens then for w,,(t). Thus, for each m € N there
exists a solution w,,(t) of (15)-(18), absolutely continuous, with u/, absolutely continuous
and u! existing a.e. in ]0, 7. Carrying out the same calculation we did to obtain (45)
we conclude, analogously, that

t
|u;n(t)|2+|yum(t)||§vol,pm)+/o lu(s)|Pds < Yte[0,T]andmeN.  (48)
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On the other hand, as seen previously
~1
[ A w1 2) = Ntm (O] (49)

Thus, from (48) and (49) we conclude that

() is bounded in  L>(0,T; WyP(2)) (50)
(ul) is bounded in L>(0,T; L*(2)) N L*(0,T; Hy(Q)) (51)
(Au,,) is bounded in L0, T; Wy () (52)
(ul,(T)) is bounded in L*() (53)
(um(T)) is bounded in W, (Q) (54)
Consequently there will exist (u,) a subsequence of (u,,) such that
u, = u weak* in L>(0,T; L*(2)) (55)
Au, = x weak* in LP(0,T; W17 (Q)) (56)
u, —u weakly in  LP(0,T; W, (Q)) (57)
u,(T) — ¢ weakly in  L*(Q2) (58)

32 Step: Passage to the Limit

Let 8 € D(0,T) and p € N such that j < p. Multiplying (16) by 6 and integrating
in [0,77] it results that

/0 (u(), w;)B(t) dt + /0 (Au, (1), w;)0(t) dt + /0 a(ul, (1), w;)6(t) dt

- / (F(t), w))6(t) dt.
Whence

—/0 (u;(t),wj)e’(t)dt+/0 (Auu(t),wj>9(t)dt+/0 a(u;(t),wj)e(t)dt
- [ v

From (56)-(58) it follows, in the limit situation, that

—/ (u’(t),wj)é’(t)dt+/ (X(t),wj>9(t)dt+/ a(u'(t),w;)0(t) dt
0 0 0 (61)

- / (F(8), w;)0() dt

V0 e D0,T); VjeN.
Since the finite linear combinations of the elements of the basis (w,) are dense in
W,y P (Q), it follows from (61) that

—/ (u’(t),w)e/(t)dt—i—/ <X(t),w>0(t)dt+/ a(u'(t), w)0(t) dt
0 0 0 (62)

- / (f(t), w)b(t) di
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Yw e Wy?(Q) and V6 € D(0,T).
Identifying L?(Q) with its dual we have that

(u,v) = (u,v), Yue L*Q), YveW,”Q) (63)

where (-, -) designates the duality W~=1#, W,".
On the other hand, recall also that

a(u,v) = (—Au,v); Yu,v € Hy(Q). (64)
In particular, from (63) and (64) we obtain

(W' (t),w) = (u’(t),w>w,1,p/w01,p and (f(t),w) = <f(t>7w>wfl~,p’,wol=1?§ Vw e WEP(Q)
(65)
and

a(u(t), w) = (—Au'(t), w)g-1,1 = <—Aul(t),w>w_1,p/;wolvp; Vwe WyP(Q).  (66)
This last equality follows from the fact that
WP (Q) = HH(Q) — L*(Q) — HHQ) — W7 (Q).

Thus, from (62), (65) and (66) it follows that

(- oo [rom ([ somoms)
([ romas)

—/Tu’(t)e’(t) dt+/TX(t)6(t) dt+/T _A(1)0(2) dt

/ fo@)dt in WHP(Q),

that is,

for all 0 € D(0, 7).
Therefore,

W",0) + (x,0) + (AU, 0) = (f,0) in W (Q)
for all @ € D(0,T'), whence
W+ x—Au=f in DO,T;WH(Q)). (67)
In truth, since
Au' e LX0,T; HHQ)); x e L®0,T; W (Q)) and fe L*0,T;L*Q))

from (67) we have
u" e L30,T; W' (Q)) (68)
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and, moreover,

W+ x—Au = f in L*0,T; W (Q)). (69)

42 Step: Initial Conditions

These are proved in the usual manner as in the previous problem. Analogously we
also prove from (59) and (60) that

E=u(T) and n=1d'(T). (70)

We will obtain, next, an estimate for the second derivative using a technique dif-
ferent from the usual one without it being necessary to impose stronger initial conditions.
Since V;, is a closed subspace of L*(€2), given that it has finite dimension, we can
write
L*(Q) =V, V.
Consider then, for each m € N, the projection P,, on the subspace V,,, that is,
consider the linear map

P L*(Q) = Vi,

- 1
u— Phu= Z(u, w;)w; . (1)
j=1
Note that
m 2 m
\Pmu|%2(9) = Z(u,wj)wj Z’ u, w;)]
Jj=1 L2(Q) 7j=1
+oo
<D M w) P < fulfag
j=1

where the last inequality is due to Bessel. Thus,
‘Pmu&?(g) < ‘U’%%Q) ;. Yue L*(Q),

which proves the continuity of the map P, .
On the other hand, if u € H§(2) then from (9) it follows that

m

. w,
Pmu—;uw] ;)\](u,\/_j)\/A_j
-2 (7).
= ey
From (8) it results that

().

<> | (w5

2 2

|| Pyl %15(9)
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Thus,
1Pl < [ullmg); Ve e Hg(Q) (72)
and consequently,
|| Pl 5
||Pm’|£(Hg,Hg) = sup ———<1; VYmeN (73)
ueH§ ||U| Hg
[lulls 0

Consider, now, P} the adjoint map of P,,. Recall that

Pr H(Q) — H(Q)
f—= Puf

where

(Prf,u)y = (f, Ppu); Yu€ Hj(Q)and ¥V f € H*(Q). (74)
We have, from (72) that

P [l = sup (P f,u)| = sup [{f, Pnu)]

[Julls=1 ||ul|s=1
< s -+ 1Pl < s Sl el = 1l ¥om €
ulls=1 ulls=1
that is,
P f =) < | flla-+); YmeN. (75)
In this way,
P s

1Bl ee—s. ) = sup WPatllas oy g e n. (76)
e+ Sl
[1f]I#0

Returning to (16) we obtain
(tty (£), w5) = (= Aum (1), w5) + (A, (8), w;) + (f(),w5); G=1,...,m
or even, identifying L*(Q) with its dual
(u;’n(t),w>Hfs;H3 = (—Aun,(t) + Aul, () + fO),w)g-—smz; Yw € Vi, (77)

However, if v € H§(2) we can write

“+o0o m
<U;;l(t), S HS — (Zg]m w]?Z Uuwz 2) (Zgjm wmz v wi)wi)
=1 =1
= (ttp, (t), Prav) = (i (1), P} 2115,
that is,
(U, (1), v) g-s;m5 = (Up (1), Prv) o5 5 Vv € Hg(S2). (78)

On the other hand, given v € H{(2) we have that P,v € V,, and from (77) it
follows that

(U (1), Prmv) = (= Aup(t) + A, (t) + f(2), Pv)
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and from (78) and (74) it results that
(U (1), 0) = (P (= Aum(t) + Ay, () + f(1)),v); Vv € H .
Consequently
U (1) = = Fp (Aum (1)) + P (Aug, (1) + Pr(f (1) in H™*(9). (79)
In this way, u” (t) € H*(Q) for a.e. ¢t €]0,T[. Furthermore, we have,

[t (212 (0) < (1P (At ()] | -2 + [P (Atigy ()| 1150 + [P (F ()] 11
< 1Pnllec— {11 Aum )11+ + 1|1 A0, ()] 1-+@) + [1f )] }

Then, from (76) it results that
et O+ < N[ Aum ()| + (| D, (O - + [f O]+ ae in [0, TT.

Thus,

[l (D) < {1 AumO[F-() + [|Au, ()H?{sgﬁllf(t)l!?{s(m}
< {I[Aum Oy -1o(0) + AU Ol -1) + 1/ ()]]12(0) } a-e. in ]0, T[.

From the inequality above and from (51), (52) and the fact that f € L*(Q) it
follows that

T
/ [, ()] 57— dt < +o0.
0

Thus,
(u!)) is bounded in L*(0,T; H 5(Q)). (80)

m

In particular, for the subsequence (u,) of (u,,) given previously we have the same
boundedness.
[t remains to prove that
x = Au.

In fact, by the monotonicity of A we have that
T
0< [ (Aw) - AWw) - vhde Yo e L0.T; W),
0

whence,

OS/O (A(uu),uu>dt—/0 <A(uﬂ),v>dt—/0 (A(v),u, —v)dt (81)

Yo e L0, T; W, 7(Q)).
Returning to the approximate equation given in (16), we obtain

(3 (8), 1w (£)) + (A (t), (1)) + alu, (1), (1)) = (F (1), wu(?))-

Integrating the last identity in [0, 7] follows that

| o meas [anoweya s [ G0l = 0.0
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that is,
[ i unars [ Au 0, u0)des 5 -5 1) = [ 70w @)
0 0 0 (82)
But,
| G womma= [ wo.wmar [ oo
Thus
| ) w0yt = (w70, = (40). 0,00 = [ a0 .
Substituting the equality above in (82) results that
(). 0, (T)) = (0, 0) = [ PP e+ [ (A 0., 0)) e+
[

+ R = Gl OIF = [ (@) (e) .

However, we have from (51) and (80) that

(u,) is bounded in L*(0,T; Hy(R)),
(u?) is bounded in  L*(0,T; H*(2)).

Since H2(Q) < L2(Q) — H (1) then, by Aubin-Lions, it follows that there exists
a subsequence of (u,) which we will still denote by the same symbol such that

w, —u' in L*(0,T; L*(2)). (84)
On the other hand, substituting (83) in (81) results that
g 1 2 1 2 / /
0< /0 (f(@), un(®))dt + 2 | O)]]7 = 5 T (TII” + (,(0), 1, (0) = (w4, (T), wu(T)
+/0 |, (£) | dt —/0 (A, (t),v) dt — /0 (Av(t), u,(t) —v(t)) dt

for all v € L (0, T; W, ().
Taking the lim in the inequality above we obtain

T
_ 1 —
0 <Tm [ (1), wa(0))dt + 5 T ug |

L. —
— 5 lim [u, (T)[* + Tim (ury, uop)

— lim(u,, (T), u,(T)) +11m/ |ul, (t)]? dt

- hm/ (Auy,(t),v(t)) dt — hm/ (Av(t), u,(t) — v(t)) dt.
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However, )
Uy — ug in WP — H, = |uou|| = [|uoll- (86)

But, from (60) and by Banach-Steinhaus
|[u(T)|| < Lim | fu,, (T)]|

and, therefore,
[|u(T)|[* < lim [[u, (T)]P?,

or even,
—lim fu, (T)[|* < —[u(T)]*, (87)

Now, since ug, — ug in Wy* < L? and uy, — u, in L? it results that
<u1M7 UO#) m (Ul, Uo). (88)

Finally, from (54) we have that
(u,(T)) is bounded in  WyP(Q) < HL(Q) < L*(Q).

Thus, the embedding of Wy () in L?(Q)) is compact there will exist a subsequence of
(u,), which we will still denote by the same symbol, such that

u, (T) 2225 w(T) in L) (89)

In this way, from (89) and (59) we have that

( (T, u, (1)) 225 (0(T), u(T)). (90)

"

Then, from (55), (58), (84), (85), (87), (88), (89) and (90) we conclude that

0< [ ue)dt+ 5 ol = 5 ()P + (1, w0) = ('), u(T)
OT T T (91)
—l—/o |u'(t)|2dt+/0 <X(t),v(t)>dt—/0 (Av(t),u(t) —v(t)) dt.

On the other hand, from (69) we obtain

<UH’ u> + <Xa u> - <Au/7u> = <fv U’>7

where (-, -) designates the duality L2(0,7; W=7 (Q)) x L*(0,T; W, ?(Q)).
Equivalently, we have

| ot [ [ aro.amya= [ oo e ©)

However, analogously to the parabolic case

% (' (£), u(t)) = (u'(1), u(t)) + (u'(t), w'(2)).

Integrating the last identity in [0, 7], we obtain

wwmmw—wmmw»=%«mmwmw+%rwmwt (93)
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Substituting (93) in (92) results that
(U'(T)vu(T))—(U'(O),U(O))—/O IU'(t)|2dt+/0 (x(t), u(t)) dt
+ [ mav. e = [ uo)ar

However,
| avouwde= [ awuoyd = [ 5 51O d = S h@IP-3 [«O)F
(94)
From (93) and (94) it follows that
(D), () = (ur0) + 5 [P = 5 ol P~ [ (o)
, : : (95)
+ [ o.uende= [oumar
Finally, substituting (95) in (91) it follows that
/O (x(t) — Av(t), u(t) —v(t)) dt > 0. (96)

Let w € Wol’p(Q). Considering, initially, v equal to u — Aw, with A > 0, and, next,
with A < 0, it results that

T
/ (x — Alu — Mw),w)dt =0; Yw e W,?(Q).
0

By the hemicontinuity of A it follows that

x = Au. O

14.3 Elasticity System

In this section, we will address an elliptic problem fundamental regarding its applications
in Solid Mechanics: The elasticity system.

Let 2 be a bounded connected open set of R™ with a smooth boundary I', rep-
resenting the volume occupied by an elastic body. Let I'y be a part of I', with strictly
positive surface measure, and let I';y be the complement of I'y in I". Let us assume that
the body is fixed along I'y and that a force f: (fi)i<i<n acts on the body and that a
surface force § = (¢g;)1<i<n acts on I'y as illustrated in the figure below:

Let @ = (uj); 1 < j <mn, be the displacement vector. The Strain Tensor (&) is
defined by

—

y — : < < n.
£ (1) 5 <8xj +8xi)’ 1<4,j7<n (1)
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Figure 14.1: Elastic body configuration

If 0;; is the stress tensor, then we need a law relating both tensors; a law that
will describe the properties constituting the material. Assuming that the solid is elastic,
homogeneous, and isotropic, the law relating the tensors is linear; more precisely, it is
Hooke’s Law

k=1

where A > 0 and p > 0 are called Lamé Coefficients. Here, 0;; is the Kronecker delta.
The elasticity system consists of the following boundary value problem:

Let us set

endowed with the inner product
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and
V = (HY(Q))" (6)

endowed with the inner product

n

(s, 0)y =D (w5, 0:) (@) - (7)

i=1

Define
Vo ={veV; Yv=0on Ty}, (8)

where 7, is the trace map given by

Yo: V — (HYV*D))"

v = Fou = (You1, Yova, - - -, YoUn),

with 7o: H'(Q) — HY?(I') being the trace map for functions in H'(12).
Our goal is to show that the map

i /Q \aﬂv)\?dx)l/? = (;15ij(v)\§2(9))1/2 (10)

ij=1

ve\/ov—>[v]:(

defines a norm on Vj, and that in V{ this norm is equivalent to the norm induced by V.
However, we need some preliminary results as we will see next.
Lemma 1. Let v € (HY(Q))". Then, for all 1 < i,j < n we have
gij() =0 & V(r)=a+b-z,
where a € R™ and b € L(R™) with b = —b*, where b* is the transpose of b.

Proof. Let v(z) = (v1,v9,...,v,) and suppose that v(z) = a + b - x, that is,

vi(x):ai—l—Zbijxj; 1<i<n.

J=1

From the hypothesis on b, i.e., from the fact that b = —b*, it follows that

bij = —bji
and, therefore,
g;}; =bjj = —bj; = —gz ;o 1<, 5<n.
Thus
£i; (V) = % <§;); + 22) =0; 1<i,5<n.

