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Preface

The theory of semigroups of operators is undoubtedly one of the most powerful and elegant tools
in modern functional analysis for the study of evolution equations. From the classical heat diffusion
to complex wave propagation phenomena and quantum mechanics, the abstract language of semigroups
allows us to unify diverse problems under a common framework, providing robust methods for establishing
existence, uniqueness, and asymptotic behavior of solutions.

This book, Linear and Nonlinear Semigroups and Applications, is the result of years of teaching
and research at the State University of Maringa. It has been conceived to serve both as a textbook for
graduate students in Mathematics and as a reference for researchers interested in the analysis of partial
differential equations.

The text is structured to guide the reader from the foundations to the frontiers of the theory. We
begin with a review of differential and integral calculus in Banach spaces, setting the stage for the theory
of Cy-semigroups of linear operators. Here, the classical theorems of Hille-Yosida and Lumer-Phillips
are presented not just as abstract results, but as operational tools essential for solving linear evolution
problems.

However, nature is inherently nonlinear. A distinctive feature of this volume is the substantial
treatment dedicated to nonlinear analysis. We introduce the theory of monotone and accretive operators,
multivalued mappings, and the crucial Crandall-Liggett Theorem, which generalizes the generation of
semigroups to the nonlinear setting. This transition is handled with care, highlighting the geometric and
analytic subtleties that arise when linearity is abandoned.

Throughout the book, the abstract theory is constantly motivated by and applied to concrete
problems. We explore in detail the heat equation, the wave equation with various types of damping
(frictional, viscoelastic, and boundary damping), and the Schrodinger equation. Special attention is
given to the regularity of solutions and to the concept of weak and generalized solutions, bridging the
gap between abstract functional analysis and applied mathematics.

We assume the reader has a background in basic functional analysis and Lebesgue integration
theory. Our goal is that, by the end of this journey, the reader will not only understand the "how"
"why" of semigroup theory but will also be equipped to apply these powerful techniques to their own

and

research problems.

We are grateful to our colleagues and students whose questions and feedback over the years have
helped shape this material. We hope this book serves as a solid foundation for those venturing into the
vast and dynamic field of evolution equations.

Maringa, 2025

Juan Amadeo Soriano Palomino
Marcelo Moreira Cavalcanti
Valéria Neves Domingos Cavalcanti
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Chapter 1

Linear Semigroups

1.1 A Review of Differential and Integral Calculus in Banach

Spaces

In this section we recall some preliminary results concerning Differential and Integral Calculus in
Banach spaces , which will be of fundamental importance throughout this text. We start with the notion
of series in Banach spaces. Throughout this section, F will denote a Banach space with norm | - ||.

Definition 1.1 Let (z,) be a sequence in E. From it we form a new sequence (s,) whose elements
are the sums
81 =121, S2 =T1+ T2, Sp =2T1+ "+ Tn,

which we shall call the partial sums of the series > x,. If the limit

n=1
s=lims, = lim (x1 + -+ x,),
n— o0

oo
exists, we say that the series Y xy is convergent and the limit s is called the sum of the series. If the
n=1

o0
sequence of partial sums does not converge, we say that the series Y x, is divergent. We say that a

n=1
o0 [&.°]
series Y x, is absolutely convergent in E if > ||x,|| converges.
n=1 n=1

o0
Proposition 1.2 Every absolutely convergent series Y x, is convergent.
n=1

n
Proof: Let s, = Y xx, n € N, be the sequence of partial sums of the given series. Since F is a Banach
k=1
space, it suffices to prove that

(sn) is a Cauchy sequence in E. (1.1.1)

-7 -



1 Linear Semigroups

Indeed, let € > 0 and consider m,n € N with m > n. We have

m n

D ak =D o
k=1 k=1
m

D o

k=n-+1

m
> Dl

k=n-+1

m n
D llal = Nzl
k=1 k=1

- |§m_§n‘7

s = sull =

IN

n o0

where §, = > ||zl is the n-th partial sum of the convergent series Y ||xg||, which is therefore a Cauchy
k=1 k=1

sequence in R. Hence, for the given € > 0, there exists ng € N such that, if m,n € N with m > n > ng,

then
I$m — snll < |8m — $nl <&,
which proves the claim in (1.1.1). O

Another very important result for determining convergence of series is the Weierstrass test, which
we state next.

Proposition 1.3 (Comparison Test) Let M,, > 0 be such that ||z, || < M, for everyn € N. If >~ M,

n=1

o0
is convergent, then > x, is absolutely convergent.
n=1

Proof: Since ||z, | < M, for all n € N, it follows that

oo

n=

o0
1 n=1

o0
By the comparison test for series of real numbers, it follows that > ||x,|| is convergent, since

n=1
(o] (o]
> M, is convergent. Hence, by definition, the series > x, is absolutely convergent. O
n=1 n=1

Proposition 1.4 (Weierstrass M-test) Suppose that (E,|| - ||) is a Banach space, (Y,d) is a metric
space, and for each n € N, f, 1Y — E is a function. Assume that there exists a sequence (M) such

00 _ N

that || fr.(W)|lg < My, for everyn € N and Y M, < co. Then fn(y) = > fn(y) converges absolutely and
n=1 n=1

uniformly to f(y) = Zlfn (y).

Proof: Define fy(y) = fi(y) + -+ fn(y). For M > N we have

@) = Il = Ifvea@) + -+ fu @)l

IN

M
Z M;, for each y € Y.
k=N+1

[ee] i
Since Y My is convergent, (f(y)) is a Cauchy sequence in E. Thus there exists an element £ € F with
k=1

-8 -



1.1 A Review of Differential and Integral Calculus in Banach Spaces

¢ =limy o0 fn(y). Define f(y) = &; this gives us a function f: Y — E. Now,

oo
IF@) = Fv@ll = || > v
k=N+1
< 3 Wl
k=N+1
< Yo
k=N+1
Since Y M}, is convergent, given € > 0, there exists ng(e) such that > M < € whenever N > ng.
k=1 k=N+1
Hence ||f(y) — fx(y)|| < e for all y € Y whenever N > ng. O

From now on, we denote by L(E, F') the family of bounded linear operators with domain E and
range F', where F and F' are Banach spaces, that is, the family of linear operators A : E — F' such that

A= sup flAz = sup [Az].
TEE,||z|<1 TEE,||z|=1

With this norm, £(E, F') is a Banach space. In the case where E = F' we simply write £(F) instead of
L(E,E). If A,B € L(E), the product of A and B is defined by AB = Ao B.

An algebra A over a field K is a vector space over K such that for each ordered pair (z,y) € Ax A
we can define a unique product xy € A with the following properties:

i) (zy)z =x(yz)
i) z(y + 2) = 2y + 22
iii) (x+y)z =2z +yz
iv) a(zy) = (az)y = z(ay),

for all z,y, z € A and every scalar o € K.

It follows that £(F) is an algebra and that, for A, B € L(E), we have AB € L(F) and ||AB|| <
[IAIB]|, that is, L(E) is a Banach algebra.

Proposition 1.5 Let A € L(E). Then Y. 47 is absolutely convergent in L(E). By analogy with Calcu-

n!
n=0

lus, we define:

exp(4)

OOAn

A _ : 0 _

e” = Eon!, with A” = 1.
n=

Moreover, the following inequality holds:

lle]] < el

Proof: We apply the comparison test. First recall the following property, valid in L(E):

|ABJ|| < ||A|||| B, for all A,B e L(E).

-9 -



1 Linear Semigroups

Thus, it suffices to note that, if n € N and A € L(E) is given, then

A" 1 1
2l = Zjam < S A < M,
LAp™ SEEE
where M,, = %5~ Since the series ) =y = ellAl converges, it follows from the comparison test that
n=0

o0
. n .
the series % is absolutely convergent and, moreover,
n=0

A= Z

nO

e

Z IIAII oAl

which completes the proof. O

(&)
Proposition 1.6 (Neumann’s Theorem) Let A € L(E) with ||A|| < 1. Then the series Y A™

n=0
converges to (I — A)~1 in L(E) and, moreover,

1

I-A) < ——.
I =47 < =

Proof: By Proposition 1.2, it suffices to show that the series is absolutely convergent. Note first that,
since || 4| < 1,

Z||A||”— HAII (1.1.2)

as this is a geometric series. By the comparison test, taking M,, = ||A||"™, n € N, and observing that

[A™| < [|A[", for all n €N,

o0
we obtain that the series > A™ is absolutely convergent and therefore convergent. Furthermore,
n=0

=< ZIIA”II < ZIIAII" = HAII (1.1.3)

(&)
To conclude the proof, we show that > A" = (I — A)~!. Indeed,
n=0

(I— A)iA” - iA" - iA"
n=0 n=0 n=1
= AMiAMiA”:J
n=1 n=1

Also,

00 k
;OA (I—A) = klggo?;)A (I —A)

= lim (I - A =1
k—o0

)

since || A+ < ||A]**1 — 0 as k — oo. We conclude that Y A" = (I — A)~!, and from (1.1.2) and
n=0

- 10 -



1.1 A Review of Differential and Integral Calculus in Banach Spaces

(1.1.3) we deduce

1

I—-AY< ——,
10 =47 < 7=

which finishes the proof. O
Proposition 1.7 Let A € L(E) be such that ||Al| < 1. Then Y LA™ converges in L(E). We denote the
n=1

limit of this series by log(I — A).

Proof: We once again use the comparison test to verify that the given series is absolutely convergent
and hence convergent. Indeed,

ZOO 1 n Zoo [A[" Zoo n
n n
n=1 n=1 n=1
and since the series on the right-hand side converges, as ||A| < 1, the result follows. ad

Let I be an interval in R and consider the function

rz: I - F
t— x(t).
We say that x is continuous at tg € I if

lim [lz(t) — z(to)[| = 0.

t—to

We say that x is continuous if it is continuous at every point of I. We define
C([a,b], E) = {x : [a,b] = E;x(t) is continuous},

the space of “curves” in E defined on [a, b].

Proposition 1.8 C([a,b], E) is a Banach space equipped with the norm

|zlle(as,e) = sup [|2(t)]].

te€[a,b]

Proof: Let (z,) C C([a,b], E) be a Cauchy sequence. Then, given £ > 0, there exists Ny () such that,
for m,n > Ny,

5
lZm — Znlle(ap, ) = sup ||zm(t) — za(t)]| < 3 (1.1.4)
t€la,b]
Therefore, for a fixed tg € [a,b] we have
€
[z (to) — zn(to)ll < 3, (1.1.5)

2

whenever m,n > Nj. This shows that (x,(to)) is a Cauchy sequence in E. Since E is complete, there
exists z(tp) € E such that x,(t9) — z(ty) as n — co. Thus we can associate to each ¢ € [a,b] a unique
element z(t) € E, which defines a function x : [a,b] — E. Fixing n > N; and letting m — oo in (1.1.5),
we obtain

lato) — @a(to)]] < 3.

for each tg € [a,b], whenever n > Nj. This shows that (x,,) converges uniformly to z in [a, b] and hence x
is continuous. We also have the inclusion {||zy(t0) — z(to)|/;t0 € [a,b]} C [0, 5]. Hence sup;c(q ) l|lz(t) —
z,(t)]| < § < e, which shows that (x,) converges to « in C([a, b], E). O

- 11 -



1 Linear Semigroups

We say that x : (a,b) — E is right differentiable at to € (a,b) if there exists y € E such that

z(to +h) — z(to)
h

lim
h—0t

i

Similarly, we define left differentiability . When both one-sided derivatives exist and are equal, we say
that z : (a,b) — E is differentiable at to € (a,b) and we denote y by x'(¢o).

Proposition 1.9 Let z : (a,b) — E be differentiable at to € (a,b). Then x is continuous at tg.

Proof: Let ¢ > 0 and ¢ € (a,b). Since x is differentiable at ¢, there exists x* := 2/(tg) € E such that

x(to +h) — z(to) *

lim
h—0

=0.

Thus, for the given ¢ > 0, there exists § > 0 such that if 0 < |h| < §, then

l2(to + h) — (to) || < elhl + [|' (to) ]| |h]-

Fix € = 1. Then there exists §; > 0 such that

llz(to + h) — z(to)| < (1 +||2'(to)|)|h], whenever 0 < |h| < 6.

Set t =tg + h. Then
lx(t) — x(to)]] < C|t —to|, whenever [t — to] < d1,
where C' =1+ ||2/(to)]]. For a given € > 0 define § = min{dy,e/C}. Thus, if |t — to| < I, it follows that
lz(t) — z(to)|| < CJt —to] < Co < Ce/C =k,

whenever |t — tg| < d, which proves the claim. O

As before, given A € L(E), we define ¢! = 3" ©4%. One can also prove that !4 € £(E) and

let4| < eltlIAll

Proposition 1.10 Fort e R, let T'(t) = exp(tA), where A € L(E). Then:

(4) }in(l) IT(t) = Illzmy =0 (T(t) is continuous at t =0 and T'(0) = I).
—

T(t)— I

(i1) lim -A =0 (T(t) is differentiable at t =0 and T'(0) = A).
—

L(E)

Proof:

n!

(i) Note that T'(t) = 3 4" Thus
n=0

0 A tTAT SR tAT
T(t)—T=A"+)" - —I1=>" -
n=1 n=1

- 12 -



1.1 A Review of Differential and Integral Calculus in Banach Spaces

Consider the series

th A"
n!

S oA
n! Bl n!
n=

n=1

n=1

B

o0 n n
If |t| < 1, then the series % converges uniformly. Moreover, for each n € N,

n=1
o BEAI
t—0 n!
Therefore,
o AL o AL
lim ZT =2 lim—"+—=0 (1.1.6)
n=1 n=1
On the other hand,
t”A” " IIAII”
|T(t) —I| = Z Z (1.1.7)
n=1 n=1

Combining (1.1.6) and (1.1.7) we obtain
o A ||AH"
< <
0 hm IT@) —I| E t—>0 =0,

which proves (i).

(#4) Note that

T(t) -1 1| StmAr
_A = = _ _A

S A BT
[ et n!
OotnflAn

- Z nl -4
n=1
X in—1 gn X in—1gn

S A et 'A
o n: o n.

n=2
- §|t"—;|!|A|" . 118)
However,
ISR iltim (1.19)

- 13 -



1 Linear Semigroups

and (1.1.8)—(1.1.9) yield the desired result. a

Let f : (a,b) = X, where X is a Banach space, be a continuous function. Given a partition 7 of
[a,b], that is, n + 1 real numbers o, ..., t, satisfying a =ty < t; < --- < t, = b, and n real numbers ¢;
with & € (ti—1,t:), ¢ = 1,...,n, we define a Riemann sum of f by

or(f) = Z(t’ —ti—1) f(&).

i=1

Clearly, o.(f) € X. Set
Iwl = max {t; —ti1}.

Arguing as in the scalar case, one proves that o,(f) has a limit € X as |7| — 0. More precisely,
given £ > 0, there exists 6 > 0 such that

lon(f) —zll <e,

for every partition m with |7| < §. As in the numerical case, we say that x is the integral of f on [a,b]
and we write

b
x = lim O'ﬂ-(f):/ f@)dte.
|| —0 a
Proposition 1.11 The following properties hold for the integral of a vector-valued function:
b b
i) If K is a constant, then/ Kf(t)dt= K/ ft)dt.

b b b
i) / (f+g)(t)dt=/ f(t)dt—i—/ g(t)dt.

b c b
i) fa<c<b, then/ f(t)dt:/ f(t)dt+/ £(t) dt.

/ab F(t) dt
/ab F(t) dt

Proof: This follows immediately from the definition. O

b
w| s/Hmww

< max | f(O)(6 o).

v)|

Proposition 1.12 Let E and F be Banach spaces, A € L(E,F) and let x € C([a,b]; E). Then

A/abm(t) dt = /ab Ax(t) dt.

Proof: Consider the partition a = tg < t; < --- < t, = b of [a,b], where t; = a +
& € (ti—1,t;). Then,

i(b—a)

n )

and let

n
Ty = Z(ti —ti—1)x(&) € E, for each n € N,

i=1

since (§;) € Efor i =1,...,n. As x and Az are continuous by hypothesis, we have

b
;En—>/ z(t)dt and

14 -



1.1 A Review of Differential and Integral Calculus in Banach Spaces

n

b
Az =3 — ti ) Au(€) = / Az(t) dt.

i=1

A/abq:(t) dt = /ab Az(t) dt.

Therefore

Lemma 1.13 Let z,y € C([a,b]; E) be curves which are differentiable on [a,b] and such that y'(t) = ' (t)
for every t € [a,b]. Then there exists £ € E such that y(t) = x(t) + £ for allt € [a,b].

Proof: We first claim that if w € C([a, b]; E) is differentiable on [a, b] and w'(t) = 0 for all ¢ € [a, b], then
w is constant on [a,b]. Indeed, let ¢ € (a,b) and € > 0. Since w/, = 0, we have

[w(t) —w(e)|| < et —c) (1.1.10)
for t > ¢ sufficiently close to c.

Let [c,to) be the maximal subinterval of [¢,b) on which (1.1.10) is valid. We must have ¢, = b.
Suppose on the contrary that ¢ty < b. Since w’, = 0, we have

[w(t) —w(to)|l < et —to), (1.1.11)

for all ¢ > t( sufficiently close to to. Let t > to be such that (1.1.11) holds. From (1.1.10) and (1.1.11)
we obtain

[w(t) — w(c)|

< w(t) = w(to)|| + [lw(to) — w(e)|
< e(t—to)+e(to—c) =t —c),

that is, (1.1.10) is valid for all ¢ > ¢, sufficiently close to to, which contradicts the definition of 5. Hence
to = b and we have ||w(t) —w(c)|| < e(t—c) for all ¢t € [¢,b). By the arbitrariness of €, w(t) = w(c) for all
t € [¢,b). Since ¢ is an arbitrary point in (a,b), it follows that w is constant on (a,b) and, by continuity
of w on [a, b], the claim follows.

Now consider z,y continuous curves satisfying the assumptions of the lemma. Defining w =y —z,
we have w € C([a,b]; E) and w'(t) = ¢'(¢t) — 2'(t) = 0 for all ¢ € [a,b]. By what we have just proved,
there exists £ € E such that w(t) = & for all ¢ € [a, b], which completes the proof. o

Proposition 1.14 Let x € C([a,b]; E) and set
¢
y(t) :/ x(s) ds.
Then y € CY([a,b]; E) and y'(t) = z(t) for all t € [a,b]. Moreover, if x € C'([a,b]; E), then

b
z(b) — z(a) = / 2'(s) ds.

Proof: In order to prove that y € C'([a,b]; E), given that = € C([a,b]; F), it suffices to show that
y'(t) = x(t) for all t € [a,b]. Indeed, let ty € [a,b] and € > 0. Since z € C([a,b]; E), there exists
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d = 6(g) > 0 such that if 0 < |h| < §, then ||z(tg + h) — x(to)|| < . Hence, for all 0 < h < ¢ we have

yto+h) —ylto) [l || Lo () ds — [} a(s) ds
h - x( 0) - h B {E(to)
fttoﬁh x(s)ds .
= || o)
_ /h x(to + &) — (o) i
0 h
1" 1"
< g [ et sl < g [ eds =
0 0
since 0 < £ < h < 4. This shows that the right derivative Cl;r—ty(to) exists and d;—ty(to) = z(tp). Similarly
one proves that the left derivative %(to) exists and %(to) = x(tg). Therefore y is differentiable at

to and y'(to) = z(tp). By the arbitrariness of ty € [a,b] we conclude that y is differentiable on [a, b]
and y'(t) = z(t) for all ¢ € [a,b]. When tg = a or tyg = b, we consider only the corresponding one-sided
derivative. Thus we conclude that y € C'([a, b]; E).

Now suppose that z € C([a,b]; E). Define
t
y(t) = z(a) Jr/ 2'(s)ds, t€a,b].

Then y'(t) exists for all ¢ € [a,b] and y'(t) = 2/(¢) for all t € [a,b]. By Lemma 1.13 there exists
& € FE such that y(t) = £ + z(t) for all ¢ € [a,b]. In particular, for ¢t = a we obtain

§+x(a) = y(a) = z(a),

which implies £ = 0, that is, y(t) = x(¢t) for all ¢ € [a,b]. In particular, for ¢ = b we obtain
from which

follows, completing the proof. O

From now on, we are interested in functions defined on the unbounded interval [a, +00) with values
in a Banach space. Let « € C([a, +00); E'). We say that x is integrable on [a, +00) if the limit in E
¢
lim x(s) ds

t——+oo a

exists.

Proposition 1.15 (Cauchy criterion) Let f : [a,+00) — E. A necessary and sufficient condition for
the limit limy_, o f(t) to exist is that for every e > 0 there exists tg > 0 such that, if t,s > to, then

[£(t) = Fs)ll <e.

Proof: Suppose that
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Then, given € > 0, there exists to > 0 such that if ¢ > ¢y then ||f(t) — 20| < €/2. Hence, for
t,s >ty we have

1) = F < (@) = moll + [lwo — f(s) <e/2+e/2=e.

Conversely, assume that for every ¢ > 0 there exists o > 0 such that if ¢, s > to, then || f(£)—f(s)]| <
e. Taking e = 1/n, n € N, there exists t,, € (0, +00) such that if ¢, s > ¢, then || f(¢) — f(s)|| < 1/n. Note
that we may assume, without loss of generality, that the sequence (¢,) is increasing, that is, t,, > t,
whenever m > n. Define (z,) C E by =, = f(t,). We claim that (x,) is a Cauchy sequence. Indeed,
given € > 0, there exists ng € N such that 1/ng < e. Then

1
M > 10 = by > b > g = = @all = () = )| < - <2,

which proves the claim. Since E is complete, there exists x¢p € E such that x,, = xg. Thus, given € > 0,
there exists n; € N such that

n>n; = ||z, — 20| < &/2,
that is, there exists t,,, > 0 such that

tn > tn, = n>n1 = ||f(tn) — 20| = l|zn — zo|| < /2.

On the other hand, there exists no € N and hence ¢,,, > 0 such that

tys > tn, = [|f(t) = f(s)l| <e/2.

Taking no = max{ni,na}, it follows that there exists ¢ty = t,, > 0 such that
t>to = || f(t) — @oll < [F(t) = f(Ea)ll + I (tn) — wol],
where n € N is chosen so that n > ng, i.e. t,, > t,, = to. Hence
t>to=|f(t) —xol <e/2+¢e/2=F¢,

which completes the proof. O

Proposition 1.16 Let x € C([0,00); E). Suppose there exist positive constants C,w such that
lz@®)| < Ce*,  forallt > 0. (1.1.12)

Then we can define the Laplace transform of x by

L(x)(\) = /000 e Ma(s)ds, for all X > w.

Moreover, if x € C([0,00); E) and (1.1.12) holds, then
L(z")(N) = —z(0) + AL(z)(N). (1.1.13)

Proof: We shall use Proposition 1.15. Consider the auxiliary function f : [0,00) — F defined by

¢
ft) = / e Mx(s)ds, te0,00)and A >w > 0 fixed.
0

We shall prove that f satisfies Proposition 1.15. First note that for all t > s > 0, it follows from
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(1.1.12) that

t
< / e a(s)] ds

t
< C/ e~ (A=wls gg

Oef()\fw)s ef()\fw)t Cef(Afw)s
B A—w 176_0‘_‘”)3 D
—_——
<1

For every s > tq we have e~ (A9 < ¢=(A=w)to and from the inequality above it follows that

Cef(Aiw)tO
From the above and given £ > 0 such that 0 < e(A —w) < C, or equivalently ﬁ > C, there

exists to > |In ( =& A —w). It then follows from (1.1.14) that
e(A—w)

lf () — f(s)|| <e forallt>s>t.

By Proposition 1.15 we obtain

t o0
lim e Ma(s)ds = / e M (s)ds,
0

t—o0 0

so that the Laplace transform of x is well defined. It remains to verify that if z € C1([0,00); E) and
(1.1.12) holds, then (1.1.13) also holds. Indeed, integrating by parts the integral fg e~ x(s) ds, we obtain

. t
/0 e Ma(s)ds = %ﬁ\)e_)‘t + @ + %/0 e a'(s) ds.

Taking the limit in the identity above as ¢ tends to infinity, we obtain

t

AL(z)(N) = 2(0) + lim [ e *a/(s)ds.

t—o00 0

Thus the limit lim;_, fot e~ **2'(s) ds exists and is precisely £(2')()\), which shows (1.1.13) and
completes the proof. O

Proposition 1.17 Let k € R. Define the space

Xy, = {ue C([0,00); E); |u®)|| < Ce**, for some C > 0 and for all t > 0} .

Then

[ ullx,, == sup e |Ju(t)|
t>0
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s a norm with respect to which Xy is a Banach space.

Proof: First note that ||ul|x, is well defined. In fact, if u € X, then u € C([0,00); E) and ||u(t)|| < Ce*
for some C' > 0 and for all + > 0. Hence there exists C' > 0 such that ||u(t)|e™** < C for all ¢t > 0.
Therefore sup; [|u(t)|[e " makes sense. Moreover, ||lu]|x, > 0 for every u € Xj. We now prove that

lu]|x, = 0 if and only if u = 0. (1.1.15)

Indeed, if u = 0 then clearly |lulx, = 0. Conversely, if ||ul|x, = 0, then, since 0 < e=*!||lu(t)|| <
lulx, =0 for all ¢ > 0, it follows that u = 0, which proves (1.1.15).

Let u € X, and o € R. From ||(auw)(®)|| = |a ||u(t)|| for all ¢ > 0 it follows that

ol x, = laf|ullx,- (1.1.16)
Let u,v € X;. Then
Jutvllxe = sup (e ut) + (o)) (11.17)
< sup (e ([lu@®)]| + o))
t>0
< supe " u(t)|| +supe M |lo(t)]| = [lullx, + [v]lx,-
t>0 t>0

From (1.1.15), (1.1.16) and (1.1.17) we conclude that ||u| x, is indeed a norm.

We now prove that

(Xk, || - llx,,) is a Banach space. (1.1.18)

Let (u,) be a Cauchy sequence in X, so that

sup e~ up (t) = um ()] = 0
t€[0,00)

as m,n — oo. Define v, : [0,1] = E by v, ;(t) = e *tu,(t), where ¢ € [0,1], | € N. Since

[vng = valloqoue) = sup e " un(t) — um(t)]|
te[0,l]
< sup e_ktHun(t) - um(t>||
te[0,00)

it follows that (v,;) is a Cauchy sequence in the Banach space C([0,[]; E'); hence there exists v, €
C([0,1]; E) such that
Up,l — Ul

in C([0,1]; E). Define
v:[0,00) = E,
v(t) = v(t) for somel €N, | >t
Note that v is well defined, since
’Ul(t) = Ul/(t) ifl <,

and v is continuous: given t € [0, 00), the function v coincides with v, for some [ € N, on a neighbourhood
of ¢, and since v; is continuous, so is v.
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Define

Then u is continuous. We claim that v € X and that
Up — u in Xy.
Indeed, given € > 0 there exists ny € N such that
lle ™ wu, (t) — e Flu, (t)|| < €
for all t € [0, 00) and all m,n > ng. Letting n — oo,

lle™ u(t) — e Mum(t)l| < e,

(where we have used that v(t) = e *u(t)). Since u = u — U, + U, for some m € N sufficiently large, we

have, for this m,

sup fle ™™ u(®)| < sup e Mflu(t) —um @)+ sup e flum(t)]

te[0,00) te[0,00) te[0,00)
< 0o,

hence u € X}, and, since

sup ||e_ktu(t) — e_ktum(t)H <e
te[0,00)

for any € > 0, we conclude that

Uy, — u in Xg.

Proposition 1.18 Let F : E — E be a Lipschitz function, that is,
[F(u) = F(v)|| < aflu—vf, (a>0).

Let ¢ : X, — X, (where X, is defined in Proposition 1.17) be given by
t
o(u)(t) = ug +/ F(u(s))ds, g€ E.
0
If w > « then ¢ is a contraction on X, .

Proof: Let u,v € X, and t € [0,00). We have

lp(u)(t) = () (D)l

AN
|
—
e
—~
»
~—
~—
|
|
—~
<
—~
»
~
=
QU
V)

IN
Q
I
—~
VA
~
|
<
—~
VA
-
ISH
VA

(1.1.19)

On the other hand, since e™“*||u(t) — v(t)| < |Ju — v|/x, for all ¢ > 0, it follows that

lu®) —v@)| < |Ju—2v|x,e“, forallt>D0.

(1.1.20)
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Combining (1.1.19) and (1.1.20) we obtain

t
[¢(u)(t) = p(0)(D) < allu—vlx, /0 e ds (1.1.21)
= (@ = Dlu—vlx,
< Ze'fu—vlx.,
w
and hence
lé(u) — ¢(0)1x., = sup (e [l¢(u)(t) — () (B)]) < *lu—vllx. .
>0 w

which completes the proof. m]

A function u € C([0,00), E) is said to be a solution of the initial value problem in the Banach
space

{u'(t) = F(u(t)), t>0, (1.1.22)

u(0) = wy,

if and only if u is a solution of the integral equation
t
u(t) = up + / F(u(s))ds.
0

It is not difficult to verify that the unique fixed point of the mapping ¢ defined in Proposition 1.18
is a solution of the initial value problem given in (1.1.22). We leave this fact to the reader.

1.1.1 Exercises

1.1.1)Prove that the series ) 2777: cosnt converges absolutely in E = C([—m,7],R) = {f : [-7, 7] —

n=0
R | f is continuous}, endowed with the norm | f|lg = sup |f(¢)]

te|—m,m
1.1.2) Does the identity exp(log(I — A)) = I — A hold?

1.1.3) Let (A,,) and (B,,) be sequences in £(X) such that

(7) Z A,, converges absolutely,

n=0

oo
(#4) Z B,, converges,
n=0

(ii1) Co =Y  ABp_, n=0,1,2,...
k=0

Prove that

e (5 (E7)

1.1.4) Let « : (a,b) — E be a function which is continuously differentiable on (a,b). Prove that

lz(d) — z(c)||lg < (d— C)||$I||C([c,d],E)7 a<c<d<b.
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1.1.5) Let f,g € C([a,b]; E), where E is a Banach space. Prove that:

b b
(7) / Cf(t)dt = C’/ f(t)dt, where C is a constant.

b b b
i) [(roma= [ roas [ g
(ii7) If a < ¢ < b, then /bf(t)dt = /cf(t)dt+/bf(t)dt

b e —
(iv) One has / f(t)dt = (b—a)z, for some % € conv f(a,b),

where conv f(a,b) denotes the closure of the convex combinations of the elements

of the set of values of f on [a,b].

(v) [Mean value theorem|.For every ¢ € [a, b] one has

t+h
li .
oo b h / 1®)

Hint: use item (iv)

1.1.6) Let A € L(FE). Prove that the initial value problem

admits a unique solution u € C([0, 00); E).

1.1.6) Let T(t) : E — FE be the linear operator defined by T'(t)uy = u(t), where wu is the unique
solution of

(i) Show that T'(0) = I and that T'(t + s) = T(t) o T(s) for all ¢t,s € [0,00). Use Gronwall’s
inequality to show that T'(t) € L(E) for all t > 0 and that || T(t)| < el4lt.

(ii) Show that T'(t) is continuous in ¢ with respect to the norm of £(E), that is,
Jlim [|T°(t) = T(to)ll 2y = 0.
(iii) Show that T'(¢) is differentiable (in the space L(F)) and that

T'(t) = AT(t), that is,

— AT(#) = 0.

L(B)

lim

T(t+h) — T(t)
h—0 T

(iv) Consider the Laplace transform of T'(¢), namely

E(T)()\)—/OOO e MT(s)ds, A> ||Al.

Show that £(T)(\) = (A — A)~!
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(v) Let B=1—A/\, A > ||A]. Since || — B|| < 1, use C. Neumann’s theorem to show that
B~! € L(E) and that

B l= o A

k=0

Recalling that

n > —Atyn n!
£(t ) = o (& t"dt = W,

and that if the Laplace transform of a continuous function is zero then the function itself is identically
zero, show that T(t) = e*4.

1.2 The Exponential Function

The exponential function e*4, where A is a real number and ¢ a real variable, may be defined by
the formula

et = i (A" (1.2.23)

n!
n=0

The series on the right-hand side of (1.2.23) converges for all values of ¢ and therefore defines a
real-valued function. Without much difficulty this definition extends to the case where A is a bounded
(that is, continuous) linear operator on a Banach space (as seen in the preceding section) and, in this
case, the series (1.2.23) converges in norm and, consequently, for each ¢ € R its “sum” is a bounded linear
operator on that space. A rather delicate problem, however, is to define the “exponential function” when
A is unbounded. One of the reasons for the interest in such a function lies in the fact that it is, formally, a
solution of the Cauchy problem: given an unbounded linear operator A on a Banach space X, determine
a function u(t) defined on [0, 00), taking values in D(A) (D(A) = domain of A), which satisfies the initial
value problem

du(t)
dt
'LL(O) = U,

= A(u(t)), t>0, (1.2.24)

where ug is a given element of X.

When A € R and ¢ > 0, the exponential function F : Ry — R has the following properties:

E(0) =1, (1.2.25)
E(t+s) = E(t)E(s), (1.2.26)
Jlim B(t) = 1, (1.2.27)

and, as will be shown below, it is the unique function defined on R, with values in R having such
properties. The same occurs when E takes values in the algebra of linear operators on any finite-
dimensional space (recalling that every linear map defined on a finite-dimensional space is continuous).
In this case, the number 1 appearing in (1.2.25) and (1.2.27) should be interpreted as the identity operator
I: X — X, and the product in (1.2.26) as the composition of linear operators. To understand what
happens when X is infinite-dimensional, one must take into account that, in this case, three topologies
are usually introduced on the algebra £(X) of bounded linear operators on X, each one giving a different
meaning to the limit in (1.2.27). Thus, we may interpret this limit as a uniform, strong, or weak limit.
Recall that I is the uniform limit of E(t) as t — 04 if |[E(t) — I]|z(x) — O; it is the strong limit if
[E(t) = Il|x — 0 for all z € X, and it is the weak limit if ([E(¢) — I]z,2") x x» — 0 for all z € X and
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all ' € X', where X’ is the topological dual of X. When the limit (1.2.27) is taken in the sense of the
uniform topology, the situation is rather simple, as shown by the following theorem.

Theorem 1.19 A function E : Ry — L(X) satisfies
(a) E(0) =1,
(b) E(t+s) = E()E(s),
(¢) |E@#) = Illecxy) — 0 ast — 0y,

if and only if E(t) = ', where A € L(X) and €' is defined by (1.2.23).

Proof: Assume first that A € £(X) and that

n!
n=0

Since, for each ¢t > 0, the series Y~ (t‘s!) . converges absolutely and £(X) is a Banach space, we
have that e'” defines, for each ¢ > 0, a linear and continuous operator on X. Thus E(t) = e!” is such

that £ : Ry — £(X). It remains to prove that E(t) satisfies conditions (a), (b) and (c). Indeed,

(a)

(t+s)P = Z(Z) thspk

which implies

Hence

e(t+s)A — Z (t + s)nAn

= (LAY (sA)PE
= D>

Since Zflo:o (tf}? - converges absolutely, it follows from Exercise 1.1.3 of the previous section that e(*+)4 =

et4esA that is, E(t +s) = E(t)E(s).




1.2 The Exponential Function

(c) We have

Thus

I TR TR A TR
tA  (tA)?
= tA<I+2!+ i +>

Note that the series Y ((:li)l;! converges absolutely, since

> (tA) > |(tA)” — [l(tA)" ¢ ¢

Hence

€' = Il gy < Al gexyet e,

As t — 04 we have etll4ll — 1 and, consequently, ||e!4 — Izx)y = 0ast— 0y

Conversely, suppose that F : Ry — L(X) satisfies (a), (b) and (¢). We first show that |E(t)| is
bounded on every bounded interval. Indeed, given € = 1, there exists, by property (c¢), a § > 0 such
that if 0 < ¢ < § then ||E(t) — I]| < 1. Since [|[E@®)|| — |I|| < ||E(t) — I]|, it follows that ||E(t)|| < 2 for
0 <t <9d. Now let t > 0 be arbitrary. Then there exists n € N such that ¢ = nd + r, where 0 < r < 4.
Hence, by property (b),

E(t)=Endé+r)=EMn0)E(r)=E@0)"E(r),
and therefore

IE@I < [EG@)IE@)] < 2"

Since t = nd + r, we have t > nd, i.e. n <t/d. Consequently,

|E@)|| < 2m2 < 2t/02 = 9t/0+1,

Setting w = (1/0) In 2, the inequality above may be written as

|E@®)| < 2e¥t, for all t >0, where w = (1/5)In2. (1.2.28)

Now let t € [Ty, T], where 0 < Ty < T' < +o00. Then, from (1.2.28),

IE()] < 2¢T, for all t € [Ty, T),
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that is, || E(t)]| is bounded on bounded intervals, which proves the claim.

We now prove that F is continuous with respect to the uniform topology on £(X). Let h > 0 and
t > 0. From property (c¢) and the boundedness of || E(¢)|| on bounded intervals we have

[E(t+h) = EM)]lcx)

IE@)E(h) — E(t)lzx)
IE@ o) 1E(R) = I|lgx) =0 as h— 0.

IN

Similarly, if 0 < h <t,ie. 0 <t — h < t, we obtain

IE(t = h) = E()]cx) IE(t = h) = E(t =) EMR)|2x)

< [E(t=0)cx) 1E(R) =Illzx)y =0 ash— 04

From these convergences we conclude that E is continuous in the uniform topology of £(X). It
follows that E is Riemann integrable with respect to the uniform topology of £(X) and, moreover, from
the mean value theorem (see Exercise 1.1.5 (v) of the previous section) we have

lim l/hE(t) dt=E(0)=1 in £(X).
0

Thus, given € = 1, there exists § > 0 such that

<1,

1 )
: / Et)dt — 1
0 £(X)

1 /9 s
and therefore 5/ E(t) dt is invertible in £(X), by Proposition 1.6, and, consequently, so is / E(t)dt.
0 0
With this in mind, let 0 < h < §. Then

{E(hf)l_l} /OaE(t) at At ;L/O&E(tJrh) dtlll/otS Blt) di
% -/:ME(t)dt—/OéE(t)dt
/:E(t)dt—l—/:JrhE(t)dt—/OhE(t)dt—/:E(t)dt

6+h h
/5 E(t)dt — /O E(t) dt

S =

)

S =

which implies

B 5+h h o
%: [’11/5 E(t)dt—%/o E(t) dt /OE(f)dt

Since the right-hand side of the last identity converges in norm to (E(d) — [)(f(;S E(t) dt)f1 as

h — 04, the same occurs for the left-hand side. We denote by A the uniform limit of % in £(X) as
h — 04. Thus,

+
dt E(0) 4
dt
+ —
(We use the notation 4" E©) for lim M)
dt h—04
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Moreover, for ¢ > 0 and h > 0 we have

B+ 1) =B _ g <E(h) - 1) |

h - h

BE(h)—I E(t+h)—E(t)
h

converges in norm to A, it follows that =———=—=—= converges in norm to E(t)A as
h — 0. Hence F is right differentiable for all ¢ > 0 with respect to the uniform topology of £(X) and

and since

dTE(t)
dt

= E(t)A. (1.2.29)

Similarly, if ¢,h > 0 and 0 < h < t, then

E(t—h)—E(t) E(t)— E(t—h) E(h) -1
—h h Bt —h) [h] '

Since FE is continuous in the uniform topology of £(X), we have that E(t — h) converges to E(t)

in £(X) as h — 04. Also, E(};L%I converges to A as h — 04, and therefore

d"E({t) .. E({t—h)—E{t)
e e R OFS (1.2.30)

Thus, from (1.2.29) and (1.2.30) we conclude that

dEa;iit) = E(t)A, forallt>0. (1.2.31)

Finally, consider the function

o(t) = BE(t)e™™, t>0. (1.2.32)

Recalling that differentiation in £(X) has the same properties as classical differentiation, we obtain
from (1.2.31) that

O'(t) = E'(t)e ™ — E(t)Ae”t4
= E(t)Ae ™ — B(t)Ae™t = 0.

Consequently, ¢ is constant. But ¢(0) = I and, therefore, E(t)e™*4 = I forallt > 0, so E(t) = e'4,
which completes the proof. O

Remark 1.20 In finite-dimensional spaces, the uniform, strong and weak topologies all coincide with
the usual topology and, since the proof of Theorem 1.19 did not involve the dimension of the space, this
theorem remains valid in the finite-dimensional setting.

As uniform convergence implies strong convergence, Theorem 1.19 shows that the definition given
below (in the next section) generalises the usual definition of the exponential function.
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1.3 Semigroups of class (

Definition 1.21 Let (X, | - ||) be a Banach space and let L(X) denote the algebra of bounded linear
operators on X. We say that a mapping S : Ry — L(X) is a semigroup of bounded operators on X if:
(1) S(0) =1, where I is the identity operator on X .
(15) S(t+s)=5(t)S(s), for allt,s € Ry.
The semigroup is said to be of class Cy if

(#91) lim ||(S(t) — Dz|| =0, forallzeX.
tg)0+

Proposition 1.22 If S is a semigroup of class Co, then ||S(t)||z(x) is a bounded function on every
bounded interval [0, T).

Proof: We first claim that there exists an interval of the form [0, d] on which the function [|S(¢)| is
bounded, that is,

There exist 6 > 0 and M > 0 such that ||S(¢)|| < M, for all ¢ € [0, d]. (1.3.33)

Indeed, suppose by contradiction that this is not the case, that is, for every interval of the form [0, 4]
the function ||S(¢)|| is unbounded. In other words, for every § > 0 and M > 0 there exists ¢5.a € [0, 9]
such that ||S(¢ts,a)|| > M. Hence, for 6 = 1/n and M = n, n € N, there exists ¢, € [0,1/n] such that
[IS(tn)]| > m. Thus there exists a sequence t, — 04 with ||[S(¢,)|| > n for all n € N. By the Uniform
Boundedness Principle (Banach—Steinhaus theorem), there exists « € X for which ||S(¢,,)z] is unbounded
in n € N, which contradicts property (iii) of S, since S is assumed to be of class Cy. This proves the
claim in (1.3.33). Moreover, note that M > 1, because ||S(¢t)|| < M for all ¢t € [0,6] and, in particular,
1S©)] = |17 = 1< M.

Now let t € [0,T], where T' > 0 is arbitrary. Then t = nd +r for some n € Nand 0 < r < §. Hence

[S@OI = [1S5nd+7)l = [[S()"S(r)
< SO S
< M"M
< Mt/éM — Mewt < MGWT,
where w := %ln M, which completes the proof. m|

Corollary 1.23 Every semigroup of class Cy is strongly continuous on Ry, that is, if t € R, then

lim S(s)x = S(t)x, forallx e X.

s—t

Proof: Let t ¢ Ry and z € X. If h > 0, then

1St +h)z =SBzl = [IS@OS(h) - Iz (1.3.34)
< IS@lleeollS(h) — Txll.
Since S is of class Cp, we have
I[S(h) — Iz|| =0 as h — 04, (1.3.35)
and therefore, from (1.3.34), (1.3.35) and Proposition 1.22 we obtain
lim S(s)z = S(t)x. (1.3.36)

s—ty
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1.3 Semigroups of class Cy

Now, if 0 < h < t, we have

IS(t —h)z — St)z|| = |S(t—h)[I—S(h)z| (1.3.37)
15t =)l I1S(h) = ]z]|.

IN

Again, since S is of class Cy, we have
I[S(h) — Iz|| = 0 ash — 04, (1.3.38)

and, using (1.3.37), (1.3.38) and Proposition 1.22 in the same way, we infer that

lim S(s)x = S(t)z. (1.3.39)
st
Combining (1.3.36) and (1.3.39) yields the desired conclusion. O

Remark 1.24 Semigroups of class Cy are also called continuous semigroups, which is justified by Corol-
lary 1.23. We have seen in the proof of Proposition 1.22 that if S is a semigroup of class Cy, then there
ezist real numbers M and w such that

1S®)]lcx) < Me**,  for allt > 0.

A more refined result will be proved later. As a preliminary step we shall prove the following result
about subadditive functions, that is, functions p: R — R such that p(t + s) < p(t) + p(s) for all t,s € R.

Lemma 1.25 Let p be a subadditive function defined on Ry and bounded from above on every bounded
interval. Then @ has a limit as t — 400, and

Proof: Set

Then wy > —oco. We first consider the case wg > —oo. Given & > 0, there exists T' = T'(¢) > 0 such that

T
7% <wo+e. (1.3.40)

Let t € Ry. Then there exists n € N such that t = nT + r with 0 < r < T. By the subadditivity
of p and (1.3.40) we obtain

Wng@:w < w (1.3.41)
o mw(T) +p(r)
- t
_ nTp(T)  p(r)
T

Since p is bounded from above on [0,T), there exists ¢ € R such that

p(r) <e, forallre|0,T). (1.3.42)
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1 Linear Semigroups

Moreover, because t = nT + r, we have

T t-
"T == " 51 ast— +oo. (1.3.43)
Therefore, from (1.3.41), (1.3.42) and (1.3.43) we get
_p(t)
wo < ltlglﬁgofT <wo+e,
t
wo < limsup]& <wg +e.
t——+oo
By the arbitrariness of € > 0 it follows that
t t
wo = lim inf@ = lim sup ]ﬂ,
t—+oo ¢ t—+oo
and hence the desired limit exists.
Now consider the case wy = —oo. In this case, for each real number w there exists T' = T(w) > 0
such that
p(T)
— < w.
T Sw
Let t € Ry and w € R. Then there exist T = T(w) > 0 and n € N such that
T
&T)Sw and t=nT+7r, with0<r<T.
Proceeding as in the previous case, we obtain
t
Z% §w+g, for some ¢ > 0.
Hence
t
Hminf@ <w and limsup& < w.
t—+oo { t—+oo
By the arbitrariness of w we conclude that
t
lim ‘Z& = ,
t—+oo t
which completes the proof. O
Proposition 1.26 Let S be a semigroup of class Cy. Then
In||S(t In||S(t
fm BISOI_p ISON (1.3.44)
t—+o0 t t>0 t
and for each w > wy there exists a constant M > 1 such that
IS < Me“t,  for all t > 0. (1.3.45)
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1.3 Semigroups of class Cy

Proof: We have

I [[S(t +s)ll =m[IS@S) < W (ISOIIS()I)
I [[S(t)]| +In[|S(s)]],

since the logarithm function is increasing. Thus In||S(t)| is subadditive. By Proposition 1.22 we know
that ||S(t)|| is bounded on every bounded interval, hence In ||S(¢)|| is bounded from above there as well.
Setting p(t) = In||S(¢)||, we infer from Lemma 1.25 that
In||S(t In||S(t
o WSO _ SO _
t—-+oo t t>0 t

Let w > wg. We claim that there exists tg € Ry such that

w <w, forallt>t. (1.3.46)

Indeed, if wy < 400, take € = w —wy > 0. By the definition of the limit, there exists ¢ty € R4 such
that

In [LS(@)]]
t

—wO' <eg, forallt>tg,

which yields (1.3.46). If wy = —o0, the desired inequality in (1.3.46) follows directly from the definition
of infinite limit.

On the other hand, since ||S(¢)|| is bounded on [0, o] and [|S(0)|| = 1, there exists My > 1 such
that

IS()|| < Mo, for all t € [0, to].

Thus

In|S()] <lnMy, forallte]0,%). (1.3.47)

Let w > 0. From (1.3.46) and (1.3.47) we obtain
In[|S(t)|| <wt+1InMy, forallt >0,

and hence

S| < Mpe®*, for all t > 0.

Setting M = M, we obtain the desired estimate. If w < 0, then —wty > 0 and, therefore, by
(1.3.46) we have

In [|S(t)|| < wt — wtg, for all ¢ > tp. (1.3.48)

From (1.3.47), (1.3.48) and the fact that w(t —to) > 0 on [0, to] we conclude that

In||S@)| <w(t—ty) +InMy, forallt>0.
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1 Linear Semigroups

Hence

1S(®)]] < Moe* %) for all t > 0.

Setting M = Mye™ ! the proposition follows. ]
Remark 1.27 When wy < 0, we may choose wy < w < 0 and, from (1.3.45), obtain M > 1 such that
IS@) <M, forallt>0.

In this case S is called a uniformly bounded semigroup of class Cy. If, in addition, M =1, then S
is called a semigroup of contractions of class Cy .

Definition 1.28 Let S be a semigroup of class Cy. The operator A : D(A) — X defined by

U Py CUES) P

h—>0+

and

Az = lim (SUL;_I) x, forallz € D(A),

is called the infinitesimal generator of the semigroup S.

Proposition 1.29 D(A) is a vector subspace of X and A is a linear operator.

Proof: This is an immediate consequence of Definition 1.28 and the properties of limits. m|

Proposition 1.30 Let S be a semigroup of class Cy and let A be the infinitesimal generator of S. Then
(i) If x € D(A), then S(t)x € D(A) for all t > 0 and the following identities hold:

%S(t)x = AS(t)x = S(t)Az, Vt >0, (1.3.49)

S(t+h)x—S(t)x

d
where —S(t)xz = lim and, when t = 0, this limit is understood as a right-hand limit

dt h—0 h
only.
(i) If x € D(A), then
t t
S@x—ﬂ@x:/zﬁﬁﬁd&i/S@Mm%,0§s§t (1.3.50)
t
(#91) If v € X, then / S(€)xd € D(A) and
0
t
A/ ﬂ9mm=sun—x. (1.3.51)
0
Proof:

(7) If t = 0 then S(0) = I, so

S(0)z = z € D(A).
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1.3 Semigroups of class Cy

Consequently, by Definition 1.28 we have

4 50)e = tim <M) = Ar.

dt h*}0+ h

Now let ¢ > 0. We shall prove that S(t)x € D(A), i.e. that the limit

lim <S(h2‘]> S(t)

h—>0+

exists. Indeed, for h > 0 we have

(S(h;_l) S(tye = BUEN =SBz _ oy (SUL)_I> ..

Since x € D(A) we know that

iy (S0-1) <t

h—04

and, as S(t) € L(X), we obtain from (1.3.53) that

lim S(¢) (S(h;_[> = S(t) lim (S(hi_[> = S(t) A,

h—>0+ h—>0+

which implies that S(¢t)x € D(A) and, therefore, by the very definition of A,

We now prove identity (1.3.49). For h > 0 and ¢ > 0, from the above we have

d™r . (S(t+h) - S@E)x
dt Stz = hIE& h

= S(t)Az = AS(t)x.

Now suppose 0 < h < t. Then

S(t—h)x —S(t)x
—h

Since ||S(t — h)|| is bounded on bounded intervals and

lim <S(h21_1) = Az (because z € D(A)),

h*>0+
lim [(S(h)_l) T — Ax] =0.
h—0 h

we obtain

(1.3.52)

(1.3.53)

(1.3.54)

(1.3.55)

(1.3.56)
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Moreover, since S is strongly continuous, we have

lim S(t —h)Ax = S(t)Ax. (1.3.57)

h~>0+

Combining (1.3.55), (1.3.56) and (1.3.57) we conclude that

d-

= St =S(t)Ax, (1.3.58)

and consequently S(t)z is left differentiable for all ¢ > 0. From (1.3.54) and (1.3.58) it follows that

d
aS(t)sc = AS(t)x = S(t)Ax,

which proves item (i).

d
(ii) Let « € D(A). From item (i) we know that %S(t)x is a continuous function of ¢ for all

x € D(A), since S is strongly continuous. Hence we may integrate over compact intervals in R, and

/:jg )z df = /AS )z dE = /s )Az de,

obtain

that is,

S(t)sc—S(s)a?:/ AS(@“)mdfz/ S(&)Ax de,

which proves (ii).

(iii) Let z € X. We shall prove that

- t
hhj& (S(h;[) /0 S)xdé = St)r — . (1.3.59)
Indeed, let 0 < h < t. By linearity and continuity of the operator % we have
_ t
M (/ S(é)xdf) (1.3.60)
</S§+hxd£ /S xdf)
t+h
:f/ (fmdf—f S &)x dE

h
t tJrh h t
=5 | s@wact g [ s@uae—3 [ s@uie— 3 [ s
h

t+h 1
-1 / S€rde 7 /O S(&)w d.

On the other hand, by the mean value theorem (see Exercise 1.1.5 of Section 1.1),

h
1

lim — S)xdé =S(t)r, and lim % S(€)xdé = S(0)x. (1.3.61)
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1.3 Semigroups of class Cy

From (1.3.60) and (1.3.61) we obtain (1.3.51), and, by the definition of A,

A/O S€)xdé =St)r — .

Proposition 1.31 The infinitesimal generator of a semigroup of class Cy is a closed linear operator and
D(A) is dense in X.

Proof: We first prove that D(A) is dense in X by constructing a sequence (z,)neny C D(A) converging
toxz € X. Let x € X and, for each n € N*, define

o

Note that for each n € N* we have z,, € D(A) in view of Proposition 1.29 and Proposition
1.2.24(iii). Moreover, by the mean value theorem we have

1

1 =
/ S(t)xdt — S(0)x =z asn — oo,
0

l’n:m

which proves the density. We now show that A is closed. Let (2, )nen C D(A) be such that

zp, > and Az, — yin X. (1.3.62)

From (1.3.50) we may write

h
S(h)xy —xp = / S(t)Az, dt, h > 0. (1.3.63)
0

By (1.3.45) there exists C' > 0 such that

15(t) Ay = S@yl - < [1S@)llex)llAzn — yll (1.3.64)
< Cl|Azy, —yl||, forallte [0,h].

From (1.3.62) and (1.3.64) we conclude that

S(t)Az, — S(t)y asn — co. (1.3.65)
Thus, from (1.3.62), (1.3.63) and (1.3.65), and using that S(h) € £(X), we obtain in the limit that

h
S(h)x —x = / S(t)ydt,
0
whence

% = %/0 S(t)ydt.

Letting h — 0 in the identity above and using the mean value theorem, we conclude that z € D(A)
and Az =y, which shows that A is closed and completes the proof. |

0.5 cm
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Example 1.32 Let S be a Cy—semigroup, A the infinitesimal generator of S, and A € C. Then

S(t) == e MS(t), t >0,
is a Cy-semigroup whose infinitesimal generator is (A — AI).
Indeed, it is clear that for every t > 0, S(t) € £(X) since S(t) € L(X). Moreover:
(i) S(0) = S(0) =1.
(ii) S(t+5) = e M) S(t + 5) = e Me 2 S(1)S(s) = S(t)S(s).
(i)
5@ = sl = 50—l

le™'S(t)x — e Mal + e — 2|

le M 1Stz — 2| + |e> — 1] ||| — 0 as t — 0,

IN

since S is a Cy—semigroup and hence

lim ||S(t)z —z| =0, lim e~ — 1] = 0.
t—04 t—04

Therefore, S is a Cy—semigroup. On the other hand, if A denotes the infinitesimal generator of S,

then

D(A) = {x € X; lim Sth)e — exists }

h—0, h

For all z € X we have

Shx—z  e*S(h)z—a
h B h
e MS(h)x — e M n e My -z
h h
e M(S(h)x — ) n (e — 1)z
h h '

Thus, for every z € D(A) it follows from (1.3.66) that

_ & _ —Ah _ _
M:ekh (S(h)a:x) — et <61>J;—>Aar+)\x as h — 04,

h h h
since
—Ah 1 q _ B
lim eM =1, lim (e) == lim Stz —x = Azx.
h—>0+ h—>0+ h h—)0+ h,

Hence if x € D(A), then 2 € D(A) and
Az = Az + Az,
that is, Az = Az — \z.

Conversely, for x € D(A), using (1.3.66) we analogously obtain

S(h)x —x _ e M (S(h)x — ) N (e — Dz

h h h

— Az — Az, h— 04,

(1.3.66)
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1.3 Semigroups of class Cy

showing that = € D(A) and Az = Az — A\z. Thus,

D(A)=D(A) and Az = Az —\z.
1.3.1 Exercises

Exercise 1.3.1 Let S; and S2 be Cy—semigroups with infinitesimal generator A for both S; and Ss.
Prove that S; = Ss.

Exercise 1.3.2 Exponential functions are examples of Cy—semigroups, which follows from Theorem 1.1
and from the fact that uniform convergence implies strong convergence. Prove that the infinitesimal

generator of e, A € £L(X), is A.

Exercise 1.3.3 Let X be a Banach space and f : (a,b) — X a continuous function such that f’ (t) =0
for every t € (a,b). Prove that f is constant on (a,b).

Exercise 1.3.4 (Dini’s lemma) Let X be a Banach space and let f : (a,b) — X be a continuous function
on (a,b) which admits a right derivative f/ continuous on (a,b). Prove that f is of class C*(a, b). [Kosaku

Yosida — Functional Analysis]

Exercise 1.3.5 Let Cp(R) be the Banach space of bounded and uniformly continuous functions on R,
with the norm ||u|| = sup|u(z)|. Consider the mapping
z€R

SRy — L(Cy(R)),

defined by
(St)u)(z) = w(x) =u(x +t), forallzeR.

Prove that:

S is well defined.

e S(t) is an isometry.
e Sis a Cp—semigroup.

o Determine the infinitesimal generator A of S (use Dini’s lemma — Exercise 1.3.4).

Exercise 1.3.6 Let N, ¢ > 0, be the function on R™ defined by

(B

Ny(z) = (4nt)"2e a2t .

Define
S :[0,00) — L(L*(R™)),
[S(0)u](z) = u(x), VzeR",
[S(t)u](z) = (Nt xuw)(z), YaeR™ Vt>0.
Prove that:

e S is well defined and
ISl 2y < lullpzany, VYu € L(RT),
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e S is a Cy—semigroup.

e Determine the infinitesimal generator A of S.

Exercise 1.3.7 Let S be a Cy—semigroup with infinitesimal generator A. Define A = I, A = A, and,
assuming A"~ ! is defined, define A™ by

D(A™) ={zx € X; x € D(A" ') and A" 'z € D(A)},

A"z = A(A"'z), Vax € D(A™).

Prove that:

e D(A™) is a subspace of X and A" is a linear operator on X.
o If 2 € D(A™) then S(t)x € D(A™) for all t > 0 and

jt—nS’(t)x = A"S(t)x = S(t)A"x, VneN.

o If z € D(A™), prove that Taylor’s formula holds:

3
|
—

(t—a)*

S(t)x = o

A*S(a)x +

=1 /a (t —u)"""A"S(u)x du.

>
Il
<]

e Prove that

¢ ¢
(S(t)—[)"x:/ / S(uy + -+ +uy)A"xduy - - - du,, Vze D(A™).
0 0

o Prove that ﬂ D(A™) is dense in X.

1.4 The Hille—Yosida Theorem

In this section we present a necessary and sufficient condition for a linear operator A to be the
infinitesimal generator of a Cy—semigroup. Before that, however, we make some preliminary considera-
tions.

Let A be a linear operator on a Banach space X. The set of all A € C for which the operator
A — A is invertible, its inverse is bounded and densely defined, is called the resolvent set of A and is
denoted by p(A). The set o(A) = C\p(A) is called the spectrum of A.

If A € p(A), the operator (Al — A)~! denoted by R(), A), is called the resolvent of A. Hence
R(), A) is, by definition, a linear and bounded operator and densely defined. Observe that R(\, A) is an
operator defined on I'm(A — A) with values in D(A), where the closure of Im(A — A) equals X.

Proposition 1.33 Let A be a closed linear operator on a Banach space X and let A € p(A). Then
D(R(X,A)) = X and hence R(\, A) is closed.

Proof: Let y € X. Since D(R(A, A)) is dense in X, there exists a sequence (Y, )neny C D(R(A, A)) such
that

yn —y in X. (1.4.67)
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1.4 The Hille-Yosida Theorem

However, for each n € N, there exists x,, € D(AI — A) such that

Yn = (A — A)zy,. (1.4.68)

On the other hand, for every x € D(A), by the continuity of R(\, A) we have
[zl = IR(A, A)(AT = A)z|| < CL[(M = A)]),
where C1 is a positive constant. Hence
(A — A)z|| > Col|z||, for all x € D(A), (1.4.69)
where Cy > 0 is a constant. In particular, for the sequence (2, )nen, it follows from (1.4.69) that

IA = A)zn — (M = Az = [[(M = A)(zn —zm)|| (1.4.70)

Collxy, — x|, for all m,n € N.

%

Thus, from (1.4.67) and (1.4.70) it follows that the sequence (z,)nen is Cauchy in X. Hence there
exists € X such that

T, — x in X. (1.4.71)

Moreover, from (1.4.67) and (1.4.68) we have

(M- Az, -y inX. (1.4.72)

Since A is closed, (Al — A) is also closed and from (1.4.71) and (1.4.72) we obtain
x € D(A) and (M — Az =y,
that is, y € Im(A — A) = D(R(\, A)), which proves D(R()\, A)) = X.

Therefore, R(\, A) is a continuous operator defined on the whole space X and hence closed, which
completes the proof. |

Proposition 1.34 Let S be a Cy—semigroup with infinitesimal generator A. If X € C is such that
Re A > wqg, where

then the integral fooo e MS(t)z dt exists for every x € X and A € p(A). Moreover,

R\ A)x = / e NSt xdt, forallz e X.
0

Proof: Let z € X and A € C be such that Re A > wy. Choose w with ReA > w > wy. Then, from

(1.3.45) there exists M > 1 such that

|S(t)]| < Me“t, for all t > 0. (1.4.73)
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It follows from (1.4.73) that

le™*"S(t)x]

IN

M||z||e” (ReMtewt (1.4.74)

M”mHe*(RC Afw)t.

The function ¢ — M||z|e~(ReMtewt is continuous on [0, 00) and integrable, since

9] (Re )t _wt e~ (ReA—w)t t=00
M| zlle” M e dt = M|z {} (1.4.75)
/0 —(ReX—w)|,_,
oMl
Re) —w ’

since Re A > w. Now the mapping t — e~ *S(t)x is continuous on [0, 00) with values in X and is thus
Bochner-integrable on each interval [0,b], b > 0. From (1.4.74), (1.4.75) and the Weierstrass test it
follows that
/ e S (t)a]| dt < +oo,
0

and consequently the integral fooo e~ MS(t)x dt exists. For each A € C with ReA > w > wp, define the
linear operator on X:

ka:/ e MS(t)x dt.
0

From (1.4.74) and (1.4.75) we get
M
<
that is,

Ry € L(X) and ||Ryllzx) < (1.4.76)

M
Rel —w’
We claim that

-1
lim (S(hzl) Ryz = ARyx —x, forallz e X. (1.4.77)

h—04
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Indeed, let A > 0. Then

(1) .

S(h;L—I> /OOO e MS(t)x dt

l/ e—MS(tJrh)xdt—l/ e MS(t)x dt
h 0 h 0

1
h
1
h

/hoo e MNP Sz de — %/00 e MS(t)x dt

0

9] 1 h
/ e MM S () dt + */ e MM S (1) dt
h h Jo

I 1>
—f/ e MM S (W dt — f/ e MS(t)x dt
h Jo h Jo

oA oo oM rh
= — efAtS(t):z:dtJr—/ e MS(t)x dt
hJh hJo
Mt 1 [
- e MS(t)xdt — 7/ e MS(t)x dt
hJo h Jo

M o0 oAb rh
= / e NSt dt — — e MS(t)x dt,
h 0 hJo

that is,

_ A oo Aho b
SN o - (Z21) [T enstiyman— - [ esyma (1479
h h 0 hJo

By I'Hopital’s rule,

Ah 1 oS} e}
(e . ) / e MS(t)x dt — )\/ e MS(t)xdt = ARz in X as h — 0,
0 0

and by the Mean Value Theorem

e/\h h

- e MS(t)xdt - x in X ash — 04.
0

From these convergences and (1.4.78) we obtain (1.4.77). It follows that

Ryx € D(A) and ARyx = ARyx —z, forallze X. (1.4.79)

Thus, from (1.4.79) we deduce
x=ARyx — ARyz = (Al — A)Ryz, forallxz € X, (1.4.80)

that is, Ry is a right inverse of AI — A. It remains to prove that Ry is also a left inverse of Al — A. Let
x € D(A). Then

S(t)x € D(A) and AS(t)x = S(t)Ax,

which implies that, for A € C with Re A > w > wy we may write

R,\Ax:/ e_’\tS(t)Axdt:/ e MAS(t)x dt. (1.4.81)
0 0

Since A is a closed linear operator, we use the theorem which says:
“Let A be a closed operator on X (that is, an operator with domain and image contained in X) and
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let f be a continuous function on [a,b] with values in D(A) such that Af is continuous on [a,b]. Then

b b b
/ f(t)dt € D(A) and A/ f@)de = / Af(t)dt” This guarantees that

/ e*’\tAS(t)xdt:A/ e MS(t)x dt. (1.4.82)
0 0

From (1.4.81) and (1.4.82) we conclude that

RyAz = ARz, forall z € D(A). (1.4.83)

Finally, combining (1.4.79) and (1.4.83) we obtain
RyAx = ARyz —z, forall z € D(A),
that is,
x = ARxx — RyAx = Ry(\ — A)z,
which shows that R, is a left inverse of AI — A and therefore

Ry = (M — A" forall A € C such that Re A > wo.

Consequently, (A\I — A)~! exists, is bounded (by the Open Mapping Theorem and the fact that
R) is bounded) and, in addition,

D((M —A)™Y) = D(Ry) = X,

so that (A — A)~! is densely defined. Hence A € p(A) and
R\, A)x = Ryx = / e MS(t)xdt, forall z € X,
0

which completes the proof. m]

Corollary 1.35 Under the same assumptions as in Proposition 1.34, we have
(i) AR\ Az = (-1)"n! R(\, A)" "z, for every v € X.
) dd)\—W;R()\,A)x = [, e M(=t)"S(t)xdt, for every x € X.
Proof: (i) We first show that

lim R(u, A)x = R(\, A)z, for every z € X. (1.4.84)

n—A

Let A € C be such that Re(\) > wy > w > wp, and consider a sequence (u,,) C C such that p, — A
as v — 400 and Re(u,) > wi. We claim that

For each x € X and t € Ry, we have (1.4.85)
lim e "!'S(t)r = e MS(t)z in X.
v——+o00

Indeed,

et () — e NS (@)al| = Je vt — e M S(0)2] =0, as v - +o,
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1.4 The Hille-Yosida Theorem

since the exponential function is continuous, which proves (1.4.85).

On the other hand, from (1.4.73) we have

lemm sl =[] IS()z]
o~ Re(u)t 1Sl zxy ]l
Me™Ren=w)t|| g

Me™ @192

ININ A

Since —(w; — w) < 0, it follows that
/ M||z|le™ @1 =) dt < 400,
0
and furthermore,

c c
/ e M'S(t)zdt < +oo and / e MS(t)xdt < +oo, forallveNand C > 0.
0 0

Hence, by the Lebesgue Dominated Convergence Theorem,

oo

lim e‘””tS(t)xdt:/ e MS(t)x dt,
0

V—r 00 0

=R(jiy,A) —R(\,A)
which proves (1.4.84).
Now, if Re A > wg and Re 1 > wp, we have
[ — A)(ul — A))~" = (ul — A)"H (AL — A)~Y,
and since (Al — A)(pl — A) = (uI — A)(AM — A), it follows that
[ — A)(ul — A))~" = [(u] — AN — A)] 7 = (AL — A) (] — 4)L,

hence
(uI — AP — A = (W — A) Yl — A)h

Thus,

R\ A) = R(p,A) = (M —A)" = (ul - A~
= (pl = A)(ul — AT = A7}
—(\ — AYXT — A) Yl — AT
= [(uI —A) = (M = AN = A)~H (I — A7
(1= NI = A) " (ul — A~
= (L= R\ A)R(p, A).

Therefore,

R(AA) = R(p, A) = (1 = MR, A)R(p, A),
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which implies

R(\ A) — R(u, A)

iy ARG A, (AN,

or equivalently,

= RO\ A)R(,A),  (n# ). (1.4.86)

R(u, A) — R(\, A)
w—A

Let 4 € C and pr — A. Then, from (1.4.84) and (1.4.86), and using the continuity of R(X, A), we
obtain
= —R(\A) lim R(u, A)x
n—A

= —R(\ A%z

Therefore,

d
JR()\’ A)x = —R(\, A)x, for every x € X, (1.4.87)
which proves item (i) for n = 1. We now use induction on n. Assume that (i) holds for n and let us prove

it for n + 1. From the induction hypothesis we have

qnti d dn
DA Ae = =0 | oo R(AA) |2 (1.4.88)
d n n
= ﬁ((_l) nIR(A, A)""'z)
d
= — n | 'I’L—‘rl
(-1) n.d/\R()\,A) x

We claim that

iR(A, A"z = nR(\, A)"‘liR()\7 A)x

_ n+1
o ™ nR(A A)" . (1.4.89)

For n = 1, identity (1.4.89) follows directly from (1.4.87). Assume (1.4.89) holds for n and let us
prove it for n + 1. Then

d n+1 o d n
—d)\R()\, AT = I (RN, A)R(X\, A)"z)
d n d n

= —R(\A)PR\A)"z+ R\ A)(—nR(\A)" )
= —R(\ A"z —nR(\ A"
= —(n+1)R(\ A" 2,

which proves (1.4.89). Combining (1.4.88) and (1.4.89) we obtain

LHR(A Az = (-1)" 'iR(,\ Ayt
dynt1 VAT = T *
= (-D)"n!(—(n+1)R(\, A)""22)

= (=1 (n 4+ 1)IR(\, A)" 2,
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1.4 The Hille-Yosida Theorem

which completes the proof of item (i).

(ii) First note that the function t"e~**S(t)x is continuous in ), as is its derivative with respect to
A, namely —t"Tte=S(t)x. Moreover, for Re()\) > w; > w > wy we have

[t e~ s@a] < e M S ecx) ] (1.4.90)
< the” Re()\)tMewt”x”
_ Mtnef(Re(A)fw)tHx”
< Mttem @it g
We claim that
/ the~ @19t gt < 100 for wy > w > wo. (1.4.91)
0

Indeed, we proceed by induction on n. For n = 0 we have

> 1
/ e~ (W1—wit gy — < +o00.
0 wp — W

Assume that (1.4.91) holds for n and let us prove it for n + 1. Let b > 0 and consider

b
/ grtle—(wi=wlt gy
0

Integrating by parts, we obtain

_tn+167(o.)1 —w)t b

b
/ frtle (Wit gy — (1.4.92)
0 w1 — W 0
b
ol / treWimlt gy,
w1 — W 0
Note that

7tn+167(w17w)t b 7bn+167(w17w)b

W] —w 0 B W] —w ’
and therefore, by L’Hdopital’s rule,
_bn—i-le—(w] —w)b -1 prt+1
lim = im =0.

b—rco W] —w W] — W b—oo e(w1—w)b

Moreover, by the induction hypothesis,
b

lim [ t"e @19 gt < 40,
b—oo 0

Hence, from (1.4.92) and the above, we conclude that

oo
/ e~ W19t gt < o0,
0

which proves (1.4.91). From (1.4.90) we obtain

[t MS(t)a|| < Mt"e™ @17z, for all A € C with Re(\) > wi > w > wy,
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and -
/ Mine= =) || dt < +o0.
0
Thus, by the Weierstrass M—test, the integral
/ t"e S (t)z dt
0
converges absolutely and uniformly for Re(\) > w; > w > wg and n =0, 1,.... Consequently,

/ t" e NS (t)x dt

0
also converges absolutely and uniformly in the same region, and therefore it is legitimate to differentiate
o0
/ t"e MS(t)x dt
0

with respect to A, obtaining

dX
- / t" e NS () dt.
0

a t"e MS(t)x dt / 4 (t"e *S(t)z) dt (1.4.93)
X\ Jo 0

We now prove (ii) by induction on n. For n = 0, Proposition 1.34 gives
R\, A)x :/ e MS(t)x dt,
0

so the formula holds. Assume (ii) holds for n and let us prove it for n+ 1. From the induction hypothesis
and (1.4.93) we obtain

dn+1 4 d n 4

— d > —At n
- 2 (/0 =M (—t) S(t)xdt)
= (—1)"i /OO e Mt S (t)x dt

dx \ Jo
= (—1)"(—1)/ t" e MG () x dt

0
— / e M(=t)" LS (t)x dt,
0
which completes the proof. O

We now prove the main result of this section, which provides a characterisation of the infinitesimal
generator of a Cy—semigroup.
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1.4 The Hille-Yosida Theorem

Theorem 1.36 [Hille-Yosida] For a linear operator A, defined on D(A) C X with values in X, to be
the infinitesimal generator of a Cy—semigroup it is necessary and sufficient that:

(i) A be closed and its domain be dense in X.

(ii) There exist real numbers M and w such that, for each real A > w, we have A € p(A) and

M

n < -
RN, A) [ 2(x) < Do)

for alln € N.

In this case, ||S(t)]|z(x) < Me**, t > 0.

Proof:

(1) Necessity.

Assume that a linear operator A : D(A) C X — X is the infinitesimal generator of a Cy—semigroup.
Then item (i) of the theorem follows immediately from Proposition 1.31. We now prove item (ii). Let
w > wy = im0 w Since S is a Cp—semigroup, it follows from (1.3.45) that there exists M > 1

such that

S| < Me¥t, t>0. (1.4.94)

Thus, if A > w, then by Proposition 1.34, A € p(A) and, by item (i) of Corollary 1.35, we have

(_1)n—1 dn—l

ROGA) = o=y

R\ A)z, forallze X,

which, by item (ii) of Corollary 1.35, is equal to

RO\ A"z = %/Owe_At(—t)”_lS(t)xdt (1.4.95)
_ 1 > e—)\t n—1 T
= 7(71_1)!/0 " S(t)x dt.

Hence, for each x € X, from (1.4.94) and (1.4.95) we obtain

M o0
IR\, A)"z| < n ”"1“), / L= (A=Wt gy (1.4.96)
),

We now prove that

oo _ |
/ —lo—(A=w)t gy u (1.4.97)
0

Indeed, for n = 1 we have

o 1
|oetera—
0 A—w

Assume that (1.4.97) holds for n and let us prove it for n + 1. For any b > 0, integrating by parts
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yields

b —(A—w)t 7=b b —(A—w)t
/ e~ A=t g — [t”e} —/ Y s S 7
0 -(A-w) t=0 0 -(A—w)

—(—w)t 7t=b b
t"u + L/ P le—(A=w)t 3y
—A=w) ;g A—w o

Taking the limit as b — 400 in the last identity and using the induction hypothesis, we obtain

i - 1! n!
g —(A—w)t dt = n (n _
/0 ¢ A—w A—w (A — w)ntt’

which proves (1.4.97). From (1.4.96) and (1.4.97) it follows that

IR\, A) x| < —[|z|, forallz € X,

M
(A —w)

that is,

M
R(\ A" < ——
[RA A)" [l ex) < D
which proves necessity.

(2) Sufficiency.

Assume now that there exist real numbers M and w such that, for each real A > w, we have

Aep(A) and RN A)"zx) < for all n € N, (1.4.98)

M

(A—w)’
and, in addition, that A is closed and densely defined. For each A > w, we define

By := MR(\ A) — M. (1.4.99)

The operator defined in (1.4.99) is known as the Yosida approzimation of A. Since A € p(A),

R()\, A) is bounded and hence By is also bounded. We shall prove that the exponential etBx converges,
as A — 00, to a Cy—semigroup whose infinitesimal generator is A. The proof is organised in several steps.