Conversely, suppose that

8ij(u) = 0, 1< Z,] <n; (11)
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then L /o 3
(% U .o
2(axj+axi> LosnlEn
In this way,
=0 1< k<
Dz (&rj + 8:61-) ’ =hLE=
that is,

=0 1< k<n.
Oz (B:Bj) * DTy <(’9$2) O =hLE=T

But, in the sense of distributions, we can also write that

oz, (a) "o (a_) =0 (12)

On the other hand, from (11) we have that

ou; Ouy, ou; Ouy,
_ d =L =_"F. 13
oxy, ox; an oxy, Ox; (13)
Thus, substituting (13) into (12) implies that
0 0 0 0
L8 2 (5
81‘]‘ al'z 8@ 89:j
that is,
82uk 82uk
2 =0= =0; 1<i4,5,k<
Gxiaxj 8:[18333 ’ = 5B R =T
which implies that
8uk
— =by, 1<j,k<n; 14
af['] kj > SLRESN ( )
where by; is a constant that depends on k and j.
But from (11) it follows that
brj = —bj - (15)

Integrating (14) with respect to x; we obtain
U = bkj $j + Cij + f(xl, To, ... 7xj717$j+17 e ,xn);

where ay; is a constant that depends on k and j.
It results for ¢ # j that

8uk B 8f
and from (14) it follows that
0
Lbi vits
8%

Thus,

n

f= Z (bri i + ai)

i=1,i#j
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and, therefore,
U = bkj Z; + A + Z (bkz r; + akzi)

i=1,i#j
that is,
Uy = Z(bkj T+ aj) = Z bpj + ar; where a; = Zakj .
j=1 j=1 j=1
Then,
U = (ul,...,un) = (al,...,an) + (Zbljxja'”azbnjxj) =
j=1 j=1
bin bz ... biy T (14.3)
. bai by ... by T2
=a-+ . ] . =a-+b-z.
bnl bng ce bnn Tn
According to (15) it follows that b = —b*, which proves the lemma. O

Lemma 2. Let §2 be a bounded open set with a smooth boundary T'. Let I'o C T' such that
the surface measure of Ty is strictly positive. If v(x) =a+b-x; Yz €Q, where a € R™,
b e L(R™) such that b= —b" and v(z) =0, Vx €l thenv(x)=0 Vaze.

Proof. We will perform the proof in the cases where n = 2 or n = 3. However, generally,
due to the fact that the surface measure is positive, we guarantee the existence of n
linearly independent vectors #y,...,Z, in R" such that z{,2,,...,2, € I'y. We claim
that

a=0 and b= (0)nxen -
Indeed,

e Casen=2
Let #; and Z5 be Li. in R? such that 21,25 € I'y. Then

v(z1) =a+b- -z =0
v(xzg) =a+b-23=0

and, therefore,
b'(.’El —1‘2) =0.

0 k .
k O)’ whence being

Since b is a skew-symmetric matrix we have that b = (

x1 = (a1,b1) and x5 = (ag, be) it follows that

[O k:] |:CL1—(IQ:| )
—k O |b—0b s
1 2 0



14.3. ELASTICITY SYSTEM 209

that is,

k(by — by) = 0
—kz(al — CLQ) = 0.

Since x; and x5 are Li. we have that z; # x9 and, therefore, a; — ay # 0 or
by — by # 0. Consequently, £ = 0 and thus

b=0.

Thus, v(z) = a; Vo € Q and, in particular, v(z) = a; Va € I's. Since v(z) =0
on [y it results that a = 0 and in this way,

e Casen=3
Let o1 = (a1,b1,¢1); T3 = (a9, by, c2) and z3 = (a3, b3, c3) be Li. vectors in R? such
that xq,x9, 23 € I'g. Let, further,

0 Kk kK
b= |—-ki 0 k3
—ky —ks3 0

Since v(z) = 0 on Iy, it follows that v(z;) = a+bx; =0; = 1,2,3. Therefore,

b(z; —z;)=0; 4,j=1,2,3 and i#j

that is,
b(xy — x9) = b(xg — x3) = bz — x3) = 0.
Thus
[ Ey(by — by) + ko — c3) =0
—ki(a1 —ag) + ks(c1 —c2) =0 (16)
k—k’g(al — CI,Q) — k‘g(bl — bg) =0
[ ky(by — b3) + ka(ca —c3) =0
—k1(ag —as) + ks(ca —c3) =0 (17)
[ —k2(az — az) — kz(by — b3) =0
[ ky(by — b3) + ka(ca —c3) =0
—ki(ar —ag) + ks(c1 —c3) =0 (18)
[ —k2(a1 —az) — kz(by — b3) =0

Since ¥y, ¥ and Z3 are linearly independent vectors we have that
Ty — Ty = (al — ag,by — by, 1 — 02); Ty — T3 = (a2 — a3, by — b3, co — C3);

X1 — T3 = (al —as, by — bs,c; — 03)
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possess at least one non-zero coordinate because, otherwise, x; = x5 and/or x5 = 3
and/or x1 = x3. Suppose, then, without loss of generality that a; — as # 0. From (16) it

follows
by = ks C1 — C2
a1 — ag
by — b
ky = —ks 1 2
a; — as

We have, now, two cases to consider:

1%t Case: ay —az # 0.
From (17) it results that

[ Cy —C3
a9 — A3
by — b
ky = —k 2 3
az — as

We have two subcases to consider
a1 —a3#0 or a;—as3=0.

If a; — a3 # 0, from (18) it follows that

by = ks €1 —C3
a; — as
and
by — b
ko = —hy ——
a; — as
From (19), (21) and (23) we obtain
k3 C1 — Cy :k3 Cy — C3 :]{;3 C1 —C3 )
a; — a a9 — Qg ap — asg
From (20), (22) and (24) it results that
by — b by — b by — b
k31 22]{:32 3:k31 3
a] — Q9 as — ag a1 — as
(27) If k3 = 0 then ky = ko = 0 and, therefore, b = [0]3x3 .
If k3 # 0 we obtain from (25) and (26) that
C1 — C2 Cy — C3 €1 —C3
= = = ml
a; — a o — as a1 — as
by —by  by—b3 by —bs
= = = m27
a; — Qa9 as — a3 a1 — as
or evern,
Cl — Cy = ml(al — CLQ) bl — b2 = mg(al — ag)

Cy — C3 = ml(ag — (13) and bg — b3 = m2<a2 — Clg)

61—03:m1(a1—a3) bl—bgzmz(al—a3).

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(28)
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If my = my = 0 we have that

01—62202—63201—63:0

by —by =by —b3 =0, — b3 =0
and, therefore,
x1 — 3 = (a1 —az,0,0) and x5 —x3 = (ag — as,0,0).
Thus, there exists a constant k£ satisfying
1 — x9 = k(xg — x3),

which is a contradiction, since the vectors are linearly independent.
Consider, now, the case where m; = 0 or my = 0. Suppose, without loss of
generality, that m; = 0 and my # 0, from (28) it comes that

Cl—CQICQ—Cg,:Cl—Cg:O,

whence,
I1 — T2 = (CL1 - a2,m2(<l1 - ag),O) = (CL1 - a2)(17m270)
To — X3 = (0/2 — a37m2<a2 — ag),()) = (0/2 — ag)(l,mg,())
r1 — X3 = (Cll — Cbg,mg(al — CL3),O) = (Cll — ag)(l,mQ,O).
Thus,
ap — Qs
Ty — Ty = (22 — x3),
a9 — asg

which is a contradiction!
Suppose, now, that my, my # 0. From (18) it comes that:

T1 — T2 = (al - a27m2(&1 - G2)>m1(a1 - Cl2)> = (a1 - az)(17m27m1)
Ty — x3 = (a2 — ag,ma(ag — az),mi(az — az)) = (ag — az)(1, ma, my)
r1 —x3 = (a1 — ag,me(a; — az),mi(ar — as)) = (a1 — az)(1,mg, my).

Then,
ay — a2

To — Ty = (ffl - x3)7

ay — asg

which is a contradiction!
Thus, k3 # 0 cannot occur. We must have, then, k3 = 0 and from (27) it comes
that

b= [0]3><3-

Let’s pass to the case where a; — a3 = 0. We have two subcases to consider:
bl—bg%o or bl—bg,:().
If by — b3 # 0 then from (18)3 we obtain

ks (by — bs) = 0.
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Thus, k3 = 0 and from (21) and (22) it follows that k; = ks = 0. Whence
b - [0]3><3-

On the other hand, if by — b3 = 0 then ¢; — c3 # 0 since a; — az = 0, by hypothesis
and the vectors 1 and z3 are linearly independent. From (17); it results that k3 = 0 and
therefore from (21) and (22) it comes that k; = ko = 0, that is,

b = [0]3x3-

274 Case: ay — a3 =0
We have two subcases to consider

bg—bg#o and bg—b3:0.

If by — by # 0 from (17)3 we obtain k3 = 0 and, therefore, from (21) and (22) we
have that k1 = ks = 0 and then,
b = [0]3x3.
If by — b3 = 0, since ay — az = 0 then ¢y — c3 # 0, given that the vectors x5 and 3
are linearly independent. From (17); we obtain k3 = 0 and, then, from (21) and (22), we
conclude that k; = ky = 0. Thus,

b - [O]gxg. D
[
Lemma 3. Let v € Vo = {v € (H'(Q))™; Yov = 0 on Ty} where the surface measure of
Ly is positive. Then, €;;(V) =0; i,j=1,...,n< 0=0.

Proof. It # = 0 then, trivially, (V) =0; Vi, j=1,.
Conversely, suppose that ¢,;(0) =0; Vi,j = 1, ...,n. Then, by Lemma 1, there
exist a € R” and b € L(R"™); b= (b;;) with b;; = —bj; such that

v(r)=a+b-x; Vze.
Note that the function #(z) = a+b-z, € Q is such that
7€ (CQ)" N (HY(Q)"
Thus,
Fob = B|p.
However, since 0(z) = v(z) in §2, we have that ¥,0 = 4yv and, therefore,
0(x) = (Fov)(x); for almost every x €T
In particular,
0(x) = (Fov)(z);  for almost every x € I'y.
Since v € Vy, then (yv)(z) = 0 for almost every x € I'y and then

o(z)=0; VaeTy®

By Lemma 2 it follows that @(z) =0, Va € Q which implies that v =0 in Q. [

13Note that & € (C*°(Q2))" and © = 0 a.e. on I'g then o =0, Vx € T.
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From the previous lemmas we obtain the following result.

" 1/2
Proposition 1. The map v € Vy — [v] = ( > |€Z'j<U)‘%2(Q)> where
1

h,j=

( )_1 8vi+8vj
SN =9\ 0wy T On

s a norm on V.

Next, we will prove that in Vj the norms || - ||y and [ -] are equivalent. Before that,
however, we need two results that we will state in the form of lemmas.

Lemma 4. Let Q =R"; Q=1R" or a bounded open set with smooth boundary of R". If

v € D'(Q) such that v e H(Q) and a(% e HYQ); i=1,...,n thenv e L*(Q).
T

Proof. We will perform the proof for the case 2 = R™. The proof for the other cases will

be omitted as it is beyond the scope of these notes, but can be found in Duvaut-Lions.
Initially, recall that for each s > 0 the set

H™*(R") = {u € S'(R"); (L +[¢]|*)~** a(€) € LAR")}
endowed with the topology,

lulreroy = [ L+ IR )L d

is a Hilbert space.

0
Let, then, v € D'(R™) such that v, D e HYQ); i=1,...,n. Thus, for s =1,

8:172-
| @l (@) de < +oo (29
and
é‘; 2
2y-1 | 9V i
[ avier |G @| <ii=to

However .

ov o

9z, (&) = (2mi)&; o(§).
Thus, for all j =1,...,n we have

m [ (L EIR) g o(€) P de < +oo

whence, summing over j and dividing by 27 results

| a1 P @R ds < +oo. (30)
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Summing (29) and (30) we obtain

/n(l HIEI) T (L + II17) [9(€) [ d€ < +o0,

that is,

b € L*(R™).
Due to Plancherel’s Theorem it follows that

v € L*(R").

Admitting the veracity of the lemma for the case (2 = R} , we prove, via local charts,
that the same continues to be valid for 2 a bounded open set with smooth boundary. [J

Lemma 5 (Korn’s Inequality). There exists ¢ > 0 such that for allv € V = (H'(Q))"

we have
> [t M%Z/% Do > el

4,7=1

Proof. Consider
E={ve (L))" e;v) € L*(Q), Vi,j=1,...,n}

and

[ claim: V = FE. Indeed,
Evidently, V C E. Endowing E with the topology

WM—Z/@j M+i/ﬁm
i=1 7

7,7=1

ELQ(Q),Vi,jzl,...,n}.

it results that the canonical map

7V —F

U= TU = U,
which is clearly linear and injective, is also continuous, since
Il = 1lulli < allull’; Yue V.
We will prove, next, that £ C V. Indeed, let v € E. Then
€ (L*(Q)" and ¢g;(v) € L*(Q); Vi,j=1,...,n

However, the following identity is valid

5 9 o a (v
8_:L'k (61']'(’0)) + a_x] (gjk(v)) B Oz (gjk(v)) - 8_% (8%)

Vve Fand Vi,j,k=1,... n.
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Since g;;(v) € L*() and, therefore, any derivative of it of 1** order belongs to
H~'(Q2), then from the identity above it comes that

0 0v;
— : HYQ): VYijk=1,...,n.
8.1'] (axk) 6 ( )7 Z?]? ) 7/n'

Furthermore, since

81]1‘

HYQ); Vik=1,...
al’ke ()7 Z, ) y T,

v, .
by Lemma 4 it results that 8_v € L*(Q); Vi, k=1...,n. Furthermore, since v; € L*();
x

Vi=1,...,n it follows that JE V. Which proves that V = F.

Therefore, 7: V — E is a linear, continuous and bijective map. Thus, 3771: £ —
V' which is linear and continuous.

Thus, ¢y > 0 such that

vl = |77 || < col|vl|g; Vv eE,

that is,
1
|z = —llll; VveV.
C2

]

Lemma 6. The space Vo = {v € V5w = 0 on Ty} endowed with the inner product
((+, ) given in (7) is a closed subspace of V.

Proof. Let (v,) C Vp such that v, — v in V. Then,
Jovy = Jov in  (HYA(I))" — (L*(I))".
Thus, there exists a subsequence (v,) C (v,) verifying
(Yovu)(x) = (Yov)(x) for almost every x €.
In particular,
(Yovu)(x) = (Yov)(x) for almost every x € I'.
Since Yov, = 0 a.e. on I'y, Vpu € N, we have that yv = 0 on I'y, which proves the

desired result. O

Proposition 2. The norms || - || and [-] are equivalent in Vi, where

n 1/2
o]l = (Z Hvﬂﬁﬂm)
7=1

and

o= (2 |€U(U>,§2(m)”.

ij=1
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Proof. As already seen previously (Proposition 1), the map v € Vj — [v] defines a norm
on Vy. We will prove, next, the equivalence between || - || and [-]. Indeed, let v € V.
On one hand, we have that

"1 |0v; O]
WP =27 |30 o
;314 6xj oz, 12(Q)
n a’UZ‘ 2 8Uj ?
< Z { Oz o1 }
i1 Jlrz(o) t1L2(Q)
<ay Alllling + loslling )
ij=1

< n{ S Il By + 3 ij||§{1m)} — 2ner] o]
i=1 j=1

Thus, d¢ > 0 such that
[v] < ¢f[vl]. (31)
Conversely, suppose that there exists kg > 0 such that
[v] > kolv]; Vv el,. (32)
By Korn’s inequality, 3 k; > 0 such that
[ + [ol* = Fu[o]]*. (33)

Thus, from (32) and (33) we obtain

bl < B+ o <+ () 2 = (14 3 ) oF

that is, 3 ky > 0 verifying
Fal[ol] < [v]. (34)

Therefore, from (31) and (34) the desired result follows. It remains, then, to show
inequality (32). Indeed, note that if v = 0 the inequality in (32) follows trivially. Consider
v # 0. In this case, (32) is equivalent to

Bls g o [i} >ky where |—|=1.
|v] 0] [v]
From the above it is sufficient to prove that
Jko > 0; Vv € Vp s.t. |v| =1 we have [v] > k. (35)

Suppose, by contradiction, that (35) does not happen. Thus, for each n € N,
1
Jv, € Vo3 |ual =1 and [v,] < —-
n
It follows from this that
lim [v,] = 0. (36)

n—-4o00
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But, for each n € N, from (33) we have that
1
Fl|val > < [oa)? + oa* < 5 +1<2; VneN,
n
which implies that

(v,) C Vo is a bounded sequence in the norm of V. (37)

Since the topological space (Vo, || - ||) is a Hilbert space, given that it is closed,
according to Lemma 6, we have that 3 (v,) C (v,) and v € V{ such that

v, = v weaklyin Vj. (38)

Furthermore, the map v € V +— [v] is a seminorm on Vy, which implies that such
map is convex and l.s.c. on V) endowed with the weak topology. It results that

< T
[v] < 1;13)1 ig@f [v,].

But, from (36) we conclude that

liminflv,] =0,

v——+00
consequently,
[v] = 0. (39)
From (39), from the fact that v € V and since [ -] is a norm on Vj it follows that
v =0. (40)

On the other hand, since H'(Q) <> L2(€2) we have that V < H and, therefore,
from (37) we conclude that there exists a subsequence of (v,), which we will continue
denoting by (v, ), such that

v, v in H.

Thus
lv,| = |v] in R

Since we have that |v,| =1; Vv € N, it follows that |[v| = 1. But this contradicts
what was obtained in (40), proving inequality (32), which concludes the proof. O

Next, we will solve the mathematical problem given in (3).

Let 2 C R™, be a bounded open set, with sufficiently smooth boundary I'. Let
[y, 'y C T, such that T'y has positive surface measure and I'; = I'\I'g. Given

f=0 o fa) € (LXQ)" and g =(g1,...,00) € (L*(I))",

determine u: Q — R" verifying

( n aO'Z'j(U) B

u;=0 on I (41)
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where 0;;(u) = Adivud;; +2pe;i(u); A p>0and g(u) = 5 (gz; + gZZ)
Let us set as before
H=(L*(Q)" V=(H"(Q)"and Vy = {v € V; v = 0}.

In what follows we will proceed formally. Multiplying equation (41); by v;, where
) € Vi, summing over i and integrating over (2, we obtain

_Z/‘?% .dx:izn;/ﬂfividx. (42)

7,7=1

v=(V1,...,0p

However, by Gauss

0
/—(O'ij<U)Ui>d£If:/O'ij(U)'UiVj dF:/ O'l'j(lb)’l}iyj dF—i—/ O'ij(’l,L)Uil/j dF,
o 0; r To Ty

Q ‘ xj Y ! Q Z] Ex] Fl Y © .

Substituting (43) in (42) results that

Z / o3 (u avl Z / flvzdx—l—z / o3 (u)v; dT. (44)

ij=1 ij=1
Analogously,
Z/O'ﬂ 81)] da:’—Z/va]dx—i-Z/ oji(u)vv; dl°
ij=1 ij=1 (45)
_Z/flvldx—i_Z/ oij(u)vv;dl.
ij=1

Summing (44) and (45) and observing that 0;;(u) = 0;;(u) we obtain

Z/% Pvl g;jd —Q{Z/flvzd:HZ/ o35 (u Wjdr]

b5=1 i,j=1
Whence
= 1 [0v; v i n n
Z /Qazj(u) 5 {&%’j 5 j dox = Z/ﬂfm dx + Z/ (Zazj(u)uj)vl dr,
3,7=1 =1 =1 1 j=1
or even
Z/m]’(u)sij(v)dx:z:/fm d:)j+2/ g;iv; d. (46)
@ i=1 7 i=1 YT

Now, setting

a(u, ) Z / 0i5(u)ei; (v (47)

i,7=1

L(v) = ; ( /Q frorde + /F g dF), (48)
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we arrive at the weak problem

(49)

Determine u € Vj such that
a(u,v) = L(v); Yv e V.

Our goal is to use the Lax-Milgram Lemma. For this, we must show that a(u,v)
is a bilinear, continuous and coercive form on V, and L € V. Indeed, from (47) and the
definition of o;; it follows that

a(u,v) Z/)\dlv w5 €i5(v dm+2/2u52] u)e;j(v)de, (50)

1,j=1 2,7=1

whence,

n

a(u,v) = /dlvu(z; )d$—|—2/2u52] w)es; (v)de,

1,7=1

that is,
a(u,v) = )\/(dlvu)(dlvv Ydx + Z / 2pei(u)e;;(v)de. (51)
Q i,j=1

The bilinearity of a(u,v) is clear. We will prove its continuity and coercivity. Let
u,v € Vy. Note, initially, that

ou; & -
| divu| < Z . Z leij(u)] < Z leij(u)| + Z |€ij(u)
i=j=1 i=j=1 i?ﬁ:ﬂl

that is,

[divul <) ey (u)l: (52)

ij=1

Thus, from (50) and (52) given the Holder and Minkowski inequalities, we obtain

a(u,v)| <)\Z/( leij(u )lew |dx—|—2u2/[azj | lei;(v)|dx
i,7=1

A/(Z( >|)(221|sw >d+2uz [ st euolas
(L (S ron)w) ([ (o) ar)
+2u;1 (/ lei; ()] dx) /2(/ \Eij(v)lzdx)l .
<ef (2 mtoras) ([ R orar)”

(2 ftorsn) (2 fetoras) )

i,7=1 i,7=1
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la uv|<02<

which proves continuity.
We will show, now, that a(u,v) is coercive. Indeed, let v € V. Then from (51) it
follows that

Thus,

> [ s das) " el

i,7=1

3 fletoras) (3

i,7=1

a(v, v)_A/Q(dm) dx—l—QMZ/]eU ()| dz

i,7=1
>2:U’Z/’€2j (0)? dx = 2u[v]?,
i,7=1

which proves coercivity. It remains to show that L € V(. Indeed, linearity is obvious. We
will prove, then that L is bounded in V;. We have, Vv € Vj;:

)| gz/ [ludo+ 3 [ o ot

() ( f)
(L) ([ o)
(5 [1e) (£ )
(B ) (] o)

= |fl vl + lgl@ze @y [Tovl w2y
< e {If 110l + lgl 2y [Fovlmrzyn |
< e {IfIvllv + lglc2ynllvllv }

= co{ |1+ g2y ol
Whence,
IL(v)] < es{|flu + lglz2@yn V], (53)
where the last inequality follows from Proposition 2.
In this way, we have by the Lax-Milgram Lemma
Jlu € Vy such that
a(u,v) = L(v); Yv € Vy

or, equivalently,

du e Vo verifying

Z / i (u)ei (v < /Q fividz + /F gividl“); Yoe V. (54)
=1 1

2,7=1



14.3. ELASTICITY SYSTEM 221

Characterization of the Obtained Result
Let ¢ € (D(€2))". From (54) it follows that

SYRTATI (R T o SR

7,7=1 Li

However, from the fact that o;;(u) = 0;:(u),
dp; | Oy,

Z / oi;(u ( o, + 8$i>dx (56)
8902 aso

{Z/Uz] +Z/ ax]d}

2,7=1 1,7=1

a@z’ 8‘:0]
Z/UU axj +Z/QU]Z( awz dx }

4,7=1 3,7=1

that is,

=1 7=1 =1
Then, setting
"9
0; = — —o0;(u) and o= (01,...,04)
— O
7=1
we have . .
Z(Uz”%> = Z(fz, ©i)-
i=1 i=1
Whence

<gv 90> = <f7 4:0>7 VQD S (D(Q))n
and, therefore,
o=f in (D(Q)"

or even,
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Since f; € L?(Q) we conclude that
o;=f; in L*Q).
Thus,
n 9 ‘ )
—Z —o(u)=f; in L*Q) (57)
= 8xj

and then a.e. in ).

e Boundary Condition

Returning to (54) we have

32 [t (G 52)as =3 [Lware 3 [ g

i,7=1

Using the same arguments used previously, we obtain

Z/O’U Z/fﬂ)ﬂi%%—Z/ g;v; dl. (58)

3,0=1

Substituting (57) in (58) it follows that

Z/aw avl Z/ (—é%aij(u))vidwrg/n g dD. (59)

1,7=1

0
Suppose that E oi;(u) € L*(Q); 4,7 =1,...,n we have that
Zj

O'Z'j'LLGHl(Q); i,jzl,...,n. (60)

Given the hypothesis above, in what follows we will proceed formally. From equality
(59), by virtue of the Gauss Lemma it follows that

0
1{ /8:}3] O'zj( )Uzdl'—i—/ Uz]( )UzV] dr} ZZ —/Qa—xjaw(u)vldx—i—z /Fl g;v; dI,

that is,

L,j=

Z/ <270 Uzg ) 707)1) dI’ = Z/ gi(’YOUi) dr.
i=1 YT \ = ; r
Define

g =(d1,...,0,) where 7; = 2%0” €H1/2(F)-

Then, 7 € (HY?(T'))" and, furthermore,

Z/r 7i(Yov;) dl' = Z/r 9i(vovi) dL,
—1 YT
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that is,

(@, Y0v) 2y = (9, Tov) L2y
In this way,

(@, Yov) L2ry)n = (9, Yov) L2(ry)n, (61)
since Yov = 0 on I'y.

On the other hand, since 1} is a closed subspace of V' it follows that ¥y(V}) is closed
in (HY2(T'))". Indeed, let (v,) C V, such that
Yo(v,) = w in (H1/2(F))".

Then, by the surjectivity of 7y it follows that dJv € V such that Ypv = w and,
therefore,

To(v) = Fo(v) in (HY*())"

It remains to prove that v € V. In fact, from the convergence above it follows
that

Yo(v,) = Fo(v) a.e.on T

and since (v,) C V; it follows that 4y(v,)(z) = 0 a.e. on I'y, for all v € N, and then
(Yv)(z) =0 ae. on Ty.
Thus, w = vyv where v € Vj and therefore
Fo(Vo) s closed in  (HY*(I))".

Since (H'/2(I"))™ is a Hilbert space then 75(V) is also one. Identifying L?(T") with
its dual, we have the following embeddings

Fo(Vo) = (L* (D))" = (Fo(Vo))'
and from (61) it follows that
(T, J0V) (30 (Vo)) 0 (Vo) = (G5 FoU) (o (Vo) 3ve) 5 VU € Vp.

Consequently,
T=g i Gl
and since & € (H'/?(T"))" we have that
;=g in HYXID),
that is,

Z’yo(aij(u))l/j:gi in HY?(T); i=1,2,...,n.
J

Observe that g was considered in (L?(T"))". However, according to the equality above and
the hypothesis of regularity given in (60), we should choose g in (HY2(T))", O
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14.4 Hyperbolic-Parabolic Problem

Let ki(x), kao(x) € L®(2) and Q@ C R™ be a bounded open set with sufficiently smooth
boundary I'. Suppose that

ko(x) > 0; ki(x) > >0 ae in S (1)

Let T > 0, Q = Qx]0,7[ and ¥ = I'x|0,7[. In the cylinder @) consider the
problem

2
kzg(x)@—i-kzl(x)@—Au:f in Q

ot? ot N
u=0 on X (2)

u(0) = uop(z);  (kow)(0) = (kour)(z).

Theorem: Given uy € H}(Q), u; € L*(Q), f e L*0,T;L*Q)) and k; and k; verifying
the previous hypotheses, there exists a unique u: Q — R, weak solution of (2) in the class

we L®0,T; Hi(Q); o € L®(0,T; L*(Q)); kou” € L*(0,T; H1(Q)).

Proof: Let 0 < e < 1. Consider the perturbed problem
(ko(z) + e)ul + ky(x)u. — Au. = f in Q
u =0 on X (P2)
us(0) = uo(x);  ((ka(x) + €)uc)(0) = (ka(x) + €)ur.

e Solution of (P,):
Let (w,),en be a basis of H}(€2) which we can consider, without loss of generality,
orthonormal in L?(Q2). Furthermore, consider

Vin = [wi, .., Wiy

In V,,, consider the approximate problem, where a(.,.) is the Dirichlet form.

;

Uem(t) € Vi them(t) =Y giem (H)w;
=1

(AP) § ([ko + e]ul, (8), w;) + (k1ul,, (1), wy) + aluen(t), w;) = (f(t),w;)
Uern (0) = gy — ug in HE(Q); (ko + )ul, (0) — (kg 4 €)uy in LAH(Q)™)

Jj=1....m

Justification for (AP){”:

Since (w,) is total in Hy(2), there exist (ugm), (wim) C [wy]en such that ug, — ug
in H}(Q) and uy,, — uy in L?*(Q). Thus, let us set

Uem (0) = ugp,  and  ul,,(0) = Uy, - (3)

Now, since uy, — u; in L*(Q) and ky € L>(Q) and ky > 0, then

\/k?2+€ulm—> k2+€u1 in L2(Q)
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and from (3) it follows that, for each 0 < ¢ < 1, we have

Vky+eul, (0) = ke +eu, in L*Q), (4)
as well as,
(ko +e)ul, (0) = (ks +e)u; in  L*(Q). (5)

From (AP); and (AP), we obtain

Z ([k2 + €lgit, (t)wi, w;) + Z(klggam<t)wi7 wj) + Z((gism(t)wi7 wj))

(ft),w;) j=1,...,m

Since (wom), (U1m) C [Wy]ven, We can write

Uom — Z A jmW; and Ulm = Z Bjmwj .

j=1 j=1

From the orthogonality of the w,’s in L?(2) it follows that
9jem(0) = ajm and  gi,,(0) = Bjm -

In this way we arrive at the system

> (ala) + <l O ) + 3k () (O )
F Y (i) = (0, o
[ 9jem(0) = jims Giem(0) = Bjm; j=1,....m
or, equivalently,
( [((’@(fﬂ) +e)w,wy) . ((ke(x) +€)wmaw1)] [Qi'gm(t)
: : : +
((k2(2) + e)wi,wim) - ((k2(2) + E)wim, W) | | Grmen (8)
(ku(@)wi,wy) oo (k@) wm, w1) || Ghem ()
+ : : :
(kr(@)wr, wim) oo (B (@) wm, win) | | Gnem (1) ™
(wi,wi)) oo (Wayw1)) || Grem(t) (f(t), w)
+ : : : = :
(wi,wm)) oo (Wa wm)) | | Gmem(t) (f(t), wm)
91em(0) Q1m 91:m(0) Bim
: = | and : = |
(| 9mem(0) Xmm Irmem (0) Brnm
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Let us set

—((k’Q(x) +)wp,wy) .. ((k2(x) 4 )wpy,, wr)

A= : : ;
| ((k2(2) +e)wr,wp) .o ((ka(z) + €)wim, W)
—(k’l(:zc)wl,wl) oo (Br(2)we,, wy)

B = ;
_(k:l ()wr,wp) o (k(2) W, wi)
(wy,w) oo (Wi, wn)) (f(t),w1)

C= : : o F) = :
_((wla W) oo (Wi, wi)) (f(t), wim)

glem(t) A1m Bim
Z(t) = : ; Z(0)=| 1 | =20 and Z'(0)=| : | =27

Thus, from (7) we arrive at the system of equations

AZ"(t)+ BZ'(t) + CZ(t) = F(t)

Note that A is invertible. Indeed, let £ = (£, ...,&,) € R™ and suppose that

A& =0,
that is,
Z((ké(x) + 5>wzaw])52 = 0, v] - 17 ,
=1
Whence

(Z(kQ(x) +5)wz‘§i7wj) =0;, Vj=1,...,m.

i=1

Multiplying by §; and summing over j results that
(Z(kz(ﬁ) + 8)1/2211@'&‘, Z(kz(l') + 5)1/2wj£j) =0,
i=1 =
which implies

(ka(z) +€) Y wi& =0 in L*(Q)

i=1
and, therefore, a.e. in 2. Considering that (ko(z) +¢) >0, Vaz € ), we obtain

=1

Since the w;’s are linearly independent in L?(Q) it follows that

5,‘20; szl,,m
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which proves that & = 0. Therefore, the matrix A is invertible. It follows from this that
we can rewrite (8) in the form

Z"t)+ AT BZ'(t) + ATICZ(t) = AT F(1) 0
Z0)=2Zy; Z'(0)=Z. ()
Next, we reduce the order of the system above. For this, consider
B0 =20 ) =20 ad v =[], (10
Thus
a1 (2" [ATTF@() - ATIBZ'(t) — ATICZ(t)
vo =[] = |26 = | Z/(1 |
B {AlF(t) — A7'BY(t) — Al(JYg(t)}
B Yi(t) ’
| o [-ATB A )] [ATFR)
s[5 ST
Denoting
—A7'B —-A"'C] _[ATIF(1)
oo [47 A en-[ 5
from (9), (10) and (11) it follows that
Y'(t) = DY (t) + G(t)
{Y<0> Y, 12)

where Yy = [?] Consider the map
0

h:[0,T] x R*™ — R*™
(t,Y) — DY + G(2).