1st step.
We first show that

lim Byx = Az, for all z € D(A). (1.4.100)

A—o0

Indeed, let © € D(A). Then
RN, A)Y (M — A)x = z,
and consequently
AR(M, A)x —z = R(\, A)Ax. (1.4.101)
From (1.4.98) and (1.4.101) we obtain

M
IARO, A)z o] = RO\ A)As] < =] Aal]
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1.4 The Hille-Yosida Theorem

Since the right-hand side tends to zero as A — oo, we deduce that

Alim AR\, A)x =z, for all x € D(A). (1.4.102)
— 00

We now show that the convergence in (1.4.102) actually holds for every 2 € X. From (1.4.98) we

have
M
R(\ A <
IR Dllec) < 5=
and hence
A
AR, A)llz(x) < A'_' M. (1.4.103)
Since % — 1 as A — oo, we obtain % — M as A — oo. From this and the fact that M > 0,

there exists n > 0 such that, if A > 7, then

M — M’ < ]\4’7
A—w
and from (1.4.103) we conclude that
[A[M
AR(N A -M < - M
RO A ey - M < M
< ")\M —M’ <M, ifA>n,
A—w
that is,
[AR(N, A)|lz(x)y < 2M, if A >. (1.4.104)

Now let x € X. Since D(A) is dense in X, there exists a sequence (z,) C D(A) such that

Tp > in X asn — oo. (1.4.105)

Let € > 0 be given. From (1.4.105) there exists ng € N such that

lxn — 2| < QA;ﬁ’ for all n > ny, (1.4.106)
and from (1.4.102) there exists § > 0 such that
€ .

Hence, from (1.4.104)—(1.4.107), setting £ = max{n, d}, we obtain

IARO, Az =z < AR\ A = AR\, Ay |+ AR\, Ay — 2|

—|—||g;n; | _ _
< Mo tare T2 O
which proves that
)\ILH;O ARM\, A)x =z, forall z € X. (1.4.108)
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From (1.4.99) and (1.4.101) we can write

Byz = N’R(\, A)z — Az = A[AR(\, A)z — 2] = AR(\, A)Az, for all z € D(A).

From the last identity and the convergence in (1.4.108) we obtain (1.4.100).

2nd step.

The next step is to establish an estimate for e!®>. More precisely, we shall prove that

Given v > w there exists A\g > w such that if A > \g

P 2ox) < Me™.

Indeed, let z € X. We have

tBy _ tAZR(N,A)—tAT
"7 || lle z||
HetAzR()\,A)e—t)\Ix”
< Het/\2R(/\’A)H/;(X)”e_t)\ll'”.
Now,
Y — (—tA)"
S e
= (—tA)"
= | R o = e al
= n!
and
2 (A2
”et)\ RO"A)HL(X) — Z p R(X, A)"
n=0
o0
()" n
< 3RO
From (1.4.98) and (1.4.112) we have
> L (tA2)” .
et R(A,A)”L(X) < MZ %(A—w)
n=0 ’
_ — (VA —w)™h) = MtV
= n!

From (1.4.110), (1.4.111) and (1.4.113), for all z € X, we obtain

le®al < MM AT e g
MetAz(/\—w)’l—tA Hx”

Met(—/\+/\2(/\—w)71) ||l'||

(1.4.109)

(1.4.110)

(1.4.111)

(1.4.112)

(1.4.113)

(1.4.114)
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Note that
—A(\ — A2
A+FNA W)t = A=W+ N (1.4.115)
A—w
_ =A%+ dw + A2 A
N A—w A —w’
Hence, from (1.4.114) and (1.4.115) we arrive at
eBra|| < MePO=) " z|l, Ve X, (1.4.116)
However, /\— —w as A — o0o. Let v > w and set ¢ = v —w > 0. From this convergence there

exists Ao > w such that, if A > Ay, then

)
A—w

—w<e=7—w,
that is,

A A —w)t <. (1.4.117)

From (1.4.116) and (1.4.117) we obtain the desired estimate (1.4.109).

3rd step.

We now show that eZ* converges to a bounded linear operator as A\ — oo. For this purpose we
define

Sy(t) =e'Br, forallt>0and A > w. (1.4.118)
We shall prove that
{Sx(t)x}r>w is a Cauchy family in X uniformly on bounded intervals of [0, c0). (1.4.119)
Observe that
b d
(etBr —etBuye = [ — (e Bre™BN g dr,  forall z € X, (1.4.120)
0 dT

that is, from (1.4.118) and (1.4.120) we may write

¢
(Sa(t) = Su(t)r = / d(i' (Su(t —7)Sx(7))xdr, forallze X. (1.4.121)
0
But
d d (t—7)B, ,TB
—(Su(t = 7)Sx(1))z = d—(e re™PN ) (1.4.122)
T T
_ di(etBﬁr(BrBu))x
T
— (By— By)e!Bet(BrBu,
(B ) (t—T1)By 7'B>\Jj
= (Bx = Bu)Su(t = 7)5\(7)z.
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Substituting (1.4.122) into (1.4.121) and observing that By and B, commute with S, (t) (we leave
the verification of this fact to the reader), we obtain

15302 = 5,021 < [ 15, = DS\ 1Bra = Bai . (1.4.123)

Let v > w. Then, from (1.4.109) and (1.4.123), for A, u > Ao, we get

t
[Sx(t)z = Su()z]| < / (M=) (Me™)|| Bz — Byl dr
0

= M?te"||Byx — Bx||.

In the particular case in which x € D(A), it follows from (1.4.100) that the right-hand side of the
last inequality tends to zero as A, u — oo, uniformly in ¢ on any bounded interval, that is,
{S\(t)x}r>w is a Cauchy family on bounded intervals of ¢ (1.4.124)
for every x € D(A).

Now let € X. By the density of D(A) in X there exists a sequence (x,) C D(A) such that

T, > in X asn — o0. (1.4.125)

Let J be a bounded interval of [0, 00) and v > w. From (1.4.109) and (1.4.118) we infer that

1Sx®)lex) = e ey < Me™ < C, forallt € J and A > . (1.4.126)

Let € > 0 be given. From (1.4.125) there exists ng € N such that

for all n > ny, (1.4.127)

3
[en — || < ;
2C + 1

where C' is the constant in (1.4.126).

On the other hand, from (1.4.124), applied to the interval J, there exists & > 0 (coming from the
Cauchy property of {S\(t)n, } with parameter n = ﬁ) such that if A, p > max{w, \g, a} := 3, then

3

Hence, from (1.4.125), (1.4.126), (1.4.127) and (1.4.128) we conclude that

[Sx(t)z — Su(t)x||
< [1Sa(@®)z = Sx(@)zn, | + 153 2ng = Su(B)ang [l + 150 ()20, — Su(t)z]|
S SA@Hlz = zno [l + 193 () 2ng = Su()n || + 156 (@) 20, — ]|

9 9

< — — =
< 2Can, — 3l + 1531z, = SyOngll < 20557 + 55

g,

for all \, u > B and all t € J, which proves (1.4.119). Since X is a Banach space, we deduce the existence
of a linear mapping S(t) : X — X such that, for every x € X,

S(t)z=_lim Sy(t)r in X, uniformly on (1.4.129)

A—00,A>w
bounded intervals of the real line.
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We now prove that S(t) € £(X). Indeed, from (1.4.129), for each z € X we have

sup ||Sx(t)z] < +oo.
A>w

By the Banach—Steinhaus Uniform Boundedness Principle it follows that
sup [|Sx ()l c(x) < 400,
A>w
or equivalently, there exists C' > 0 such that

I1Sx(t)z|| < Cllz||, forallz e X and A > w.

Taking limits as A — oo and using (1.4.129) we obtain
IS@)z|| < Clz||, forallze X,

and therefore S(t) € £(X), as claimed.

4th step.

We now show that S is a Cy—semigroup. From (1.4.129) we have

S(0)z = lim S\(0)z = lim x =2, forallz € X. (1.4.130)

A—00 A—00

Moreover, given ¢,s > 0 and z € X, we have

S+ s)r= lim Sx(t+s)z = lim Sx(t)Sxr(s)x. (1.4.131)
A—00 A—00
We claim that
)\lim Sa(t)Sx(s)x = S(t)S(s)x. (1.4.132)
—00

Indeed, let € > 0 and v > w. From (1.4.109) we have

[Sx(®)]lz(x)y < Me™,  for all A > Aq. (1.4.133)

Thus, if J is a bounded interval of [0, c0) containing ¢ and s, from (1.4.133) we infer that

1Sx(E)|lzx)y < C, forall A > Xg and all § € J. (1.4.134)

On the other hand, from (1.4.129) and the given ¢ > 0, there exist A1, Ao > w such that

[ISx(s)x — S(s)z| < for all A > Ay, (1.4.135)

_c
c+1
and

G foral Az, (1.4.136)
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From (1.4.134), (1.4.135) and (1.4.136) we obtain

1S (#)Sx(s)z — S(t)S(s)z]|
< [1Sx(®)Sa(s)z = Sx(8)S(s)z|| + [[Sx()S(s)x — S(8)S(s)«|
< Sx® o Sx(s)z = S(s)zl + [Sa()S(s)z — S(#)S(s)z]

<CL+ c

C+1 Cc+1 ©

for all A > A} := max{)\g, A1, A2}, which proves (1.4.132). Combining (1.4.131) and (1.4.132) we conclude
that

S(t+s)=5(t)S(s), forallt,s>0. (1.4.137)

Let £ >0,z € X and 0 < h < 1. Then, by (1.4.129), there exists A9 > w such that

ISx(h)z — S(h)z| < % for all A > A and & € (0,1). (1.4.138)

Since Sy, is a Co—semigroup, there exists § > 0 such that, if 0 < h < J, then

1S, (h)z — 2| < g (1.4.139)
Therefore, for 0 < h < min{1, §}, from (1.4.138) and (1.4.139) we obtain
[S(h)x —zl| < [IS(h)z = Sx,()z|| + [15x, ()= — 2|
e €
< 5 + 5 =¢g,
which proves that
lim S(h)zx =2z in X. (1.4.140)
h—>0+

Thus, from (1.4.130), (1.4.137) and (1.4.140), we have shown that S is a Cy—semigroup.

5th step.

To complete the proof it remains to show that A is the infinitesimal generator of S. Let B denote
the infinitesimal generator of S. We first show that D(A) C D(B). Indeed, let © € D(A), A > w and
h > 0.

We have
" d
Sa(h)z -z = / 4 8ty dt
But
d tB tB
&(SA(t)x) = —(e"x) = Bye'?xz = B)\S\\(t)z,
so that

h
S)\(h)x —Tr = / S)\(t)B)\m dt, h >0, (14141)
0

since Sy (t) and By commute for A > 0.
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We claim that

lim Sy\(t)Bxz = S(t)Ax, (1.4.142)

A—00

uniformly on bounded intervals of the real line.

Indeed, let J be a bounded interval of the real line, v > w and € > 0. From (1.4.129) there exists
A1 > w such that

1S5 (t) Az — S(t) Az|| < CLH for all A > A, and ¢ € J, (1.4.143)

where C' is the constant appearing in (1.4.134). Now, from (1.4.100), (1.4.134) and (1.4.143), for A >
max{Ag, A1, A2} we have

|Sx(t)Baz — S(t) Az
< |[Sa(t) Baz — Sx(t) Az + ||Sx(t) Az — S(t) Az|]
< ISa@®)llcx) |1 Bz — Az|| + [[Sx(t) Az — S(t) Ax||

€ €
<Co—+

C+1 Cc+1 ©

which proves (1.4.142). From (1.4.129) and (1.4.141), passing to the limit as A — oo, we obtain

h
S(h)x —x = / S(t)Axdt, h>0.
0
From this identity and the Mean Value Theorem we deduce that

_ 1 [k
Br— lim SWEZT f/ S(t)Azdt = Az, for all z € D(A). (1.4.144)
h—)0+ h h—)0+ h 0

The relation (1.4.144) shows that

D(A) Cc D(B) and A= B on D(A). (1.4.145)

We now prove, in fact, that

D(A) = D(B). (1.4.146)

By hypothesis, if A > w then A € p(A). Now, since B is the infinitesimal generator of S, it follows

from Proposition 1.34 that if A\ > wp = lim;_ M, then A € p(B). Therefore, if A > max{w,wy},

then A € p(A) N p(B). For such values of A we have
(M —A)D(A)=X and (M- B)D(B) = X, (1.4.147)
since D((M — A)~') = Im(M — A) = X, by Proposition 1.33 (because A is closed).
On the other hand, from (1.4.145) and (1.4.147) we may write
(M — B)D(B) = (M — A)D(A),
which implies
D(B) = (M — B)"Y(\ — A)D(A) = (M — B)"'(\ — B)D(A) = D(A),

which proves (1.4.146). ad
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Corollary 1.37 Let A be the infinitesimal generator of a Co—semigroup T. If By is the Yosida approzi-
mation of A, then
T(t)z = lim eP>x,  forallz € X.
A—00
Proof: From the proof of the Hille-Yosida Theorem (Theorem 1.36) it follows that the right-hand side

of the above identity defines a Cy—semigroup S whose infinitesimal generator is A. By Exercise 1.3.1 we
conclude that T'=S. |

Theorem 1.38 [Hille-Yosida for Contractions] A linear operator A is the infinitesimal generator of a

contraction semigroup S if and only if
(i) A is closed and densely defined.
(i) For every A > 0, we have X € p(A) and, moreover,

> =

RN Al 2(x) <

Proof: The proof is analogous to that of Theorem 1.36, with the obvious adaptations. O

To simplify the terminology we shall write
A e G(M,w)
to express that A is the infinitesimal generator of a Cy—semigroup satisfying

1St)llexy < Met, ¢ >0.
We have the following result:

Proposition 1.39 (A —wl) € G(M,0) if and only if A € G(M,w).
Proof: Let A € G(M,w). Then A is the infinitesimal generator of a Cy—semigroup S such that

1S®)]lex) < Me*t, t>0.

Setting

S(t) = e “'S(t),

it follows, in view of Example 1.3.1, that S is a Cy-semigroup whose infinitesimal generator is A — wl.
Moreover,

IS = e Sl < e Me" = M,

which shows that A — wl € G(M,0).

Conversely, suppose that A — wl € G(M,0). Then A — wI is the infinitesimal generator of a
Cy—semigroup S satisfying

IS <M, t=>o0.

Defining

S(t) = e*tS(t),
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it follows, by the same reasoning, that S is a Cy—semigroup whose infinitesimal generator is A —wl 4wl =
A. Also,

IS < eSO < Me, ¢ >0,

which completes the proof. O

1.5 The Lumer—Phillips Theorem

In this section we present a result due to Lumer and Phillips which gives a necessary and sufficient
condition for a linear operator A to be the infinitesimal generator of a contraction semigroup. The proof of
this result follows from the Hille-Yosida Theorem, as we shall see below, and its advantage in comparison
with the Hille-Yosida Theorem is that its hypotheses are easier to verify. Before that, however, we need
some definitions and preliminary results, which we state next.

Let X be a Banach space, X' its topological dual, and (-, -) the duality pairing between X’ and X.
For each x € X we define

F(x)={z" € X'; (a",2) = ||l2"||* = |l=[|"}-
As a consequence of the Hahn-Banach Theorem , F(x) # ) for each x € X. This leads to the notion

of a duality mapping, that is, a mapping j : X — X’ such that, for each z € X, we have j(x) € F(z).
We immediately obtain

i@l =l = (), )" 2. (1.5.148)

Observe that if X is a Hilbert space, the duality can be expressed in terms of the inner product
(via the Riesz Representation Theorem). In this case, F(z) = {z}.

Definition 1.40 A linear operator A is said to be dissipative with respect to a duality mapping j if

Re (j(x), Az) <0, for allz € D(A).

Definition 1.41 A dissipative operator A which satisfies Im(I — A) = X is called m-dissipative.

Remark: If A is dissipative, then AA is dissipative for every A > 0.

Proposition 1.42 If A is a linear dissipative operator with respect to some duality mapping, then

IOAI — A)z|| > ReA|z||, forall X € C and x € D(A).

Proof: Let A € C and z € D(A). Let j : X — X’ be the duality mapping with respect to which A is
dissipative. From (1.5.148) we have

(3(), A — A)z) (d(x), Az) = (j(x), Ax)

Aal? = (j(2), Az)

whence

(ReA)l|z[|* = Re (j(), (\] — A)z) + Re (j(x), Az).
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By Definition 1.40 and again by (1.5.148), it follows that

(ReA)l|z[I* < Re(j(z), (M — A)z)
< [U(), (M = A)z)]
< @) [Lx (AT = A)z]

= =l = Azl

which implies

(ReA[lz]| < [(AL = A)zf|, if z #0.
If x = 0, the inequality is trivial, which completes the proof. O

Proposition 1.43 Let A: D(A) C X — X be a linear, closed and dissipative operator with respect to
some duality mapping. Then p(A) N (0,00) is an open subset of R.

Proof: If p(A) N (0,00) = 0, there is nothing to prove. Assume, therefore, that p(A) N (0,00) # @ and
let Ag € p(A) N (0,00). Now, given A € C and f € X, consider the identity

A — Au=f, (1.5.149)
which can be rewritten as
Aou— Au = f+ (Ao — ANu,
or, equivalently,

()\QI — A)u =f+ ()\0 — )\)u (1.5.150)

Since Aol — A is invertible, (1.5.150) yields

u= Mol — A)7Hf + (Ao — Nu). (1.5.151)

Define
G:X =X (1.5.152)
s Gu = (Nl — A)7Hf 4+ (Mo — Nu).

Note that G is well-defined, since A is closed, and G is continuous, because (Aol — A)~! is contin-
uous. Moreover, for all u,v € X, we have

[Gu — Gl Aol = A)7HF + (Ao = Mu) = (Aol = A)7Hf + (Ao = A)o)
= [[(AI —A) (X = A)(u—)]|

1ol = A)7HI Ao = Al flu = ]|

IN

If we assume that

1

A= X| < ———— =1y,
A=l < grer=A T =

(1.5.153)
then, in view of (1.5.153), the mapping defined in (1.5.152) is a contraction, and by the Banach Fixed
Point Theorem, there exists a unique v € X which solves (1.5.151), and hence a unique solution of
(1.5.149). In other words, the operator (A — A) is bijective for every A satisfying condition (1.5.153),
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and therefore admits an inverse (A — A)~! for every A € C such that |\ — A\g| < 9. Note that, since
Ao > 0, we may choose rg sufficiently small so that |\ — A\o| < 7p implies Re A > 0. It follows that, if
A € By (M) (where By (Ag) denotes the open ball in the complex plane centred at (Ag,0) with radius
ro > 0) and z € X, then (A — A)~'z € D(A) and, by Proposition 1.42,

]l = |(M = A)AL = A) ™ ]| = Re M[|(AL — A) "'z,
that is,

1
(A — A) x| < m”x”, for all x € X and X € B, (\o),
€

which shows the continuity of the family of operators (A — A)~! for every A\ € B,,(A\g). Hence (Ao —
70, A0 +70) C p(A) N (0, 00), which completes the proof. O

Theorem 1.44 [Lumer—Phillips Theorem] If A € G(1,0) then
(i) A is dissipative with respect to any duality mapping.

(i1) Im(AN — A) =X, for every A > 0.

Conversely, if

(#i1) D(A) is dense in X.

(iv) A is dissipative with respect to some duality mapping.

(v) Im(Xol — A) =X, for some Ao > 0,

then A € G(1,0).

Proof: Assume that A € G(1,0). Thus, A is the infinitesimal generator of a contraction semigroup S,
that is,

IS <1, forallt>0. (1.5.154)

Let j : X — X’ be a duality mapping and consider x € D(A) and ¢ > 0. From (1.5.148) and
(1.5.154) we get

Re (j(z), S(t)r —x) = Re(j(z),S(t)z) — Re (j(z), z)
< [{(2), S()z) | = |l=]|?
< @ISO Izl - =]
< Jaf? - Jlall? = .
From the last inequality we deduce
St)r —x

Re<j(x), ; > <0, forallt>D0.

St)z—=x

Taking the limit as £ — 04 and using the fact that ==

— Az as t — 04, we obtain
Re (j(z), Az) <0,
which proves item (i).

On the other hand, according to the Hille-Yosida Theorem for contractions (Theorem 1.38), we
infer that (0,00) C p(A). It follows that R(\, A) = (A — A)~! exists, is continuous, and has domain
equal to the whole space X, since A is closed, for every A > 0, which proves item (ii).

Conversely, let A: D(A) C X — X be a linear operator satisfying items (iii), (iv) and (v) of the
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theorem. We shall prove that A € G(1,0). To this end we shall again use the Hille-Yosida Theorem for
contractions. We first prove that

A is closed, (1.5.155)

since A is densely defined by hypothesis. Indeed, by (iv) A is dissipative with respect to some duality
mapping j. By Proposition 1.42 we have

(A — A)z|| > A||z||, forall A > 0 and = € D(A),
which shows that {(AI — A)}aso is a family of injective operators. Now, from (v) we have
Im(Xol — A) =X,

for some Ag > 0. In this particular case, it follows that (Aol — A) is a bijection from D(A) onto the whole
space X. Therefore,

(NI — A)7lz € D(A), forallze X,
and, again by Proposition 1.42; we can write
-1 1
l(Aol — A)" x| < )\—HxH, for all x € X,
0

that is,

(Mol —A)"t e L(X,D(A)) (D(A) endowed with the topology of X). (1.5.156)

Now consider (z,), C D(A) such that

z, -z in X and Az, — y in X as v — oo. (1.5.157)

From (1.5.157) we have
—Az, - —yin X and Mgz, = Aoz in X as v — oo,
and hence

(Ml —A)x, = Aoz —yin X as v — oo. (1.5.158)

From (1.5.156) and (1.5.158) we conclude that
(Aol — A) Y (NI — Az, — (Mol — A) ' (Ao —y) in X as v — o0,
that is,

z, = (Mol — A) 7'Mz —9) in X as v — oo, (1.5.159)

From (1.5.157) and (1.5.159), by uniqueness of limits, we obtain
z= NI —A) "Nz — ),
which shows that z € D(A). Moreover, from this relation we also have

(Mol — A)x = Xz — y,
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that is, y = Az, which proves (1.5.155).

To conclude the theorem it remains to prove that

Given A > 0, we have A € p(A) and |[R(A, 4)]] < —. (1.5.160)

> =

Indeed, let
A =(0,00) N p(4),

which is non-empty because, by item (v), there exists A\g € p(A) such that \g > 0. By Proposition 1.43
it follows that

A is open in (0, c0), (1.5.161)
since A is an open subset of R contained in (0, 00). We now prove that

A is closed in (0, 00). (1.5.162)

Let (M\,), C A be such that

A, = Ain R, with A € (0,00). (1.5.163)

Since (A,), C p(A), then, by (1.5.155) and Proposition 1.33, for each v € N,

Im(\I — A) = X. (1.5.164)

Let y € X be arbitrary. From (1.5.164), for each v € N there exists x,, € D(A) such that

Ay, — Az, = y.

By Proposition 1.42 we infer
1 1
lzoll < 1L = Azl = =y, (1.5.165)

since A, > 0. From (1.5.163) we see that (1/X,) is bounded and from (1.5.165) there exists C' > 0 such
that

|z || < C, forallveN, (1.5.166)

where C' is a constant depending on .

Let v, u € N with p > v. By Proposition 1.42 we have

IN

Aulley = 2| Al = A) () — )| (1.5.167)

= Ay — ) = A2y — )|l

However, since

Aty — Az, =y and Az, — Az, =y,
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we obtain
ApZy — Ay, = Az, — Az,
which implies

MA@y — )+ Ay — Az = Az, — 20). (1.5.168)

From (1.5.167) and (1.5.168) we can write
Aullzy = zoll < Ay = Aol |zl
and from (1.5.166) we deduce

Allz = 2]l < O — Al (1.5.169)

From (1.5.163), (1.5.169) and the boundedness of (1/),), it follows that (z,), is a Cauchy sequence
in X. Thus, there exists x € X such that

z, - xin X as v — oo. (1.5.170)

From (1.5.163) and (1.5.170) we obtain
ATy, = Az in X as v — oo,
and consequently

Ax, = x, —y = Ax —yin X as v — oo, (1.5.171)

Hence, from (1.5.155), (1.5.170) and (1.5.171) we conclude that @ € D(A) and Az = Az — y, i.e.
(M- Az =y. (1.5.172)
From (1.5.172), reasoning as in the proof of (1.5.155), we obtain that (A — A)~! exists and is

continuous (using Proposition 1.42), that is, A € p(A), which proves that A € A and hence (1.5.162).
From (1.5.161) and (1.5.162) we deduce that A = (0, 00) and, since

A = (0,00) N p(A) C p(A),
it follows that (0,00) C p(A). It remains to prove that

IR\ A < —, forall A >0.

> =

Indeed, since (0,00) C p(A), for every A > 0 we have Im(A — A) = X and, therefore, by
Proposition 1.42,

1
|RON, A)z|| = |[(M — A)"tz| < X||x||, for all x € X,
which completes the proof. m|

Remark 1.45 In terms of m-dissipative operators, the Lumer—Phillips Theorem can be reformulated as
follows: A densely defined operator A is the infinitesimal generator of a Cy—contraction semigroup if and
only if A is m-dissipative.
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Remark 1.46 It follows from the proof of the Lumer—Phillips Theorem that if A is m-dissipative, then
Im(A\ — A) = X for every A > 0.

1.5.1 Exercises

1.5.1) Let A € G(1,0) and B be dissipative with respect to some duality mapping. If D(A) C D(B)
and there exist constants a and b with 0 < a < 1 and b > 0 such that ||Bz| < a|Az| + b|jz|| for all
x € D(A), prove that A+ B € G(1,0).

1.5.2) Use Exercise 1.5.1 to prove the following result: If A € G(1,0) and B € L£(X), prove that
A+ B e G(1,||B]).

1.6 Stone’s Theorem

In this section we present a necessary and sufficient condition for a linear operator A to be the
infinitesimal generator of a Cy—group. To this end we first define what we mean by a group of bounded
operators. Throughout, X denotes a Banach space.

Definition 1.47 A function S : R — L(X) is called a group of bounded operators if
(1) S(0) =1.

(2) S(t+s)=S5(t)S(s), for allt,s € R.

We say that S is of class Cy if

(3) %%Hs(h)x —z|| =0 forallz € X.

The operator A defined by

D(A) = {x € X; lim Sth)z —x e:z:z'sts},
h—0 h

and

Ay — Ly ST~

lim W , forallz e D(A),

1s called the infinitesimal generator of S.

Before stating Stone’s Theorem, we make some preliminary remarks that will be needed later. Let
A:D(A) C X — X be a linear operator. Defining

D(A*) = {u* € X'; there exists v* € X’ such that (u*, Au) = (v*,u) for all u € D(A)},

it is well known that if D(A) is dense in X, then the v* corresponding to a given u* is unique, which
allows us to define the adjoint operator A* by

A DAY Cc X' = X'

u* = A*u* = v*.

Some relevant conclusions are:

(A1) A* is clearly linear and is also closed. A proof can be found in [23, Proposition 2.45].

(A2) If X is a reflexive Banach space and A : D(A) C X — X is a closed linear operator with D(A)
dense in X, then D(A*) is also dense in X’. A proof can be found in [33, Lemma 10.5].

(A3) If A: D(A) C X — X is a closed, densely defined linear operator, then the following properties are
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equivalent:
(7) D(A) =X.
(i4) A is continuous. (1.6.173)
(iii)  D(A*) = X' o
(iv) A is continuous.

Under these conditions we have
Al cxy = [A™] £(x1)- (1.6.174)

A proof of this fact can be found in [14, Théoréme II.21].

Lemma 1.48 Let T : D(T) C X — X be a bijective linear operator with D(T) dense in X. If T~1 is
closed, then (T*)~! exists and (T*)~! = (T~1)*.

Proof: Since D(T) = X, the adjoint T* is well defined. On the other hand, as T is bijective, T~! exists
and D(T~') = X. Therefore, (T~1)* is also well defined. Moreover, since T~! is closed, it follows from
(1.6.173) (iv) that D((T~1)*) = X'.

Let w* € D(T™) and v € X. Then, by the definition of adjoint operator, in particular for v = T*u*,
we have

(T T*u*u) = (T, T 'u)
= (W T(T ') = (u*,u).

From the density of u* € D(T*) and u € X it follows that

(T~*T*u* =u*, for all u* € D(T™). (1.6.175)

On the other hand, let v* € X’ and u € D(T). Then
(T, Tuy = (u', T~ H(Tu)) = (u*,u),
from which we deduce that

(T™HY*u* € D(T*) and T*(T ')*u* =w*, forallu* € X'. (1.6.176)
From (1.6.175) and (1.6.176) the desired identity follows. |

Proposition 1.49 Let X be a reflexive Banach space and S a Cy—semigroup with infinitesimal generator
A. Define S* : Ry — L(X') by S*(t) = [S®#)]" for all t € Ry. Then S* is a Co—semigroup whose
infinitesimal generator is A*.

Proof: First observe that S* is well defined because, for each ¢ € Ry, we have S(t) € L(X) and
D(S(t)) = X, and thus, by (1.6.173)(iv), [S(t)]* € L(X'). Moreover, since X is a reflexive Banach space
and A is closed and densely defined, it follows from (A1) and (A2) that A* is closed and densely defined.
Our aim is to apply the Hille-Yosida Theorem to A*, and hence we must show that there exist M,w € R
such that, if A > w, then A € p(A*) and ||R(A\, A*)"| < (/\_Lw)n for all n € N.

Indeed, if A € p(A) then \ € p(A*), because if A € p(A), then (A — A)~! exists and (\[ — A)~! €
L(X). By Lemma 1.48 we have that [(A\] — A)*]~! exists and, moreover,

(AT = A)1" = (M - 4)"] 7.
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From (1.6.173)(iv) it follows that [(AI — A)~1]* € L£(X') and D{[(A — A)~']*} = X', since
DM — A)~' = X. Thus [(M] — A)*]7! € £(X’) and D{[(M — A)*]~} = X’. Furthermore,

(AT — A)* = X — A~
and therefore A € p(A*).

Since A is the infinitesimal generator of a Cy—semigroup, by the Hille—Yosida Theorem there exist
real constants M, w such that, if A > w, then A € p(A) and

M
|R(A, A7 < m, for all n € N.

Thus, for the above M and w, let A > w. Since A € p(A), we have X € p(A*) (because A € R) and,
moreover, from

(M — AL = [\ = A)]"L = [\ — A)~Y]*  (note that A € R),

and by (1.6.174) we obtain

IRO A = (RO, A
— RO AT
" M
= IR0 A < 5o

From the above we conclude that:
(i) A* is closed and densely defined.

(ii) There exist real constants M and w such that, if A > w, then A € p(A*) and |[|R(A, A*)"|| <

M
A—w)n "

Hence, by the Hille-Yosida Theorem, A* is the infinitesimal generator of a Cyp—semigroup 7. By
Corollary 1.37 we may write

T(t)z* = /\lim !V RNAD=AD 3% - for all 2 € X
— 00

Setting By := A2R(\, A) — A, we have Bf = (A2R(), A) — AI)* = A2R(\, A*) — AL Thus

T(t)z* = lim ePig*, for all 2* € X' (1.6.177)

A—o0

Recall that By € £(X) and, therefore, from (1.6.173)(iv) it follows that B} € L(X’).

We claim that
if L, — L in £(X), then L} — L* in £(X). (1.6.178)
Indeed, by (1.6.174),
1Ly — Ll exny = [(Ln — L)*[le(xry = [1Ln — Ll £(x)»

which proves (1.6.178).
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Hence, for ¢t > 0,

Thn(t)

and therefore, by (1.6.178),

Ty (1) = (i (th)i> — [Sa(®)]* = (e'Br)" asn — oo (1.6.179)

On the other hand,

= (tB})" .
T5 () = Z ( f‘) — Th(t) = e'Br asn — oo, (1.6.180)
' i!

=0
Since

Ta(t) = etPx — T(t) as A — oo
and

[Sx(@®)]" — [S@)]* as A — oo,

it follows, by uniqueness of limits, that [S(¢)]* = T'(¢) for all t > 0. o

Proposition 1.50 For a linear operator A on a Banach space X to be the infinitesimal generator of a
Co—group S it is necessary and sufficient that both A and — A be infinitesimal generators of Co—semigroups.

Proof: Assume first that A is the infinitesimal generator of a Cy—group S. The restriction of S to R,
which we denote by S, is clearly a Cy—semigroup whose infinitesimal generator is A. The same holds for
the mapping S_ : Ry — £(X) defined by S_(t) = S(—t), which has —A as its infinitesimal generator.
This proves the necessity.

Conversely, suppose that A and — A are, respectively, the infinitesimal generators of Cy—semigroups
S, and S_. By Corollary 1.37, for all z € X,

Sy (t)z = lim P 2 and S_(t)x = lim e'Pra, (1.6.181)
A—00 A—00
where
In ||S4(t
By = NR\MA) -, A>w>w = Jim M7
3 1 _(t
B>‘ - )\2R()\,7A)7)\17 /\>w>a70:tlim M,
—00

are the Yosida approximations of A and —A, respectively. Now, since R(\, A) commutes with R(u, —A)
for A\, u > w > max{wp, W}, it follows that

etBk etB“

z = etBuetBrg,

for all x € X and A, p sufficiently large.

Fixing such a p, it follows from (1.6.181) and from the fact that !B € L(X) that, in the limit as
A — 00,

S+(t)etg”x = etB~“S+(t)x.

Now, taking the limit as y — oo in the last identity and using that S (¢) € £L(X), we obtain

St(t)S—(t)x = S_(¢)S+(t)x, forallz € X and ¢t > 0. (1.6.182)
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Define
T(t) =S4(t)S-(t), t=>0. (1.6.183)

It follows immediately that T is a Cp—semigroup, since S and S_ are Cp—semigroups and satisfy (1.6.182).
Let B denote the infinitesimal generator of 7. We claim that

D(A) c D(B) and Bx =0, forallxe D(A). (1.6.184)

Indeed, let 2 € D(A) and h > 0. From (1.6.183) we have

T(h)r —z Si(h)S_(h)x —x

- - . (1.6.185)
_ Se(W)S_(Wz — Sy(h)z+ S (h)x —
h
_ S5, [S(hzlx—x} S+(hzlx—x

Taking the limit in (1.6.185) as h — 0, we obtain

lim M = —Az + Az =0,
h—0, h

which proves (1.6.184).

Now let x € D(B). Since D(A) is dense in X, there exists a sequence (z,), C D(A) such that
2, — x in X. But from (1.6.184) we have Bz, = 0 for all v € N, and hence Bz, — 0 as v — co. Since
B is closed, we conclude that Bz = 0, that is,

Bx =0, forallze D(B). (1.6.186)
However, by Proposition 1.30(iii), for all z € X we have
t
/ T(s)xds € D(B), t>0,
0
and

T(t)r—x =B /Ot T(s)xds. (1.6.187)

From (1.6.186) and (1.6.187) it follows that T'(¢t)z = z for all z € X and ¢t > 0, that is,

T(t)=1, forallt>0. (1.6.188)

From (1.6.182), (1.6.183) and (1.6.188) we obtain

Sy (H)S_(t) = S_(£)S4(t) = I. (1.6.189)

Identity (1.6.189) shows that Sy (¢) is invertible and

(S4 ()" =S5_(t), forallt>0. (1.6.190)
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Define
S.(t), t>0,
S(t) = +(0) (1.6.191)
S_(—t), t<O.
We now prove that S is a Cy—group with infinitesimal generator A. Clearly,
S(0) =1, (1.6.192)
and
lim ||S(h)x — z| = 0. (1.6.193)
h—0
It remains to show that
S(t+s)=95()S(s), forallt,seR. (1.6.194)

We consider several cases:

(i) t,s > 0 (trivial).

(ii) t, s < O (trivial).

(ili) t >0, s <0 and t 4+ s > 0. From (1.6.190) we can write

S(t+s)

|
2

= S.(1)S_(—s) = S()S(s).

The remaining cases are analogous to (iii).

Next we show that A is the infinitesimal generator of S. Let A denote the infinitesimal generator
of S. Then, for all x € D(A),

lim Sz -z = lim S¢(h)z — @ = Az,
h—>0+ h h—)0+ h,
lim S(h)x —x — lim S_(—h)x —x
h—0_ h h—0_ h
B S_(=h)x —x _
= i —h = —(-An) = Az,

which shows that = € D(A) and Az = Az, that is,

D(A) c D(A) and Az = Az, for all z € D(A).

Conversely, D(A) ¢ D(A), because if z € D(A), then the limit

Sy(h)x — S(h)x — ~
T ) e N P W) ek O
h—04 h—04 h
exists, which completes the proof. O

Proposition 1.51 Let X be a Banach space and S a Cy—semigroup. If, for some ty > 0, the inverse
S(to)~! exists and S(to) ™' € L(X), then S(t)~! exists for all t > 0 and S(t)~! € L(X).

Proof: Suppose there exists ¢y > 0 such that S(ty) ™! exists and S(¢y) ™! € £L(X). Then S(to) is bijective
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and continuous. Hence, for each n € N, [S(¢0)]™ is bijective and continuous, and since

S(nto) = S(to + -+~ +tg) = S(to) - -- S(to) = [S(t0)]", (1.6.195)

n times n factors

it follows that S(nto) is bijective and continuous.

Now let ¢ > 0. Then there exists n € N such that ntg > ¢. Let £ € X be such that S(t)x = 0.
Then

S(nto)x = (S(ntg —t)S(t))x = S(nte — t)(S(t)x) = 0,

and by the injectivity of S(nty) we obtain x = 0, that is, N(S(¢t)) C {0}, which proves that S(¢) is
injective for all ¢ > 0 (the case t = 0 is trivial). Moreover, from the surjectivity of S(nty) we have

X = S(nto)X = (S()S(nto — £))X = S(t)(S(nto — t)X).
=Y

Thus S(t)Y = X, where Y = S(ntp — )X, i.e. X C S(¢t)X C X, which implies S(t)X = X, and
therefore S(¢) is surjective for all ¢ > 0. Hence S(t) is bijective for all £ > 0 and therefore invertible for
all t > 0. In addition, since S(t) € £(X) for all ¢ > 0, we deduce that

S(t)~! is closed, for all t > 0. (1.6.196)

Indeed, let (z,,), C D(S(t)~!) = X be such that

r, =z and S(t) 'z, >y, asn— oo (1.6.197)

It remains to prove that y = S(¢)'z. Since S(t) is surjective, we have, for eachn € N, z,, = S(t)yn,
and thus, from (1.6.197), we infer

Sy, = and y, =SE)"HSH)yn) =y asn — oo. (1.6.198)

By the continuity of S(¢), from (1.6.198) we obtain
St)yn — S(t)y as n — oo, (1.6.199)

and by uniqueness of limits, from (1.6.198) and (1.6.199) we conclude that S(t)y = z, i.e. y = S(t)'a,
which proves (1.6.196). Furthermore, we conclude that S(¢)~! € £(X) for all ¢+ > 0, which completes the
proof. O

Proposition 1.52 Let X be a Banach space and S a Cy—semigroup with infinitesimal generator A. If
for some to > 0 the inverse S(to)~! ewists and S(to)~! € L(X), then A is the infinitesimal generator of
a Cy—group.

Proof: Since A is the infinitesimal generator of a Cy—semigroup, by Proposition 1.50 it suffices to show
that —A is also the infinitesimal generator of a Cy—semigroup. Indeed, by Proposition 1.51 we have that
for every t > 0, S(t) is invertible and S(t)~* € £(X). Define

T:Ry — L(X) (1.6.200)
te T(t) =[S()] .

We now prove that the mapping (1.6.200) is a Ch—semigroup whose infinitesimal generator is —A.
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Indeed,

=[S 'St =T(t)T(s), forallt,scRy.
It remains to show that:
(6i) lim | T(h)z —z|| =0, forallzeX.
h~>0+

Let z € X and r > 1. Since S(t) is invertible and S(¢)~! € £(X) for all ¢ > 0, we have that S(t)
is bijective for all ¢ > 0. Therefore S(¢)X = X for all ¢ > 0 and, consequently, there exists y € X such
that S(r)y = z. Let 0 < h < 1. Then

and hence

that is,

Since S is strongly continuous, it follows that

lim S(r — h)y = S(r)y,

h‘)0+

and therefore

lim T(h)z = S(r)y =z,

h—>0+
which proves item (ii7) and consequently that the mapping defined in (1.6.200) is a Cp—semigroup.

It remains to prove that —A is the infinitesimal generator of T'. Let B be the infinitesimal generator
of T and consider x € D(—A) = D(A). Note that

Th)x —x [S(h)] "tz — =
h h
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From the last identity we obtain
S(h)x —
- H—T(h) (( )Z x) + Ax

H—T(h) (S(h);f_g”) + T(h) Az

+ Az

HT(h)m — (1.6.201)

h

IA

+ || —T(h)Azx + Ax||

IN

1T (h)]| Hs(h)ff‘” — Az|| + |T(h) Az — Az|.

Since ||T'(h)|| is bounded on bounded intervals and

S(h)x —x

W — Az as h — 04,

it follows that

o |2 - o

— 0 ash—04. (1.6.202)

Moreover, since T is strongly continuous we obtain

IT(h)Ax — Az|| — 0 as h — 04. (1.6.203)

Thus, from (1.6.201), (1.6.202) and (1.6.203) we conclude that

7I+Ax

T(h
H()Z — 0 ash—04.

This last convergence shows that if 2 € D(A) then the limit limj_,o, T(hf—w exists and is equal
to —Ax, that is,

D(A)c D(B) and Bz =—Az, forallze D(A). (1.6.204)

On the other hand, if © € D(B), we have

lim M + Bz|| = lim ||—S(h) (T(h)H’"> + Bz
h—>0+ h h—>0+ h
= lim ||-S(h) (T(h)x_x — Ba+ Bx) + Bx
h—>0+ h
= lim |—S(h) (T(h)”H” - B:c) — S(h)Bzx + Bx
h—04 h

. Th)r — x
< lim [ S(h)e Loy H”h ~Ba

h~>0+

+ || S(h)Bx — Bz ||]

T(h)x

h_z—Ba:

= Jim [ S()a s H + Jim | S(h)Ba — Ba |

:O’

T(h)x —

because || S(h) || is bounded on bounded intervals and the limit lim T exists. Thus we conclude

h—04
that the limit lim M

exists and hence
h—>0+ h

D(B) C D(A). (1.6.205)
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From (1.6.204) and (1.6.205) we deduce that D(A) = D(B) and Bx = —Axz for all x € D(B), that
is, B = —A. Therefore —A is the infinitesimal generator of a Cy—semigroup, which completes the proof.
O

Remark 1.53 Under the hypotheses of Proposition 1.52, that is, with X a Banach space, S a Cy—semigroup
whose infinitesimal generator is A and S(to)~' € L(X) for some ty > 0, the operator —A generates a
Co—semigroup
T:Ry — L(X) (1.6.206)
te T(t) = (S(t) "

Now, according to Proposition 1.50, A generates the group U : R — L(X) defined by

{S(t), t>0,

. (1.6.207)
T(~t) = (S(~t))"!, t<o.

Proposition 1.54 Let S, and Sy be groups generated by A. Then S1 = S.

Proof: From the proof of Proposition 1.50 we know that A is the infinitesimal generator of the semigroups
S1,+ and Sy 4 and —A is the infinitesinal generator of the semigroups S;,— and S . However, by Exercise
1.3.1 we have uniqueness of the semigroup generated by an operator. Hence

Si4 =524 and S =5 _,
that is, S1(t) = S2(t) as well as S1(—t) = Sa(—t) for all ¢ > 0, since S; 4 (t) = S;(¢t) and S; _ () = S;(—t)
forallt > 0and i =1,2. Let t € R. If t > 0 we have S1(t) = S2(t), and if ¢ < 0 then t = —& for some
&€ > 0 and hence S;(—¢) = S2(—€), that is, S1(t) = Sa2(t), which implies S; = Ss. O

0.5 cm

Definition 1.55 We say that an operator T € L(H), where H is a Hilbert space, is unitary if T is
invertible and T* = T~ 1.

Remark 1.56 Note that if D(T) = H and T is continuous, then T* exists and T* € L(H). Moreover,
if T is unitary, then T~ = T* € L(H). Furthermore,

IT=)* = (T,Tx)
= (2,T"Tx)
= (2,77'Tx) = [laff?,

that is,

|Tx|| = ||z||, forallx e H. (1.6.208)

Thus unitary operators are isometries. Also, since x =TT~ x, from (1.6.208) it follows that
]| = |TT~ | = |7~ x|,
and therefore
T x| = ||z||, forallz € H, (1.6.209)
or equivalently

|T*z|| = ||z||, forallx e H. (1.6.210)

Hence, if T : H — H is unitary, then T, T~ and T* are isometries.
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Definition 1.57 We say that a group S of bounded linear operators on a Hilbert space H is a
unitary group if, for each t > 0, S(t) is a unitary operator, that is, S(t)* = S(t)~1 for all t > 0.

Theorem 1.58 [Stone’s Theorem] A linear operator A on a Hilbert space H is the infinitesimal generator
of a unitary Co—group if and only if A* = —A.

Proof: Let A be the infinitesimal generator of a unitary Cy—group S. By Proposition 1.50, A and
—A generate, respectively, Cp—semigroups S, and S_. Since S is a unitary group, S(t)~! exists and
S(t)~' € L(H). Then, by Proposition 1.49, A* is the infinitesimal generator of S, where S* = (S (¢))*
for all ¢ > 0. It follows from this and from the fact that S is unitary that, if h > 0, we have

ST(R) = (S4(W)* = ()" = (S(h)™* = S(—h) = 5_(h),
because I = S(t)S(—t) = S(—t)S(t) for all ¢ > 0. Hence

St (h)x — -
i ;f ”3:5*(”2:‘” T forallz e H, (1.6.211)

which implies D(A*) = D(—A) and A*z = — Az, proving the necessity.
We now prove the sufficiency. Let A be a linear operator on H such that A* exists and satisfies
A* = —A (1.6.212)
We will show that A and —A are infinitesimal generators of Cy— semigroups. To that end we use

the Lumer—Phillips Theorem. From the existence of A* it follows that A and —A are densely defined.
We will prove that

Re(+Az,x) =0, forall z € D(A). (1.6.213)

Indeed, let z € D(A). From (1.6.212) we have
(Az,z) = (z,A%x) = (z, —Az) = —(z, Az) = —(Azx, ),
hence

Re(Az,x) =0, forall x € D(A),

which proves (1.6.213) and therefore shows that A and —A are dissipative with respect to the duality
mapping 7 = 1.

It remains to show that there exists Ao > 0 such that Im(Agl = A) = H. Indeed, let © € D(A).
Then

(I £ Az, z) = ||z||* + (Az, 2).

From this identity and (1.6.213) we obtain
lz]]* = Re((I £ A)z,z) < ||z £ Az]| |12,
which implies

|z|| < | + Az|, for all z € D(A). (1.6.214)
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As we know, A* is a closed operator. From (1.6.212) it follows that +A are also closed, and
consequently (I + A) are closed as well. We claim that

Im(I + A) are closed subsets of H. (1.6.215)

Indeed, let (y,), C Im(Z + A) be such that

Yy =y in H as v — oo. (1.6.216)

For each v € N| there exist x,,,w, € D(A) such that
Yo = (I + A)xu and gy, = (I — A)wy-
We will prove the claim for the operator I + A; the proof for I — A is analogous. From (1.6.214)
it follows that, if v, u € N, then

ey —2ull <N+ A)zy — (I + Dl = gy = yull-

From (1.6.216) the expression on the right-hand side of the last inequality converges to zero as
v, it — oo. Hence, (z,), is a Cauchy sequence in H and therefore there exists © € H such that

x, > 2 in Hasv — co. (1.6.217)

From (1.6.216) we also have

I+ Az, >y in Hasv— oo. (1.6.218)

Since (I 4 A) is closed, from (1.6.217) and (1.6.218) we conclude that € D(A) and y = (I + A)z,
which proves that y € Im(I + A) and hence (1.6.215). It follows from this and from the fact that H is a
Hilbert space that

H =Tm(I + A) @ [Im(I + A)]*. (1.6.219)

We claim that

[Im(I + A)]* = {0}. (1.6.220)

Indeed, recall that

[Im(I + A)]* = {y € H; (y,2 + Az) =0, for all 2 € D(A)}.

Let y € [Im(I + A)]*. Then

(y,x) = (y, Ax), for all x € D(A). (1.6.221)

From identity (1.6.221) it follows that £y € D(A*), and since D(A) = D(A*), from (1.6.213) and
(1.6.221), taking y = x, we obtain

ly[|* = Re(y, Ay) = 0,

that is, y = 0, which proves (1.6.220), since trivially 0 € [Im(I + A)]*. It follows from (1.6.219) and
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(1.6.220) that
H =Tm(I + A). (1.6.222)
From (1.6.213) and (1.6.222) and the fact that D(A) = D(—A) is dense in H, it follows, by the

Lumer—Phillips Theorem, that A and —A are, respectively, the infinitesimal generators of the contraction
Co—semigroups S; and S_. By Proposition 1.50 it follows that A generates the group S given by

S — S.(t), t>0,
t)= S_(—t), t<o.

It remains to show that S is a unitary group. Indeed, since A* is the infinitesimal generator of
S (t) for all t > 0, where

Si(t) = (S4(1)", vt =0, (1.6.223)
it follows from (1.6.212) and from the uniqueness of the semigroup that

SE(t) = S_(t), Vt>0. (1.6.224)

From (1.6.223) and (1.6.224) we obtain

(S4(1))" = S_(t), Vt>0.

But since

we get

(S(t))* = S(~t), Vt=>0. (1.6.225)

which completes the proof. O
1.6.1 Exercises

1.6.1) Let A be the infinitesimal generator of a Cp—semigroup S and —A the infinitesimal generator
of a Cy—semigroup S_. Define

By = MR(\A) — A and By = R\, —A) - \; \>w> My =max{w, o},
where

wo = lim M and Q= lim M

t—+oo t t—+o00 t
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Given A, u > w > My, prove that

R(,LL, *A) R()‘a A) - R(Aa A) R(,L"a 7A)

1.6.2) Prove that, for A to be the infinitesimal generator of a Cho—group, it is necessary and sufficient
that A be closed, densely defined, and that there exist real numbers w and M such that, if A € R and

|A| > w, then A € p(A) and
M

IROA < o

1.6.3) Let A be the infinitesimal generator of a Co—semigroup T'(¢) satisfying ||T(¢)|| < Me*t. Show
that, for all A € C such that Re A > w, one has A € p(A) and
M

A A _— =1,2,3,...
IROS A < oy — gy M= 128

Solution:
Define

R(\)z = /;Oo e MT(t)x dt.

Since ||T'(t)|| < Me“", the operator R(\) is well defined for all A with Re A > w. Using arguments similar
to those employed in the proof of the Hille-Yosida Theorem, it follows that R(A) = R(\, A) = X € p(A).
Hence, if Re A > w, then

d —>\t oo — At
JR)\ A)x d)\/ T(t xdt:/o te MT(t)x dt.

Proceeding by induction, we can show that

d

4Ry, Az = =

+ oo —+oo
o e MT(t)x dt :/ te MT(t)x dt. (1.6.226)
0

On the other hand,
R(X\A) = R(i, A) = (1 — RO\, A)R(u, 4),
and from the fact that, for A € p(A), the map A\ — R(A, A) is holomorphic, we obtain

d 2
RO Az = —R(\ A% (1.6.227)

Again, by induction, we have

ddWR(A Az = (—1)"n! R(\, A)" "z, (1.6.228)

From (1.6.226) and (1.6.228) we obtain

+o0
R\, A" = %/0 e MT(t)x dt.

Thus

M +oo M
A A < tn—l (w—Re )t dt =
1RO A7) < (n_1)!/0 ‘ ReA—w)"

as claimed.
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1.6.4) Let B be a bounded operator. If v > || B||, prove that

Y4100

1
etB = eMR(\; B) d.

21 ~y—ioco

(Suggestion: Choose v > r > ||B|| and consider C,., the circle of radius r centred at the origin. Observe
that, for |A| > r, we have

k=0
Multiply the last identity by (1/2mi)e’t, integrate over C, and conclude by applying Cauchy’s Theorem.)

The convergence above is in the sense of the uniform topology in ¢ on bounded intervals.

1.6.5) Let A be the infinitesimal generator of a Co—semigroup T'(¢) satisfying ||T(t)|| < Me“t. Let
1 be a real number, p > w > 0, and consider

Ay = pAR(p; A) = p*R(p; A) — pl,
the Yosida approximation of A. Prove that:

(i) For Re A > wpu/(p — w) we have

ROA) = ()l - OR( 254 ) L and

-1
IRO Al < M (Rex— =)
= w

(Suggestion: Multiply the identity above by AI — A, and use the commutativity of A with its resolvent
to obtain the desired expression. To prove the inequality, note that A, is the infinitesimal generator of
et4u and use Corollary 1.37.)

(ii) For ReA > e + wp /(1 — w) and p > 2w, there exists a constant C, depending only on M and
g, such that for all x € D(A),

C
R Az < m(llxll + [ Az]).

1.6.6) Let A be as in Exercise 1.6.4, and let A = v + in with fixed v > w + . Prove that for every
x € X we have
Hh_)rrgo R(X;Ay)z = R(X\; A)z,
and for every Y > 0 the limit is uniform in 7 for || <Y. (Suggestion: Let v = p\/(u + ). Use item (i)
of Exercise 1.6.5 to conclude that R(\; 4,) — R(\; A) = (n+ A\)7TA?R(v; A)R(A; A). For v > w + € use
the Hille-Yosida Theorem to deduce ||R(); A)|| < Me~!. From this, first obtain the desired convergence
for elements of D(A?) and then, by density, for all z € X.)

1.6.7) Let A be the infinitesimal generator of a Chp—semigroup T'(¢) satisfying ||7T'(¢)|| < Me*! and
consider v > max(0,w). If x € D(A), prove that
! 1ot dX
/ T(s)xds = —/ MR\ Az —,
0 21 v A

—100

and that the integral on the right-hand side converges uniformly in ¢ on bounded intervals. (Suggestion:
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Take p > 0 and, for 6 > ||A,||, consider

1 porik
pr(s) = i )i eMR(N; Az d.

Using Exercise 1.6.3, conclude that p(t) — ez uniformly on [0, 7] and that limy_, . f;j;: RN\ ALz % =
0. Conclude then that

K 1 [t dX
sArgpds = — MR\ A)z—.
/0 e*rrds = o eV R\ A)x 3

y—100

To complete the exercise, use Exercises 1.6.4(ii) and 1.6.5 together with the Hille-~Yosida Theorem.)

1.6.8) Let A be the infinitesimal generator of a Cp—semigroup T'(t) satisfying ||T(¢)| < Me*".
Consider v > max(0,w). If x € D(A?), prove that
1 y+ioo

Tt)x = — eMR(\; Az d.

27TZ ~—ioco

(Suggestion: use Exercise 1.6.7.)

1.7 Differentiable Semigroups

Let A be the infinitesimal generator of a Cy—semigroup S. As proved in Proposition 1.30, if z €
D(A) then S(t)xz € D(A) for all t > 0, and therefore S(t)D(A) C D(A) for all ¢ > 0. This property does
not, in general, hold for all z € X, because if S(¢)X C D(A) forallt > 0, then X = IX = S(0)X C D(A),
so that D(A) = X and hence, by the Closed Graph Theorem, A is a bounded linear operator. We then
fall back into the particular case of uniform convergence, already studied earlier (see Theorem 1.19). This
does not happen, however, if S(¢)X C D(A) only for ¢t > 0 and, more generally, only for ¢ >ty > 0. It is
precisely this particular case that we now consider.

Definition 1.59 A Cy—semigroup S  with infinitesimal generator A is said to be
differentiable for t > to >0 if S(t)X C D(A) for all t > to. The semigroup S is said to be
differentiable if S is differentiable for t > 0.

Theorem 1.60 Let S be a semigroup that is differentiable for t >ty > 0. Then:
(i) The operator Ao S(t) is continuous in x for t > to.
(#3) The function S(t)x is continuously differentiable for all t > to and all x € X. Moreover,

d
%S(t)x = AS(t)x.

(iii) For everyt > ntg, n =1,2,..., we have S(t) : X — D(A™) and, defining S™ by S (t) = A"oS(t),
we have that S™ is a linear and continuous operator, S™ (t)x = %S(t)x forallx € X, and the mapping
t— S(t)x is n times continuously differentiable.

(iv) Fort >ntg, n=1,2,..., S®=Y(t) is continuous in the uniform topology, where S (t) = S(t).

Proof:

(i) First note that, since S(¢t)X C D(A), the composition A o S(t) is well defined for ¢ > ty. As
S(t) is bounded and A is closed (see Proposition 1.31), it follows that A o S(t) is closed for ¢ > t¢, and
by the Closed Graph Theorem, A o S(¢) is continuous for ¢ > tg.

(ii) By hypothesis, S(t)x € D(A) for all ¢ > tg and all z € X. Thus, let z € X. For every t > ¢
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the limit

i SISO = SO _ - SeEr SO o

h—>0+ h h—)0+ h

exists, that is, S(t)z is right—differentiable for all ¢ > to and

d+
ES(t)x = AS(t)x.

Our goal is to use Dini’s Lemma (Exercise 1.3.4), and therefore it remains to show that AS(-)z is
continuous for all ¢t > ty. Indeed, let ¢ > ¢y and choose s with ¢ > s > ty. Then, by item (i), AS(s) is a
bounded operator and, since

AS(t) = AS(s)S(t — s),

we have, for 0 < h <t —s,

|AS(t + h)x — AS(t)z|| |AS(s)S(t +h — s)x — AS(s)S(t — s)z||

JAS(s)|| |IS(t+h—s)x — St —s)z|| — 0

IN

as h — 04, because S is strongly continuous. Hence, AS(¢)x is continuous for all ¢ > tg. From the above
and Dini’s Lemma (see Exercise 1.3.4) it follows that S(t)z is continuously differentiable for all ¢ > ¢
and

d
ﬁS(t)x = AS(t)x.
(iii) We use induction on n to prove this item. From item (i) we know that SM)(t) = Ao S(t) is
continuous in x for ¢ > tg. Moreover, from item (ii) we know that the mapping
t— S(t)x

is differentiable in ¢ for every t >t and every z € X, and in fact it is C!(tg, +00). Furthermore,
d M
£S(t)x = AS(t)x := SV (t)x, t>to.

Therefore, we have proved item (iii) for n = 1.

Assume now that (iii) holds for some n and prove it for n+1. Let t > (n+ 1)t and choose s > ntg
such that ¢t — s > tg. Then

S (tyx = A"S(t)x = A™S(t — 5)S(s)z = S(t — s)A"S(s)z, Ve X

(see that S(s)x € D(A™)). By item (ii) the right-hand side is continuously differentiable, and thus S(¢)z
is (n + 1) times differentiable. Moreover,

d d
%S(”)(t)z = %(S(t — 5)A"S(s)x) = AS(t — s)A"S(s)z, Vw e X.
Since S(t — s)A™S(s)x = A™S(t)z, it follows that
%S(") (t)x = A" Stz = STV ().

dn+1

Hence SV (t)x = £ S(t)x for all 2 € X. Also, S™(t)z € D(A) for all t > (n + 1)t, and since
S(M)(t) is a bounded operator and A is closed, it follows that SV (t) = AS™(t) is closed. By the
Closed Graph Theorem, S+ (t) : X — D(A™*!) is continuous, which completes the proof of item (iii).
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(iv) We first show that, for ¢ > tg, the operator S(t) is continuous in the uniform topology. Indeed,
since [|S()||¢(x) is bounded on bounded intervals, there exists M; > 0 such that

S llex) < My, Vtel[0,1].
Let tg < t; <ty <t; + 1. Then
to
S(ta)r — S(t1)z = / AS(s)z ds
ta
Z/ AS(s —t1)S(t1)zds

_ / * (s — 1) AS(t1)w ds.

t1
Hence
ta
[S(t2)z — S(t)z|| < / [S(s —t1)AS(t1)z|| ds
t1
to
< [ 18t = tllacollAS(er)al ds
t1
ta
< Ml/ IAS(t1)|| ds
ty
to
<, / IAS(t) e 12l ds
t1
= M| AS(t1)llecxyllz|l [t2 — ta]-
Therefore

1S(t2) — S(t1)lle(x) < Mi||AS(t1)|le(x)lt2 — tal-

Thus S(t) is continuous in the uniform topology, and we have proved item (iv) for n = 1.
Using induction on n one checks easily that
SM(t)z € D(A), Vo€ X and Vt > (n+ 1)to. (1.7.229)
We also have that, for all ¢ > nty and all s such that ¢t — ¢ty > s > (n — 1)to,
SV () =St —s)S™ V(s)z, VreX, n=12,...
To prove this assertion we again use induction on n. Let ¢t > tg and t —ty > s > 0. Then
t —s >ty >0, and hence
SO () = S(t)x = St —5)S(s)x = S(t — 5)SO(s)x, Vze X.
Thus the assertion holds for n = 1. Assume it holds for n — 1 and we show it for n.
Let t > (n+ 1)tg and t — tg > s > ntp. Since s > nty, it follows from (1.7.229) that
SN (s)z € D(A), Vze X.

By Proposition 1.30,
S(t —5)S" Y (s)x € D(A)

and
AS(t — 5)SMV(s)x = S(t — s)AS" Y (s)z, Ve X.
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But t > (n+ 1)tg > ntg and t — tg > s > ntg > (n — 1)tg. Hence, by the induction hypothesis, we have
SV (t)e = St — s)S"V(s)x, Vre X,
and so

ST () = A"S(t)x = AA" ' S(t)x == AST VD (b)z
= AS(t—5)SMV(s)z = S(t — s)AST" D (s)z
= S(t — 5)AA" LS (s)x = S(t — 5)S™(s)z, Va € X,

which completes the proof of the assertion.

We now prove item (iv) in the general case (we have only proved (iv) for n = 1). Let t > nto.
We will show that S(™~1)(#) is continuous in the uniform topology. Take ¢t —to > s > (n — 1)tg. Then
t—s > tg, and if |h| <t — s — to, we have

s+tg—t<h<t—s—ty, t—|—h—t0>$>(n—l)to
and t 4+ h > nty. Therefore, by the assertion proved above, we obtain

S (1) = S(t — )MV (s)

and
SM=V(t 4 h) = S(t+h—5)S"V(s).
Thus
1St 4 h) = ST D) ex) = [+ — )STD(s) = S(t = )5 (s)lex)
< NS+ —s) =St =)o) 15" ()l — 0
as h — 0. Therefore, S(~1(t) is continuous in the uniform topology for t > nt. o

1.7.1 Exercises

1.7.1) Let T(t) be a differentiable Cy—semigroup and let A be its infinitesimal generator. Prove

that
- (ar (D)) = (r (1)) e

1.8 Analytic Semigroups

Definition 1.61 Let A = {z: p; < argz < 2, 1 <0 < w2} and, for z € A, let T(z) be a bounded
linear operator. The family T(z), z € A, is called an analytic semigroup in A if
(i) z — T(z) is analytic in z.
(it) T(0) =1 and lim T(2)x =z for every x € X.
z€A, z—0
(#ii) T'(z1 + 22) = T(21)T(22) for z1,29 € A.

The semigroup T(t) is said to be analytic if it is analytic in some sector A containing the non-negative
real axis.

Remark 1.62 In the definition above we have 0 < |p1], p2 < .

Clearly, the restriction of an analytic semigroup to the non-negative real axis is a Cp-semigroup.
In what follows, we are interested in the possibility of extending a given Cp-semigroup to an analytic
semigroup in some sector A around the non-negative real axis.

Since multiplication of a Cyp-semigroup T'(t) by e“t does not affect the possibility (or impossibility)
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of extending it to an analytic semigroup in some sector A, we may restrict ourselves to the case of
uniformly bounded Cy-semigroups. The results for general Cy-semigroups follow from the corresponding
results for uniformly bounded Cy-semigroups. Without loss of generality, we shall assume that 0 € p(A),
where A is the infinitesimal generator of a semigroup T'(t). This can always be achieved by multiplying
the uniformly bounded semigroup T'(t) by e %, for € > 0, and using Proposition 1.34.

Let A be a densely defined operator on a Banach space X satisfying the following conditions:

For some 0 < 0 < 7/2, p(A) D X5 ={\:|arg\| < 7/2+ 0} U{0}. (1.8.230)
There exists a constant M such that
M
IR(A A < W, for A € X5, A #0. (1.8.231)

We have the following result:

Theorem 1.63 Let A be a closed, densely defined operator on a Banach space X satisfying conditions
(1.8.230) and (1.8.231). Then A is the infinitesimal generator of a Co-semigroup S(t) satisfying ||S(t)] <
C for some constant C'. Moreover,

S(t) = i/re”R(A,A) d\,

T o

where T is a reqular curve in X5 going from oce™ to cce', with 7/2 < 6 < ©/2+ 6. The integral above
converges for t > 0 in the uniform operator topology.

Before proving Theorem 1.63 we need some auxiliary results, which we now establish. Let 0 <0 < §
and let A satisfy conditions (1.8.230) and (1.8.231). Note that for 0 < §’ < ¢, conditions (1.8.230) and
(1.8.231) are also satisfied. For each r > 0 and 0 < ¢’ < 0, we define a family of operators (S(t)):>0 by

1
S(t) = 2mi
I , t=0,

/ eAR(N, A)dN, t>0,
~(r,6") (1.8.232)

where (r,6") = v1(r, &) U~a(r,8") Uqs(r,d’) is the piecewise C* curve defined by

Y1(r,8") = {pe’ /200 p € [r,400)},
Yo (r,8") = {re'?; -0 <p<E5+4'} (1.8.233)
Y3 (r,8') = {—pe "/ p e [r, +00)},

oriented counterclockwise, as in Figure 1.1:

\/

v,(r.8)

Figure 1.1:
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Lemma 1.64 If A satisfies (1.8.230) and (1.8.231), then the operator S(t) given by (1.8.232) is well
defined and is independent of r > 0 and of 0 < &' < 4.

Proof: Let ¢t > 0,7 > 0 and ¢’ > 0 be such that 0 < ¢’ < dand 0 < ¢ < §. We first show the convergence
of the integral in (1.8.232) over the curve y(r,8). If A\ € y1(r,d), then A = pe'®, with § = Z + ¢ and
p € [r,+00). Let n = arg A. Define

f) =e?R(\ A),
and set
x = peosy = ((p) = ¢'(p) = cosn,

y = psinng = &(p) = €' (p) = sin.

Then, by (1.8.231),

IN

/OO |£(C(p) +i€(p))[C (p) + i€ (p)]]| dp (1.8.234)

/ eAR(N, A) d\
71(r,9)

/ ||ete " R(pe™, A)e™|| dp

i i M
in
/ |etpe
r

e dp
= /OO etpcosn% dp.
r P

|pet|
Since 7/2 < 1 < 37/2, there exists a positive constant C' such that cosn = —C'. Hence

IN

oo —ptC 1 [e'e) 1
/ ‘ dp < f/ e Pdp = Ee—mt. (1.8.235)
T p r T r

From (1.8.234) and (1.8.235) we obtain

oS} e—ptC
< M/ p dp < Cy, (1.8.236)
r

/ eAR(N, A) d)
¥1.(r,9)

Ct

where C] = M%, for t > 0.

Similarly, for A € v3(r, d), if 2 # 0 we obtain

/ erR(N, A)d\|| < Cy, fort>0. (1.8.237)
¥3(r,0)
For the case A € v5(r, d), we note that
2m
/ eAR(N, A)dN|| < M/ elm s B 48 < M2mel”. (1.8.238)
y2(r,8) 0

Thus, from (1.8.236), (1.8.237) and (1.8.238) it follows that the integral defined in (1.8.232) con-
verges in L(X) for each t > 0.

We now show that the definition is independent of the curve. Let r,7’,6’,m’ > 0 and let D, be
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the region bounded by the curves I', R, A, S,, given by

I' = D(p,r6)=U_T;(p,r6),
A = Ap,r',m') =U_ Aj(p,r',m'),
where,
Ti(p,r,d) = {se’™>™ serpl},
Da(p,r,8) = {re”; —m/2—6 <v<n/2+5'},
Is(p,r,d0") = {seii(wﬂﬂy); s€rpl}
Ar(p.r'sm’) = {se! T s e ),
Ao(p, 7' ,m)) = {r'e”; —x/2—m' <v<7/2+m'},
Ba(p,r',m) = Ase' ™2™ s €, pl},
Ry = {peine (n/24m n/2+8)),
S, = {pe":ne(—m/2+8, —m/2+m')}.

Figure 1.2:

By analyticity of the function \ — e"*R(\, A) in X5 and by Cauchy’s Theorem, we have

/ eMR(N, A)d\ =0,
aD,
that is,

/ MR\, A)d) + / MR\, A)d) + /
r A

MR, A)dX + / MR\, A)d) = 0. (1.8.239)
RP

Sp

Moreover, the integrals over the two arcs R,, S, tend to zero as p — oo. Indeed, if A € R, then
A = pe' with —Ky < cosn = —K, where Ky and K are positive constants. In this case,

with Ky = M (6" —m'). For A € S,, the estimate is analogous. Therefore, passing to the limit in (1.8.239)
as p — 00, we conclude that

w/2+8
SM/ e_pKdn:Kle_”K%O as p — 0o,
7 /24+m’

/ eMR(N, A) dX
R

P

/ eAR(\, A)dh = lim [ MR\, A)d\ = — lim [ e R(\, A)d)\ = / R\, A) d),
y(r’,m’)

pP—>00 A pP—>00 T ’y(f’,(;/)
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which proves the claim. O

Proposition 1.65 Assume that A satisfies (1.8.230) and (1.8.231). If{S(t)}i>0 is the family of operators
defined in (1.8.232), then the following properties hold:

(i) The operator S(t), t > 0, is linear and continuous on X. There exists C > 0 such that
IS < C, forallt > 0.

(ii) S(0) = I.
(iii) S(t+s) = S(t)S(s), for allt,s > 0.

(iv) For each x € X, S(t)x — x ast — 04.

Proof:

(i) Linearity follows from the linearity of R(A; A) and of the integral operator. Continuity follows
directly from (1.8.236), (1.8.237) and (1.8.238), and from the fact that for ¢ > 0,

3

1
ISl < 5>

=1

/ et’\R()\,A):cd/\H < C|lzl],
I

where C' = C(t).
We now show uniform boundedness. If ¢ > 0, then, from (1.8.232),

1
S(t) —/ eMR(N, A) d. (1.8.240)
v(r,6)

= omi

Performing the change of variables £ = At and using Lemma 1.64, we obtain

dg
7.

1
S(t) = — eER(E/t, A
(t) 2mi s (&/t,A)

Let £ € v1(r,d) and set n = arg&. Defining f(£) = eSR(¢/t; A)1 and taking

x = pceosn = p(p) = ¢'(p) = cosn,
y = psinn = ¢(p) = ¢'(p) = sin,

we have
¢ dg - . / oy
€ R/t A) | < 1 (e(p) +id(p)) e (p) + i (p)]ll dp
Y1 (7,8’ r
< [ e et A ] dp
o] in in [e’e]
< / |€pe Mt |e |dp=M/ ePCOSU@_
r lpen| r p
Since § <n < 37”, there exists a constant C' > 0 such that cosn = —C. Hence,
M/ooepcosn@S%/Ooe—dep:%e—rC.
T. p r J, rC
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Thus,
d e d M
/ e“R(E/t, A)—g < M/ epeosn @l o =10 . (1.8.241)
y1(r,8") t r P rC
Note that Cy does not depend on ¢.
Similarly, if £ € v3(r, '), we obtain
¢ dg
ER(E/t A= || < Cs. (1.8.242)
v3(r,8’) t

Now, if £ € ¥o(r,6"), then & = re?” and, using the parametrisation

x=rcosv=pv)= ¢ ()= —rsiny,

y=rsiny = 6(v) = ¢/(v) = rcos,

we have
§+Z )
I3 df 2 re'” iv . iv 1
e R(&/t,A)—=| < lle™ R(re™ /t, A)ire”™ —| dv (1.8.243)
. t . t
Y2(r,8’) 2
6/+% iv M : 1
< / €™ | ——1 |ire" |- dv
_§5—= |’I’€“j| t

2
e oS gy, < 03’

IN
I
Y i d
r +

N

where (5 is independent of t.

Thus, from (1.8.241), (1.8.242) and (1.8.243), we obtain

1< d¢
IS < g;

t

/ eSR(&/t, A)

Vi

H <y, forallt>0.

(ii) This follows immediately from the definition.
(iii) Let t1,t2 > 0, and let y(r,0) and y(r+c,d’), ¢ > 0, with ¢’ < § and § < ¢’,6 < m, be piecewise
C! curves defined as in (1.8.233). For u € v(r,d) and X € v(r + ¢, §’), define

ettt

fw) = 5=, and g} =M,

Consider the regions E and O, bounded respectively by TUA, 5 and Y UA,, 5, oriented positively,
where

I'= f(’l“, (5) = U?:lﬁl(ra 5)7

Ti(r,8) = {se!™/2t9 .5 ¢ [r, p|},

To(r,6) = {re"; —m/2 -0 < v <7/2+ 6},
T5(r,0) = {—se 72415 € [—p, —1]},
Aps = {pe™sn € (m/2+6,31/2 = 0)};

as in Figure 1.3, and
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A\

Figure 1.3:

YT ="(r+cd)=U_,Ti(r+cd)

Ti(r+c,8) = {2 s € [r + ¢, ]},
To(r4c¢,6') = {pe?;—m/2 -8 <v<m/2+},
Talr + 8) = {—se= I s € [, —(r 4 0N},
Ay ={pe®;0 € (m/2+ 0 ,3m/2 - )}

as in Figure 1.4.

Y. S
Y (reed)

Figure 1.4:

Observe that f(+) is analytic in = and g(+) is analytic in ©. Thus, by Cauchy’s theorem,
f(p) dp =0,
o=
that is,

/,f(ﬂ) du+/ f(p) dp = 0. (1.8.244)
r Aps
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Since |p— A| > || — |A| = p — |A| > 0 for p sufficiently large, we obtain

p 1
PEDYRET
P

as p — 00.

Hence there exists M > 0 such that # < M for p sufficiently large, and therefore

Al
3n/2-6 |6t1pe”’| .
/ f(u) dp / |pi| dn
Aps T

IN

/246 P Al
3w/2—6
M eptl cosn dﬂ
/246

< Me P1R(2(n/240)) = 0, asp— oo,

IN

where k = —ko, ko < 0 is such that kg = maxcosn, n € [§ + 9, 37” — 4.

Hence

/ f(p)du —0, asp— . (1.8.245)
Aps

From (1.8.232) (with ¢’ = ¢), (1.8.244) and (1.8.245) we deduce that

1 ekt

— du =0, forall X €~(r+cd). (1.8.246)
211 ~(r,8) A — 1%

Moreover, by Cauchy’s integral formula, we obtain

/T )\g()\Ld)\—k /A 7;’ A gx = omients, (1.8.247)

P8’

Using the same reasoning as for (1.8.245), we see that

/ gi)qd)\HO, as p — 00.
A, s A—p
Thus
1 eMt2
2 /( o d\ = et2 for all u € y(r,0). (1.8.248)
~y(r4-c,d’

On the other hand,

S(t1)S(tz) = <1>2 /7 - M R(p, A) / eM2R(\, A) d\dp.

y(r+c,8’)

Using the identity
R(ﬂa A) — R()‘v A)

R, A)R(\, A) =
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it follows that

sst) = () / / it s RO A) BOLA)
2mi v(r,0) JSy(r+e,d’) A—pu
1 1 eM2
T 2w e Ry, 4 7/ d\ | du
211 ) ( ) <27rz N (r+c,8") A—pu )

1 1 utr
— MR A) [ —— / C  du) dx
2700y (r4e.8") 270 Jy(rg) A~ 1

Therefore, from (1.8.246), (1.8.248) and the last identity we obtain

1
S(t)Sits) = 5 | L R A= Sl ),
v (r,

which proves item (iii).