The function h enjoys the following properties:
(i) For all Y € R?™ fixed, h(t,Y) is measurable in t;
(ii) For a.e. t € [0,T] fixed, h(t,Y) is continuous in Y7
(iii) If K C [0,T] x R*™ is compact, then V (,,y) € K we have
h(£,Y)|om = [DY + G(t)|am < |[D[Y [2m < k1 + |G (E) |2m

where k1 > 0. However, the function on the right of the inequality above is integrable
on proj, K, since f € L*(0,T; L*(Q)).
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Thus, from (i), (ii) and (iii) we have, by Carathéodory’s Theorem that 3Y": [0, t.,,) —
R?™ local solution of (12), 0 < t.,, < T, where Y () is absolutely continuous in [0, t.,,,) and
differentiable a.e. in [0,t.,,). It follows that the system of ordinary differential equations
given in (8) possesses a local solution in the same interval, with Z(t), Z'(t) being abso-
lutely continuous and Z”(t) existing a.e.. The regularity of the function Z(t) is inherited
by the g;em(t). The a priori estimate below will serve to extend the solution to the whole
interval [0, 7).

A Priori Estimate

Multiplying (AP), by g}.,,,(t) and summing over j, we obtain

= (f(t), ul(t))
Note that if £ € L>(€2) and k£ > 0 the following equality is valid:
(Rl (8), uly, (8)) = (K2l (8), K2 L, (1)),

On the other hand,

d

7 (K2 L (1), K2 0l (1) = 20k il (8), K2 4L, (1)),
Whence L d

" / 1/2 u 2
(ke (1), (1)) = 5 2 20, 1) (14)

Thus, from (13) and (14) it follows that

1d
2 dt

1d

(ks + €)Ml (O + [y i, (O + + 5 7 luem @ = (f(0), v (£).

Integrating from 0 to ¢ with ¢ < t.,, we obtain
t
(ks + )2 o (OF + a0 2 [ K4l (5) P s
0
t
= |(k2 + )2 1L, (0)]% + [Juem (0)|* + 2/ (f(s), ulpn(s))ds.
0
Since u’, (0) = uy, — ug in L2(Q); Jep > 0 such that
|ul, (0)° < cn.
Now, since, 0 < e < 1 and k € L>(2) ¢z > 0 independent of € and m verifying
(ks + )2 ul,, (0)] < |(ks + 1), (0) < co; Ym€EN; Ve €]0,1].
Also, since Uy, (0) = ugm — uo in Hg (), Jeg > 0 such that

[[uem(0)|? < c3; VmEN; Ve €]0,1].
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Therefore, there exists ¢4 > 0, independent of £ and m satisfying
(s + i OF + om0 +2 [ 1L () s
t
<eit [ () uuls)ds
0

But, by hypothesis, k1(z) > f > 0 and, therefore,

/ 2l (s)[2ds > / falil, (s)Pds > 5/ W (5|2 ds.
Thus,
(k2 + ) ul,, (O + [ [uem (8] +23/ |ul,, ()P ds < ¢4
+2 [ )l
On the other hand, let A > 0. Then

2 [ atuonis =2 [ (5 £ 0 o) )

1 g 2 ! / 2
<< |f(8)| ds + A ’usm(3)| ds.
)\ 0 0

Choosing A = f it results from (15) and (16) that 3¢ > 0 such that

(s 4+ )2 ()2 + [t (1) ||2+B/ i ()2 ds < e

Vte[0,t,); VmeNandVe €0, 1].
From (17), we obtain the existence of a constant ¢(¢) > 0 which verifies

t
[l (07 + [ tterm (1)1 +/ Ut (s)]*ds < c(e), Vte€[0,t,);¥meN.
0

We have

|u6m |L2

= Z |gj6m<t>|$n :
7j=1

Thus, from (17) we have then that there exists ¢ > 0 such that

L?(Q)

Z(O)7 = D 19sem ) = [tem () F20) < ¢Iuem(@)]P <

Vte[0,t), Vm e N, Ve €]0,1].
Also

[z (1) 120

Z (i

L2(Q

229

(16)

(17)

(18)

(19)
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From (18) it results that there exists ¢(¢) > 0 verifying

12/t = Z |Giem (D] = [l (B)] 120 < () (20)

Vte[0,tem), Vm € Nand Ve €]0,1].
From (19) and (20) it follows that 3¢(e) > 0 such that

V()5 = M) + V205 = 1205 + 12/ (0, < &),

Vtel0,t.m), YVm e Nand Ve €0, 1].

It results that we can extend the solution Y'(t) of the system (12) to the whole
interval [0,7]. Consequently, for each 0 < ¢ < 1, we can extend gj;.,(t) and therefore
Uem (t) to the whole interval [0, 7.

Repeating the calculations made to obtain (17) we conclude that

t
[(kz + €)'/ il (8)17 + [t (8)] 1 + / [l (5)]"ds < ¢; (21)
0
Vte[0,T]; Vm e N;and Ve €]0,1].
Consequently
(Uer) is bounded in  L>(0,T; Hy(R)). (22)
(ul,,) is bounded in L*(0,T;L*(Q)). (23)

Passage to the Limit

From the estimates (22) and (23) there exists (ue,) C (uem) such that, for each
e €]0,1],

Uz, — u,  weak *in  L®(0,T; Hy(S2)) (24)
ul, —u. weakly in L*(0,T; L*(Q)). (25)

Let j € Nand v > j. Consider § € D(0,T). Multiplying (AP), by € and integrating
in [0, 77, results that

A<wm+d¢xmw»mmﬁ+[;%w@uxwwamvgé<wwu»wwﬂwﬁ
=A<ﬂmwwwﬁ

Whence
—/d@+¢@®wwﬁw+/(MQ@w%®ﬂ+/«%NMMW@M

0 0 . 0 (26)
=A<ﬂmwwww

Note that

(ks + w6’ € L2(0,T5 L*())
kiw;0 € L*(0,T; L*(9))
— Aw;f € L'(0,T; H (),
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where the last inclusion comes from the fact that A € L(H}(Q), H1(Q)).
Therefore, from (24) and (25) we conclude that

/ (ks 4 2l (8), ) (B)dt 22 / Nkt @ o) a2
/ k(1) ) B0t 22 / (kv (8), w,)0(1)dt (28)
/0 A (D)B(0)E S /0 Ay (60t (29)

Since (—Awj,v) = a(w;,v), Vv € HJ(Q), it follows from (26), (27), (28) and
(29), in the limit situation, when v — 400, that

T T T
[ St wpp e+ [ 0. w)od+ [ () )
0 0 0
= [t wpio
0
By the arbitrariness of j and the totality of the (w,),ys in Hg () it follows that

- /0 ([ + €]l (£), 0)0/ ()t + /0 (kv (£), v)0(t)dt

T T (30)
T / ((ue(), 0))B(t)dt = / (F(t), v)B(t)dt
Vv e HY (), or even,
[k + €l (1), 0) + (Rl (6, 0) + (ue(t), ) = (F(0),0) (31)

in D'(0,T), Vv e H} ().
Taking v = ¢ € D(Q2) in (30) we obtain

(51004 2D )+ Ghua ) + (= ) = (£,

Ve € D(Q) and VO € D(0,T) and, by the totality of {p0;p € D(Q),0 € D(0,T)} in
D(2x]0,T7), it follows that

(ks + o) + b~ A = i D(Q). (52)

Recalling that A € L(HMNQ), HHQ)), u. € L®0,T, H}(Q)), k € L®(Q),
ul € L*(0,T; L*(Q)) and f € L*(0,T; L*(Q)) from (32) we conclude that

d
= (ks + <Jul) € L2(0, 75 H™'(Q)) (33)
and, therefore,
d
— ([kg +€]ul) + kyul — Au. = f in L*(0,T; H1(Q)). (34)

dt
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e Initial Conditions

Note, initially, that from (24) and (25) we have that
ue € C°([0,T]; L*(92)) N C([0, TT; Hy (2))
and, from (25) and (33) we also have that
(k2 + e)uz € C°([0, T H™H(Q)) N Ci([0, TT; L*());
making sense to speak of u.(0), ((k2 +¢)ul)(0), wu.(T) and ((k2 + €)ul)(T).
Lemma 1: Let k € L>(Q) and T € D'(0,T; L*(Q2)). Then the map

ET: D(0,T) — L*()
0 — (kT,0) = k(T,0)

is linear and continuous, that is, KT € D’(0,T; L*(2)).

Proof: Observe that the map above is well defined since as k € L>(Q) and (T, 0) € L*(Q)
then k- (T,0) € L*(Q). Furthermore, kT is clearly linear and if 6, — 0 in D(0,7T) then
(kT,0,) — 0 in L?(Q). Indeed, from the fact that 6, — 0 in D(0,T) it results that
(T,0,) — 0in L*(Q) and therefore k(T,0v) — 0 in L?*(2). O

Lemma 2: Under the previous hypotheses we have that

(KT = kT

Proof: Let § € D(0,7). We have:
((KT),0) = —(kT,0"y = —k(T,0"y = k(—(T,0")) = k(T",6) = (kT", ). O
By virtue of Lemma 2 we can write
(ko + e)ul = ((k2 + €)u.).
Furthermore, in particular,

(k2 + €)ul](0) = (k2 + €)uc)'(0) and  [(ky + &)ul](T) = (k2 + &)ue) (7).

Remark: It is worth observing that if T € D'(0,T; L*(Q)) then T € D'(0,T; H '(Q))
and from Lemma 2 it follows that

(kT) = kT,
where now the derivative is in the sense of vector-valued distributions in D’(0,T; H ().

(i) u(0) = uo
Let 6 € C'([0,T]) such that 6(0) = 1 and 6(T) = 0 and consider v € L?(Q2). Then
vl € L*(0,T; L*(Q)) and from (25) it follows that

/0 (L (), 0)B(E)dE L5 / (L (6). 0)B(1).



14.4. HYPERBOLIC-PARABOLIC PROBLEM 233

Integrating by parts we have

(1 (0, 0) — /0 (oo (1), )0 (1)t 2255 — (0 (0), v) — /O (uc(t), v)0 (1)t

Since

/0 (e (1), 0)0 (£)dt 22525 /0 (e (8), 0)6 (1)t

then:
(uer/(O)a U) m) (us(o)>v)'
Since 1., (0) = ug, — ug in H}(Q) — L*(Q), then
(uer (0), v) 22525 (Gg,v); Vo € L2(9).
Thus
(u:(0),v) = (g, v); Vv € LQ(Q)
and, then,

u=(0) = uy .

(i)  ((k2 +e)ul)(0) = (ko +e)us
Let € C*([0,T7]) such that (0) = 1 and 6(T) = 0. Consider j € N and v > j.
Multiplying (AP)s by 0 and integrating in [0, 7] we obtain

A<@a+a¢4mwanﬁ+[:%w;a»ww@mwgé<wwuxw»wwﬁ (14.4)
_ /0 (F(8),w;)0(t)dt. (14.5)

Integrating by parts the first integral on the left of the equality above results that

%%ﬂ%ﬂﬁ@wﬁ—é(%+@%ﬂmwwwﬁ+é(%%ﬁMMWW#(M@

+/0 ((ug,,(t),wj))e(t)dt:/o (f(t),w;)0(t)dt. (14.7)

Taking the limit when v — +oo then from (5), (24) and (25) it follows that

—%ﬁfM#W—A«b+W@@WWWW+A(W@@WW@ﬁ

. . (35)
+ [ (et wnowan = [ (oo
On the other hand, from (34) it follows that
/0 <% (ko + 5]u’€(t),wj>6(t)dt + /0 (krul(t),w;)0(t)dt (14.8)

+/O ((ug(t),wj))ﬁ(t)dt:/o (F(1), w;)0(t)dt. (14.9)
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Integrating by parts the first integral on the left of the equality follows that

=l ) 0)y) = [ (e 0w e+ [ (0,0 -
0 0 36

+ [ et = [ Go.w00a
From (35) and (36) and from the fact that {w,} is total in L*(Q) it follows that
(k2 +e)u)' (0) = (kg + €)uy .
In this way, for each € €]0,1[, Ju.: @ — R in the class
u. € L®(0,T; Hy (Q));  ul € L*(0,T; L*(Q)) and [ky +eJu’ € L*(0,T; H1(Q)) (37)

weak solution of (Ps), that is,

d
pr ([ky + €lul) + kiul — Au. = f in L*0,T; H*(Q))

u.=0 on X (38)
u-(0) = ug; ((ka +e)ul)(0) = (k2 + e)uy
From (24) and (25) we have
[|te || oo 0,712 () < lirg_go%f”usl/"LOO(O,T;H&(Q))-
and
el oo 0,7;020)) < Tim inf]|u, ||z 0,220
It follows from the inequalities above, from (22) and (23) that
(u:) is bounded in  L*°(0,T; Hy(S2)) (39)
(ul) is bounded in L>(0,T; L*(£2)).
Thus, there will exist a subnet of (u.) which we will still designate by (u.) such
that
u. —u  weak *in  L>®(0,T; Hy(S)) (40)
ul =o' weak *in  L™(0,T; L*()). (41)

Note also that due to the fact that ky € L>(R2), given v € L?(Q2) and 6 € L*(0,T),
we have that

(ko +e)vf — kyvd in  L*(0,T; L*(S2)), when e — 0. (42)
Indeed,
/ (kg + €)v0 — kovl)|? dxdt = / (ev0)? dwdt = 52/ |v0|? dzdt = c£* — 0, when & — 0.
Q Q Q

Thus, from (41) and (42) we conclude that

e—0

(u's, (/{32 + 8)U9)L2(07T;L2(Q)) — (u/, l{igvg)p(oj;p(g)) ) VU - LQ(Q) and V@ € L2(0, T),
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that is,
T 0 T
/ (ks + ey, 0)0()dt =5 / (ot 0)0(t)dt: Yo € L2(Q) and V0 € L2(0,T). (43)
0 0

Consider, then, v € Hj(Q2) and § € D(0,T). Then vf € L*(0,T; Hy()) and from
(34) we can write

/OT <;lt (ko + &)ul](t) > t)dt + /OT kyul, v)0(t)dt + /OT(—AuE(t),vW(t)dt (14.10)

/ ' , (14.11)

or even,

- /0 (s + )il (), 0)6 (£)dt + /0 (heatl (1), 0)0(2)dt + /0 (ua(t), )0t (14.12)
:/OT(f(t),v)H(t)dt. (14.13)

From (40), (41) and (43), in the limit situation, we obtain

—/ (k2u’(t),v)0’(t)dt+/ (klu’(t),v)e(t)dt+/ ((u(t),v))0(t)dt
0 0 0 (44)

- / (f(t). )00t

that is,

d
dt<

Taking v = ¢ € D(Q) in (44) results that

kot (t),v) + (ki (t),v) + ((u(t),v)) = (f(t),v) in D'(0,T); Vv & Hy(Q). (45)

d
o (kou') + kv’ — Au=f in D'(Q).

But since f € L?(0,T; L*(2)), Au e L>*(0,T; H(Q)) and kv’ € L>(0,T; L*(Q2))
it follows that

jt (kou') € L*(0,T; H(Q)) (46)
and, therefore,
d (kot!) + k' — Au=f in L*0,T; H1(Q)). (47)

dt
But, by Remark 1, we have

d
dt (kg’d) = kQU”,
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whence from (46) and (47) we conclude that
kou” € L*(0,T; H () (48)
and

kot + k' — Au= f and L*(0,7; H (Q)). (49)

Initial Conditions

Note that from (40), (41) and (46) we have

u € C°(0,T]; L*(2)) N C4([0, T]; Hq(€2)) (14.14)
kou' € C°([0, T); H () N Cy([0, T); L*()) (14.15)

making sense therefore to speak of u(0) and (kou')(0) = (kou)'(0); w(7T) and
(k2u')(T') = (k2u)'(T),

(i) w(0)=wuyg.

Let 6 € C*(]0,T]) such that 6(0) = 1 and §(T) = 0 and consider v € L*(2). Then,
from (21) it follows that

/0 (L (1), )0yt / (1), 0)8(0)dt.

Integrating by parts we have

—(ua(0),v) — /O (e (), )8 ()t =5 —(u(0), v) — /0 (u(t), )0 (£)dt.
Since . .
/0 (e (t), 0)0 ()t =% /O (u(t), )0 (t)dt

then:
(us(0),v) =% (u(0),v).

Since u.(0) = ug; Ve >0 we have that
(uo, v) = (u(0),v); Vv € L*(Q),

that is,
u(0) = up .

(11) (kgul) (O) = k’gul .
Let 0 € C'([0,T]) such that §(0) = 1 and 6(T') = 0 and consider v € H(£2). Then,
vl € L?(0,T; H}(Q)) and from (34) it results that

/0 <%([k2+5]u’5),v>9(t)dt+/o (klu;,v)e@)dH/O (u(8), o0 dt (14.16)
:/OT(f(t),v)H(t)dt. (14.17)
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Integrating by parts

—(([kz + €]ul) (0), v) — /0 ([ + e]ul, v)0 (£)dt + /0 (v, v)0(t)dt (14.18)
+ /0 (ue(t), v)0(t)dt = /O (f(t), v)0(t)dt. (14.19)

Since ([ka2 + €]ul)(0) = [k2 + €]uy, taking the limit in the equality above we obtain
from (40), (41) and (43) that

—(kgul,v)—/o (k:gu'(t),v)e'(t)dth/o (kyu'(t),v)0(t)dt )

+ [ e = [ o0

On the other hand, from (49) we can write

/0 <%(k2u’),v>0(t)dt +/0 (klu'(t),v)ﬁ(t)dt—l—/o ((u(t),v))0(t)dt (14.20)
= [ .0 (14.21)

Integrating by parts

—(<k2ul)(0>,1})—/0 (k:2u’(t),v)«9'(t)dt+/0 (k! (t),v)0(t)dt

T T (51)
+ [ (oo = [ (0.0
0 0
From (50) and (51) it follows that
(kgul) (O) = kQUl .
Uniqueness
Let w and v be weak solutions of (2) in the class
u,v € L=(0,T; Hi () N C°([0,T]; L*(Q)) (14.22)
u',v' € L2(0,T; L*(2)) (14.23)
kou” kv € L*(0,T; H'(Q)). (14.24)

Then, w = u — v satisfies
kow” +kiw' —Aw =0 in L*0,T; H '(Q))

w=0 on X (52)
w(0) =0, (kaw')(0) = 0.
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Let s € [0,7] be arbitrary, but fixed, and define

—/sw(ﬁ)dﬁ; 0<t<s

2(t) = (53)
0; s<t<T.
We have, for all ¢ € [0,T7,
S T
2@ < / [[w(&)][|dg S/ [[w(§)[|d€ < T - supess|[w(t)|| < +oo.
¢ 0 te[0,7)
Thus,
z € L™®(0,T; Hy(Q)). (54)
We claim that
t); 0<t<
0; s<t<
Indeed, let ¢ € D(0,T). Then
T S
#oph=—lad) == [ =~ [ =@ (55)
0 0
However, for t € [0, s],
oA =~ [ wie)de (56)
t
Whence
Z(t) =w(t), ae.in te]0,s] (57)

where 2’ is the classical (Dini) derivative.
Let tq,ts € [0, s] such that t; < to, without loss of generality. From (56) it follows
that

[|2(t1) = 2(t2)]] (14.25)

| wierie - /;w@)dg' =\ /:w(f)d&+ [ wierie - /t:w(f)de (14.26)

to to
[ wae] < [ hut@de < ol argonte - o (1427
t1 t1

that is, z is Lipschitz and, therefore, absolutely continuous in [0, s].
But,
(zp) =2p+2¢ ae. in |0, s]

Integrating in [0, s] results that

/(zgp)’dt:/ z’gpdt—i—/ 2pdt.
0 0 0

Since z¢ is absolutely continuous and H}(f) is reflexive, we obtain

(20)(5) — (2)(0) = / i+ / g
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Since z(s) = 0 and ¢(0) = 0 then
- / () () dt = / S (1)(t) dt.
0 0

From (55), (57) and (58) we conclude that

<A@:43wmwwzﬁlwﬂmm

Let us define

then:

and, therefore,

<Awwiévawmﬁ=ww@;v¢eDmT»

that is, 2’ = v, or even,

telsT),

g@:{?m te0,s)

as we wanted to demonstrate. It results from (40) that for all ¢ € [0, 7]

1Z @I < llw®] < = supess|[w(t)]| = [[w(t)]] < +oo,

0<t<T

that is,
2 e L0, T; Hy()).

Thus, from (54) and (61) we have that

2 € CO(0, T); HY(%).

239

(58)

(61)

(62)

Composing (52); with z in the duality L*(0,T; H '(Q)) x L*(0, T; H; (2)) we obtain

/0 <(l<;2w”)(t),z(t)>dt+/0 (klw’(t),z(t))dt+/0 ((w(t), 2(t)))dt = 0.

Due to the fact that z =0 in [s, T], we rewrite the expression above as

/OS((ka”)(t), 2(t))dt + /Os(klw’(t), z(t))dt + /OS((w(t),z(t)))dt

(63)

Next, we will make some evaluations of the integrals in (63). We have by Remark

L
% (kaw' (1), 2(1)) = ((kaw")(t), 2(1)) + (kaw'(t), 2'(1)),
or even, ;

dt

= (kaw'(1), 2(1)) = ((kaw")(#), 2(t)) + (kaw'(£), 2'(2))-
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Integrating in [0, s] it comes that

/0 S f;t(ka() z(t))dt = /0 s((kzw")(t),z(t)>dt+ /0 s(kgw'(t),z’(t))dt. (64)

Since (kow'(t),2(t)) € HY0,T) we have that (kow'(t),2(t)) € C°([0,T]) and
d
o (kow'(t), 2(t)) € L*(0,T). Thus, (kww'(t),z(t)) is absolutely continuous and, there-

fore,
[ G a0 500t = (), 2(5)) = (1) 0), 2(0)) =0 (65)

since z(s) = 0 and (kow’)(0) = 0.
Substituting (65) in (64) and observing that 2/(¢) = w(t) in [0, s|, we obtain

/Os((k2w”)(t),z(t))dt: —/Os(k:gw’(t),z’( ))dt — —/Os(kgw’() wt)dt  (14.28)

_/05(\//?2@0'(75), Vo w(t))dt = —/0 %% /e (t)2dt (14.29)
— L VR = Wiu0)F) = —5 V() (1430)
since w(0) = 0. Thus,
| )0, 201t = =3 1 R (66)
We have
d

5 (kw(t),2(t)) = (kw'(t), 2(1)) + (kw(?), 2'(t)).

Integrating in [0, s] it comes that

(kv (s), 2(s)) — (knw(0), 2(0)) = /05<k1w'(t>, (1))t + /Os(klw(t),z’(t))dt.

But, since z(s) =0, w(0) =0 and 2/(¢) = w(t) in [0, s]; we obtain

/Os(k;lw’(t),z(t))dt: —/Os(klw() w(t))dt = —/Os(\/k_lw(t),\/k_lw(t))dt (14.31)
/ I/ ky w(t)2dt (14.32)

that is, .
/0 (k! (1), =(1)) / i w(t)dt. (67)

Finally, since 2'(t) = w(t) a.e. in [0, s] we have

—_
S8

[(wiona= [[(@oona =g [ LiEera s
= 2 M@ = 120017 = — 1O (14.34)

DO | —
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since z(s) = 0, that is,
S 1 9
i ((w(), 2(t))) dt = =5 ||2(O)]I".
In this way, from (63), (66), (67) and (68) it follows that
1 N 1
SWVEwGE+ [ Ve w@Fd+ 51207 =0
0

Therefore

/OS Wi w(t) dt = 0

and, due to the fact that vk, > /B > 0 a.e. in , it follows that

/OS wo(t)2 dt = 0.

w(t)=0 a.e. in [0,s].

Consequently

By the arbitrariness of s € [0,7] we conclude that
w(t) =0 a.e. in [0,7],

that is, w = 0, which proves the desired result.

241

(68)
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14.5 Problems in Non-Cylindrical Domains

Consider the linear problem

% —Au=f in Q
u=0 on X (1)
u(0) = up(x); %(0) =wuy(z) in Q,

where () is a non-cylindrical domain, which we will need below. X will denote the lateral
boundary of () and €)g is the "base” of @), as illustrated in the figure below.

Figure 14.2: Figure 2

e About the Domain Q
Let Q be a bounded connected open set of R? x R, . Consider, for each s €]0,7T[:

Qs={t=s}NQ

and let €2y and Qp , respectively, be the “open ends”, corresponding to ¢t = 0 and t = T.
Let, also,
[, =00; 0<s<T

E:UFS

s€]0,T

and

be the lateral boundary of (), so that
0Q =QuUX U Q.
Let O be a bounded open set of R}, with regular boundary, such that

Q C Ox]0,T].
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We will denote by f the projection of €, onto the hyperplane ¢ = 0. Note that
L2(€) (respectively Hi(€2)) is a closed subspace of L*(O) (respectively Hi(O)). In
this way, we can identify L?(Q;) (respectively H}(€)) with a closed subspace of L?(O)
(respectively Hj(O)).

Figure 14.3: Figure 3

We define, for 1 < p < 4+

LP(0,T; L*(%)) = {u € LP(0,T; L*(O)); u(t) € L*() a.e. in |0, T[}
LP(0,T; Hy (%)) = {u € LP(0,T; Hy(O)); u(t) € Hy(Q) a.e. in 0, T[}

We make the following hypotheses on @)

; increases with ¢, that is, if 2} is the projection of €2, onto @)
the hyperplane ¢ = 0, then, Q7 C Qj,, if t <t (see fig. above)

vVt €]0,T[if v € Hy(O) and v = 0 a.e. in O\ )
then v € Hy(Q)

It follows from (3) that if v € Hj(O) and v = 0 a.e. in O\, then
veE Hy(Q); Yt>tg.

Indeed, let t > to. Then, by property (2), 2} C Q; and, therefore, O\Q; C O\ .
Thus, if v = 0 a.e. in O\Q; it follows that v = 0 a.e. in O\Q;. Thus, v € Hj(O) and
v=0a.e. in O\Q;. Whence, by property (3) it follows that v € Hj ().

We have the following result

Theorem: Given
ug € Hy(), ur € L*() and f e L*(Q)
there exists u: Ox 0, T[— R such that

u € L0, T; Hy(S%)); ' € L™®(0,T; L*(Q))
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weak solution of problem 1.

Proof: Let
)0 in @
Mz, ) = {1 in Q°=0x]0,T\Q

Then, M € L>(Ox]0,T[). Consider g, @i; extensions of uy and u; zero outside
Qp and f extension of f zero outside (). For each ¢ > 0, consider the cylindrical problem

1 ~
ul — Auc+—-Mu.=f in Ox]0,T]
£
u. =0 on Y’ (lateral boundary of Ox ]0,T) (P:)
e Resolution of P,
Fix € > 0 and let (w,),en be a basis of H}(O). Set
Vin = (w1, ..., W)

and consider in V,,, the approximate problem
Uem(t) € Vi € tem(t) =D gemi(t)w

apy | (a0 03) + (00 + L [ 210 00 = (70,
j=1....m

Uern (0) = gy — Gy in  Hy(O)

(ul, (0) = uy,, — @ in  L*(O),

which possesses a local solution u.,,(t) in some interval [0,%.,,[, where u.,, and v, are
absolutely continuous and u”,  exists a.e., by Carathéodory’s Theorem. The a priori
estimates will serve to extend wu.,,(t) to the whole interval [0, T7.

e A Priori Estimate

Multiplying the approximate equation by g_,,.(t) and summing over j results that

G OF + 5l @IF )+ [ 20 0) (0 0)" do = (700 00)
< S IFOP + 5 i (0)

Integrating in ]0,7[, with 0 < ¢t < t.,, it follows that

1

I (0 3 [l (O] + //MWMdm

1 2 2 r 1 2
< 5 [ +§||U0m|| +§Hf|\L2(0,T;L2 5 s)|” ds.

However from (AP) we obtain ¢; > 0 such that

1 c1
|U1m’ + 5 HUOmH2 —HfHL2 (01)x0) < 5
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Thus

5 (O + 2 [l O] + //M l)? duds
<3+3 /{mm( 0+ e+ 2 [ [ M0 dider Y.

By Gronwall’s Inequality it follows that

(O 4 2 [t (1) + //M () deds < . (4)

Vt € [0,tn); Ve >0; Vm €N where k is independent of ¢, ¢ and m. It results that
we can extend ., (t) to the whole interval [0, 7] and proceeding as before we obtain the
same inequality obtained in (4), being now valid for all ¢ € [0,7],e > 0 and m € N.

e Passage to the Limit

We obtain, therefore, from (4) the existence of a subsequence (ug,) C (uepm) such

that
Usy — u.  weak-*in  L®(0,T; Hy(O)) (5)
ul, = ul weak-*in  L>®(0,T; L*(0)) (6)
Let j € N and consider v > j. Then from (AP) it follows that
(U0 07)+ ol (), 0) + = [ M0y do = (F0) )
Multiplying the equation above by 6 € D(0,T) and integrating from 0 to 7" we
have

/0 (ugy(t),wj)e(t)dt+/0 a(uay(t),wj)e(t)dt+§/0 /C)M(m,t)uley(t)wjdxﬁ(t)dt
- [ G wear
Whence
—/0 (u’ay(t),wj)e’(t)dwr/o a(uw(t),wj)e(t)dwr%/o /OM(x,t)u;V(t)wj dx 0(t)dt
- [ Gerwear

Taking the limit in the equality above as v — 400 we obtain from (5) and (6) that

_/OT(u’E(t),wj)Q’(t)dt—l—/OTa(uE( )ow;)0(0)dt + / /M (2, )l (£)w; da 012 dt
(7)
- [[ GO



246 CHAPTER 14. EVOLUTION PROBLEMS

Since j was taken arbitrarily in N, we conclude that (7) is valid for any j € N.
From the totality of (w;);en in H}(O) it follows that the equality above remains valid for
all v € H}(O), that is,

- /0 (ul (), 0)0' (1)t + /O a(ue(t), 0)0(t)di+

T T (8)
+ é /0 /O M(z, ) (#)o(x)dz 0(£)dt /0 (F(t), v)0(t)dt:
Vv e H}(O) and VO € D(0,T).
Whence
d / 1 / _ (T
57 (we()v) + aluc(t), v) + - (Muc(t), v) = (f(t),v) (9)
in D'(0,T): Vve HI(O).
Resuming (8) with v = ¢ € D(O) we also obtain
" 1 / r
(12.09) + (~Bs ) + (2 ML B ) = () (10

V8 € D(0,T) and V¢ € D(O). Since the set {¢b; ¢ € D(O) and 0 € D(0,T)} is total
in D(Ox]0,T) it follows that the equality in (10) is valid for all v € D(Ox]0,T|) and,
therefore,

1 ~
ul = Au+ - Mul = [ i D/(Ox]0,TY). (11)

1 -
Since Au. € L>(0,T; H1(0)), - Mu. € L*>(0,T; L*(O)) and f € L*(0,T; L*(O))
£
it follows that
ol € 2(0.T: H(0)), (12)

that is,
1 .
u? — Au, + B Mu. = f in L*0,T; H *(0O)). (13)

e Initial Conditions

Note, initially, that due to the fact that

u. € L=(0,T; Hy(0)), u. € L>*(0,T;L*(0)) and u! € L*(0,T; H '(0))
then

ue € CO([0, T]; L*(0)) N C,(0,T; Hy (0)),
ul € C°([0,T); H1(0)) N C4(0,T; L*(O)),

making sense therefore to speak of u.(0) and u.(0). We will prove, next, that

Proof of (i)
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Let 0 € C'([0,T]) such that §(T) = 0 and #(0) = 1. From (6), in particular, for
w = v, with v € L*(O) it follows that

v—r+400

R

!/ /
(ul,, w>Loo(o,T;L2(O)),L1(o,T;LQ(O)) (uz, w>Loo(o,T;L2(O)),L1(o,T;L?(O))

that is,
T T
/ (Wl (£), 0)0(E)dt 2225 / (WL(), 00 dt: Vo e L(O).
0 0
Integrating by parts

(1 (0),0) — /0 (oo (£), )8 ()t 222255 — (0 (0), 0) — /0 (u(t), 0 (O)dt. (1)

From (5) we have that

T T
/ (e (1), )0 (t)dt =522 / (uc(t),v)0 (t)dt
0 0
and, therefore, from (14) it follows that
(e, (0),v) = (u-(0),v); Vo e L*(O).
But, we also have that

e, (0) = ug, — g in Hy(O).