(iv) Let « € D(A). From the representation of S(t) we can write

1
St)r —x = — ePR(N, A)zd) — .
21 S5 (r0)

Now consider T = TUAM, where T = U?Zlﬁ and C) is the circle of radius 3 centred at the origin,

as in Figure 1.5.

Figure 1.5:

By Cauchy’s theorem,

e)\t e)\t
——d\= / d\ = 27ie’,
r A o, A=0

where the last identity holds by Cauchy’s integral formula. Thus

e)\t

—d\ = 21,
+ A
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and therefore, using an argument analogous to the previous item, we conclude that

1 At
— =1

21 ~(r,8) A

Using the identity R(A, A)Az = AR(\, A)z — z for all z € D(A) (see (1.4.101)), we obtain

1 . 1
St)x —x 27 o) e <R()\, A) /\) x dA
1 et
= R(\, A)Az dA. (1.8.249)
271'1 ~(r,8) A

We now show that for each x € X we have S(t)z — x as t — 07.
Let « € D(A). Then, from (1.8.249), we have

1 et)\

St)r —x = 5 ) A —R(\, A) Az dX.
We estimate the integral above. Let
ot
fr(\) = TR()\,A)Aw

be a net of functions. We wish to apply the Lebesgue Dominated Convergence Theorem (see [92, p. 1015])
to {ft(A\)}¢>0. To this end, we verify the hypotheses of that theorem.

Note that

tA

e | t/\| t Re(\)
RO A)Aa

e
IR, A [ Az]| <
RY A2

Il fe (M = ‘ ——— M||Az|. (1.8.250)

Claim. There exists 0 > 0 such that e!R°(V) < et 41, for all t € (0,0).

Indeed, write Re(\) = a € R (¢ > 0) and consider two cases:

(i) If @ < 1, then ta < t and thus e!® < ef <ef + 1.

(ii) If @ > 1, define f(t) = (14 €') — e*. From real analysis we know that if f(zg) > 0 and f is
continuous, there exists ¢ > 0 such that f(x) > 0 for all z € (xg — 0,29 + J). For this f, taking
xo = 0, there exists 0 > 0 such that f(t) > 0 for all t € (0,6). That is, for all ¢ € (0,), we have
et < et 4+ 1.

Therefore,

t Re(\) 5

(&
——— M || Az < M Az

L ) Az = % = g0V, (1.8.251)

where the constant K is given by (e + 1)M| Az|. From (1.8.250) and (1.8.251) we see that the net
{ft(A) }+>0 is dominated (for each ¢ > 0) by the function g(\) defined above. We now show that g()) is
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integrable over y(r,d). Indeed,

1
—d\=K -I—/ 7d/\+/ —d\
/7“5 A2 ( L(10) W a(r8) A2 s (r0) |AI? )

which is finite.

Moreover,
tA

. oo € _ 1
t1—1>%1+ fr(A) = tl_l)I(I)lJr y R\ A)Az = )\R()\,A)Al’.

Hence, all the hypotheses of the Lebesgue Dominated Convergence Theorem are satisfied and we

obtain

lim (S(t)z — 7) = —— lim / et/\R(A A) Az dA

t—0+ 2 130+ y(rs) A

ot
= L lim —R()\ A)AzxdA
270 Jy(r,5) t=0F A
1
— —- A)A . 1.8.252
=50 (M))\R(A, )Ax dA (1.8.252)

It remains to show that the integral in (1.8.252) is zero. In order to use the Cauchy—Goursat
Theorem, consider the closed curve I' U A, 5 where I = U?_;T; and

Ap,az{pe*ia;—g—ééﬂﬁgvhd}v

as in the figure below.

A
A(p . d)
I
. r2
AR
I
Figure 1.6:

The function %R(A, A)Az is analytic in the whole region R bounded by T'U Ap’g. Thus, by the

Cauchy—Goursat Theorem,

1
/ Lron Ay azar = o,
FUA,.5 A
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that is,

1 1
/ —R(\, A)Axd) + / —R(\, A)Azd\ = 0. (1.8.253)

r A Aps A

We claim that
1
[ XR(/\’ A)Axd\ — 0 as p — 0. (1.8.254)
As

Indeed,

/ R(\, A) Az dX
Aps A

2 +5 . .
/ —a R pe” % A) Az (—ipe~%) db
_x_g5pe "t

2+5 1 M
S/ 1 Ty 1Azl | = ipe™"|d
_z 5 |pe™| [pe="|

_ M Ax| [

do
p -z
_ MlAl o)
p

E‘Qx

and the last expression tends to zero as p — +o00, which proves the claim.

From (1.8.252), (1.8.253) and (1.8.254) it follows that

1 1
/—R()\,A)Axd)\+/ L RO\ 4) Az dn
T A Aps A

)

1
21t \ p—+oo

1 1
_ R(X\, A) Az dX
27T’L v(r,8) )\

= tl_1)r51+(5(t)m —z).

So far we have shown that lim; ,o+(S(t)x — ) = 0 for every x € D(A). To conclude the proof, we
must extend this to all x € X.

Let (tn)nen be a sequence in Ry with ¢, — 0 as n — +o00. Then, by what we have just proved,
S(ty)r — S(0)z =2z, Vxe D(A),
that is, given £ > 0, we have
IS(tn)x — x| <&, Vae D(A). (1.8.255)
Moreover, from item (i) of this proposition, we have
1S(t)] < C. (1.8.256)

Thus, for the same given € > 0 and any y € X, since D(A) is dense in X, there exists yo € D(A) such
that

lly — yol| < e. (1.8.257)
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Hence, from (1.8.255), (1.8.256) and (1.8.257), it follows that

[S(tn)y —yll = [1SWn)y — S(tn)yo + S(tn)yo — Yo + yo — ¥l
< ISty = S(tn)yoll + 1S (En)yo — yoll + llvo — i
< 1Sy = yoll + 15(n)yo — yoll + llvo — vl
<Ce+e+e=(C+2),

which shows that S(t,)y — y as n — oo for all y € X. Since (¢,) was arbitrary with ¢,, — 0, we conclude
that S(t)x — x as t — 04 for every & € X, which completes the proof. O

Lemma 1.66 Let A be the infinitesimal generator of a Co—semigroup T(t) satisfying |T(t)| < Me“".
Let v > max(0,w). If v € D(A?), then

1 Y4100
T(t)x = / MR(N; Az d),
8!

211 —ioo

and for each 6 > 0, the integral converges uniformly in t fort € [6,1/6].
Proof: See [83, p. 29]. o

0.6 cm

We now proceed to the proof of Theorem 1.63.

Proof: Define )
7/ MR(NA)dN, ift >0,
v(r,8)

Ut) = 27
1, ift=0.

In||U(t
Let A € Ry be such that A > wy :tlim M

linear operator on a Banach space X and A € p(A). Hence A satisfies the hypotheses of Proposition 1.34.

. By hypothesis, A is a closed, densely defined

By Corollary 1.35, we have

1 [T
R\ A" g = —'/ t"e MU (t)x dt.
n. 0
Therefore,
IR A) x| = 1/+00 t”fle*MU(t)xdt
' (n+1)!J,
< 1/-!-00 tn_le_/\tHIHdt
- (n+ 1) J,
C
= el
C
<
- (/\—WO)"

By the Hille-Yosida Theorem, A is the infinitesimal generator of a Cy—semigroup T'(¢) satisfying
|T(t)] < Ce¥t, t > 0. Also, A > max{0,wp}. If x € D(A?), then
1 A+ioco
T(t)x = eMR(N; Az d.

B 2mi A—ioco

It remains to prove that T'(¢t) = U(t) for every ¢ > 0. Let k > r.
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Now consider the path Ay given by

4
A = J AL
=1
where
Ay = {a:a=\+is, —k <s<k},
A = {a:a=s—ik, —k<s<\},
3
Ai = Uri(k7’r7 5)7
i=1
with
Ty(k,r,0) = {—se'"/20). s e [—kv/2,—r]},
Iy(k,r,0) = {—rei“; 5 —0<u< 5 +0},
Ds(k,r,0) = {se”""/2¥9: 5 ¢ [r kv2]},
A = {a:a=s+ik; s€[-\E]},

oriented counter—clockwise, as in Figure 1.7. Note that 0 < 6 < 1.

v

> e Imh=-k
-k 2 |
k
Figure 1.7:
We denote
a+i00
lim [ MR\ A)zd\ = / MR\, A)z d.
k—o0 A]lc a—100
We have

lim MRV A)dN=0, j=24.

k— j
o0 Afc

Indeed, we shall treat the case j = 2, since the case j = 4 is analogous.

/

Note that

A
eMR(\, A)dX :/ eCTRIR(s — ik, A) ds.

2 —k
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Hence
A .
/ MR A)dN|| < / et~ * R(s — ik, A)| ds
A2 _k
A C
— /;k: | COS(kt) — ZSln(kt”m dS
<

A
%/ estds
—k
C st A

- 117

C e)\t efkt
= —|— - — 0.
k |: t t :| k—+o0
Moreover, / eMR(\, A)d)\ = 0, that is,
Ag
4
Z/} eMR(N, A)d\ =0,
i=1 A
and therefore .
lim / MR\, A)d) =0,
k%oo; A?«
that is,
a+100
/ MR, A)d) — / MR\, A)d) = 0.
a—100 I'(r,0)
Thus,
1
T(t)r = — / MR, Az d\ = U(t)z, (1.8.258)
211 ~(r,8)

for every # € D(A?). Since D(A?) is dense in X, it follows that (1.8.258) holds for all x € X, completing
the proof. O

We now turn to the most important result of this section.
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Theorem 1.67 Let T(t) be a uniformly bounded Cy—semigroup and let A be the infinitesimal generator
of T(t), assuming that 0 € p(A). The following assertions are equivalent:

(a) T(t) can be extended to an analytic semigroup in a sector As = {z : |arg(z)| < 0} and || T'(t)| s
uniformly bounded in any closed subsector Ag, 6" < 6;

(b) There exists a constant C' such that, for every o >0, 7 # 0,

1R(o +ir, A)] <
7|
(c) There exist 0 < 6 < w/2 and M > 0 such that
p(A) D% = {)\:|arg)\| < g+5}u{0}

and

M

(d) T(t) is differentiable for t > 0 and there exists a constant C such that

C

lAT@) < 5

By hypothesis, there exists § > 0 such that T'(¢) can be extended to an analytic semigroup in

As ={z € C; |arg(z)| < d0}. (1.8.259)

Moreover, ||T(z)| is uniformly bounded in any closed subsector Ay C As U {0}, 0 < §' < 6. Fix

0 < ¢ < 4. Then there exists M > 0 such that
IT(2)|| <M, VzeAsy ={z¢eC; |arg(z)] <} (1.8.260)
Observe that, since T'(t) is a uniformly bounded Cy—semigroup, we have wy < 0. By Proposition

1.34 we obtain, for ¢ > 0 and 7 € R, that 0 + it € p(A), where A is the infinitesimal generator of T,
and, moreover,

R(o +it, A)x = / e~ CFNIIP (e dt, Yz e X. (1.8.261)
0

First assume that 7 > 0. For each R > 0, define the piecewise C! curve Cr by

4
Cr= U Cr, where Cp1 = {pe=®": pe[1/R,R]}, (1.8.262)

i=1
CR’Q = {Rei”; p e [—5/70]},
CR,3 = {_,0, pe [_Rv _1/R]}7
Cra = {%e ™ pe[0,d]}, with0 <& < Z,

and oriented as in Figure 1.8.
The mapping

zeCr e @Finz c C (1.8.263)
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Im A
1

Figure 1.8:

is an analytic (indeed, entire) function, and since T is an analytic semigroup in Ay, it follows that
(1.8.264)

z€ As e TTITEP() e X

is also analytic.
(1.8.265)

Hence
o= [ a3 [ e
Cr i—=1 7 CR,i

For Cr4 we have
o el (1
/CR4 (‘””)ZT /0 e (otin)ze E(—z)e ”’T(Re “’) dp
& - 1,
Lar(cos(—p)+isin( p))Rdcos(pmsm(p))RiemT(Rew) dp

—*U(cosp+*rsmp)—f'r(cosp 10 sin p) . —ipT =i ) q
e Rze (R ) 0

Thus
(o cos p+7 sin p)— 4 (7 cos p—o sin p) ‘ dp

IN

M [
/]

6/
M/ e—%(ocosp-i'TSinp)dpSEé‘l’

/ e~ (TTITEIP(2) dz
Cra

ply e~ w(@cosptrsing) <1 We conclude that

/ eI (2) dz
CR,a

O i . .
_(U—HT)RemT(Re“))Rew dp

/ e—(a-i-ir)zT(z) dz = /
CRr,2 —&’

since g, 7 > 0 and 0 < p < §

—0. (1.8.266)

lim
R—+4o00

Note that

—(o+i7)R(cos p+isin p)T(Reip)Reip dp

0
e R(o cos p—7 sin p)T(Reip>Reip d,O
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Hence
. —Rr(0ocosp— Tsinp)
|
SRM/ e 20 dp.
s

/ e~ @I () dz
CRr,2

The right-hand side tends to zero as R — +o0, since sin p < 0. Thus

lim

—o. (1.8.267)
R—4o0

/ eI (2) dz
CRr,2

From (1.8.265), (1.8.266) and (1.8.267) we obtain

lim / e~ (TP (3) dz+/ e~ (THTET () dz|| = 0. (1.8.268)
R—roo CRr1 CR,3
We also note that
lim eI (2) dz
R—)+OO CR,I
exists, because
R (o+iT) —is’ 5 5! R (o+iT) —is! 5!
Ii —(o+iT)pe T —1 -8 g < li ’ —(o+iT)pe T —1 d
Jm (] e dp) <t [ e T (e 1 dp
R 7 B ’
< M lim efp(acosé +Tsm6)dp
R—+o0 1/R
M <+
= - 0.
o cosd’ + Tsin ¢’
Therefore, by (1.8.268), the limit
lim e~ OHTET(2) dz
R—+o00 CR,3
also exists. Thus
/ e “HTIT(p)dp = lim e~ THTPT(p) dp
0 R—+o00 1/R
TR (orin-n)
— li —(o+iT)(—p T(—
LN (=r)dp
= — lim eI (2) dz
R—>+OO CR,S
= lim e~ (TTITEP(2) dz
R— 400 CR,I
R ( 44 ) —is’ »6/ 46/
— li —(o+iT)pe T —1 -8’ g
Py (pe™*)e™* dp
- / e (oFim)pe™ " P pe=i0)o=id g (1.8.269)
0

From (1.8.261) and (1.8.269) we conclude that

R(o +ir, A)x = / efi‘;,e*(aﬂﬂ”e_m,T(pefi‘sl)x dp, forall z € X. (1.8.270)
0
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Estimating (1.8.270) we obtain

IRl +im el < [l e e ) alldp (82
0
o0
< M/ e—p(ocosé’+rsin6')||x||dp
0
I
e | I/
ocosd’ + Tsin ¢’
M
whence
C M
R iT, A)|| < —, ith C = —— > 0. 1.8.272
IR +im, ) < S, with 0= (1827)

Now assume 7 < 0. For each R > 0, consider the piecewise C! curve v in A given by

4
YR = U Yri, where ~p1={—pe®; pe|-R,—1/R]}, (1.8.273)

=1
Yr2 = {Re'; p€[0,']},
Yr3 = 1{p; p € [1/R, R]},
Yra = {1/Re~"; p € [-d',0]},

as shown in Figure 1.9.

Figure 1.9:

Again, by Cauchy’s Theorem,
/ e THTET(2) dz = 0. (1.8.274)
TR

Proceeding as in the previous case (7 > 0) we deduce that

lim / e~ (TP () dz|| = 0,
R—+o00 YR.2
lim / eI (2) dz|| = 0.
R—+o00 VR4
Hence
R(o +ir,A)z = lim / e (THTET () dz (1.8.275)
R—o00 o

o . o
= / et g=(o+im)pe® T(pe’ ) dp, Ve X.
0
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Estimating (1.8.275), we obtain

|R(o + i, A)z|| < M||xH/ e=Plocosd’=Tsind") g, (1.8.276)
0
< < v X
~ ocosd —Tsind — Tsiné’”x”’ TEL
whence
C M
] < — - . 0.
1R(o +a7, A)| < —, =5 >0 (1.8.277)

From (1.8.272) and (1.8.277) we conclude that there exists C' > 0 such that

C
|R(c + iT, A)| < &k VYo >0 and 7 # 0, (1.8.278)
T

which proves (b).
(b) = (c)

Since A is the infinitesimal generator of a uniformly bounded Cy—semigroup 7', by Proposition 1.34
we have

{AeC; RA> 0} C p(A), (1.8.279)

and, moreover, by Exercise (1.6.3), for every A € C with R\ > 0 we obtain

M
IR A)| < gy where |T(8)] < M, ¥t > 0. (1.8.280)
From (b) we infer
RN, A)|| < IC‘CAI VA € C with RA > 0 and S\ # 0. (1.8.281)
S

We claim that there exists C; > 0 such that

c
IR\, A)|| < ﬁ VA with RA > 0. (1.8.282)

Indeed, let A be such that R\ > 0. There are two cases:
If |SA] > RA, then

A= (RN + (3N < 2(3N)?,

whence
A <V2I8)N = @ < ﬁ (1.8.283)
From (1.8.281) and (1.8.283) we deduce
IR(X, A < V20 (1.8.284)

Al

and (1.8.282) follows by taking C; > v/2C.
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If |SA] < RA, then
A2 = (RA)? 4 (IN)? < 2(RN)?,

which implies, similarly,

1 V2
A 21N = < .
N < V2RN = TSN
From (1.8.280) and (1.8.285) we obtain
Mv?2
[R(A, Al < T

which also yields (1.8.282).

(1.8.285)

(1.8.286)

Fix o +it € p(A) with o > 0 and 7 # 0. By Corollary 1.35, we have the following Taylor expansion

of R(\, A) around o + iT:

o0

1 d”
ROLA) = Y ——oR(o+im A (0 +i7)"
n=0

o0

= Y O R i, A (o 4 i)

n!

n=0

= Z R(o +it, A)" (o + it — A\)".

n=0
Let 0 < k < 1. Then, for A € p(A) such that

g|<7—&—i7'—/\|§k:,
|7]

the series in (1.8.287) converges absolutely and, since 7 # 0, we have

, k7|
A< —
lo+ir— A < 8

We claim that

p(A) D A = {A€C; SA#0and 0 < [RA| < B} U o).

Figure 1.10:

(1.8.287)

(1.8.288)

(1.8.289)

(1.8.290)
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Indeed, let A € C be such that SA # 0 and |RA| < I%M (see Figure 1.10). Then

R

|RA| < kT’

(1.8.291)

for some 0 < k < 1 (note that this k£ depends on A). In fact, since 0 < |RA| < ‘%M, we have 0 < l%f“ —[RA.

Hence there exists € > 0 such that

SA Y
o<g<%' —mA\g—“C',
and therefore
|SA| S C
Rl < S —e =5 (1 6—%)\0.

Setting k =1 — 5&, we obtain (1.8.291).

It then follows that there exists o > 0, also depending on A, such that

kIS

A
[RA| + 0 < o

Consider o + i3\ € C. Since o > 0 and I\ # 0, we have o + 73\ € p(A) and

.
|a—|—i$)\—)\|=|ﬂ?)\—o’|§|9‘E/\|+0<k%.

Therefore, the series in (1.8.287) converges and hence A € p(A), proving (1.8.290)

N ImA
¥ .
N 7z
N - 7
\\ //
N // [
\\\ 6 e Re}\lzm_}\‘
\\\}/’— /// C
\\ ///
N |
PPN »
xe N Rg
7 N
// \\ )\’
// ~ ]m
p SN. Reh=-
// N
// \\
// \\
- S
Figure 1.11:

Thus
IROA < S IR+, A" o+ — AP
n=0

(1.8.292)

(1.8.293)

(1.8.294)

(1.8.295)

(1.8.296)

Since, for the complex number o + i S € p(A), inequality (1.8.281) holds, (1.8.296) becomes

C
IR(X, A < SN =)

(1.8.297)
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Moreover, for A in the region |[RA| < IQ—C)“, we have

C _(C*+ 1)
[SA| Al

(1.8.298)

On the other hand, putting § = arctan() and defining Ay = {\ € C; |arg\| < 5 + 6} U {0} as
in Figure 1.11, we see that if A € Ay \ A, then (1.8.282) yields

M
RN, A)| < o (1.8.299)

/
where M = max {%, Cl} > 0, which proves (c).

(¢) = ()

From the hypotheses in (c¢) and Theorem 1.63 we have

1
T(t) =5~ /F MR\ A)dN, V>0, (1.8.300)

where T' = {pe’®+3); 0 < p < 400} U{—pe " 9+3); —00 < p <0} C X, with 0 < 6 < § (see Figure 1.12).

ImA
...... 0
............. - »
______________ Re
Figure 1.12:
Let 0 < r < 400 be fixed but arbitrary. Define
1
T,(t) = — R\, A)eMdX, t>0. (1.8.301)
2mi {pei(0+%); O<p<r}U{—pefi(9+%); —r<p<0}
Then T,.(t) is differentiable and
1
T!(t) = — AR\, A)eMdx, t>0. (1.8.302)

2mi {pei(0+%); 0<p<r}u{—pefi(6+%); —r<p<0}
Furthermore,

M
17Ol < 5 M| dA. (1.8.303)

-/{pei(9+72r); 0<p<r}u{—pe7i(9+%); —r<p<0}

Computing the integral above on each of the sets and using that the cosine function is even, we
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obtain

T
/ |6)\t|d/\ _ 2/ eptcos(%+0) dp
{pei(9+%); O<p<r}u{fpe’i(9+%); —r<p<0} 0
2

tcos(G + 0) (c

rtcos(E+0) _ 1). (1.8.304)

From (1.8.303) and (1.8.304) we conclude that

M ™
T < — 25 (ertcos(5+0) _ 1) 1.8.305
1T < oy ) (1.8.305)

Thus the integral [ Ae*R(A, A)dX\ converges uniformly, for every ¢ > 0. Hence (1.8.300) is
differentiable for all ¢ > 0 and

1
= —_/Ae”R()\7A) d\, Vt>0. (1.8.306)
2w Jr

T'(t)
From (1.8.305) we obtain

laz (o)) = o) <

. Vt>0, (1.8.307)

with C = 2 > 0, which proves (d).

(d) = (a)
Since T is differentiable, it follows from Exercise 1.7.1 that
TM(t) = (T'(t/n))", Vn e N*, Vt>0. (1.8.308)
Hence, by the hypothesis in (d) and by (1.8.308), we have
(n) / n Cc\"
IT® @l < I emn < () . veso. (1.8.309)

We claim that

e"nl >n", Vne N (1.8.310)

Indeed, we prove this by induction on n. Clearly, for n = 1, (1.8.310) holds because e > 1. Assume
now that (1.8.310) is valid for some n > 1, that is,

nle™ >n'. (1.8.311)

We prove that (1.8.311) is valid for n+ 1. Equivalently, we shall prove that (n+1)+1In((n+1)!) >
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(n+1)In(n+1). In fact,

m+1)+In((n+1))) = n+1+In((n+1)n!)
n+1+4+In(n+1)+Inn!
(n+Inn!l)4+1+In(n+1)
nlnn+1+In(n+1)

"1
ln(n—|—1)+1+n/ —dx
1 x

ln(n+1)+n/ fdx—i—n/ —dz
1z n 4

KA O

= ln(n—|—1)+n/ ———dx
1 n+lx

= In(n+1)+n(n(n+1) —1n(1))

= (n+1)n(n+1),

v ol

vV

which proves the claim.

From (1.8.309) and (1.8.310) we conclude that

1 Ce\"
—r™w)< (=) . 1.8.312
A< (5) (18312
Now consider the power series
T(z)=T(t o~ L) )" 1.8.313
(2) = ()+§_1 o =) (1.8.313)

with ¢t > 0 and z € C. Proceeding formally, from (1.8.312) we infer

(n) —\"
(z—t)"| < ”Tni,(t)”p — < (W) . (1.8.314)

(") (t)
n!

Thus, from (1.8.314) we conclude that the series in (1.8.313) converges uniformly in £(X) for every
0 <k <1 and all z€ C such that

Celz —t] tk
— <k —1 —. 1.8.31
; < = |z-t< Co (1.8.315)

Now, setting ¢ = arctan(1/Ce) we obtain 0 < § < 7/2, and defining
A ={z eC; |arg(z)| < 0}, (1.8.316)

we see that the series in (1.8.313) converges uniformly in A (see Figure 1.13).

Indeed, let z € A. Then

1 1
|arg(z)| < arctan(@> < |tan(argz)| < o (1.8.317)
— B L
Rz Ce
= [92] < %.
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VEZZZ N

Figure 1.13:

From (1.8.317) it follows that there exists k € (0, 1) such that

Rz

Szl < k—. 1.8.318
92 < ks (18318)
Choosing t = Rz > 0, we deduce
Rz kKt
-t =1 k— = — 1.8.319
o=t = 92| < b = =, (18:319)

which proves the assertion. Moreover, if 0 < ¢’ < 4, then
Ay ={2€C; |argz| <&} C A, (1.8.320)

and hence there exists 0 < kg < 1 such that

ko
& t —) ) 1.8.321
< arc an(ce <9, ( )
and, therefore, for z € As/, we infer
tko Cel|z —
-t < — = — <k 1.8.322
o=t < o <k, (18322)

with ¢ = Rz > 0. Thus, by (1.8.314) and (1.8.322),

oo

T (t)

TN < > GOl
n=0 .
[ Celz —t|\"
< il g
< L%

00 1 o
< kM= —  V Ags
= 7;00 1*]{307 z e )

that is, {T'(2)}.ea is uniformly bounded in every closed subsector of A, which completes the proof. O

1.8.1 Exercises

1.8.1) Let T'(t) be a Cp—semigroup which is differentiable for ¢ > 0, and let A be the infinitesimal

generator of T'(t). If
1
limsup t|AT(t)]] < =,
t—0 €
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prove that A is a bounded operator and that T'(t) can be extended analytically to the whole complex
plane.

1.8.2) Let A be the infinitesimal generator of a Cy—semigroup 7'(t) satisfying | T'(t)| < Me“’.
Prove that T'(¢) is analytic if and only if there exist constants C' > 0 and I > 0 such that

AR\, A)" | < % for A\>nl, n=1,2,...

1.9 Spectral Properties

Let T'(t) be a Cp—semigroup on a Banach space X and let A be its infinitesimal generator. In
what follows we are interested in the relationship between the spectrum of A, o(A4) = C\p(A), and the
spectrum of each operator T'(t), t > 0. From a purely formal point of view, one might expect the relation
o(T(t)) = !4, However, this is not true in general. There are counterexamples (see Exercise 1.9.1,
and also Pazy [83], p. 44) which justify this assertion.

Proposition 1.68 Let T(t) be a Co—semigroup and A its infinitesimal generator. Define

¢
BA(t)x:/ AT (5)x ds.
0
Then

(i) (M — A)By(t)x = eMa —T(t)z, forallz e X.

(i1) Ba(t)(M — Az = M — T(t)x, for all x € D(A).

Proof: First observe that B)(t), for each fixed A and ¢, is a bounded linear operator on X. Linearity is
immediate, so it remains to show boundedness. In fact, we have

t
/ AT (5) 2 ds

0

IB\(Ollcce) = w‘
A

t
<sw/wWﬂMMWSM
A

where M = M (A, t), which proves the claim. Moreover, for every € X we have

T(h)—1I I
T =1 By(t)x = 7/ AMIT(h + s)x ds (1.9.323)
h A

1 t

—— [ T (s)xds.

h Jo

From the first integral on the right-hand side of (1.9.323), we obtain

1 teW—S)T(ths)a:ds - ! h+te’\(t_§+h)T(§)scd§ (1.9.324)
i) i), 9.

e)\h h+t B
= T ek(t_S)T(g)f,C ds.
h
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Thus, from (1.9.323) and (1.9.324) we deduce

1 [tth 1 [P
+ 7/ e’\(t_S)T(s)xds—f/ A=) (5)x ds.
h Ji h Jo

Taking the limit as h — 0T in the last equality, and using the Mean Value Theorem (see Exercise
1.1.5 (v)), we obtain

lim (T(hl)l_f> By(t)x = ABy(t)x + T(t)z — M. (1.9.325)

h*>0+

From (1.9.325) it follows that By(t)z € D(A) and that
AB\(t)x = ABx(t)x + T(t)x — eMa,
or equivalently,
(M — A)B\(t)z = (eM —T(t))z, forallze€ X, (1.9.326)

which proves item (i).

Now let € D(A). Then limy_,q (%) x exists and limy, g (%) x = Az. Proceeding with
B,\(t) (%) z in a way analogous to the previous argument, we obtain

By(t)Az = ABy(t)x + T(t)x — ez,

or equivalently,
Ba(t)(M — Az = Mz — T(t)z.

This establishes (ii).

From what we have seen above, we also obtain
By (t)Axz = ABy(t)x, for all x € D(A), (1.9.327)

that is, the operators By and A commute on D(A). a

Proposition 1.69 Let T(t) be a Co—semigroup and A its infinitesimal generator. Then

o(T(t) D@ fort >0.

Proof: Let t > 0. If t =0, then
"W ={BecC; B=e? Aco(A) and t =0} = {1}.
Moreover, note that 1 is an eigenvalue of T'(0) = I, hence 1 € o(T(t)), and therefore ') C o(T(t)).

If t # 0, we have two cases to consider: p(T'(t)) # @ or p(T'(t)) = 0. If p(T'(t)) = 0, then o(T'(¢)) = C
and the inclusion (1) € ¢(T'(t)) is trivial. Now assume that ¢ # 0 and p(T(t)) # . Then there exists
B € p(T(t)), and we write 3 in the form 3 = e*. Let e* € p(T'(t)) and set Q = (e*I — T'(t))~1. First
note that the operator B)(t) defined in Proposition 1.68 and the operator @) defined above commute (we
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leave this verification to the reader; see Exercise 1.9.2). It follows from Proposition 1.68 that
(M —A)B\(t)Qx =z, forallz e X, (1.9.328)
and

QBA(t)(AM] — A)x =z, forall z € D(A). (1.9.329)

Since By (t) and @ commute, we have

Br(t)Q(AM — A)x = (M — A)Bx(t)Qz =z, for all x € D(A). (1.9.330)

Therefore, as By(t)Q € L(X) and By(t)Q = (M — A)~!, we conclude that A\ € p(A) and hence
eM € eP(At Thus p(T(t)) C e”A?, and consequently
Wt ¢ o(T(t)), forall t >0,

which completes the proof. O

Recall that the spectrum of A consists of three mutually disjoint parts: the point (or discrete)
spectrum o, (A), the continuous spectrum o.(A), and the residual spectrum o, (A), which are defined as
follows: A € o,(A) if AT — A is not injective; A € o.(A) if AT — A is injective, AI — A is not surjective
and its range is dense in X; and finally A € 0,.(4) if (A — A) is injective but its range is not dense in
X. From these definitions it is clear that o,(A), 0.(A4) and 0, (A) are mutually disjoint and their union
is 0(A). In summary:

op(A) = {AeC; (M — A) is not injective},
o.(4) = {AeC; (M — A) is injective, not surjective, but its range is dense},
o-(A) = {Ae€C; (M — A) is injective but its range is not dense}.

Theorem 1.70 Let T(t) be a Co—semigroup and A its infinitesimal generator. Then
etor ) c o (T (1) C etor™ U {0},

or more precisely, if X € a,(A), then e € a,(T(t)); and if e* € 0,(T(t)), there evists k € N such that
A = A+ 2mik/t € 0,(A).

Proof: We first show that

etor ) g (T(t)). (1.9.331)

Indeed, if A € 0,(A), then there exists zy € D(A), z¢ # 0, such that (Al — A)zy = 0. From the
identity

BA(t)(M — A)z = (eMI —T(t))z, for all x € D(A) (see Proposition 1.69),
we obtain
(eMI —T(t))zo =0,

and hence e* € 7, (T(t)), which proves (1.9.331).
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We now prove that

o, (T(t)) C etor@ U {0}. (1.9.332)

Indeed, let B € o, (T'(t)). If B = 0, the inclusion is trivial. If 3 # 0, we may write 8 as 8 = e €
op(T(t)) and choose zg # 0 such that (eI — T(t))zo = 0. We claim that the continuous function f
defined by f(s) = e **T(s)z¢ is periodic with period ¢, i.e., f(s+t) = f(s). Indeed, first observe that

(e)‘tI —T(t))zo = 0 < T(t)zo = eMig.
Then

fls+t) = e MNHIT(s41¢

which proves the claim. Since this function is not identically zero, at least one of its Fourier coefficients
must be nonzero. Hence there exists k € N such that

t
T = / e~ RTINS (o =AST(8)g) ds # 0. (1.9.333)
0

We shall show that A\, = A + % is an eigenvalue of A. Indeed, since T'(t) is a Cyp—semigroup,
there exist constants M > 1 and w € R such that

IT(@)] < Me".

By Proposition 1.34, for every p € C with i > w, we have u € p(A) and, moreover,

0o (n41)t
R(u, A)zo / e " T(s)xgds = Z/ e MT(s)xgds (1.9.334)
0 n

n=0""nt

oot
= Z/ e MO (r 4 nt) g drr (1.9.335)
= Ze”o‘ ")t/ e P e AT (1 4 nt) o dr

¢
= Ze"()‘ “)t/ e AT AT P (1 4ot drr

0

t
_ Zen()\ u)t/ e ;u‘ekre )\TT( )xO dr

0

= Ze"()‘ ”)t/ e *T(s)xgds

0

= (1—6(/\ “)) 1/ e M (s)xg ds.
0

The last integral on the right-hand side of (1.9.334) is an entire function, and therefore R(u, A)xg
can be extended to a meromorphic function with poles at A, = A + 27”” , n €N (see [44], pp. 169, 184).

We claim that

hm (M M) R(p, A)xg = xp,. (1.9.336)

B
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Indeed, from (1.9.334) we can write
-1 t
(1t — Ae)R(p, A)zo = (p— M) (1 — e(’\_“)t) / e " (s)xg ds.
0

Passing to the limit as p — g in the last identity and using L’Ho6pital’s Rule, we obtain

t
lim (u— Ag)R(p, A)xo = %/ e ST () ds,
0

B Ak

and, recalling that A\ = A + 27;“6, we have

t
/ 67(27”-]6/”5(67)‘87_'(5)1‘0) ds = Tk,
0

lim (p = Ap)R(p, A)o =

1
p.—))\k t

which proves (1.9.336).

From the proof of Proposition 1.34 we know that, for every € D(A), AR(u, A)x = R(u, A)Ax =
uR(p, A)x — x. Thus

(Ml = A)[(1 = Xe) R(ps A)zo] = N (e — M) R, A)wo — pu(pe — i) R(p, A) o + (1 — Ak)wo.
Letting pu — A and using (1.9.336), we obtain

lim ()\kf — A) [(u — )\k)R(,u, A)l‘o] = /\ka:k — )\kxk + 0=0.

B Ak

Since A is closed and

{(n = M) R(p, A)xoy < D(A),

lim (p— Ag)R(p, A)zg =,
H—Ag
lim A(p— Ag)R(u, A)xg = Ak,
H—> A

it follows that =3 € D(A) and Az, = A\pxg. Hence Ay is an eigenvalue of A, that is, Ay € 0,(A), and

therefore e*t € eto»(4) But

A oAkt 2mki _ Akt

e =€

Thus e* € et?»(4) | which proves the result. O

1.9.1 Exercises

1.9.1) Prove that, in general, the relation o(T(t)) = €/ does not hold by constructing a
counterexample.

1.9.2) Prove that the operators By and Q = (e*I — T'(t))~! given in Propositions 1.68 and 1.69
commute.

1.9.3) Let T'(t) be a Cp—semigroup and A its infinitesimal generator. Prove that:
(i) If A € 0,(A) and none of the \,, = A + 27win/t, n € N, belongs to 0,,(A), then e* € o,.(T(t)).

(ii) If e* € 0,.(T(t)), then none of the \,, = A + 27win/t, n € N, belongs to 0,(A) and there exists
k € N such that A\ € 0,.(A).

1.9.4) Let T'(t) be a Cp—semigroup and A its infinitesimal generator. If A € o.(A) and none of the
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An = A+ 2min/t belongs to 0,(A) U o,.(A), prove that e’ € o.(T(t)).
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Chapter 2

The Abstract Cauchy Problem

2.1 The Homogeneous Problem

Let (X, -]|) be a Banach space, A : D(A) C X — X a linear operator on X, and for each ug € X
consider the Abstract Cauchy Problem:

du
a(t) = Au(t), t>0,

u(0) = uyg,

(2.1.1)

Definition 2.1 A function u : Ry — X is called
(a) a classical solution (or strong solution) of (2.1.1) if:

1) u is continuous for all t > 0;

1) u is continuously differentiable for t > 0;
iii) u(t) € D(A) for all t > 0;
w) u satisfies (2.1.1).

(b) a mild solution (or generalised solution) of (2.1.1) if:

i) w is continuous for all t > 0;

¢
i) /0 u(s)ds € D(A) for allt > 0;

iii) u(t) = A/O u(s) ds + ug.

The second condition appearing in (2.1.1) is called the initial condition of the problem, and ug its
initial value. Note that, since u(t) € D(A) for all t > 0 and w is continuous at ¢t = 0, problem (2.1.1)
cannot admit a classical solution if ug ¢ D(A).

Lemma 2.2 Let A be a closed operator. For each x € D(A), set |z|pay = ||zl|x + [|Az]x. Then
| - Ipcay is a norm on D(A) and (D(A), || - | pca)) is a Banach space. The norm || - || pay is called the
graph norm.

Proof: The verification that || - |p(4) is a norm on D(A) is left to the reader. We shall prove that
(D(A), || - lp(a)) is a Banach space. To this end, let (z,)nen be a Cauchy sequence in (D(A), || - ||pa)),
where [|2[|p(a) = [|z||x + [|Az|x. Then

|ln — Zm|lDay = 0 as m,n — +oo.
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Hence
[0 = 2l ) = ll2n — Tllx + | AT — Azmllx — 0 as myn — +oc.

Thus ||z, — Zm||x — 0 and ||Az,, — Az, || x — 0 as m,n — +o00. Since X is Banach, there exist z,y € X
such that x,, — x and Az, — y. However, as (x,, Azx,) € G(A) and G(A) is closed, we get (z,y) € G(A),
that is, y = Az. Therefore z,, — x in (D(A), |- [|pa))- O

Theorem 2.3 Let A be the infinitesimal generator of a Co—semigroup S. Then:

(a) for each ug € D(A) there exists a unique function
u € ([0, +00); D(A)) N C([0, +00); X),

called the regular solution of the Cauchy problem in (2.1.1). Moreover, if S is a contraction semi-

group, then

du
<t>H — Au()]| < | Auoll ¥t > 0.

<
lu(®)]| < lluol|  and \ i

(b) If ug € X, there exists a unique mild solution of the Cauchy problem in (2.1.1).

Proof: (a) Let ug € D(A) be given and set

u(t) = S(tyug, t>0. (2.1.2)

By Proposition 1.30 we have u(t) = S(t)ug € D(A) for all ¢ > 0. Moreover,
du
—2(1) = AS(t)ug = S(t)Aug, 'Vt 2 0. (2.1.3)

From (2.1.2) we obtain, in particular,

From (2.1.3) and (2.1.4) we conclude that the map u defined in (2.1.2) indeed satisfies (2.1.1).

Now, since S is a strongly continuous semigroup, if tg € [0, +00) and t, — tg in [0, +00), then by (2.1.2)
and (2.1.3) we have

llw(tn) —u(to)]| = 0 asn — 400, (2.1.5)

and
|Au(t,) — Au(to)|| = 0 asn — 400, (2.1.6)

that is,
[u(tn) — u(to)llpea) = llu(tn) — ulto)llx + [[Au(tn) — Aulto)|x — 0

as n — 400, which shows that
u € C°([0,400); D(A)).

Also, by (2.1.3), (2.1.5) and (2.1.6), we obtain

uECO([O,+oo);X) and %ECO([O,—FOO);X),

that is,
u € C°([0,400); D(A)) N C* ([0, +00); X),

which proves that the map u defined in (2.1.2) is indeed a strong solution of (2.1.1).

We now prove uniqueness. Let u and v be two solutions of (2.1.1). Then w = u — v satisfies the
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Cauchy problem

dw
{ E(t) = Aw(t), t>0, (2.1.7)

Let t >0and 0 < s <t < +oo. If |h| <t —s, then

d%[s(t — s)w(s)] = lim S(t—s = hu(s +hh> — S(t— sjw(s) _
= lim {S(t —s—h)w(s+h)—S({t—s—h)w(s)+S{t—s—h)w(s)—S{t—s)w(s) } (2.1.8)
h—0 h .

We claim that

’llii% S(t—s—h) (W) = S(t — s)w'(s) = S(t — s)Aw(s), (2.1.9)

where the last equality follows from the fact that w(t) is a solution of (2.1.7). Indeed,

‘S(t— s—h) (%) - S(t—s)w’(s)H -
- HS(t s B (MDY §(t s — By (5) + S(t — s — h)uw'(s) — S(t - s)w'(s)H
< HS(t — s — b (M=) () H ISt — 5 — h)w!'(s) — S(t — s)w!(s)]| = O

as h — 0, since on bounded intervals ||S(t — s — h)|| < M,

. w(s+h)—w(s) ,
e

and S is strongly continuous. Hence (2.1.9) is proved.

Next, we prove that

lim (S“ —5- h]i el Gl S)> w(s) = —S(t — s) Aw(s). (2.1.10)

Indeed, we distinguish two cases: h < 0 and h > 0.

(i) h < 0. In this case —h > 0 and thus

<S(tsh25‘(t5))w(s)

S(—h) — 1

Il
|
n
=~
|
=
N
|
>
——
g
©
1
|
W
e
|
=
N
g
©

as h — 0_, since S(t — s) € £(X) and hlirgf <S(_h)_1> w(s) = Aw(s).
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(#4) h > 0. In this case,

(P u —ste -y (T2 >)w 9

t—s—nh

_h w

ste=s - (=5 ) wto
St—s—th (Sh 1)w

s )KSh])l I
i

h
== s =) (T wls) - A - s - s - 0wt

t—s—

) ule) = Au(s) + Au(s)

and, since S is strongly continuous, ||S(t — s — h)]|| is bounded on bounded intervals, and

lim (S(hz_[) w(s) = Aw(s),

h*)0+

we obtain

lim <S(t —s—h) = St - 5)) w(s) = =St — s)Aw(s).

h—>0+

Thus (2.1.10) is proved.

Therefore, from (2.1.8), (2.1.9) and (2.1.10), for 0 < s <t < 400 we obtain
d
o [S(t—s)w(s)] = S(t — s)Aw(s) — S(t — 5)Aw(s) = 0,

which implies that
St —s)w(s) = c(t), (2.1.11)

where ¢(t) is a constant with respect to s. If s,, — ¢, then S(t — s,,)w(s,) — S(0)w(t), hence

and since S(0) = I we get
w(t) =c(t) Vi>0. (2.1.12)

and since w(0) = 0 it follows that ¢(t) = 0 for all ¢ > 0. Returning to (2.1.12) we conclude that w(t) =0
for all ¢t > 0, that is, u(t) = v(t) for all ¢ > 0, which proves uniqueness.

Finally, if S is a contraction semigroup, then from (2.1.2) and (2.1.3) we have
[u@®)] = [1S@uoll < (IS luoll < {luoll vt =0,
and

1)

which completes the proof of (a).

du
t H — | AS(t)uo] = [15(8) Auo]| < SO [ Auo] < [ Auoll, Ve 0,

(b) By Proposition 1.30, item (iii), if S is a Cp—semigroup with infinitesimal generator A, then,
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given r € X, , .
/ S(€)xdé € D(A) and A/ S€)xdé = St)r —x,
0 0

that is,

t
St)x = A/ S xdé + z, forxe X. (2.1.13)
0

Let u(t) = S(t)up. From (2.1.13) we have u(t) = A fo s) ds—+wuy, that is, u satisfies condition (iii)
in Definition 2.1 (b). Moreover, by item (iii) of Proposmon 1.30, we have fo s)ds € D(A), so condition

(ii) in the definition of mild solution is satisfied. Finally, we check condition ()7 i.e., the continuity of
u(t) for all £ > 0.

Let t,, — to in RT. Then
lu(tn) —u(to)ll = [|S(tn)uo — S(to)uol — 0,

as n — +oo, since S is strongly continuous. Hence u(t,) — u(tp), which implies that « is continuous
for all t > 0, i.e., u € CY([0,4+00); X). Thus u(t) = S(t)uo is a mild solution of the Cauchy problem in
(2.1.1).

To complete the proof, we show uniqueness of this mild solution, in two steps.
Step 1: ug = 0.

In this case, it is immediate that u(¢t) = 0 is a mild solution of (2.1.1). Suppose that u is a mild
solution of (2.1.1) for up =0 and fix ¢t > 0. Then, for each s € (0, ),

% <S(t —3) /OS u(r) dr) =St —s)u(s) —S(t—s) A/OS u(r) dr = 0. (2.1.14)

Integrating (2.1.14) over (0,t) with respect to s we obtain

and applying A to both sides we conclude that u(t) = 0 on (0,¢) and, since «(0) = 0, we have u = 0.
Hence, if u is a mild solution of (2.1.1) with ug =0, then u = 0.

Step 2: Let v, w be mild solutions of (2.1.1) and consider u(t) = v(t) — w(t) for t € R*. Note that

A/ ds-A/ ds—A/ v(t) —w(t) =wu(t), forug=0,

that is, u satisfies condition (iii) in the definition of mild solution. In addition, u is continuous (for all
t > 0) since v and w are, and also fo s)ds € D(A). Thus w is a mild solution of (2.1.1) with ug = 0.
By Step 1 we conclude that u = 0, i.e. v(t) = w(t) for all ¢ > 0. This proves uniqueness of the mild
solution and completes the proof of the theorem. O

0.4 cm We now complete Theorem 2.3 by showing that the solution u of (2.1.1) is more regular
under additional assumptions on the initial data. Recall that, since A is the infinitesimal generator of a
Cy—semigroup, it is a closed operator. For each k € N, k > 2, we define

D(AF) = {v e D(A*Y); A v e D(A)}, keN, k>2. (2.1.15)
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We shall prove that D(A*) is a Banach space with norm
1/2

k
lullpeary = { D 1A%l | (2.1.16)
7=0

Indeed, let {u,},en be a Cauchy sequence in D(AF) and let p,v € N with v > pu. Then, as
v, [ — +OO,

k
[, — uu||%(Ak) = Z AT, — A, |5 — 0.
§=0
From this convergence it follows that for each j = 0, 1,..., k the sequence {A7u, }, ey is Cauchy in

X. Hence, for each j € {0,1,...,k} there exists u; € X such that, as v — +oo0,

Ay, — u; in X.

We now show that ug € D(AF). Since A is closed, we have

ug € D(A) and Aug = uy. (2.1.17)

Similarly,
u; = Aug  and  A%ug = us. (2.1.18)

Proceeding by induction, we obtain
Uj_1 = A" lug € D(A) and  Alug = uj, j=1,...,k,

which proves the claim.

Theorem 2.4 Let A be the infinitesimal generator of a Co—semigroup S such that A € G(1,w). Suppose
that ug € D(AF), with k € N, k > 2. Then the solution of problem (2.1.1) also satisfies
ue C*9([0,00); D(AY))  forj=0,1,... k.

Proof: We start with the case k = 2 and let ug € D(A?). Consider the initial value problem

dv
7 = Av), (2.1.19)
v(0) = Aug.

By Theorem 2.3, v(t) = S(¢) Aug is the unique solution of (2.1.19) and satisfies

v e O([0,00); D(A)) N CL([0, 00); X).

Since u is the solution of (2.1.1) with initial data ug, we have

du

v(t) = S(H) Aug = AS(t)uo = Au(t) = —-(t), ¥t >0, (2.1.20)
that is, p
i € C([0,50): D(4)) N C((0,00): X)),
and therefore
u € C*([0,00); D(A)) N C3(]0,00); X). (2.1.21)
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It remains to show that
u € C([0,00); D(A?)).

Indeed, since u is the solution of (2.1.1), we have
w=S(Ju € C(0,00); D(A)).

Thus, if {¢,} C [0,00) and ¢ € [0,00) are such that ¢, — ¢, then

[u(tn) = u(to)p(ay = lultn) = ulto)llx + |Au(tn) — Aulto)l[x — 0.

Moreover, since v € C([0,00); D(A)), we have
[o(tn) = v(to)llp(ay = [lv(tn) = v(to)llx + [Av(tn) — Av(to)l x — O,
and, as v = Au, it follows that
1A% u(tn) — A%u(to)||x = | Av(ts) — Av(to)|x — 0.
Therefore

[utn) = u(to)llpazy = [lultn) = ulto)llx + [[Au(tn) — Aulto)x
+HAu(tn) — A%u(to)llx — 0,

and hence u € C([0,00); D(A?)). This proves the claim for k = 2.

(2.1.22)

(2.1.23)

(2.1.24)

Now suppose that the result holds for & — 1 and we prove it for k. That is, if ug € D(A¥), then

k
u€ m C*=9(]0, 00); D(A%)).
7=0

Indeed, we have Auy € D(A*~!) and, by the induction hypothesis,

k—1
b= S()Aug € (] C5I71([0, 00); D(AT)).
=0
But

ult) = () Aug = 22 (1),

where u(t) = S(¢)ug, and hence
k-1
u € ﬂ C*=3(]0,00); D(A%)).

Jj=0

It remains to show that
u € C([0,00); D(A¥)).

From (2.1.25), with j = k — 1, we have

Au = v € C([0,00); D(A*1)),

(2.1.25)

(2.1.26)
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so u(t) € D(A¥) for all t > 0, and moreover

[Au(tn) — Aulto) par-1) = [[Au(tn) — Aulto)|x + -+
+H A (Au(tn)) — AP (Au(to))llx
= [A%(ta) = A%(to)llx + - + | A u(tn) — APu(to) | x
— 0, (2.1.27)

as t, — to in [0,00). By Theorem 2.3, u € C([0,00), D(A)), hence
[u(tn) — ulto)l|lx — 0.

Thus
[u(ts) — uto)lp(ary — 0

as t, — to, which proves (2.1.26) and completes the proof of the theorem. |

Theorem 2.5 If A is the infinitesimal generator of a differentiable Cy—semigroup, then for each ug € X
there exists a unique function

u € C°((0,+00); D(A)) N CO([0, +00); X) N C*((0, +00); X)

which satisfies

du .
E(t) = Au(t), in (0,+00),
u(0) = up,

and
ue CF((0,+00); D(AY)) Vk,l €N,

Proof: Defining u(t) = S(t)up for all ¢ > 0, we obtain

du :
E(t) = Au(t), in (0,+00),
U(O) = Uy,

since S is a differentiable semigroup. Moreover, by Theorem 1.60, the map

t € (0,00) — AS(H)ug = %(t)

is continuous, hence

du du

S tn) = S t0)| = IAS(ta)uo — AS(to)uollx — 0,

X

to)

as t, — to in (0,00). Also,

[u(tn) = ulto) | x = [[S(tn)uo — S(to)uolx — 0,

and we conclude that
u € C°((0,00); D(A)) N CH((0, 00); X).

Since S is a Cy—semigroup, we also have

u € C°([0,00); X),
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hence
u € C°((0, +00); D(A)) N CO([0,4+00); X) N C*((0, +00); X).

Uniqueness follows from the same arguments used in Theorem 2.3.

Finally, let k,I € N be given. Since S is a differentiable semigroup, u(t) = S(t)uy € D(A!).
Moreover, the map ¢t € (0,00) — S(t)up = u(t) € X is k—times continuously differentiable by Theorem
1.60, and thus

u € C%((0,+00); D(AY).

O

Lemma 2.6 Let A be a dissipative operator on a Hilbert space H and u : [0,00) — H a continuously

differentiable function satisfying

du
- — > 0.
o (t) = Au(t), Vt>0

Then ||u|| is a decreasing function.

Proof: Since

we have

Moreover,

Ld

S Sl = 5, u) =

that is,

() = Re(u(t), Au(r)

2 dt ’ '
Integrating the last identity from s to ¢, with 0 < s < t, we obtain

Sl = Sl = [ Re(u(r). Au(r) dr < 0

since A is dissipative. Hence
[u@®)|l < flu(s)]| for 0 <s <t.

O

Lemma 2.7 Let A be a dissipative and self-adjoint operator on a Hilbert space H and let u € C?([0,00); H)

satisfy . p
u u 9
T Au  and Tz Au
Then J )
u
— ()] < = .
G0 < o

Proof: Notice that d
u

— |0 — H
L 10,00)

is a continuously differentiable function satisfying

d (du\ 5 L (du
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d
and since A is dissipative, Lemma 2.6 implies that || ditLH is a decreasing function. Thus, for T' > 0,

T U T U 2 U 2 2
/0 (Au(t),%(t))tdt:/o ‘C%(t) tdt > Hflt(T) % (2.1.28)
On the other hand, since A is self-adjoint and
(Au, ‘5;) (Au, Au) = || Au||? € R,
we obtain
%(u(t),Au(t)) = (%(t),Au(t)) + (ul®), %Au(t))
= (B0, Au) + (utt), A2u(0)
- 2(%@),@@)), (2.1.29)
and, integrating by parts,
T
/0 (f;( 0. Au(t))rde = %/O %(u(t),Au(t))tdt
- L), auryr -1 / T(u(t) Au(t)) dt. (2.1.30)
2 ’ 2 o ’
Moreover,
thl\ u(t)[|* = Re(u(t), Au(t)),
and since
(u(t), Au(t)) = (Au(t), u(t)) = (u(t), Au(t)),
we have

(u(t), Au(t)) € R,

hence
) = (u(t), Au)),
and consequently .
DI = SO = [ (@), Au) ar
Thus
2 2 T U U
G| 5 < A(moigﬂmmj;@g>moﬁﬁ
= (), AT — (D) + )]
and since 1 ) 1 ,
S (D), Au(T)T, ~ (D> <0,
we obtain
%@ 25 < shuo.
or equivalently
|% 0] < Lo < Hao)
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Proposition 2.8 If A is an m—dissipative and self-adjoint operator on a Hilbert space H, then the
Cy—semigroup S generated by A is differentiable.

Proof: Let x € H and ¢t > 0. We prove that S(t)z € D(A).
Since D(A?) is dense in H, there exists a sequence {x,} C D(A?) such that x, — x in H. Now,
1S@)an = SE)xller < 1SOl e llen — 2,
and since z,, € D(A?) for all n € N, Theorem 2.4 gives S(-)x,, € C?([0,00); H) and, moreover,

d d? 2

Thus,
1
[AS )2y — AS()am | i = [|AS(t)(xn — @m)lla < ?Hxn — Tmllm,
by Lemma 2.7. Hence, as n — oo we have S(t)x, = S(t)x in H and AS(t)z, — y in H, for some y € H,
since H is complete. As A is closed, it follows that S(t)z € D(A) and y = AS(¢)x. O

2.2 Sesquilinear Forms and Semigroups

Let V and H be complex Hilbert spaces, whose inner products and norms we denote, respectively,
by ((+,)),] - || on V and (-,-),| - | on H, such that

V< H, (2.2.31)

where — denotes the continuous embedding of one space into the other. We also assume that

V is dense in H. (2.2.32)

Let

a:VxV-—C (2.2.33)

(u,v) — a(u,v)
be a continuous sesquilinear form. We define

D(A) = {u €V; veVra(u,v) is continuous with respect to the topology induced by H}.(2.2.34)

In other words, in D(A) we collect those elements u € V' for which the antilinear form

gu:V = C (2.2.35)

v — gu(v) = a(u,v)

is continuous when V is endowed with the topology of H.
Consider the set

M := {u € V; there exists f € H such that a(u,v) = (f,v), for all v € V}. (2.2.36)

Claim 1. D(A) =M.
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Indeed, note that D(A) # () because 0 € D(A).

Let w € D(A). Since V is dense in H, we can extend the continuous antilinear map g,, in (2.2.35)
to a map

Gu : H— C,
which is antilinear and continuous, and satisfies

gu(v) = gu(v), forallveV. (2.2.37)

By the Riesz representation theorem, there exists a unique f, € H such that

Gu(v) = (fu,v), forallve H. (2.2.38)

In particular, from (2.2.35), (2.2.37) and (2.2.38) we obtain

a(u,v) = g, (v) = gu(v) = (fu,v), forallveV. (2.2.39)

Thus v € M and so D(A) C M.

Conversely, let w € M. Then there exists f € H such that a(u,v) = (f,v) for all v € V. We show
that the map in (2.2.35) is continuous when V' is endowed with the topology of H. Indeed,

|9u (V)] = lau, v)| = [(f,0)| < |f[[v],  forallveV,

which shows that M C D(A).

Remark 2.9 From the above discussion we obtain a new characterisation of D(A), namely

D(A) = {u € V; there exists f € H such that a(u,v) = (f,v), for allv e V}. (2.2.40)

Claim 2. D(A) is a vector subspace of H.

Indeed, note first that 0 € D(A). Moreover, let uy,us € D(A) and a € C. By the characterisation
in (2.2.40), there exist fi, fo € H such that

a(uy,v) = (f1,v), a(ug,v) = (fa,v), Yo e V.
Thus

a(u; + aug,v) = a(ur,v) + aa(ug,v)
= (fhv) +O‘(f2ﬁv)
= (fi+af,v)=(fv),

where f = f1 +a fo € H. Hence u; 4+ avuy € D(A), which proves the claim.

In this setting, we can define a linear operator

A:DA)CH-—H

u+— Au,
by

(Au,v) = a(u,v) forallue D(A)andallveV. (2.2.41)
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We say that the operator A is defined by the triple {V, H; a(u,v)} and we write

A<+— {V,H;a(u,v)}. (2.2.42)

Now consider

a:VxV-—C (2.2.43)

(u,v) — alu,v)
a sesquilinear, Hermitian and continuous map, and suppose that there exist Ag € R and « > 0 such that
Rea(v,v) + Aolv]? > al|v||?, Vv e V. (2.2.44)
Let A : D(A) C H — H be the operator defined by the triple {V, H,a(u,v)} and B : D(B) C
H — H the operator defined by the triple {V, H, b(u,v)}, where
b(u,v) = a(u,v) + Ag(u,v).

Observe that b is clearly a sesquilinear, Hermitian form, and we now show that b is continuous.
Indeed, for u,v € V' we have

[b(u, v)| = la(u, v) + Ao (u, v)|
< la(u, v)| + ol [(u,v)]
< Clluf vl + Aol el vl
< Cllul{lvll + [Ao] € flul o]
= (C+ ol C) [l 1ol
= K |lul[ o],

where C’ is a constant given by the embedding V — H.

Besides continuity, b satisfies the coercivity condition, namely

There exists a constant o > 0 such that (2.2.45)
|b(v,v)| > allv]|?, forallve V.

Indeed,

|b(v,v)| = Reb(v,v) = Rea(v,v) + \o |v]* = alv|?, Yv e V.

Therefore, the operator B defined by the triple {V, H;b(u,v)} satisfies the assumptions of Propo-
sition 5.129 in [23] and hence:

(i) D(B) is dense in H;
(ii) B is a closed operator.

Claim 3. D(A) = D(B) and B= A+ Ao I.

Indeed, let w € D(B). Then

b(u,v) = (Bu,v), Yv eV,
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or equivalently
a(u,v) + Xo (u,v) = (Bu,v), Yo e V.

Hence

(Au,v) = a(u,v) = (Bu,v) — Ao (u,v) = ((B — Xol)u, 11) = (fu,v).

=fu€H

Thus v € D(A) and we obtain the inclusion D(B) C D(A).

Conversely, let w € D(A). Then
a(u,v) = (Au,v), YveV.
But

(Bu,v) = b(u,v) = (Au,v) + Ao (u,v) = ((A+ Mol )u,v) = (fu,v).

=fu€H

Hence u € D(B) and, consequently, D(A) C D(B).
Thus D(A) = D(B).

Moreover, for all u € D(A) = D(B) and all v € V' we have
(Bu,v) = b(u,v) = a(u,v) + Ao (u,v) = (Au,v) + Ao (u,v) = ((A+ Mol )u,v).
Therefore B = A + A\ I, which proves the claim.

From the previous claim we deduce that D(A) is dense in H and, since B is closed, it follows that
A is closed.

We now wish to prove that D(A) is dense in V.

Claim 4. D(B) is dense in V.

We use the following corollary of the Hahn—Banach theorem: “Let E be a normed vector space
and F' a vector subspace of E. If for every functional f € E’ such that (f, ) = 0 for all z € F we have
f=0 (e (f,z) =0 for all x € E), then F is dense in F (that is, F = E).”

We take E =V and F = D(B). Let f € V' be such that
(fyu) =0, Yu € D(B).

We want to show that
(f,v) =0, VveV.

Since f € V' and b(-,-) is a sesquilinear, continuous and coercive form on V, the Lax-Milgram
lemma yields an element u; € V' such that

(f,v) =blug,v),  VoveW (2.2.46)

In particular, for all u € D(B) we have

0={(f,u) =b(uy,u) =b(u,us) = (Bu,uy), (2.2.47)

- 126 -



2.2 Sesquilinear Forms and Semigroups

that is,

0= (Bu,us), VYue D(B). (2.2.48)

Let w € H be arbitrary. Since b(-,-) is sesquilinear, continuous and coercive on V', Proposition
5.126 in [23] guarantees the existence of a unique ug € D(B) such that w = Bug.

Taking u = ug in (2.2.48) we obtain
0 = (Bug,us) = (w,uy), Yw € H. (2.2.49)
In particular, for w = uy € V C H we get

OZ‘Uf|2 = UfZO.

Therefore, going back to (2.2.46), we find

(f,v) =b(0,0) =0, YveV.

This proves the claim and shows that D(A) = D(B) is dense in V.

Theorem 2.10 Under the preceding assumptions, we have:
(a) —A is the infinitesimal generator of a Co—semigroup S on H satisfying

ISl cemy < ety vt > 0. (2.2.50)

(b) —A is the infinitesimal generator of an analytic semigroup.

Proof: (a) We shall use the Hille-Yosida Theorem. From spectral theory we know that

D(A) = D(—A) is dense in H and — A is a closed operator. (2.2.51)

We shall prove that, for each A > A,

1
Nep(—4) and RO —A)| o < .
A— Ao

(2.2.52)

Indeed, let A > Ag. We first show that (A + A) is invertible, which is equivalent to showing that
Given f € H; there exists a unique u € D(A) such that (A + A)u = f, (2.2.53)
or, equivalently,
Given f € H; there exists a unique u € D(A) such that A(u,v) + a(u,v) = (f,v), Yo €V, (2.2.54)
since (Au,v) = a(u,v) for all w € D(A) and all v € V.
By (2.2.44) we have, for every v € V|

Re[a(v,v) + A(v,v)] = Re(a(v,v)) + Ajv|> = Xo[v|* + Ao|v|®
> ool + (A = o) [vf* > aljv|*.
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Hence
bk(uv U) = CL(U, U) + /\(U,, U)

is, for A > Ag, a continuous, coercive sesquilinear form on V. Identifying H = H’, we have f € V', and
by the Lax—Milgram lemma there exists a unique u € V' such that

bx(u,v) = (f,v), YveV.

It follows that
a(u,v) = (f = Au,v), YveV and VA> Ao,

and since f — Au € H we obtain u € D(A), which proves (2.2.54) and consequently (2.2.53). Therefore,
for each A\ > \g there exists (A\I + A)~!: H — D(A). We now show that

(M + A)7!is closed in  H. (2.2.55)

Indeed, suppose

Yo —y in H and (M4 A) "'y, >z in H (2.2.56)

We must prove that y € H and z = (A + A)~'y. Since it is clear that y € H, it suffices to show
that
(M + A)z =y (2.2.57)

In fact, setting z,, = (A + A) "1y, from (2.2.56) we have x,, — z in H and (A + A)z, =y, — y
in H.

Since (AI + A) is closed, it follows that x € D(A) and y = (M + A)zx, which proves (2.2.57) and
consequently (2.2.55). Hence (A + A)~t € L(H) for all A > )\ and therefore A € p(—A) for A > X\g. It
remains to prove that

_ 1
I+ A) Moy < . (2.2.58)
X — o
Indeed, taking v = u in (2.2.54) we obtain
Nul® + a(u,uw) = (f,u),
which implies
Mul® + Re(a(u,u)) = Re (f,u). (2.2.59)
Combining (2.2.44) and (2.2.59) we get
Fllul > Re (f,u) = Mul? + Rea(u, u)
> Auf® + aflul® = Ao|ul?
= (A= Xo)[ul® + alful?
> (A= Xo)lul?,
and for A > )\ it follows that )
< ——Ifl. 2.2.
ul < 5511 (2260)

Combining (2.2.53) and (2.2.60) we obtain

1
A —

M+ A7 < 5= A
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Consequently,
1
M+ A)7! < —
1AL+ A) e < 53— s
which proves item (a).
(b) Set B = A+)\0[
By (2.2.44) and the continuity of b(u,v) we have
Re (Bu,u) = Re(a(u,u)) + Xolu|* > af|ul|* >0, Vue D(B), (2.2.61)
and
| Tm (Bu,u)| < |(Bu,u)| < |b(u,u)| < c|lul|?, Yue D(B). (2.2.62)
Introduce the set in the complex plane
(Bu,u)
S(B) = PE ;s ue D(B)and u#0 (2.2.63)
u
, (Bu,u)
and consider z € S(B). Then z = PE for some u € D(B), u # 0. We have
u
. Im 2 (Bu,u)
sin(arg z) 2] Imz Im( [ul? ) Im (Bu,u)
t = "°% — = = = . 2.2.64
an(arg 2) cos(arg z) P“;Z Rez  Re( (Ef"‘;‘) ) Re(Bu,u) ( )

From (2.2.61) and (2.2.62) we may write

—c —c||ul)? Im (Bu, u)

c
o« ~ Re(Bu,u) ~ Re(Bu,u) — Re(Bu,u) ~ a

From this inequality and (2.2.64) we infer the existence of a constant ¢; such that

—C1 —C C C1
— < — <tan(argz) < — < —.

o @ a o«
From the last inequality, together with the arbitrariness of z and the independence of the constants with
respect to z, we conclude that

_ o g, — ay_ .’
S(B)QOZ{,ZG(C, 01 < argz < 0y; Glfarctan<a)<2}.
Therefore T
S(B) & QZ:{ZE(C; —0 < argz < 0, 91<9<§}. (2.2.65)
01 0

We claim that there exists a constant ¢y such that, if d(p, S(B)) denotes the distance from p to
S(B), then
d(p,S(B)) > d(p,y ) > colpl, Vp &) . (2.2.66)
6

01

For the sake of clarity, consider Figure 2.1.

The first inequality in (2.2.66) is evident from the inclusions in (2.2.65). We now prove the second
one. Consider p ¢ >, and set ¢ = argp. There are three cases:

@9<¢<g+m
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Im A

Figure 2.1:

In this case 0 < 0 — 61 < p— 6 SI.

0 < sin(f — 61) < sin(yp — 61), whence

Since the sine function is increasing on [0, 7], it follows that

[\)

d(p, Z) = |p|sin(¢ — 61) > |p|sin(d — ;).
01

Note that the constant ¢y = sin(f — 61) > 0 is independent of p such that 6 < ¢ < g + 0.

T 3
i) =+ 60 <p< — — 0.
(zz)2+ 1S9 < 1

In this range we always have

d(p,y ) = Ipl,

01
as illustrated in Figure 2.2.
3
(i4i) 7” 0 < <2r—0.
In this case the argument is analogous to that in (ii).

From (i), (ii) and (iii) we obtain the desired estimate in (2.2.66). Now let u € D(B), u # 0, set

v= |—u| and let p € C. Observe that (Bv,v) € S(B) since
u

(va)z(B(u) U)ZM.

Jul /7 Ju] e
Hence
d(p,S(B)) < [(Bv,v) —p| = |(Bv,v) —plv|*| = |(Bv,v) — p(v,v)]
1
= |(Bv—pv,v)| = W(Bu — pu,u).
Thus 1
d(p,S(B)) < Tl | Bu — pul. (2.2.67)
U
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Im A

Figure 2.2:

Note that if Rep > 0, then (pI + B)~! exists. Indeed, it suffices to show that

{ Given f € H; 3lu € D(B) = D(A) such that
[(p+ Xo)I + AJu = f,

or equivalently,
Given f € H; F'u € D(B) such that
p(u,v) + Ao(u, v) + a(u,v) = (f,v), Vv e V.

This holds because the continuous sesquilinear form

b* (u,v) = p(u,v) + Xo(u,v) + alu,v)

is coercive whenever Rep > 0. Similarly, if Rep < 0 then Re(—p) > 0, and the same argument shows

that (—pI + B)~! exists.

Now, if f € H and p € C is such that Rep < 0, then there exists u € D(B) such that

(=pI+B)"'f =u,

and hence .
((=pI+B) " f| _|Jul _ |[Bu—pu[ 1 _ 1
| f] Ifl = dp.S(B)) |fl dp.S(B))’
so that .
sp 1\ PIEBA
FEH, [0 | f]

and therefore (—pI + B)~! € L(H), that is, R(—p, —B) = (—pI + B)~L.

From (2.2.66) and (2.2.69), for p € C\ Xy with Rep < 0 we also have

1 1
R(—p,—B < <.
P =Bllean = 0, 5(8) = bl eo

(2.2.68)

(2.2.69)

(2.2.70)

Finally, let \,u € R with A > 0 and p # 0. Writing p = —\ — ip € C, we have —A < 0 and
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therefore Rep < 0 with p € C\ Xy. Thus

1 1 1 1
R\ +ip,—B <— —<——,
1R+t =Bllean = &0 ez S e T
that is,
C 1
0

On the other hand, note that —A € G(1, \p) and, by Proposition 1.39, —A — A\gI = —B € G(1,0).
Moreover, (0I + B)™! = (Aol + A)~! exists and B~ = (Aol + A)~! € L(H), and therefore 0 € p(—B).
By Theorem 1.67 and (2.2.71), —B is the infinitesimal generator of an analytic semigroup, say S,

Define S(z) = ¢**5(z). Then S(2) is an analytic semigroup whose infinitesimal generator is —A.

2.2.1 Applications

(A) Parabolic case:
Under the assumptions of Theorem 2.10 we have, by virtue of Theorem 2.3, that, given ug € D(A) =
D(B), the problems

du du
- B P (2.2.72)
u(0) = g u(0) = ug

admit unique solutions in the class

u € C°([0,00); D(A)) N C*([0, 00); H). (2.2.73)

Moreover, if ug € D(AF) with k > 2, it follows from Theorem 2.4 that the solutions of problems
(2.2.72) satisfy the condition

u € C*9([0,00); D(AY))  for j=0,1,... k. (2.2.74)

Now, given ug € H, the problems (2.2.72) admit unique solutions in the class
w € CO((0,00); D(A)) N C°([0, 50); H) N C1((0, 00); H), (2.2.75)

by Theorem 2.5 and the fact that —A and — B generate analytic semigroups.

Remark 2.11 Another way of obtaining regular solutions for problems (2.2.72) in the class (2.2.73) is
to make use of the Lumer—Phillips theorem.

Indeed, for each A > 0 we define

ba(u,v) = alu,v) + (A + Xo)(u,v) = b(u,v) + A(u,v), u,ve V.

Then, for each A > 0, by(u,v) is a bilinear form and, from (2.2.44), we also obtain the coercivity
of by (u,v). Therefore, the operator

By=B+ ) + {V,H;b“u,v)}
is a bijection from D(B) onto H. Consequently,

Im[A] — (—B)] = H, VA >0. (2.2.76)
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On the other hand, observe that if u € D(B), then from the fact that B < {V, H,b(u,v)} we
obtain

Re(—Bu,u) = —Re(b(u,u)) = —Re[a(u, u) + Xo|u|?] < —allu||®* <0, VYuec D(B). (2.2.77)

Thus, since D(B) is dense in H and in view of (2.2.76) and (2.2.77), we conclude, by the
Lumer—Phillips theorem, that
—B € G(1,0), (2.2.78)

that is, —B is the infinitesimal generator of a contraction semigroup. But since D(A) = D(B) and
B = A+ \ol, Proposition 1.39 yields
—A e G(1, M), (2.2.79)

that is, —A is the infinitesimal generator of a Cy—semigroup satisfying

1S < ert, vt >o. (2.2.80)

In this way, given ug € D(A) = D(B), the Cauchy problems in (2.2.72) admit, in view of Theorem
2.3, unique solutions in the class (2.2.73), as mentioned at the beginning of the Remark. Moreover, the
solution associated with the operator B satisfies

du
Jull < lluoll  and Hdtu)H < || Buoll.

(B) Hyperbolic case

Let V and H be Hilbert spaces such that

V< H and V isdensein H. (2.2.81)

Let a(u,v) be a continuous, coercive, hermitian sesquilinear form on V. Hence a(u,v) defines an
inner product on V', denoted by ((-,-));. From the continuity and coercivity of a(-,-) one can show that
the norm || - || on V arising from the inner product ((-,-)) is equivalent to the norm || - ||; coming from
the inner product ((-,-)); defined by a(-,-). Thus (V,] - ||1) is complete.

Moreover, since D(A) is dense in V' with respect to the norm || - ||, we obtain, by the equivalence
of norms, that D(A) is also dense in V' with respect to the norm || - ||1.

Let
A+ {V,H,a(u,v)}.

As is well known, D(A) is dense in V and A is a closed, self-adjoint, non-limited! and bijective

operator. Consider the problem
d*u Au— 0
az A= : (2.2.82)

u(0) = ug, u(0) =uy

We shall prove that if ug € D(A) and uy € V, then problem (2.2.82) admits a unique regular
solution. Indeed, consider the change of variables
du

=— 2.2.
V= (2.2.83)

1By a non-limited operator we mean an operator which may or may not be bounded.
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and set
u
U= { . } : (2.2.84)
then, in view of (2.2.82) and (2.2.83), we obtain
au du v 0 I U
= dt | = = . 2.2.
kSR BRI @259
Define D(B) = D(A) x V and
B: D(B) >V xH
o I1[u (2.2.86)
ol Bl = | %y o ][ 4]
From (2.2.82)—(2.2.86) we obtain
au
a ~BY (2.2.87)
U(0) = Uy,
where
Uo = [ o } :
Uy

Notice that, through the change of variables given in (2.2.83), problems (2.2.82) and (2.2.87) are
equivalent.

Set
H=V xH. (2.2.88)

Observe that D(B) is dense in H, since D(A) is dense in V' and the latter is dense in H. Thus, we
may consider the adjoint of B. Recall that B* is an operator on ‘H whose domain is given by

D(B*) = {v € H;3v* € H such that (Bu,v)y = (u,v*)y, Yu € D(B)}
and B*v = v* for all v € D(B*). We claim that

B* = -B. (2.2.89)

Indeed, let v € D(B*). Then v = [v1,v2] € V x H and there exists v* = [v],v5] € V x H such that
(Blux, ual, [vr, va])a = ([ua, ugl, [v7, v3])n
for all [ug,us] € D(A) x V, that is,
([u2, =Auy ], [or, va])a = ([ua, ual, [v7, v3])n
for all [uy,us] € D(A) x V, which implies
((ug,v1))1 + (—Aug,v2) = ((u1,v7))1 + (uz,v3), (2.2.90)

for all u; € D(A) and all ug € V.

Taking in particular u; = 0 in (2.2.90) we obtain

((u2,v1))1 = (u2,v3), Vus € V. (2.2.91)
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From (2.2.91) we deduce that
vy € D(A) and v = Avy,

since

((u2,v1))1 = (uz,v3) = ((uz,v1))1 = (u2,v3) = ((v1,u2))1 = (v3,u2).

Thus, from (2.2.91) there exists v € H such that
((v1,u2))1 = (vg,u2), Vuz €V,
which implies v; € D(A). Moreover,
(v3,u2) = ((v1,u2))1 = alvi, ug) = (Avi,u2), Yug € V.

Hence
(Avy —v3,uz) =0 Yug € V.

(2.2.92)

(2.2.93)

Since V is dense in H, (2.2.93) holds for all us € H. Thus, in particular, for us = Av; — vj we get

(Avy —v3, Avy —v3) =0 = Av; —v3 =0 = Avy =0;.

Substituting (2.2.92) into (2.2.90), we obtain
((ug,v1))1 + (—Aug,v2) = ((u1,v7))1 + (u2, Avy), Vuy € D(A), Yuy € V.
In particular, for us = 0 we obtain
(—Aui,v2) = ((u1,v]))1, Yuy € D(A),
which implies, in view of the bijectivity of A : D(A) — H, that

vl = —va.

From (2.2.92) and (2.2.94) it follows that
[Ul,’Uz] S D(A) xV = D(B),

that is,
D(B*) Cc D(B).

Furthermore,

B*v =v" = [v],v3] = [~va, Av1] = —[v2, —Avi] = —Bu.

(2.2.94)

(2.2.95)

(2.2.96)

Conversely, let [v1,v9] € D(B) = D(A) x V. We show that there exists [vf,v3] € V x H such that

(2.2.90) holds. Indeed, let [u1,us] € D(A) x V and set v} = —vg and v5 = Avy. Then

((ur, o)1 + (u2,v3) = ((u1, —v2))1 + (uz, Avy)
= (—Aui,v2) + ((uz,v1)h
= ((u2,v1))1 + (—Auz,v2),

which proves (2.2.90) and consequently that [v1, vs] € D(B*), that is,

D(B) ¢ D(B).

(2.2.97)
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From (2.2.95), (2.2.96) and (2.2.97) we obtain (2.2.89). It then follows, by Stone’s theorem, that
B is the infinitesimal generator of a unitary Cy—group and, consequently, of a Cy—semigroup S with the

property
(SE) =@,  ve>o. (2.2.98)

Thus, setting
U(t) = S(t)Up, vt > 0, (2.2.99)

we deduce, by Theorem 2.3, that U is the unique regular solution of the Cauchy problem (2.2.87), and it

belongs to the class
U € CO([0, +00); D(B)) N C ([0, +00); H). (2:2.100)

Now, from (2.2.100) and using the change of variables (2.2.83), we conclude that problem (2.2.82)
admits a unique solution v in the class

u € C°([0,+00); D(A)) N C*([0, +00); V)

with
up € CO([O, +o00); V)N C’l([O,—|—oo);H)7
and hence

u € C°([0, +00); D(A)) N C*([0,4+00); V) N C3([0, +o0); H). (2.2.101)

We also note that, from (2.2.88) and (2.2.99), we have
1S()Uoll# = IUoll%, VYt >0,

that is,
U@ lvxw = [[[uo, ur]ll2, VE >0,

or equivalently,
w1 + [ () = [luol® + [w[*, vt >0. (2.2.102)
Identity (2.2.102) is known as the energy identity.

Now define N
AV —V

by _
(Au,v)yrxy = alu,v), Yu,v e V.

Then A is a linear isometry and induces on V' the following inner product
(u,v)yr = ((ﬁ*luﬁﬂv))l, Yu,v € V',

and moreover

Au= Au,  Yue D(A).

Consider the problem

di? - : (2.2.103)

We shall prove that, if ug € V and u; € H, then problem (2.2.103) admits a unique regular
solution.
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As before, consider the change of variables

du
= — 2.2.104
U ( 04)
and define
U [ ! } 7 (2.2.105)

then, in view of (2.2.103) and (2.2.104), we obtain

dU du v 0o I u
awo | @ |~ | = . . 2.2.1
dt {it} —Au -4 0 {v} (2:2.106)
Define
B: VxH — HxV'
0o I u (2.2.107)
B = =
ol = Bl =] %5 o | "]

and from (2.2.103)—(2.2.107) we arrive at

AU
o - PY
(2.2.108)
U(0) = Uy,
where
Uy = [ uo } .
Uy

Observe that, via the change of variables given in (2.2.104), problems (2.2.103) and (2.2.108) are
equivalent.

As before, our goal is to show that B is the infinitesimal generator of a Cy—semigroup, and for this
we shall use the Hille-Yosida theorem. We have already seen that D(B) = V x H is dense in H x V.
Thus, it remains to verify that:

(i) B is closed.

(ii) There exist real numbers M and w such that, for each real A > w, we have A € p(B) and

”R()‘vB)nHE(HxV’) < m, Vn € N.

Indeed, let ([un,vn])n CV x H = D(B) be such that
[un,vn] — [G,9] in Hx V'
and
B([un,va]) — [f,g] in HxV".
We shall show that [@,?] € D(B) and that B([a,9]) = [f, g]. From the convergences above we have
U, — % in H,
vy, — U in V7,
v, — f in H,

— Au, —> g in V',
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Thus, u, — —g_lg in V. Since V is continuously embedded into H, we also have u,, — —Z‘lg in H.
By uniqueness of limits, we obtain
—Alg=a.

Moreover, f = 9. Therefore, [4,7] € D(B) and B([a,7]) = [0, —Ad] = [f,g]. That is, B is closed.

We now show that, for each real A > 0, we have A € p(B) and
" 1
RN, B)" | e(xvry < o Vn € N.

Since A is bijective, it follows that AI — B is bijective for every A > 0, i.e.,, A € p(B) for all A > 0.

Given u,v € D(A), we have
(M = B)lu,v] =[f.g], feH geV'

Hence N
[)\’U,—’U,)\’U—f—AU] = [f?g]7

which is equivalent to
A—v=f in H,
M+ Au=g inV'.
Thus

{)‘(ua u) - (v,u) = (fa u)7
v, v)v + (Au,v)yr = (9,v) v

Adding the last two equalities we get

Aul® + Mols + (Au,0)v = (0,0) = (f,0) + (g,0)v. (2.2.109)

However,

(2.2.110)

From (2.2.109) and (2.2.110) we obtain
Alul® + [v]$) + (u,0) = (v,u) = (f,u) + (g,0)v.
Hence
AJul® + i) + Re[(u,v) = (v,u)] = Re[(f,u) + (g,0)v],
that is,
Alul® + [v[§) = Re[(f,u) + (9,v)v]
< ‘(fa u) + (971))‘/"
< fllul +lglv: [v]v
< (P + gl ® (Jul? + of) 2

- 138 -



2.3 The Non-homogeneous Problem

and thus
1 1
AJul® + [ol3) 2 < (IF1P + 19l

Therefore,
1
ltw, olllzxve < SULF glllzxve, Vu,v € D(A).

Since D(A) x D(A) is dense in V' x H, it follows that

1
ltw, olllzxv: < SUIf glllmxvss Vw0l €V x H. (2.2.111)
Moreover,
[u,v] = R(A\, B)[f, 9], V]u,v] €V x H. (2.2.112)

From (2.2.111) and (2.2.112) we conclude that

IR B glllv s < Sl gl Vifrg) € H x V7.

Hence
RN, B)lle(axvry <

> =

Furthermore,

1
RN, B) |l e(axvry < RO B)llecaxvry - [1ROA, B)lexvy < o Vn € N.

Thus B satisfies the hypotheses of the Hille-Yosida theorem, from which we obtain that B is the
infinitesimal generator of a Cy—semigroup S : Ry — £(H x V’). The conclusion is analogous to the
case [ug,u1] € D(A) x V.

2.3 The Non-homogeneous Problem

Let A be the infinitesimal generator of a Cy—semigroup S, f : R, — X a continuous function with
values in a Banach space X, and consider the Abstract Cauchy Problem

‘C%‘(t) — Au(t) + f(t), t>0, (2.3.113)

U(O) = Ug-

Definition 2.12 A function v : Ry — X is said to be a classical solution of (2.3.113) if:

z) u is continuous for t > 0;
it) u is continuously differentiable for t > 0;
iit) u(t) € D(A) fort > 0;

i) u satisfies (2.3.113).

Let u be a classical solution of (2.3.113) and set

g(s) =St —s)u(s), 0<s<t.
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We have, as in the proof of Theorem 2.3, that
dg du
—s)—(s) — —s5)A . 2.3.114
D 5) = 5(t— 5) 5 (5) — S(t — ) Au(s) (23.114)
Hence, from (2.3.114), Proposition 1.30 and (2.3.113), it follows that

dg

25 (8) = St = s)[Au(s) + f(5)] = S(t — 5) Au(s),

that is,

dg

D s) = St —5)1(5).

Integrating this last identity from 0 to ¢ we obtain
t
0) = / S(t— 8)f(s) ds,
0

u(t) = S(t)uo + /0 S(t—s)f(s)ds, (2.3.115)

or equivalently,

which is a necessary condition for u to be a classical solution of (2.3.113).

Under the hypotheses stated above, the formula (2.3.115) makes sense whether or not « is a classical
solution of (2.3.113). For this reason we introduce the following definition.

Definition 2.13 Let A be the infinitesimal generator of a Cy—semigroup, and let ug € X and f €
LY(0,T; X). The function u € C°([0,T]; X) given by

u(t):S(t)uo—i-/OtS(t—s)f(s)ds7 0<t<T,

is called a generalized (mild) solution of problem (2.3.113) on [0,T].

Note that generalized solutions of (2.3.113) are not necessarily classical solutions, even when f is
continuous, as can be seen by taking

F(t) = S(tyw ¢ D(A), ¥t>0, ve X.

In this case,

u(t) = u0+/St—s s)vds
= u0—|—/S t)vds
= S(t )UO-l-tS

is a generalized solution which is not a classical solution, because this function is not differentiable for
t > 0. Furthermore, this example shows that the mere continuity of f does not ensure the existence of
a classical solution. Thus, for a generalized solution to be classical, it is necessary that A or f satisfy
additional conditions, as we shall see below.

As an immediate consequence of (2.3.115) and Theorem 2.3 we have:

Proposition 2.14 System (2.3.113) has at most one classical solution.
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Theorem 2.15 System (2.3.113) has a classical solution for each ug € D(A) if and only if the function
v defined by

v(t) = /0 S(t—s)f(s)ds (2.3.116)

is continuously differentiable for t > 0.

Proof: Let u be a classical solution of (2.3.113) for ug € D(A). From (2.3.115) and (2.3.116) we may
write

v(t) = u(t) — S(t)uo.

Since u is a classical solution of (2.3.113), by definition u is continuous for ¢t > 0, u(t) € D(A) for t > 0,
and u is continuously differentiable for ¢ > 0. Moreover, since ug € D(A), it follows from Proposition
1.30 that S(t)uo € D(A) for all t > 0 and, in addition,

V' (t) =o' (t) — S(t) Aug,
which is continuous for ¢t > 0. Hence v is continuously differentiable.

Conversely, suppose that v(t) given by (2.3.116) is continuously differentiable for ¢ > 0. For h > 0,
define
S(h)u(t) —v(t)

Ah’U(t) = h

(2.3.117)

Then, from (2.3.116) and (2.3.117), we obtain

Apo(t) = {/OtS(t—s+h)f(s)ds—/OtS(t—s)f(s)ds}
t+h

S= =

t t+h
VO S(t—s+h)f(s)ds—/0 S(t—s)f(s)ds—/t S(t— s+ h)f(s)ds
+h

— w — }IL/: S(t—s+h)f(s)ds. (2.3.118)

Since f is continuous on Ry, the second term on the right-hand side of (2.3.118) has limit f(¢) as
h — 04, and the first term has limit v'(¢) as h — 0. Hence, in the limit A — 04 in (2.3.118) we obtain

v(t) € D(A) and Av(t) =2'(t) — f(t).
Moreover, from (2.3.116) we have v(0) = 0. Thus, the function

u(t) = S(t)ug + v(t)

is a classical solution of (2.3.113). O

Corollary 2.16 Ifv(t) € D(A) for allt > 0 and Av is continuous, then problem (2.3.113) has a classical
solution for every ug € D(A).

Proof: From (2.3.118) we obtain

_ t+h
M = Apv(t) + %/ S(t—s+h)f(s)ds. (2.3.119)
t
Since v(t) € D(A), we have
Apv(t) = Av(t), Vt>0 ash —04. (2.3.120)
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Also,

t+h
7 / S(t—s+h)f(s)ds — f(t) ash— 04, since f is continuous for all ¢t > 0. (2.3.121)
¢

Therefore, from (2.3.119), (2.3.120) and (2.3.121) it follows that v is right differentiable at every

t >0 and
dtv

S = Av() + 1(0).

By the continuity of Av and f, by hypothesis, we have that %(t) is continuous. Hence, by Dini’s
lemma, v is continuously differentiable for ¢ > 0, and from Theorem 2.15 it follows that problem (2.3.113)
has a classical solution for all ug € D(A), which is given by (2.3.115). ad

Proposition 2.17 Let A be the infinitesimal generator of a Cy—semigroup S, and f : Ry — X a
continuous function. Suppose that f satisfies one of the following conditions:

i) f is continuously differentiable for all t > 0;

i) f(t) € D(A) for allt >0 and Af is integrable (in L (0, 00; X)).

Then, for every ug € D(A), (2.3.113) has a unique classical solution.
Proof: Assume that (i) holds. Let v(t) be given by (2.3.116), that is,

v(t):/o S(t—s)f(s)ds:/o S(s)f(t—s)ds.

Then, for h > 0,

v(t+ h) —v(t)

h = TS ft+h—s)ds— £ [ S(s)f(t— s)ds
= 4 S(S)(f(t+h—5)—f(t—s))d8+gftHhS(S)f(t—s)ds
= L[VS(s)(f(t+h—s)— f(t—s))ds
FE[TRS(s)(f(t 4+ h—s) — f(t—s))ds (2.3.122)
+%f flt+h—s)—f(t—s)ds+ £ [T S(s)f(t - s)ds
= L [ySE)f(t+h—s)— f(t—s)ds+ [T S(s)f (4) ds

+1 fj*h (s)f(t — s)ds,

where v € (t — s,t — s+ h), by the Mean Value Theorem, since f(t —s+h) — f(t —s) = f'(y)h for some
v € (t — s,t — s + h). The right-hand side of (2.3.122) converges to

/Ot S(s)f'(t —s)ds+ S(t)f(0) (2.3.123)

as h — 07. From the hypothesis that f is continuously differentiable for ¢ > 0, it follows from (2.3.122)
and (2.3.123) in the limit that
dvt
—() = S(s t —
o0 =s0s0) + [ S0

is continuous for ¢ > 0. Hence, by Dini’s lemma, v is continuously differentiable for ¢ > 0. Therefore, by
Theorem 2.15, system (2.3.113) has a classical solution for all ug € D(A).
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Now assume that (ii) holds. Since f(s) € D(A), by Proposition 1.29 we have
S(t—s)f(s) € D(A) and AS(t—s)f(s) =S5t —s)Af(s).

From this last identity, since Af is integrable and A is closed, we obtain

/OS(t—s)Af(s)ds:/ AS(t—s)f(s)ds:A/O S(t— 8)f(s) ds = Av(t),

0

that is, v(t) € D(A) for t > 0 and Av is continuous. Hence, by Corollary 2.3.114, problem (2.3.113) has
a unique classical solution for all ug € D(A). Uniqueness follows as in the homogeneous case. O

0.5 cm

We conclude this section with some results concerning a notion of solution that we now introduce.

Definition 2.18 Let A be the infinitesimal generator of a Cy—semigroup S. A function u which is
differentiable almost everywhere on [0,T] and such that u' € L*(0,T; X) is called a strong solution of
the initial value problem (2.3.113) if u(0) = ug and u'(t) = Au(t) + f(t) almost everywhere on [0,T).

Note that if A = 0 and f € L'(0,T; X), then the initial value problem (2.3.113) does not, in
general, admit a classical solution unless f is continuous. However, it always admits a strong solution
given by

u(t) =uo + /0 f(s)ds.

As in the classical case, a natural question is to determine when a generalized (mild) solution of (2.3.113)
is a strong solution.

Theorem 2.19 Let A be the infinitesimal generator of a Co—semigroup S and let f € L'(0,T; X). Define

v(t):/OtS(t—s)f(s)ds, 0<t<T

and suppose that v(t) satisfies one of the following conditions:
(i) v(t) is differentiable almost everywhere on [0,T] and v'(t) € L*(0,T; X);
(ii) v(t) € D(A) almost everywhere on [0,T] and Av(t) € L*(0,T; X).

Then (2.3.113) admits a strong solution u on [0,T] for some ug € D(A).
Conversely, if (2.3.113) admits a strong solution u on [0,T] for some ug € D(A), then v satisfies (i) and

Proof: First observe that items (i) and (ii) are equivalent.
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(i) = (i1). Note that

:S(h) /Ot S(t—s)f(s) dS—/OtS(t—s)f(s) ds]
_/Ot S(t—s+h)f(s)ds— /Ot S(t— s)f(s) ds} (2.3.124)

t+h t+h
/ S(t—s+h)f(s)ds—/ S(t—s+h)f(s)ds

t

= = e

L 0
-/ S 9)f(s) ds}

v — t+h
_ w_% [ sw)ste - s)1(s)ds.

The first equality is justified because S(t — s)f(s) € L*(0,T; X) and S(h) is bounded on X. Thus

B v — t+h
(S(h;ll> o(t) = W_% t S(h)S(t—s)f(s)ds.

Now, since v is differentiable almost everywhere, the limit of the first term on the right-hand side exists
almost everywhere as h — 0. Moreover, by standard results on Bochner integration (see, for instance,
[24], p. 10), the second term also has a limit almost everywhere as h — 0. Furthermore, as h — 07 we

have

v —w t+h
D)L [ sms - 956 ds — 00 - 10 ae. 071,

Therefore
v(t) € D(A) and Awv(t) ='(t) — f(t) € L'(0,T; X),

which proves (ii).

(#4) = (¢). Since v(t) € D(A), we have lim <_

h—0t
that

v(t+h) —v(t)  [(S(h)—1I
= (

Thus, as h — 07T,
T2 ) = vt - 1)
da '
Considering h < 0 and replacing h by —h in (2.3.124), we obtain
d v

g () = Av(t) = f(B).

Hence v(t) is differentiable almost everywhere on [0, 7] and
o () = Au(t) - f(t) € L0, T; X),
which proves (i) (and therefore the equivalence).

We now prove Theorem 2.19. Suppose that (i) holds (and hence (ii) also holds).

Since

u(t) = S(t)up + v(t),

S(t)ug is differentiable (because ug € D(A)) and, by hypothesis, v(t) is differentiable almost everywhere,
it follows that u is differentiable almost everywhere on [0, T7.
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Moreover,

%(t) - %(S(t)uo +o(t)) = S() Aug + v (t) € L'(0,T; X).

Finally, to show that u satisfies (2.3.113) almost everywhere, it suffices to follow the same arguments
used in the proof of Theorem 2.15.

Conversely, if (2.3.113) admits a strong solution u, then
u(t) = S(t)up + v(t),

whence v is differentiable almost everywhere, since u and S(-)ug are. Furthermore, as S(t)Aug, u'(t) €
L'(0,T; X) and
V'(t) =/ (t) — S(t)Aug,

we have v’(t) € L*(0,T; X). This proves (i) (and thus (ii)) and completes the proof of the theorem. O

As a consequence of Theorem 2.19 we obtain:

Corollary 2.20 Let A be the infinitesimal generator of a Co—semigroup S. If f is differentiable almost
everywhere on [0,T] and f' € L'(0,T;X), then for every ug € D(A) the problem (2.3.113) admits a
unique strong solution on [0,T).

Proof: Observe that

t
vt):/S(t—s ds—/S ft—9)d
0

and hence

v(t+h) —v(t) 1
h h

t+h
+/t S(s)f(t—s)ds]

_ /Ots(s) [f“*h‘sz—f(t—s)} d8+}1l/tt+h5’(s)f(t—s)d8

1

t+h
5 [ S@ =9 = =) ds

Thus v is differentiable almost everywhere and

/ S(s)f'(t — ) ds + S(£) £(0).

Since f(0) € X, the function S(-) f(0) belongs to L*(0,T; X). Note also that

/S t—sds—/St—s
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and therefore

T T t
/ lolldt < / / 1S(t — s)f'(s)]] ds dt
0 0 0
T T
< / / 1S(t — )£ (s)]| ds de
0 0
T T
< / / Me=T||f'(s)]| ds dt
0 0
T
= MeT / 1/ (s)]| ds,
0
so that fgS(t—s)f’(s)dseLl(O,T;X).
Hence, by Theorem 2.19, the result follows. O

Before we state the next corollary of Theorem 2.19, let us introduce the following notion.

Definition 2.21 A function f: Ry — X is said to be Hélder continuous for t > 0 if
IF(t) = F(s)| < L(t=s)", 0<s<t,

where L and k are constants with 0 < k < 1. When k = 1 we say that f is Lipschitz continuous.

In general, the Lipschitz continuity of f on [0, 7] is not sufficient to ensure the existence of a strong
solution of (2.3.113) for ug € D(A). However, if X is reflexive and f is Lipschitz continuous on [0, T,
then by classical results (see [24], p. 17) f is differentiable almost everywhere and f’ € L(0,T; X). In
view of this, Corollary 2.20 implies:

Corollary 2.22 Let X be a reflexive Banach space and let A be the infinitesimal generator of a Cy—semigroup
S on X. If f is Lipschitz continuous on [0, T], then for every ug € D(A) the initial value problem (2.3.113)
admits a unique strong solution u on [0,T], given by

u(t) = S(t)ug + /0 S(t—s)f(s)ds.

2.4 The Nonlinear Problem

Let X be a reflexive Banach space. Consider the initial value problem

du
- (8) = Au(t) + F(u(t)), t>0, (2.4.125)
u(0) = uo,

where F': X — X is a continuous function and A is the infinitesimal generator of a Cp—semigroup S(t)
such that ||S(¢)|| < M for all ¢ > 0. If u is a classical or strong solution of (2.4.125), then, as in the
previous section, it is not difficult to verify that u satisfies the integral equation

u(t) = S(t)ug + /Ot S(t — s)F(u(s))ds. (2.4.126)

We have the following result.
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Theorem 2.23 Let F : X — X be a Lipschitz function, that is,
[F(u) = F(v)|x < Lllu—vlx, VuvelX

Then, for everyug € X, there exists a unique function u € C°([0, +00); X) which is a generalized solution.
i) If ug,vg € X are initial data for (2.4.125), then the corresponding generalized solutions u and v satisfy

lu(t) = v(®)llx < Me"[lug — vol|x. (2.4.127)

i) If up € D(A), then the solution is strong on the interval [0,T)], for every T > 0.

Proof: (i) Let up € X. For each k > 0, define

Xy, = {u e C[0,+00); X) ; [[u(t)||x < Ce*" for some C >0 and all t > 0}.

By Proposition 1.17, X} is a Banach space endowed with the norm

[ullx, = supe™™|Ju(t)] x.
t>0

Define ¢ : X, — X by

ou(t) = S(t)uo + /0 S(t — s)F(u(s))ds.

We claim that ¢(X;) C Xg. Indeed, we first show that, for each u € Xj, the function ¢u is
continuous. We already know that S(t)ug is continuous (see Corollary 1.23), so it remains to show that

g(t):/o S(t—s)F(u(s))ds:/O S(s)P(ult — 5)) ds

is continuous on [0, 00). Let (¢,)nen be a sequence in R such that t,, — to as n — oo and t,, > to for all
n € N. Then

/0 " S(s) (Fulty — 5)) — Flulto — 5))) ds + /t " S(s)F(u(ty — 5)) ds| .

0

lo(ta) — glto)| =

Using the triangle inequality, the boundedness of the semigroup and the fact that F' is Lipschitz,
we obtain

lo(tn) — gto)]l < MQAWMMfﬁﬂWwﬂW@+Ml"MW%*$W@

Choose T > 0 so that tg,t, € (0,7) and, consequently, ¢, — s,to — s € (0,T). Then

to T
lg(tn) — g(to)l < M (L/ [u(tn — s) — u(to — 5)| ds +/ Xtota] () F (w(tn — 5))| dS) /(2.4.128)
0 to
where X[+, denotes the characteristic function of the interval [to, ¢, ].
Now define, for s € (to,T),

fn(8) = Xito, ) () IF (ultn — )| and  f(s) = Xito 0] ($) | F'(ulto — 9))[-

Since Xjto,4,](5) = 0 almost everywhere and ||F'(u(t, — s))|| is bounded, it follows that f,(s) — 0 almost
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everywhere as n — oo. Hence, by the Dominated Convergence Theorem,

that is,

T
fn(s)ds — 0,

to

T
| Xt GFGattn = )lds 0.

to

Moreover, since w is continuous, as n — oo we have

lu(t, —s) —u(to — s)|| — 0.

Furthermore, because u € X, we have

u(t, —s) — u(ty — s)|| < 2CeM.

Thus, again by the Dominated Convergence Theorem,

as n — oQ.

to
/ lu(tn — 5) — u(to — )| ds — 0,
0

Therefore, the right-hand side of (2.4.128) converges to zero as t,, — to with ¢, > tg for all n € N,
which implies that g is right-continuous on [0,7]. Since T' > 0 is arbitrary, it follows that g is right-
continuous on [0, c0) and, consequently, that ¢u is right-continuous on [0, 00). A similar argument shows
that ¢u is left-continuous on [0, c0). Hence ¢u is continuous, that is, ¢pu € C(]0,00), X).

It remains to show that ¢u € Xj. For u € X}, we have

and, for k > 0,

lpu@)l <

IN

IN

IN

IN

e | gu(t)l]

nawwu+é|waf@meQMMs
NWM+MAHHWW—HM%+MAHHM%
Mwﬂ+MLAHMMMH%MF®W

t
M| +MLC/ e5 ds + M| F(0)|t
0

kt
—1
M |ug|| + MLCE T FMIFQ)t, Ve =0,
—kt 1—e ™ t
< Me M ugl| + MLC——— + M| F(0)||
MLC

IN

M||Uo||+T+MM/HF(O)”<OO, VtzO,

t
where C' > 0 is a constant depending on u and M’ > 0 is such that |W| < M’ for all t € R. Thus
e

supy> e " ||pu(t)|| < oo, and therefore pu € Xy, as claimed.
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ML
We now show that ¢ : X — X, is TfLipschitz continuous. Indeed, if u,v € X, then

e Mlgu(t) — gu(t)] < Me”“/ [1£(u(s)) = F(v(s))|l ds
0

t
< MLe—kf/ lu(s) — v(s)|| ds
0
t
< MLe*kt/ |u(s) —v(s)|le *ek* ds
0
ML _
< e (e = Dlu— vl
ML
<

THU_U”XM vt >0,

and hence ML
[¢pu — vl x, = sup e Fpu(t) — ¢o(t)| < 5 = vl

Thus, when k = 2M L we have that ¢ : X, — X} is a contraction, that is,

lu — vl x, < ellu = vl|x,,

with ¢ = % < 1. Hence, by the Banach fixed point theorem there exists a unique fixed point of ¢, i.e.,
there exists u € X}, such that

u(t) = S(t)ug — /0 S(t— s)F(u(s))ds,

which proves the existence of a generalized solution of (2.4.125).

Let u and v be generalized solutions of (2.4.125) corresponding to the initial data ug and vy,
respectively. Then, from (2.4.126) we obtain

lut) —v(®)|x = HS(t)qur/Ot S(t — s)F(u(s)) ds — (S(t)vo+/0t S(ts)F(v(s))ds)H

IN

[15(t)(uo — vo) +/0 1S = )1 F (uls)) — F(o(s))l ds

IN

t
Mo = woll + ML [ Jus) = o(s)] ds.
0
and, by Gronwall’s lemma,
lu(t) —v(t)|| < MeME||ug — vo|| for all t € [0,T],
for every given T' > 0, which proves (2.4.127) as well as the uniqueness of generalized solutions.
(ii) Now suppose that ug € D(A). We shall prove that u is Lipschitz continuous on [0, T] for every

T > 0, which implies that F(u(¢)) is also Lipschitz continuous. Then, by Corollary 2.22, we conclude
that v is a strong solution. Indeed, let h > 0 and define

o(t) = u(t+h), Vt>0. (2.4.129)

Note that v is a generalized solution of (2.4.125) with initial data vo = u(h). From (2.4.127) and (2.4.129)
we have
Ju(t +h) —u(t)|| < Me"*{lu(h) — u(0)]]. (2.4.130)

On the other hand, from (2.4.126) we can write
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u(h) = S(h)uo + [ S(h — s)F(u(s)) ds. (2.4.131)

From (2.4.131) we obtain

h
u(h) — u(0)]| = ||S(h)uo — uo + /0 S(h — s)Fu(s)ds

h
S(h)ug — ug + /0 [S(h — s)Fu(s) — S(h — s)Fu(0) + S(h — s)Fu(0)] ds

h
< [1S(R)uo — wol| + | / [S(h — ) (Fu(s) — Fu(0)) + S(h — s)Fu(0)] ds| (2.4.132)
h
< 15(hyuo — o + / 1Sk = s)ll[[Fuls) — Fu(0)]ds
h
+ / 1S(h = )| Fu(0)]|ds

h
< [[S(h)uo — uoll + ML/O [u(s) — u(0)[|ds + MA|[F(u(0))]]

Since ug € D(A), we have

h h
S(h)ug —ug = A/ S(s)ugds = / S(s)Aug ds,
0 0
and hence N
15 (h)uo = uol| < / 1S (s) [ Auoll ds < M| Augl| h. (2.4.133)
0

Combining (2.4.132) and (2.4.133) we obtain

h
[u(h) = uoll < Mh||Aug|| + MA[|F (uo)|| + ML/ [[u(s) = u(0)] ds,
0
and by Gronwall’s lemma

lu(h) = uoll < MAh(|| Auo|| + || F(uo) )™ =" (2.4.134)

Thus, from (2.4.130) and (2.4.134) we conclude that

lu(t + h) —u(t)]| < MMt MeMER (|| Aug|| + ||F (uo)||) h, ¥Vt >0, VA > 0. (2.4.135)

Now let T' > 0 be given and take ¢,t’ € [0,T]. From (2.4.135) it follows that
lu(t) — )] < M (|| Aug|| + [|F (uo)|l) [t — '],

which proves that u is Lipschitz continuous on [0,7], and since T > 0 is arbitrary, on any bounded
interval. This implies that F'(u(¢)) is also Lipschitz continuous and, in view of Corollary 2.22, u is a
strong solution of (2.4.125) on [0, T, which completes the proof. O

Theorem 2.24 Let F': D(A) — D(A) be a Lipschitz continuous function. Then, for every ug € D(A)
there exists a classical solution of (2.4.125) on [0,T], for every given T > 0.
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Proof: Set
X1 = D(A),

and
A = A|D(A2) :D(Al) = D(AQ) c X1 — Xy.

Then S;(t), the semigroup generated by Aj, is the restriction of S(t) to D(A). Hence, by Theorem 2.4,
there exists a generalized solution u € C°([0, +00); X1) such that

¢
u(t) = Sy (tyuo + / Su(t — 5)F (u(s)) ds. (2.4.136)
0
Since ug € D(A) and F(u(s)) € D(A), we may replace Sy(t) by S(¢) in (2.4.136), so that u €
C°([0,4+00); D(A)). Moreover, since F : D(A) — D(A) is Lipschitz continuous, we have
9(-) = F(u(")) € C°([0, +00); D(A)) < L'(0,T; D(A)), (2.4.137)
for any fixed T' > 0. In particular,

g(s) € D(A) Vse[0,T], and  Age L'(0,T;X). (2.4.138)

Taking into account (2.4.136), (2.4.137), (2.4.138) and Proposition 2.17, we conclude that u is a
classical solution of (2.4.125). O

Theorem 2.25 Let F : X — X be a locally Lipschitz function, that is, for every R > 0 there exists
Lr >0 such that ||u|]| < R and ||v]| < R imply

[1F(u) = Fo)|| < Lrlu— v

(i) Then, for every ug € X there exists a function u € C°([0,+00); X) which is a generalized solution of
(2.4.125) on [0,T], and which can be extended to a mazimal solution on [0, Tynaz), where either Ty, =
+00 or Tynax < +00 and lim  [[u(t)|| = +o0.

*Lmax

(i) If ug € D(A), then the solution is strong.

Proof: (i) For each T > 0, define
Kr ={uecC%0,T); X) ; |u(t)]| < M|uo| + 1Vt e [0,T]}. (2.4.139)

Note that K7 is closed, since it is a closed ball in C([0,T], X) and, by Proposition 1.8, C([0,7], X) is a
Banach space. Hence Kr is also a Banach space.

Define further the map ® : K7 — C°([0,T]; X) by

Pu(t) = S(t)up + /Ot S(t—s)F(u(s))ds. (2.4.140)

Let R = M|lug|| + 1 and w € Kp. Then, by hypothesis, there exists L = L(||lug||) > 0 such that

1 (u(t)) = F(uo)ll < Llju(t) = uoll, Vvt < 0,T], (2.4.141)
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since ||u(t)|| < M||uo|| + 1. Hence

[Pu@)] < IIS(lf)Uc>|\+/0 1S = $) [l F(u(s))] ds

IN

MWﬂ+MAHHMw—FWM+wa%

IN

Mwﬂ+MAHHMW—FwM®+MAHﬂwW®

IN

t
Muol| + ML/ [u(s) = uoll ds + MTI|F(uo)]|
0

IN

M|luoll + MLT (M [uo|l + 1 + [[uoll) + MTI|F (uo)]|

Choosing
1

ML(M [Juo|l + 1+ Jluol|) + M| F(uo) ||’
we see that [|[Pu(t)|| < M||uo| + 1 for every ¢ € [0,T*]. Thus ®(Kp«) C Kp~.

0<T* <

Next, we show that for T sufficiently small, ® is a contraction. Indeed, for u,v € Kp- and
R = M||ugl|| + 1 there exists L = L(||uo||) > 0 such that

|1E(u(t)) — Flo@®)| < L|lu(t) —v(®)], VYu,ve Kp«, ¥Vt €[0,T7]. (2.4.142)
Hence, for 0 < T < T,

[ ®u(t) — @u(t)| = yésu—@@wwn—ﬂw@»w

IN

T
A{A|W@@»—F@@MMs
MLT||u —v||coqo,r);x),  Vu,v € Kp-, ¥Vt € [0,T].

IN

1
Thus, if we choose 0 < T < ML then ® is a contraction. Setting

To = min {1;*7 2]\411)} ,

we conclude that ® has a unique fixed point, which is a generalized solution of (2.4.125) on [0, Tp].
Let w; be the generalized solution of

duy

W(t) = Aus(t) + F(ui(t)) on [0,Tp],

U1 (0) = Uo,

(2.4.143)

mentioned above. Since u; € Kr,, it follows that u; € C°([0,Tp]; X) and |lui(t)| < M||uo|| + 1 for all
t € [0,To].

Now consider the problem

dU1
E(t) = Avi(t) + F(v1(t)) on [0,T],
v1(0) = u1(To),

(2.4.144)

and arguing in the same way as for (2.4.143), we find T; > 0 such that (2.4.144) admits a generalized
solution v; on [0,T7].
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Observe that, by Theorem 2.4, if uy € D(A) then u; is a strong solution of (2.4.125) on [0, Tp].

Likewise, v; is a strong solution of the same problem on [0, 71].

Define
ul(t), tE [O,To],
t) =
uz(t) { v (t—Ty), te [T, To+T1l.

Set T§ = Tp and T = T + T1. We show that us is a generalized solution of (2.4.125) on [0, T].

Note that .
ui(t) = S(t)uo —i—/o S(t—s)F(ui(s))ds, Vte[0,Tp],

and
v1(t) = S(t)u1(To) —i—/o S(t— s)F(v1(s))ds, Vte[0,T1].

If 0 <t < Ty, then

u9 (t)

t
up(t) = S(t)ug + / S(t—s)F(ui(s))ds
0
¢
= S(t)up + / S(t — s)F(uz(s)) ds.
0
Thus ug is a generalized solution of (2.4.125) on [0, Tp]. Now, if Ty <t < Ty + 17, then

t—To
Ug(t) = Ul(t*TO) = S(thO)ul(TO)‘F‘/O S(t*TO 7S)F(’Ul(8))d5

To
= S(t—To) |S(To)uo + S(To — s)F(ui(s)) dS]

0

+/0 S(t — Ty — s)F(vi(s)) ds

To
= S(t—1Tp)S(To)uo + ; S(t —To)S(To — s)F(u1(s)) ds

n / U S(E— Ty — s)F(un(s)) ds

To
= S(t)up + ; S(t— s)F(uy1(s))ds

+ S(t—To—w+To)F(Ul(w—To))dw

To
To t
= S(t)up + ; S(t—s)F(u1(s))ds + ; S(t—s)F(v1(s—Tp))ds
To t
= S(t)up + | S(t — s)F(ua(s)) ds + . St — s)F(ua(s))ds

= S(t)up + /0 S(t — s)F(uz(s)) ds,

and the claim follows. Thus, for the problem (2.4.125) with initial data ug, we have

uy is a generalized solution of (2.4.125) on [0, T{],
ug is a generalized solution of (2.4.125) on [0, 77 ].

(2.4.145)

Proceeding in this way, we obtain a family of functions {u;}icr and a collection of numbers {7} ;}ics

such that
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u; is a generalized solution of (2.4.125) on [0, 7} 4],

where I is a subset of the natural numbers.

Set

[0, Tnaz) = U[O7 174 [
el

We now define a function v with values in X and domain [0, T},q.| as follows: given ¢ € I, we
define u on [0, 7} [ as the restriction of u; to [0, 7} ;[ for any j > i. This makes sense because if k,j > i,
then uy, and w; coincide on [0, T ;.

We now prove that u is the unique generalized solution of (2.4.125) on [0, Tines). By definition,
u € C%[0, Trnax[; X). Given t € [0, Tz, there exists i € I such that T | <t < T} and, by induction,
by arguments analogous to those used in (2.4.145), we obtain

u(t) = S(t)ug + /0 S(t — s)F(u(s))ds,

which shows that u is a generalized solution of (2.4.125) on [0, T4z [. To prove uniqueness, suppose there
exists another function v which is a generalized solution of (2.4.125) on [0, a2 [. In particular, for each
i € I we have that v satisfies

o) = S(#)uo + /0 "S(t— F(o(s) ds, Vi€ (TP, T7].

But, by Theorem 2.4, u; is the unique generalized solution of (2.4.125) on [T} ,,T;], hence v = u; on
[T ,,T7] for each i € I. Thus u = v.

It remains to show that

Tinax = +00 or, if Typae < 400, then  lim |u(t)|| = +oc.

t*) max
Indeed, suppose, by contradiction, that
Tar <00 and  lim |lu(t)| < oo.
tﬁ 'I;G.d)
Then
lu(®)] < C, Vte|0, Tmazls (2.4.146)

for some C' > 0.

Consider, in view of (2.4.146), the solution v of the problem

U

v

7 (8) = Av(t) + F(u(t)),
U(O) = “(Tmax) = lim u(t),

t—=Tmax
and set
u(t), te [07Tmaz]a
o= §>0.
w( ) { U(t - Tmam), t e [TmazaTmaz + 5]7 ” 0

Then w is a generalized solution of (2.4.125) which extends the maximal solution u, a contradiction.

(ii) Let u be the generalized solution of (2.4.125) on [0, T)nax| and write u = wu; for its restriction
to [T7_1,T7]. As in part (i), if up € D(A) then each u; is a strong solution of (2.4.125) on [T} ;,T;]. By
the arbitrariness of ¢ € I, it follows that u is a strong solution of (2.4.125). a
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Theorem 2.26 Assume that ||S(t)|| < 1. Let F': D(A) — D(A) be a locally Lipschitz function. Given
up € D(A), there exists u € CH([0, Tynaz), X) N C°([0, Trnaz), D(A)); moreover, u is a classical solution
on [0, Trnaz), and either Trgy = +00 01 Thge < +00 and . li%n (Jlu(®)]] + | Au(?)]]) = +oo.

—

max

Proof: In Theorem 2.25, consider X = D(A) endowed with the graph norm. Then, for uy € D(A), we

have that
Ul(t)7 te [07T1)7
’U,Q(t—Tl), t e [T17T2>7

u(t) =< (2.4.147)
un(t - Tn—l)v te [Tn—th)a

is a strong solution of (2.4.125), with u € C°([0, Tynaz), D(A)) and Tpae = +00 or Thae < +00 and
lm  (JJu(®)| + ]| Au(t)]]) = +o00. Recall that u; is a classical solution of (2.4.125) on [0, T;] with u;(0) =

t—=Tmax

uifl(Tifl) and T() =0.

It remains to show that u € C1([0,T)naz), X). Since u(t) € D(A) for every t € [0, Thnqaz) and

u € C°[0, Taz), D(A)), we have u € C°([0, Tynaz), X). Now observe that, for each interval [T}_1,T}),

the derivative % is continuous. Thus, it suffices to prove continuity at T;.

Indeed, note that

du™ w(T; + h) — u(T;)
— (T;) = 1
a T e h
—  lim ui+1(h) - Ui+1(0)
h—0+ h
duitq
= 0
dt ( )’
and
du™ . uw(Ty+ h) —u(Ty)
= o= 1
dt ) hgg— h
—  m wi(T; + h) — u (T3)
h—0~ h
d’UJi N
= ;).
(T
Hence we must show that
dui+1 + - dul -

“ o) = S (7).

Since u; is a classical solution of (2.4.125) on [0, T;], we have

dui
o (0 = Au(t) + F(ui(t)), te[0,T)], (2.4.148)
ui(0) = ui—1(Ti—1),
and d
YL = Awipa(f) + Fluina(t), t€ [0, Ty, (2.4.149)
Thus
dui_

o (T;) = Aui(T3) + F(ui(T7))
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and
dui +
dtﬂ (0) = Auiy1(0) + F(ui41(0))
= Aui(T;) + F(ui(T3))
duif
= T‘z 3
(D)
which proves the claim. O
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Chapter 3

Evolution Equations

3.1 The Heat Equation

In this section we consider €2 a bounded open subset of R™ with sufficiently smooth boundary I'.
3.1.1 Dirichlet boundary condition

Consider the following problem with Dirichlet boundary condition:

uw—Au=0 in (
(

u=0 on ) x T, (3.1.1)

u(0) = ug in Q.
We shall study existence and uniqueness of solutions of (3.1.1), taking the initial datum ug in each
of the following sets: H(Q) N H?(Q), L3(), H(Q), and H~1(Q).
First case ug € H}(Q) N H?(Q)

We rewrite (3.1.1) in the abstract form

uy = Au,
{ w(0) = up (3.1.2)

where
A HNQ)NHA(Q) C LA(Q) — L*(Q).
We first use the Lumer—Phillips theorem to prove that A € G(1,0). Indeed:
i) We know that H}(Q) N H?(Q) is dense in L?(Q);

ii) A is dissipative, since

(Au,u)p2q) = /Auudxz—/Vu-Vudx—F/@udFSO,
Q Q r v
=0

for every u € H}(Q) N H?(Q);

iii) Im(I — A) = L%(Q). In fact, proving Im(I — A) = L?(Q) is equivalent to proving that, for
each f € L?(12), the problem u — Au = f has a solution u € HZ(2) N H%(Q). To prove this, we use the
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Lax—Milgram lemma. Define
a(u,v) = / (Vu - Vo +uwv)de, Yu,v € HY(Q),
Q

which is clearly bilinear. This bilinear form is continuous, since

la(u,v)| = ’/(Vu-Vv+uv) dx
< /|Vu||Vv\dx+/ |u||v| dz
< AVullz@)IVollrze) + ||u||L2(Q [vllz2(0
1
< (||U||L2(Q) + ||VU||L2(Q)) : (HU||L2(Q) + ||Vv||2L2(Q)) :
= |ullm@llvl @)
<

C||UHH5(Q) ||U||Hg(9)~

Moreover, it is coercive, since

atww) = [ [VaPdo+ [ uPdoz [ [VuP do = fulfyy .
Q Q Q 0

By the Lax—Milgram lemma, there exists a unique u € H}(Q) such that a(u,v) = (f,v) for all v € H} (),
that is

/(Vu-Vv—!—uv)dz:/fvdx, Vv € H} ().
Q o

From this and the regularity theory for the associated elliptic problem, we obtain v € H?(f2). Hence,
using Green’s identity, we see that there exists a unique v € H} (Q)N H?(Q) satisfying u — Au = f, which
proves the claim.

By (i), (ii) and (iii), the operator A is m—dissipative with dense domain and, by the Lumer—Phillips
theorem, it follows that A € G(1,0). Thus, if ug € HE(Q) N H%(Q), then by Theorem 2.3, the problem
(3.1.2) admits a unique solution

u € C([0,00); Hy (Q) N H*(Q)) N CH([0, 00); L*(2)).

Second case ug € L?(12)

We first show that A : H(Q) N H2(Q) C L3(2) — L2(Q) is self-adjoint. Indeed, since A is

m~—dissipative, —A is maximal monotone. Moreover, —A is symmetric, because
( Au ’U)Lz Q) = (Vu VU)Lz(Q (u, —AU)Lz(Q) Yu,v € H&(Q) N HQ(Q),
so that —A is self-adjoint and hence A = A*.

Since A is m~—dissipative and self-adjoint, it follows that A generates a differentiable semigroup,
by Proposition 2.8. Then, by Theorem 2.5, if uy € L?(£2) the problem (3.1.2) has a unique solution in
the class

u € C((0,00); Hy () N H?(2)) N C([0,00); L*(2)) N C((0, 00); L*(€2)).

Third case ug € H}(Q)

We first show that the operator —A : H}(Q) N H2(2) C L?(Q) — L?() is defined by the triple
{Hg(Q), L*(Q),b(u,v)}, where b(u,v) = (Vu, Vv)r2(q) = (u,0)g1(q) is a sesquilinear form, continuous
and coercive on H}(Q).
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Let A be the operator defined by the triple {Hg (£2), L%(€2), b(u,v)}. We shall prove that
D(—A)=D(A) and Au=-Au, Yu€ D(-A).
Let u € D(—A) = H}(Q) N H?(Q2). Since
D(A) = {u € Hy(Q); 3f € L*(Q) such that b(u,v) = (f,v)12), Vv € H)(Q)},

we must exhibit f € L*(Q) such that b(u,v) = (f,v)r2(q) for all v € Hj(Q). Taking f = —Au € L*(Q),
we obtain the desired identity, since

b(u,v) = (Vu, Vv)r2q) = (—Au,v) 12(0) = (f,v)12(0), Yv € H(Q).
Thus v € D(A) and —Au = Au.

Conversely, if u € D(A), there exists f € L?(2) such that
(f,0)12(0) = (Vu, V) 200y, Vv € Hy(Q).

In particular,
(fa )L2 Q) = (Vu, VCP)L2(Q), V(p € D(Q)7

and, using Green’s identity, we deduce that f = —Awu in D'(Q). As f € L?(Q), it follows that —Au €
L?(2). Therefore, u satisfies the problem

—Au=f in
3.1.3
{ u=20 on T, ( )

and hence u € H?*(Q). Thus u € H}(Q) N H?(Q) = D(—A). We conclude that the operator —A :
HY Q)N H%(Q) C L%(Q2) — L?(Q) is defined by the triple {Hg (2), L2(), b(u,v)}.

Consider the following chain of continuous and dense embeddings:
Hy () NH?(Q) — Hy(Q) — L*(Q) = H™1(Q) < (Hy(Q) N H*(Q))',
where we identify L?(Q) with its topological dual.

Since the bilinear form b(u, v) = (Vu, Vv) 2 () is coercive, the operator —A, defined by the triple
{H(Q), L*(Q), b(u,v)}, admits an extension

where —Awu : H}(Q) — C is defined by
(—Au, V) -19),mL () = (Vu, Vo)r20) = (4, 0) g1 ()-

This extension is a bijection and, endowing H ~!(Q) with the inner product

(@ 9)r-10) = (A 'z, —Aly HL(Q) = (A 'z 2, A7) )
we obtain HAUHH*I(Q) = |lullgx ) for all uw € Hg(Q).
Now consider the problem

—Au=0 in (0,00) xQ,
u=0 on (0,00) x T, (3.1.4)
u(0) = ug in Q.
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We now prove that A € G(1,0).
i) We know that H} (1) is dense in H~1(Q);

ii) We prove that A is dissipative. Let u € D(A). Then

(Au, ’U,)H71(Q) = (A‘lﬁu, A_lu)Hé(Q) = (u, A_lu)Hé(Q)
= (Vu, VA_lu)Lz(Q)

= /Vu-VA‘ludxz—/uAA_ludx
Q Q

= —/quxSO.
Q

Now let w € D(A). Then there exists {u,} C D(A) such that u, — w in D(A). From the previous
computation we have
(Aun,un)Hfl(Q) <0 VneNlN.

Observe that

(Au,u) -1
|(Atn, Un) g-1(0) = (AU, Un) g-1(0) + (AU, Un) g-1(0) — (Au, u) g-1(0)|
[(Aty — Au,un) g-1(@)| + [(Au, Uy — u) g-1(0)]

|(Aum un)Hfl(Q)

1 Auy — Aull g0 [unllm-1(0) + 1Al g-1(0) llun — vl 5-1(0)

ININ A

cl| Avy — Aull -1 0y l[un |l 2 0y + cllAull 10 ltn — ull 20y — 0,

where ¢ > 0 is the constant in the embedding HZ () < H~'(Q) and we have used that A is a bijective
isometry. From this convergence we conclude that (Au,u)g-1(qy < 0.

iii) We prove that Im(I — A) = H='(Q). Let f € H~'(€2) be given. Consider again
a(u,v) = / (wv 4 Vu - Vo) dr, Yu,v € H} (),
Q

which is a bilinear, continuous and coercive form. By the Lax—Milgram lemma, there exists a unique
u € H}(Q) such that
a(u,v) = (f,v), Vv € HLH Q).

Using
(—Au,v) = (Vu, V) r2), Yo € Hy(S),

we obtain i
<U*AU,U>:<‘]“,U>, V’UGH&(Q),

which yields the desired conclusion.

Therefore, A s m~—dissipative with dense domain and, by the Lumer—Phillips theorem, Ae@d (1,0).
Thus, when ug € H} (), Theorem 2.3 implies that the problem (3.1.4) has a unique solution

u € O([0,00); Hy () N CY([0, 00): H ().

Fourth case ug € H~1(Q)
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First note that, if u,v € D(A), then

(u, Av)g-1q) =

= —u U)LZ(Q)7
and also
(Au,v)HA(Q) = (A_lAU7A ’U)Hé(ﬂ) = (’U,7A_ v)Hé(Q)
= (Vu, VA_lv)Lz(Q)
—(u, AA_:LU)L2(Q)
= 7(“3 U)Lz(ﬂ)a
so that

(u, AU)Hfl(Q) = (Auvv)H*1(52)7 Vu,v € D(A),
and, by density, the same equality holds for all u,v € D(A)7 which shows that A is symmetric.

Since A is m~—dissipative, —A is maximal monotone and, being symmetric, it follows that it is
also self-adjoint. Hence A s self-adjoint as well. As A is m-dissipative and self-adjoint, Proposition 2.8
implies that this operator generates a differentiable semigroup. Therefore, by Theorem 2.5, the problem
(3.1.4) with initial data ug € H () has a unique solution

u € C((0,00); Hy (2)) N C([0,00); H~'(2)) N C*((0, 00); H~'(R2)).
3.1.2 Neumann boundary condition

Let € be as at the beginning of the chapter. We now consider the heat equation with Neumann
boundary condition

ou
D =0 on

u(0) = ug in Q.

uy—Au=0 in (
( ) x T, (3.1.5)

We shall study existence and uniqueness of solutions to (3.1.5), taking the initial datum wg in each
of the following sets: L2(2), HY(Q), (H*(2))".

First case: uy € L?(2) We first consider the Laplace operator A : D(A) C L?(2) — L*(Q) with
domain )

u
5o =0on r}7
and we prove that the operator I — A : D(I — A) C L*(Q) — L*(Q2), with D(I — A) = D(A), is defined

by the triple { H*(2), L?(Q), a(u,v)}, where

D(A) = {u e H2(Q);

a(u,v) = (Vu, Vo) 2y + (4,v)12(q), Yu,v € HY(Q).

Since a is a bilinear and continuous mapping, we know that the triple {H! (), L?(2), a(u,v)}
defines an operator A. We shall show that

D(A)=D(A) and Au=(I—-A)u, Yue D(A).
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Indeed, let
u€ D(A) = {u € H'(Q); 3f € L*(Q) such that a(u,v) = (f,v)r2(0), Yo € Hl(Q)}
Then there exists f € L*() such that
(Vu, Vo) rz2i0) + (u,v)r20) = (f,v)r2(), Vv € HY(Q). (3.1.6)
In particular, for ¢ € D(Q2) we have
(Vu, Vo) r2q) + (4, 0)2(0) = (fs¢)2(0)

whence
f=-Au+u inD'(Q).

Since f € L*(Q) and u € H*(Q), we get —Au € L?(2). Then, from (3.1.6) we obtain
(VU, V’U)Lz(Q) + (Au, U)LQ(Q) =0, Yve Hl(Q)

On the other hand, by the second Green’s formula in its general form,

ou

(Y, V) saiey + (B 0)imy = (o)

and thus 5
gu _ 1
<8V’U>H*1/2,H1/2 =0, Yve H ().

Ju
Since the trace operator is surjective, we deduce W 0 on I". Moreover, by the regularity theory for
v
the Neumann problem, we have u € H2(), and therefore u € D(A).

Conversely, let u € D(A). We must exhibit f € L*(Q) such that a(u,v) = (f,v)p2(q) for all
v € HY(Q). Taking f = —Au +u € L?() we obtain the desired identity, so u € D(A). Now, since
u € D(A) we have a(u,v) = (Au,v)2(q), and using the second Green’s formula again we conclude that

u—Au= Au, Yu € D(A).

Thus, the operator I — A is defined by the triple { H(2), L?(€2), a(u,v)}. Therefore, applying the
parabolic case, when 2y € L?(2), the problem

{zt+(I—A)z:0 in  (0,00) x Q, (3.17)

z(0) = 2o in Q
has a unique solution
2 € C(]0,00[; D(A)) N C°([0, 00[; L*(€2)) N C* (10, 00[; L*(%2)).
Setting u(t) = e'z(t), we see that u is the unique solution of (3.1.5) with ug = u(0) € L?(£2) in the

class
u € C(]0,00[; D(A)) N C([0, 00[; L*(2)) N C'(]0, 00[; L*(92)).

Second case ug € (H'(Q2))’

Since I — A is defined by a triple, we may consider its extension

I-A: HYQ) — (HYQ))
u — I/_—\/Au:Hl(Q)—HC7
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where

—_~—

<I - Au, U>(H1(Q))’,H1(Q) = CL(U7 1)) =

(Vu, Vo) r2(q) + (u,v) 22(q)-

This extension is a bijective isometry, and via it we define an inner product on (H'(Q))’ by

(u, v) (ryy = (I —A)~"

—_~—

We first show that I — A is maximal monotone. Indeed, let u € D(I — A)

—_~—

(I = A)u,u) )y

Fu, (T —A) M
u, (I — AT —A)

=

[ullZ20) = O,

u, (I — A)il’U)Hl(Q).

= D(A). Then

— A)u, (I = D) u) o
71U)H1(Q)
— A)_lu)sz(Q)

Aty

)2 + (u, (1

1U)L2(Q) + (mu,vo(I — VE-1/2 /2
)L2(2)
)z2(9)

Yu € D(A).

Now let u € H*(2); then there exists {u,} € D(A) such that u,, — uin H*(Q). Since T~ Ads con-

tinuous, we have (I A)uy, —

we obtain ((I A)u,u)g1(q))y > 0. Hence I —

Next we prove that Im(I + (I — A)) =

(I A)u in (H1 (Q)).

As (I = A)un, un)(mr )y — (I = A)u,w) )y

A is monotone.

(H*(2)), that is, given f € (H'(Q))" we must find

u € HY(Q) such that u + (I/_—\/A)u = f. Consider

b(u,v) =

(’U,, U)LQ(Q) + a(u7 U)'

Then, by the Lax—Milgram lemma, there exists a unique u € H*(£2) such that

b(u,v) = (f,0) (). mr @), Vv € H'(Q).
It follows that o
(u,v) + (I = A)u,v) = (f,v), Yve HY(Q),
which yields the desired conclusion. Therefore I — A € G(1,0).
Moreover,
(T~ Do)y = (T- AT~ A, (T~ A)  0)giq)
= (=) ")m@)
= (Vu, V(I = &) )20 + (u, (I—/\Z)_lv)m(ﬂ)
= (0, =D = 8) )z + (u, (= B) o) 2
= (=) =) "))
= (u,v)r20)
= ([ =D)T=8)"u0) )
= (=) u0) 20 + (AT = A) 0,0) 200
= (T-4) L, v) 120 +(V(I_A)71vav)L2(Q)
= (=) "u0)m ).
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—_~—

Therefore, I—/_\_Z is symmetric for all u,v € D(A). Again, by density we conclude that I — A is

—_—~

symmetric for all u,v € H(€). Since this operator is maximal monotone, we have (I — A)* = T — A.

e~

Hence I — A generates a differentiable semigroup.
Thus, the problem

{ a+(I=A)z=0 in (0,00) x (3.1.8)

2(0) = ug in Q
has a unique solution in the class
z € C((0,00); HH(2)) N C([0,00); (H(2))") N CH((0, 00); (H(2))")
whenever uy € (H(2))".
The operator
—~A:HY(Q) = (H'(Q)) (3.1.9)
ur —Au, where — Au: H'((Q)) — C is given by

v = (VU, V’U)L2((Q)),

—~—

is a continuous extension of —A. Moreover, I — A = I-A=I-A.

Setting u(t) = e'z(t), we see that u is the unique solution of

{ ut—guzo in (OaOO)XQ? (3110)

u(0) = ug in Q

in the class
w e C((0,00); H(2)) N C([0, 50); HL(©)) 1 (0, 00); H (),

when u(0) = ug € (H'(2))".

3.2 Wave equation
3.2.1 Dirichlet boundary condition

Let 2 C R™ be a bounded open set with sufficiently smooth boundary I'. Consider the problem
Ut — Au=0 in (O7 OO) X Q,
u=0 on (0,00) xT, (3.2.11)

u(0) = ug, w(0) =vy in

)

We shall study existence and uniqueness of solutions to (3.2.11), considering the pair of initial data
(ug,u1) in each of the following spaces:

H(Q)NH?(Q) x Hy(), Hi(Q) x L2(Q), and L*(Q) x H1(Q).

First case: (ug,u1) € H}(Q) N H2(Q) x HY(Q) and (ug,u1) € HL(Q) x L3(Q).

We first observe that, by what was done in the Third Case in the study of the heat equation, the
operator —A : H} () N H%(Q) C L?(Q) — L?(Q) is defined by the triple { H}(Q2), L2(Q), b(u,v)}, where

b(u,v) = (Vu, Vv)r2q) = (u,v)Hé.
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Thus, by the Hyperbolic Case of Section 2.2, problem (3.2.11) has a unique solution u for (ug,u1) €
HYQ) N H%(Q) x H (), with

u € C°([0, +00); Hy () N H?()) N C([0, +00); H (2)) N C2([0, +00); L*(12)),
and, moreover, u satisfies the energy identity

IVu@®)ll72(q) + 14/ )72 = IVuolZ20y + llurllFzy, V¢ > 0.

Again by the Hyperbolic Case of Section 2.2, problem (3.2.11) has a unique solution u for (ug,u;) €
HY(Q) x L*(Q), with
u € C°([0,+00); Hy (2)) N CH([0, +00); L*(92)) N C*([0, +00); H (1)),

and, moreover, u satisfies the energy identity

w20 + I1v' (O F-1) = luoll7z) + luallf-1q),  VE>0.

Second case: (ug,u1) € L?(2) x H~1(Q).

Following the steps of the Hyperbolic Case in Section 2.2, consider the extension

A L2(Q) — (HH(Q) N H2(Q))

and ~ _
B: LXQ)xH Q) — (H*l(Q) x (HY(Q) N H2(Q))’) =X
(u,v) — B(u,v) = (v, ﬁu)
Once again we have B = —B and hence B generates a unitary group. Therefore there exists a unique
solution _ _
U € C(]0,00), D(B)) N C*(]0,00), X),
that is,

u € C([0,00), L*(2)) N C*([0,00), H*(R2)) N C?([0, 00), (HA(Q) N H*(Q))").

Remark 3.1 To justify the boundary condition w = 0 on T x (0,00) one must use the results obtained

3.2.2 Neumann boundary condition

Let Q C R™ be a bounded open set with sufficiently smooth boundary I'. Consider the problem

ug —Au = 0 in (0,00) x Q,
% = 0 on (0,00)xT, (3.2.12)
w(0) = ug, ug(0) = wvoin €.

We shall study existence and uniqueness of solutions to (3.2.12), considering the pair of initial data
up, vg) in each of the following spaces:
) g Sp

D(A) x HY(Q), HY(Q) x L*(Q),
where

D(A) = {u € H(Q); % =0 on r}.
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First case: (ug,v9) € D(A) x HY(Q).

Consider the change of variables

du
= — 2.1
v o (3.2.13)
and set
v=|" (3.2.14)
=1, | 2.
so that we obtain
g du
av _ at _ v _ 0 I u
o & {Au] {AOH} (3.2.15)
dt

17w (3.2.16)
[u,v] — B([uv])—[ 0][1}]’
From (3.2.12) we obtain
au
o = BY (3.2.17)
U(0) = Uy,
with
o= ]
vy
Now, setting U(t) = e'Z(t) we obtain
az
o = B-DZ, (3.2.18)
Z(0) = U,
with
o= ]
Vo

We need to show that B — I is the generator of a Cp—semigroup. To this end we use the
Lumer—Phillips theorem. We have

B—1:D(A)x H(Q) c H'(Q) x L*(Q) — H'(Q) x L*(Q).
Note that

i) D(B—1I)= D(A) x H'(Q) is dense in H*(2) x L*(f), since

D(B—1)=D(A) x HL(Q) = D(A) x HY(Q) = H(Q) x L*(Q).
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ii) B — I is dissipative. Indeed, let (u1,v1) € D(B —1I) = D(A) x H* (). Then

((B - I)(ulavl)v (ulavl))Hl(Q)XLQ(Q)
= ((U1 —u1, Aug — v1), (U1,Ul))H1(Q)XL2(Q)

= (v1 —u1,u1) g1o) + (Aur — v1,v1)2(0)

= (v1 —u1,u1) 2 () + (V(v1 —u1), Vur) 2 () + (Aur — v1,01) 12(0)
= /(Ul —uy)uy dz + / (Vvr — Vug)Vuy de + / (Auy — vy)vy dx
Q Q 9
= /(vlul —ul)dr + / (Vo Vg — |Vuy|?) do + / (Auy)vy —v? da
Q Q Q

:/Ulul—u%dx—i— Vvi1Vuy dx — |Vu1|2dx—/Vu1VUldm—/vfdx
Q Q Q Q Q

:/vluldac—/u%dx—/ |Vu1|2dx—/vfdx.
Q Q Q o

If / vuy dr < 0, then the last expression is clearly less than or equal to zero. If / viuy dz > 0, then
Q Q

/vluldx—/u%dac—/ \Vu1|2dx—/vfdx

Q Q Q Q

§2/v1u1dm—/u%dm—/\Vu1|2dx—/vfdx
Q Q Q Q

:—/(ul—vl)Qdac—/ |Vu1|2dx§0.
Q Q

Thus, in both cases, we conclude that B — I is dissipative.

iii) Im(I — (B—1)) = H' () x L*(Q). Equivalently, Im(2I — B) = H'(Q) x L?(2). We must show that,
given (w, z) € H'(Q) x L*(Q), there exists (u,v) € D(A) x H'(2) such that (2 — B)(u,v) = (w, z), that
is, such that (2u — v, 2v — Au) = (w, z), or equivalently

{2uvw, {4u2@2w,

20— Au=z2 20— Au = 2. (3.2.19)

Adding the two equations in the system above, we obtain 4u — Au = 2w + z. We now show that there
exists u € D(A) such that (41 — A)u = 2w + z.

Define
a(u,v) = / (VuVo +wv)dz, Vu,v € H(Q),
Q

which, as we have already seen, is bilinear and satisfies
|a(u, v)| < [lullzr @) llvll 5 (2,

showing that a is continuous. It is also coercive, since

a(u,u) = | |[Vul*do+ | |uf* do = |lull3 )
Q Q

By the Lax-Milgram lemma, there exists a unique u € H'(Q) such that a(u,v) = (2w + z — 3u, v) for all
v € HY(Q), that is,

/(VUVU + uv) dr = / (2w + z — 3u)vdr, Yo € H'(Q). (3.2.20)
Q Q

From (3.2.20) and the regularity theory for the Neumann problem we obtain u € H?(f2). Furthermore,
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from (3.2.20) we have
(Vu, Vo) 2(a) + (4,0) r2(0) = Qw + 2z — 3u,0)2(0), Yo € H'(Q). (3.2.21)
Since (3.2.21) holds for all v € H*(), in particular for ¢ € D(Q), we get
(Vu, Vo) 2y + (u, ) L20) = (2w + 2 — 3u, 9) 12(q)-

Hence —Au +u = 2w + z — 3u in D'(2). Since 2w + z — 3u € L*(Q) and u € L?*(), it follows that
Au € L*(Q). Thus, from (3.2.21),

(V’U/7 V’U)L2(Q) + (AU, ’U)Lz(g) =0, WYwe Hl(Q)

By the second Green’s formula in its general form,

ou

(Vu, Vo) z2(@) + (A, v)p2(9) = <%’U>H—1/z H1/2

and therefore 5
gu _ 1
<8V,U>H71/27H1/2 =0, Yoe HY(Q).

ou
Since the trace operator is surjective, we obtain e 0 on I'. Hence u € D(A).
v

Observe that, from (3.2.19), we have v = 2u — w. Since u,w € H(2), it follows that v € H'(Q).
Therefore, we conclude that (u,v) € D(A) x H(Q), as required.

By (i), (ii) and (iii), the operator B — I is m-dissipative with dense domain. Hence, by the
Lumer—Phillips theorem, we obtain B — I € G(1,0). Thus, when Uy € D(B — I), the theorem 2.3
guarantees the existence of a unique function

Z € C([0,00); D(B — 1)) N CY([0,00); H}(Q) x L*(Q))

solving (3.2.18). We have
Z(t)=e"'U(t) = e { ult) } = [ Zj‘(t) ] € O([0,00); D(A) x H(9)) N CH([0, 00); HL() x L*(%2)).
We conclude that

u € C([0,00); D(A)) N C* ([0, 00); H' () N C*([0, 00); L*(%2)).

Second case: (ug,vg) € HY(Q) x L*(Q).

We know, by Corollary 1.23, that every Cp—semigroup is strongly continuous on R, that is, if
te R+, then
lirr% S(s)(x,y) = S(t)(z,y), forall (x,y) € H'(Q) x L*(Q).
s—

Thus, if (ug,ve) € HY(Q) x L?(Q), the corresponding solution satisfies

u e O([0,00); HY(Q) x L2(Q)).

3.3 Schrodinger equation

We now state a result that will be useful in the study of the Schrodinger equation.

Proposition 3.2 Let H be a Hilbert space and A : D(A) C H — H a symmetric linear operator such
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3.3 Schrodinger equation

that Im(XoI — A) = H for some Ao € R with A\g € p(A). Then A is self-adjoint.

Proof: Since A\g € p(A) and Im(\I — A) = H, the domain of the operator R(\g, A) is H. Given
x,y € H, write 2’ = R()\g, A)z and ¢y = R(\g, A)y. Then

x =Xz — Az’ and y= oy — Ay’
Since A is symmetric, (z/, Ay') = (Az’,y’) because z’,y’ € D(A). Thus,
(@, Aoy —y) = (2, Ay') = (A, y) = (Mo’ — 2,%/),

and hence (2/,y) = (z,v’), that is, (R(M\o, A)z,y) = (x, R(Ao, A)y). Since Dom(R(A\g, A)) = H and by
the equality above, it follows that R()\g, A) is self-adjoint.

To prove that A is self-adjoint, it suffices to show that D(A*) C D(A), since A is symmetric by
hypothesis. Let € D(A*) and set z = (A\gI — A)*x. Given y € H with w = R(\g, A)y we obtain

(’LU, Z) - (R()‘Oa A)yv Z) - (ya R(AOa A)Z)

and also
(w, 2) = (w, (Aol = A)"x) = (Aol = A)w,z) = (y, ),
so that
(y; R(Xo, A)z) = (y, 7).
By the arbitrariness of y € H it follows that x = R(A\g, A)z € D(A). O

Let H be a Hilbert space and A : D(A) C H — H a linear operator with dense domain in H. We
have A* = —A if and only if 74 is self-adjoint. Indeed, if A* = —A, then

(iA)* =iA* =i(—A) = (—i)(—A) = iA.
Conversely, if iA is self-adjoint, then

A = (iA) =TA" = (—i) A" = i(—A"),

which implies A = —A*, that is, —A = A*. In this way, by Stone’s theorem, the operator A generates a
unitary Co—group if and only if i4 is self-adjoint.

We now consider the Schrodinger equation

%(t) =dAu(t) in £ x(0,00),
u=0 on 90 x (0,00), (3.3.22)
u(0) = ug in

where €2 is a bounded open subset of R™ with smooth boundary.

Let A: HF(Q)NH?*(Q) C L*(Q) — L?(22) be the operator defined by Au = iAu. We already know
that the operator —iA = A is self-adjoint, that is, (—¢A)* = (—iA). On the other hand,

(—iA)* = TiA* = iA”,

so iA* = —iA, and hence iA is self-adjoint. Thus A generates a unitary Cp—group and, in particular, a
Co—semigroup. By Theorem 2.3, problem (3.3.22) admits a unique solution w in the class

C2([0,00); Hy () N H?(2)) N C*([0, 00); L*(92))

whenever ug € H}(Q) N H2(2) = D(A).

- 169 -



3 Evolution Equations

Our aim now is to study the Schrédinger equation in L?(R"):

%%(t) = Au(t)—qu(t) in R x(0,00), (3.3.23)
u(0) = ug in R",

where A is the Laplacian and ¢ is a real-valued measurable function defined on R". Before studying this
equation, we shall prove that the operators

Ar :+ D(A;) C LA(R")

L%(R")
Alu =iAu

]

and
iM, : D(M,) C L*(R") — L*[R")
u — 1Myu = iqu,

where D(A;) = H*(R") and D(M,) = {u € L*(R"); qu € L?*(R™)}, generate unitary Cp—groups.

We first prove that —iA; is self-adjoint. Note that S(R™) c HZ?*(R") C L?*(R") and since
2 n 2 n
SEY ™) = [2RmY, it follows that HZ(R®). ) = L2(R"). Hence D(A;) = H(R") is dense in

L?(R™). Moreover,

(Aw,v)p2@mn) = Au(&)v(§) dE

Il
>
S
—~
o
=
s
I

[ o ierae wea
N /R () (—4n?)[[E]70(8) dé

= [ e ae
= (u,Av)p2mny, Yu,v € D(Ay),

and therefore (—iAyu,v)p2@ny = (u, —iA10) 2wy for all u,v € D(A;), so that —iA; is symmetric.
Furthermore,
(—iAlu, U)LQ(Rn) = (Au,u)Lz(Rn)

= | Au@©)T(e)de

R

/"(—4772)||§H2ﬁ(€)@d§

- [ amlga©P de <0, e D),
so that —iA; is dissipative. By Proposition 1.42,
(T = (=iA))ul| > [[ull, Vu e D(Ay). (3.3.24)
Thus I — (—iA;) is injective.
Given v € L2(R"), we know that there exists a unique v € H?(R") such that
—~Au+u=v in L*R"),

that is,
(I —(—iA)u=v in L*(R"),
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3.3 Schrodinger equation

which shows that I — (—iA;) is surjective. Hence (I +iA;)~! : L*(R") — H?(R") exists. Given
ve LXR"), let u= (I +iA;) v € HX(R"™). From (3.3.24),

I+ iAol = Jlull < (7 +iAyull = [|v]],

so (I +iA;)~ ! is continuous and therefore 1 € p(—iA;).

We have that —iA; is symmetric, Im(I — (—iA;)) = L?(R") and 1 € p(—iA;). By Theorem 3.2,
—iA; is self-adjoint. Thus ¢A; is self-adjoint and therefore A; generates a unitary Ch—group.

The operator
M, : D(M,) C L*(R") — L*R")
U — Mgu = qu,

is called the multiplication operator.

We now prove that i), generates a unitary Cy—group. For this, it suffices to show that M, is
self-adjoint.

For each n € N, set B, = {x € R" : |¢(z)| < n}. Fix an arbitrary u € L?(R™). We have

/ lux g, (2)]? do < / lu(z)|* dr < oo,
so uxg, € L?>(R") for all n € N. Also,

luxe, () —u(z)| = 0 as n — oo for almost every x € R",
and since |uxg, (z) — u(x)|? < 4]u(z)|? for almost every x € R", the Dominated Convergence Theorem
implies that uyg, — u in L?(R™). Moreover,

/n lq(z)u(z)xg, (2)]? de < n2/ lu(z)|* dz < 0o, Vn €N,

n

so uxg, € D(M,) for all n € N. Thus D(M,) is dense in L?(R™).

Given u,v € D(M,), since ¢ is real-valued, we have (Myu,v) = (u,Myv), and therefore M,
is symmetric. Hence D(M,) C D(My) and Myu = Mgu for all u € D(M,). We now prove that
D(M,) = D(M;). Note that if u,v € D(M,), then

(il + My)u = (£il + My)v
implies v = v. Thus the operators £il + M, are injective. Moreover,
[ 4i+q@)| = VIZF @@)P =1, VzeR",

and therefore, for u € L2(R"),

4
‘ “tu ‘§|j:z'u||u,
+i+gq
which shows that »
R
+i+gq
and hence L Viut )
- = TR, T ¢ g,
+i+4gq +i+gq +i+q *idgqg
SO
Y eDM,) and (il + M) [ —2
an 1 Ee— = U
+i+gq 1 Y\ +i+gq ’

which shows that the operators il + M, : D(M,) — L?(R™) are surjective.
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Suppose, by contradiction, that D(My) # D(M,).
Claim: il + M7 : D(M}) — L*(R") is not injective.

Indeed, since D(M,) & D(My), there exists w € D(My) \ D(M,). As il + M, is surjective and
(il + M7)w € L*(R"), there exists v € D(M,) such that

(il + My)v = (il + M;)w.
But v € D(M,) C D(M;) and Myv = Myv, so (il + My)v = (il + M;)w with v # w.