Whence
(uen(0), ) =225 (g, v); Vo € L¥(0).
Thus
(u:(0),v) = (i, v); Vv e L*(O)
and, then,

Proof of (ii)

Consider, analogously to item (i), 6 € C'([0,7]), 6(0) =1 and 6(T) = 0. Let
j € N and v > j. Multiplying the approximate equation by 6 and integrating in [0, 77,
we obtain

/O(u’a’y(t),wj)e(t)dwr/o a(ue,(t), w;)0(t)dt
+§/0 /OM(m,t)u;,,(t)wjd:ce(t)dtz/0 (f(t), w;)0(t)dt;

Integrating the 15 term of the expression above by parts, it follows that

— (ly (0), ;) — / (ul (£), w0 (1)t + / 1tz (1), 107)0(1)

+§ /O /O M (. £l (#)w; da 6(t)dt — / (F(#), w;)6(t)dt.

0
0
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Taking the limit in the equality above when v — +o0, it follows from (5) and (6)

that . .
~ ey — [ )0 Ode+ [ o, w0
"o (15)
/ / M (z, t)u(t)w; dz 0(t)dt = / (f(t),w;)0(t)dt.
0
On the other hand, from (13) and the fact that (w;0) € L*(0,T; Hy(O)) it follows
that .
<u’5’ — Au. + B Mu’e,wj9> = (f, w;h),
or even,

/0 (! (8), w,)0(t)dt + /0 <—Au5(t),wj>9(t)dt+§ /0 (M (), w;)0(1)dt
- | oot

Integrating by parts the 1% term of the equality above and recalling that
(—Au.(t), w;) = a(u(t), w;), we obtain

— 0w — [ w0 O+ [ atuo.w)o
//M:ct Dw; d O(t )dt:/OT(f(t),wj)O(t)dt.

From (15) and (16) we conclude that

(1, wy) = (uz(0),wy);  VjeN.
By the "totality” of {w;};en in L?(O) it follows that

ul(0) =@y .
Thus, for each ¢ > 0, Ju.: Ox]0,T[— R in the class
u. € L*(0,T; Hy(0));  ul € L*(0,T; L*(©O)) and u” € L*0,T;H *0O)) (17)
solution of (P.), that is,
u! — Au, + é Mu. = f in L*0,T; HY(0O))

u.=0 on Y

(18)

e Uniqueness
Fix € > 0 and let © = u. and v = v, in the class (17), weak solutions of (P.), that
is, satisfying (18). Then w = u — v satisfies
1
w' — Aw+=-Mw' =0 in L*0,T; H1(0))
£

w=0 on Y
w(0) =w'(0) =0

(19)



14.5. PROBLEMS IN NON-CYLINDRICAL DOMAINS 249
Let s € [0,7] and define

at2 — / w(T)dT; 0<t<s
t

2(t) = at (20)

0; s<t<T.

We have that z € L>(0,T; Hi(O)) P since w also belongs to this set. Indeed,

/Hw \dr</ ()| dr

<Tess[os%puw< N =T lleoll=rmoy:  VtE[0.T].
TE

121 = T)dr

Thus

ess sup ||z(0)]| < T - |[wl[ Lo (0.1,m1(0)) < F00-
te[0,7)

Therefore, from (19); we can write that

1
<w"—Aw+—Mw',z> =0,
£

L2(0,T;H1(0)),L2(0,T;HL (0))

that is,
A(WﬁhdﬂﬂﬁﬂA<—Aw®ﬂ@Wﬁ+§A<M@ﬁ%4ﬂM#:0
Since z(t) =0, Vt e [s,T] it follows that

/Os<w"(t),z(t)>dt+/OS((w(t),z@)))dH%/OS(Mw'(t),z(o)dt —o0. (1)

Set

wi(s) = /OS w(T)dr. (22)

Note that if ¢ € [0, s] we have

/OSW(T)dT:/Otw(T)dT—F/:w(T)dT-
—/tsw(T)dT = /Otw(T)dT - /Osw(T)dTv

2(t) = wi(t) — wy(s). (23)

Whence

that is,

e Calculation of the Integrals in (21)
We have, integrating by parts

/0 w(t), 2(6))dt = (w'(s), 2(s)) — (w'(0), 2(0)) — / (w(8), 2(8))dt.

2In fact since 2/(t) = w(t) and w € L>(0,T; HZ(O)) then 2’ € L*(0,T; H}(O)) and, therefore,
z € CO([OﬂT]vHO( ))
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However, from (19)3 and (23) it follows that w’(0) = 0 and z(s) = 0. Thus
ooy = - [ w2 o

0 0

But from (20) it follows that 2'(¢) = w(t). Returning to the equality above results
that

([wumdmw:—ﬁ%mmwwMt

=3 | Fl0OP &= =3 o) - O] = 3 ()P
since w(0) = 0 according to (19)s.
Then . )
| w5 = =3 i) (24)

Using again the fact that 2/(¢) = w(t) in [0, s] it follows that

[ e stonde = [0 =3 [T G101 =5 [P - 101

But from (23) we obtain

/:((w(t),Z(t)))dt =5 IIZ( I (25)

/(Mw ))dt = / /M:ct (x,t)z(x, t)dxdt
/ / (z,t)z(z,t)dxdt.

Integrating the last integral by parts it follows that

Finally

tA?w%ﬂJ@»dt=fw@%zwﬁ—?wmhzmﬁliénw@%%@ﬂﬁ

_ —/Os(w(t),w(t))dt— —/Os|w(t)|2dt.
| w o= [uora. (26)

Therefore, from (21), (24), (25) and (26) we conclude that

() — 3 Il rP——/Ww (t)2dt =o.

Thus,

Thus
lw(s)?P=0 = w(s)=0.
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By the arbitrariness of s € [0, 7] we have that w(s) =0, Vs € [0,7], which proves

uniqueness.

We have proved then that for each e > 0 there exists a unique function u.: Ox|0,T[—

R, weak solution of (P.), in the class given in (17).

e Passage to the Limit in (P.)
It results from (5) and (6), given the Banach-Steinhaus Theorem

||U5HL<><>(0,T;H3(0)) < lim | |Usu| |L°°(0,T;H01(O))a

|[uel Lo (0,7 22(0)) < Hm [[ul, || peo(o,7;22(0))
and from (4) it follows that

(uc) is bounded in L>(0,T; Hy(0)),
(ul) is bounded in L*(0,T; L*(0)).

]

Thus, there exists a subsequence of the "net” (u.) which we will still denote by (u.)

such that
u. > w in L>(0,T; Hy (0)),
ul >w' in L(0,T; L*(0)).

However, from (4) we have that
1 g / 2
- M(x,t)|uL, (z,t)|*dedt < k; YveNande >0,
€Jo Jo

and from (6) it follows that

Mul, > Mu. in L>(0,T; L*(0))

Ev

and, in this way, we conclude that

Mul, = Mu. in L*(0,T; L*(0)).

Ev

Thus

1 T 1 T
—/ / \Mu'g|2dxdt§infsup—/ / |Mul, |*dxdt < k; Ve > 0.
€Jo Jo v €Jo Jo

Thus,
T
0< / / |Mul|*dedt < ke; Ve > 0.
0o Jo

It follows then that
Mul =2% 0 strongly in  L*(0,T; L*(O)).
However from (30)

Mul =% Mw' weakly *in L0, T; L*(O)).

(31)

(32)

(33)



252 CHAPTER 14. EVOLUTION PROBLEMS

From (32) and (33) it follows that
Mw' =0 in L*(Ox]0,T]).

Therefore
M(z,t)w'(z,t) =0 ae. in Ox]0,T]. (34)

Now, since M =0 in @ and M =1 in Q° it results from (34) that
w'(z,t) =0 ae. in Q- (35)
On the other hand from (18);, we have
u? — Au, + é Mu. = f in L*0,T; HY(0)).
It follows from (27), (31) and from the fact that —A € L(H}(O), H '(0O)) that

||l z20m5m-10)) < llttellp2.rm oy + 2 + csll fllz2omizo) < ko; Ve > 0.

Thus
u! =~ w” in L*0,T; H(0O)). (36)

From (29), (30) and (36) it follows that

w € C°([0,T); L*(0)) N C4(0,T; Hy (O)),
w' € C[0,T]; H1(0)) N Cy(0,T; L*(0)).

Therefore, it makes sense to speak of w(0), w(T), w'(0) and w'(T"). We will prove
next that

w(0) = o, (37)
w'(0) = a. (38)

Indeed, let 6 € C'([0,7]); 6(0) = 1 and O(T) = 0. Then, given v € L*(0O),
(v8) € L*(0,T; L*(0)) and from (30) we obtain

T

/O (Ul (t), ) 20y O(t)dt =% W), 00 6(0)

Integrating by parts, it follows that
T 0 T
—(u(0),v) — / (uc(t), )0 (D)t =% (w(0), v) — / (w(t), v)0 (£)dt.
0 0
Now, from (29) we have that

/0 (uat), )0 (1)t =% / (w(t), )0 ().

Then
(u=(0),v) =% (w(0),v); Vo € L*O).
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Since u.(0) = 4g; Ve > 0, it results that

Considering 6 in the same previous conditions and v € H}(O), from (36) it follows
that

[ taw.oowa =5 [ o, oo

Integrating by parts, we obtain

—(u(0),v) - / (Wl (1), )8 (D)t <25 —(w'(0),v) — / (! (), 0)8 (1),

However, due to the fact that

/0 (ul(t), v)0 (t)dt =2 /0 (w'(t), v)0'(t)dt

we have that
(uL(0),v) = (¥'(0),v); Vv e Hy(O).

By the density of H}(O) in L?(0O) and by the fact that u.(0) = @; we obtain
w'(0) =1y .
On the other hand, from (35), we obtain
w(z,t) =w(z) ae in Q= (0x]0,T)\Q.
Since w € C°([0,T7]; L*(0)) it follows that
w(z,t) = w(x), for almost all (z,t) € O x {t}\Q, and V¢ € [0,T]. (39)
But from (37) we have then that
w(z,0) =w(r) =1y, forae xe€O\Q.

However,

- uo(); xr €
O; T € O\QU

which implies that
w(x) =0 a.e. in O\Qy.

It follows from (39) that
w(t)(z) = w(z,t) =0, for a.e. (x,t) € O x {t}\Q; and V¢ € [0, T]. (40)
Recalling that €2, is identified with Qy it follows that
w(t)(x) =0 ae. xe€O\Q and Vte |[0,T].

This together with hypothesis (3) leads us to conclude that if we define u as the
restriction of w to () then

u e L=(0,T; HH(Q)). (41)
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Also from (39) it results that
u' € L®(0,T; L*(Q)). (42)

Consider, now, ¢ € D(Q) and define
~_Jv in @
fyme

0 in @

Then, ¢ € D (Ox )0, T]) and therefore 1 € L2(0,T; HX(O)), o' € L2(0,T;L2(O)).
It results from (13) that

1 ~ .

where ( - ) designates the duality L*(0,T; H'(0)) x L*(0,T; H}(O)), or even,
=0 =0

A\ A\

(W (T), $(T)) — (u(0), $(0)) — / (W (1), & (1)) (o) dt

T 1 [T ~
+ [ atuo. 501+ 2 [ 010,50 o) d (#3)
T ~ ~
- | G050
But, since M (x,t) = 0if (x,t) € @ and ¥ = 0 in Q°, it follows that
1 (7 ~
> [ 0nio.50) 500y
= é[/@ M (z, ) (z, t)p(x, t)dzdt + /Qc M(m,t)ué(x,t)&(m,t)dxdt} =0.
Whence, from (43)
T _ T T
- [ @ T O e+ [ atuo. 50 = [ G050
0 0 0
Taking the limit as ¢ — 0 results from (29) and (30) that
T _ T _ T
- [ @O 7)o+ [ awendtd= [ GO0 b,
0 0 0
that is,
/ "z, t) (2, 1) dmdt+2/ . (x,t)dzdt = / f(z, t)(x, t)dxdt.

It follows from there that
<U”—AU>¢> = <f7¢>7 V@DED(Q)

Therefore
' —Au=f in D(Q).
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14.6 Problem with Nonlinear Vibrations

Let Q be a bounded open set with sufficiently smooth boundary I'. Let @ = Qx |0, T[ and
Y =Tx]0,T[, with T > 0 and M: [0, +oo[— R, M € C'([0,+oc[) and M > mg > 0.
We wish to find u: @ — R weak solution of

0?u 5 .
@—M(/Q|Vu| d:}:)AU—f in Q

u=0 on X (1)

u(0) = ug(x), %(O) = uy.

Instead of solving problem 1 specifically, we will obtain a solution for the abstract
problem. For this, let V' and H be separable Hilbert spaces such that dim H = 400, V' ;
H,

VS5 <—H and V isdensein H.

Let ((-,-)) and (-, -), respectively, be the inner products of V' and H, consider

As is well known A is a self-adjoint, positive and unbounded operator of H. We
also have the existence of a sequence of eigenvectors (w,),eny of A and corresponding
eigenvalues (A, ),en such that

(w,) 1is a complete orthonormal system of H

Wy .
< ) is a complete orthonormal system of V.