Since il + M; is not injective, there exists v # 0 in D(My) such that (il + M;)v = 0, that is,
Myv = —iv. Hence

(Mqu,v)Lz(Rn) = (u, M;U)LQ(R") = (u, —Z’U)m(w) = (W@L?(Rn), Vu € D(M,),

and therefore
((—’Lj + Mq)u,U)LQ(Rn) =0, Yue D(Mq)

Since —il + M, is surjective, the above equality implies v = 0, which is a contradiction. Thus D(M,) =
D(Mj) and so M, is self-adjoint.

Returning to problem

%‘%‘(t) = Aut) —qu(t) i R"x (0,00), (3.3.25)
u(0) = ug in R™,

we restrict ourselves to the following three cases:

a) gq(z) =0 for almost every z € R™;

b) g € L>(R");

c) (i) H3(R") C D(M,) and there exist constants a,b € R with 0 < a < 1 and b > 0 such that
||MquHL2(Rn) < a||iA1u||L2(Rn) + bHUHLz(]R”)a Yu € Hz(Rn),

(ii) g(x) > 0 for almost every x € R™.

a) In this case, My; = 0. We have already seen that A; generates a Cp—semigroup. Thus, if ug € D(4,) =
H?(R™), then there exists a unique solution u of (3.3.25) in the class

u € C([0,00); H*(R™)) N ([0, 00), L*(R™)).

b) Since g € L>(R"™), we have D(M,) = L*(R™), because

1

2
1Ml ey = ( /R |q<x>u<x>|2dx) < gl o

ul|p2gny < 00, Vu € L*(R™),

and hence M, € L(L*(R™)) with ||My|lzr2®n)) < [lg||peo@n). Moreover, Im(I — (—iA;)) = L*(R"),
—iA; has dense domain and is dissipative. By the Lumer—Phillips theorem, —i4; € G(1,0). By Exercise
1.52 we obtain —id; — M, € G(1, || My|lz(z2rn))), and therefore

—idy — My — | Mgl cz2@n) ! € G(1,0),
by Proposition 1.37. By the Lumer—Phillips theorem,

Im(A — (—idy — My — | M, | cza@ny]) = L (®™),
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for some fixed A > 0. Setting Ao = A+ || My || £(L2(rn)), We have
Im(\o — (—iA; — M,)) = L*(R™).

Moreover, since —iA; — My € G(1, || M| z(z2(rny)) and Ao > || Mgl z(z2®ny), it follows that Ao € p(—iA; —
M,). As
D(—iA; — M,) = D(A;) N D(M,) = H*(R™) N L*(R™) = H*(R™)

and —iA; and M, are symmetric, we deduce that —iA; — M, is also symmetric. Hence Im (Ao — (—iA4; —
M,)) = L*(R") and A € p(—iA; — M,), and by Theorem 3.2 we conclude that —iA; — M, is self-adjoint.
Therefore 14, + M, is also self-adjoint and A; — ¢M, generates a Cp—semigroup. Arguing as in the
previous case, if ug € H?(R™), then there exists a unique solution u of (3.3.25) in the class

u € C([0,00); HX(R™)) N C([0, 00), L*(R™)).

¢) By (ii) we have

(=Mgu,u)r2mny = (—qu, u) L2 ®n) = / —q(x)u(x)u(z) de = —/n q(z)|u(x)|*dx <0, Yue D(M,),

n

so —M, is dissipative. We have already seen that —iA; € G(1,0). By the hypotheses and Exercise 1.5.1
it follows that —i4; — M, € G(1,0). Thus, for some A,

Im(Xg — (—iA; — M,)) = L*(R") and ) € p(—id; — M,).

Since —iA; — M, is symmetric and D(—i4; — M,) = H*(R"), we conclude that —iA; — M, is self-adjoint,
so ¢A; + M, is also self-adjoint and A; — iM, generates a unitary Co—group. In particular, A; —iM,
generates a Cp—semigroup. Hence, if ug € H?(R"), there exists a unique solution u of (3.3.25) in the
class

u € C([0,00); H*(R™)) N C*([0, 00), L*(R™)).

Example 3.3 Consider the problem

g =1Au in  Qx(0,400),
u=0 on T x(0,+00), (3.3.26)
u(0)=uy in €Q

where 2 C R” is open.
Let up € H}(Q) and consider the operator
I—A:H;(Q)— H Q)

u (I — A)u.

We show that I — A is a bijection; for this we shall use the Lax—Milgram lemma.

Define

a:H3(Q) x H3(Q) - R
(u,v) = a(u,v) = (u,v)r2) + (Vu, Vo) r2(0).

We have:

(i) a(-,-) is bilinear.

(ii) a(-,-) is continuous.
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Indeed,
la(u, v)] = |(u,v)r20) + (Vu, Vo) r2(9)] = [(w,0) gyl < lullay@lollm @), Yuv € Hy(Q).
(iii) a(-,-) is coercive.
Indeed,
la(u, u)| = |(u,w)r2(0) + (Vu, Vu)r2(0)| = Hu”?ﬁlé(ﬂ)'
Since a(-,-) is bilinear, continuous and coercive, by the Lax—Milgram lemma, given f € H=*(Q) =

(H}(2))', there exists a unique u € Hg () such that

a(u,v) = (f,0) g-r(q)mi@), Yo € Hy(9).

In particular, a(u,w) = (f,w) g-1(q) HL(Q) for every w € C§°(Q2), that is,

(u,w)Lz(Q) + (VU, V’LU)L2(Q <f, > ~1(Q),H}(Q)> Yw € CgO(Q) (3327)
Hence
(u, w)pr () — (Au, w)pre),p@) = (f,W)p(Q).D@)
because
D(Q) = HJ(Q) = L*(Q) = (L*(Q)) — H Q) = D'(Q). (3.3.28)
Thus

(u — Au, w)pr(a).p@) = (f,w)p(),p@), Yw e C5P(Q).

Hence uw — Au = f in D'(Q).

Since the equality above holds in D’'(f2), it follows from (3.3.28) that there exists a unique u €
H}(Q) such that

(I-Au=f in HQ), (3.3.29)
as desired.
Thus there exists the operator (I — A)~1: H=1(Q) — H}(Q).
From (3.3.29) and (3.3.27) we get
(usw) 20y + (Vu, Vw) ) = (I = A)u, w) g-1(q),Hi(0), YW € H;(Q). (3.3.30)
Moreover,

|<(I — A)u, w>H71(Q))Hé(Q)| = |(u, ’U})LZ(Q) + (VU, V’LU)LZ(Q)|
< ullpzo) llwllpz@) + VUl @) [Vl 2 ) (3.3.31)

Using Holder’s inequality for series (with p = ¢ = 2), we deduce from (3.3.31) that

(I = A)u, w) g-1(),m1 )| < (HUH%z(Q) + ||VU||2L2(Q))§(||W||%2(Q) + ||Vw||%2(gz))§

= ||U||H5(Q)||w\|H3(Q)
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Hence
(I = A)ullg-10) = sup  [{(I = A)u,w)g-10), 11 0)] < lullm @)
weHg ()
lw]<1
Therefore
(I = A)ullg-10) < llullm@)- (3.3.32)

On the other hand, from (3.3.30) we have

HUH%(}(Q) = HU”%z(Q) + ||VU||2L2(Q) = - A)uvu>H—1(Q),Hé(Q)|-

For u # 0 we obtain

1
u 1 =— I —-A U, W) -1 1
|| ||HO(Q) ||u||Hé(Q)|<( ) >H (Q),HO(Q)l
_ <<I_A>U,U>
llige@) / s 0,y

< sup (- A)u7w>H*1(Q),Hé(Q)‘ = (I - A)UHH—l(Q)~
weH(Q)
flwl=1

Thus

lull g ) < 1T = A)ullg-1(9)- (3.3.33)

From (3.3.32) and (3.3.33) we conclude that |lul|g1q) = (I — A)ullg-1(a). Hence (I — A) :
H}(2) — H~1(Q) is a surjective isometry, that is, an isometric isomorphism. Consequently, R(1,A) =
(I — A)~! exists.

Define on H~!(Q) the inner product

((u,v))1 = (I — A) tu, (I - A)ilv)Hé(Q), Yu,v € H Q).

Moreover, (I —A)~! is also an isometry, hence [|(1 —A) " ul g1 ) = [ull 1) for allu € H=H(Q).
We first show that there exist constants Cy, Cy > 0 such that
Cillullg-10) < lullgp @) < Cellullg-1(0), Vue H™().

Indeed, [Jullg-1(q) = (I - A)_1u||Hé(Q) = |jul|; for all u € H~1(Q), where the first equality follows from
the isometry and the second from the definition.

We now prove the continuity of R(1,A).

Recall that R(1,A) = (I-A)~"': H7Y(Q) — H} () ¢ H~1(Q). We wish to show that (I—A)~! €
L(H71(Q)), that is, there exists C' > 0 such that

11— A ully < Cllully, Yue H(SQ). (3.3.34)

Indeed,
I = A) Ml g1 < NI = A) tull g ) = Cllull a0,
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where the inequality follows from the chain of embeddings in (3.3.28) and the equality from the definition.

Furthermore,
17 = A) tully = (T = A) " ull g1y < Cllulla-1) = Cllulli, Yue H™H(9).

Thus R(1,A) € L(H~1(Q)), which implies that 1 € p(A) and, from the surjectivity of (I — A) already
proved, we also have Im(I — A) = H=1(Q).

In order to apply Proposition 3.2, it remains to show that A : H}(Q) ¢ H=}(Q) — H () is a
symmetric operator (with respect to the inner product ((+,-)); defined on H=1(Q)).

We first observe that D(A) = H{ () is dense in H~1(Q).

Let uw € H-(Q). Then there exists w € HE(Q) such that u = (I — A)w. Since w € H}(Q2) and
D(R) is dense in H}(), there exists (p,) C D(2) such that ¢, — w in H}(Q). By the continuity of the
operator (I — A) we have

Y, =T —A)p, = (I —A)w=u inH Q).

Since (¢,,) C D(R), this implies that D(2) is dense in H~1(Q). From D(Q) C H}(Q) ¢ H Q) we
obtain

H™ Q) g7 o7H (@) H™H(Q)

H Q) =D(Q) C H}(Q) c H-1(Q) = H Q).
We conclude that

o @) sl
H () = Hy(9)

That is, H} () is dense in H~1(Q).

=H ().

We now show that ((Au,v))1 = ((u, Av))1. We carry out this proof in the real case, i.e., K=R.

Let u,v € C§°(£2). Then

((Au,v))1 = ((Au —u+u,v))1 = (= = A)u+u,v))
= (= = A)u,v))1 + ((w,0)1
= (—u, (I = A)v)gr(a) + ((u,0)1
= (—u, (I = A) " ) p2(0) + (=Vu, V(I = A)""0]) £2(0) + ((w, )1
Note that

(=Vu, VI(I = A) 7)) p20) = (VI = A) o), =Vu) 20y = (A[(I = A) " ], u)pr ), p(0)-

Hence

((Au,v)1 = (=T = A) "o, u)pr () Do)
+ (Al = &)~ ], u)pr ), pe) + ((u,0)1
(—(I —A) o+ A[(I - A)_lv],U>D/(Q)7D(Q) + ((u,v))1
(—(I = A)[(I = A)" o), u)praypo) + ((u,0)1
= (—v,u)pr()p@) + (u,v))1
(
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Thus

((Au,v))1 = —(u,v) g2 () + ((u,v))1- (3.3.35)

On the other hand,

((uv Av))l

((u, Ao — v+ )1 = ((u,—(I = A+ )y
((u, =(I = A)v))1 + ((w,v)

(—(I = &), v) gy o) + ((w,0)
(I -A)" UU)L2(Q)
+

(VI(I = A) ], =Vo) 20y + (4, 0)1-
Note that
(VI = A)" ), =Vv) 20y = (Al — A) " ], v)pr o), p@)-
Hence
((u, Av))1 = (=(I = A) " u,v)pr(9) D)
+(A[(I - A) ul, v)pr(q), D(Q) + ((u,v)h
=(—(I=A) u+A[(I-A)" v V) (), @) + (1)1
= (—(I = A)[(I = &) ], v)pr )y + ((u,0)1
=< u, ) pr(0) + ((u,v)
—(u, U)L2(Q ((u v))1.
Thus

((u, Av))1 = —(u,v)r2() + ((u,v))1- (3.3.36)

From (3.3.35) and (3.3.36) we obtain

((Au,v))1 = ((u, Av))1, for all u,v € C5°(0). (3.3.37)

Now let w, 2z € H}(Q). Since C(‘)X’(Q)H @ _ H(€2), there exist sequences (p,), (1) C C§°(Q)

such that ¢, — w in HE(Q) and ¢, — 2 in H}(Q) as v — +o00. By the continuity of the operator (I —A)
we have, as v — 400,

(I = D)y = (I = Mw in (HH(Q), |- [l),

(I = A)hy = (I = A)z in (HHQ), [~ [l1)-

Moreover, applying (3.3.37) to (¢,) and (¢,) we obtain ((Ag,,¥.))1 = ((pu, A)))1. Tt follows that

((901/’ Awu - T/Ju + ¢u))1
((QOU, _(I - A)d’u + quy))l
((pv, =(I = A)h))1 + ((ws )1 (3.3.38)

((Apy — o + 9o, )
(= = Ay + v, )1
(= = A)pu, )1 + (o, )
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Since Hg(2) — H~1(Q), as v — +00 we have

pp —w in (HH(Q), |- ),
by =z in (HHQ), ]| [lh)-

Taking the limit as v — 400 in (3.3.38), we deduce

(=T = A)w, 2)1 + (w, 2))1 = (w, =(I = A)2))1 + ((w, 2))
(=0 + A, 2))1 + (w0, 2))1 = (@, —= + D))y + ((w, 2)n
((—w+ Aw+w, 2)); = (w,—2z + Az + 2))1

(Aw,2))1 = (w, A2))1, Vz,w e H(Q)

Therefore A is symmetric.

By Proposition 3.2 we conclude that A is self-adjoint. Hence (iA)* = —iA* = —iA. By Stone’s
theorem, iA generates a unitary Cpo—group. In particular, it generates a Ch—semigroup.

Consequently, problem (3.3.26) admits, by Theorem 2.3, a unique solution
u € C°([0, +00), Hy () N C([0, +00), H(€)),

whenever ug € D(iA) = D(A) = H}(Q).

3.4 Nonlinear Equations

In this section we restrict ourselves to the study of the nonlinear heat equation and, to this end,
let Q be a bounded open subset of R™ with smooth boundary T', let f : [0,7) — R be a function, and
consider the problem

ug—Au= f(u) in (0,T) x £,
u=0 on (0,T)xT, (3.4.39)
u(0) = ug in Q.

Theorem 3.4 If f € CY(R) and f’ is bounded, then, for every ug € L?(Q2), there exists a global solution
of problem (3.4.39), that is, Tynae = +00, with

u € C1((0,00); L*(2)) N C%((0, 00); H*(2)) N C%([0, 00); L*(%2)).

Moreover, if ug € H*(Q) N HE (), then
u € C([0,00); L*(2)) N C°([0, 00); H2(2) N Hy ().
Proof: We first observe that f is Lipschitz. Indeed, if ¢,s € R with ¢ < s, then there exists ¢ty € (¢, )

such that
Lf(t) = f(s)]

T =Wl <L

hence

[f(t) = f(s)] < Lt — 5.

Given v € L*(Q), define F : L?(Q2) — L%*(Q) by F(v)(z) = f(v(x)). Note that:

(i) F is well-defined. We need to show that F(v) € L*(Q).
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In fact,

IP@)[220 = / [ o(a))? de = / (@) — F(0) + FO) da
< [ - 1)+ 0] ds
Q

_ 2 2
= [ 1506 = FOF da+2 [ 7(w() = OISO e+ [ 170)da

<2 / o) 2 di + 2L £(0)) / foa)] dz + | £(O)]? / dr,

which is finite because v € L?(Q) and, since (2 is a bounded subset of R™, we have L?(Q2) — L!(Q),
so v € L}(Q); moreover, the measure of ) is finite. Therefore F(v) € L%(Q).

(ii) F is Lipschitz.

Indeed, for v, w € L?(Q2), using the definition of F' and the fact that f is Lipschitz, we obtain

1F @) = P(w)] ) = [[70) = F@)]] 12 < Lllo — wllz2(-

Therefore, by Theorem 2.4, given ug € L?(Q) there exists a unique solution
u e C°([0,00); L*(2))
which is a mild solution of

up = Au+ f(u(t)) in  (0,+00) x £,
u=0 on (0,400) xT, (3.4.40)
u(0) = ug in Q.

That is, .
:S(t)u0+/ S(t — ) f(u(s))ds, ¥t > 0.
0

We claim that u(t) is continuously differentiable for every ¢t > 0, i.e. u € C1((0,00); L%(Q)).

Indeed, since A generates a differentiable semigroup S(t) for ¢t > 0 (see Section 3.1, second case),
we have that, for every t > 0, S(t)ug is continuously differentiable (by Theorem 1.60, item (ii)) and,
moreover,

%S(t)uo = AS(t)up, Vup € L*(Q). (3.4.41)

Now, for every s € R we have u(s) € L*(Q), hence F(u(s)) = f(u(s)) € L*(Q). Thus S(t — s)f(u(s)) is
continuously differentiable for every t > s, and so fg S(t—s)f(u(s))ds is also continuously differentiable,
since

d [* b d
— [ S({t—s)f(u(s))ds= / —S(t —s)f(u(s))ds + f(u(t)). (3.4.42)
dt J, o dt

This identity is adapted from Example 12A in [61], in the section dealing with the Leibniz rule.

Therefore u(t) is continuously differentiable for ¢ > 0 (being the sum of continuously differentiable
functions), which proves the claim.
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Furthermore, from (3.4.41) and (3.4.42) we obtain

%u(t) = % <S(t)u0 +/0 S(t —s)f(u(s)) ds)
= GO+ 5 ([ 8ttt as)
td
= AS(Ouo + [ 58— s (uls) ds + F(ult)

— AS(tuo + / AS(t — ) (u(s)) ds + f(u(t))
N u0+A/ S(t — s)f(u(s)) ds + F(u(t))

( uo—l—/St—s ))d>+f(u(t))
Au(t) + f(u

In the antepenultimate equality we used that the Laplacian is a closed operator (see Proposition 1.31 and
the theorem used in the proof of Proposition 1.34 concerning closed operators), and in the penultimate
equality we used the linearity of the Laplacian.

Moreover, we have:
(i) u(t) € CO([0,00), L?(£2)), that is, u is continuous for every ¢ > 0;

(i) u(t) € C1((0,00), L?(Q)), that is, u is continuously differentiable for every ¢ > 0;

(iii) u(t) € D(A), since D(A) is a vector space, S(t)ug € D(A) by Theorem 1.60 (because the semigroup
generated by A is differentiable) and fg S(t — s)f(u(s))ds € D(A) by Proposition 1.30(iii) (as
flu(s)) € L*(Q));

(iv) wu(t) satisfies uy = Au(t) + f(u(t)).
Hence u is a classical solution of problem (3.4.40).
It remains to show that u(t) € C°((0,00), H*(Q)). To this end, we first prove that u(t) €
C°((0,00), D(A)). Let t — to in Ry. Then
lu(t) —u(to)l pay = llut) —ulto)llz2(q) + [[Au(t) — Au(to)||z2(Q) — 0,
because u(t) € C°([0, +00), L2(£2)) and A generates a differentiable semigroup. Thus
u(t) € C°((0,00), D(A)).

But, under our hypotheses (€2 open in R with sufficiently smooth boundary I'), the norm || - [|p(a) is
equivalent to the norm || - || 2(q). Hence

u(t) € C°((0, 00), H*(R)).

The second part of the theorem follows from Theorem 2.4 (ii) (since f is Lipschitz). a

Lemma 3.5 D(A?) is dense in HL(Q) N H?(S).
Proof: We know that HZ(Q) N H%(Q) — L?(2). Moreover,

L*(Q)

2@ =@ Y cE@nm©)” Y e ),
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that is, H3 (2) N H?(Q) is dense in L?(Q).
Consider the bilinear form a : (Hg(Q2) N H?(2))? — R, defined by

a(u,v) = (Au, Av) 2y, VYu,v € Hy(Q) N H*(Q).
We have that a is continuous, because for u,v € H}(Q) N H?(Q),

la(u,v)| =

/Q Au(z) Av(z) do

1

< (/Q|Au(:c)|2dm)2 (/Q|Av(a:)|2dx)2

”AUHL?(Q) ||AU||L2(Q)

= ”U”H(}(Q)ﬂHz(Q)HU”H(}(Q)HH?(Q)-
Moreover, a is coercive, since
au,u) = (Au, Au)r2(q) = | Aullf2(q) = ”u”%{é(Q)QHQ(Q)’ Yu € Hy(Q) N H?(Q).

Under these conditions, by the Lax-Milgram Lemma, given f € L%(Q) there exists a unique u € H}(Q)N
H?(Q) such that
(Au, Av)2q) = (f,v)12(0), Vv € Hi(Q2) N H?(Q).

Now, observe that for every ¢ € D(Q), we get from the equality above

(Au, Ap)prp = (f, ¥)p' D,
or equivalently,
(A(Au), o) 0 = (f, ¢)p' D,

whence
<A2'U,, @>'D’7D = <f7 90>’D’,D; VQP € D(Q)

Thus A%u = f in D'(Q) and, since f € L?(€2), it follows that A%u € L?(Q).

Because u € H(Q) N H?(Q), we have v = 0 on I'. In this way, u satisfies

3.4.43
u=20 on I ( )

{ A2u=f in Q,
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Moreover, for every v € Hg(2) N H?(Q), we have

(f0)2 = (A%u,0)120)

/ A?uvdx

/ A(Au)vdx

/QV(AU) de+/— dar

= /Vv VAu)daH—/agﬁ dr

= /AvAudm—/ —Audl

= (Au,Av)Lz(Q)—/FgAudF
ov
= a(u,v)—/F%AudF.

Hence
ov ov
(f,v)12(0) = a(u,v) — /F aAU dl' = (f,v)r2(0) — /F EAU dar,

and therefore

ov

5 —Audl =0, Yo HJ(Q)NH*(Q),
v
that is, Au =0 on I'. Thus we have found a solution of

A?y=f in Q
u=0 on T (3.4.44)
Au=0 on TI.

Furthermore, by elliptic regularity theory we obtain u € H*(2).

Now, since the following conditions hold:
(i) Ho(Q2) N H*(Q) < L*(Q);
(i) HL(Q)N H2(Q) is dense in L*(Q);

(iii) a(u,v) = (Au, Av)r2(q) is bilinear, continuous and coercive,

we obtain that the triple {H}(Q) N H?(Q), L?*(Q), a(u,v)} defines an operator A, whose domain is char-
acterised by

D(A)={uec H(QNH*(Q); A>uc L*(Q) and Au=0onT} =Y, A=A%
Indeed, let w € D(A). Then there exists f € L?(Q) such that a(u,v) = (f,v)r2() for every
v e HHQ) N H?(Q). Taking ¢ € D(), we obtain
(A%, )10 = (Au, Ap)pr.p = (f, ) D,
which implies A%u = f € L?(Q2) and, as above, Au =0 on I'. Hence u € Y.

Conversely, let u € Y. Then u € H(Q) N H?(Q), A%u € L*(Q) and Au =0 on I'. Thus, for every
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v € HE(2) N H?(Q), applying the generalised Green formula, we get
(A%, vz = (A(Au),v)r2 )
0Au Ov
B _Z/ ox; Ox; dzx + <71(AU),70U>H,1/27H1/2
— _Z/ 0Au (91)
B ox; 81‘1

= / Au Avdx
Q

= (Au, Av)2 ().

Therefore u € D(A). Thus we have shown that D(A) =Y. Moreover,

D(A) ={uec H*Q); Au=u=0on T},
where the right-hand side is Y rewritten using the regularity already obtained. Also, since

(A%u,v)2(q) = a(u,v) = (Au,v)2(q),

for every v € H () N H?(Q), we have Au = A%y for every u € H} () N H?(Q). Therefore

A? & {H}(Q) N H*(Q), L*(Q), a(u,v)}
and we conclude that D(A?) = D(A) is dense in H () N H?(Q), as claimed. O
Theorem 3.6 If f € C3(R), f(0) = 0 and n < 3, then, for each uy € HL(Q) N H%(Q), there exists a
classical solution of (3.4.39) on [0, Tynaz), with

u € CH([0, Tinax); L*(2)) N C([0, Tinax); H*($2))

and either Tinax = +00 or Thax < 00 and . li%n llu(t)]| 2 (0) = o0
—Tmax

Proof: We must show that F : D(A) — D(A) is locally Lipschitz, where F(u)(z) = f(u(x)), so that we
can apply Theorem 2.24.

First, we prove that if u € H(Q) N H?(Q2), then

f(u) € Hy(Q) N H*(Q).

To see this, note that H?(Q) < L>(Q), so there exists ¢; > 0 such that
oo < erllull ey, V€ HQ).
Now, given M > 0 and f € C3(R), there exist constants L, Ly, L3 > 0 such that
IfOI< Ly, [f(0) <Ly and [f"(t)] < Ls, Vit € [0, M].
Let u € Hj(Q) N H?(2) and set M = ¢ ||ul| g2(q). Since
|u(z)] < Julloo < M for a.e. x € 9,

we obtain
|f(u(z)] < L1, |f'(u(z))] <Ly and |f"(u(x))| < Lz for ae. xeQ,

so f(u), f'(u) and f”(u) belong to L>(£).
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Moreover,
0 ou
D jwy = rwdte ),
92 . P, >
Sl = Fgg+ i (g e ),
0? o 0%u yo L Ou Ou 5
because f’(u), f”(u) € L*(Q) and, since gu € H(Q) and n < 3, we have H*(Q) < L%(Q) — L*(Q);
hence (2 2eLQ(Q) nd, for the sam rxl n, 249 ¢ 12(0). Therefor
ence | 5 - and, for the sa eeaso,axiaxj . Therefore

f(u) € H*(Q).

Since u € HE (), there exists a sequence {p,} C C§°(£2) such that
on — u  in HY(Q),

and, because f € C3(R), we have
flpn) — flu) in H(Q).

Moreover,
0(f(pn)) = flen)|p = f(0) =0, VneN,
SO
0=(f(n)) — 70(f(w) in H*(T),
and hence
Yo(f(u)) = 0.
Consequently,

flu) € Hy().
Thus F : HY(Q) N H?(Q) — H(Q) N H?(Q), defined by F(u) = f(u), is well-defined.
Finally, if ||ul|g2) < M and |[v]|g2(q) < M, then

lulloo < xM and  Ju]loo < exM.

Hence
1f(u) = f)ll2 < Cumllu—vl:,
0 0 ou Ju  Ov
- o < / _g! / _
ozt —gero| < Jorw-rongs| +|ro (- 22)).
< CMfu— v+ 7 W) || o 2
=~ 1 2 o] 8:1:z 6IZ 27
0? 0?
and, in a similar way, we obtain estimates for flw) f (). Therefore

8$i61‘j B 837161}]
F: D(A) — D(A)

is locally Lipschitz, and the result follows from Theorem 2.24. |

Theorem 3.7 If f € CY(R) and f(0) = 0, then, for everyug € L°°(R), there existsu € L>([0,T], L>°(Q))
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for all T < Tyax which is a solution of (3.4.39) on every interval [0,T) with T < Tyax, and

Tax =00 or else, if Typax < 00, then . lm  JJu(-,t)||eo = 0.
— max

Proof: Let M = |Jug||c and define
fPR—=R

by
ft) if [t] < M +1,
fO =L f(M+1) ift>M+1,
f(=M —1) ift<—-M—1.

We claim that fis Lipschitz. Indeed, if a,b € [-M — 1, M 4 1], then, by the Mean Value Theorem,
by the continuity of f’ and since [-M — 1, M + 1] is compact, there exists d > 0 such that

/() = f(a)] < d|b—al.
Ifa,be (M +1,00) or a,b € (—oo,—M — 1), then

1f(b) — f(a)| =0 < |b—al.

Ifae[-M—1,M+1] and b € (M + 1,00), then, by the Mean Value Theorem, by the continuity of f’,
by the compactness of [-M — 1, M + 1] and since |M + 1 — a| < |b — al, there exists d > 0 such that

F0) = Fl@)| = |f(M +1) = f(a)| < dIM +1—a| < dlb—al.
By an analogous argument, if a € [-M — 1, M + 1] and b € (—o0, —M — 1), we have
|F(6) = Fla)| < dlb—al.
Thus, taking Ly = max{1,d}, for all a,b € R,

17 (6) = f(a)] < Lylb - al.

Define F : LP(2) — LP(Q) by F(g) = f(g).

We show that F' is well-defined, that is, for each g € LP(£2) we must show that f(g) € LP(€2), for
every 1 < p < co. Since f is Lipschitz, we have

Flo(a)) - FO@)] < Lylg(@))
Hence
1792 = /Q Floa)) Pde = /Q Flo(a)) - FO(@) Pde
<I; /Q l9(@)|Pde < +oo,

since f(0) =0 and g € LP(2).

We now show that F' is Lipschitz, since
I1F(01) = Fo2) ey = [ Flon (@) = Flnta)) "

<I7 [ ln(@) - @)de = Ellgn = e
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Our goal is to use Theorem 2.4. To do so, we verify the hypotheses of that theorem and of the

section:

(i)
(i)
(iii)

(i)
(if)
(ii)

X is a reflexive Banach space;
F' is continuous;

A is the infinitesimal generator of a Cp-semigroup S such that ||S(¢)|| < M for all ¢ > 0.
Indeed:

Since X = LP(Q2), 1 < p < 400, we know that X is a reflexive Banach space.

Since F' is Lipschitz, F' is continuous.

Taking A = A and D(A) = D(A) = WgP(Q) N W22(Q) c LP(Q), where Wy (Q) = {u €
WLP(Q); y0(u) = 0}, we shall prove that A : W '*(Q)NW22(Q) C LP(2) generates a Co-semigroup
of contractions. That is, A € G(1,0). For this we use the Lumer—Phillips Theorem. We prove that:

(I) D(A) is dense in X = LP(Q).
(IT) A is a dissipative operator with respect to a duality mapping.

(III) Im(Aol — A) = LP(Q) for some Ag > 0.
We now check these conditions.

We know that D(Q) C W (Q) N W2P(Q) € LP(Q). Hence,

_ Q)
@) =p@)" W cwir@ nwee)  cIr@” @ = (o),

SO

: L7(9)
Wy () nW2»(Q) = L7(Q),
that is, D(A) is dense in X.

We show that
((u), Au) <0, Vue D(A) =Wy (Q) N WP(Q),

where j : LP — L¥" is such that, for each u € LP(Q),

j(u) € Flu) = {u" € LV ; (u",u) = w7 = |lull3}.

For this, we divide into three cases:

1. p>2
2. p=2;
3. pe(1,2).

Case 1. Consider j : L? — L*" such that, for each u € L?(Q), we associate
3(u) = wlulP 72377

We show that u|u[P=2||ul2~? € L' () and that j(u) € F(u) (so j is well-defined and is indeed a
duality mapping).
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In fact,
— _ p/ _ _ p/ B 3 p,
eatet” ™l 11 = / [ulul? 2 ul[3 77| dz = / (uluP=2 ]2 d
& Q
= [z s = [ (e
@ Q
@ 1P @
= [Jul[p” /Q(|u|p VrTdr = |julp” ||U||g
’
= [lull -
Hence

[[ulul"=2|lull377|

P’ = ||u||pa

and in particular ululP~2|jul|27 € L' () (since u € LP(Q)). Moreover,

[[ulul"=2|lull377|

2
o= [Jul|2. (3.4.45)
To guarantee that u|u[’~?|ju|[27? € F(u), it remains to show that
(ululP=2{|ul37P,w) = [full}-
Indeed,
w|ulP72 || u)|?7P ) = [ wuP? w2 Pude = ||ul|27P | u?luP2de
(ol 70 = | ; gy
— 2P [ w2 de = |Jul2? | (u2)F e
p p
Q Q
—lull [ () fdo = ull3 [ fupds
Q o
= ullp 7P llullp = [lul3- (3.4.46)

From (3.4.45) and (3.4.46) it follows that j(u) € F(u). Thus, in Case 1 we can use the duality
mapping j(u) = u|u[P~?||ul|27P. Then

(7 (), Au) = (ulul?~?|u][377, Au) = / ulul?=?u[;7F Au dz
Q

Jul3 > [ aluP*Aude =~ ul? [ V(uluP~?)Vuds
Q Q
) ou
—||wl|?2P p—2
57 3 g =) 5
= Oou '\ Ou
—lgll2—P —DuP2=—)=—4d
ot ? [ 5= (02 55) g

_ i 5| Ou
ul2 P - 1) /Q S up?
=1

[“)xi
2P - 1) / Vul2[u2 do < 0,

2
dr

where in the antepenultimate equality we used

0
81'7;

ou
P—2\ _ _ p—2
(ululP™") = (p = Dul oz,
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(I11)

Note also that u|u[P~2[u||2"?Au is integrable because
1

1
/u|u\P—2||u||§—pAudx< (/ |u|up—2||u||§—p|P’>” (/ |Au|pdx> < +oo.
Q Q Q

Thus, in Case 1 we have (j(u), Au) < 0 for all u € W, P(Q) N W?22(Q) = D(A) for the mapping
j:LP — LP given by j(u) = ululP~?|Jul|27P. That is, A is dissipative with respect to this duality
mapping.

Case 2. Consider the duality mapping j(u) = u (since L*(Q) is a Hilbert space). Then

vAudr = —/ VuVudz = —/ |Vu|? do = —||Vu||%2(m <0,
Q Q Q

showing that in Case 2 also we have (j(u), Au) < 0 for all u € W, P(Q) N W2P(Q) = D(A) and
j(u) = u, i.e. A is dissipative for this duality mapping.

Case 3. Here 1 < p < 2 and Q is bounded, so L*(2) — LP(2), whence —C/| - || 2(0) < —|| - |r(0)-
Thus, by the same estimates as in Case 2 (and since Au € LP(Q)), it follows that A is a dissipative
operator with respect to the same duality mapping as in Case 2.

We conclude that A is dissipative with respect to a suitable duality mapping (in each of the three
cases).

We show that Im(Agl — A) = LP(Q) for some \g > 0. Take A\g = 1. We want to prove: given
f € LP(Q), there exists u € D(A) such that

u— Au = f.

To obtain this, it suffices to use Theorem 9.32 (Agmon-Douglis-Nirenberg) in [18].

Hence, by the Lumer—Phillips Theorem, we deduce that A € G(1,0), that is, A is the infinitesimal

generator of a contraction semigroup.

Thus, by Theorem 2.4, given ug € LP()) = X, there exists a unique function

u € C°([0, +00); LP(2))

which is a mild solution of problem (3.4.40), that is,

u(t) = S(t)ug + /0 S(t — ) f(u(z, s)) ds. (3.4.47)

Note that for every ug € LP(2) with 1 < p < +00, we have

15 @)uollp < ISOllluolly < 1 - [[uollp- (3.4.48)

For ug € L*°(Q), from (3.4.48) we get

Jdm_[5(®uoll, < im_ ol

that is,

1S (t)uolloo < lJuolloo < +o0, (3.4.49)

since up € L*(Q). Hence S(t)ug € L>®(R). In addition, since f is bounded, it follows that fot S(t —
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s)f(u(s)) ds € L>(RQ), because

/St—s (s)) ds

= lim
p—+o0

/St—s (s)) ds

< tm / IS~ )l IF ()l ds < 1 / | Fa()ly ds. (3.4.50)

Note that, fixing T' > 0,

1F (), = (/ | Flu(, s) |de>; C’</Ql|pd:c>;0(meas(§2));. (3.4.51)

Using (3.4.51) in (3.4.50), we obtain

t
< lim C- (meas(Q))% ds=C-t- lim (meas(Q))

p—+oo [ p—r—+oo

=C-t<C-T < +o0.

S

(t = 5)(u(s)) ds

Thus
u(t) uo+/ S(t — s)f(ulz, s))ds € L=(S).

Moreover, using (3.4.49), the fact that f is Lipschitz, and the Dominated Convergence Theorem, we have

(0l = 300+ | S(t— ) F(u(s)) ds

t ~
< I8®uolloc +  lin / 160 = )l Fu(s) ds
< e+ tim_ [ 7wt s

< Juplloo + I lim / ()]l ds

p—+o0
t
< Juolloe + L7 / lu(s) oo ds = M + L / lu(5) oo ds.

By Gronwall’s Lemma,
O N N
[u(®)]oo < Me"! fo lds _ prelst < MeliT,

Hence
u € L(0,T; L*™(Q)).

Now, if T is sufficiently small so that
MerT < M +1,

then wu is also a weak solution of problem (3.4.40) with f in place of ]?, that is,

(t)uo + /o St —s)f(u(s))ds

is a weak solution of (3.4.40). Thus, u can be extended to an interval [0, Tiax), With Tinax = +00 or, if
Thax < +0oo, then
lim |lu(t)| = 400,

t—Thax

as in Theorem 2.25. O
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In what follows, we present two particular cases of problem (3.4.39) in which, in the first case, one
obtains a global solution, and in the second case one obtains blow-up in finite time of the solution.

Example 3.8 Let f: R — R be given by f(t) = —t® and assume n < 3.

We observe that f satisfies
ftt <0 Vit

Proposition 3.9 For every ug € H () N H?(Q), we have Tyyax = +00.

Proof: By Theorem 3.6, there exists a classical solution of (3.4.39), that is, there exists a unique u
satisfying
up— Au=—u® in [0, Thax) X 2,

u=0 on [0,Tmax) X T, (3.4.52)
u(0) = ug in Q.
and
u € C([0, Tinax); L2 (€2)) N C([0, Trnax): H*(2)).
Since n < 3, we have H?(Q2) = L>(Q), hence ug € L>(2) and, therefore, by Theorem 3.7,
u € L=([0,T]; L=(Q)), VT < Thax-
Multiplying (3.4.52)1 by |u(t)[P~2u(t), we obtain
/ o ()|u(t)|P~2u(t) de = / Au(t)|u(t)|P~2u(t) do — / lu(t)|P~2u’(t) da.
Q Q Q
Hence,

1d
- p <
~ai [ oras <o,

which, integrating from 0 to ¢, yields

[u@llp < lluoll,  Vp-

Passing to the limit as p — co we get
[u(®)lloo < lluolloo,

and thus

i Ju(®) < ox.

It follows that Tih.x = +00. O

Example 3.10 Consider the particular case of problem (3.4.39) in which f : R — R is given by f(¢) = ¢
and n < 3, that is,
up— Au=u> in [0, Thax) X 2,
u=20 on [0, Thax) X T, (3.4.53)
u(0) = ug in

where 2 C R”, n < 3, is a bounded open set with regular boundary I', as fixed at the beginning of this
section. Thus, if ug # 0 with uyg € H}(Q) N H2(Q) and

1 1
E0) = §/Q|Vu0|2dm—1/9ugdx§0,

- 190 -



3.4 Nonlinear Equations

where E = E(t) is defined by

1 1
By =1 / V() [2dz — 1 / WA (1) da, (3.4.54)
2 /o 4/,
then Tiax < 00.

Proof: To prove that Tya.x < oo we first show that (3.4.54) is decreasing, and then, assuming that
Timax = 00, we derive a contradiction.

To prove that (3.4.54) is decreasing we shall use multiplicative methods to obtain %p < 0. Before

that, note that, by Theorem 3.6, problem (3.4.53) admits a classical solution « such that
u € C' ([0, Tnax); L*(€2)) N C([0, Timax); Hy () N H?(Q)). (3.4.55)

We now construct a sequence of functions ¢, € C([0,T]; H3(€) N H'(Q)) which, when used in

(3.4.53)1, will allow us to obtain diit) <0.

Regularising sequences. Let 0 < so < tg < T < Thax and choose ng € N such that

< 1 1
n max < —, .
0 S0 T— to

For n > ng, define 0,, : Rt — R* by

0 if t € [0,50 — =),
n
1+n(t—so) ifte [so——,s0),
0n(t) = 1 ifte [SOatO]a
1 —n(t—to) ifte(to,toJr%},
0 ifte(t0+l7T]7
n

whose derivative in the sense of distributions is

0 ifte0,s0——),
n
n ifte[so— ,so),
0 (t) = if t € [so, tol,

(
0 ifte (to+%,T].

Let (pr)ren be an even regularising sequence, that is, a sequence such that, for every k € N,

11
pr =0, pr€C5(R), supp(px) C {—k/ k} ,

/}Rpk(f) de=1,  pu(=8) = pr(s),

and set
On.ke = On [(Hnu') * pg * pk], (3.4.56)

where * denotes the convolution in the variable ¢, defined in general by

(f *g)(t) = /R F(t— €)g(€) de.
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The function given in (3.4.56) is well defined because, if 6, and @ denote the zero extensions of

6, and v’ outside [0, T7], then, for every ¢ € [0, T7,
5o [(Bu)  pi  pi] (8) = B (2) / (Bt} (€) (o1 * pr)(t — €) dE
T
— 0,(1) / (0)(€) (o1 # 1) (£ — €) d
= ©n.k>»

SO ¢, 1 is well-defined.

Moreover,
! / 11
supp((ﬁnu ) * pr * pk) C supp(f,u') + %
/ 2 2
C (supp(,) Nsupp(u')) + 0%

2 2
C supp(fy,) + [—k, k] :

If v € [30— l,to—i—%] and y € [—%7%], then

n

1 2 1 2
s0— — — — <x+y<to+—+ - (3.4.57)
ng No ng k
Assume that
L_ 2.y (3.4.58)
50 no k‘ o
. ht ~ 12 (3.4.59)
O no k . SE.
From (3.4.58) we must have
1 < S0 1 N 27L0
k 2 280 NosSo — 17
and from (3.4.59) we deduce
1 T 1 to 2710
== =3 k>
k < 2 2n0 2 Tno — to’no —1
Thus, imposing
2?’L0 2710
k =k
>maX{noso—1’Tno—ton0—1} 0

we obtain from (3.4.57) that x +y € (0,T), that is, for k > ko,

1 1 2 2
e+ |+ |-2 2 co,T
|:SO noa o+ n0:| + |: kvk:| C( ) )7

and hence supp((@nu’) * pp % pk) is compact in (0,7, since

supp ((0nu) * pi * pr) C (0,T) C [0,T], Vk > k.

From now on we consider (pk)i>k, and (0n)n>n,-

On the other hand, for each n € N, n > ng, both 6,, and 6/, belong to L?(0,T), i.e. 8,, € H}(0,T).
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Moreover, since

ue CH([0,T]; L*(2)) N C([0,T); Hy () N H*(R)),
we have v’ € C([0,T]; L*(2)). By the Leibniz rule,

(uby) =0, +ub, = U0, = (ub,) —ub,,

and hence
(W' 0n) * pr % pr. = [(u0n) * pr * pr] — [(uby,) * pr * pi]. (3.4.60)

Taking the first term on the right-hand side of (3.4.60) and integrating by parts, we obtain, for all
t e 0,7,

T
[(ubn)’ 5 pr * pi] (1) = / (Y (€)(pr * pr)(t — €) de
T
— [(wb,) (©)px * i)t — )] — / (WB)(€) (—(pr # pr)') (¢ — ) de

T
- / (u0) () (pr * pi) (¢ — €) e,

that is,
(ubly) * pr * pre = (ubn) * p % pl,

and thus (3.4.60) can be rewritten as

(W0y) * pr * pr. = [(ubn) * pi, * pi] — [(ubl,) * pr * pi].

Consequently we may rewrite (3.4.56) as

O = O [(0/0,) % pip % pi,| = Hn([(uen) * pi % pr] — [(ubl) * pg * pk]),

which implies
¢ni € Co([0, T Hy(Q) N HA(92)).

Approximate problem. Since n < 3, we have
u(t) e HY(Q) = u®) e L%(Q) = u*(t) € L*(Q),

and from (3.4.55),
' eC([0,T) L) = J(t) € L*(),

and
u € C([QT]; Hé(Q) N HQ(Q)) = Au(t) € L2(Q).

It then makes sense to multiply (3.4.53)1 by ¢n i and integrate in €2 and in (0,7"), obtaining

/OT (ul<t)a ‘pn,k(t))Lz(Q) di — /0

T T
(Au(t), wn,k(t))p(m dt = /0 (u?(t), cpn,k(t))Lz(Q) dt. (3.4.61)

The first term on the left-hand side of (3.4.61) can be rewritten as

T T
| @O 0s®) ooy = [ (@0 59O (00.) 5000 gyt (3:462)

because, extending u’ and 6,, by zero (denoted by @’ and én), and for notational simplicity letting h = py,
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h(t) = h(—t), f = @0, and g = (@'f,) * p, and changing the order of integration, we obtain

/0 (4 (8), 0 4(1)) 2 )t = / ((uo><><<u9>*pk*pk><t>)L2(mdt

// '6,,) n) * pre* pr)(t) d dt
:/Q/Rf (g % h)(t) dt da.

A standard convolution computation then yields

/Q / F(t) (g b) (1) dt de = / ((F B (0).9(0) 1

and, substituting back h, f and g by pg, @6, and (@',) * px, we obtain (3.4.62).

Since
lim (4'0,,) * pp = («'0,) in L*([0,T]; L*(Q)),
k— o0
from (3.4.62) we conclude that

T T
tm [ (), ni(t)) o dt = /0 02(8) [ (D)2 - (3.4.63)

k—o0 Jq

For the second term in (3.4.61), we have

/0 (Au(t)awn,k( ))L2(Q) dt = _/ (Vu( ) V‘Pn k( ))LZ(Q) dt
T
) * P ¥ Pk)} (t))LQ(Q) dt

S

) * pr) (), V((w'6,,) = pk)(t))LQ(Q) dt

!

) pi) (), V [(W'0) * pr — (0,u) * py] (t))LQ(Q) dt

) * pr) (1), V((6r0)" = pk)(t))LQ(Q) dt

+
S

o\o\o\o\ﬂo\o\o\

* pk V((Q u) * pk)(t))Lz(Q) dt

~

) pie) (1), V ((Onw) * pk)/(t))LQ(Q) dt

!

) % pi) (1), V((0,,u) % pr) (1)) ;5 L2() dt.

Observe that

LT ((u00) * 91) (11, 9 ((60) * 06) (1) 12 ) = 2V () # pi) (1), 9 () ) (1))

=2(V((uby) * p) (1), V((uby)" pk)(t))LQ(Q).
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Hence
T T
; / LT ((u0) # 91) (1), 9 (00) ) (1) o = / ( () * 1) (1), V (u) 5 p1) () g
T

; (V(ub)(t), V((uby) * py * pk)(t))LQ(Q) dt

Il
o

since supp ((9z,ub,,) * pi) is compact in (0,7") and therefore contained in [0, 7.

It follows that

T T
/0 (Au(t)a SO’I’hk?(t))LQ(Q) dt = /0 (V((uen) * pk) (t)v V((GLU) * pk) (t))LQ(Q) dt

- zn: /OT(((enaliu) % pi) (), ((07,00,u) * pk)(t))

L2(Q)
Since
lim (0,,05,u) * pp = 0,05,u  in L*(0,T; L*(Q2))
k—o00
and
lim (0],0,,u) * pr = 0,,05,u in L*(0,T; L*(Q)),
k—o0
we obtain
klir& Z:ZI ( [enaa:lu] * Pk [%@clu] * pk) L2(0T:12(9) = Z:Zl(enaa:lua 9;#911”) L2(0,T;L2(Q))"
Therefore
T T
Jim (Au(t), @n,k(t))LZ(Q) dt = / (Qn%)(t)HVu(t)Hiz(Q) dt. (3.4.64)

For the right-hand side of (3.4.61), by an argument analogous to that used to obtain (3.4.63) and
(3.4.64), we arrive at

lim (u3(t)7<pn,k(t))L2(Q)dt:/0 Gi(t)(u?’(t)m’(t))m(mdt. (3.4.65)

k—oo Jo

Passing to the limit as k — oo in (3.4.61), and using (3.4.63), (3.4.64) and (3.4.65), we obtain

T T T
2 2
/O O2(8) [ (8)]2 gt — /0 (08) D] Vu(t) |2t = /O O2(0) (w? (8), 0 (1) oy . (3:4.66)
Letting n — oo in (3.4.66) and using the explicit form of 6,, and 6/,, we obtain

t , 1 t ,
/s 1) 22 gy = 5 (I 22 gy~ I95) 2 ) = / (W) (7)) oy dr (3467)
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To justify the passage to the limit in n, we use the regularity of w in (3.4.55), from which we deduce

6/ ()72 € C(10,T]), (3.4.68)
||Vu ||L2(Q € C'([O,T]), (3.4.69)
(UB(')a u/('))[ﬁ(g) € C([O7 T]) (3470)

Taking h(t) = ||u/(t) in the first term of (3.4.66), it follows that

2
220

lim Qn dT—/ h(r (3.4.71)
n—roo 0

using the explicit form of 6,, and standard one-dimensional estimates on the shrinking intervals. Similarly,
taking h(7) = (u?(7), u’(T))L2(Q), we obtain

T t
nh_{rgo ; 0, (1) (u*(7), u'(T))Lz(Q) dr = /S (u?(r), ’U,,(T))Lz(ﬂ) dr. (3.4.72)
Finally, taking h(7) = ||Vu HL"’(Q)’ one shows that
r 1
/ (0,0.)(T)h(7)dr =5 3 [h(t) - h(s)], (3.4.73)
0

again by direct computation on the piecewise linear 6,, and the continuity of h.

Thus (3.4.67) follows from (3.4.66) by letting n — oo and using (3.4.71), (3.4.72), and (3.4.73).
Now let (sy)ven C [0,T] with s, — 0. For each ¢ € [0,T], (3.4.67) gives

t 1 t
/s ) 2 gy = 5 (1900 gy — (V5 = / (W) (7)) oy . (34.74)

From (3.4.55) we have

ue C([0,T]; Hy(Q) N H*(Q)) = C([0,T]; Hy()),

S0 o
2
oz, € C([0,T]; L*(2)),
and hence
.y Ou ou
Jim 9330y = JL“&O;(M(S”)’M(S”DLQ(Q)
lz(axl ('9:1:Z )L2(Q)
= [[VuO);2 0y
That is,
2
lim [[Vu(s, ||L2(Q = [[Vu(0)|[ 1 q) (3.4.75)
Therefore, letting v — oo in (3.4.74), we obtain
¢ , 2 1 2 2 ‘ 3 /
/Ouu(T)HLz(m dr = 5 (V)] 300y = IV2O)][}20)) :/0 (W)U (1) o d7- (3:4.76)
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Notice that the right-hand side of (3.4.76) can be rewritten as

¢ / t1d
/0 (US(T),U(T))LZ(Q) de/o ZE_/QULL(T) dz dr, (3.4.77)

and hence from (3.4.77) and (3.4.76) we get

_/OtHUI(T)Hiz(Q) dr = %[/Q|Vu(t)|2dx—/Q|Vu(0)‘2dm] - %[/Qu‘l(t) dx—/ﬂu4(0) dx]

Using the definition (3.4.54) of E(t), this is equivalent to

[0y = B~ ) (3.478)
Thus, .
ZE®) = | 0|72y <O,

i.e. E(t) is decreasing, and, since by hypothesis F(0) < 0, we have
E(t)<E0)<0, Vtelo,T].
We now show that Tiax < 00. Suppose, by contradiction, that Ty,ax = 0o and define G : [0,00) — R

by
G(t) = [lu(-, 1) 172(q)-

By the regularity in (3.4.55), G € C*([0, +0)) and

Q1) = w0 gy = 20 (1), 0(1)) ey
= 2(Au(t) + u’ (1), u(t)) 12

=4 [;/Q|Vu(t)|2dac—i/ﬂu4(t)dx] +/Qu4(t)dx

= _4E(t)+/ ut(t)dz.

Q

Since E(t) < E(0), it follows that

G'(t) > —4E(0) + / ut(t)dz.

Q

Because L*(Q2) < L?(Q), there exists ¢; > 0 such that

lu)ll72(0) < cxllu@®l L),

and hence

G3(t) < cl/Q\u(t)|4d:c.

Writing ¢ = é > 0, we obtain
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Thus G is increasing and, since G(0) # 0 (because ug # 0 by hypothesis), we can write

which, upon integration from 0 to ¢, yields

¢ G'(s)
—5—~ ds = ct, = 0.
L G2(s) ds>ct, Vt=0

But
ed®) 1 1 1

, ) T a0 e = Gy

that is, ct < for all £ > 0, which is impossible. Therefore T, < 0. O

1
G(0)
3.5 Some Additional Problems
3.5.1 The Timoshenko System with Dirichlet—Dirichlet Boundary Conditions

In this example we study the existence of solutions for the Timoshenko system with Dirich-
let—Dirichlet boundary conditions. Consider the problem

prow — k(ps + )z =0 in  (0,L) x (0,+00),

P2ttt — 0paa + k(pz + ) =0 in  (0,L) x (0, +00), (35.79)
©(0,t) = (L, ) = ¢(0,t) = (L, t) =0, in (0, +00),

0(0) = ¢°, @u(0) = ', ¥(0) =¢°, P (0) =¢' in (0,L),

where p1, po2, k, b are positive constants.
Proof: The energy functional associated with the problem is

1
E(t) = 5 |plledlizo,0) + p2lellZa0,) + Fllew + $llT2e0,n) + b”wx”?ﬂ(o,m} :

Let the phase space be

H = H}(0,L) x L*(0,L) x Hy(0,L) x L*(0,L).

Given U = (o1, ®1, %1, U1), V = (2, Pa, 1hs, Us) € H, we define the following inner product:
(U, V) = p1(P1,P2) 12 4+ p2(V1, Vo) 12 + k((¢1)x + U1, (92)a + V2) 2 + b((¥1)a, (Y2)a) 2. (3.5.80)
This induces the norm
U3, = pull@lz + o2l 122 + kllow + 91172 + bllvallZa, (3.5.81)
where U = (¢, ®, 9, U).

We now prove that (H, | - |l%) is a Hilbert space. We already know that (H, |- |x) is a Hilbert
space when equipped with the usual norm

UB = lleallZs + 19072 + vallZs + 97 (3.5.82)

To show that # is a Banach space under || - ||%, it suffices to establish the equivalence of the norms
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(3.5.81) and (3.5.82). Using the inequality |a+b|? < 2(|a|? + |b|?) and the Poincaré inequality, we obtain:
1013 < max{pr, pa, b+ 2KL*, 2k} U5, = Ca|U 3.

Hence, [|U||y < C1|U|3.

Conversely,
U3, < C2|lUI3,,
thus proving the equivalence of the norms.
Since (H, |- |%) is Banach and the norms are equivalent, (#, || - ||) is also a Banach space. As an

inner product has already been defined, we conclude that H is a Hilbert space.

Semigroup Formulation. Let U = (¢, ®,9, ¥) € H. When ® = ¢ and ¥ = ¢, we have

Pt
k
w_ | p et
dt Wy

The initial condition is

Thus, we obtain the Abstract Cauchy Problem (ACP):

v

W _ 94 _
dt Ua U(O) U07

where

D(A) = (Hg(0, L) " H?(0,L)) x Hy(0,L) x (Hg(0,L) N H*(0, L)) x Hg(0, L).

Existence and Uniqueness. If Uy € H, then the ACP has a unique mild solution
t
Ue 00,400, H),  U(t)=Up+ A/ Ul(s) ds.
0
If Uy € D(A), then the ACP admits a unique classical solution

U € O([0,4+00), D(A)) N C([0, +00), H).

By Theorem 2.3, it suffices to show that A is the infinitesimal generator of a contraction semigroup.
Using the Lumer—Phillips Theorem, we must verify that:

(i) A is dissipative;
(if) Im(A — A) = H for some A > 0;

(iii) D(A) is dense in H.
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A straightforward computation shows that A is dissipative. Since Hj N H? is dense in H{, and H}
is dense in L2, we conclude that D(A) is dense in H. Thus it remains to show surjectivity of (A — A).
We prove item (ii) for A = 1.

Given F = (f1, fa, f3, fa) € H, we seek U € D(A) such that (I — A)U = F. This is equivalent to
the system

o— =, (3.5.83)
G- = fs, (3.5.85)
U — 2tus + g (00 + ) = fa. (3.5.86)
From (3.5.83)—(3.5.85) we obtain

®=9-fi, (3.5.87)
U=1v—fs (3.5.88)

Substituting (3.5.87)—(3.5.88) into (3.5.84) and (3.5.86) gives
p1p — k(pz +1¥)e = g1, (3.5.89)
p21) = bhyy + k(pz + 1) = ga, (3.5.90)

where g1 = p1(f1 + f2), 92 = p2(f3 + fa)-

To solve (3.5.89)—(3.5.90) we apply the Lax—Milgram Theorem. Define the bilinear form

a((%lﬂ)v (@a ZL)) = pl(@a 95) + 02(%@ + b(%, ZZJC) + k(‘Pac + wa Pz + '(/N))

One checks that a is continuous and coercive. Thus, by Lax—Milgram, for each (g1,92) € H~! x H~!
there exists a unique (p,1) € Hi x Hj such that

a((@a 1/})7 ((,5, ﬂ})) = (gl, SZ) + (9271/})7 V((ﬁ,’JJ) € H(} X H(% (3591)

Choosing ¢ = 0 in (3.5.91) yields

p2th — by + k(py + 1) = go in H 1,

so that

Yz = —~[—g2 + p2t + k(px + )] € L2 (?7)

S| =

Choosing ¢ = 0 in (3.5.91) gives

p1o — k(o +¥)e=g1 in H',

so that 1
Paz = 2[-01+ 1o — ki) € L2 (77)

Thus (p,) € (H2NHE) x (H2N H) solves (3.5.89)—(3.5.90). From (3.5.87)—(3.5.88) we also have

d=¢p-freH), U= f;eH.
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Therefore U = (¢, ®,1,¥) € D(A) and solves (3.5.83)—(3.5.86). Hence (I — A) is surjective,

proving existence and uniqueness of the mild solution for the Timoshenko system.

3.5.2 Bresse System

O

In this example, we shall verify the existence and uniqueness of a mild solution for the Bresse

system given by

p1ow — k(pe + 9+ 1w)y — kol(w, —lp) =0 in
p2oer — bze + k(pz + 9 +1w) =0 in
prwer — ko(we —19)e + kl(pz + 9 +lw) =0 in
©(0,t) = p(L,t) = (0,t) = (L, t) = w(0,t) =w(L,t) =0, in
0(0) = 9% (0) = @', ¥(0) = ¥°, ¥ (0) = ¥, w(0) = w’, wy(0) =w" in

where p1, po2, k, ko, b and [ are positive constants.
Proof: The energy functional associated with the problem is

) % (0, +00),
) x (0, 4+00),
) x (0, +00),

(3.5.92)

1
E(t) = 5 [p1||90t”%2(0,L) + o2 )|9el 20,0y + PrllwelF2g0 1) + Ellow + ¢ + 101201

+kollws = 1plZ20.0) + BllYelZ20.0) |

and the phase space is

H = H}(0,L) x H3(0,L) x Hy(0,L) x L*(0, L) x L*(0, L) x L*(0, L).

Let U = (¢, ®, 9, U, w, W), where & = o, ¥ =4, and W = wy. It is known that H, endowed with
the usual norm, is a Hilbert space. Thus, if we define on H a norm equivalent to the usual one, then H

endowed with this new norm will also be a Hilbert space.

For U = (¢1,P1,%1, V1,01, W1), V = (2, Pa, s, Ua, wa, W) € H, we define the following inner

product:
L L L
(U,V)Hzpl/ ‘1)1<I>2dac—|—p2/ \Ill\I/le‘—F,Ol/ WiWs dx
0 0 0

L
+ k/o ((901)1: + 1+ lw1) ((502)1 + 2 + lwz) dx

L L
+ko/O (w1)z — 1) (w2)z — lwa) dx+b/0 (1) (V2) 5 da:

= p1(®1, P2)r2 + p2(V1, Wa)r2 + p1 (Wi, Wa) L2
+ E((p1)z + 91 + w1, (92)a + P2 + lwa) 1

+ kO((wl)x - lsola (w2)z - lw2)L2 + b((wl)m» (/(/JQ)ZE)LQ' (3593)
This inner product induces the norm
U113, = prll®lf72(0.2) + P21 ¥NZ20,L) + PLIW IIZ2(0,1)
+kllp: +¥ + ZWH%%O,L) + ko llws — l<P||2L2(o,L) + b||¢x||2L2(o,L)a (3.5.94)

where || - |[12(0,1) denotes the usual norm in L?(0, L) and U = (¢, ®,¢, ¥,w, W),

We now show that the usual norm and the norm defined above are equivalent. First, we prove that

there exists a constant ¢; > 0 such that

Ul < e1|Ulp, forall U = (¢, @,9,V,w, W) € H,

- 201 -



3 Evolution Equations

where | - |3 denotes the usual Hilbert norm on the Cartesian product.

Given U = (¢, ®,¢, ¥, w, W), we have

1013 = palI®)” + o211 + pr [WI1Z + klls + ¢ + lw]|* + kollws — Lol + bl |12
< prl| @117 + p2l| U112 + pr W1 + 2kl @0 + 11 + 2k ||w[|” + 2ko]|we|* + 2kl [[0]1* + bll¢b|?
<l @I + pall 1% + pr [ WP + (b + 4k L?) [ ||* + (4k + 2kol*L?) [0 |2
+ (2kIPL? + 2ko)||wz ||
<& (lall® + 1202 + lal” + 1] + llwel* + W)
= a|Ul,

where
¢1 := max{py, po, b+ 4kL? 4k + 2kol’L?, 2kI>L* + 2ko} and ¢; := é;.

Next, we prove that there exists a constant co > 0 such that
|U‘H < CQHUH'Hv for all U = ((p,@”[l@\lﬁw,W) €H.

To this end, it is enough to verify that

(@0, W)l = llpall® + [Val® + llws|® < e2(klles + 9 + Wwlf* + kollws — Loll* + bllvz %) = [0, 9, w)lla.

Suppose, by contradiction, that there exists a sequence (@, ¥y, w,) € H such that

pn ¥nwa)lae
||<Lpnawnawn)”’i-£
Define .
~ Pn ~ n B Wn
Pp =, Ypi= ), Wy =
| (s Yy wn )| (P, Y, wn )| [(@rr Urs @) |2
Then
(1) |(§5nalz)naa)n)|;{ =1= limn—mo |(¢n71/~}n,dn)|7-l - 1;
(2) 1(Bns @)l — 0.
From (2), we have in particular
(@n)z + &n + 1w, — 0, (3.5.95)
(@n)z — Ipn — 0, (3.5.97)

in L?(0, L). Since the derivative operator from H} to L? is linear and continuous, there exist (f,g,h) €
(H})? and a (not relabelled) subsequence such that

Pp — f in H&,
=g in Hy,
Qn, —h in H}. (3.5.98)
Hence
(@n)z - f:c in LZ»

(%)z — gy in L27
(On)e — hy in L2, (3.5.99)
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Thus

(@n)z Jr"[’nJrlfl’n — fe+g+ih,

(1;71)30 - 9z
(@n)e — l@n = hy =1, (3.5.100)

in L2, and by uniqueness of the weak limit, from (3.5.95)—(3.5.97) and (3.5.100) we obtain

fo+g+1h=0,
gz =0,
he —1f = 0. (3.5.101)

By the Poincaré inequality and the second equation in (3.5.101), we have ||g|| < L||g| = 0, hence
g = 0. Therefore, (3.5.101) reduces to

Jz +1h =0,
he —1f =0, (3.5.102)

whose only solution is f = h = 0.
Since H} < L? compactly, it follows from (3.5.98) that

Gp — f=0 in L?
Op — h=0 in L% (3.5.103)

Using (3.5.95)—(3.5.97), (3.5.103) and the Poincaré inequality, we then infer

&n — 0;
(@n)e = ((@n)z — Ipn) + 1@n — 0, (3.5.104)
in L2. Thus, from (1) and (3.5.104), we obtain the contradiction
lim [(@n,n,@n)|,, =1 and  lim [(@n,thn, @), = 0.

Hence there exists co > 0 such that

|(<P,1/J,W)|H < CZH(%@/J»W)HH, for all (QO,?/J,W) €.

Therefore, the norms | - |3 and || - || are equivalent. O
3.5.3 A Non-homogeneous Timoshenko System

We now study the existence of solutions for the non-homogeneous Timoshenko system

{ p(z)ps — (K(x)r + 1) =0 in  (0,L) x (0,+00), (3.5.105)
p2()re = (0(@)a)e + K(2) (9o +9) =0 in (0,L) x (0, +00). -
with boundary conditions at x =0

©(0,t) = 9(0,t) =0, (3.5.106)
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and boundary conditions at x = L given by

m@tt([’vt) - ko@t(L)t) + H(L)(%(Lvt) + w(L’t)) = O,
Iinibee(Ly ) + k19p(L, t) + b(L) (L, t) = 0.

The initial data are

90(1'70) = ‘pO(x)a (Pt(mvo) = 801(5”)» 1/)(%0) = 1/)0(55),

where
p1,p2 € L®(0,L) and b,k € WH>(0,L)

are such that

p1(z) = my >0, Vz € (0, L),
p2(x) = mg >0, Vz € (0,L),
b(xz) = mg >0, Yz € (0,L),
k(x) = mq >0, Vz € (0,L),
for some m; € R, i € {1,2,3,4}.
Denoting
u(t) := (L, t) and v(t) := (L, 1),

we observe that u and v satisfy

muy(t) — kou(t) + £(L) (@a (L. 1) + (L, 1)) =0,
Lyvr(t) + Kyv(t) + b(L)iho (L, ) = 0,

with initial conditions

u(0) = p1(L), v(0) =1(L).

Energy Functional
The energy functional associated with the problem is

1

E(t) = / p1(@)|ee (@, )" + pa(@)[u (e, )] + w(@) | pu (e, t) + (e, 1)

2
o), )7 o+ ) 4 2 o)

Phase Space

Consider the space
H}(0,L) = {we H"(0,L); w(0) =0}

endowed with the inner product .
(r9)- = [ f@y/(a)da,
whose induced norm is .
1= [ 17 @F o = 17 00y
Then (H},|-|.) is a Hilbert space.

Define
H=H0,L) x L*(0,L) x H}(0,L) x L*(0, L) x R x R,

Yi(2,0) = Y1 (),

(3.5.107)

(3.5.114)

(3.5.115)

(3.5.116)

(3.5.117)

(3.5.118)
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which we endow with the usual inner product (-, )3 given by
(U1, U2)n = (1,2, 02,0)2 + (P1,P2)2 + (V1,0,¥2,2)2 + (1, Va)2 + urug + vivz, (3.5.119)
for all U; = (¢4, P4, ¥, Uiy us,v;) € H, o = 1,2. The induced norm is
U = lleal3 + 1213 + a3 + 1213 + |ul® + 0f?, YU e, (3.5.120)

where (-,)2 and || - [|2 respectively denote the inner product and norm in L?(0,L). Thus (H, |- |y) is a
Hilbert space.

We now define on H the bilinear mapping ((+,-))x : H X H — R by

I L
(LU= [ @)@ @@a@)do+ [ o)t (@)¥a(a) da
L
+ /0 k(@) (p1,0(x) + U1(2)) (92,2(2) + Va(2)) do (3.5.121)
L
+ /0 b(x)i)1 ¢ (2) 2,z (x) do + %UlﬂQ + I?mvlvg,

for all U; = (L)OZH q)iadjiv\piauiavi) EH,1=1,2.

It is straightforward to check that ((-,-))# defines an inner product on H; we denote its induced

norm by || - |[x. One can show, using standard inequalities (Poincaré and Young) and the positivity
assumptions on py, p2, b, K, that | - |3 and || - || are equivalent. Therefore, (H, || - ||%) is also a Hilbert
space.

Semigroup Formulation

Our goal is now to write the problem in the form of an abstract Cauchy problem, that is,

AU
- =AU,
U(0) = Uy,

where U : D(A) C H — H.

To determine A and D(A), let U = (p, @, ¢, U, u,v) € H with & = ¢, ¥ = ;. Then

[ Pt ]
3 p1(x) ['{/(95)9% + 5(2) pre + ' (2)1 + 'i(x)d]z}
o (N
au ||
At || pi@ b @)e + () e = K(@)00 = R(@))]
Z: ,% [kou(t) + k(L) o (L, t) + w(L)Y(L, t)}
_ o [lao®) + WL _

We set
D(A) ={U = (¢, ?,9, ¥, u,v) € H; AU € H with u = ®(L), v=TU(L)},

in view of (3.5.114); that is,

u(t) = pe(L,t) <= u=d(L), v(t) =Y (L,t) <= ov=Y(L).
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More explicitly, we can write

D(A) = {U: (0, ®,0, U, u,0) € (H N H? x H)? x R2; u=&(L), v = \I/(L)}.

Existence and Uniqueness

If ug € H, then the Abstract Cauchy Problem (ACP) admits a unique mild solution
u € C([0,+00), H)
satisfying
u(t) = ug + A/Ot u(s) ds.
Moreover, if ug € D(A), then the ACP admits a unique classical solution

u € C°([0, +00), D(A)) N C*([0, +00), H).

Proof: In view of Theorem 2.3, it suffices to show that A is the infinitesimal generator of a contraction
Cy-semigroup. For this, we apply the Lumer—Phillips Theorem, and thus we must verify:

(i) A is dissipative;
(if) Im(A — A) = H for some A > 0;

(iii) D(A) is dense in H.

A direct computation shows that A is dissipative. We prove (ii) for A = 1; that is, given F' =
(f1, f2, f3, fa, [5, f6) € H, we seek U € D(A) such that (I — A)U = F.

The equation (I — A)U = F is equivalent to

o—®=f, (3.5.122)
o — ) [6(x)(z + ¥)z] = fa, (3.5.123)
Y-V =fs, (3.5.124)
¥ - S (b)) = w2 (er +0)] = i (3.5.125)
wt L [k + w(L) (L) + V(L)) = fo (35.126)
v+ i [k1v 4+ b(L)y(L)] = fe- (3.5.127)
From (3.5.122) and (3.5.124) we obtain
d=0p—fi, (3.5.128)
U= fs (3.5.129)

Substituting (3.5.128)—(3.5.129) into (3.5.123)—(3.5.125), we get

pi(x)p — (k) (ps + 1)), = 91, (3.5.130)
pa(z)th — (b(x)the)  + K(x)(0x + 1Y) = g, (3.5.131)

where g1 = p1(f1 + f2), g2 = p2(fs + fa).
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To solve (3.5.130)—(3.5.131), we apply the Lax—Milgram Theorem. Define the bilinear form

a: [H x HY] x [H} x H!] - R,
(), (3, 9)) = al(¢,9), (¢, 9))

L L
o((, ), (6 9)) = / p(@)ppde + / ()b d

L _ L B
+ / 5@ (s + ) (Bo + ) de + / b() e d
+ap(L)3(L) + BY(L)Y(L),

k k
Wherea:1—|——0and/8:1+—1.
m I,
One verifies that a is bilinear and continuous on H} x H} by means of the Cauchy-Schwarz and
Poincaré inequalities together with the boundedness of the coefficients. Moreover, using the inequalities

(a+b)? < 2(a® + b?) and the positivity of p1, p2, b, k, a, 3, one shows that a is coercive.

Hence, by the Lax-Milgram Theorem, for each (g1,92) € (H!) x (H}) there exists a unique
(p,) € H! x H! such that

a((p, %), (2,9)) = (91,9) + (92,9), V($,9) € HY x Hy.

This solution (p, ) satisfies (3.5.130)—(3.5.131) and yields, together with (3.5.128)—(3.5.129), a unique
U € D(A) that solves (I — A)U = F. Therefore, Im(I — A) = H, and the proof is complete. O
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Chapter 4

Nonlinear Semigroups

4.1 Duality Operator

In what follows, X will denote either a topological vector space (t.v.s.) or a real normed vector
space, whose norm will be represented by || - ||. We denote by X’ the topological dual of X, or more
precisely, the space consisting of all linear and continuous forms z’ : X — R, and when X is normed,
we endow X’ with the norm

']l = sup |2'(x)|.
lel<1

The duality between X and X’ will be denoted, interchangeably, by <x,x’ > or <m' ,J;>, for every
z € X and every ' € X', so that

(@) = (z,a') = '(2),

that is, the value taken by the functional x’ at the point x.

We recall below the Hahn—-Banach Theorem, a powerful tool in Functional Analysis, whose proof
may be found, for instance, in Brézis [14], in Bachman—Narici [3] and in Horvéath [53].

Theorem 4.1 (Hahn—Banach) Let X be a vector space and p a positively homogeneous and subadditive
functional on X. If G is a proper vector subspace of X, g € G' and g(x) < p(z) for every x € G, then
there exists an extension h of g to X such that h(z) < p(z) for every x € X.

0.lcm

As an immediate consequence of the Hahn—-Banach Theorem, we have the following results:

Corollary 4.2 Let X be a normed vector space, G C X a subspace of X and g € G'. Then there ezists
an extension f of g such that f € X' and ||fllx = ||9|lc’ -

Proof: Define
p(z) = llgllerllz], Yz € X,

then
9(z) < |g(@)| < llgllc [zl = p(x), VzeG.

Thus, by Theorem 4.1, there exists an extension f of g to X such that

f(z) <p(z), zeX.
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Observe also that
—f(@) = f(==2) < p(-2) = |lgllc || = p(=).

Consequently,
|f(@)] < px) = llgllell=ll, Ve X,
which implies

[fllxr = sup [f(2)| <llgllcr,
Izl <1

i.e.,
Ifllx < llgller- (4.1.1)

On the other hand, since f(x) = g(z) for every x € G, it follows that

[fllxr = sup [f(2)| = sup [g(x)] = |lgllc (4.1.2)
reX zeG
=<1 llzll<1
From inequalities (4.1.1) and (4.1.2), we conclude that ||f||x: = ||g]lq’- O

Corollary 4.3 Let X be a normed vector space. Then, for each o € X, there exists a form fo € X'
such that || follx = ||zol| and <f0,m0> = ||zo||?.

Proof: If o = 0, then fy = 0 satisfies the statement. Suppose now xy # 0. Define
G :=Rxg = {txo; t € R},

and
g(two) = tl|zol®, VteR.

Thus,
sup |g(z)| = sup |t[l|lzo* = [|zol|.
G teR

e
< =1
lzli<1 =TT

Since g is linear, it follows that g € G’ and

lgller = llzoll-

By Corollary 4.2, there exists an extension fy of g to X such that fy € X’ and

1follx = llgller = lloll-

Moreover, since z¢ € G, it follows that

<f03170> = <g,$0> = ”;EO”2

Let X be a normed space. For each x € X, define the set

F(z) ={a' € X': (/,2) = ||z[|* = ||2'|*}. (4.1.3)
Proposition 4.4 Let X be a Banach space. Then, for every x € X, the following properties hold:

(i) F(z) #0;
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(ii) F(x) is convex and compact in the weak™ topology of X';
(iii)) F(Ax) = AF(z), VAeR.
Proof:
**(1)** Follows from Corollary 4.3.
*E(1i)** Let o), x), € F(x) and t € [0,1]. From (4.1.3),
lzl* = ¢ + (1 — t)]|||?

= t<x,x’1> + (1 - t)<a:,x’2>
= (z,tz + (1 — t)ah). (4.1.4)

Since
(.t + (1= t)ay) < [|lzllltz} + (1 - t)as],
it follows from (4.1.4) that
] < [t + (1 = t)as]l. (4.1.5)

On the other hand, from (4.1.3) we also have

[ty + (1 = t)as|| < 2]l + (1 =)
=tlz| + (1 —t)]|
= ||z (4.1.6)

From (4.1.5) and (4.1.6), we conclude that
[ty + (1 = )| = ||,
hence tz} + (1 — t)a} € F(x), proving that F(x) is convex.

To show that F(x) is compact in the weak* topology of X’, by Alaoglu’s Theorem it suffices to
show that F(x) is weak* closed.

Let 2, € X' be a weak* limit point of F(z). Then for every € > 0, the neighbourhood
{§ € X5[(ap — & 2) <e}

contains some z’ € F(z), i.e.,
(zy — 2’ 2)| <e.

Thus
lz]* — & < (25, 2) < [l2||* + e,
and so
(zh, ) = l|||2. (4.1.7)
From (4.1.7),
l]|* < llz[lllzp]l,
hence

]l < flg]l-

But F(z) is contained in the weak* compact ball {£ : ||£]| < ||z||}; therefore ||| < ||z|| and so
[lzoll = ||lz||, showing that z( € F(x).
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*E(i)** If 2’ € F(z), then for any A € R,
Az, 2’y = Xz, 2"y = N|z||* = | Az %,
so Az’ € F(Az) and hence A\F(z) C F(\x).
Conversely, if y' € F(A\x) with X # 0, then
(@, y'/2) = ll=l” = Iy /A,

so y' /X € F(x), proving the reverse inclusion.

Definition 4.5 We call an operator with domain in a set X and range in a set'Y any relation A from
X toY, or equivalently, any subset of the Cartesian product X XY .

Thus, if A is an operator from X to Y, then for every x € X, Ax will be a subset of Y. Observe
that an operator A from X to Y defines a map (still denoted by the same letter)

A: X —2Y 2+ Ax,

where 2Y denotes the power set of Y.

The set D(A) of those x € X for which Az # () is called the domain of A. The set I'm(A) of those
y € Y such that y € Az for some x € D(A) is called the image of A.

Thus,
Im(A) = U Az.
z€D(A)

To express that A is an operator with domain X and image Y, we write A: X — Y.

The graph of A is the set of points (z,y) € X x Y such that y € Az for some z € D(A).

Let Y be a vector space, and let A, B : X — Y be operators. We define A + B, AA and A~}
respectively by:
A+ B ={(z,y+2); (z,y) € A, (z,2) € B},

A = {(z,\y); (z,y) € A},
A7 ={(y,2); (z,y) € A},
where D(A + B) = D(A) N D(B), D(AA) = D(A) and D(A™") = Im(A).

‘Deﬁnition 4.6 If for each x € D(A) the set Az is a singleton, then we say that A is single—valued. ‘

‘Deﬁnition 4.7 We say that B : X — Y is an extension of A: X — Y if AC B. ‘

Note that, in the case of single-valued operators, B is a proper extension of A if and only if D(B)
properly contains D(A), but this is not true in the multivalued case. Indeed, consider X =Y = {1, 2,3},

A= {(17 1)7 (17 2)7 (27 2)7 (2, 3)7 (37 1)}7

B={(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)}.
Then A C B, but D(A) = D(B) = X.

Definition 4.8 An operator is said to be closed if, whenever {x,,} C D(A) with x,, — x and y, € Az,
with y, — vy, it follows that x € D(A) and y € Ax.
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Definition 4.9 Let X be a Banach space. The duality operator is the operator F : X — X' defined
by:
D(F)=X,  F(x)={2"eX'; («/,x) = [«|* = [|2'|*},

for every x € X.
A duality mapping of X is any map f: X — X' such that f(z) € F(x) for every z € X.

Definition 4.10 Let f : X — (—00, +00] be a function. The effective domain of f is the set

D.(f) ={z € X; f(x) < 4o0}.

A function is said to be proper if D.(f) # 0.

Result 1: Let X be a topological space satisfying the first axiom of countability, i.e., X admits a count-
able local base at each of its points, and let f : X — [—00, +00] be sequentially lower semicontinuous
(Ls.c.). Then f is lLs.c.

Proof: Fix an arbitrary point xg € X. Suppose that f is not l.s.c. at xg. Then there exists €9 > 0 such
that for any neighbourhood V' (zg) of 2y we have

f(z) < f(xo) —eo < f(mg) for some x € V(xg). (4.1.8)
Since X satisfies the first axiom of countability, there exists a countable neighbourhood base
{Un}nen at xg. We now construct the following sequence:

For n =1, U; is a neighbourhood of zyg = 3n; € N such that U,, C U;. Define V; = U,, .

For n =2, Uy NV is a neighbourhood of ¢y = 3Iny € N such that U,, C Uy N Vi. Define Vo = U,,,.

Proceeding inductively, we obtain a collection {V}, },,en of neighbourhoods of g such that V,,; C
V, and V,, C U, for all n € N.

We claim that {V}, },en is a local base at xg. Indeed, let V(x¢) be any neighbourhood of xg. Since
{U,} is a base at xq, there exists n such that U, C V(x¢). Then

V., C U, C V(xg),

as claimed.

Hence, from assumption (4.1.8), for each n there exists x,, € V,, such that

f(an) < flxo) — c0. (4.1.9)

Thus we obtain a sequence (x,) with

fzn) < f(zo) — €0, VneN. (4.1.10)
In particular, for each n,

flzr) < flxog) —eo0, VK >n. (4.1.11)
From (4.1.11),

kir>1f flzr) < f(xo) — €0, Vn. (4.1.12)
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Hence,
dim iof f(ze) = sup inf f(x) (4.1.13)
< fl(wo) —eo0 < f(wo)- (4.1.14)

However, x,, — xg because for any neighbourhood V' (z¢), since {V,,} is a base at x, there exists
ko such that

Vio C V(20). (4.1.15)
Because V,,41 C V,,, we have
Vi C Vko C V({)So), Vk > k. (4116)
Thus,
xk € Vi C Vixg), VEk > ko, (4.1.17)
showing z,, — xg.
Since f is sequentially Ls.c.,
lim inf f(z,) > f(zo). (4.1.18)
n—oo

But (4.1.14) and (4.1.18) together imply
flao) < lim inf f(w,) < f(ao).

a contradiction. Hence f is l.s.c. at xg, and by arbitrariness of xq, f is l.s.c. on X. O

Result 2: Let X be a topological space and f : X — [0, +00]. Let {up tneny C X satisfy

lim inf f(u,) = A < 4o0.

n—r oo

Then there exists a subsequence {uy, } such that {f(uy,,)} is bounded and

lim inf f(up,) = A (4.1.19)

k—o0

Proof: From the hypothesis,
sup inf f(ug) = A,

neNk2n
i.e.
kir>1f flug) <A, Vn. (4.1.20)
Assume first that
kir>1f flug) <A, Vn. (4.1.21)
Then for each n,
3k, > n such that f(ug,) < A (4.1.22)

Indeed, if f(ug) > A for all k > n, then infy>,, f(ur) > A, contradicting (4.1.21).

Thus we obtain a subsequence {ug, } such that

0< flug,) <A, Vn, (4.1.23)
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showing that {f(u,)} is bounded.
From (4.1.23),
j>n= flug,) <X = jr>1f flug;) < A (4.1.24)
Jj=n

Taking the supremum over n,
lim inf f(ug,) < A (4.1.25)

n—oo

On the other hand, for each n,

hence
jigflf(uj) < }gif(ukj)- (4.1.26)
Thus
A= lim inf f(u,) < lim inf f(ug, ). (4.1.27)
n—0o0 n—oo

Combining (4.1.25) and (4.1.27) yields the desired equality.

Now assume instead that

kiI>1f flug) =X\, Vn. (4.1.28)
Then 1
égflf(“k) <A+ - vn. (4.1.29)
Hence, for each n,
1
3k, > n such that f(ug,) < A+ —. (4.1.30)
n
Then 1
0< flup,) <A+—<A+1, Vn, (4.1.31)
n
so {f(ug, )} is bounded.
From (4.1.30),
ir>1f flur,) <A, Vn. (4.1.32)
izn '
Thus
lim inf f(ug, ) < A (4.1.33)
n—oo
But again
J=n=kj>j={f(ur,)}izn C{f(W)}jzn, (4.1.34)
so
i f(u;) < iuf flu,) (4.1.35)
Hence
= lim i < lim i . 1.
A nh_>rr010 inf f(up,) < nh_{rgo inf f(u,) (4.1.36)
Together with (4.1.33), this proves (4.1.19). a

Example 4.11 Let Q@ C R” be an open set with regular boundary. Consider the function f : L?(2) —
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(=00, +00] defined by
) / | Vu |* de, ifue H(Q);
= Q

400, otherwise.

flu

We have that f is proper and Ls.c. Indeed, note that f is proper since D.(f) = H'(2). To show that f is
l.s.c. it is enough to prove that f is sequentially l.s.c., since L?() satisfies the first axiom of countability
(see Result 1).

Recall that f is sequentially l.s.c. at a point u € L?(Q) if, for every sequence (uy)nen such that
U, — u, one has
f(u) < lim inf f(uy,). (4.1.37)

n—-+oo

Let u € L?(Q) and (un)neny C L?(Q) be such that u, — u in L*(Q). If Eﬂr_l inf f(u,) = +o0,
n oo

then relation (4.1.37) is trivially satisfied. Hence, assume that

lim inf f(u,) = A < 4o0.

n—-+oo

We now suppose that the sequence {f(uy)}nen is bounded, which is not restrictive, since we may extract
a bounded subsequence with the same lower limit A (see Result 2).

From this hypothesis and the convergence of (u,,) in L?(Q), it follows that (u,) converges weakly
in H'(Q). Hence there exists a subsequence of (u,,) which converges weakly in H'().

Since strong convergence implies weak convergence, we have u,, — u in L?(Q). As the embedding
of H*(Q) into L?(Q) is linear and continuous with respect to the strong topologies, it follows that the
embedding of H'(Q) into L?(Q) is also continuous with respect to the weak topologies.

Therefore u,, — u in H'(Q) and, by Corollary 3.23 of [23], we have

||UH2L2(Q)+/Q|VU|2 dv = ||UH12L11(Q) Sngffwinf\\un||%{1(g) (4.1.38)
_ L 2 2
= nllg}oolnf <||un||L2(Q)—|—/Q|Vun| dx) (4.1.39)
= ||uH%2(Q)+ngr+nooinf/ﬂ\Vun|2 dx, (4.1.40)

and thus
/ |Vul?de < lim inf/ |Vu,|? d,
Q n—-+oo Q

or equivalently,
flu) < Tim_inf f(uy),

n—-4oo

which proves (4.1.37). Hence f is sequentially l.s.c. and, consequently, l.s.c.

Example 4.12 Let ¢ : R — (—o00,+00] be a proper, l.s.c. and non-negative function. Consider ® :
LP(0,T) - R, 1 < p < 400, defined by

T
B(u) = /0 e(u(t))dt, if p(u) € LY0,T);

400, otherwise.

We claim that ® is proper and l.s.c.
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To show that ® is proper we must verify that

Do (®) = {u € LP(0,T); pouc Ll(o,T)} £ 0.

By hypothesis, ¢ is proper, that is, De(p) # 0.

Let M € D.(p) and consider v : (0,7) — R defined by v(t) = M for all t € (0,7). Note that
v € L>®(0,T) — LP(0,T) for 1 < p < +o0.

Thus
(pov)(t) = (M) =:M < +oo since M € D,(y).

Hence pov € L>=(0,T) < L*(0,7), i.e.
pov e LY0,T),
and therefore v € D.(®). We conclude that D.(®) # 0, so ® is proper.

It remains to prove that ® is l.s.c. For this it suffices to prove that all level sets of &,

N, ®) = {u € LP(0,T); ®(u) < )\}, (4.1.41)

are closed. Fix A € R and let w € N(\, ®). Then there exists (u,)nen C N(A, ) such that

u, — win LP(0,T). (4.1.42)

Hence
D(u,) <A, VneN,

that is,
T
/ o(un(t))dt <X, ¥neN. (4.1.43)
0

Note that (¢(un))nen € L(0,T) and (¢(u,)) > 0 almost everywhere, for all n.
From (4.1.43),

T
sup/ P(un(t)) dt < X < 4o0.
neNJQ

Thus, by Fatou’s lemma,
lim inf ¢(u,) € L'(0,T),

n—o00 neN

and moreover,

T T
/ lim inf o(u,(t))dt < lim inf o(un(t)) dt < . (4.1.44)
0

n—oo neN n—oo neN 0

On the other hand, since u,, — w in L?(0,T), there exists a subsequence of (u,) (not relabelled)
such that
un(t) — u(t) almost everywhere in (0, 7).

Since ¢ is l.s.c. and hence sequentially l.s.c., we have

o(u(t)) < lim inf p(u,(t)) for a.e. t € (0,T). (4.1.45)

n—o0o neN
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Therefore, from (4.1.44) and (4.1.45),

D(u) :/0 o(u(t)) dt §/0 lim inf o(u,(t)) dt < A,

n—oo neEN

so u € N(\, @), proving (4.1.41): the level sets are closed and hence ® is l.s.c.
We shall use this result to prove the next theorem.

Theorem 4.13 (Composition) Let V and W be vector spaces, ¢ : W — (—o00, +00| a convex mapping,
A:V — W a linear mapping, and suppose that D.(p) NIm(A) # 0. If ¢ is continuous at some point of
Im(A) N D.(p), then

A(poAN)=N-0p-A.

Proof: First, we show that po A : V — (—00,+0o0] is convex and proper. Indeed, let u,v € V and
t €10,1]. Then

(poN)(tu+ (1 —tv) = ¢(Altu+ (1—1t)))

o(tAu+ (1 —t)Av)

to(Au) + (1 —t)p(Av)
tpoA)(u) + (1 —t)(po A)(v),

IA

which shows that ¢ o A is convex.

We now prove that ¢ o A is proper. By hypothesis, D.(p) N Im A # @, that is, there exists
u € De(p) NImA. Thus v = Av for some v € V, and then

(o A)(v) = o(Av) = ¢(u) < 400,
so v € Dc(poA), and hence ¢ o A is proper.

Let u € V be such that dp(Au) # (. By the definition of the subdifferential, for each w’ € dp(Au),
we have

(W' w—Au) < p(w) — p(Au), Yw € D(p). (4.1.46)

Denote by A’ : W' — V' the adjoint operator of A. Then

(N v—u) = (W, A(v—u))
= (W, Av—Au), VveV,
and in particular
(N, v—u) =(w',Av —Au), Vv €V such that Av € D.(p). (4.1.47)

From (4.1.46) and (4.1.47) we obtain
(Mo’ v —u) < o(Av) — p(Au) = (po A)(v) — (po A)(u), Vv € De(poA),

whence

Nw' € d(poA)(u).

This implies that d(y o A)(u) # @) and therefore u € D(9(p o A)). In other words,

(A odpoA)(u) CO(pol)(u), Yue D(A odpol),
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and hence
NodpoACd(poAl).

Conversely, let v’ € (¢ o A)(u). Then, by definition,

(U, v —u)+ (poA)(u) < (poA)(v), YvelV. (4.1.48)

Consider the set

K= { (Av, (v, v — u) + p(Au)); UEV} CW xR.

We claim that K Nepi(p) C bdr(epi(¢)). Indeed, let € K Nepi(p). By the definition of K,
z = (Av, (v, v —u) + ¢(Au)), for some v €V,

and from (4.1.48) we have
@(Av) > (u',v — u) + p(Au). (4.1.49)

On the other hand, since x € epi(y), we must have

P(Av) < (u',v —u) + p(Au). (4.1.50)

From (4.1.49) and (4.1.50), we obtain

o(Av) = (v, v — u) + p(Au) = A. (4.1.51)

Let V, be a neighbourhood of z € K Nepi(y), i.e.
Ve =Urp X (A —a, A+ @),

where Uy, is a neighbourhood of Av in W and « > 0. In order to conclude the claim, we need to exhibit
a point y € V, such that y ¢ epi(y), since x € V, Nepi(p) for every neighbourhood V, of x, that is,
V. Nepi(p) # (. Choosing 8 with A —a < 8 < A, we have y = (Av, 8) € V,. But, by (4.1.51), we get

p(Av) = A > f,

which implies
y = (Av, 5) € W x R\ epi(¢),

or equivalently,
Vo N (W x R\ epi(p)) # 0.

Hence x € bdr(epi(y)), and the claim follows.

We now prove that int(epi(y)) # (0. For this, we must find an element z € epi(y) and a neighbour-
hood V, of x such that V,, C epi(p).

Let v € V be such that ¢ is continuous at Av. Consequently, Av € D.(p), i.e. p(Av) < oco. Choose
B € R with ¢(Av) < 8.

Set
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By continuity of ¢ at Av, there exists a neighbourhood Uy, C D.(¢) such that

@(UAU) C (SO(AU) —&, 90(‘/\”) + 8),

that is,
p(Av) —e < p(u) < p(Av) +e, Yu € Up,.

Note that z = (Av, 8) € epi(p). Consider the neighbourhood

V$:UA’U X (ﬁ—é‘,ﬁ—i—&‘).

We assert that V,, C epi(¢). Indeed, let y € V,, so that

y=(u,A), withueUy, and A€ (8—¢,5+¢).

Moreover,
o(Av) +2e = p(Av) + 26 — (Z(AU)
A
= ) + - 20
(M) BB B
= 5 + By < By + 5= B,
and thus

e(Av) +e< B —e. (4.1.52)

From (4.1.52) we deduce
pu) < p(Av)+e < f—e <A,

which proves that y € epi(ip).

Therefore int(epi(y)) # 0. Since ¢ : W — (=00, 400] is convex, it follows from Lemma 1.41
in [23] that epi(p) is convex.

Hence, by Lemma 1.4 in [18], int(epi(p)) is convex.

Observe that
K =5+ (0,—u(u) + go(Au)),

where S = {(Av, v/ (v)); v € V}, and S is a vector subspace.

Note that K N int(epi(yp)) = 0, for if there existed x € K Nint(epi(y)), then z € K Nepi(p) and
x € int(epi(y)). By what we have already shown, z € bdr(epi(y)) N int(epi(p)) = @, since int(epi(yp)) is
open.

Under these conditions, there exists a closed hyperplane
H={(w,t) e WxR; (w,t) = —w (w) +t=c}
which contains K and lies below epi(yp).

Thus
—w (Av) + /(v —u) + p(Au) = ¢, YoveV.

If v = u, then
¢ = —w(Au) + p(Au),
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and hence
(W', A(v —u)) = <ul,(v —u)), VveV.

Therefore we may conclude that v’ = A'(w"). Since ¢ < ¢(w, t) for all (w,t) € epi(y), taking in particular

(w, p(w)) gives / ,
—w (Au) + p(Au) = ¢ < —w (w) + p(w), YweW.

Consequently,
w (w—Au) < p(w) —p(Au), YV weW.

This shows that w' € dp(Au). Hence A'w’ € A'dp(Au). Since v’ = A'w’, the result follows. a

Definition 4.14 (Gateaux derivative) Let X and Y be topological vector spaces. A mapping ¢ :
X — Y is said to be Gateauz differentiable at a point x if there exists a linear and continuous mapping
o' (x) : X — Y such that

i P& AY) — ¢(2)

/
- X.
lim ) ' (x)y, Vye

The mapping ¢’ () is called the Gateaux derivative of ¢ at the point x.

Proposition 4.15 Let K be a convex subset of a normed space V and let ¢ : K CV — (—00,+00] be
a function which is Gateaux differentiable at every point u € K. The following statements are equivalent:

(a) ¢ is convex;
(b) o' (u)(v—u) < p) —pu), for allu,v € K;
(c) (¢'(u) — ' (v))(u—v) >0 for all u,v € K.
Proof:
(a) = (b)
Assume that ¢ : K — R is convex, and let w,v € K and t € [0,1]. By convexity of K,
1-tu+tvekK,
and by convexity of ¢ we have
(1= tu+tv) < (1 —t)p(u) + to(v),

or equivalently,
e((1=thu+tv) < p(u) +t(p(v) = p(u)).

Thus

Since ¢ is Gateaux differentiable, by hypothesis,

ot — ) o)
t—0 t

that is,

which proves (b).

(b) = ()
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Assume that (b) holds and let u,v € K. Then

' (u) (v —u) < p(v) = p(u)

and
¢ (v)(u—v) < plu) = p(v).

Adding these two inequalities, we obtain

¢’ (u) (v —u) +¢'(v)(u—v) <0.
Hence
¢ (u)(v—u) = ¢'(v)(v —u) <0,

that is,
(¢'(v) = ¢'(u) (v —u) 20,

which proves (c).
(c) = ()

Assume that (c) holds. Let u,v € K and consider

[u,v] = {(1 = t)u+tv; t €[0,1]} C K.

Define
Y 0,1 — (—o0,+0q]

t — Y =p(uttlv—u),
that is, ¢ = <p|[u7v}.

For each ¢ € (0,1), let A > 0 be sufficiently small so that (¢ + A) € (0,1). Then

v = pm PN 200
i Pl (N @ =) — p(u+ o — u)
A—0 )\
_ iy Pt o —w) + A — ) — p(u t i(v —u))
A—0 A

Since ¢ is Gateaux differentiable on K, the above limit exists and we obtain

V() =¢' (u+tlv—u))(v—u), te(0,1). (4.1.53)

If t =0 or t = 1, we consider respectively the right and left derivatives and obtain

¢'(0) = lim plut A —w) —¢lu) _ o' (u) (v — u), (4.1.54)

P'(1) = lim =¢'(v)(v — u). (4.1.55)

From (4.1.53), (4.1.54) and (4.1.55) we can write

V() =¢ (uttlv—u)(v—u), Vtel01]. (4.1.56)
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We claim that ¢’ is increasing.

Indeed, let t1,t2 € [0,1] with ¢; < ¢3. From (4.1.56) we have

V' (ta) — ' (1)

@' (u+ta(v—u))(v—u) — ¢ (u+ti(v—u)(v—u)
(so’(“ +ta(v —u)) — ¢ (u+ tr (v — u)))(v — ). (4.1.57)

Set
wy=u+ti1(v—u) € K, wy =u+t2(v—u) €K,

so that wy —wy = (t2 — t1)(v — w).
By hypothesis,
(#'(w2) = ¢ (w1)) (w2 — wr) >0,

and, using the linearity of the Gateaux derivative and the fact that ¢5 — t; > 0, we deduce from (4.1.57)
that

[0 (t2) = ' (t1)] (t2 — t1) > 0,
hence
V' (ta) > ' (1),

showing that 1)’ is increasing and therefore ¢ is convex.

Consequently,
B((1=1)-0+-1) < (L—t06(0) + t(1), VEe [0,1],

that is,
P(t) < (1= 1)9(0) + (1), vt €[0,1],

or equivalently,
(1 —thu+tv) < (1 —t)p(u) +te(v), Vte[0,1] and Yu,v € K,

since u and v were chosen arbitrarily. This proves (a). a

Proposition 4.16 Let f : X — (—o0, +00] be a proper convex function. If f is Gateaux differentiable
at a point x € D.(f), then f is subdifferentiable at x and the Gateaur derivative f'(x) is the unique
element of 0f(x).

Proof:

Let y € D.(f) and X € [0, 1]. By the convexity of f and the fact that x € D.(f), we have

M () = M ()
A+ 1) 1)+ M)
(L N + M)~ 1)
GBI ) fz)

fly) = flx) =

%

Taking the limit as A — 0 in the inequality above, we obtain

f) = f(x) > (f'(z),y —x), Vy € De(f),

where f’(x) is the Gateaux derivative of f at z, and hence f'(z) € 9f(x).
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We now prove uniqueness. Let 2’ € 9f(z). Then

fly) — flx) > («',y —x), Vy € Dc(f).

In fact,
fly) = flz) > («',y —z), Vy € X.

Thus
flx+Xy) — f(z) > <x',)\y>, Yy e X, VA >0,

which implies
fla+y) — f2)
A

> (2',y), Yy € X, VA > 0.

Passing to the limit as A — 0, we obtain

(f'(x),y) > (=", y), Vy € X.

Replacing y by —y in the inequality above, we obtain the reverse inequality, and consequently

(f'(@),y) =(2",y), Vy € X,

which implies f/(z) = 2/, and the proof is complete. m]

Example 4.17 Let X be a normed vector space. We compute the subdifferential of the norm at the
point 0 € X, that is, we determine the elements of the set

-

10) = {2’ € X5 llyll = ('), vy € X}.

Note that if 2’ € 9| - ||(0), then
lyll > (2", y), ¥y € X.
If y € X, then —y € X and, in particular,
(2',—y) < |yl which implies (2',y) > —|ly]|.
Hence |(/,y)| < ||y| for all y € X. Consequently [|2’|| < 1, and therefore

| -

0 c {+' e x’; 2’| <1},

Conversely, if 2/ € {2/ € X'; ||2’|| < 1}, then |[(2/,y)| < |ly| for all y € X, and thus

{z' € X'; ||2'|| < 1} C 9]l - [1(0).

Therefore
Al -11(0) = {z' € X'; [|l2']| <1}

Example 4.18 If f(z) = %HJI”Z, then df(x) = F(x).
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For o’ € F(z), we have

F) — £ = Il = el = S (el + ) ~ lal?
> ellyll - Nl
2 <$/5y> - <£E,,:E>
= (z/,y—u).

Thus F(z) C df(x).
Conversely, if ' € df(x), then
Loe Ly o '
Sl — llel? > @y —a), y € Do),
For y of the form y = = + tz, with ¢ € R, we obtain
lz + ta]|® = |l2|* > 2t(z’, ).

1
Thus, for t = — we have
n

1
(1+ 557 ) el = 0

(1= 55 ) ol < (')

By the arbitrariness of n, it follows that (z/,z) = ||z||?, with ||z|| < ||2’[|. It remains to prove that
|=’]| < ||z||. By definition, taking y of the form y = x + tz, with ¢ > 0 and z € X, we have

1
and for t = —— we have

1 1
Lo+ 212 = Ll > ¢, ).
Hence
1 , 1
ta',z) < S (=l +tllzl)” — 5l
2 2
thellal + S 202
= tllzlll|z|| + =||z]|%.
2
Dividing both sides by ¢ and letting ¢ — 0%, we obtain
(@, 2) <|lzllll=]l, Vze€X.

In particular, ||2'|] < ||z||, and thus 0f(z) C F(x), so equality of the two sets holds.

4.2 Exercises

1 — Let A be a closed subset of a t.v.s. and consider the indicator function I4 defined by

0, if x € A;
IA(x)_{ +oo, if z ¢ A.

Prove that I, is L.s.c.

Solution: Let E be a t.v.s. and A C E closed. We shall show that N (A, I4) is closed for every A € R.
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Indeed,
0,

if A <0, N(AIi)={zekE; Ii(z) <A}

ifA=0, N(\Ia)={zeE; Ii(z) <A} = A4,

ifA>0, N(\Ia)={zeckE; Ii(z) <A} =A

Since both ) and A are closed sets, it follows that I4 is l.s.c.
2 —Let f: X — [—00,+00] be a convex function defined on a vector space X.

(a) If f takes the value —oco at some point xg € X, prove that on any half-line I" with origin at xg either
f(x) = —oo for all € T, or there exists a point z1 € I" such that f(z1) < +oo, f(z) = —o0 at all points
x € T lying between zy and x1, and f(z) = +oo at all other points of T".

(b) If, in addition to being convex, f is Ls.c., prove that either f never takes the value —oo or else
f(x) = —oo for every x € X. (Use the following result: Let f be convex, l.s.c. and proper. Then there
exists a continuous affine function which minorises f (see Proposition 1.44 in the Functional Analysis
book by Cavalcanti, Cavalcanti and Komornik).)

To avoid the particular cases described in (a) and (b) above, we shall consider convex functions
which are not defined at —oo.

Solution:

(a) Suppose that f is not identically —oco. Thus there exists 1 € X such that f(x1) # —oo, that
is, f(z1) < 00 or f(z1) = +o0.

If f(z1) < oo, then for every « € I such that x lies between xo and 1 we have z = (1 —t)xg + ta;
for some t € (0,1), and hence

f() = f((1 = t)zo +twr) < (L —t)f(xo) + tf(21) = —o0, (4.2.58)
so f takes the value —oo between zg and x7.

Now, if © € T but x lies beyond z1, we cannot have f(xz) = —oo or f(z) < oo, because taking the
half-line joining x to z¢ and using the same steps as in (4.2.58) we would obtain f(y) = —oo for every y
between z and x¢, including z1, which contradicts the fact that f(z1) < co. Hence

f takes the value — oo between z¢ and x1, and f(x) = 400 at all other points of T'.

Observe that, by the argument above, I' can have at most one point  such that f(Z) < cc.

Now, if f(z1) = 400, consider K; = {x € T; f(z) = +oo}, Ko = {x € T; f(x) = —oo} and define

u): (07 1) — F(fﬂo-,fbl)
t — Yt) =1 —t)xo + tay,

where I'(;, ., is the segment joining g to x; (excluding z¢ and z;).
Then it is clear that v is a homeomorphism and moreover K; and K5 are open.

Thus, since K1 N Ky = 0, K; and K, are open in ['(2,21), and this segment is connected (because
it is homeomorphic to (0,1), which is connected), it follows that K; U Ko # I'(3, 4,), i.e., there exists
x € I'(4y,2,) such that f(x) < oo. This concludes the proof of (a).

(b) Suppose that f is not identically —oco but takes the value —oco at some point, i.e., there exist x1, 29 € X
such that f(z1) # —oo and f(x¢) = —oo. Consider the half-line I'f,, ,,) joining x¢ to 1. By item (a)
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there exists xo € I'[, ;) such that f(z2) < oo, hence f is a proper function. Therefore there exist ¢ € X’

and 8 € R such that
o(x) + B < f(x), VzelX,

in particular
p(zo) + B < f(x0) = —00,

which is absurd, since ¢ € X’. Hence f cannot take the value —oo.

3 — Let X be a uniformly convex Banach space and z,z, € X, n =1,---.

following property:
T, =z and lim sup|z,| < ||z|| = 2, — =
n—oo

Solution: First assume that x = 0. Then
lim inf ||z,|| <0.
n—oo

On the other hand,
lim sup||z,| = inf sup ||zx] < 0.
n—oo neN >y,

Note that
0 <suplzgl, VneN,
k>n

whence
0 < inf sup ||zk|| = lim sup ||zk]|.
neN k>n n—o00

Prove that X has the

(4.2.59)

(4.2.60)

(4.2.61)

(4.2.62)

Comparing (4.2.59) and (4.2.62) we conclude that there exists ng such that

0 < sup ||zx| < e,
k?ZTlo

that is,
0<|lzkll <&, Vk>ne.

Hence x,, — 0. Now suppose = # 0. Then

|z < lim inf ||a,|.
n—oo

Indeed, from the weak convergence x,, — = we have

vet e X', [(z*,2)| = lim [(a*,z,)]

n— oo

nl;rr;o inf [(z*, z,,)|

IN

lim inf ||z*|| x/||2n || x
n—oo

In particular,
Vz* € X’ such that ||z*||x, = 1, we have

|(z*,z)| < nh_}r{.lo inf ||z, | x,

||| x lim inf||z,|x.
n—oo

(4.2.63)

(4.2.64)

(4.2.65)

(4.2.66)

(4.2.67)
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and consequently
[z|x = sup [(z*,2)| < lim inf|z,|x, (4.2.68)
n—roo

==l x =1
which proves (4.2.65). From (4.2.65) and the hypothesis we conclude
lellx < lim inf la x < lim sup e lx < lallx. (4260

that is, lim, o ||| exists and moreover

lim ||z, ]l x = 2] x > 0. (4.2.70)
n—oo

Assume, without loss of generality, that

lzallx >0, VneN, (4.2.71)

*

Set y, = ﬁ’ y = 2 and y* = ||;EC*||’ where z* € F(x). Then y,,y € Ux (the unit ball) and

[

y* € Ux/. We have

1
() < (o, 2] < g < 5l + Dl } =

On the other hand,

* Ynt1 _ . ™ ZTn +
nh*{I;o <y Yo 'U> — n1LH;O<|$*|X,’ Tenllx Hx2 [E3 X>
1 1 1
S | ) —— I P
2 x ni”éo{<”” ) o e |x||x}
1 . 1 ) 1
= e '{@” )y ) ||33||X}
1 2, (z*,x) ||| |||
= - . s = = - ]_. 4.2.72
Mol ol &% = Tl el Tl (4.2.72)
Now, since
(v, 25) < (v mg))|
< llytllxe - (1252 |
= |||y (4.2.73)
it follows that
1= Tim (y*, =t < nh_}rr;o‘ wnty) (4.2.74)
On the other hand
2572 < 2{IlynHX +lyllx} =1, (4.2.75)
and hence
lim HymLyH <1. (4.2.76)
n— 00
From (4.2.74) and (4.2.76) we conclude that
Jim [[egi]] =1, (4.2.77)
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By uniform convexity it follows that

lyn —yllx — 0 asn — oo. (4.2.78)

Indeed, we argue by contradiction. Suppose that ||y, — y||x # 0 as n — co. Then, without loss
of generality, we may assume that there exists g > 0 such that

lyn = yllx >0, VneN. (4.2.79)

Hence, by the uniform convexity of X there exists §o > 0 such that

|45, <1-60 <1, VneN, (4.2.80)
that is, !y’}ij # 1 as n — oo, which contradicts (4.2.77). Substituting y,, = ﬁ and y = i~ in
In
(4.2.78) we conclude that
I~ T 50 asn— oo, (4.2.81)
lznll [l x
that is, .
— —— asm — o0. (4.2.82)
[0 ]|

Moreover, since ||z, || — ||z|| (see (4.2.70)), the sequence { ||z, }, ; is bounded, and from (4.2.82)
we conclude that

[znllzn _ [lzallz  |lznlle [z]z

lan —2lx = \
n Teal T2l T Tl Tl Il

Ty x

[zl [l

+ |zl = ll2ll] - 1, VneN,

] \
X

so x, — x, as we wanted to prove.

- 229 -



4 Nonlinear Semigroups

- 230 -



Chapter 5

Monotone and Accretive Operators

5.1 Monotone Operators

In this section we study monotone operators, which generalise the notion of monotone func-
tions.

Let f : R — R be a monotone nondecreasing function. This means that if z,y € D(f) and z <y
then f(z) < f(y). Equivalently,

(z—y)(f(z) = f(y) =0, Va,ye D(f).

Our aim is to extend this concept. To that end, let us consider the following example in R?. For
b
each x = (a,b) € R?, consider the rotation of 2 by an angle 0, where 0 < 6 < 5"

RA

x=(ab)

Bv

Figure 5.1: Rotation mapping.

Note that

Ro(w) = (] cos(a+0),l|e]sin(a + )

(|||l cos cccos @ — ||| sin avsin 8, ||z|| sin cv cos 6 + ||z|| cos asin 6)
——— ———

=a =b =b =a

= (acos@ — bsin6, bcos@—i—asinﬁ).
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Thus
Ry: R? — R2

(a,b) +—— Rg(a,b) = (acos® —bsinb, bcost + asinb).

We claim that
(z—y,Ro(z) — Ro(y)) e = 0, Va,y R

Indeed, let = (a,b) and y = (¢,d). Then

(z =y, Ro(@) = Ro()za = ((a—c,b—a),
((a—c)cos@—(b—d)sin@,(b—d)cos@—i—(a—c)sin@))R2

(a—c)*cos® — (a —c)(b—d)sind

+(b—d)*cosf + (b—d)(a — c)sinf

= (a—c)?cosd+ (b—d)*cosd >0, SinceOSGSg.

We also note that Ry is linear.

This example motivates the following definitions:

Definition 5.1 Let H be a Hilbert space. A single-valued operator A in H is said to be positive if

(Am,x)H >0, Vx € H.

Definition 5.2 Let H be a Hilbert space. A single-valued operator A in H is said to be monotone if

(Ax—Ay,m—y)H >0, Ve,y € H.

We observe that if A is a single-valued linear operator on a Hilbert space, then A is monotone
if and only if A is positive. The mapping Ry considered above is an example of a single-valued, linear
and monotone operator and therefore positive. However, the nondecreasing function f mentioned at
the beginning of this paragraph represents a monotone operator which is not necessarily positive (unless
0 € D(f) and f(0) =0).

Definition 5.3 Let H be a Hilbert space. An operator A in H is said to be monotone if

(r1 — 22,91 —y2)m >0, Y(x1,y1),(22,92) € A.

We see, therefore, that the definition of a monotone operator in a Hilbert space is a natural
generalisation of the concept of a monotone nondecreasing function.

Let us look at an example:

Example 5.4 Let 8 be a monotone operator in R and let €2 be a bounded open subset of R”. We may
define an operator 3 in the space L?(Q) by setting

B ={(u,v) € L*Q x L*Q; v(z) € B(u(z)) almost everywhere in Q}.

We shall prove that 3 # 0. First, we claim that for each ¢ € R the set 8(¢) is bounded in R.

Indeed, suppose the contrary, i.e., that given M > 0 there exists zp; € $(£) such that |zp| > M.
Let x; > &. Since 8 is monotone we have

(1 = &)(y1 —y2) > 0, Yy € B(w1) and Yya € B(§).
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Blux))

=)

u(x)

Figure 5.2: Operator 8.

In particular, (z1 — &)(y1 — xpr) > 0. Since (z1 — &) > 0, it follows that (y3 — zar) > 0 and
consequently zps < y1, VM > 0 and y; € B(x1). Therefore, there exists y; € R such that xy <
yi, VM > 0.

Similarly, if 7 < £ we have

(1 =& (y1 — y2) >0, Yy € B(x1), Yy2 € B(§).

In particular, (z1 — &)(y1 — xa) > 0. Since (z1 — &) < 0, it follows that (y1 — xa) < 0 and
consequently s > y1, for every M > 0 and y; € fB(z1). Thus, there exists ¥ € R such that xy; >
y?, VM > 0. Hence the sequence (x37)ar>0 is bounded. By hypothesis, however, we have |zys| > M for
all M > 0, i.e., |xp| — 400 as M — +o00, which is a contradiction. This shows that the set 3(€) is
bounded.

Now take u € C§°(€2) and define the mapping
v: Q — R

z — v(x) € B(u(z)).

Denoting K = supp(u), we have

[ = [ wpa+ [ s

Note that, since u is continuous and K is compact, there exists a constant & > 0 such that
—k < u(z) < k for all z € K. By the monotonicity of 8 and for every x € K we have

(u(z) + k) (y1 —y2) = 0, Yy € B(u(z)) and Yy, € S(—k),

(k—u(x)) (21 — 22) >0, Yz, € B(k) and V23 € B(u(z)).
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Since (u(z) + k) > 0 and (k — u(z)) > 0, it follows that

(y1 — yz) >0, Yy € ﬁ(u(x)) and yo € ﬂ(*k),

(21— 22) >0, Vz1 € B(k) and Vz; € B(u(x)).

In particular,
v(z) > y2 > 1,

where ¢; is a lower bound of the set 5(—k). Moreover,
v(z) < 21 < ey,
where ¢ is an upper bound of the set (k).

Hence there exists ¢ > 0 such that |v(x)| < ¢ for all z € K, and therefore

/ [v(z)|?dz < c®meas(K) < oo.
K

On the other hand, if z € Q\ K, then u(z) = 0 and consequently v(z) € 5(0), which is a bounded
subset as shown above. Hence

/ (@) 2z < k2meas(Q\ K) < k2meas(©2) < oo,
O\K
since  is bounded. Thus, if u € C$°(Q), we have v € L*(Q), and so (u,v) € 3. Therefore 5 # () and

(ur — ug,v1 —2) 5 = / (ur(z) — ua(2)) (v1(z) — v2(x))da.

Q
Since (u1,v1), (ug,va) € B, the integral is well-defined and, moreover,
v1(z) € B(ui(x)) almost everywhere in Q,
ve(x) € B(uz(x)) almost everywhere in Q.
By the monotonicity of 3 it follows that
(ur(z) — ug(x)) (vi(x) — va(x)) >0,

which proves the claim.

To further generalise the notion of a monotone nondecreasing function, note that if X is a Hilbert
space, then its dual X’ may be identified with X and, in this way, the monotone operators on X may
be regarded as operators A : X — X’. Thus the inner product can be viewed as the duality (-, -) XX
These considerations lead us to the following definition.

Definition 5.5 Let X be a real t.v.s., X' its dual and A : X — X' an operator. We say that A is
monotone if

(@' =y x—y) 20, forall (z',2),(y,y) € A.

Example 5.6 The subdifferential operator df : X — X’ is monotone. Indeed, let (z, '), (y,y’) € df.
Then
2 €0f(x) and y' € 9f(y).
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Hence z/,y' € X', z,y € D.(f) and, in addition,
f(z) = f(z) > (2',z — z), Yz € D.(f),

f(w) - f(y) > <y/7w - y>a Vw € De(f)
In particular,

fly) = f2) = (2", y — @),

fl@) = fly) =Yz —y),
and, adding these two inequalities, we obtain

0>y —a',z—y)= (' —y,z—y) >0,
which proves the monotonicity of the operator df.
O
Example 5.7 The duality map F : X — X’ is monotone. In fact, let (z,2),(y,v’) € F. Then
7',y € X' and
(a',2) = |Jz||* = [|l"]%,

Wy) = llyl* = lly'II.

Consequently,

l21* = (2", y) = (v, =) + Iyl®
(1 = Nl Il = 1yl + [l
lll* = 2l Iyl + ly]1*

(Il = lIyl)* > o,

(' =y, x—y)

v

which proves the claim.

O

In the case of Hilbert spaces, the monotonicity of an operator can be expressed by the following
condition, which involves only the norm.

Proposition 5.8 Let X be a Hilbert space. Then A is a monotone operator if and only if
|21 — 22 + A(y1 — w2) || = |21 — 22,

for every (z1,y1), (z2,y2) € A and every A > 0.

Proof: Let (x1,41), (x2,y2) € A and A > 0. Then

21 — 22 + Myr — v2) |12 = |21 — 22> + A2|lys — yal® + 2X (21 — 22,91 — ¥2). (5.1.1)

If A is monotone, then
(21— z2,51 —y2) 20,

and therefore, from (5.1.1), it follows that
w1 = @2 + Alyr = y2)|I* > flon — |, (5.1.2)

for all (x1,y1), (x2,y2) € A and every A > 0.
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Conversely, if (5.1.2) holds, then from (5.1.1) we obtain

My — yol® + 2(21 — 22,91 — y2) > 0.

Letting A — 0 in the inequality above, we get
(z1 — 22,91 — y2) >0,

for every (z1,y1), (z2,y2) € A, which shows that A is monotone and completes the proof. O

Proposition 5.9 Let M be the family of monotone operators on X. The following properties hold:

(i) If A,B € M, then A+ B € M;
(ii) If A€ M and X\ > 0, then NA € M,
(iii) If Ae M, then A= : X’ — X" is monotone;

(iv) If A € M, then A € M, where A is the closure of A in X x X', with X endowed with the strong
topology and X' with the weak-+ topology;

(v) If A€ M, then A e M, where A = conv Az (the closure in X' of the convez hull of the set Azx).
Proof:

(i) If A, B € M, then

<‘T/1 - yivxl - y1> > Ov v(xlvxll)v (ylayi) € A7

(5.1.3)
(ah —yh,wa —y2) >0, V(wa,zh), (y2,95) € B.
Let (21, 21), (w1,w}) € A+ B. Then z1,w; € D(A) N D(B) and
z} = a2} + xf, where o} € Az; and 2, € Bz,
(5.1.4)
wi =y} + y4 where yi € Aw; and y} € Bw;.
Thus, from (5.1.3) and (5.1.4), we obtain
(#—wi,z—wi) = (@) +25) = (1 +43), 21 —wr)
= (@ —y1) + (@ —y5), 21 —w1)
= <35,1_yia21—w1>+<x/2_yéazl—w1>
> 0.
(ii) If A € M and A > 0, then
<x' -y, - y> >0, V(z,2'),(y,y) e A (5.1.5)

Let (z1,2}), (y1,v}) € AA. Then z1,y; € D(A) and

Ty =\’ with 2’ € Az, y; = Ay’ with ¢’ € Ay;.

From this identity and (5.1.5), we get

(2} —yp, 21 —y1) = XNa’' —y/ 21 —y1) > 0.
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(iii) Let A € M and consider A= : D(A™') € X’ — X". Thus, for (z,2'),(y,y’) € A, by the

monotonicity of A,
(5.1.6)

<a:’fy',x—y> > 0.

Note that 2’,y" € D(A™1). Hence, from (5.1.6),

<x—y,z/—y/>X,,XX = <x/ _y,vx_y>X/><X > 0.

(iv) Let (z,2') and (y,y’) € A and ¢ > 0. Consider the following neighbourhoods of (z,2’) and

(y,y'), respectively:
B.(z)x Ve(z')={z€X; |z —z| <e} x{feX; {f -2,z —y)| <&},
Be(y) x Ve(y') ={z € X; |z =yl <e} x{f e X; [{f =¢/, 2 —y)| <&},
Since (z,2') and (y,y’) € A, there exist (zg,x}) and (yo, yh) € A such that (zg, r}) € Be(x) x V.(2') and

(y0,96) € Be(y) x Ve(y').

Thus,
|zo — || <&, llyo—yll <e,
—e<(zyg—2x—y)<e, —e<{y—-vy,x—y) <e
and
(xo = yo, 70 — o) = 0.
Hence

(r—y, 2’ —y) =(x -y, 2") — (v —y,¢/) + (x — y,20) — (z — y,20)
+ (& =y, 90) — (= =y, Y0) + (0, x5 — yo) — (xo, 20 — Yo)
+ (Y0, 2o — Yo) — (Yo, o — Yo)
= (z—y, 2’ —ap) + (@ —y,y0 —y') — (w0 — &, xh — yp)
— (Y = Y0, 7o — Yo) + (To — Yo, To — Yo)
> =2 — ([lwo — 2] + llyo — ylD Iz — voll
> —e(2 + 2]z — yoll),

and therefore, letting ¢ — 0, we obtain

(x—y, 2’ —y) >0.

(v) Let A € M and consider A = convAz (closure in X’ of the convex hull of Az). We first show
that the operator A : X — X’ defined by

Az = convAx

is monotone. Indeed, let (z,'), (y,y') € A. Then @’ € convAz and y' € convAy, hence

n

Z)\ixg where 7, € Az, Z)‘i =1, X\ >0,
i=1 1=1
(5.1.7)

.’I/'/

Yy = Z,ujy; where y; € Ay, Z,uj =1, p; >0.
j=1 j=1

- 237 -



5 Monotone and Accretive Operators

Since (z,}), (y,y;) € A and A is monotone, we have
(zj—yjx—y) >0, Vi=1,...,n, Vji=1,...,m.
Thus
</\ix;—)\iy;-,x—y>20, Yi=1,...,n, Vj=1,...,m,

which implies

<§n:)\ix’i—§n:)\iy§,x—y> >0, Vj=1,...,m,
i1

i=1

i.e.
(¢ —yf,x—y) >0, Vi=1,...,m.
From the inequality above we obtain
m m
<Zuj$' SN y> >0,
j=1 j=1
that is,

(@' =y, 2 —y) >0,
which proves that the operator A is monotone.
On the other hand, recall that
= {(z,y9); z € D(A), y € convAz},
{(z,y); x € D(A), y € convAz},
= {(z,y); z € D(A), y € convAz}.

:L(‘ :3>) A
I

Therefore A ¢ A  A. Since A is monotone, it follows from item (iv) that Ais monotone, and,

because A extends 121\, we conclude that A is monotone. O

Proposition 5.10 Let A € M. Then the operator A defined by
D(A) = D(A) — {a}, where a € X, Az = Az +a) — (@), deX,

is monotone.

Z = x—a, for some xz € D(A),
Proof: Let (&%), (4,7') € A. Then J = y—a, for some y € D(A),

i € Ai=A@E+a)-{d}=A4z—d,

g € Aj=A@{+a)—{d}=Ay—d,

which implies

¥ +d € Ax, g +ad € Ay.

It then follows, using the monotonicity of A, that

(#—g,2—g)+(d —d,-7)

(@' +d) = (@' +d).(@+a) = (§+a))
= (@' +d) =@ +d)z-y)=0.

(&' =77~ 7)

l
a
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0.5 cm

Definition 5.11 Let X be a normed space. An operator A on X is said to be locally bounded at the
point xg € X if there exists p > 0 such that the set

U v e ol <
xz€D(A)

1s bounded.

Lemma 5.12 Let (x,) and (z),) be sequences of elements of X and X', respectively, such that ||z, | — 0
and ||z),|| — o0 as n — oo. Then, given p > 0, there exist an element z(p) € X and subsequences
(Tn,) and (z7,,) of (xn) and (x,), respectively, such that:

(1) [Iz(p)]l < p;

(ii) klgr;o (x,,2(p) — Tn,, ) = 00.

Proof: Set ,
W = Tn
" 1+’<x§1,xn>”
then
|| = [E (B8 _ 1
N T o] = T leallloll g + ol

which implies that ||w/,|| — oo as n — cc.

We shall show that there exist a subsequence (wy, ) of (w;,) and a point z € X such that
<w' z> — 00 as k — oo. Indeed, suppose this is not the case, that is,

NE?

sup |(w,, z)| < oo, VzeX.
n

Then, by the Banach—Steinhaus theorem, sup,, ||w},|| < oo, which contradicts the fact that ||wl, | —
oo as n —+ oo. Hence the claim holds.

Given p > 0, define

pz
z(p) = =—.
)= 3
Note that z # 0, for otherwise <w;k,z> =0.
Then
()l = £ < p. (5.1.8)
Observe that
AR I T ]
(wtoza) = O [Ty =
/
- _ (o) <1, VnéeN. (5.1.9)
1+ [(@l,, 20|

From what we proved above, given M > 0 there exists kg € N such that

(wh,,z) > M, Vng > ng,. (5.1.10)
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Thus, from (5.1.9) and (5.1.10), for k > kg sufficiently large, we obtain

(Wi, 2(p)) > (wn, s Tny )y Vi > . (5.1.11)

Hence, from (5.1.9) and (5.1.11), for all ng > ng,,

>1

L+ |<x;1k’z(p) _l'nk>|) <w;k,z(p) —:L'nk>
,2(p)) =1 — 00 as k —» oo,

<CC;1)€ ) Z(p) - xnk>

wl
ng
!

Wy,

AVARLY,

as desired. O

Theorem 5.13 Every monotone operator A : X — X' is locally bounded at each point of the interior
of its domain.

Proof: Let A be a monotone operator on X, let « € int D(A), and let p > 0 be such that D(A) contains
the ball centred at z with radius p. We argue by contradiction. If the theorem were false, according to
Definition 5.11 there would exist sequences (zy,), (z,) in X and X', respectively, such that (z,,z),) € A,
r, — z and [|z;,|| — +oco. By Lemma 5.12, there would then exist subsequences (z,,), (2], ) of
(zn), (x],), respectively, and a point z(p) € X such that ||z(p)| < p and

(w,,,2(p) — (Tn, —x)) —> 00 as i — oo. (5.1.12)

From |[z(p)|| < p it follows that z(p) + x belongs to the ball centred at = with radius p, hence
z(p) + « € D(A). By the monotonicity of A we have

(Y =, 2(p) + o —ap,) 20, Yy € A(2(p) +2),

and consequently
(v, 2(p) + & —xp,) = (@, 2(p) + T — n, ). (5.1.13)

From (5.1.12) and (5.1.13) we obtain
(v, 2(p) + & — xp,) —> 00 as i — o0,

which is a contradiction, since z,,, —  strongly in X. This concludes the proof. O

0.5 cm

Definition 5.14 A function ¢ : X — 2V is said to be upper semicontinuous if for every open set
W CY the set {z; o(x) € W} is open in X.

Definition 5.15 Let X and Y be topological vector spaces, with Y locally convex, and let p : X — 2Y .
We say that ¢ is a Kakutani function if it is upper semicontinuous and p(x) is nonempty, compact and|0.5cm
convex for every x € X.

Theorem 5.16 (Kakutani) Let S be a nonempty, compact and convex subset of a locally convex topo-
logical vector space and let ¢ : S — 2° be a Kakutani mapping. Then ¢ has a fized point, that is, there
exists © € S such that x € ¢(x).

Proof: See Theorem 8.6 in [19]. O
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Definition 5.17 Let A and B be arbitrary sets. A point (xo,y0) € A X B is said to be a saddle point
of the mapping f: Ax B— R if

f(zo,y) < f(z,y0), Vx € A, Yy € B. (5.1.14)

Remark 5.18 If inequality (5.1.14) holds for all z € A and all y € B, then in particular it holds for
& = xg, which implies f(zo,y) < f(zo,%0), and for y = yo, which implies f(xo,y0) < f(z,y0). Thus,
(z0,Yo) is a saddle point of f if and only if

f(zo,y) < f(xo,y0) < flz,90), Vo € A, Vy € B. (5.1.15)

Lemma 5.19 For every mapping f : A X B — R, one has

sup inf f(z,y) < 1nf sup f(z,y).
yEB z€EA
Proof: We have
inf f(z,y) < f(z,y), VeeA vyeB,
S

hence

sup inf f(z,y) < sup flz,y), VzeA,
yeBTEA

and therefore

sup inf f(z,y) < 1nf sup f(z,y).
yEB z€A

Example 5.20 Let A and B be arbitrary sets. A mapping f: A x B — R admits a saddle point if and
only if
. _ o
min sup f(z,y) rynEag;gAf(w’y),
where we replace inf by min and sup by max to indicate that the inf and the sup are, respectively,
attained.

Solution: From Observation (5.18), we know that (zg,y0) € A x B is a saddle point of f if and
only if
f(xo,y) < f(z0,%0) < f(x,90), Vx €A VyeB. (5.1.16)

Suppose (zg,y0) € A X B is a saddle point of f. Then we obtain

f(xo,90) < glelgf(%yo)

= f(x07y0):$igf14f(‘r7y0)
zilelgf(ﬁyo) < f(wo,y0)

sup f(zo,y) < f(zo,90)
yeB

= f(zo,y0) = sup f(zo,y)
yEB

f(zo,90) < supyep f(20,9)
that is,

sup f(zo,y) = f(zo,50) = inf f(z,y0). (5.1.17)
yeEB z€A

Note that, by (5.1.17),

inf sup f(z,y) < sup f(zo,y) = inf f(x,y0) < sup inf f(z,y),
z€AycB yeB €A yeBTEA
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and consequently

inf sup f(x,y) < sup 1nf flz,y).
T€A yecB yeEBZT

From this inequality and Lemma (5.19), we obtain

inf sup f(x,y) = sup mf flz,y).
€A yEB yEBT

Using (5.1.18) and (5.1.17), we get
sup f(zo,y) = inf sup f(z,y)
yeB

= sup 1nf flz,y)
yEB €A

> inf f(xhyo) = sup f(x07y)7
€A yEB

hence

inf sup f(l’,y) = sup f(‘Tan) = f(iEo,yo)-
T€A yecB yEB

Similarly, we obtain

sup inf f(z,y) = ;relgf(x,yo) = ;ggf(w,yo).

yEB‘Ee

From (5.1.19) and (5.1.20), it follows that

min sup f(z,y) = sup f(zo,y) = (20, ¥0),
ZL’GAyGB yeB

f(z0,y0) = inf f(z,y0) = max inf f(z,y),
as required.

Conversely, suppose that

S = ma f
glelgylelgf(x Y) = max inf, f(z,y),

(5.1.18)

(5.1.19)

(5.1.20)

(5.1.21)

and let x¢ and yo be points at which the infimum and supremum are attained, respectively. Then

f(z,y0) > inf f(x,y0) = sup inf f(z,y)
€A yEB €A

= f
veR iy

= Imin su X
IeAyegf( .Y)

= inf sup f(z,y) = sup f(zo,y) > f(x0,v),

z€A yEB yEB

for every z € A and y € B, so (xg,¥o) is a saddle point of f.

(5.1.22)
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Theorem 5.21 (Minimax Theorem) Let X and Y be reflexive Banach spaces, and let A and B be
convez, bounded and closed subsets of X and Y, respectively. Suppose that the function F': Ax B — R
satisfies the following conditions:

(i) For each y € B, F(x,y) is a convezx and l.s.c. function of x.
(i) For each x € A, F(x,y) is a concave and u.s.c. function of y.

Then F has a saddle point (xg,y0) € A X B and

i F = in 7 =F .
minmax F'(z, y) = maxmin F'(x,y) = F(zo, yo)

Proof: A proof of this theorem can be found in [47], p. 61. O 0.5cm

Proposition 5.22 Let X be a locally convex Hausdorff topological vector space, C' a convexr and compact
subset of X, A: X — X' a monotone operator such that D(A) C C, and H : X — X' a continuous
mapping such that D(H) = C. Then there exists an element x € C such that

(x—y,Hr+y') <0, Y(y,y) € A.
Proof: For each z € C, define the operator T : C' — 2¢ by

Tz={xeC; (x—y,Hz+y) <0, V(y,y) € A}.

To show that there exists x € C' satisfying the assertion, we shall prove, by Kakutani’s fixed point
theorem, that T" admits a fixed point, i.e., there exists x € C such that x € Tz. For this, we must prove
that Tz is non-empty, convex and compact. We first show that Tz # ) for every z € C.

Indeed, fix z € C and, for each (y,y’) € A, define

Cly,y)={zeC; (zx—y,Hz+y') <0}.

We have C(y,y') # 0 for every (y,y’) € A, since y € C(y,y") (note that D(A) C C, so y € C). Let
(zn) C C(y,y') be such that z,, — x. Since z,, € C(y,y’), we have

(x, —y,Hz+y') <0, Vn €N,

from which it follows that
<l’7y,HZ+y/> S Oa
that is, C(y,y’) is closed.

Notice that
T:= () Clyy).

(y,y")€EA

Therefore, to show that Tz # 0, it suffices to show that the family of non-empty closed subsets
{C(y,y); (y,4') € A} has the finite intersection property. To this end, define

K:{(Al,...J\n); S N=1, >0, z:ln}
i=1

Then K is a convex and compact subset of R™. Let (y;,y;) € A, i =1,...,n. lf x(A\) : K — X is defined
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by
z(\) = A,
=1

then the function f: K x K — R, defined by

n

fu )= Zuz@“()\) — i, Hz + )

=1

is bilinear and continuous. By Theorem 5.21 (Minimax), f admits a saddle point, and hence there exist
Ao, o € K such that

f()‘Ovl/J) Sf(/\(),ﬂ()) Sf()‘a/u'()), V)\,MGK,

and therefore
F0. ) < f(o.pio) < sup FAN), ¥pu € K. (5.1.23)
€

However,

f()")‘) = Z

%

<Z Njyj — yi Hz + y§>

Jj=1

= > ANy - He 4yl

n
Ai
=1
n
A
i,j=1

and from the fact that
NiXj{y; —yi Hz) = =\ (yi — y;, Hz)

it follows that .
Z /\1/\]<y] - yi,HZ> = 0,

i,j=1

which implies

FOON = D> ANy — v vh)

i=1
n
= —ZAMJ(.% Yir ;)
Q=1
1 — ,
= 5 2 ANy e — )
Q=1

Since A is monotone, this last identity yields f(A, A) < 0. Hence, from (5.1.23), we have f(Ag, ) <
0 for all ;1 € K and, in particular, for u* € K, defined by

,ui:(éﬂ,...,ém), iil,...,n,
where §;; is the Kronecker delta, we obtain
f()‘()?/ﬂ):<x(/\0)_yZ,HZ+y;>Sov Z:].,,TL

Thus we conclude that z(Xo) € C(y;,y;) for all i = 1,...,n. Consequently, the family {C(y,v'), (y,y') €
A} has the finite intersection property, and therefore Tz # ().

Next, observe that Tz is convex for every z € C. Indeed, if z1,29 € Tz and t € [0, 1], then for
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every (y,y’) € A we have
t(zy —y,Hz+y') <0, (1—t){(ze—y, Hz+y') <0, (5.1.24)
and from (5.1.24) it follows immediately that
(tey + (1 —t)zo —y,Hz +y') <0, V(y,y') € 4,
or, in other words, txy + (1 — t)z3 € Tz, which shows that Tz is convex.

We now prove that T : C — C'is closed. To that end, let (z,) C C and (z,) C Tz, for each
n € N, such that z, — z and z,, — z. Since z,, € T'z,, we have

(v, —y,Hz, +y') <0, V(y,y') € A, Vn e N. (5.1.25)

As C' is closed, we have z € C. From (5.1.25), the convergences above and the continuity of H, it
follows that
(z—y,Hz+y') <0, ¥(y,9) € A,

which shows that x € Tz, and hence T is a closed operator.

Moreover, Tz is compact. Indeed, let w € Tz. Then there exists (w,), C Tz such that w, — w.
Hence
(wn —y, Hz+y/) <0, V(y,y) € A.

Letting n — oo, we obtain
(w—y,Hz+y') <0, Y(y.y)e€A4,

that is, w € Tz, which shows that Tz is closed. Since C' is compact, it follows that Tz C C is compact
for every z € C.

To apply Kakutani’s fixed point theorem, it remains to show that T is a Kakutani mapping. We
already know that T is closed and D(T) = C. To ensure that T is a Kakutani mapping, it remains to
show that T is upper semicontinuous. Let W C C be open and set

B={zeC; Tz C W}
We must show that B is open, or equivalently, that C\B = {z € C; Tz ¢ W} is closed in C.

Let z € C\B. Then there exists (z,), C C\B such that z, — z. Thus Tz, ¢ W, and for each n
there exists y,, € Tz, such that y,, € W. Since C\W is compact, there exist a subsequence (y,,) C C\W
and a point y € C\W such that y,;, — y. As T is closed, we obtain y € Tz. Hence Tz ¢ W, i.e.,
z € C\B, which proves that C\B is closed. Therefore T is upper semicontinuous and hence a Kakutani
mapping. It follows that T' admits a fixed point, and the result is proved. O

0.5 cm

Definition 5.23 Let X be a normed space. An operator A : X — X' is said to be coercive if
(2, Az) > a(||z|)||z[l, V€ X,
for some function o : R — R satisfying

a(p) — 00 as p — 0.

Proposition 5.24 Let E be a finite-dimensional Banach space, A: E — E' a monotone operator such
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that 0 € D(A), C C E a convex and closed subset, and H : E — E’', with D(H) = E, a continuous and
coercive mapping, that is,
a(lzDllzll < (=, Hz), Vo € E.

Then, for each y, € A(0) there exist a constant M (depending on y{, and on the function o) and an
element x € C such that
]| < M

and
<1’ - y,H.’E +y/> < Oa V(y,y/) €A

Proof: Let B denote the closed unit ball of £ and r > 0. Denote by A, and H,, respectively, the
restrictions of A and H to D(A) NrB and C, = C NrB. By Proposition 5.22 applied to A, and H,.,
there exists x,. € C,. such that

(vy —y,Hz, +y') <0, V(y,y) € A,.
From this last inequality we obtain
(zr,Har) < (y, Hzy) — (zr, ') +(0,9'), V(y,9) € A, (5.1.26)
Note that inequality (5.1.26) holds in particular for y = 0 and y}, € A(0). Hence
(v, Hr,) < —(zr,9h),
which implies, in view of the coercivity of H, that
a(llzr Nzl < llzelllvoll, (5.1.27)

for some function o : R — R such that a(p) — +o00 as p — +o0. If 2, # 0, from (5.1.27) we deduce
that a(||z.||) < ||yl and, by the property of «, there exists M > 0 such that ||z, || < M for all » > 0.

Set
S, ={zeCy; (x—y,Hr+y') <0, V(y,y) € A, }.

Clearly S, # 0, since z,. € S,.. The set S, is closed and consequently S,. N M B is compact and non-empty
for all » > 0. Moreover, if M < r; < ry, we have

S, NMB D> S,, N MB;
therefore

() (S-nMB) #0,

r>M

which implies that, if = is any point of this intersection, then x € C' and

(x—y,Hz+y') <0, Y(y,y') € A.

5.2 Maximal Monotone and m-Monotone Operators

Definition 5.25 We say that a monotone operator A is mazximal monotone if it does not admit a

proper monotone extension.

Let X be a real topological vector space and, for each C' C X, denote by M(C) the family of
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monotone operators on X whose domain is contained in C, that is,

M(C)={A:D(A) C X — X'; A is monotone and D(A) C C}.

We order M(C) by inclusion.

Remark 5.26

(i)

Note that M(X) = M, and the maximal monotone operators are precisely the maximal elements
of M, that is,

A € M is maximal monotone if and only if B € M(X) and A C B= B = A. (5.2.28)

The family M(C) is inductive upwards, that is, every totally ordered subset of M(C) admits an
upper bound. Indeed, let F C M(C) be totally ordered. Defining

B: |JDAcCc — X
AeF

T — Bx= U Az
A€EF

we see that B is an upper bound for F'. By Zorn’s lemma, it follows that every element of M(C)
is contained in a maximal element of M(C). In particular, every element of M is contained in a
maximal element of M. Hence, by (i), every monotone operator on X is contained in a maximal
monotone operator on X.

Theorem 5.27 Let A be a monotone operator on X. The following statements are equivalent:

(i) A is maximal monotone;

(ii) Ifx € X, 2’ € X' and

(2" =y, e —y) >0, Y(y,9) € 4,
then (z,2') € A.

Proof:

(i) = (ii) Suppose that A is a maximal monotone operator. Let x € X, 2’ € X’ be such that

(2 =y ,z—y) >0, V(y,y) € A.

We shall prove that (x,2’) € A. Indeed, define

B=AU{(z,2")}.

We claim that B is monotone and that B extends A. By the very definition of B, it is clear that

B extends A. On the other hand, let (z, 2'), (w,w") € B. We shall prove that

(2 —w',z—w) > 0. (5.2.29)

If both points belong to A, there is nothing to prove. If both points do not belong to A, then

(z,2) = (w,0') = (2,2/),
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and therefore
(2 —w',z—w) =0.

If one of these points does not belong to A, we may assume (z,2') € A and (w,w’) € A; then
(w,w’) = (z,2'), and by hypothesis
(7 —w' z—w)y=(—a',z—x) >0,
which proves (5.2.29).

Hence B is monotone and A C B. Since A is maximal monotone, it follows from (5.2.28) that
B = A and, consequently, (z,2') € A.

(ii) = (i) Now suppose that condition (ii) holds and that A is not maximal monotone. Let D be
a proper extension of A, that is, there exists (z,2’) € D such that (z,2’) € A. On the other hand, since
D is monotone, given (z,z") € D, we have

(2 =y ,x—y) >0, ¥(y,y') € D.

In particular,
(&' =y x—y) >0, V(yy) €A (5.2.30)

Thus, from (5.2.30) and condition (ii), we conclude that (z,2’) € A and therefore D C A, which is
a contradiction, since D is a proper extension of A. Hence A does not admit a proper extension, that is,
A is maximal monotone. o

Corollary 5.28 The following statements are equivalent:

(i) A is mazimal monotone in M(C);
(i1) MA, A > 0, is mazimal monotone in M(C');

(iii) The operator A defined in Proposition 5.10 is mazximal monotone in M(C — {a}).
In a reflexive space, the following statements are equivalent:

(iv) A is maximal monotone;
(v) A= is mazimal monotone.

Proof: (i) = (ii) By Proposition 5.9 it follows that AA € M(C), since A > 0 and D(AA) = D(A) C C.
Suppose there exists B € M(C) such that AA C B. Then

AC%B = A:%B = B=M\A,

which implies that AA is maximal monotone.

(i) = (iii) Let @ € X and Az = A(z+a)—{a’}, a’ € X'. We already know that A € M (C' — {a})
and D(A) = D(A) — {a} € C — {a}. Suppose that there exists B € M (C — {a}) such that

Ac B.

Then
D(A)c D(B) = D(A)—{a}cD(B) = D(A)CD®DB)+{a}.

Define B by )
D(B) = D(B) — { —a} = D(B) + {a} > D(4),
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Bx = B(z —a) + {a}.
Then B is monotone and D(A) C D(B). Moreover, if x € D(A), then

Bz = B(z —a) + {a} = Az — a) + {a} = Az — {a} + {a} = Az.

Thus A C B, which implies A = B since A is maximal monotone. Hence

D(B)=DB)+{a} = DB)=D(A)-{a}=DA) = A=B8,
which shows that A is maximal in M(C — {a}).

(iii) = (i) Let B € M(C) be such that A C B. By hypothesis, A is maximal in M(C — {a}),
hence A C B. In fact,
D(A) = D(A) = {a} C D(B) — {a} = D(B),

and if z € D(A), then ) i
Az = A(z +a) — {a} = Bz +a) — {a} = Bux.

Therefore A = B, since A is maximal in M(C — {a}). It follows that D(A) = D(B) and consequently
D(A) = D(B). As A= B on D(A), we obtain A = B, as required.

Consider now a reflexive space.
(iv) = (v) By definition,
AT DA c X' - X" =X, where A" = {(2/,2); (z,2') € A}.

We already know that if A is monotone, then A~! is monotone. It remains to show maximality. Let
7' € X', 2 € X" be such that

(x —y 2" —y")y >0, V(y,y") € AL

We shall show that (2/,2") € A=1. Since X is reflexive, by the canonical isomorphism X = X" we may
write
zeX, /€X', and (2’ —y,x—y) >0, V(,y) € A,

or equivalently,
zeX, €X', and (&' —y,z—y) >0, V(y,v) € 4,

from which it follows that (z,2’) € A, hence (2',x) € A~1. By Theorem 5.27 we conclude that A~ is
maximal monotone.

(v) = (iv) The proof is analogous to the previous one. d

0.5 cm

Definition 5.29 An operator H : X — X' is said to be hemicontinuous if it is single-valued and, in
addition,

Vz,ye X, H(x+ty) > Hz weakly™ in X' ast — 0.

Proposition 5.30 Let H : X — X' be a hemicontinuous and monotone operator such that D(H) = X.
Then H is mazimal monotone.

Proof: Let x € X and 2’ € X’ be such that

(2 —Hy,x—y) >0, Vy € D(H) = X. (5.2.31)

According to Theorem 5.27, we have to prove that 2 € D(H) = X and Hz = a’. The first assertion
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is obvious. It remains to show that Hz = 2. Let z € X be arbitrary and, for each t € [0, 1], define

yp=tz+(1-tiz=a+t(z—z), z€lX. (5.2.32)

Substituting (5.2.32) into (5.2.31), we obtain

(' —H(z +t(z — x)),t(x — 2) ) >0,
=Yt =Tyt

which implies, for ¢ € (0, 1],
(' —H(z +t(z—x)),z—2) >0.

Letting t — 0 in this last inequality yields
(¢ —Hz,x—2) >0, Vz € X.
In particular, for z = x —y, y € X, we have
(' —Hz,y) >0, Vy € X,

from which we conclude that <:c' — Hz, y> =0, Vy € X, and consequently 2’ = Hz in X'. O

0.5 cm

Definition 5.31 We say that a monotone operator A : X — X' is m-monotone if Im(F + A) = X/,
where F is the duality mapping according to Definition 4.9.

Definition 5.32 We say that a Banach space is smooth at the point * € X if the duality mapping
F(z) contains a unique element. We say that X is smooth if X is smooth at every point of the unit

sphere

Ux ={zeX; ||z =1}.

It follows immediately from Definition 5.11 and item (iii) of Proposition 4.4 the following result:

Proposition 5.33 If X is smooth then X is smooth at all its points, or, in other words, the duality
mapping is single-valued.

Proof: Indeed, if X is smooth then, by definition, it is smooth on the unit sphere Uy x. Hence, for each

x € Ux, F(z) contains a unique element. Given y € X with ||y|| > 0, we have x = ol € Ux. Thus, by
Y
Proposition 4.4, we have F(y) = ||y||F (lyn), which contains a unique element. Therefore X is smooth
Y
at all its points. O

0.5 cm

Definition 5.34 A normed vector space is said to be uniformly convez if, given £ > 0, there exists
d > 0 such that whenever z,y € Ux and ||x — y|| > € then

Tty
2

|<1-s
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Definition 5.35 We say that a normed space X is strictly convez if the unit sphere

does not contain proper line segments, that is, Ux does not contain sets of the form

Ux = {zeX; |af = 1)

Lemma 5.36 The following conditions are equivalent:

i) X is strictly convez;

it) The equality ||z + y|| = ||lz|| + ||y|| implies © = 0 or y = tx for some t > 0;

iii) The equality | “52|| = ||z|| = |ly|| implies z = y.
Proof:
i) = i1) Let X be strictly convex and let z,y € X, x # 0, be such that ||z + y|| = ||| + ||y||. If y =0,

i) = iii)

iii) = i)

then y = tx with t = 0. So suppose y # 0 and 0 < X\ < 1. Without loss of generality, assume that
Allyll = (1 = A)[Jz[]. Then

TS PO H
(4 ||y||
x Ay Ay ‘
EIRERE] ||y||
> |- [ - »H
(B4l B4l [yl
N HAIIyIIy (L =N=lly '
B4l )l Nyl
_ ety - Gyl = @ = Y]zl
|z [zl [y
szl Adlzll + liyl) = llell _
[zl (E]
Hence - y
A— + (1 - XN)— €Uy,
B4l Iyl
and, since X is strictly convex, Ux does not contain proper line segments, so that ” T ||y|| and
Yy
]l lyll
thus y = 2] . Therefore y = tx with t = || T > 0.
Suppose || Z£2|| = ||z|| = |ly||. Then ||z + y|| = ||z[| + ||y||, and by (ii) we have z = 0 or y = tx for

some t > 0.

If x =0, then ||z]| = |ly|| = 0 and hence y = 0. If y = ¢tz with ¢ > 0, then |ly|| = ¢||x| and since
llyll = ||z||, we get t = 1 and therefore y = z.

Let z,y € Ux. If % € Ux, then

r+y
= 1 = =
2 = 1=l = b

and by (iii) we obtain = y. Thus the line segment joining x and y is not proper. Hence X is
strictly convex.
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Proposition 5.37 Every uniformly conver space is strictly conver.

Proof: Let x and y be points of Ux with « # y. Then ||z — y|| > ¢ for some £ > 0, and by hypothesis

there exists 6 > 0 such that
Tty

|<1-s

whence (z +y)/2 ¢ Ux, i.e., the proper segment with endpoints x and y is not contained in Ux. O

Proposition 5.38 Let X be a Banach space. Then:

(i) If X' is strictly convex, then X is smooth.
(it) If X' is smooth, then X is strictly convez.

Proof:

(i) Let © € Ux. By Proposition 4.4, F'(z) is convex. Since x € Ux, we have
F(z)={a' € X; (a/,2) = |2/ =1} c {o' € X'; ||2'|| =1} =Ux".

By hypothesis, Ux: does not contain proper line segments. Hence, by convexity, F'(z) has a unique
element, that is, X is smooth at the point z € Ux. Since x was arbitrary in Uy, it follows that X is
smooth.

(ii) Now suppose that X’ is smooth and, aiming at a contradiction, let x,y € Ux, x # y, be such
that the line segment [z,y] = {Az + (1 — A)y; A € [0,1}] is contained in the sphere Ux. It follows that
49 € Ux. Let 2’ € F(“4%). Then

D=5 =P =5 =1
2 2

T~
[NIE
I}
<
-~
+
T~
(SIS
I}

which implies
(2,2") +(y,7') = 2. (5.2.33)

On the other hand, we have

(5.2.34)

{ (,2") < |l2lll<']l = 1,

(v, 2") < llylll<']l = 1.