VA

Also
O< M <XN<... and N\, — +oco when v — +oo. (2)

Now, if a € R, we define the powers of A by

pary = {ue 15 el < o) )

v=1
and

“+oo
A% = Z Ao (u, wy, )w, . (4)
v=1

We have that A% is equally self-adjoint and positive, Vo € R, making sense there-
fore to speak of the root of A%. It follows from this that if we define

o) = {ue HY ) < oo

v=1

and
“+o00

Tu = Z A2 (1, w, )w,

v=1
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then,
T = A“2

We can also prove that T is the unique positive self-adjoint operator that verifies
T2 = A~ (5)
Thus
(A%, u) = (T?u,u) = (Tu, Tu) = (AY?u, AY?u); Yue D(A%). (6)
We note further that the powers of A satisfy the following property
If oy <ay then D(A®)C D(A™M). (7)
We can prove from (3) and (4) that
D(A**2) = {u € H;u € D(A*) N D(A*?), A*u € D(A*?) and A**u € D(A™)}. (8)
It follows from (8) and (4) that:
A% 0 A% = AMTO2 = A2t = A% o A" in D(AMT?). (9)
Now, if a > 0 it is verified that there exists ¢ > 0 such that
(A%u,u) > clul’; Yu € D(A%). (10)
We endow D(A®) with the inner product
(u, V) praey = (u,v) + (A%, A);  u,v € D(A%),

which makes it a Hilbert space since A“ is closed given that it is self-adjoint. Since o > 0,
it follows from (10) that the norms

o 12\1/2
lulpasy = (fu* + | 4%uf?) (11)
and
ull[paey = [A%] (12)
are equivalent in D(A%). Therefore, the topological space (D(A%);||| - |||p(ae)) is also a

Hilbert space. In what follows, we will work with the topology given in (12). Furthermore,
endowed with this topology, if a1 < s then D(A%?) < D(A*).
If & > 0 we note that
A~ is a compact operator of H. (13)

Finally, we also observe that the following properties are satisfied

The embedding of D(A®), a > 0, in H is compact. (14)

If p >0, @ > 0 then the embedding of D(A*"?) in D(A”) is compact. (15)
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Consider, now, the abstract problem

' + M(a(u))Au = f

uw(0) = ug, u'(0) (16)

Uz,
where a(u,v) = ((u,v)); wu,v e V.

A natural question that arises is whether we can solve the problem above subject
to the following initial data

uy € D(AY?) =V, wy e H and feL*0,T;H). (17)

In what follows we will proceed formally. Composing (16); with 2u’ results that

2(u” ") + M(a(u))(Au, 2u’) = 2(f, u'). (18)
We have
2(Au,u") = 2a(u,u') = 2((u,u')) = p ]|,
Setting )
T = [ M xe vl (19)
then
— d d 2 ,
o (Ma(u)) = M(a(u) - — a(u) = M(a(w)) — ||lul]” = M(a(u))2(Au, v'). (20)
Thus, from (18) and (20) we conclude that:
d n2 o, ir _ /
AP+ M(a(w) } = 2(f,4).
Integrating from 0 to ¢, we obtain
|w%ﬂMw»gm%J%mm+A|W@+Aw?w (21)

However, due to the fact that

—

a(u)
Mww:A M(E)de > moa(u)

from (21) it follows that

T t
[/ |* 4+ mg a(u) < |u1\2+M(a(uo))+/ |f|2d8+/ |u'|? ds.
0 0
By Gronwall’s Lemma it follows that
||+ a(u) < ¢ Vit (22)

We observe that, until now, the choice of initial data as in (17) has been satisfactory
and sufficient to pass the limit in the linear part of the problem. However, to pass the
limit in the nonlinear part of the problem it is necessary that we have strong convergence
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in L2(0,T; D(A'Y?)). However, the estimate in (22) guarantees us only, given the Aubin-
Lions theorem, strong convergence in L*(0,T; H) which is insufficient to pass the limit.
We need, therefore, a new a priori estimate.

Let 0 < € < 1 to be determined later. Consider the scalar product of (16); with
2 A%u'. We have

2(u", A%u') + 2M (a(u)) (Au, A%u') = 2(f, A%u'). (23)
But,
2w, AUy = 2( A2 AP = 2(u”,u') pacrzy -
d d, . 24
— % |u/(t)|2D(A5/2) = E |A /2ul|2
Also,
2(Au, A°u) = 2(AV2AV2y, A2 A2) = 2(ATF u, AT )
d d | en (25)
— 2w t) e =y = o [AT
20 0) ey = g W passty = g 1A
Thus, from (23), (24) and (25) we obtain
d e/2, 112 d el 192 €,/
— |A¥=|* + M(a(u)) — |A 2 ul]® = 2(f, A%u). (26)
dt dt
Since
(M (aw) AT ) = L M(a) AT o + Ma(w) - & |AT uf
dt dt dt

then from (26) it follows that

d / e+1 e 7 d e+1
i M e = 24 + LT e
However,
d

(M (a(u))) = M'(a(u)) %a(U) = M (a(w)) & |Jul = M'(a(u))2((u, )

dt dt
= 2M'(a(u))(Au, u).

Therefore, from (22)

2 1(a(00) | = 2400 () [, )] < 2(( e 13 Ga(w)] ) (4w,

0<a(u)<e

that is, there exists ¢; > 0 such that:

d

= (M(a(w)| < ar|(Au, ). (28)

Consider, now, 0 < v < 1. We have

(Au,u) = (AVAY" T, ') = (A Yu, AM). (29)
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From (28) and (29) we arrive at

—Mﬂwmﬂsmmvmmmw (30)

dt
+ u2}

< 2(f, AU) + er| AV ) AW AT )
= 2(AT2f, AT2) 4 o AV [ AT | | AT f?

e+1 |2

< |A€/2f|2 + |A€/2u'|2 + | AT | [A | |ATE

and from (27) and (30) we can write

G {1 et

Integrating the previous inequality we obtain

| A2 2 + M (a(u))| A ul?

T
< AP + M (a(uo))| A uol” +/ (A2 f|? dt
0

t t
+/ |A*/?u/ |2 ds + cl/ | A | | A | |ATE u)? ds.
0 0

We would like there to exist ky > 0 and k; > 0 satisfying

|AY | < ko AT ),
and (31)
| A < kg | A2,

Assuming that (31) is true we obtain

A2 [* + M (a(u))|

T
<A+ Mol AT wl + [ 147 P (32)
/ 1A%72y /|2ds+02/ AT | |42 | A a2 ds.

Therefore, for us to have (31) it is necessary that the following embeddings hold:

D(AE?) < D(A"),

and
D(A®/?) — D(A).

For the embeddings above to occur we must have that

l=v<

and v <

l\.’)l(‘n

Summing the two inequalities we must have

N | —

1
1§§+8 = €2
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1
Choosing € = 5 (which is the best choice since the smaller the ¢ the larger the set

1
D(A%/?) and, therefore, we are being less restrictive) it follows that vy < 1

Returning to (32) with the choice above, we obtain
AV 4 M ()| A

t
< 1A+ M)Al + [ 14
0
t t
+ / |AYA 2 ds + ¢, / | A3y | AV | | A¥ )2 ds.
0 0

The inequality above indicates the ideal place to consider the initial data, that is,
we must consider

uy € D(A**), wy € D(AY*) and f e L*(0,T; D(AY%)). (34)
Note that
D(A¥*%) — D(AY?) =V < D(AYY)
Suppose, then (34), there exists c3 > 0 such that

¢ ¢
|AY4/ |2 + M (a(u))|AY 4 u)? < cs —I—/ |AY 4! |2 ds + 62/ | A3 4| | AY 4| | A3 u)? ds.

0 0

Since M(\) > my > 0; VA € [0,400] we obtain
t t
|AY4 |2 + | A3 ) < kg + k;l/ |AY 4/ |2 4 kg/ | A3/ 4u| |AY 4| | A% 4 ds,  (35)
0 0

where )
e ey = —2  and k=

by = —
T min{l,me}’ " min{l,mo}

min{1,mo}

However, despite the new choice of initial data, we cannot bound the expression
on the left of the inequality in (35) for all ¢ belonging to the field of definition of u, as we
will see next.

Set

Y = |AY4? | A3 )

We have
A2 <Y and |AYW/| <Y

Thus, from (35) it follows that

¢ ¢
Y(t) < ks+ kg/ YY2(s) YY2(s) Y ds + k:l/ Y(s)ds
0 0

< ks + kg /Ot(YQ(s) +Y(s))ds,

that is,
t
Y (t) < ks + / (Y 4 Y)ds, (36)
0
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Setting
t
h(t) :/ (Y? +Y)ds
0

it follows from (36) that
Y(t) < ks + kqa h(2).

From (37) and (38) we obtain

R(t)=Y?+Y < (ks + ks h(t))? + (ks + ks h(t)),

or even,

ko ' (1) < ka{ (ks + ka h(t))* + (ks + ka h(t)) }.

Since

(ks + ks h(t)) = ka B/ (t)
we have from (39) that

(ks + ky h(t)) < ka{(ks + ks h(t))* + (ks + ks h(t)) }.

Setting
U(t) = k3 + ka h(?)

then we have
W' (t) < ka{tp(t)? + 0(1)}
Whence
V() = kap(t) < ka?(2).

Multiplying the inequality above by e~*4 it follows that

(wum*ﬂ—mw*ﬂww)Skmﬂwa“2
that is,

(D) < by g(p)e .
Integrating from 0 to ¢, we obtain from (37) and (40) that

Y(t)e ™ — ks < / t kg% (s)e " ds.
0

Whence .
P(t) < €k4t{k’3 + k4/ 2 (s)e e ds}.
0

Now, defining

t
) = [ et v s)as

0
from (41) we can write

D(t) < e ks + ka 2(1)}.
From (42) and (43) we obtain

2(t) = e FypP(t) < e Rt et ks 4 by 2(8)}? = M ks + ky 2()}?

261

(41)

(42)

(43)
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and, therefore, from the fact that ks, k4 > 0, we have

Z'(t) Fat
st Faz@®P =€

Integrating from 0 to ¢ we arrive at:

t Z/<S) /t
ds < eFs ds.
/0 (ks +kaz(s))? — Jo

Consider the following change of variables:

u=rhks+kyz(s) = du=ks2(s)ds

and when
s=0 = U= ]{33
s=t = u=ky+kiz(t).
Thus
t / 1 ka+ka z(t) —1 |ka+ks 2(t)
/ Z(s) 2d3:—/ u’2du:—u—
0 (k3 + ka Z(S)) k4 k3 ks k3
1 f1 1
N k}4 k‘g k3+l€42(t) ’
Also,
t t 1
/ e ds = —eMs| = — (eft — 1)
0 4 0 k4
whence . .
- - kat 1
kg k3 + ]{?4 Z(t) =°
that is,
SR S ST
ks + ky Z(t) — ks
Therefore,
1 1
> 1 — ekt . 44
k3+k42(t) - ¢ ]Cg ( )

On the other hand,

1 1 1
-t —>0eM<l+—ohm™) <hnll+—) e
kg k3 k3

1 1 1
Shkt<h|l+— |t —In|ll1+—].
4 n( +l€3> ]{Z4 TL( +k3)
Setting
1 1
"= —/In|{—+1
k4 n<k3+>
then if t < T and Ty < T™ we have

1
o —eM 1 1>0; Vtel0,Ty).
3
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From (44) it follows that
1\t
k3+k‘42(t> < (1—€k4t+k—> 3 Vit e [O,T()]
3
and, from (43), it results that
1\
Y(t) < ekaTo (1 — ehaTo 4 k:_) =L; Vtel0, T
3

From this last inequality and from (40) we obtain

L — ks

) < =

=M; Vtel0,T.

Finally from (38) we conclude that
Y(t) Skﬁg—l—l@LM:C; Vte [O,To],

that is,
|AY4/ )2 4 | A3 2 < ¢; Yt e [0,Ty).

From the above, we have the following result

Theorem: Given:
uy € D(A¥*):  wy € D(AYY) and  f € L*(0,T; D(AY%))

there exists 0 < Ty < T and a unique solution w: [0,7p] — H of (16) in the class

u € L0, To; D(A*)); u' € L=(0,To; D(AY)) and  u" € L*(0, Tp; V')

verifying

(u'(t),v) + M(a(u(t)))a(u(t),v) = (f(t),v) in L*(0,Ty); YveEV
0) =ug; u'(0)=1u.

= 3a

Proof:
12 Step: Approximate Solution
Let (w,)yen be the sequence of eigenvectors associated with the operator

A VB ()}
whose corresponding eigenvalues (\,),en verify
O< A <XN<... and )\, —» 400, when v — +00.
We know that, by virtue of the Spectral Theorem

(w,) is a complete orthonormal system of H

(&) is a complete orthonormal system of V = D(AY?)

VA

(%) is a complete orthonormal system of D(A)

263

(45)
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Note that
D(A) < D(A¥*) — D(AY?) =V — D(AYY) — H. (50)

We claim that
(wy)yen is orthogonal complete in - D(A%); 0 < a < 1. (51)
Indeed, let v, u € N such that v # p. Then:
(wy, wy) prasy = (A%wy, A%wy) = AN (wy, wy) = 0.
Furthermore, let © € D(A®) such that (u,w,)pey =0; Vv € N. We have:
0 = (A%, A%w,) = N2 (A%, w,) = \%(u, Aw,) = \2*(u,w,); VveN.

Since A\, > 0, Vv € N it follows that (u,w,) =0; Vv € N. Therefore, from (47)
it follows that v = 0 which proves (51).

But,
wy|[Daay = (A%wy, AW, ) = X |w,|* = A2, Vv eN.
Whence
(%) is orthonormal complete in  D(A%). (52)

It results from this that for all u € D(A®) we have

+o0
w, w,
u= E u, — =
(( )‘3‘))/3(,4&) Y

v=1

that is,
3 ((u “’—a)> Sy yin D(AY), (53)
- A D(aay A

However, since

w,/ a Aawlj 1 o 1 (03
(7)) = (170 5 = g = 00 = )

>

v 14

we have from (53) that

Z(u,wu)wy I7E 4 in D(A%)
v=1

that is,

n

i = u; @ <a<l. 4
nl_lgloo;(u,w,,)wy u; Yue D(AY), 0<a<l1 (54)

Set
Vin = [wi, ..., Wi
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In V,,, and by virtue of (54) consider the approximate problem
(

U () = Gim(E)w; € Vi,
i=1

(U (1), w;) + M (a(um () a(um(t), w;) = (f(£),ws);  j=1,2,....m,
(AP) -

Um(0) = uom = Z(uo, w,)w, — ug  in  D(AY*),
u,, (0) = Uy, = Z(ul, w,)w, —uy; in D(AYH).
Whence
) 420 (30802 )iy = (£10) )
=1 (55)
gim(0) = (uo, wy)
Iim(0) = (u1, wy), j=1,..., m,
that is,
[g;'m@)] M {00 (<f<t>, w1>)
: + : = :
gg@m@) M ( Z;’Ll ngm(t)/\i) gmm)\m (f(t)v wm) (56)
(uo, w1) (w1, wr)
gim(0) = : s Gm(0) = : .
\ (w0, Win) (w1, W)
Set

M (jé g?-m(t))\?> JimA1 0
A(z(t) = ! M(:l gfm(t)/\ﬁ) Jam
0 0 M ( il gf-%@ﬂ?) GrmmA
o
and
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From (56) and (57) it follows that

2(t) + A(2(1)) - 2(t) = F(1)
{Z(O) =zp; 2'(0) = 2. (58)
Set
Yi(t) = 2'(t);  Ya(t) = 2(1) (59)
and
Yo = i) (60)

In this way, it follows from (58), (59) and (éo) that
Y/(t) = [Y{(t)] _ {2”(75)] _ {F(t) = A(2(1)).2(1)] _ {F(t)] N [O —A(Z(t))] {Z’(t)} '

Y, (t) 2'(t) 2'(t) 0 I 0 z(t)
Thus
Y'(t) = F(t) + AY (t)).Y(¢) (61)
Y(0) =Yo
where
7o) = {Fét)} AV = [? —A(OZ(t))} and Y, — Eﬂ
Define the following function
h:[0,T] x R*™ — R*™ (62)
(t,y) = h(t,y) = F(t) + Aly).y
where
AW = [7 D] where 5= (o) 0= (st )
Then
y'(t) = h(t,y(t))
{ym) % (93)
Note that

(i) For each fixed y € R*™, h(t,y) is measurable in ¢, since F(t) is measurable since
f € L*(0,T; D(AY*) and therefore the coordinate functions (f(t),w;) are measurable.

(ii) For a.e. t € [0,7], the map h(t,y) is continuous in y because the product
A(y) -y is. We observe that the continuity of A(y).y comes from the fact that A(y) is
continuous and the continuity of this results from the fact that M € C*(R,).