Hence, from (5.2.33) and (5.2.34), we conclude that
(z,2) = (y.#) = 1,

which implies, in view of the canonical embedding X C X", that z,y € F(2’). Therefore z = y, since X’
is smooth. This contradicts our assumption that Ux contains proper line segments. Thus Ux does not
contain proper line segments, i.e., X is strictly convex. O

Corollary 5.39 Let X be a reflexive Banach space. Then:

(i) X is strictly convex if and only if X' is smooth.
(i) X is smooth if and only if X' is strictly convez.
Proof: This follows directly from Proposition 5.38. O

Our next goal is to show that if X is a reflexive and smooth Banach space and f : X — (—o0, +00]
is a convex, proper and lower semicontinuous function, then the operator df is m-monotone. Before that,
however, we need to introduce an auxiliary lemma.
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Since X is Banach, for A # 0 and z,y € X we define

x4+ Nyl — ||x
@,9], = | )\II ]

as the incremental quotient of the Gateaux derivative of the norm |-||.

Lemma 5.40 The following properties hold:

(i) The function X — [z,y], is non-decreasing on R\ {0};
(ii) For all x,y € X and 2’ € F(x) we have
(@ y) <llallle vy, if A>0;
(@) > Jolllw o]y, i A<0;
(iii) For all x,y € X and 2’ € F(z + A\y) we have:
(<.9) = lle+ 2l [, yly, A >0;
(#29) < lle+ Ml [ 9]y, A <0;

(iv) For all z,y € X we have:
=yl <zl A>0;

Iyl > [z, 4], A<O.
Proof: (i) Let z,y € X and define

p(N) = llz+Myll, AeR.

We claim that ¢ is convex. Indeed, let A1, A2 € R and ¢ € [0,1]. Then

e(thr+ (1 —t)X2) = ||z + [th + (1 =) Ay

|2+t — to + [tAs + (1 — ) A2)y ||
|tz + (1 = t)a + thry + (1 — t)Aay||
tlle+ Ayl + (1 =) [z + Ayl
to(A1) + (1 = t)p(A2),

IN

which proves the claim.

Now set
F) = 9(\) — 9(0), e R.

Note that f is convex by the convexity of ¢, since, for any A\, A\s € R and ¢ € [0, 1],

FM+ (1 =0A2) = @(tA+ (1 —t)A2) — ¢(0)

to(M) + (1 = t)p(X2) — ¢(0)

to(M) + (1= t)p(X2) = (t(0) + (1 = t)p(0))
= tlp(A1) = 0(0)] + (1 = t)[p(A2) — ¢(0)]

= tf(A)+ (1 =1 f(A),

IN

as claimed.
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Now let 0 < A < p. By the convexity of f,
f(tp) = fF((L=8)0 +tp) < (1 —2)f(0) +£f () = tf(p), vt € [0,1].

A
In particular, for t = —, we obtain
I

which implies

FO) _ F)
AT
that is,
x4+ Nyl — ||« x+ py| — ||z
[2,9], = | /\H =l | uul [ ]] — .3,

proving (i).

(ii) Let z,y € X and 2’ € F(x). Then

(o z) = |z||* = [|l2"].

Thus, for any A € R,

(@2 + M) = (', 2) + Ma'sy) = lall® + A(a ).

From this identity we get

Ma',y)

(2,2 +Ay) — ||z]?
2
[l |z + Ayll = [l
2
]l {2 + Ayl = [

IN

that is,
Ma'sy) < el {lz + Myl = [lz[l}, VA €R,

and the desired inequalities follow by dividing by A > 0 or A < 0.

(iii) Let z,y € X, A € R\ {0} and 2’ € F(z + A\y). Then
(22 + M) = o+ Myl* = 2],

and hence
() < |2 ]l =l + Ayl [1]].

From the identities above and for all A > 0 we obtain

2+ Ayll? = llz + Myl Izl _ (&2 + dy) = (&)
A - A

2Zoxy + N2 y) — {2,z

A B A I N

e+ Ayl fz,yln - =

If A < 0, the inequalities hold with the sign reversed.

(iv) Let z,y € X. From (ii) we have, for all 2’ € F(z),

=l gl < &) < Dzl yls, i A >0,
121yl = (@' y) = ] [l if A <O.
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Since ||2’|] = ||z||, we obtain equivalently
=Nzl vl < (@ y) < l=ll[z ¥l ifA>0,
lzlllyll = (&'y) > Mzl [z, gy, i A <O.
If x # 0, dividing by ||z|| gives
—llyll < [z, ylx for A>0,

lyl] > [z,y]n for A <O0.

If =0, then
Ayl — N0l _ ALyl lyll,  A>0,
:L'7 = = = 52.35
[ y]/\ A A _Hy||7 A< 07 ( )
and, therefore,
[z, yln = =llyll, EA>0,  [z,ylx <[y, if A <O.
O

It follows from (i) and (iv) of the lemma above that, for every z,y € X, the mapping A\ — [z, y]
admits a right limit [x,y]+, as A\ — 04, and a left limit [z,y]—, as A — 0_. Thus, by the monotone
sequence theorem, we may write

[xvybr = )\llf(rir[xvy])\ = ir;%[xay])\v (5236)
[z,y]- = lim [x,y]x = sup[z, y]x. (5.2.37)
A—0- A<0

Definition 5.41 A single-valued operator A : X — X' is said to be demicontinuous if A is continuous

when X is endowed with the strong topology and X' with the weak-+ topology.

0.5 cm

Theorem 5.42 Let X be a Banach space and x € X with x # 0. The following are equivalent:
(i) X is smooth at the point x;

(i) Every duality mapping is demicontinuous at the point x;

(iii) The norm of X is Gateauz differentiable at the point x.

Proof:

(i) = (i1) Suppose, by contradiction, that there exists a duality mapping f which is not demicon-
tinuous at the point . Then there exists a sequence (x,,) in X such that x,, — x strongly in X but f(z,)
does not converge to f(x). Passing to a subsequence, if necessary, we may find a weak-* neighbourhood
V of f(z) such that f(x,) ¢ V forn=1,.... Since f: X — X’ is a duality mapping, by definition we
have f(x) € F(x) for every z € X, that is, for each z € X,

(@, f(@)) = |f@)]* = ||l=[I*.

From the identity above, from the convergence x,, — x and by Alaoglu’s theorem, (f(z,)) has a
weak-* cluster point, say ' € X’. If we prove that 2’ € F(x), then, since X is smooth at = by hypothesis,
F(z) is a singleton, hence 2’ = f(z), contradicting the fact that f(z,) does not converge to f(x). Indeed,
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we have

(2", 2) = [l2][< (2", 2) = (f(@n), )]+ [(F (@) 2) = (@), 2a)] + [(f(2n), 20) — [l2]?]
=2’ = flazn), 2| + [(f(@n), @ — zn)| + | lzall® = 27| (5.2.38)
< [a' = f(@a), 2)| + 1 f @)l 2 =zl + | lzal® — |2

Since x,, — x, we have ||z, — x| — 0, ||z,|| = ||z|| and {f(z,)} is a bounded set. Hence, given € > 0,
there exists ng € N such that

1f @)l Nl = @all + [ llzall* = 2] <,

for all n > ng. Moreover, since z’ is a cluster point of (f(z,)), there exists m > ng such that f(z,,)
belongs to the weak-* neighbourhood {£ € X';|(z' — &, z)| < e} of 2/, that is,

(@' = f(@m), 2)| <e.

Going back to (5.2.38), we obtain (2, z) = ||z||> and consequently ||z|| < ||z’[|. On the other hand, from
the convergence x, — x it follows that, given d > 0, there exists an index ny such that ||z,| < ||z| +
for all n > n; and, therefore, ||f(x,)| < ||z|| + 6 for all n > ny. Since the ball {£ € X' ||¢]| < ||z|| + d}
is weak-x closed, it follows that ||2’|| < ||z|| + d, for all 6 > 0, whence ||z’|| < ||z||. Thus ||2’|| = ||z|| and
hence z’ € F(x).

(#4) = (ii7) Taking 2’ = f(x) and 2’ = f(x + Ay) in (ii) and (iii) of Lemma 5.40, we obtain, for
A >0,
(f(@) ) <llzll[z,y]x and  (f(z+Ay),y) = o+ Ayl [z, y]x.

Hence, since the duality mapping is demicontinuous at = by hypothesis, we obtain

(f (@), ) = Il [z, yl+

Arguing analogously, we deduce

(f(@),y) = =l [z, 9]

Therefore,
f(x)

a0 Y ) VZJEX’
&3

li =
)\1_}11'10[3}7 y])\ <

which proves that the norm of X is Gateaux differentiable at the point x.

(#91) = (i) Since the norm is Gateaux differentiable at the point x, we have [z,y|; = [z,y]_ for
every y € X. But, by item (ii) of Lemma 5.40, for every o’ € F(z) we have

(@' y) =zl [z, y]+, VyeX.

It follows that F(x) has only one element, that is, X is smooth at the point z. O

Proposition 5.43 Let X be a Banach space such that X' is strictly convex. Then:
(i) The duality mapping is single-valued and demicontinuous;

(i) The norm of X is Gateaux differentiable at every point x # 0.

Proof: This is an immediate consequence of Proposition 5.38 and Theorem 5.42. |

Remark 5.44
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a) By Theorem 5.42, the norm of X is Gateaux differentiable at the point x # 0 if and only if F(x)
has a single point and, therefore, if and only if all duality mappings coincide at the point x. Hence,
if the norm of X is Gateaux differentiable at the point x # 0, we have

: f(z)
1 = _—
)\m%[xay]/\ < 7] Y )
for every duality mapping f, that is I@) s the Gateauz derivative of the norm of X at the point

7 Il

x, for any choice of the duality mapping f.

b) In order that the norm of X be Gateauz differentiable at the point x, it is sufficient that, for every
h € Ux, the limit of [x, h]x exist as A tends to zero. Indeed, if this happens andy € X, y # 0, then,

since L € Ux, the limit of |x, ”yll] exists as A tends to zero, and
Yl

lyll
Y|
”yH lim x’i _ ”yH lim Hx+/\|\y|\ ‘ ||$||
A—0 lyll ]y A0 A
" =+ Al g | = e
=y im

Ally [ =0 Allyll
eyl ==l

i 3 lim [z, y]x,

that is, the limit of [x,y]\ exists when X — 0 and, therefore, the norm of X is Gateauz differentiable
at the point x by (i) of Lemma 5.40.

¢) If the norm of X is Gateauz differentiable at the point x, the same holds at the point kx, for every
k>0, and
f(x)
|

. o x
;\%[kxay])\ - < .27” 7y> ) Vy € Xa

that is, the Gateaux derivative of the norm of X is constant and equal to ]ﬂ(aj') along the ray
{kx; k> 0}. Indeed, we have
kx + Myl — ||k + 2yl -
[z, y]x = || kx + ?J)\H [| k|| _ |z ky)\H ||| _ [$7y]% (5.2.39)
®

A
Hence, putting = W,

. s [ f)
;%[kx,y]xig})[z,y]u<nq:|,y , VyeX.

By Observation 5.44 (a), if the norm of X is Gateaux differentiable on a set C' C X, then all duality
mappings on X coincide on C and, therefore, if f is any one of them we have, taking also Observation
5.44 (b) into account,

. _/f(=)
}\%[%yh—<|x”ay ) VyEUXa

at each point x € C. When the convergence is uniform on C, we say that the norm of X is uniformly
Gateauz differentiable on C'. Therefore, the norm of X is uniformly Gateaux differentiable on C' if and
only if, given £ > 0, for each y € Ux one can find Ay > 0 such that, for any duality mapping f,

‘<me> ~ .3l

Proposition 5.45 Let X be a Banach space. The following are equivalent:

<e, VreC whenever 0<|A <.

(i) The norm of X is uniformly Gateauz differentiable;
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(ii) The duality mapping of X is single-valued and uniformly demicontinuous on every bounded set (that
is, uniformly continuous with X endowed with the norm topology and X' with the weak-x topology).

Proof: (i) = (ii) Suppose that the norm of X is uniformly Gateaux differentiable. By Theorem 5.42,
the duality mapping F' is single-valued, and it remains to prove that F' is uniformly demicontinuous on
bounded sets; that is, for each € > 0, M > 0 and z € X, there exists § > 0 such that if ||z| < M and

|z —y| <6, then |[(F(z) — F(y),z)| <e.

We argue by contradiction. Suppose that there exists €9 > 0 such that

lznll < M, ||zn — yn|| — 0, and |<F(xn) —F(yn),z>| >eg0>0,n=1,2,....

If , — 0, then y,, — 0 and hence
[E(@n)|l = llznll =0 and  [[F(ya)ll = llynll = 0.
Thus ||F(z,) — F(yn)|| = 0, whence
[(F(n) = F(yn),2)| < I1F(2n) = Flya)llllz] =50,
that is, [(F(z,) — F(yn),2)| — 0, a contradiction.
If {x,,} does not converge to zero, passing to a subsequence if necessary, we may assume that
lzn|| > a >0, n=1,2,....

a
Then there exists ng such that ||y,| > 5 for all n > ng. Let 1 > 0 and n > ny. By the uniform Gateaux

differentiability of the norm, we may choose Ay such that

(B <5 o [(E)

< g whenever 0 < |A] < A.

But

[2n + Aozl = znll _ llyn + Aozl — llynll

mezho - [ymz]Ao| =

/\0 )\O
< |Mn Aozl = llyn + Aozll | | |llnll = llyn
- )\0 )\0
2
< 7||'Tn_ynH _>07

Ao

as n — oo, and since

(Tt - o) = (o) -t

< ut 2 ||
S xn - Ynll»
M X Yy

)t

+ ‘[x’mz])\o - [yn7z]>\0

we obtain

lim Sup‘<F(xn) F(yn) Z>‘ “u

- ’
n—00 lznll llynll

Hence,

(Fle)_F )]

lznll liynll

as n — 00, by the arbitrariness of p.
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Moreover,
\ﬁiﬁf - 1;y|)>‘ - mfn) - ﬁa(cy|)> - G;‘fﬂ) - liiy||>>‘
F(z, Fl(y, F(y, F(y,
= ‘< ||§cn||) - ||a(ci|)’z>H< ||§/Z|) - |a(ci||)’z>’

1 1
= mKF(In) - F(yn),z>| - ‘HynH - m

|(F )~ F .2~ S IE@I ]z vl

v

M

Thus,
F(azn)  F(yn)
lzall lyall’

2M
(P = P2} < 2 |{ |+ ZHEEI 1 e =3l
and since ||F(yn)|| = |ly=] is bounded by hypothesis, we get ’<F(xn) — F(yn), z>’ — 0 as n — oo, which

is a contradiction. Hence F' is uniformly demicontinuous on every bounded set.

(ii) = (i) Suppose that the duality mapping F is single-valued and uniformly demicontinuous on
bounded sets. Denoting «’ = F(x) and 2’ = F(x 4+ Ay), by items (ii) and (iii) of Lemma 5.40, we have,
for x,y € Ux,

F(xz+ \y) > .
) S Z, S FJ?, if A<O0
<|x+AMIy [z,9]x < (F(2),y)
and F )
T+ Ay > .
F(x),y) <z, < (/" if A>0.
(F)0) < loh < (T2
Hence,
F(z+ M\y)

e = (P < | )= (F)|. (5.2.40)

TR VATIER 4
[l + Ayll

Let C = B(0,14p)\B(0,1—p), 0 < p < 1, be a bounded set. Then F is uniformly demicontinuous
on C. Thus, given € > 0 and y € Ux, there exists 0 < A\g < p such that for every z € Ux we have

’<F(x +Ay),y) — <F(x),y>’ < e whenever 0 < A < ).

1
converges to —- uni-
(el

F(xz+ \y) y>
o+ Ayl

converges to (F(z),y) uniformly on Ux. From (5.2.40) it follows that, for each y € Ux, [z, y]\ converges
to <F (z), y> uniformly on Uy, i.e., the norm of X is uniformly Gateaux differentiable. O

Hence (F(x + Ay),y) converges to (F(z),y) uniformly on Uy and, since e
T Y

formly on Ux and these functions are bounded for € Uy and 0 < || < p, the product <

Proposition 5.46 Let X be a reflexive and smooth Banach space, and f : X — (—o0,+00] a conver,
proper and lower semicontinuous function. Then Of is m-monotone.

Proof: As we have seen in Example 5.6, the operator df is monotone. Thus, it remains to show that
Im(F + 0f) = X'. Let z;; € X'. We shall prove that there exists xy € X such that x € (F + 9f)xo.
Indeed, consider the function:

— (zg,x), VreX. (5.2.41)

We have that ¢ is convex, proper and l.s.c., since f is convex, proper and l.s.c., the norm || - || is a
convex, proper and continuous function, and z; is linear, proper and continuous.
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Since f is convex, proper and l.s.c., by the first geometric form of the Hahn—Banach theorem there
exist 4 € X’ and € R defining a continuous affine function {(x) := (z}, z) — 8 which is a minorant of
f, that is,

f(z) > (ah,2) — B, VreX.

Hence,
P s s veex
( ) 9 +<$va>—<x17$> 57 HANS )
which yields
R
plz) > 5 Ty — g, T
> LB el -5, veex
> 5 xo — 21|l ||z , T .

The inequality above implies that

€T
@) 2 ol (UL =g~ 1) - 5. woex.

]l

For ||| sufficiently large, we have (2 — |z — x’1|> > 0 and, therefore, when ||z| — 400,

[[]]
ol (151~ ot - 1) = +oc,
and, consequently,

lim  p(z) = +oc. (5.2.42)

llz|| =00

Thus, since ¢ is convex and l.s.c., from (5.2.42) we deduce that there exists xyp € X such that
o(z0) < () for all x € X, that is,

lzol® (£ —
Flawo) + 20 — (wh,20) < () + - — {gha), VeEX,
which implies
1
fl@) = f(ao) 2 5 (lzol® = l|2]|?) + {5, x — xo), V€ X. (5.2.43)

On the other hand, since X is smooth, the duality mapping F' is single-valued. Thus, for each
x € X, there exists a unique 2’ € X’ such that F(z) = 2’ and (2/,z) = ||2/||?> = ||=||?. It follows that

1 1
5 (ol = 12112) = 5 (ol + 1211?) - ll2]?
> flaoll ol - 1212
= llzo |l IF@)] - 2] (5.2.44)

> (F(x),z0) — ||z|?

= (F(x),z0) — (F(z), )
= (F(z),z0 — x) .
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Combining (5.2.43) and (5.2.44) we obtain

f(x) = f(zo) > (F(x), 20 — ) + (x4, — x0) = (x(, — F(x),2 — 10), V2 € X.

From the inequality above, in particular for x = txzg + (1 — t)y, where y € X and ¢t € [0,1), we
may write

fltzo+ (1 —t)y) — f(zo) > (xg — F(txzo + (1 —t)y),tzo+ (1 —t)y —z0), VyeX.

By the convexity of f, it follows that

IA

t f(zo) + (1 =) f(y) — f(zo)
= (1=t)(f(y) — f(z0)),

(xg — F(tazo + (1 —1)y), (1 = t)(y — 20))

and since ¢ € [0, 1), we can rewrite the above inequality as

(0 — F(two + (1 = t)y),y — z0) < fy) — fz0), VyeX. (5.2.45)

Since the space X is smooth and reflexive, F' is demicontinuous. Therefore, if ¢ — 1 we have
txo+ (1 —t)y — xo in X, which implies F(t 2o + (1 —t)y) = F(x) in X’. Taking the limit in (5.2.45)
as t — 1, we obtain

(zg — F(z0),y — 20) < f(y) — f(z0), Vye€X.

Hence x, — F(zg) € 0f(xo) and, consequently, xf, € F(xo) + 0f(xo) = (F + 9f)(x0)- O
Remark 5.47

(i) The restrictions imposed on X in the proposition above were introduced only to simplify the proof.
The general case in which X is not reflexive is treated by Rockafellar [7]].

(i) Under the same hypotheses, the operator AOf, A > 0, is m-monotone. Indeed, note that if A > 0
and f is convex and l.s.c., then \f is convex and l.s.c. and A\(Of) = O(A\f).

(iii) The duality mapping F is m-monotone. In fact, letting X be a normed space, consider f(x) =
1||z||?. We saw in Ezample 4.18 that df(xz) = F(z). Since || - || is a convex, proper and Ls.c.
function, the proposition above guarantees that f(x) = F(x) is m-monotone.

Definition 5.48 Let X be a Banach space. We say that D C X is almost dense in X if, for each
u € D, there exists a dense subset M,, C X such that for every v € M, we have u +tv € D for all
sufficiently small t > 0.

Lemma 5.49 Let H be a monotone mapping from X into X' with D(H) almost dense in X. Then H
is demicontinuous if and only if it is hemicontinuous and locally bounded.

Proof: We know that if H is demicontinuous, then H is hemicontinuous. Moreover, if 2, — x in D(H),
then Hz, = Hz, and thus {Hz,} is bounded, which shows that H is locally bounded.

Conversely, suppose that H is hemicontinuous and locally bounded. Let (z,) C D(H) and = €
D(H) with x,, — x in X. Without loss of generality, assume that z,, # « for all n. Let M, be the dense
subset of X given by the definition of almost dense. Take y € M, and set ¢, = ||z, — #||2. Then ¢, > 0,
t, — 0 and

wy, =z + tp,y € D(H), for n sufficiently large.

Moreover,
Hw, = Hz. (5.2.46)
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By the monotonicity of H we have
0 <{(Hz, — Hwp,xn, —wy) = (Hx, — Hwp, xp — ¢ — try). (5.2.47)

We know that {Hz,} is bounded because H is locally bounded, and by (5.2.46) it follows that {Hw,}
is also bounded. Hence 1
t—(Ha:n — Hwy, z, —x) — 0, (5.2.48)

n

1
t—(a:n - ac)H = ||&n — 2||2 = t,, — 0. Also by (5.2.46),

n

since ’
(Hwy,v) = (Hx,v)

for every v € X. Dividing (5.2.47) by ¢, we obtain

Ty — X
tn

0 < (Hz, — Hw,, —y). (5.2.49)
It follows that
lim inf(Hx, — Hz,—y) > 0. (5.2.50)

n— oo

Since M, is dense in X and Hz, — Hw, € X', it follows that (5.2.49) holds for every y € X, and
consequently (5.2.50) also holds for every y € X. Replacing y by —y we obtain

lim sup(Hx,, — Hz,y) <0, (5.2.51)
n—oo
for all y € X. Therefore
lim (Hx, — Hz,y) =0, (5.2.52)
n—oo
for all y € X, that is, Hx,, X Huz, proving that H is demicontinuous. O

Lemma 5.50 Let E be a finite-dimensional Banach space and H : E — E’ a monotone and hemicon-
tinuous operator. Then:

(i) H is bounded on bounded sets,

(i) H is continuous.

Proof:

(i) Suppose there exists a bounded subset A C E such that H is not bounded on A. Then there exists
a sequence {z,} C A such that ||Hz,| — co. We can extract from {z,} a convergent subsequence
(for simplicity, we keep the same notation), such that z, — g, where zo € A. Since we are
assuming that H is not bounded on bounded sets, we have ||Hz,| — +o0o0 as n — +oo. As H is

monotone, we have
(xn —2x,Hz, — Hx) >0, VYz€E,

and therefore, for n sufficiently large we can write

Hz,, —Hac>
Tp —x,——— ) >0, Vze€FE. (5.2.53)
< [ Han |

On the other hand, since Hgigfz” € U ={y € F',|lyl| = 1} and Ug is a compact (and hence

sequentially compact) subset of E’, it follows that Hgiin\l — 1y’ € E'. We have
-1

Il = dim [
e | Tz
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But from (5.2.53), taking the limit as n — +o0,
<$07{E,y/>20, V%GE,
which implies ¢ = 0, a contradiction with ||y’|| = 1. Hence H is bounded on bounded sets.

(ii) In view of item (i), the operator H maps bounded sets into bounded sets, and thus H is locally
bounded. By Lemma 5.49, H is demicontinuous. Since F is finite-dimensional, demicontinuity and
continuity are equivalent notions due to the equivalence of topologies. Therefore H is continuous.

O

0.5 cm

Theorem 5.51 Let X be a reflezive Banach space, A : X — X' a monotone operator such that 0 €
D(A) C C, where C is a closed convex subset of X, and H : X — X' a monotone, hemicontinuous,
coercive operator that maps bounded sets into bounded sets and satisfies D(H) = X. Then there exists a
point xg € C such that

(o —y,Hxo+y') <0, VY(y,y) € A. (5.2.54)

Proof: Let A be the family of all finite-dimensional subspaces of X, jg : E — X the inclusion mapping
of E € Ainto X, and jg : X’ — E’ the adjoint projection of jg. Denote by Ag the operator jg A jE.
Then Agp : E — E’ and D(Ag) = D(A) N E. Similarly, set Hg := jgr Hjg : E — FE’ so that
D(Hg) =X NE = E. Observe that for all z,y € E we have

(,Hpy) = (v,jp Hjry) = (Jpx,H jry) = (v, Hy),
and similarly, if ¢ € E, y € D(Ag) and y' € Ay, then
(z,jey) = (rx,y) = (x,y).

Thus, from the above identities we can conclude that the monotonicity of H implies that of Hg, the
monotonicity of A implies that of Ag and the coercivity of H implies that of Hg with the same function
a. Note also that, according to Lemma 5.50, Hg is continuous, since H is hemicontinuous and Hg = H
on F.

Let y{, € A(0). Then jrr y, € Ar(0) and, therefore, by Proposition 5.24, there exist xp € Cp :=
C N E and a constant Mg such that ||zg| < Mg and, moreover,

<xE - y7HE TE + y/> S 07 v(y7yl) € AE

From (5.1.27) it follows that a(||lzg|) < |lje vl for zg # 0, and since ||jg/|| = 1, we have
a(llzel) < |lyhll- Hence we may assume that Mg is a constant M independent of E. Thus, for all E € A
there exists g € Cg such that ||xg| < M and

(zp—y,Hzp+vy') <0, Y(y,v) € Ag. (5.2.55)

Since, by hypothesis, H maps bounded sets into bounded sets, there exists a constant M’ such
that |H zg|| < M’ for all E € A. The sets

WED :{(xE7HxE);EDEO}7 EO €A

are therefore subsets of the bounded set (CNM B)x M'B’ C X x X', where B is the closed unit ball of X
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and B’ is the closed unit ball of X’. Moreover, the family § = {Wg,; Ey € A} has the finite intersection
property.

Indeed, let {Wg,;i = 1,...,n} C §. Fix, for each ¢ = 1,...,n, a basis 8; of E; and denote by
E = span[U"_,3;]. Then dim E < co and E; C E for every i = 1,...,n. Hence (zg, Hrg) € Wg, for all
i=1,...,n, which implies that

n Wg, # 0.
i=1

Now note that CNM B is convex, closed and bounded, hence, since X is reflexive, it follows that CNM B
is compact in the weak topology of X. On the other hand, by the Banach—Alaoglu—Bourbaki Theorem,
M'B’ is compact in the weak-x topology of X'.

Thus CNM B x M'B’" € X x X' is a compact topological space when endowed with the product
of the weak and weak-* topologies. Therefore the family {Wg,; Ey € A} has at least one common cluster
point, that is, there exists (zo, () € X x X' such that (xo,z) € (\g,ecp Wa,, Where here we are taking
the closure with respect to the weak topology.

Since C'N M B is convex and closed, it follows that C' N M B is weakly closed, and hence zy € C.

It remains to prove (5.2.54). Let (y,y’) € A, u € X and Ey € A such that y € Ey. If E D Ey, then
by (5.2.55) we have
(rp—y,Hrp+y') <0 (5.2.56)

and, since by hypothesis H is monotone, it follows that

(tg —u,Hu— Hzg) <0 (5.2.57)

Combining (5.2.56) and (5.2.57) we obtain
(xgp —y,Hrp +y') + (xtg —u,Hu — Hzg) <0, (5.2.58)
for each (y,y') € A,ue X,y € Ey and E D Ej.
Consider the function g : X x X’ — R defined by
g(z, 2"y ={(x —y, 2’ +¥y) + (x —u, Hu — 2').
By (5.2.58) we have g(z,2’) <0 for all (x,2’) € Wg,. Moreover, from
9(z,2") = (u—y,2") + (z, Hu +y') — (y,y') — (u, Hu),

it follows that g is continuous on X x X', when X x X’ are endowed with the weak and weak-* topologies,
respectively.

Hence g(z,z’) < 0 on the weak closure of Wg,, and in particular g(zo,z() < 0.

Therefore
(xo —y, 20 + ') + (x0 — u, Hu — z5,) <0,

for each (y,y") € A, uw € X and y € Ey. It follows that
(wo =y, 25 +y) + (wo — u, Hu — a5) <0, (5.2.59)
for all (y,y') € A and all u € X.
Setting u = xg in (5.2.59) we obtain

(w0 —y, —25 —y') =0, (5.2.60)
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for all (y,y') € A. Hence A’ = AU {(zg, —x()} is a monotone extension of A, and since 2o € C, we have

A e M(C).

First consider the case where A is maximal in M(C). Then A’ = A, and so (xg, —z() € A and
therefore xg € D(A). Thus we may take y = x¢ in (5.2.59) and hence

(rog — u, Hu — z() <0,
for all u € X = D(H).

By the above inequality and by Theorem 5.27 we obtain (zg, x(,) € H, that is, x, = Hzxg, since H
is maximal monotone by Proposition 5.30.

Replacing z(, by Hzo in (5.2.60) we obtain
<.T0 7y,HCE0 +y/> S 0,
for all (y,y') € A, which proves the theorem in this particular case.

If A is not maximal in M(C), then by Observation 5.26, item (ii), there exists an operator A,
maximal in M(C), such that A C A. By what we have just proved, the theorem holds for A, that is,
there exists xg € C such that

(zo —y,Hxo+y') <0,

for all (y,9') € A, and in particular for all (y,/) € A. |

Next, we present a result due to Browder which characterises maximal monotone operators in
Banach spaces such that both X and X’ are smooth.

Theorem 5.52 Let X be a reflexive Banach space, C a closed conver subset of X, A : X — X' a
maximal operator in M(C) such that 0 € D(A), and H : X — X’ a monotone, hemicontinuous, coercive
operator which maps bounded sets into bounded sets and satisfies D(H) = X. Then Im(H + A) = X'.

Proof: Let 2/ be an arbitrary element of X’ and let A : X — X’ be the operator defined by Az = Az —1'.
Then, by Corollary 5.28, item (iii), A is maximal in M(C) = M(C — 0). By Theorem 5.51, there exists
xo € C such that

(xo —y,Hzo +7') <0, Y(y,7) € A

but
(y,J)eAd & §JeAy=Ay—a
& y+a'eAy
& J 42 =9y €Ay
& (y,9) €A
Hence,

<$0 - y7H330 + yl - .Z'/> S 07 V(y7y/) €A

From this last inequality and by Theorem 5.27, we obtain that (xg, 2’ — Hzg) € A, i.e., 2’ — Hzy € Axg
and therefore ©’ € Hxg + Azg = (H + A)xg, which yields the desired conclusion. O

Corollary 5.53 Let X be a reflexive and smooth Banach space and let C' be a closed convex subset of
X. Then every operator A mazimal in M(C') is m-monotone.

Proof: First, observe that the duality mapping F satisfies the assumptions on the operator H in Theorem
5.51. Indeed, according to Example 5.7, F' is monotone. Since X is smooth, by Corollary 5.39 we have
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that X’ is strictly convex and thus, by Proposition 5.43, we obtain that the duality mapping is single-
valued and demicontinuous and hence hemicontinuous. Moreover, by definition, D(F) = X, and F is
coercive and maps bounded sets into bounded sets.

Now note that, given ¢ an arbitrary element of D(A), the operator F defined by

F(z)=F(x + xg)
still satisfies the same hypotheses. Indeed,

i) D(F) =X, since D(F)=D(F) —xo =X — 9 = X;
ii) F is monotone, by Proposition 5.10;

iii) F maps bounded sets into bounded sets. In fact, let A C X be such that [|z]| < M for all z € A.
Then
[E (@)l x = [[F(z + o)l x = [lz + 2ol x < [lzllx + llzollx < M + [[zo]-

iv) F is coercive. Indeed, we know that, by definition,

(F(x),z) = [l]* = | F(2)]]*.

Thus,

<F(:E),a:> = <F(z+xo),x>:<F(x—|—xo),x—|—:z:0>—<F(z+x0)7x0>
[ 4 @o|* = (F(x + x9), o)

> lo = (=zo)|I” = IF (& + o) |l
= ll2l* = 2llllllzoll + llol* = llz + o o
> lal® = 2llzllwoll + llwoll* — llllllzoll — llzoll*

lz]1* = 3ll ]| [lo

= (=l = 3llzolDlll]-

Setting a(t) = t = 3||zo|| we have lim a(t) = +oo and (F(z),z) > a(|z])||z]|, which proves that F is
—+00

coercive.

v) F' is hemicontinuous. Indeed, since F' is hemicontinuous, we have

<ﬁ(w+ty),z> = (F(z + ty + x0), 2) =9 (F(z 4 20),2) = <ﬁ(x),z>
for all z,y,z € X.

Now, since A is maximal in M(C), the operator A defined by A(x) = A(z + x¢) satisfies 0 € D(Z)
and, by item (iii) of Corollary 5.28, is maximal in M(C — x¢). By Theorem 5.52, we have

Im(F +A) = X'.

Finally, we show that Im(F 4+ A) = Im(F + A). Indeed, if 4 € Im(F + A), then there exists

x € D(F)ND(A) = XN [D(A) — x0] = D(A) — x such that

Y e F(z)+A(x) = F(z+x0)+ Az +x0)
= F(z)+ A(2); z€ D(A)
= y eIm(F + A).

Conversely, if y' € Im(F + A), then there exists z € D(F + A) = D(F) N D(A) = D(A), that is,
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z = (z — xg) +xg, such that
———
x

Y € F(2)+ A(z) =y € Fz + x0) + Az + o) = F(z) + A(x).

Hence Im(F + A) = Im(F 4+ A) = X', and therefore A is m-monotone. o

Theorem 5.54 Let X be a reflexive and smooth Banach space with X' smooth. Then a monotone
operator A : X — X' is mazimal if and only if A is m-monotone.

Proof: By Corollary 5.53, if A is maximal monotone, then A is m-monotone.
Conversely, suppose that Im(F 4+ A) = X’ and consider (z,2’') € X x X’ such that
(z' =y ,x—y) >0, V(y,y) € A. (5.2.61)

Thus, in view of Theorem 5.27, we must prove that (z,2’) € A. Indeed, since Fz 4+ 2’ belongs to
X' = Im(F + A), there exists 1 € D(A) such that Fao + 2’ € Fxy + Azy. Therefore there exists
x) € Axy, ie., (z1,2]) € A such that

Fr+a' = Fxy + . (5.2.62)
We show that (z1,2]) = (z,2"). Taking (y,y') = (z1,2}) in (5.2.61) and using (5.2.62), we obtain
(x —x1,2" —2)) = (v — 21, Fz; — Fz) > 0,

which implies
<x —x1, Fo — Fx1> <0.

From this last inequality it follows that
<:c, Fx> + <£C1, Fx1> — <x, Fx1> — <x1, Fac> <0. (5.2.63)
By the definition of F we have

21 + [l ll* = llell | Faal| el || F]] <0,
—— ~——

=llz1]] =ll=l

which implies
2
(Il = llz11)” = lll® + llz1]1* = 2l < o,

and hence ||z|| = ||z1]|. Thus, from (5.2.63) we have
2Hx||2 = <x,Fa:> + <J;1,Fm1> < <x,Fa:1> + <x1,Fa:> < 2||a:||2,
and from this last inequality we conclude that
(1, Fz) = |z, (5.2.64)

for otherwise, if we assumed that (z1, Fz) < ||z|? or (x, Fz) > ||z|?, we would arrive at a contradiction.
Hence, from (5.2.64) and since

lz1l* = ll2]* = | Fa|* = (2, Fa),

it follows that xz,x; € F/(Fx), where F’ : X’ — X is the duality mapping of X’ (here we use the fact
that X is reflexive). Therefore x; = z, since X’ is smooth by hypothesis, and since by (5.2.62) we have
Fz — Fzy = 2} — 2, it follows that ] = /. Hence (z,2') = (z1,2}) € A, as desired. 0
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Corollary 5.55 Let X be a reflerive Banach space and assume that both X and X' are smooth. Then
an operator A is m-monotone if and only if NA is m-monotone for every A > 0.

Proof: This is an immediate consequence of Theorem 5.54 and of the equivalence of items (i) and (ii) of

Corollary 5.28. O

Example 5.56 Let X be a smooth and reflexive Banach space. Let f: X — (—o00,400] be a convex,
proper, lower semicontinuous function. According to Proposition 5.46, the subdifferential df is an m-
monotone operator. When X’ is smooth, Theorem 5.54 guarantees that the subdifferential is maximal
monotone.

Example 5.57 Let € be a bounded open subset of R™ with regular boundary 02 and let A be the
Laplacian. The operator A on L?(Q) defined by

D(A)={v e H*(Q); d,v=00n 09}, Au=—Au, Yu € D(A)
is maximal monotone. Indeed,
i) A is monotone since
(Au — Av,u —v) = —A(u—v)(u—wv) dz

Q

/ |V(u—v)|* dz >0, Yu,v € D(A).
Q

ii) A is m-monotone, since from elliptic partial differential equation theory, for each v € L?(f), there
exists u € D(A) such that —Au+u = v, that is, Im(I + A) = L?(Q2). Taking Fu = u as the duality
mapping of L?(Q), so that F = I, we conclude that A is m-monotone.

By Theorem 5.54, A is maximal monotone.

Under suitable hypotheses, we can verify that the sum of two operators is a maximal monotone
operator. For this purpose, consider the following lemma, whose proof can be found in [19].

Lemma 5.58 Let X be a reflexive Banach space with norm || - ||. Then, for each a > 1, there exists a
norm || - ||la on X such that X and X' are strictly convex when endowed with the norm || - ||, and the
corresponding dual norm || - ||,,.

Example 5.59 Let X be a reflexive Banach space and A a maximal monotone operator from X into
X'. If B is a monotone, hemicontinuous and bounded operator from X into X’, then A + B is maximal
monotone.

Proposition 5.9 guarantees that A+ B is monotone. Thus, in order to ensure that A+ B is maximal
monotone it suffices to show that A + B is m-monotone, that is, Im((A + B) + F') = X', since we are in
the setting of Theorem 5.54 — indeed, as X and X' are strictly convex spaces, they are smooth.

We define the operator

H:X — X
x — H(x)= Fy(z)+ B(z),

where Fj is the duality mapping on (X, || - ||o), & strictly convex space.

We have:
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e H is hemicontinuous.
Indeed, since (X, || - [|o) and (X, | - ||o) are strictly convex, by Proposition 5.43 the operator Fy is
single-valued and demicontinuous. Hence H is hemicontinuous, since Fjy and B are hemicontinuous.
e H is monotone.
As Fy is monotone (Example 5.7) and B is monotone by hypothesis, we have that H = B + Fj is

monotone.

e H is coercive.

Indeed,
((B+ Fy)x,z)y = (Bz,z)+ (Foz,x)
= (Bz,z) + ||z]3
> —|1Bxllollzllo + =I5
Z  (lzllo = 1Bzllo)l|z[lo-

Since B is hemicontinuous, if t — 0 then B(tz) - B(0) and, therefore,

1B(0)lo < liminf || B(tz)[lo < || Bz]o-

Consequently,
(B + Fo)z,z) = ([zllo = 1BOllo)l|=lo-
Defining
a:R — R
t — at)=t—|B0|o,
we obtain

((B+ Fo)z,z) = a(llz]lo)ll]lo,

and hence H is coercive.

Assuming, without loss of generality, that 0 € D(A), we see that H satisfies the hypotheses of Theorem
5.52 and therefore
Im(A+H) =X/,

that is,
Im(A+ B+ Fp) = X'.

Thus, A+ B is m-monotone on (X, ||-||o) and therefore maximal monotone on (X, ||-||o). Since monotonicity
and maximality are independent of the chosen norm, we conclude that A + B is a maximal monotone
operator on X.

Proposition 5.60 Let X be a reflexive and smooth Banach space with X' smooth, let C C X be a
closed conver subset, and let A : X — X' be a monotone operator such that D(A) C C. Then A admits a
mazimal monotone extension whose domain is contained in C. In particular, every monotone operator on

a Banach space under these conditions admits a maximal monotone extension whose domain is contained
in conv D(A).

Proof: By item (ii) of Observation 5.26, the monotone operator A admits a maximal extension in C'. By
Corollary 5.53, this extension is m-monotone and therefore maximal monotone in view of Theorem 5.54.
The second assertion is immediate, since conv D(A) is a closed convex set containing D(A). O
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Theorem 5.61 Let X be a reflexive Banach space such that X and X' are smooth. Let A: X — X' be
a mazimal monotone, coercive operator such that 0 € D(A). Then Im A= X'.

Proof: For each A > 0, the operator \F' is monotone, hemicontinuous, coercive, maps bounded sets into
bounded sets, and D(AF) = X. Moreover, since X is smooth, the duality mapping F' : X — X' is
single-valued, and we have a unique 2’ € X' satisfying 2’ = F(x) and

(@, 2) = (F(2),2) = ||l=]|* = |||
Hence the element y' := Az’ = A\F(z) satisfies

1 1
(') = (', @) = Mo, 2) = Mjal|* = Ala’[]* = S x’|1* = S 1y

By Proposition 5.60, A is maximal in M(conv D(A)), and since 0 € D(A) we can apply Theorem
5.52 to obtain Im(AF + A) = X’

We shall prove that Im(A) = X’. Indeed, let y’ € X’. For each A > 0 there exists ) € D(AF+A) =
D(AF)ND(A) = XND(A) = D(A) such that ¢y € (A\F'+ A)x,, that is, there exists o, € Az, such that

AFz\+2\ =y (5.2.65)
Since A is coercive, there exists a function « : R — R such that a(p) — oo as p — oo and
a(lz)flz]l < (z,27) , ¥(z,2) € A.

The above relation holds for (zx,z)) € A, A > 0, and therefore

a(llzal)llzall < (za,2))
< (@, @h) + Afaa?
= (zx,2)) + (22, AF (22))
= (zn, 2\ + A\F(x)))
= (zany)
< Azl Iyl ¥ A>0.

Hence, if x5 # 0,
a(llzalh) < 1Yl ¥ A >0,

and thus the set {z); A > 0} is bounded. Consequently, {F(zx); A > 0} is bounded (since ||[F(zy)|| =
[lza]]). From (5.2.65) we obtain

zh =y —AF(z)) >y asA—0 (5.2.66)
in the norm topology of X".

Moreover, since {:c A A D> 0} is bounded and X is reflexive, we can extract a sequence (\,), with
An — 0, such that (zy,) converges weakly to some y € X, that is,

Tx, =Y. (5.2.67)
Thus, for each (z,2") € A, by the monotonicity of A we obtain

<xfx>\n,z’ fazg\n> > 0.

- 270 -



5.3 Accretive Operators

By the convergences (5.2.66) and (5.2.67), we get
<IE - yaxl - y/> > Oa V(z,x/) €A

Since A is maximal monotone, Theorem 5.27 yields (y,y’) € A, that is, ¢y € Ay, or equivalently, y' €
Im(A). Therefore Im(A) = X'. a

Corollary 5.62 Let X be a reflexive Banach space such that X and X' are smooth, and let H : X — X'
be a monotone, hemicontinuous, coercive operator with D(H) = X. Then Im(H) = X'.

Proof: Since H is monotone, hemicontinuous and D(H) = X, it follows from Proposition 5.30 that H is
maximal monotone. As D(H) = X, we have 0 € D(H) and Theorem 5.61 implies that Im(H) = X’. O

5.3 Accretive Operators

According to Proposition 5.8, in a Hilbert space monotonicity is equivalent to the condition
21 = 22 + A(yr — w2)|| = ller — @2f] V(@1 91), (32,92) € A, VA > 0.

Since this condition involves only the norm, it makes sense in any normed space, which allows us to
generalise the notion of a monotone operator in Hilbert spaces.

Definition 5.63 Let X be a Banach space. We say that the operator A : X — X 1is accretive if
71 =22 + Ay1 — y2) || = [lz1 — 22 (5.3.68)

for all (x1,11), (x2,y2) € A and for all A > 0.

Definition 5.64 Let X be a Banach space and let A : X — X be an operator. We say that A is
dissipative if —A is accretive.

We wish to present other characterisations of accretive operators. For this, given a Banach space
X, we recall the definition of the incremental quotient of the Gateaux derivative of the norm,

Py _
ey = ANy sy e x

Lemma 5.65 The following properties hold:

(i) lax, Byly = |Bl[z,yl+ if af > 0;
(ii) [z, 0z + yly = allz] + [z, yl4;
(iit) —[z, =yl < [z,y]4;
() [z yl+] < llyll;

(v) [z, Byl+ > Blz,yl+.

Proof: It is enough to prove that these properties hold for the incremental quotient [z, y]x, since, by
taking the infimum, we obtain the corresponding results for [z, y] .
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(i) faB >0,

[aw, Byl =

o + ABy|| — ez

A
132+ Ayl — |22l
g2t 2
141 2+ AZy| — ||
v
|ﬂ| [%yb\g .

Taking the limit as A — 0% we obtain the desired conclusion.

(ii) If @ = 0 there is nothing to prove. For a # 0, take A9 > 0 such that 1 + Aa > 0 whenever

0 < A< Ap. Then

(2,0 + ylx = (allz] + 2, y],)]
B
A
0+ da)e £ Ay [l + Ayl = dale]
A
- 1((1+/\a) v+ yH—||a:—|—)\y|—/\a||a:|>‘
A 1+ A
1 A A
= |5 (et 5] et (o 500 - 1)
< |5 (o 5] - te ) [+ o (ot 5ge] - et
- A 14+ A 1+ A
< 1 x + yx)\yHJr a(:c+ A ya:H)‘
- A 14+ A 14+ A
< | e el

Taking the limit as A — 0% we obtain the desired conclusion.
(iii) Note that

s e

(2 + Ayl + [l = Ay[| = 2[|[])

Vv
Sl =] =

(lz + Ay + 2 = Ay[| = 2[|z[]) = 0.

Hence —[z, y]x < [z,y]x for all A > 0.
(iv) If A > 0, by item (iv) of Lemma 5.40 we have

-+ Myl = lell _ Jlzll + 1wl =l
gl < fhs = PR < . = 1yl

(v) If B =0, there is nothing to prove. The case 8 > 0 is covered by item (7). Let now 8 < 0. Then

B[I,y}-{- = *|ﬂ‘[$,y]+ = 7[1'7 ‘/B|y]+ - 7[1'7 */By}+ < [l’,ﬂy]+.

Lemma 5.66 For each x,y € X, there exists ¥’ € F(x) such that

(@' y) = llzll[z,y]4
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Proof: Given z € X, we have two cases to consider.

Case 1: y = px, for some p € R. Let A > 0 be such that 1 + Ap > 0. Then

_ Nzt Apall [l _ 1L+ Ap)e|| — |l
A

i = ol

[:C’y]A = [‘T7px]>\
But for every 2’ € F(x) we have
(@ y) = pla’,2) = pllz||* = [, y]x.

Taking the infimum we obtain the result.

Case 2: z and y are linearly independent. Let V = span{z,y} C X and define &' : V — R by

(¢ o0z + By) = ol + Bla, vl

By Lemma 5.65 we have

(€ ax+py) = allzl| + Bz, yl+
< allz| + [z, By]+
= [v,az + Byl4
< oz + Byl

By the Hahn-Banach Theorem, there exists £ € X’ extending & such that [|£]]] < 1. Since &
extends &, we have

<fi,$> = ||.%'|| and <§/17y> = [x7y]+'

Set 2’ = ||z]|€]. Then
l]|* = (o', 2) < [l ]| [l]]-

On the other hand,
12"l = [Hl=l1€Lll = Nzl < Nl

Thus o’ € F(z) and (', y) = ||| [z, ]

Proposition 5.67 Define
(y,z), =sup{(2',y); o’ € F(2)}.
Then
(y,2), = [lzlllz, yly
Proof: Let z,y € X. By item (ii) of Lemma 5.40, for every A > 0 we have

(@' y) < )z, ylr, Vo' € F(x).
Taking the infimum over A > 0 and the supremum over z’ in F(x), we obtain
(v, 2), < ||z, yl+- (5.3.69)
On the other hand, by Lemma 5.66, there exists 2’ € F(z) such that

[z, yl+ = (2",y) < (y, ), - (5.3.70)

From (5.3.69) and (5.3.70) the desired identity follows. O

Proposition 5.68 The following statements are equivalent:

(i) ||z + Xy|| > ||z||, Vz,y € X, VA > 0;
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(”) [I7y]+ Z 07 V'T7y S X;
(iii) (y,x), >0, Yo,y € X;

(iv) Va,y € X, 3o’ € F(x) such that (z',y) > 0.

Proof:
ol —
(i) = (i) Tf ||z + Ay|| > |||, then [z, y]x = w > 0. Hence [z, y]4 > 0.
(id) = (i)
|z + Ayl = [l=|
R N Y N Y B!
(1) < (i13) This follows immediately from the previous proposition, since (y, x), = ||z|/[z, y]+.

(#4) < (iv) By Lemma 5.66, there exists 2’ € F(x) such that (2’,y) = ||z||[z, y]+ > 0.
Finally, we obtain a new characterisation of accretive operators.
Corollary 5.69 The following statements are equivalent:

(i) A is an accretive operator;
(it) [x1 — z2,910 — y2ly 20, V(21, 1), (22, 92) € A;
(iii) (x1—x2,y1 —Y2), = 0, V(21,51), (x2,y2) € A;
(iv) Y(x1,91), (x2,y2) € A, Iz’ € F(x1 — x3) such that {(x’',y1 — ya2) > 0.

Proof: The operator A is accretive if
|21 — 22 + AMy1 — y2)l| > |lz1 —z2f]  V(21,91), (22,92) € A, VA > 0.

Thus it is enough to take z = x1 — z2 and y = y; — y2 in Proposition 5.68.
Remark 5.70

(a) If X is a Hilbert space, then the accretivity condition
(', y1 —y2) >0, 2’ € F(xy — x2),

coincides with the notion of monotonicity.

(b) If X is a complex vector space, condition (5.3.71) is replaced by
R (2,1 —y2) > 0.

Example 5.71

(a) If T': X — X is a contraction, that is,
1Tz — Txo|| < ||z1 — 22| V1,20 € X,
then A := 1 — T is accretive. Indeed, let A > 0 and x1,29 € X. Then

HJCl 7.’224’)\(141’1 7AI’2)|| = ||IE1 7$2+A(l’1 7TI’1 71‘2+TJ§2)”
= A+ M) (@1 —22) = ATy — Tas)||
(1 + )\)”Stl’l — 1‘2” — )\”T-Tl — TSL’QH

>
> o — 2|

(5.3.71)
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(b) Since LP(2) is strictly convex for 1 < p < oo, the duality mapping is single-valued. We claim that

F(u) = [[ullp P ululP~?,  Vu e LP(Q). (5.3.72)

The element F(u) is the unique element of L?' (Q) satisfying

(F(u),u) = [[ully = 1F ()] (5.3.73)

It suffices to prove that the right-hand side of (5.3.72) belongs to L (Q) and satisfies (5.3.73).

Indeed,
|Hu||12;pu|u|p72|p' = Hu||1(,)2*p)p,|u|(p*1)p/
=l T
Hence,
a2 Puu=2]7 =l ™7 a2
=l

This shows that [|ul|2 Pulu[P~2 € LP (Q) and ||Hu||l2fpu|u|p*2

o= Il

Moreover,

(lul2Puful?2,u) = Jul2? / WP = [Jul2.

Therefore, |ull2~Pulu[P~? = F(u).

Definition 5.72 Let X be a Banach space, A : X — X an operator and A € R. Denote Jy =
(I +XA)~L. For X\ # 0, we define the Yosida approzimation of A by

1
A,\ = X(I— J)\)

Proposition 5.73 The following statements hold:
(i) D(Ax) = D(Jy) = Im(I + MA) and Im(Jy) = D(A);
(i1) Jn = (I + AA) "L = {(z + Ay, ), (2, y) € A}
(i) Ax= LI —Jn) = {(@+ Ay )i (2,) € A}, A £ 0;
(iv) If x € Jyz, then there exists y € X such that (z,y) € A and z = x + \y;
(v) If X\#0 andy € Ayz, then there exists x € X such that (x,y) € A and z = = + \y.

Proof: (i) D(A)) = X N D(Jy) = D(Jy) = Im(I + AA), and Im(Jy) = Im[(I + AA)~!] = D(I + AA) =
D(A).

(ii) Define B = {(z + Ay,2);(z,y) € A}, A € R. Let 2 = (7,2) € Jx = (I + AA)~". Then
(x,7) € (I +AA) with z € D(I + MA) = D(A) and 5 € (I + AA)z. Hence § = = + Ay for some y € Az,
that is, z = (z + Ay, x) with z € D(A) and y € Az. Therefore z € B.

Conversely, let z € B. Then z = (x + Ay, z) for some (z,y) € A. It follows that x € D(A) and
y € Ax. Therefore z + Ay € (I + M)z = (z,2+Xy) € I + NA) = z = (x + \y,z) € (I + ANA)~L = Jy.

(iii) Define B = {(z+ Ay, y); (z,y) € A}, A # 0. Let z = (7,T) € Ay, theny € D(A)) and T € A,7.
Since D(Ay) = Im(I +AA), we have § = z+ Ay for some z € D(A) and y € Az. On the other hand, since
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ANy = 3 — JAy) and T € Ay, it follows that T = +(§ — £) for some & € J,\. Hence (z + Ay, ) € Jy.
But by (ii), £ = z and therefore T = %@— &) = %(m + Ay —z)=y. Thus z = (3,T) = (z + \y,y) for
some (z,y) € A=z € B.

Conversely, let z € B. Then z = (z+ Ay, y) for some (x,y) € A. We must show that x+ Ay € D(A))
and y € Ay (x+ Ay). Indeed, by (i) we have D(Ay) = Im(I + AA) and since z + Ay € (I + AA)z, it follows
that z + Ay € D(Ay).

Moreover, Ax(z + Ay) = +(I — Jx)(z + Ay). By item (ii), (z 4+ Ay, z) € Jy, so x € Jy(z + Ay) and
therefore 1 1
y= X(x +Ay—zx)€ X(I — )@+ Ay) = Ax(z + \y).
We conclude that z = (x + Ay, y) € Ax.

(iv) Let © € Jyz. Then Jyz # 0 and therefore z € D(J)). Hence (z,z) € Jy = {(z + Ay, z); (z,y) €
A}. Consequently, (z,2) = (T 4+ Ay, T) for some (Z,y) € A. Thus z = T + Ay, x = T and therefore
z =z + Ay for some y € Ax.

(v) Let A#0and y € Axz. Then z € D(Ay) and (z,y) € Ay = {(z + A\, 7); (2,7) € A}. Hence
there exists (x,7) € A such that (z,y) = (x + A\y,7), that is, 2 = © + Ay and y = 7 and, therefore,
z =z + Ay with (z,y) € A.

Notation: For simplicity, we denote by Dy the set Im(I + AA) = D(Jy) = D(A)).

Remark 5.74 Let Jy : Dy — D(A) C X and consider z = x + Ay, with (x,y) € A. Then z € Dy and,
by item (i) of Proposition 5.73, we have (z,x2) = (x + Ay, x) € Jx, or equivalently, x € Jxz. If Jy is
single-valued, then x = Jyxz = J\(x + Ay). Similarly, if Ay is single-valued, then y = Axz = Ax(z + \y).
Proposition 5.75 Let A: X — X be an accretive operator. Then:

(i) Jy is a single-valued operator;

(i) If X >0, Ay is single-valued;

(i5) If z € Dy then (Jaz, Axz) € A, for all A > 0.
Proof:

(i) Let A >0, z € Dy and x1,22 € Jyz. We want to show that x; = x5. In fact, by item (iv) of
Proposition 5.73, there exist y; € Ax; and ys € Axo such that

z=x1+ M1 =22+ A2 = 0=2— 2= (z1 — 2) + My1 — ¥2).

If A > 0, the accretivity of A yields
|21 — zaf| < lw1 — 22+ A1 —y2)|| = ||z — 2| = 0.
Therefore 1 = x9. The case A = 0 is immediate.

(ii) Let A > 0. Then Ay = $(I — J,) is single-valued since both I and J are.

(iii) Let A > 0 and z € Djy. Then there exists (z,y) € A such that z = x + Ay. By Observation
5.74 and since Jy and Aj are single-valued, we have Jyz = z and Axz = y. Thus (Jyz, Ayz) € A. O

Proposition 5.76 The operator A : X — X is accretive if and only if J\ is a contraction for every
A>0.
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Proof: Let A: X — X be an accretive operator and take z1,2z9 € Dy, A > 0.

We have z1 = z1 + Ayp for some (z1,y1) € A and 2z = xo + Ays for some (z2,y2) € A. Since A
is accretive, it follows from Proposition 5.75(i) that Jy is single-valued, so Jyz1 = z1, Jyz2 = 22 and
moreover

[Ixz1 — Dazell = [Jo1 — ol < [[(21 — 22) + Ayr —y2)l| = [l21 — 22,

which proves that J) is a contraction for A > 0.
Conversely, suppose that Jy is a contraction for A > 0.

Let (z1,y1), (z2,y2) € A. Then 21 = x1 + Ay1, 22 = z2 + Ay2 € D,. Since J, is a contraction, it
is single-valued, and thus, by Observation 5.74, Jyz; = 1 and Jyz3 = x2. Consequently,

[z1 — 22| = [[Jaz1 — Iaz2|l < llzr — 22 = [[(z1 — 22) + AMy1 — y2)[l, YA =0,
in particular for A > 0, which shows that A is accretive. a

Notation: Let w € R. We denote by A(w) the class of operators A : X — X such that A 4+ wI is
accretive. Therefore A(0) is the class of accretive operators.

Proposition 5.77 A € A(w) if and only if for every (x1,y1), (x2,y2) € A there exists ' € F(x1 — x2)
such that
(2,1 — y2) + wllzy — 22| > 0. (5.3.74)

Proof: (=) Let A € A(w) and (z1,41), (z2,¥y2) € A. Since A + wl is accretive by hypothesis, it follows
from Corollary 5.69(iv) that there exists 2’ € F(x; — x2) such that

(@', y1 + wzy — (y2 +wxa)) > 0.

Hence
(@91 — y2) + wlz’, 21 — a2) > 0. (5.3.75)

Since &’ € F(x1 — x2) we obtain
(2,91 — ya) + wllar — 22| > 0. (5.3.76)
(<) Conversely, suppose that for every (z1,y1), (z2,y2) € A there exists 2’ € F(x1 — z3) such

that (5.3.74) holds. We prove that A € A(w). Indeed, let (1, 21), (2,22) € A+ wl. Then z; = y; +wx
and zo = Yo + wxo, where y; € Azy and ys € Axs.

By hypothesis, there exists ' € F(x; — x2) such that
(2,1 — ya2) + wllar — w2l >0,

that is,
(#', (y1 + w1) = (y2 +wr2)) > 0= (27,21 — 22) > 0.

By Corollary 5.69(iv), it follows that A + wI is accretive. ad

Remark 5.78 (i) Let w < 0 and A € A(w). Take (x1,y1), (x2,y2) € A. Then, by Proposition 5.77, there
exists ¥’ € F(xq — x2) such that

(@51 = yo) + wllar — a2* 2 0,

that is,
(', 91 — y2) > —wl|zy — 22|
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Consequently, by Corollary 5.69(iv), A is accretive.

(i) Letw > 0 and A € A(w). Take (x1,y1), (z2,y2) € A. By Corollary 5.69(iv), there exists
a' € F(x1 — x2) such that

<5€,,y1 —y2) > 0= <$/,y1 —y2) + Wz — 362”2 > 0.

Therefore, by Proposition 5.77, we have A € A(w).

In summary:
ow<0= Aw) C A(0)

ew>0=2A0) C A(w)

Moreover, if
0<w <wy = A(wl) C .A(WQ). (5377)

Indeed, let A € A(wq). By Proposition 5.77 we obtain that for all (z1,41), (z2,y2) € A there exists
x' € F(x1 — x2) such that

(@ 91— y2) +willer — 22| > 0= (@, y1 — y2) + walwr — x> > 0,

and by Proposition 5.77 it follows that A € A(wz).

Theorem 5.79 Letw € R and A > 0 with A\w < 1 and A € A(w). Then:
i) Jx (and consequently Ay ) is single-valued and Lipschitz with constant (1 — A\w)™!;

i) ||Jax — z|| < M1 — dw) " Ax| for every x € D(A) N Dy, where
[Az| == inf{|lyl; y € Ar};
i) If n € N, z € D(JY) and Mw| < 1, then
[Tz — ]| < n(1 = Alw|) 7" xz - ;

A —
i) If x € Dy, with A # 0 and p € R, then (%) x4+ ( \ ) Jyx € D, and, moreover,

Ju (/;w—i— (/\;M) J,\ac> = Jyx;

w
A .
1)) rEA (1 — )\w),
i) [Are — Axyll < A1+ (1= Awl) ]l — yl| for all 2,y € Dy;

vit) If v € DxN Dy, and 0 < p < A, then (1 — dw)||Axz|| < (1 — pw)||Apz]|;

vigg) lim Jyz =z, for allz € D(A)N () Da.
A—01 A>0

Proof:

i) Let z € Dy = D(Jy) and 21,22 € Jyz. We first show that ;7 = x9. Indeed, by Proposition 5.73(iv),
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there exist y; € Axy and yo € Axs such that
2 =121+ Ay1 = Tz + \ya.
Let o’ € F(x1 — x2). Then

0 = x’,0> <x z—z> <x' (xl—x2)+>\(y1—y2)>

(
<:c’ T, — x2> + /\<x' Y1 — Yo + wry — W + Wry — wa:2>
(
\

o wy —x2) + M, (1 +wrr) — (2 + wa2)) — Aw(a’,z1 — x2)
|21 = zo||? + M, (g1 + wz1) = (32 + waa)) — Az — 2o
= (1 —dw) [|z1 — 222 + M2, (1 + wz1) — (2 + waa)). (5.3.78)

>0

On the other hand, since A € A(w), we have that A + wI is accretive and therefore, by Corollary
5.69(iv), there exists £’ € F(x; — x2) such that

(€, (yr + wa) — (y2 + wz2)) > 0.
Taking ' = ¢’ in (5.3.78) we obtain
(1= 2w)lzy — 22> = =ME, (g1 + w1) — (y2 + waa)) <0,

which implies ||z; — z2|| < 0, hence x1 = x5, proving that Jy is single-valued.

I—J,
N

It remains to prove that Jy is Lipschitz. Since A 4wl is accretive, by Proposition 5.76 its resolvent

It follows that A) is also single-valued, since Ay =

Tl = [ 4 (A +wD)]
is a contraction for all ¢t > 0. Let ¢t > 0 so that 1 + wt # 0. Then

JAYT T (At WD) = [(1 4wt + A

[(1+wt) <I+ 14:th>]_1 = <I+ 1+tth>_1 (1+wt)™

Hence

-1
t
Arel — (1 A 1+wt)™?
Jt (+1+wt> (+w) i

or equivalently,

-1
t

1+ wt)JAl = (1 Al . 5.3.79

(1 +wi)J; b (5379)

Since J*T“! is a contraction, it follows from (5.3.79), for z,y € D! = D(JATT) = Im[I +

t(A 4 wI)], that
I+ t A 7315— I+ t A .
14 wt 14wt y

~1
t
o | I+ A is Lipschitz with constant |1 4 wt|.
1+ wt

= (1 +wt) I e — (1 + wt) J Ty

IA

1+ wt|l|z — g, (5.3.80)

Let A > 0 and set N
- 1—)w
——
>0

>0,
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which implies 1

Moreover,

=(1-)w)

1—
1—|—wt=1—|—w( ): n wh Aw + wA

1—dw 1—dw 1—dw

so |1 +wt| = (1 —Aw)~L. Thus (1 + AA)~! = Jy is Lipschitz with constant (1 — \w)~*.
If A =0, then J\, = I and the result is immediate.

ii) Consider the set V) = D(A) N Dy. If V), = (), the result holds trivially, so there is nothing to prove.
Suppose then Vy # 0. Let y € Ax; then x + Ay € Dy = Im(I + AA) and, moreover, by item (i), J)
is single-valued. Hence, by Observation 5.74, Jy(z + \y) = .

Thus

| e — || = ||Jaz — Ia(z + Ay)||
< (1= 2w) Yz — (= + M)
= (1= 2w) " Allyll.

By the arbitrariness of y € Ax we obtain
[Jaa —zll < (1= )" Alyll, Yy € Az
Setting |Az| = inj {lly||}, we clearly have 0 < |Az| < 4+o00. Therefore
yeAx
| ae — x| < A1 — dw) "t Az|.

iii) Let n € N, A > 0 with Mw| < 1 and = € D(J}). Then

[Jix -z = |Jiz—Jy e+ JP e —Jp 2e+ I 20— — Do+ Jax — |
= zn: (Jy e — gy )| (5.3.81)
i=1
But
|37 e = T | = A (IR ) = (T )|
%) (1 =) HJIy e — P |, Vi=1,...,n—1.
By induction, after another (n —i — 1) steps we obtain
I e = I3 < (1= dw) T = dw) T e — |
= (A=) 7" az — 2
= (1 =) """ Jyx —z|. (5.3.82)
On the other hand, Aw < Aw|, which implies
- dw>1 - ANw = (1= ) <1 =M™
and consequently
(1— )" < (1 — Aw|) ™™ (5.3.83)

We also have i > 1 and thus n — i < n — 1. Observing that

0<Mw|<1=-1<-Aw|/ <0=0<1-Aw <1,
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we obtain )
=] =1
Hence
(1= Aw) ™" < (1 = Alw) ™1,
S0

(1= Mw)™"T < (1 — Mw|) ™™ (5.3.84)
From (5.3.82), (5.3.83) and (5.3.84) we have
I3~ e — Ty e < (1= Aw) ™" [ Jaz - 2],

and therefore, from (5.3.81),

195 ol < 315" = 4
i=1
<D (=Nl — ]
i=1
=n(l = Aw)) ™"z — .
iv) Let A > 0, z € Dy and p € R. Since x € Dy = Im(I + MA), there exists (x1,y1) € A such that
x =x1 + Ay1. Also, 1 + py1 € D, = Im(I + pA). Hence Jyo = x1. Thus

B A

XI—F 3 Jrr = %(xl +Ay1) + — uxl
= %Jh + pyr +x1 — %xl
=x1+py1 € Dy
Moreover,
I =z = Ju(x1+ pyr) = Jy, ('Ij\m + A ; MJ)\:L‘> ,
as claimed.

v) We prove that Ay + T w)\ I is accretive; thus we must show that for all x1, z9 € Dy and all ¢t > 0,
— dw

w w
(561 — $2) +1t |:<A)\ + 1— )\wI> Tr1 — <A)\ + 1— )\UJI> 1‘2:| Z ||2131 — ZEQH . (5385)
Indeed,
(21 — 22) + tANT) + — 2y — tANay + —
1 — T2 AL 1— )\wl‘l AT2 1— )\wm
= @ e+ )+ 3 U= T m = £ (=)
= |[@1—22)+ (e —22) + ) T A) T2
tw t
= |:1—|—1_>\w+ )\:| (xl wg)—X[J)\xl—J)\CCQ]
Moreover,
tw t AMw + (1 — Aw) Atw +t — thw t
EIE TS VI W Y e vy TN w) YN
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From this and (5.3.86) we can write

t t
(xl - .’EQ) + tA)\CEl + 1 _w)\wxl — tA)\(EQ —+ 1 _w)\w(EQ
> (14 ) s — @all — & [lazs — Jazal (5.3.56)
— ) |z — x| = = 1 — x|l 3.
> N1 —w) 1 2 PR AT2
Now, by item (i),
[Jxa1 — Jazall < (1= w) ™" [lag — a2,
and consequently
— | azy — Saaal] > — (1= dw) ™" |z — 2] (5.3.87)
From (5.3.86) and (5.3.87) we obtain
w tw
— tA —tA
(x1 —x2) + A$1+1_)\w$1 A$2+1_)\w$2
> (14 e ) e = wall — el — ol
— 1 — 22| - ———||z1 — =
= AL =) ) TN =) T
= o1 — 2|,
which proves (5.3.85).
vi) Let A >0 and z, y € Dy =Im(J + AA). Then
1 1 1
lAse = Al = |5 U= d)e—3 I~ Iy| =5 l@—y) ~ (e = )l

A

1
3 e =yl + 11 Jxz = Jayll]
By item (i), since Jy is Lipschitz, we have

1 1
[Axz — Ayyl] < XHUU -yl + m”x =yl
= A1+ 1= 2wz -yl

vii) Let g, A € R with 0 < g < A\. If D, N Dy = 0, there is nothing to prove. Suppose D, N Dy # () and
let x € D, N Dy. Then

1
el = Sl = Nzl = Slle = Saw + Juo = Juz]

< Slle =l + e — ). (5.3.88)

NI

Since A, = i(] — Ju), we have pA, = (I — J,), and from (5.3.88) we obtain

1
lAxell < < lpllApz]| + [z = Juzll]. (5-3.89)

On the other hand, by item (iv),

A —
Dhx=J, (i:z: )\MJ)\:U) ,
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and by item (i) J, is Lipschitz; hence

e = el = (7. (Paes 2P ra) - T
) )
A —
< (1 —pw)t %:v—&— )\MJAx—x‘
= (- |2 e )
. 1
= Q-p)"(A=p) |y (-1

= (1= p) ' (A= )] Axz].
Substituting into (5.3.89), we get
el < 5 [l Auel + (1= o)™ (A= ) Aral]
Multiplying by A(1 — pw) > 0 yields
A1 = pw) | Axz| < p(1 — pw) [ Apz|| + (A = p) | Axz]],
and since A(1 — pw) — (A — ) = X = dpw — A+ p = p(l — lw), we obtain
p(l = Aw)[[Axz]| < p(1 — pw) [ Az,

which implies
(I =) Az < (1 — pw)[|Apz|.

viii) Consider the set D(A) N [ Dx. If this set is empty, there is nothing to prove. Suppose it is
A>0
non-empty and take x € D(A) N (] D,. By item (ii) we have
A>0
| Jaz — x| <A1 — Iw) Azl A>0.
Taking the limit as A — 0T we obtain

lim |[Jyz —z|| =0
Jim |l Jxe — 2l =0,

that is,
lim Jyx = e D(A)N D. 5.3.90
/\10+ A\ =x, VX (A) I A ( )

Now let x € D(A)N () Dy and € > 0. Choose y € D(A)N (| Dy such that

A>0 A>0
€

lz =yl <3 (5.3.91)

Then, for this x € D(A)N () Dy we have

A>0
e =zl < [[ e = Dyl + [Ty =yl + ly — 2] (5.3.92)
By (i),

|73z = Tyl < (1= Aw)™ o = yll. (5-3.93)

1Since z may not belong to the domain of Jy, we are considering its extension defined as lim Jyy, y € Dy, which is still
yA)(L'

Lipschitz.

- 283 -



5 Monotone and Accretive Operators

Combining (5.3.92) and (5.3.93) we obtain
lae — 2 < [(1 = M) + 1] e — yll + 1w — o1l (5.3.94)

Since y € D(A)N () Dy, as A — 07 we have
A>0

0< i S —z| <2z —
< Jim [ Ixz —al < 22—y,

and, by (5.3.91),
0< lim [|[Jyz—z| <e.
A—0+

By the arbitrariness of € > 0, the result follows.

Example 5.80 Let T : X — X be Lipschitz with constant «, that is,

|Tx1 — Txs| < a|lz1 — 22|, V1, 22 € D(T).

Then, for ¢ > 0, we have I;T € A(atl), that is,

I1-T -1 I1-T -1
- e [T S ) (15T 22

‘ > ||lz1 — 22])- (5.3.95)

Indeed,

I-T «a-1 I-T «o-1
(.131—.T2)+A |:<t+ ; I) xry — <t+tI) 1‘2:|
21 —Tx1 +ox; — 21 $2_T$2+a$2_$2:|H

B T L L

= ||(z1 —22) + % [a(zy — 22) — (T2 — sz)]H
(1 + )\ta> (z1 — x2)

Ao A
1+ — |21 — 22| — ;Oé||371 |

21 — 22l

Y

A
— ;HTI’l — TJEQ”

v

which proves the claim.

Note that if T : X — X is non-expansive, then I — T is an accretive operator (Example 5.71).
In fact, since T' is non-expansive, T' is Lipschitz with constant o = 1. From the argument above, taking
t = 1, we obtain that I — T is accretive.

Remark 5.81 Letw € R and A € A(w). Consider

p-U([ N o

p>0 \0<A<p
Take x € D, Ao € R such that A\gw < 1. The map
Gz - (07 )\0) — R

A= (M) = (1= Aw)|[Axa]|

is decreasing on the interval (0, Ao), since by item (vii) of Theorem (5.79) we have that, if 0 < p < A < Ao,
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then
(1= 2dw)|[Axz]| < (1 — pw)[| Ayl

This function admits a limit as A — 0F. Define

l[Az]| = lim g.(3) = sup(1 — )| Are]. (5.3.96)
A0 A>0

(Observe that nothing prevents us from having |||Az||| = +00).

Proposition 5.82 Let A € A(w) and A > 0 such that dw < 1. Then

(i) [[Axzl < (1= )7 Y[|Az|[|, Yo € DN Dy;
i) lim ||Axz| = ||| Az]||;
(i) Jim, || Axa] = | Az]];
(iti) If D(A) C D and x € D(A), then |||Az|| < |Az]|.
Proof:
(i) We have that, if A € (0, ) and 0 < £ < A in such a way that z € m Dy, then
0<€<A
[[Az[[| = sup(1 — &w)[[Aez| = (1 — Aw)[[Axz].
£>0
Thus, if A € (0, ), there is nothing else to prove. If A > Xg, by item (vii) of Theorem 5.79 it

follows that
(1 = w)[[Axz]| < (1 = Aow)[[Axgz|| < [[|Az]]].

(i) Let z € D.

Case 1: |||Az]||| < oo.
[Axz] = (1= dw) 7' (1= dw)llAxzl = lim [[Axz]| = [[|Az]]|
A—=0+

Case 2: |||Az]|| = 0.
Let M > 0. There exists Ag > 0 such that (1 — Aw)||Axr,z|| > M. If 0 < X < Ag, then

(1 —Aow)

> —dw) 7k
T 1Al 2 M1 = Aw)

[Axz] >
Hence, )\liréh |Axz|| > M. Since M > 0 is arbitrary, the result follows.
(iii) By item (ii) of Theorem 5.79, we have
|2 — x| < p(l — pw) M Az|, Yz € D(A)ND,. (5.3.97)

Hence,
(1 — pw)||A,z|| < |Az|, Yz € D(A)ND,. (5.3.98)

By hypothesis, € D(A) N D,, for every pw < 1, 0 < pt < po. Passing to the limit in (5.3.98), the
result follows.

Proposition 5.83 Letw € R, A € A(w) and A > 0 such that Aw < 1. Suppose that D(A) is dense in X
and Jy : D(A) — X is one-to-one?. Then A is one—to-one.