(iii) Let K be a compact set of [0, T] x R*™. Thus, V (¢,y) € K we have that 3¢ > 0
such that

A ) m < IF@)l2m + A yll2m < [F(@)]|2m + ¢

Since || F(t)||2m € L'(proj, K), it results from Carathéodory’s Theorem that the
system of O.D.E. given in (63) admits a local solution y(¢) in some interval [0,%,,), such
that y(t) is absolutely continuous and y/(t) exists a.e. in [0, t,,). It follows, that the system
(58) has a local solution z(t) in the same interval considered and from (59) and (60) it
follows that z(t) and 2/(¢) are absolutely continuous and 2" exists a.e. in [0,%,,). Finally,
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from (57) we conclude that the functions g;,(t), gj,,(t) are absolutely continuous and
G (t) exists a.e. in [0,,,), verifying the system (55). The a priori estimates will serve to
extend ¢;,,(t) and therefore w,,(t), to the whole interval [0, 7.

22 Step: A Priori Estimates

It is worth observing that from (50) and from the fact that (u,,) C D(A) everything
that was done formally remains valid in the interval [0, t,,), that is, from (22) we obtain

[l () + |[um (@) < ¢; YVt e[0,t,) and Vm € N. (64)

From this it follows that

¢ > ((um(t) Zgjm 2y >(Z%m )

that is,
2 _ 2 _Cc
2(t)];, = ;gjm(t) <ec = o Vit e [0,tm). (65)
Also,
¢ > (ul,(t),ul, () = > g5, (1)
j=1
whence

=Y lg0F < (66)

From (65) and (66) we conclude that

Y(t)l3

‘2m

= @)l + a5 = 1O + =05, < Ky Vt€[0,t,) and Ym € N.

Given this last inequality, we can prolong Y (¢) to the whole interval [0,7]. It
follows from this that g;,,(¢) and therefore u,,(t) can be prolonged to the whole interval
[0,7]. Thus, we can retrace the same calculations of the 1* a priori estimate and obtain
as in (64)

[l () + |[um(®)|? < ¢; Vte[0,T] and Vm € N, (67)

However, despite extending u,, to the whole interval [0,7], the second a priori
estimate is only valid in an interval [0, Ty, as we obtain in (45), that is,

|AYA ! () + A () < co; Vit €[0,Ty] and Vm € N (68)

k4
It follows from (67) and (68) that

1 1
where T0<T*:—€n( —)
ks

) (O TO> (A3/4))7
) is bounded in  L*(0,7,V),
) is bounded in  L*(0, Ty, D(AY*)),
) L>=(0,T; H).

is bounded in

(
(
(u
(

is bounded in
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Consequently, 3 (u,) C (uy,) such that

w, S u in L0, Ty, D(AYY) (69)
u, —~u in L>*(0,T;V) (70)
W, S in L0, Ty, D(AYY) (71)
= in L*(0,T;H) (72)

32 Step: Passage to the Limit

Let j € N and v > j. Consider § € D(0,Tp). Multiplying (AP); by 6 and
integrating over [0, 7] results that

- / (6, w0 (Ot + | M(aluy())alu (t), w))8(t)dt
0 0 (73)

- / (), )bt

From (72) we obtain

/O (u’y(t),wj)e’(t)dtm/o O(u’(t),wj)é’(t)dt. (74)

Analysis of the Nonlinear Term
From (15), in particular, for a = 1 and p = 5 we have that
D(A%*) S D(AY?). (75)

Set
By = D(A%*); B=D(AY?); B,=H

and consider the space
W = {v e L*0,Ty, By); v' € L*(0, Ty, By)}
endowed with the topology
[ollw = 11vl|z2070,80) + V'] L20,10,8:) -
From (75) due to the Aubin-Lions Theorem we have that:
W < L*(0, Ty, D(AY?)).

It results from this and the above that there will exist a subsequence of (u, ), which
we will continue denoting by (u,), such that

u, — u strongly in  L*(0, Ty, V) (76)

and then
[y ()] = [Ju(®)|[> in L0, Tp).
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On the other hand, since M € C*(R,) we have that:
M (a(u,(t))) = M(a(u(t))) in L*(0,Tp). (77)
Indeed, since M € C'(R,) we have for a.e. ¢ € [0, Tp]

Malu, (1) - Mlatu(®) = [ ar(e)ds. (79

a(uwy(t))
However, from (67) we have that 3¢; > 0 such that
a(u,(t)) <er; Vtel|0,Tp) and Vv €N,
and from the fact that v € L>(0,Ty; V) it follows that 3¢y > 0 such that
a(u(t)) < cg; forae. te[0,Tyl.
Taking ¢ = max{c;, co} we have
0 <a(u,(t)),a((u(t)) <c¢ ae tel0,Tp) and Vv eN, (79)

that is,
a(u,(t)),a(u(t)) € [0,c; ae. te€]0,Tp] and v € N.

On the other hand, since M’ € C°(R,), JL > 0 such that |M'(¢)| < L;
VE e 0, .
Thus, from (78) it follows that:
|M(a(uy,(t))) — M(a(u(t)))| < Lla(u,(t)) — a(u(t))]; Vv € N and a.e. t € [0,T]. (80)
So, from (80) it comes that:

M (a(u, (t))) = M(a(u()* < L2 [Ju, (O]]* = [Ju®)]* |
= L?|(||u, 0)1] = @)1 ([ (1] + [Jut) D]

= L[ ||, ()] = [ * [ ()] + [[u)]]]*

< AcL?[||u, (0)]] = (@[] [* < 4eL|fu, (t) — u(t)]]*,

Vv e N and a.e. t € [0, Tyl
Integrating the last inequality from 0 to 7§ it comes that

| et 0) = M)
< 4c? [ fuule) = )| de = 4oLl =l

But from (76), we have that the right side of the inequality above converges to zero
when v — +o0. Thus

/0 "M (a(un () — M(a(u(t))P df — 0 when v — +o0

which proves the desired result.
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On the other hand, from (76) we also have
u, = u in  L*(0,Ty; V).

Whence
(n,uy) = (n,u); Ve L*0,Ty, V'),

In particular, if n = Aw; v where v € L*(0,Tp) results that

/0 (Aw;, u (6))o(t)dt 22525 /0 " (Aw;, u(t)o(t)dt,

that is, - -
/0 a(uy (t), w;)o(t)dt =25 /0 a(u(t), w;)v(t)dt.
Thus,
a(u,(t ) i) = au(t),w;) in  L*0,Tp). (81)
It follows from (77) that
M (a(u, (1)) = w M(a(u(t))) in L*(0, Tp); Yw € L(0, Tp)- (82)
From (81) and (82) we obtain

(WM (a(u, (1)), aluy (t), w;)) p20.10) == (WM (a(u(t))), a(u(t), w;)) 201) »
for all w € L*>(0,Tp).
In particular, for w = 6 € D(0,Tp) it follows that
i i M (a(uy,(t)))a(u,(t), w;)0(t)dt — i O M(a(u(t)))a(u(t),w;)0(t)dt. (83)

From (73), (74) and (83) in the limit situation, we obtain

- / (W), w0 Ot + [ M(a(ult)))alu(t), w;)(t)dt
0 0 (84)

:/OTO(f(t),wj)Q(t)dt, VjeN.

Since the system (w,), is complete in V' it follows that

_ / (W, 000+ [ M(a(u()a(u(t), 0)(t)dt
0 0 (85)

To
- / (F(O).0)0()dt; VueV,
0
or even,

%(u’(t),v)—i—M(a(u(t))a(u(t),v):(f(t),v) in D(0,Ty), YoeV.  (86)

Furthermore, identifying H with its dual comes that

(u,v)yry = a(u,v); VYue H and Vv e V.
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In what follows A: V — V' will represent the isometric extension of the operator
A: D(A) — H defined by

(Au,v) = a(u,v) = ((u,v)); Yu,veV.

From the above and from (85) we can write

<_/0TO o ”> <0TOM () Ault )0(t)dt,v>

To
< f(&)o(t)dt v> Vv eV and V0 € D(0,Tp),
that is, B
u" + M(a(u)Au=f in D'(0,Tp; V). (87)

But, since f € L2(0,Tp; D(AY4) and M(a(u))Au € L*®(0,Ty, V'), (since
a(u) € L*>(0,Tp) and, therefore, M (a(u)) € L>(0,T,)) we have from (87) that

u” € L*(0, Ty, V') (88)
and

W'+ M(a(u)Au= f in L*0,Ty, V). (89)

42 Step: Initial Conditions
Note initially that
u € C°([0,Ty), D(A1/4)) N Cs([0, To); D(A3/4))
v € C°([0, To]; V') N C4([0, Ty), D(AYY)),

making sense therefore to speak of u(0), «/(0), u(T") and «/(T).

(i) w(0) = uyg

Let 6 € C([0,Tp]) such that 6(0) = 1 and 6(7Ty) = 0. Consider v € H; then
v € L?(0, Ty, H) and, consequently, from (72) comes that

/oO(ul(t)’v)e(t)dtm/oO(U'(t),v)e(t)dt,

Integrating by parts

~(u(0), ) - / (1), )00t 2= —(u(0), 0) — / (u(t), 0)0 (1)t
Since - -
/0 (u, (t), 0)0(t)dt =2 /0 (u(t),v)0(t)dt

it results that
(uoy,v) = (u(0),v); Vwve H. (90)

But, ug, — ug in D(A%*) < H. Thus,

(uwoy,v) = (ug,v); Vv e H. (91)
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From (90) and (91) we conclude that
u(0) = ug . (92)
(i) «'(0) =uy

Let 6 > 0. Consider the auxiliary function

6u(t) — Lyl i 0<t<é
Y o it §<t<T,.

Let j € N and consider v > j. Multiplying both sides of (AP), by 05 and integrating
in [0, Ty] results that

) )
/uamwm@ﬁ+/ﬂmwmmwmwwwmw

0 0 5 (93)
=Auwwwww.

Recalling that if g € H*(0,Tp) we have

((9l0a)0) = (d10g,0); V8 € D(0,5),
then since (ul,(t),w;) € H'(0,Tp) comes that

d d d
= (w, (1), w5) = = (U ]i0.g), w5) = (% (UL|[0,51)7wj> = (urlo.0), wj)-
Furthermore, since 65 € C''([0,d]) then the derivative of 05 in the sense of distribu-

tions in [0, 0] coincides with the classical derivative. Thus,

% [(u, (8), w3)05(8)] = (uy(£),w5)05(t) + (w, (1), w;)05(2)-

Integrating by parts the first integral of (93) comes
=0

0 10)0500) —((0).05) 0400) = [ (a0 50

=1

) )
+Aﬂmmmmwmmwmmﬁzlvmwmmw7

that is,
—wmmw-ﬂaumw%@wﬁﬂmewmwwwmmw
)
=Awmwmwm'

Taking the limit in v in the expression above comes that
) )
—WWﬂi/WwwWWW+/AMM@MMm%%@ﬁ
0 0
)
:/uwwwww.
0
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1 t
Observing that in [0, §], 65(¢) = =5 and 05(t) = —5 + 1 we obtain

0
<u1,w]>+§ / e+ [ Mottt v
5 o (o4
-3 [ o .wra= [ Gw.wa - [go.wra

Observing that

1
‘5/ tdt‘ /|g tdt < — /|g o dt = /|g )|dt; Vg€ L'(0,Ty)
0

we have that

1[0
5/ g(t)tdt -0 when §— 0"
0

since

1
/|g(t)|dt—>0 when & — O,
0

Furthermore, since v’ € C,([0, Ty]; D(AY*)) C C,([0,T]; H) we have that every
t € [0,7] is a Lebesgue point of the function (v'(¢),w;) and, therefore, in particular for
t =0, we have that

50t
[ 6w = wo,)
In this way, taking the limit in (94) when 6 — 07 we obtain
—(ur,wy) + (W'(0),w;) =0; VjeN

that is,
(v'(0),w;) = (u1,w;); VjeN.

By the totality of the (w;),en in H it follows that:

u'(0) = uy . O (95)
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APPENDIX

1. Let I be a bounded interval of the real line and f € W'P(I), 1 <p < +oo. Then f
is absolutely continuous.

Indeed, observe that WP (I) — WH(I) since I is bounded. Thus, if f € WP(I)
then f € Wh(I) and, therefore, f, f' € L'(I).

Let us define

vmzfﬁmm;aa:

Then, v is absolutely continuous, v’ (Dini derivative) exists a.e. and v'(x) = f'(x)
a.e.. Furthermore, the Dini derivative of v and the derivative in the sense of distributions
coincide. Thus

(v—f) =0 (derivative in the sense of distributions)

and, therefore, v — f = constant = ¢, a.e. in I. Due to the fact that Wh'(I) — Co(I)
we have that f € C°(I) and then v — f € C°(I). Whence,

v—f=c in I,

that is,
f=v+c in I.

Since v is absolutely continuous, v + ¢ is absolutely continuous and in this way f
is also.

2. Let f be absolutely continuous on [a, b] such that f' € L'(a,b) where f’ repre-
sents the Dini derivative. Let ¢ € D(a,b), then (fp) is absolutely continuous and

(o) ==t == [ 1O ©de =0 + [ 11001 = (1)

Thus, the distributional derivative of f coincides with the classical one.
In particular, considering the approximate problem

(), w5) + ((um(t), wy)) = (f(t),wy); € L*(0,T; L* (),
where (w,), is a basis of H}(€) orthonormal in L*(Q) and u,,(t) = >_ gim(t)w;. By
i=1
Carathéodory’s Theorem we have that
gim(t), g}, (t) are absolutely continuous and g, (t) exists a.e.

We claim that g7 (f) € L?(0,T). Indeed, let j = 1,--- ,m, we have

Fijm (1) = Zgéin(t)(wi,wj) = (up(t),w;) = (f(t),w;) = (um(t),w5)) € L*(0, 7).

Thus, ¢, is absolutely continuous and g7, € L*(0,T). From what was seen
previously, g7, in the classical sense coincides with g7, in the sense of distributions.
Furthermore, since gj, ¢, and g¢/,, € L*(0,T) then g;,, € H*(0,T). O
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APPENDIX

1. Let I be a bounded interval of the real line and f € W'P(I), 1 <p < +oo. Then f
is absolutely continuous.

Indeed, observe that WP (I) — WH(I) since I is bounded. Thus, if f € WP(I)
then f € Wh(I) and, therefore, f, f' € L'(I).

Let us define

vmzfﬁmm;aa:

Then, v is absolutely continuous, v’ (Dini derivative) exists a.e. and v'(x) = f'(x)
a.e.. Furthermore, the Dini derivative of v and the derivative in the sense of distributions
coincide. Thus

(v—f) =0 (derivative in the sense of distributions)

and, therefore, v — f = constant = ¢, a.e. in I. Due to the fact that Wh'(I) — Co(I)
we have that f € C°(I) and then v — f € C°(I). Whence,

v—f=c in I,

that is,
f=v+c in I.

Since v is absolutely continuous, v + ¢ is absolutely continuous and in this way f
is also.

2. Let f be absolutely continuous on [a, b] such that f' € L'(a,b) where f’ repre-
sents the Dini derivative. Let ¢ € D(a,b), then (fp) is absolutely continuous and

(o) ==t == [ 1O ©de =0 + [ 11001 = (1)

Thus, the distributional derivative of f coincides with the classical one.
In particular, considering the approximate problem

(), w5) + ((um(t), wy)) = (f(t),wy); € L*(0,T; L* (),
where (w,), is a basis of H}(€) orthonormal in L*(Q) and u,,(t) = >_ gim(t)w;. By
i=1
Carathéodory’s Theorem we have that
gim(t), g}, (t) are absolutely continuous and g, (t) exists a.e.

We claim that g7 (f) € L?(0,T). Indeed, let j = 1,--- ,m, we have

Fijm (1) = Zgéin(t)(wi,wj) = (up(t),w;) = (f(t),w;) = (um(t),w5)) € L*(0, 7).

Thus, ¢, is absolutely continuous and g7, € L*(0,T). From what was seen
previously, g7, in the classical sense coincides with g7, in the sense of distributions.
Furthermore, since gj, ¢, and g¢/,, € L*(0,T) then g;,, € H*(0,T). O
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