2Equivalently, Ay = %(I — Jy) is one—to—one on D(A).
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Proof: Let 1,29 € D(A) be such that Azy = Azy. Then, for every A > 0, it follows that

xr1 + )\A:cl = I9 + )\AIBQ

Since z1 + Mz1 € Dy = Im(I + AA) and J), is single-valued, we have

J,\(ﬂh + /\Axl) = J,\(xg + /\A.rg).
By the resolvent identity, Jy(z; + MAx;) = ;. Thus, 1 = x5, proving that A is injective. |

Proposition 5.84 Letw € R and A € A(w). Suppose that D(A) is dense in X and that for some g > 0
the resolvent Jy, : D(A) — X is one—to—one. Then:

(i) Jx is one-to—one for every A > 0 and Iw < 1;
(i) Ay is one—to—one on D(A) for every A > 0 and dw < 1;
(i) A is one—to—one.

Proof:

(i) Fix any A > 0 with Aw < 1. Let z1, 22 € D(A) satisfy
J)\Il = J)\.TQ.

We want to show that x; = xs.

By the resolvent identity (cf. Theorem 5.79, item (iv)), for any g > 0 such that pw < 1 we may

write \
Jy ('ux+ ;uJAx> = Jyx.

A

Applying the identity to z; and zo, and using the hypothesis Jyx; = Jyxz2, we obtain

A — A —
Jy ('l;azl + h\ 'uJ,\:c1> =J, <l;x2 + h\ HJm:g) .

Choose = Ag. Since J), is one-to—one, it follows that

A— A—
%.’El-’- )\'UJ)\xl = %1’24‘ /\/1'

J)\(EQ.

But Jyz1 = Jaza, so the last equality reduces to

B b
\ 1 2\ 2
hence 1 = x5.
Thus, Jy is one—to—one.
(ii) Immediate, since
1
A)\ - X(I - J)\),

and I — J, is one—to—one iff J, is one-to—one.

(iii) Follows immediately from Proposition 5.83.
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5.4 Maximal Accretive and m-Accretive Operators

Definition 5.85 Let A : X — X be an accretive operator with D(A) C C C X. We say that A is
maximal accretive in C if A does not admit a proper accretive extension with domain contained in
C.

We say that A is maximal accretive if A is maximal accretive in X.

Definition 5.86 We say that an operator A : X — X is m-accretive if

Im(I+A4)=X.

From the definitions above, every m-accretive operator is maximal accretive. Indeed, let
A: X — X be m-accretive and suppose A C B, where B is accretive. We prove that A = B.

Let (z,y) € B and set z = x + y. Then
(z,2) = (x +y,z) € JP,
since (z,y) € B.
As B is accretive, Proposition 5.75 implies that J£ is single-valued; therefore

JP2 = (5.4.99)

Since A is m-accretive, there exists z; € D(A) such that z € (I + A)zy. Thus, z = x; + y; with
(z1,11) € A C B. Hence, by Observation 5.74,

JBz = m. (5.4.100)

From (5.4.99)—(5.4.100) we deduce x = x1, hence y = y1, and so (z,y) € A. Thus B C A.

The converse is false: a maximal accretive operator is not necessarily m-accretive (see [21]), even
when X and X’ are uniformly convex.

On the other hand, if X is a Hilbert space, accretivity coincides with monotonicity, and since X
is reflexive and both X and X’ are smooth, Theorem 5.54 gives that A is m-accretive iff it is maximal
accretive.

Proposition 5.87 Let A be an accretive operator such that Im(I + pA) = X for some pu > 0. Then
Im(I + AA) = X for every A > 0.

Proof: Given A > 0, set k = A\/u. We show that Im(7 + \A) = X.

Let x € X and consider

8

1

1
ZyJ“<i+<1k>y)’ yeX.

Define
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Since J, : X — D(A) and J, is single-valued (because A is accretive), we may define the map

B: X — D(A)
y o+ By=J,(5+(1-1)v)
As J,, is a contraction (Proposition 5.76), we have for all y1,y2 € X:

1
L A [

A <1liff k> % Thus, if A > p/2, then B is a contraction and hence has a unique fixed

point yo € D(A) such that
x 1
=Byo=J. (L4 (1-= .
Yo Yo J”(k+( k>yo>

Yo
k

1
Now '1—

Thus,

€ + :u’AyOa

x
k
and multiplying by k gives

Hence Im(I + AA) = X for all A > u/2.

Iterating the argument yields

_ H
Im(I+XA) =X f01rall)\>2—n7 n € N.

Thus, Im(I + AA) = X for every A > 0. ad
Corollary 5.88

(i) An accretive operator A is m-accretive iff Im(I + AA) = X for all A > 0;
(i) If A is m-accretive, then D(Ayx) = D(Jx) = Dy = X for every X\ > 0.

Proof:

(i) If A is m-accretive, then Im(I + A) = X, and by Proposition 5.87, Im(I + AA) = X for all A > 0.
Conversely, if Im(I + AA) = X for all A > 0, choosing A = 1 shows A is m-accretive.

(ii) If A is m-accretive, then Im(I + AA) = X for all A > 0, hence

D(Ay) = D(Jy) = Dy = X.

Proposition 5.89 FEvery m-accretive operator is closed.

Proof: Let A: X — X be m-accretive, and let (z,,) C D(A) satisfy z,, — = and y,, € Az, with y, — y.
We prove that

(z,y) € A. (5.4.101)
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Since x,, + yn — « +y and D(J;) = X, both x,, + y,, and x + y lie in D(Jy).

By Proposition 5.76, J; is a contraction and single-valued. Thus,
J1(zn + Yn) = Tn. (5.4.102)

Passing to the limit yields
Jl (.’K + y) =7,

which means (z,y) € A, proving (5.4.101). a

Example 5.91 Let Q C R” be a bounded open set with smooth boundary I', and consider the operator
A: LP(Q) — LP(Q), 1 <p<oo,

defined by
D(A) = Wy P(Q)nW2P(Q),  Au= —Au.

We show that A is m-accretive. Since A is linear and single—valued, for uy,us € D(A),
(Auy — Aug, F(uy — ug)) = (—Au, Fu),
where u = u; — ug and F(u) = u\u|p72||u||22fp.

Integrating by parts,

(=8, Fu) = (=Dl [ [Vl do >0,

Thus A is accretive. By elliptic regularity [14], for each v € LP(Q) there exists u € Wy (Q) N
W2P(Q) solving

u— Au =,
so Im(I — A) = LP(Q), and hence A is m-accretive.
In particular, when p = 2,

D(A) = H*(Q) N H} (Q), Au = —Au,

is m-accretive and therefore maximal monotone (Theorem 5.54).

Theorem 5.92 The following statements are equivalent:
(i) A is maximal accretive in C D D(A);
(ii) Ifx € C, y e X and
|z —u+ Xy —v)|| > ||z —ul| for all (u,v) € A,
then (z,y) € A;
(iti) If x € C, y € X and there exists &' € F(x — u) such that
(€ y—v) =20 V(uv)€ 4,

then (z,y) € A.
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Proof: Same as the proof of Theorem 5.27 for (i) < (i7). The equivalence (ii) < (iii) follows from
Proposition 5.68. O

The class of accretive, maximal accretive, and m-accretive operators satisfies an analogous trans-
lation invariance as in Proposition 5.24 for monotone operators.

Proposition 5.93 If A is accretive, mazimal accretive, or m-accretive, then any translate of A in D(A)
and Im(A) remains, respectively, accretive, maximal accretive, or m-accretive.

Proposition 5.94 Let X be smooth, A € A(w), D(A) C C C X, and assume that A + wl is mazimal
in C. Then Az is convex and closed.

Proof: Let x € D(A) and let y;,y2 € Az, t € [0,1]. We show that ty; + (1 —t)y2 € Ax.

Since A € A(w), A+ wI is accretive. Hence, for every (u,v) € A and for i = 1,2:

(z, yi + wx), (u, v+ wu) € A+ wl.

Thus, by Corollary 5.69, there exists 2 € F(x — u) such that

(x}, yi +wz — v —wu) > 0.

Since X is smooth, F is single—valued, hence z} = z}, = F(x — u), and so

(F(x —u),y; + wx —v —wu) > 0.

Multiplying by ¢ and 1 — ¢ and adding yields

(F(z—u), ty1 + (1 —t)y2 + wr — v —wu) > 0. (5.4.103)

Since x € C' and A + wl is maximal accretive in C', Theorem 5.92(iii) applied to (5.4.103) gives
(z, ty1 + (1 — t)ys + wz) € A+ wl,
and therefore ty; + (1 — t)ys € Ax.

Closedness follows analogously by taking limits. O

Definition 5.95 An operator A: X — X, where X is a Banach space, is called demiclosed if

(Tn,yn) CA, p >z, yp —y = (z,y) € A

Definition 5.96 A map ¢ : X — Y between Banach spaces is Fréchet differentiable at x € X if
there exists a bounded linear map L(x) : X — Y such that

p(x+y) — o) = L@y +w(z,y),

with
y=0 |y

(The long Lemmas 2.4.11-2.4.12 are kept in the Portuguese source; only the introduction is re-
peated here.)

Proposition 5.97 Let X be a Banach space whose norm is Fréchet differentiable, and let A € A(w) such

that A + wlI is mazimal in D(A). Then A is demiclosed.
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Proof: As the norm is Fréchet differentiable, see [17] Lemma 6.11 p53, and [17] Theorem 6.12 p54
together imply that the duality map F is single-valued and continuous. (for the reader’s convenience we
proved these results below)

Let (zn,yn) C A with 2, — z and y,, — y. Since A + wI is accretive,

(F(xn —uw),yn + wry, —v—wu) >0 Y(u,v) € A.

Passing to the limit yields

(F(x —u), y + wr — v —wu) > 0.

Since x € D(A) and A + w! is maximal in D(A), Theorem 5.92(iii) gives
y+wx € (A+wl)x,

hence (z,y) € A. 0

Proposition 5.98 Every operator A € A(w) such that A+ wl is mazimal in D(A) is closed as a subset
of X x X.

Proof: Let (x,,yn) C A with z,, — = and y,, — y. For each (u,v) € A and A > 0,

lzrn — ull < [|2n — u+ Ayn + wxy, — v —wu)||.

Passing to the limit gives
o = ull < Jlo —ut Aly +we — v - wi)|.

As z € D(A) and A + w! is maximal accretive in D(A), Theorem 5.92 yields (z,y) € A. O

Proposition 5.99 Let X' be uniformly convezr, A € A(w), A+ wl mazimal in D(A) and
D(A) CIm(I+AA), 0<A<Xy, Aw<Ll.

Then
lim [|Axz|| = |Az|, Va € D(A),
A—0

where |Az| = inf{||y|; v € Az}.
Proof: Since D(A) C D, for all 0 < A < g, we have D(A) C D =Ny r<y, Dx-
Proposition 5.82(ii) gives

lim || Ayl = || Az]] = Jim (1 - dw) [ Axa]).

Moreover, Proposition 5.82(iii) gives
[|Az|| < |Az|.
Since X' is uniformly convex, X is reflexive; thus (A ) is bounded and admits a weakly convergent

subsequence
Ay, z —y.
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By lower semicontinuity,
Iyl < [l Az].

Also, Ax,xz € A(Jy,z) and Jy,z — x, and since A is demiclosed (Proposition 5.97), it follows that
y € Azx. Therefore
[Az| < [lyl| < [[|Az]].

Thus |Az| = |||Az||, and hence
lim [|Ayz|| = |Az]|.
A—0

Lemma 5.100 (Kato) Let C C X be a nonempty closed convex subset of a smooth Banach space X.

Then x Eé’ iff
reC and |z||* < (F(z),y) YyeC.

Proof: If z satisfies the inequality, then
2]* = (F(z),z) < (F(x),y) < [[F@)|llyll = [l=]l]lyll
so |||l < |ly|| for all y € C, hence x is a minimum-norm point in C.
Conversely, suppose x GCO’ and y € C. For ¢t € (0,1),

10— e+ gl < (1~ D+ tyllla]l + HF(L — )z + ty),y - ).

Since ||lz|| < ||(1 —t)x + ty||, the difference yields

(F(1—-t)z+ty),y —x) > 0.

As t — 0, using demicontinuity of F', we obtain
(F(z),y —x) > 0.

Hence
2]|* = (F(x),z) < (F(x),y),

which completes the proof. m|

Lemma 5.101 Let X be a Banach space and let C # () be a convez, closed subset of X. If (x,,) C C is

a sequence such that ||z,| — |C| and ©, — x, then z eC.

Proof: Since C' is convex and closed, it is weakly closed. As x,, — z, we have z € C and hence ||z| > |C|.
On the other hand, by the lower semicontinuity of the norm, we have

llz|| <liminf ||z, | = lim ||z,| = |C|.
n n

It follows that ||z|| = |C| and therefore eC. O
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Theorem 5.102 Let X be a Banach space.
i) X is reflexive if and only if for each nonempty, convez, closed subset C of X, one has 575 0;

[e]
i1) X is strictly convez if and only if for each nonempty, convez, closed subset C' of X, the set C
contains at most one element;

iii) X is reflexive and strictly convex if and only if for each nonempty, convex, closed subset C' of X,

[e]
the set C' contains a unique point.

Proof: (i) Suppose that X is reflexive and let (x,) C C be such that ||z,| — |C|. Then (z,)neny C C
is bounded, so there exist a subsequence (x,,) C (z,) and an x € X such that

Ty — T,
by Theorem II1.27, p. 50, in Brézis.

Now, by Lemma 5.36, it follows that x 68’, that is, co‘;é 0.

We now prove the converse by using James’ Theorem (see [36], p. 16, Theorem 3), which states
that X is reflexive if every 2’ € X' attains its norm, i.e., there exists z € {z € X; ||z|| < 1} such that

(¢, z) = sup |(2',y)| = |2l
€x

y
llyll<1

Let 2/ € X’ and define
C={zeX; (2 z) >}

We claim that C' is convex and closed. Indeed, if z,y € C and t € [0, 1], then
(' tz + (1 = t)y) = t{z’,2) + (1 = t){2",y) = t]|2’|| + (1 = t)[2"]] = [|l2"]],

so tx + (1 —t)y € C for all ¢t € [0, 1], proving that C is convex.

To see that C' is closed, let (x,,) C C be such that xz, — x. We must show that € C. Since
ZTn — x, by the continuity of 2’ we have

(', 2,) — (2, 2) asn — oo,
that is, given € > 0, there exists nyg € N such that
vn>ny (2 2,) — (2, 3)| <e,

which is equivalent to
—e < {2, z) — (2, 2,) < e.

Hence,
(@', x) > —e+ (2/,2,,) > —e + |||

By the arbitrariness of € > 0, it follows that
(@', z) > |l'].

Thus x € C and therefore C is closed.
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Now let (yn)nen C C with ||y,|| = 1 for all n € N and such that

i |2, y)| = '] = sup |(a/,9)].
yeX
llyll=1
Define ,
_ 2"l yn
= .
(', Yn)
then I’ '
m’,z _ <x/7 z yn> _ z .23/, — |2 7
e = ) ) = T o = 1
S0 zp € C for all n € N, and
" . /
i o= i 1Ll )
n——+oo n——4oo |<x’,yn>‘ n——+o0o |<x’7yn>|
1 1
=2 e = 19 o =
T[] g

By the definition of |C| we have
ICl < |z|, VzeC.

In particular,
IC] < lznll, VneN.

Passing to the limit, we obtain
ICl < 1.

By hypothesis, C= {z € C; ||z|]| = |C|} # 0, hence there exists 2y € C such that ||zo| = |C].

Since zg € C, we have
(2, 20) > ||2']. (5.4.104)

On the other hand, from ||zo|| = |C| < 1, we get
(@, wo) < (2", 20| < [l [[[lo]l < [l2"]]- (5.4.105)
From (5.4.104) and (5.4.105), we deduce
(@', xo) = |2,

with g belonging to the closed unit ball. Since 2’ € X’ was arbitrary, James’ Theorem yields that X is
reflexive.

(ii) Suppose that X is strictly convex and let C' C X be convex, closed and nonempty. If é’: 0,
there is nothing to prove. Assume 8’7& 0 and let x,y Eé’. Then ‘TT“’ € C, thus

T+y
2

H > |C]. (5.4.106)

However,
T +y
2

1 1
| < 3lell+ 31 = 1c1. (5.4.107)
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From (5.4.106) and (5.4.107) it follows that

Tty
2

H —1C] = llell = Iyl

Since X is strictly convex, item (iii) of Lemma 5.36 gives z = y. Hence C' contains at most one
element.

Conversely, assume that for every convex, closed subset C' C X, the set C' contains at most one
element. Let z,y € Ux, with = # y, where Ux = {x € X; ||z|| = 1}. Consider the subset

K={tr+(1-t)y; 0<t<1} CUx.

We claim that K is convex, closed and that ]2' =K.

e K is convex.

Let 21,29 € K and X € [0,1]. We must show that

A+ (11— XNz € K.

Since z1 = t1z + (1 — t1)y and 29 = tox + (1 — {2)y, we obtain

=M1+ (1= Nta)z + (M1 —t1) + (1 = N)(1 —t2))y. (5.4.108)

Observe that

A1+ (1= Mt A1 =) + (1= AN (1—ta) =M+ (1= Nta+ A= Ay + (1= X) — (1 = Mt
=A+(1-)N=1, Vrel[o,1].

Setting t3 = At; + (1 — M)ta, we have A(1 —¢1) + (1 — A\)(1 —t3) = 1 — 3, and from (5.4.108) it
follows that
Az + (1 - )\)2’2 =t3r + (1 - tg)y, ts € [O, 1], VA € [0, 1],

that is, Az; + (1 — X\)z2 € K, proving that K is convex.

e K is closed.

Let (zn)nen C K be such that z, — z in X. Then there exists (¢,)nen C [0,1] with

Zn = thx + (1 —t,)y.

The sequence (t,)nen C [0,1] is bounded, so there exists a subsequence, again denoted (%),
converging in [0, 1]:
tn — t €[0,1].

We claim that
zn —rtx+ (1 —t)y in X.
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Indeed,
|20 — (tz + A = t)y)|| = ||(tn — )z + (tn — t)y||

< tn = ]l + [0 = Iyl — 0, 1 — oo

By the uniqueness of the limit, z = tx 4+ (1 — t)y € K, with ¢t € [0, 1], proving that K is closed.
o We show that = K.
By definition, [O(C K. On the other hand, since K C Ux, we have
Izl =1, VzeK.

Thus
|K|=inf{||z]|; z€ K} =1,

and if z € K, then z 6[0(7 because ||z|| = |[K| = 1. Hence K=K.

By hypothesis, K contains at most one element and K # (), so K contains exactly one element,
namely x = y. This is a contradiction. Therefore,

{te + (1 —t)y; z#y, 0<t <1} ¢ Ux,

which proves that X is strictly convex.

(iii) (=) Suppose X is strictly convex and reflexive.
Let C' C X be convex, closed and nonempty. By item (i), co*;é (), and by item (ii), 8’ contains at

o
most one element. Hence C contains a unique element.

[e]
(«) Conversely, assume that for every convex, closed, nonempty subset C' C X, the set C' contains

a unique element. Then C7é (), so by item (i) X is reflexive and, by item (ii), X is strictly convex. O

Theorem 5.103 Let X be a Banach space. The following assertions are equivalent:
(1) X is reflexive, strictly convex and satisfies the property

ZTp =z and lim sup ||z, || < ||z|| = z, — 2. (5.4.109)
n—oo

(#3) For each convex, closed subset C C X and each sequence (z,,) C C such that ||z, | — |C|, there exists
r € X such that x,, — x.

Proof: (i)=-(ii) Let C C X be convex and closed (in the strong topology) and let (z,)nen C C be such
that
lzn|| — |C| = inf{||z||; z € C} asn — . (5.4.110)

From (5.4.110), the sequence (x,,) is bounded. Since X is reflexive,
(@n, ) ken C (Tn)nen and z € X such that z,, — z, as k — oo. (5.4.111)

By Lemma 5.101, we have
z €C, (5.4.112)

SO Co‘;é (). Thus, by the strict convexity of X (and its reflexivity), Theorem 5.102 (iii) implies that x is

- 296 -



5.4 Maximal Accretive and m-Accretive Operators

o
the unique element of (.

Claim: z,, — z as n —» oo.

We prove this by contradiction. Suppose x, /4 x as n — oo. Then there exist N' C N and a
weak neighbourhood V;, of z such that z; ¢ V. for all k € N'. However, {x }reny C {@n }nen is bounded,
hence {xy}ren is bounded and there exists a subsequence {; } C {z}} such that

Ty, — To. (5.4.113)
It follows that zq G(Oj'. Indeed, by lower semicontinuity of the norm with respect to the weak

topology,
[zoll < lim inf [z, || < |C].
n—oo

On the other hand, since C' is convex and closed, its weak closure coincides with its strong closure,
and {zy, } C C converges weakly to an element of C, that is, xo € C. Hence

[zoll = |C.

Therefore, ||zo]| = |C| and we conclude that z eC= {z}. Thus,

To = . (5.4.114)

Consequently, there exists jo € N such that
zx, € Vi, Y5 > Jo, (5.4.115)
which contradicts the fact that zy ¢ V,, for all k € N'.

Hence z,, — ¢ as n — oo. From this and from
2] = |Cl = lim_[lz, | = lim sup|z,], (5.4.116)
it follows, by hypothesis (5.4.109), that

Tp — T, asn — 09, (5.4.117)

as desired.
(if)=(i)
Let C C X be convex, closed and nonempty.

Claim: CO‘7'é 0.

If C is finite, then C = {x1,...,2,} for some n € N, and

|C| = inf{||z||; € C} = inf{||z1||,..., |zall} (5.4.118)

= ||xn,|| for some ng € {1,...,n},

[e]
S0 &, €C, proving the claim.
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Now suppose that C' is infinite. By the definition of |C|, there exists (2, )nen C C such that

|znl| — |C] as n — oo. (5.4.119)

By hypothesis (ii), there exists € X such that

Ty —> T, asn — 0. (5.4.120)
It follows that
[#nll — llzll, asn — oo, (5.4.121)
and by uniqueness of the limit,
=] = IC]. (5.4.122)

Since C'is closed, z € C, and from (5.4.122) we conclude that z 68’, ie., (077& (), as claimed.
We now show that 8’ has exactly one element.
If y €C then y € C and |ly|| = |C|. Define a sequence (z,)neny C X by

Zon =Tp and  zopy1 =y, VneN. (5.4.123)

Then (z,)neny C C and

lz2nll = |zall — [C], as n — oo, (5.4.124)

[22n+1ll = [lyll = |C], Vn €N.

From (5.4.124),
[zall —> IC], as n — oo. (5.4.125)

By hypothesis (ii), there exists z € X such that
Zn —> Z, a8 n — 00, (5.4.126)

so z € C = C since C is closed.

Moreover, the subsequences (z2,) = (2,,) C (2,) and (z2p+1) = (y) C (25,) are convergent and

Zop = Tp —> T, asS N — 00, (5.4.127)

2941 =Y — Y, asn — OQ.

From (5.4.126) and (5.4.127), we conclude that
r=z=y,

[e]
i.e., y = x. Thus C has a unique element. Since C was arbitrary (convex, closed and nonempty), Theorem
5.102 (iii) shows that X is reflexive and strictly convex.

It remains to prove that X satisfies property (5.4.109). Let (z,)neny C X and z € X be such that

z, = and lim sup |lz,| <|z|. (5.4.128)
n—oo
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By lower semicontinuity of the norm in the weak topology (see Brézis, Proposition IIL5 (iii)), we

have from (5.4.128)
lz|| < lim inf||z,||.
n—oo

From (5.4.128) and (5.4.129) it follows that the limit li_>m ||z || exists and

i = ],

Clearly, from (5.4.128) we have

Ln
]

‘

Let yn = f7 and y = gy for each n € N. Then (5.4.131) and (5.4.132) become

x
— —— asn — oo,
]|

and from (5.4.130),

Tn T

=1, asn — oo.
[z

]

Yn — Y asn— oo,

and
lynll — llyll, asn — oo.

Let y* € F(y). Then
) =Nyl = llyll = 1.

Consider the set
C = {w € X such that (y*,w) > 1}.

Claim: C is convex and closed.
Indeed, if wy,ws € C and A € [0,1], then
(Y, Awr + (1 = MNwa) = Ay" wi) + (L= A)(y"w2) = A+ (1= A) =1,

$0 Awi + (1 — Nws € C and C is convex.

Now let wg € C. Then there exists (wy,)nen C C such that

Wp —> Wy  as n —» 00.

Thus w, — wy as n — 0o, and hence

(y" wo) = lim (y,wn) > 1,

so wg € C. Therefore, C C C, which shows that C is closed.

Moreover, y € C' (see (5.4.135)) and ||y|| = 1. Hence

IC| = inf{|lw[; we C} < |yl =1.

Assume, for a contradiction, that |C| < 1. Then there exists wy € C such that

C] < lwoll < [lyll = 1.

(5.4.129)

(5.4.130)

(5.4.131)

(5.4.132)

(5.4.133)

(5.4.134)

(5.4.135)

(5.4.136)

(5.4.137)

(5.4.138)

(5.4.139)

(5.4.140)

(5.4.141)
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Notice that 0 ¢ C, so wy # 0. From (5.4.141),

«  @Wo 1 * 1
y*, > = (y*,wo) > > 1. (5.4.142)
< [woll 7 [lwoll [[woll

Hence, from (5.4.135) and (5.4.142),

L=|y"|| = sup (y",w) > <y &> > 1, (5.4.143)
(oEX [[woll

a contradiction. Thus we must have
IC| = 1. (5.4.144)

From (5.4.140) and (5.4.144), we conclude that

Cl=1=1yll, (5.4.145)

S0 ¥y 68’. Since X has already been shown to be reflexive and strictly convex, Theorem 5.102 (iii) implies

that y is the unique member of (.

From (5.4.133) and (5.4.135) we have

lim (y*,yn) = (y*,y) = 1. (5.4.146)

n—oo

We may assume, without loss of generality, that

(Y*,yn) >0, VneNlN (5.4.147)
Define z,, = *y" for each n € N. Then
(", Yn)
(", zn) = <y:’y"> =1, VneN, (5.4.148)
(Y™, yn)

80 (zn)nen C C. Furthermore, from (5.4.134), (5.4.135) and (5.4.146),

n 1
[znll = @”yy”> — 7 =1=[C| asn— cc. (5.4.149)

Hence, by hypothesis (ii), there exists z € X such that

Zn — Z a8 n —> 00, (5.4.150)

and thus z, — z as n — co. By Lemma 5.101, we conclude that z 68’: {y}, that is, z = y. Therefore,

Zn —> Y asn — Q. (5.4.151)

From this and (5.4.146) it follows that
Yn = (Y Yn)2n — 1y =y asn — oo, (5.4.152)

and consequently -
Ty = [|2|lyn — ||x||m =x asn — oo, (5.4.153)
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that is,
Ty —> T aS N —> 00, (5.4.154)

which completes the proof. O

5.5 Sections

Definition 5.104 Let X be a normed space and A : X — X an operator. We define the operator
A X — X by Ax = (Ax)°; that s,

Ax={yc Az; |ly|| = |Az|},

where |Az| = inf{||ly|l; v € Ax}. The operator A is called the minimal section of A.

Theorem 5.105 Let X be a reflexive, strictly convex and smooth Banach space and let A € A(w) be a
demiclosed operator such that

D(A) C Im(I + AA), 0< X < Ao with Aw < 1.

Then A is a single-valued operator and D(Ao) = D(A).

Proof: Let B be the operator defined by D(B) = D(A) and Bz = conv Az, where conv Az is the convex
hull of Ax.

By definition of B, if z € D(A) then Bz # (). Note that Bz is convex and closed. By Theorem 5.14
p35 [47] (iii), the set é x = (Bz)® has a unique element, that is, there exists a unique element E x € Bz

such that || B z|| = |Bz|.

We assume, for the moment, that

Bz € Az, Va € D(A). (5.5.155)

Assuming (5.5.155), we claim that é x is the unique element of ;1) z. Indeed, since A C B, from
(5.5.155) we obtain
inf{[lyll; y € Ba} < inf{[lyl; y € Az},

i.e., |Bz| < |Az|, and since || B z|| = |Bz|,

| B z|| < |Az].

[e]
On the other hand, as we are assuming B « € Ax, we get

|Az| = inf{|ly[l; y € Az} <| B z|.

From these two inequalities it follows that |Az| = || B ||, and therefore B x €A x.
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Furthermore,

Az ={ye Az |ly| = |Aal}
= {y e Az |yl =l B |}
C {y € Bz; |yl =l Bz|}
= {y € Bx; |ly| = |Bz|} =B <,

since A C B. Thus A © CB x, and because B  is a singleton, A x is at most a singleton. Since B = €A x,

it follows that the unique element of /(i T is }03 T.

Hence, if € D(A), then Azisa singleton, so A # (), and therefore x € D(/(i) This proves that
D(A) € D(A).

Conversely, if z € D(fi), then A z # 0, i.e., the set {y € Az; ||y|| = |Az|} # 0. Thus there exists
y € Ax such that ||y|| = |Az|, which implies Az # @), and hence x € D(A). Therefore D(fi) C D(A), and
we conclude that D(A) = D(/(i)

It remains to prove (5.5.155).

Let z € D(A) and y € Az. By accretivity of A+ wI and the fact that F' is single-valued (since X
is smooth), we have
(Flz —u),y+wz— (v+wu)) >0, Y(uv)eA (5.5.156)

Let z € conv Az. Then there exist y; € Az and \; > 0, >_i" ; \; = 1, such that z = >0 | \y.
Thus, from (5.5.156),

(Fx —u),z +wz — (v+wu)) = <F(m—u),2)\iyi+wx—(v+wu)>

i=1

|

MN{F(z —u),y; + wz — (v+ wu)).

i=1

From (5.5.156),
(Flx —u),yi +wr — (v+wu)) >0, i=1,...,n,

hence
(F(z —u),z +wz — (v+wu)) >0, Vz€ convAz, V(u,v) € A (5.5.157)

Since F'(z —u) € X', the inequality (5.5.157) remains valid for all z € conv Az := Bz. Therefore,

(F(x —u),z+wz — (v+wu)) >0, V(r,z2)eB, Y(uv) € A.

Proceeding analogously, we obtain
(Fzx —u),z+wz — (v+wu)) >0, Y(zz2),(u,v) € B,
that is, B € A(w).

By hypothesis, D(A) C Im(I + AA) for 0 < A < Ag. Hence, by item (ii) of Theorem 5.79, for each
x € D(A),
|Azz]| < (1 —wA)7HAz|l, 0< A< Ao, < 1. (5.5.158)

Observe that if w < 0, then 1 — Aw > 1 and thus 1—1>\cu <1. If w>0,then 1—Aw > 1— A\gw, hence
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1 1
1—w S 1—)ow "

From (5.5.158), for each x € D(A) there exists L > 0 such that
||A>\Jf|| < L7 VA€ (Ohu’o)a Ho = min{AOa l/w}
Thus, for every sequence () C (0, o) with Ay — 01, we have ||A,, z|| < L. By reflexivity of X,
there exists a subsequence (\,) C (Ar), An, — 0T, and y € X such that Ay z — y.

Now take a sequence (\,) C (0, o) such that A\, — 07 and A, z — y € X. Note that \,w < 1
for all n € N, and by item (viii) of Theorem 5.79, J)’élx — z since x € D(A)N (ﬂ0<)\<m D,\). Moreover,
by Proposition 5.99, we have (J§! z, Ay, x) € A. Thus

Jte—z, Az —vy, and (Jiz, A1) € A (5.5.159)

Since A is demiclosed by hypothesis, we deduce that (z,y) € A, i.e., y € Azx.
We now claim that

JPx = Jdx, Vo e D(A), YA€ (0, u). (5.5.160)

Indeed, let z € D(A). Since D(A) C Im(I4+XA) C Im(I+AB), we can write x = 21+Ay; = z2+Aya,
with (z1,91) € A and (x2,y2) € B. Thus J/‘\“x =17 and fo = x9, because in this case both Jf and
JE are single-valued. On the other hand, since A C B, (z1,y1) € B and thus JPz = z; = Jx, which
proves (5.5.160). Consequently Jﬁx = anm, and so Ay, x = B), z. By lower semicontinuity of the norm
in the weak topology of X,

lyl < ngr}rloo inf || Ay, z|| = ngrfoo inf || B, z||. (5.5.161)

Furthermore, by item (ii) of Theorem 5.79,
| B,z < (1= Aw)~'|Bzl, (5.5.162)
so combining (5.5.161) and (5.5.162), we obtain
. . - -1
Iyl < tim_inf(1 — A) Bl

= lim (1 - \w) !|Bz|=|Bz|.

n—-+oo

Since y € Az C Bz and ||y|| < |Bz|, it follows that ||y|| = |Bz| and therefore y -B x, because Ba

is the unique element of Bz with this property. Thus é x € Az, proving (5.5.155) and completing the
proof. O

Theorem 5.106 Let X and X' be uniformly convex and let A € A(w) be a closed operator such that

D(A) cIm(I+XA), 0<A<XA (Aow<1).

Then there exists a demiclosed extension A of A such that 0.5cm

(i) Ae A(w) and D(A) C Im(I + AA) C Im(I + \A), for 0 < A < Ao with \w < 1;

(i) D(A) = D(A) = D(A) = D(A) and Ao—fun Ve D(A).
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Proof:

(i) Let
F= {B X —2% BeAw )andD(B)CW}v

partially ordered by inclusion, and let G be a totally ordered subset of F. Define the operator T': X —
2X by D(T) = | J D(B) and
Beg

Tz =| J{Bxz; x € D(B) and B € G} .

From the definition of G and D(T), we have D(T) C D(A) and, if B € G, then T > B. We
now prove that T € A(w). Indeed, take (x,y), (u,v) € T, so that (z,y) € By and (u,v) € By for some
B1,Bs € G. Since G is totally ordered, we may assume, without loss of generality, that Bs D B;. Hence
(z,y) € By. As By € A(w), Corollary 5.69 yields f € F(x — u) such that

(y+wzr —v—wu, f) >0

This shows that T' € A(w) and hence T is an upper bound for G. By Zorn’s lemma, F has a
maximal element A D A. Since A is closed and A € A(w), Proposition 5.84 implies that, if A € (0, Ag),
then Dy = Im(I + A\A) is a closed subset of X. Thus, for 0 < A < Ay we have D(A) C Im(I + A\A).
Therefore, from A C A it follows that D(A) € Im(I + AA) C Im(I + \A).

(ii) We prove that A + wI is maximal in D(A). Let B be an accretive extension of A + wI with
D(B) C m Then the operator B := B — wl is m-accretive and satisfies D(B) = D(B) c D(A).
If ¢ € D(A) then = € D(B), since D(A) = D(A + wl) C D(B) = D(B). Moreover, if y € Ex, then
y+wz € (A+wl)z C B, that is, y € (B — wlz = Bz. Thus, B € F and extends A. Hence, B = A.
Returning to the definition of B we obtain B = A + wl.

Since X' is uniformly convex, Theorem 6.15 p57 in [47] implies that the norm on X is uniformly

Fréchet differentiable and, by Proposition 5.97, A is demiclosed. Consequently, D(ﬁ) = D(Z) It is
clear that D(A) C D(A). We now prove the reverse inclusion. Indeed, let z € D(A). By item (i), we

already know that D(A) C Im(I + AA) for 0 < A < Ag. This implies that the set {||g)\:c||, A€ (0, )\o)}

is bounded. Again, since X’ is uniformly convex, Milman’s theorem implies that X’ is reflexive and
therefore X is reflexive as well. Thus, there exist {\,} C (0,)) and y € X such that A, — 0" and
Ay, x — y asn — oo.

Since z € D(A), we have

J;ix — z and (ngx, gxm) € A. (5.5.163)

Because A is demiclosed, it follows that (x,y) € A. Furthermore, from the convergence E,\nx —y
and Theorem 5.79, item (ii), we obtain

Iyl < liminf||11An96||
< liminf(1 — Aw) | Az|
n—-+4oo
= |Az[ = Az,

o]

since A is single-valued by Theorem 5.105.
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But y € Az, hence || A z|| = |Az| < ||y||. This, together with (5.5.164), implies that lim,,_,« || Ay, 2| =
[lyl]. Since X is uniformly convex, we conclude that Ay, =z — y.

For 2 € D(A), it makes sense to consider both Jj\zx and J{'z, since we already know that
D(A) C Im(I + \A) C Im(I + MA).

If © = 21 + A\y1 = 22 + Ay2, with (z1,11) € A and (22,y2) € Z, then, since A C g, we also have
(z1,y1) € A, and therefore

J;\Zx = = J{z.
It follows that A A2z = A x and hence

anx —xzand Ay, z — y.

Since A is a closed operator, we conclude that (x,y) € A. This means that z € D(A), y € Az and
lyll = |Az|. Consequently, D(A) = D(A).

~ ] ~

We next show that D(A) C D(A). Indeed, let « € D(A). From the previous arguments there
exists y € X such that y € Az and ||y|| = |Az|. Since Az C Az, we obtain

Iyl = |Az| < [Az| < |ly|,
because y € Az. Hence |ly|| = |Ax|, so y €A x, and therefore z € D(/i)

By the definition of A we have D(/(i) C D(A). Thus we have shown that

~ o ~

D(A) € D(A) € D(A) = D(A).

]

To conclude the proof, we show that for every x € D(A), A z = A x. Since A is single-valued, it

suffices to prove that A x CAuz.

Let y1 €A ={y € Az; ||y|| = |Az|}. Since z € D(A), there exists yo € Az such that ||ys|| = |Az].
But Az C Az, so |Az| < |Az|. Thus

[yall = |Az| < |Az] < [[yz].

Now y; € Az and ||y || = |Az| = |Az|. Therefore y; €A z. O

Lemma 5.107 Let X' be a uniformly conver space and A € A(w) such that A 4+ wl is mazimal in
C D D(A). Then F(/i x) has a single element for every x € D(A).

Proof: By Proposition 5.11 p35 in [17], X is strictly convex, and by Proposition 5.38, X is smooth. Hence,
by Proposition 5.94, Ax is convex and closed. Since X is reflexive, Milman’s theorem and Theorem teo

5.14 p35 in [47] yield A # 0. Let y1,y2 €A z. Then y1,Y2 € Az and |y1|| = |ly2]| = |Az|. By Lemma
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5.100 (Kato’s lemma),

ly11? < (y2, F (1))

< ly2l[1F(y1)]l
= ||y2|||\y1||
= lly2ll” = [y |-

Thus
ly211? = (y2, F (1)) = [ly=l>.

By the definition of F, this implies F'(y1) € F(y2). Since X is smooth, it follows that F(y;) = F(yz). O

Proposition 5.108 Let X' be a uniformly conver space, let A € A(w) with A + wl mazimal in D(A),
and assume
D(A) € Im(I +AA), 0 < A < Ao; Aow < 1.

Then:
(i) There exists a sequence (A,) C (0, o) such that

lim F(Ay,2)=F(Az), Vae D(A);

n—roo

(ii) If X is uniformly convez, there exists a sequence (\,) C (0, o) such that

lim Ay, z =A xz, Yz e D(A).

n—oo

Proof:

(i) Fix € D(A). Since A € A(w) and (Jxx, Axx) € A, by the definition of an accretive operator we
have
(y +wx — Ay —wyx, F(z — Jyx)) >0, Yye€ Ax.

Using that AF(z) = F(Az) and Ay = +(I — Jy), we obtain
My, F(Axz)) — MAxz, F(Axz)) + N2w(Ayz, F(Axz)) >0,
for every y € Ax. Hence

(1= w)||Axz||* < (y, F(Axz)), Yy€ Ax. (5.5.164)

By Proposition 5.99, the family {Axz} is bounded and therefore {F (A x)} is also bounded. By
Milman’s theorem, X' is reflexive, and thus there exist A\, — 07 and v’ € X’ such that

F(Ayz) = . (5.5.165)
Passing to the limit in (5.5.164), and using (5.5.165) together with Proposition ??, we get
Az < (y, o) < yllllv']l, Yy € Az (5.5.166)
In particular, this inequality holds for y 612 x, i.e., for ||y|| = |Az|. Hence
|Az| < ||u/]). (5.5.167)
By weak lower semicontinuity of the norm, from (5.5.165) and Theorem 5.79, item (ii), we obtain

[/l <l inf |F(Ay,2)| = T inf Ay, o] € lim inf(1 - Aw) " Az] = |Az],

- 306 -



5.5 Sections

which implies
/|| < |Az]- (5.5.168)

Thus,
|Az| = ||/ (5.5.169)
Again, for y 6,51) x we have

|[Az]? < (y, o) < [lyllllv'[| = |Az[]|u']] = |Az]*.

Therefore,
{y,u') = [lv'|I* = Iyl

o

that is, v’ € F(y) for every y 62 z. By Lemma 5.107, F(/(i x) has a single element, i.e., v’ = F(A z).
Since X’ is uniformly convex and

F(A),z) =4 and limsup ||Ay, x| < ||o/|,
n— o0

it follows that
F(A) ) — v = F(Ax), (5.5.170)

which proves (i).
(ii) Now assume that X is uniformly convex. Let G be the duality mapping of X’. Then
G(2') ={z € X; (¢, 2) = ||=[| = [|2"]|},
since X is reflexive (because X' is reflexive). Hence
' € F(z) <z € G(a'),

that is, FG = GF = I, which implies G = F~1, since G is single-valued.

By Theorem 6.15 p57 in [17], G is uniformly continuous on bounded sets. As {Axz} (0 < A < Ag)
is bounded in X and ,2 x is single-valued, by (5.5.170) we have

o I o _ 1 . . 1 L
Ax=F "F(Az)=F (/\lgg&r F(A,\ar)) lim F7 F(Axz) = Aliff)h Ayx.

o A—0t

O

Definition 5.109 Let A+wl be an m-accretive operator. We say that a single-valued operator A’ C A

is a principal section of A if D(A") = D(A) and, whenever (x,y) € D(A) x X satisfies
(y+wr — Au—wu,f’) >0, Yu € D(A) and V&' € F(z — u),

then (z,y) € A. In other words, A" is a principal section if every extension of A’ with domain contained

in D(A), belonging to A(w), is contained in A.

If X is a Hilbert space and A is m-accretive, then the minimal section A is a principal section
(see [17]). Later we shall prove a more general result in this direction. For the moment, we prove the
following auxiliary result:

Proposition 5.110 Let X be a separable Banach space, X' uniformly conver, A + wl an m-accretive
operator and A’ C A an operator such that

(i) D(A") = D(A);
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1) For every u € D(A) there exists v € AIU such that
||'U|| < 6(|Au|)a (5.5.171)

where 6 : [0,400) — R is bounded on bounded intervals.

If x € D(A) and y € X are such that
(y+wz —v—wu, Flx —u)) >0, V(uwv)ed,

then (z,y) € A.

Proof: Let y € X and define A=A- y. Then, by Proposition 5.93, A + wl is m-accretive. Set
0(|Ax|) := 0(|Az]) + [|yll-

The operators A and A’ , as well as 5, satisfy the assumptions imposed on A, A’ and #. Indeed, we
have D(A’) = D(A), the function @ is bounded on bounded intervals, and, from (5.5.171), for every
u € D(A) = D(A) there exists v —y € A’u such that

v =yl <ol + [yl < 6(JAul) + [[y[| = 6(|Aul).
Note that (z,y) € A if and only if (x,0) € A. Therefore, without loss of generality, we may assume
y = 0. In this case, the hypothesis reads: if z € D(A), then
(wr —v—wu,F(z—u)) >0, V(uv)eA. (5.5.172)

We must prove that (z,0) € A.

Let A > 0 be such that Aw < 1. Since A + wl is m-accretive, it is maximal accretive in D(A).
Moreover, D(A) C Im(I + AA) for every A > 0 with Aw < 1. Indeed,

m(A+wl+pl) =X, Y0 >0 = In((w+p) (554 +1) =X = Im(gi;A+1) =X

Taking p = 152¢ > 0, we obtain Im(Z + AA) = X, and hence D(A) C Im(I + AA), as desired.
Let u = Jyz (with A > 0 such that Aw < 1). From (5.5.172) we have

(wr —v—wlyz, F(z — Jyx)) >0, Yve A (Jrz).

Multiplying and dividing by A2, we get
M(wAyz — 2, F(Axz)) >0, Yve A'(Jyz),

which implies
M(wAyz, F(Axz)) > Mo, F(Axz)), Yo e A'(Jrzx),

and hence
Mw(Axz, F(Azz)) > (v, F(Azz)), Yo e A'(Jyz), VA >0,

so that
(v, F(Axz)) < M| Arz|?, Vo e A'(Jyz). (5.5.173)

On the other hand, by Proposition 5.99, Ayz € AJyz. Thus, by Theorem 5.79, item (ii), we obtain

|Adyz| < || Axz| < (1 — dw) "t Az]. (5.5.174)
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Since Jyz € D(A’), hypothesis (ii) gives vy € A’(Jxx) such that
loall < 0(JA(Ixz)]).
By (5.5.174), the set {|A(Jrz)|}o<r<rgs dow < 1, is bounded. As 6 is bounded on bounded sets,

it follows that {|lvallto<a<rys Aow < 1, is bounded.

Since X’ is uniformly convex, it is reflexive, and consequently X is reflexive as well. Therefore,
passing to a subsequence if necessary, there exist (A,) — 0 and z € X such that vy, — z. From (5.5.173)
and Proposition 5.108, item (i), in the limit we have

(o)

(z,F(Ax)) <0. (5.5.175)

On the other hand, since X’ is uniformly convex, Theorem teo 6.15 p57 in [47] implies that the
norm is Fréchet differentiable. By Proposition 5.97, the operator A is demiclosed and, moreover, by
Theorem 5.79, item (viii), we have Jy, x — x. Since vy, — z and (Jy, z,vy,) € A’ C A, it follows that
(x,2) € A, ie., z € Ax.

By Lemma 5.107, the set F( fi x) has a single element. Furthermore, since A is demiclosed,

Theorem 5.105 implies that /Ci z is also single-valued. Hence, by Lemma 5.100,

AzeAzand || Az|? < (F(Ax),y), Yy € Ax.

In particular, for z € Az, (5.5.175) yields

I Az|]? < (F(A2),2) <0 = Az=0 = 0¢€ Az

Thus (x,0) € A, as required. O

Corollary 5.111 Let X be a Banach space with X' uniformly convez, and let A and B be such that
D(A) = D(B), A+ wI and B + wl are m-accretive, and

AznN Bz #£0, for everyz € D(A).
Then A = B. In particular, if fizé, then A = B.
Proof: If A+ wl and B + wl are m-accretive, then these operators are maximal accretive for every

C D D(A) = D(B). Since X’ is uniformly convex, X’ is strictly convex and, consequently, X is smooth.
Moreover, X' is reflexive and therefore X is also reflexive. For each x € D(A) = D(B), the sets Az and

Bz are convex, closed and nonempty. Consequently, A # () and B # () for all z € D(A).

Fix z € D(A) = D(B) and y €A 2N B . Define the operator S by Sx =y. Then SC A, SC B
and, in addition,

1Sz]| = llyll = [Az| and [|Sz[| = |lyl| = |Bz|, Vo € D(A) = D(B).

Thus S satisfies the assumptions of Proposition 5.110. Hence, if (z,y) € A, then
(y +wr — Su—wu, F(x —u)) >0, Yu € D(A) = D(B),

and Proposition 5.110 implies (z,y) € B, that is, A C B. Similarly, we obtain B C A. a
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5.6 Perturbation of Accretive Operators

The sum of two accretive operators in a smooth Banach space is an accretive operator and, more
generally, if A € A(w;) and B € A(ws), then (A + B) € A(w; + ws); this follows immediately from item
(iv) of Corollary 5.69. Indeed, let

(1,91 + 21 + (w1 +wa)z1), (T2,y2 + 22 + (w1 + w2)x2) € A+ B+ (w1 +w2)l,

where (21,y1), (x2,y2) € A and (21, 21), (22, 22) € B. We shall prove that A+ B + (w1 +w2)I is accretive.
In fact, since A + w1l and B + wyl are accretive, it follows from item (iv) of Corollary 5.69 that there
exists 2’ € F(x1 — x9) such that

(F(21 — 22),y1 + w121 — (Y2 + wiz2)) > 0

and
(F(21 — 22), 21 + wam1 — (22 + wawa)) > 0,

because X’ being smooth implies F'(z1 — x2) = 2'.

It then follows that
<F(m1 —x2),y1 + w11 — (Y2 + wiTa) + 21 + wowy — (22 + w2x2)> >0,
that is,
<F(l‘1 — 1‘2)7y1 —+ Z1 + ((.L)l =+ wg)xl — [yg =+ Z9 =+ (w1 =+ LUQ)I2>] Z 0
Therefore, by Corollary 5.69, A+ B + (w1 + we)T is accretive.

However, even if A+ wyl and B + wyl are m-accretive, the operator A + B + (w; + wa)I is not
necessarily m-accretive. In what follows, we establish sufficient conditions for the sum of an m-accretive
operator A + wl with an m-accretive operator B to be m-accretive.

Remark 5.112 In practice, and more specifically in PDE applications, what really matters to us is the

condition
D(A) CIm(I+XA), X€j0, ], )w <1, Ae Aw),

imposed in the previous sections, which is strictly weaker than requiring A to be m-accretive.

Lemma 5.113 Let X be a smooth Banach space, A+ wl an m-accretive operator on X and B a single-
valued, Lipschitz and accretive operator such that D(B) = X. Then A + B + wl is m-accretive.

Proof: Since A + wl and B are accretive and X is smooth, we have that A + B + wI is accretive. It

remains to show that
Im[[+)\(A+B+wI)] =X, (5.6.176)

for some A > 0, in view of Proposition 5.87. In other words, we must prove that for every y € X there
exists © € D(A) such that

y € [I—i—)\(A—i—B—i—wI)}m, for some A > 0.

Showing this is equivalent to showing that for every y € X there exists € D(A) such that
(y — ABz) € [I + A(A+wI)|z, for some A >0,
or, using the fact that J ;H'“’I is single-valued and defined on the whole of X (since A+wI is m-accretive),

that we must show

For each y € X, there exists € D(A) such that
(5.6.177)

JH!(y — ABx) = z, for some \ > 0.
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Indeed, assuming for a moment that (5.6.177) holds, we have
(y — ABz,z) € Jptel = {(v+Az,v); (v,2) € A+wl},
and thus y — ABx = v + Az and v = z for some (v, z) € A+ wl. Hence
y—ABz € [[+ MA+wl)]v =[] +AA+wl)]|z,
which proves (5.6.176). Let us show that (5.6.177) indeed holds. Fix y € X and define the map

G: X — X

r s G(z) = JiT!(y — A\Bz)

We claim that G is a contraction for A\ = -t

sp» Where L > 0 is the Lipschitz constant of B. In fact,
if 1,29 € X, then

|G(z1) — G(z2)|| = || T  (y — ABx1) — J3 T (y — ABxs)]| - (5.6.178)

Note that A +wl € A(0) and A-0 =0 < 1 for all A > 0. By item (i) of Theorem 5.79, J{7 is
Lipschitz with constant (1 —X-0)~! = 1.

Therefore, from (5.6.178) we obtain
[G (1) — Gla2)|| < lly = ABzy — y + ABus
=A ||Bl‘1 - BLZJQH
1 1
< gpLllzn =22l = 5 llan — |-

— 2L

Hence G is a contraction and thus has a unique fixed point, that is, there exists a unique x € X
such that G(z) = z, or equivalently,
T (y = ABx) = a,

for A = 5+ > 0. Since JHeT . X — D(A), we deduce that € D(A), which proves (5.6.177) and hence
the lemma. ad

Lemma 5.114 If B is an accretive, single-valued, Lipschitz operator with D(B) = X, then B is m-
accretive.

Proof: For each y € X we must find x € D(B) = X such that y = (I + AB)z for some A > 0, that is,
for each y € X there must exist £ € X such that © = y — ABx for some A > 0. To this end, it suffices to

show that the map
G: X — X

x +— G(x)=y— Bz
has a fixed point. Indeed, for 1,22 € X we have

|G(z1) — G(z2)|| = [=ABx1 + ABas|
=)\ ||Bx1 — BZ‘QH
<AL |[|zy — 2o,
where L > 0 is the Lipschitz constant of B. Taking A = ﬁ we obtain the desired contraction. O

Proposition 5.115 Let X be a smooth Banach space and let A+ wl and B be m-accretive operators on
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X. Then, for each y € X and each X\ > 0, there exist x) € D(A) and uy € Axy such that

y=(14w)xy+ux+ Brey,

1
where By := —(I — J2) is the Yoshida approzimation of B. Moreover, if D(A) N D(B) # 0, then (zx)x
b\ b

is bounded.

Proof: Since B is m-accretive, B is accretive, i.e., B € A(0) and Im(I + AB) = X for every A > 0.
Thus A-0 = 0 < 1 for all A > 0. Therefore, by item (i) of Theorem 5.79, J¥ is single-valued for all
A > 0, and so B, is single-valued for all A > 0. By item (v) of the same theorem, By € A(0), that is,
B, is accretive for every A > 0. In addition, by item (vi) of that theorem, By is Lipschitz with constant
ATHL4 (1= AJo])] 7! = £, for every A > 0. Moreover,

D(By) =Im(I+AB)=X, VA>0,

and from the remarks above we conclude that B is single-valued, Lipschitz, accretive and D(B)) = X
for all A > 0. By Lemma 5.113, it follows that A + B) + w/ is m-accretive for all A > 0. Hence

Im[I+(A+By+wl)] =X, VA>0. (5.6.179)

Fix y € X and A > 0. Then, for each A > 0, in view of (5.6.179) there exists ) € D(A) such that
Yy € xx\+ Axy + Bazy +wx),
that is,
y=(14+w)xy+ux+ Brzy, (5.6.180)
for some uy € Azy. It remains to show that if D(A) N D(B) # 0 then (xy) is bounded. Take xy €
D(A) N D(B) and consider y € X and A > 0. Then, by (5.6.180) there exists x) € D(A) such that

y € (14+w)xy+ Az + Brz.

Let also
yx € (1 +w)xg + Az + Brzo.

Then
yr — 2o € (A+ By +wl)zo

and
y—xx € (A4 By +wl)zy.

By the accretivity of (A+ By +wI) and since X is smooth (and thus F is single-valued), Corollary
5.69 yields
(F(zx — o),y —2x — (yr — 20)) >0,

that is,
<F(3€,\ —xg),Y — yx> - <F($A —T0), T\ — SCo> > 0.
But
(F(xx — x0), > — 0) = |Jzx — zo|%,
hence

s — 2o < (F(zx — o),y — yr)
< |[F(zx =20l [ly — yall = lzx — @0l ly — uall - (5.6.181)
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Note that if ||zx — xo|| = 0, i.e. ) = zg, then ||zx] = ||xo]l-
If instead ||zx — xo|| # 0, then from (5.6.181) we have
lx = zoll < lly —wall,

or yet
]l < llzoll + 1yl + lyall- (5.6.182)

Since yx € (1 + w)xg + Axg + Brzo, we may write
yr = (1 — w)xo + up + Byrzo, (5.6.183)
for some ug € Axg. On the other hand, since B € A(0), Theorem 5.79, item (ii), gives
|Baz|| < |Bzx|, Vze D(B)NDE vA>o,

and Df\9 = X. Thus
||B)\1'0H < |B.’E0|, YA >0, (56184)

and combining (5.6.183) and (5.6.184) we obtain

[yall < (1 = w)zoll + [fuoll + [Bxol, VA > 0. (5.6.185)

Combining (5.6.182) and (5.6.185) we conclude that

lzall <k, VA >0 whenever x) # xo.

Therefore
lzall < M, VA>0,

where M = max {||zo|, ¥}, which completes the proof. O

Proposition 5.116 Let X’ be uniformly convez, and let A + wl and B be m-accretive operators such
that D(A) N D(B) # 0. Suppose that, for each y € X and X\ > 0, there exists xx € D(A) such that

y=(l4+w)xyx+ur+ Brzy, for someuy € Axy.
Moreover, assume that Byzy is bounded on some interval (0,Xg). Then, for each y € X, there
exists a unique v € D(A) N D(B) such that x5 — x as A — 07 and
y € (1+w)z+ Ax + Bx.

Hence A+ B + wl is m-accretive.

Proof: Since X’ is uniformly convex, X' is strictly convex and consequently X is smooth. Furthermore,
X' is reflexive and therefore X is also reflexive. Let y € X and A, > 0. By Proposition 5.115 there
exist (zx,ur), (T, u,) € A such that

y=(1l4+w)xyx+u\+ Brzy

and
y=(1+w)z, +u,+ B,x,.

It follows that

0= (zx —z,) +w@r —u) + (un —uu) + (Bazy — Buzy). (5.6.186)
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Since X is smooth, the duality map F is single-valued and therefore, from (5.6.186),
<F(l’)\ - xu)a (wA - xu) =+ w(xA - JZ#) + (UA - Uu) + (BAxA - Buxu» =0,
that is,

lzx — $u||2 + (F(2x — mp), (un +wry) — (uy + wzy))
+(F(xz) —x,), Baxxx — Byz,) = 0. (5.6.187)

However, by the accretivity of A + wl, Corollary 5.69 gives
(F(zx —zu), (ux +wzp) — (U, +wzy)) 2 0.
From this and (5.6.187) we obtain
llzx — 2z, ||> + (F(x\ — 2,), Bxzsx — Buz,) < 0. (5.6.188)
Moreover, by the accretivity of B, Proposition 5.75 yields
(JXzx, Bama), (JP2u, Buxy,) € B.
It then follows from Corollary 5.69 that
(F(J{xx = J]2u), Baxox — Buxy) > 0,

or equivalently,
(=F(J{x\ — J2x,), Bxex — Buay) <0. (5.6.189)

Adding (5.6.188) and (5.6.189), we get

o — 2?4+ (Fzx — 2,) = F(JY@x — J72,), Baea — Buay) < 0. (5.6.190)

On the other hand,

F(J/{BxA*Jfl’#) = F(CUA*‘Ty*l'A+xu+J>l\3I)\*fou)
= F(x,\—xu—(xA—fo,\)-I-(xu—fou))
= F(xzy—x, — ABxaxx + pBuz,). (5.6.191)

Substituting (5.6.191) into (5.6.190) gives
zx — 2| + (F(zy — 2,) — F(xy — 2, — ABawy + uBuz,,), Baxrvy — Byz,) <0,
or equivalently,
s = @ull? < [IF (e - 2,) = F(ax — @, — ABaws + uBa, )|l Bazs — By (5.6.192)
By hypothesis, Byz) is bounded on some interval (0, Ag), and hence there exists k > 0 such that
IBazall <k, 0< A< A

Thus, if 0 < A, u < Ag, we have
|Brea - Bua| < 2k,

and from (5.6.192) we deduce

lzx — xu||2 < 2k||F(xy —xy) — F(ax — 2, — ABxzy + puBux,)||. (5.6.193)
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Now

[(@x —zu) = (2x — 20 — ABxazx + pBuz,)||
— I\Bata — uByall < Al Bagall + pll Buzall € 0+ )k < 0+ )2k, (5.6.194)
with 0 < A\, u < Ag.

Since X’ is uniformly convex, by Theorem 6.15 p57 in [47], F is uniformly continuous on bounded
sets. Thus, given ¢ > 0 and M > 0, there exists 6 = (¢) such that if ||z1]| < M and ||z1 — z2|| < 4, then
|F(z1) — F(z2)|| < &. Let & = min{Z, Ao} > 0. Then, if A, u < & we have (u + )2k < &. Hence,
under this condition, by (5.6.194),

(r — ) — (@ — 2 — ABxaa + uBy)|| < (i + N2k <.

Moreover, since D(A) N D(B) # 0, Proposition 5.115 implies that =5 is bounded. That is, there exists
M > 0 such that [|z5| < 2 for all A > 0. Thus

lox = 2all < loall + lzall < M, VA >0,
Therefore, from (5.6.193) we obtain

lzx — mqu < 2| F(xx —xy) — F(xx — 2, — ABazs + puBuz,)||

< 2%—

kas, 0<)‘7M<£07

that is,
|zx — x| — 0, as A, uw— 0.

Hence (z,) is a Cauchy net and, since X is Banach, there exists # € X such that

xy — ¢ in X. (5.6.195)

It remains to show that © € D(A) N D(B) and, moreover, that y € (1 +w)z + Az + Bz. Indeed,
going back to the beginning of the proof, recall that

y € (14+w)xy+ux—+ Bazy, (xa,uy) € A. (5.6.196)

From the boundedness of Byzy and z, 0 < A < A, we deduce from (5.6.196) that wu) is bounded on
(0, Xo). Since X is reflexive, there exist (\,) C (0, o), A, — 0T, such that uy, — u for some u € X.

At the beginning of Section 5.4 we proved that if an operator A is m-accretive, then it is maximal

accretive in every C' O D(A). In particular, A is maximal accretive in D(A). Therefore, since by

hypothesis A + wl and B are m-accretive, it follows that A + wI is maximal accretive in D(A) and B is
maximal accretive in D(B). Then, by Theorem teo 6.15 p57 [47], the norm of X is Fréchet differentiable.
From this and Proposition 5.97 we infer that A and B are demiclosed. Since (zy,,uz,) € A, zx, — =

and uy, — u, it follows that (z,u) € A, that is, z € D(A) and u € Ax.

On the other hand, from (5.6.196), we have

By,zx, =y — (1 +w)zs, —ux

n°

Therefore,
By, zx, v, v=y—(14+w)z—u. (5.6.197)

We now show that x € D(B) and v € Bz. Indeed,

[Pzx =z < TFxn —aall + |2y — 2]

= MN|Baza| + |lzx — 2| — 0 as A — 0T,
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hence fo,\ — z as A = 0T, In particular,
J{ x\, —r . asn— oo. (5.6.198)

By Proposition 5.75, item (iii),

(J{ 2., Bx,za,) € B. (5.6.199)

n?

Since B is demiclosed, (5.6.197), (5.6.198) and (5.6.199) imply that (x,v) € B, that is, € D(B) and
v € Bx. Consequently, x € D(A) N D(B) and

y=14w)z+u+w,
where u € Az and v € Bx. Thus there exists x € D(A) N D(B) such that

y € (1+w)z + Ax + Bx.

It remains to show that the solution is unique. Indeed, suppose there exist x1, o € D(A)ND(B)
such that
ye[l+w)l+A+Bloy=[I+ A+ B+wl)x;

and
ye[(l+wl+A+Blry=[I+(A+ B+ wl)|x,,

that is, x1 € JfI+A+By and x5 € JfI+A+By. Since X is smooth, A+ wIl and B are accretive, and hence
A+ B + wl is accretive. By Proposition 5.75, item (i), J:\4+B+“’I is single-valued for every A > 0, in
particular for A = 1. Thus z1 = x». O

Theorem 5.117 Let X' be uniformly convezx, and let A+ wl and B be m-accretive operators such that

i) D(A) C D(B);
it) For every r > 0, there exist constants K(r) and C(r) with K(r) <1 such that

|Bx| < K(r)|Az| + C(r), Va € D(A) with |z| <. (5.6.200)

Then A + B + wl is m-accretive.

Proof: Since X’ is uniformly convex, X is smooth, and hence by Proposition 5.115, for every y € X and
every A > 0 there exist ) € D(A) and uy € Az such that

y=(14+w)xy+ uy+ Brzy. (5.6.201)

Moreover, since D(A) N D(B) = D(A) # (), Proposition 5.115 also gives that (z)a>o is bounded and
therefore there exists » > 0 such that

sl <7, VA > 0. (5.6.202)

On the other hand, recall that
[Azx| = inf {[|z[}; z € Azx} < lual.
From this and (5.6.201), we obtain
|Azx| < fluall < [lyll + [1 4+ w| [Jzxll + [ Brzall -

Since B € A(0) and A -0 < 1 for all A > 0, and since z) € D(A) C D(B) and z) € D(B)) = D%, i.e.
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x) € D(B) N DZ, Theorem 5.79, item (ii), yields

1 1
| Baza| = HA (I—J\) x| < XA(1 —X-0)"Y|Bzy| = |Bz|,

and therefore
[Azx| < [Juall < [lyll + 11+ w| [|[zal] + Bzl (5.6.203)

From (5.6.200), (5.6.202) and (5.6.203), we deduce
[Azx| < llyll + 71 + w| + K(r) [Azx| + C(r),

that is,
(1= K(r) [Azx| < lyll + 71 +w|+ C(r), VA>0,

which implies that |Azy| is bounded for all A > 0, since (1 — K(r)) > 0. By hypothesis (ii) and the
boundedness of |Ax,|, it follows that |Bx,| is also bounded for all A > 0. As

|Bazal| < |Bzal, VYA>0,

we conclude that | Bax,| is bounded for all A > 0. Therefore, by Proposition 5.116, for each y € X there
exists a unique x € D(A) such that

ye(l+wx+Ax+ Bx =1+ (A+ B+ wl)x,

that is,
Im[I+ (A+B+wl)] =X,

and thus A + B + wl is m-accretive. O

Theorem 5.118 Let X' be uniformly convez, and let A+ wl and B be m-accretive operators such that

(i) D(A)N D(B) # 0;
(ii) There exist b € [0,1) and a function ¢ : [0,00) — R non-negative and non-decreasing such that

(u+wz, F(Bxz)) 2 —y(||z]]) — bl Baz|*.

Then A+ B + wl is m-accretive.

Proof: As before, by Proposition 5.115, for every y € X and A > 0 there exist x) € D(A) and uy € Az
such that
y=(1+w)xy+uy—+ Bazy, (zr,uy) € A (5.6.204)

Moreover, since D(A)N D(B) # 0, there exists C' > 0 such that ||| < C for all A > 0, and as B € A(0),
Theorem 5.79, item (i), implies that B is single-valued. By Proposition 5.116, it suffices to show that
{Bxz} is bounded. We have

<F(B)\£L‘)\)7y—fb)\> = <F(B,\$)\),W£L')\+U)\+B)\$)\>
= (F(Bxzy),wzy +uy) + || Bazyl? (5.6.205)
> =Y(llaall) = bl Bazall* + | Bazal®.

Hence

IE(Bxza)|[lly — Al (F(Bxzx),y — 2x)

(1= 0)[[Bazall* = v ([lzalD),

ARV
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or
at? — ft —~ <0, (5.6.206)
where
a:= (1-0)>0,
B ly — 2all,
= Y(llzal),
t .= ||B)\£L’AH
Therefore
B- VP iy _, B+ /B +ay
20 - = 20 ’
and so
B/ ey _ BB+ @ B+
- 20 - 200 a
Thus

1
(1= ) Byzall < lly — 2]l + 10— Byolaal)]F , ¥A> 0. (5.6.207)
Since 1 is non-decreasing and ||z|| < C for every A > 0, we obtain

1Bxeall < 1 [yl + €+ VT 09(0)]

so that Byx) is bounded and Proposition 5.116 yields that A + B + wl is m-accretive. O

Corollary 5.119 Under the assumptions of Theorem 5.118, if
(u 4wz, F(Byx)) >0, V(z,u) € A,
then A+ B + wl is m-accretive.

Proof: It suffices to take b = 0 and % = 0 in Theorem 5.118. O

Theorem 5.120 Let X' be uniformly convex, and let A + wl and B be m-accretive operators such that
B is linear. Assume that

(i) D(B) € D(A);
(it) (F(Bz),u+wz) > =¢(|z])) = bl Bz|*, V(z,u) € 4,

with b and ¢ as in the assumptions of Theorem 5.118. Then A+ B + wl is m-accretive.

Proof: The idea is to recover condition (ii) of Theorem 5.118. Indeed, since B is accretive, J£ is single-
valued and Lipschitz with constant 1, for all A > 0. Consequently, B, is single-valued. Thus, for all
A >0,

By = % [I-(I+AB) '] = % [(I+AB)I+AB)™' —(I+AB)™"]
= % [(I+AB)—1I](I+AB)~'=BJE. (5.6.208)

If 2 € X, then JP2z € D(B) C D(A). In particular, if 2 € D(A) and v € A(JPz), then for every u € Az
we have

MF(Byz),u 4+ wzx) = (F(AB)\x), u + wx)

= (F(x — JPx),u+ wz)
= (F(zx — JPz),u+wr —v—wlPz) + (Flx — JP2),v+ wIPx). (5.6.209)
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Since A+wI is accretive and X is smooth, the first term on the right-hand side of (5.6.209) is non-negative,
hence

(F(Bxz),u +wz) > (F(Byz),v+wJfx)
= (F(BJPx),v +wiPz). (5.6.210)

But (JPz,v) € A. By the hypothesis, we obtain

(F(Bxz), u+ wz) (F(BJEz),v+wJPx)
~(|lI7xl) — | Bz (5.6.211)

—([| 77 xl) = bl Baz|*.

2>
>

Since B is linear, J /\B is linear as well. From the accretivity of B we have
T3] < |, (5.6.212)
and from this and the fact that i is non-decreasing, we deduce
(F(Baz),u+wz) > —y(||z]|) - 0| Bxz||?,

which is precisely condition (ii) in Theorem 5.118. O

5.7 Linear contraction semigroups: Hille-Yosida theory and some
applications

5.7.1 m-accretive operators
In this section, X is a Banach space endowed with the norm || - ||.

5.7.1.1 Unbounded operators in Banach spaces

Definition 5.121 An unbounded linear operator in X is a pair (D, A), where D is a vector subspace
of X and A is a linear mapping D — X. If

sup{[|Az[;; = € D, ||lz[ <1} < oo,

then A is bounded. If
sup{||Az||; x € D, ||z|]| <1} = o0,

then A is unbounded.

Remark 5.122 [t follows from the Hahn—Banach Theorem that A is bounded if and only if there exists
a closed vector subspace Y of X such that D C'Y and an operator A € L(Y, X) such that Ax = Ax for
all z € D.
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Definition 5.123 Let (D, A) be an unbounded linear operator in X. The domain D(A) of A is the set

the range Im(A) of A is the set

and the graph G(A) of A is the set
GA) ={(z,f) e X x X; €D and f = Az}.

Both D(A) and Im(A) are vector subspaces of X, and G(A) is a vector subspace of X x X.

Remark 5.124 The pair (A, D) is often called “the operator A with domain D(A) = D” or simply “the
operator A”. However, we must notice that an operator is not determined only by the value Ax, but also
by its domain. In other words, when we define an operator it is absolutely necessary to specify its domain.
In particular, the same formula may define several operators, depending on what the domain is.

For example, let X = L?(R™). Let Ay be defined by D(Ay) = X and Ayu = u for allu € X (A
is the identity on X ), and let

D(Ay) = {u € H(R™); u(x) =0 for almost all x with |x| > 1}

and Asu = u for all u € D(A3). Both Ay and As are defined by the same formula, but Ay and Ay have
different properties. For instance, the domain of Ay is dense in X, while the domain of As is not.

Remark 5.125 When there is no risk of confusion, an unbounded linear operator in X is simply called
a linear operator in X or an operator in X.

Definition 5.126 An operator A in X is m-accretive if the following hold:
i) A is accretive;
it) For every A > 0 and every f € X, there exists x € D(A) such that x + NAzx = f.

Lemma 5.127 If A is an m-accretive operator in X, then for each A > 0 and each f € X there exists a
unique solution x € D(A) of the equation

x+ Nz = f.

Moreover, ||z|| < ||fll. In particular, given X\ > 0, the mapping f — x is a contraction X — X,
and is one-to-one X — D(A).

Proof: The result follows immediately from Definition 5.126. O

Proposition 5.128 If A is an m-accretive operator in X, then the graph G(A) of A is closed in X x X.

Proof: This follows from Proposition 5.89. |

Corollary 5.129 Let A be an m-accretive operator in X. For each x € D(A) set ||z| pay = ||| + || Az]|
and ||z]| pcay = || + Az|. Then

i) || - [Ipcay is a morm on D(A), and (D(A),| - ||pcay) is a Banach space; || - [[pcay is called the graph
norm;

ii) D(A) < X;

iii) The restriction of A to D(A) is continuous D(A) — X and ||Allz(pa),x) < 1;

) || - lpcay is an equivalent norm on D(A);

v) Jy is an isomorphism from X onto D(A).
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Proof: It is clear that || - || p(4) is a norm on D(A). Moreover, the mapping
D(A) - X x X, g:xw— (z,Az)

satisfies ||g(z)||xxx = ||z[|pca)- Since g(D(A)) = G(A), which is closed by Proposition 5.89, it follows
that (D(A), || - | pa)) is a Banach space. Indeed, let {x, },en be a Cauchy sequence in (D(A), || - ||p(a)),
where [|z[|pcay = [|z|| + ||Az|. Then

|€n — 2m]| =0 and ||Az, — Az,,|| — 0 as m,n — oo,

which implies that there exist x € X and y € X such that x,, — = in X and Az, — y in X.

However, since (x,, Az,) € G(A) and G(A) is closed, we obtain (x,y) € G(A), that is, y = Ax.
Thus 2, — x in (D(A), || - | pa))- This proves (i).

Item (ii) follows from the inequality [[z| < [[z|/p(a), Whereas (iii) follows from the inequality
| Az|| < [|z[| p(ay- Moreover,

[Allz(pay,x)y = sup{||Az[|; = € D(A) and ||z pca) < 1}
sup{[|z|; = € D(A) and |[z||pa) <1} < 1.

A

To prove (iv), note that ||z|| < |[z]/pa), and also

1zl pcay < 2[z|| + [zl pay < 3llzllp(a)-

Indeed,

|z + 2Az|| + || Az||

# + Az|| + [|Az|| + || Az]|
= |lzllpcay + 2[|Az||

< |zllpeay +2[lz + Az||

[zl peay = ll=ll + [|Az]]

= |lzllpcay + 2=l pca)

3H|$|||D(A)-

Since A is accretive, (iv) follows. Finally, we have Im(J;) = D(A) by Lemma 5.127, and it is
immediate that ||J1z||pa) = ||| for all z € X, because

Izl pay = 112 + Az|| = [|(I + A) x| = ||=]],

and hence J; is an isometry from X onto D(A) endowed with the equivalent norm || - ||pca). This
completes the proof. O

Remark 5.130 From now on, we shall regard D(A) as a Banach space (D(A), | - || p(a))-
Corollary 5.131 If A is an m-accretive operator in X, then

(i) |1zl peay defines a norm on X, equivalent to the original norm || - ||;
(ii) Jx € L(X,D(A)) for every A > 0.

Proof: It follows from Corollary 5.129, item (iv), that ||J1z|p(a) = [|z[|. Hence (i) holds. Given A > 0
and x € X, we have NAJyx = x — Jyx, and thus

1 2
Ielloga) = Wsall + 51 = el < (143 )l
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Therefore, (ii) follows. o

0.5 cm

Definition 5.132 Let A be an operator in X, and let Jy be as defined above. For each x € X and A > 0,
we define Ayx € X by Axx = AJyx. The operator Ay is called the Yosida approximation of A.

Lemma 5.133 Let A be an operator in X and let Ay be as above. The following properties hold:

l‘—J)\CC

A

(i) Ayx = for each x € X;

2
(ii) Ax € L(X) and [|Ax|lz(x) < X for every X > 0;
(iii) Axxz = JyAx for each x € D(A);
(Z"U) (J)\)|D(A) € ,C(D(A)) and ||(J)\)\D(A)||[,(D(A)) <1 fOT’ each \ > 0;

(v) Ax is m-accretive.

Proof: (i) Let z € X and set z = Jyz. We have z + AAz = z, and hence AAyz = MAz = z — 2, which
proves (i). Item (ii) then follows immediately. Indeed,

[Ax[[ = sup [[Axz]
rzeX
lz]| <1
Tz — Jhx
A

sup
rcX
flell<1

Iz
A

IA
w
jor}

e}

T
3 + sup
rcX
llzll<1 llzll<1

IA
\
+
al
=

IN

(iii) Finally, let € D(A) and set z = Jyx. Then

z2+ Az =x.

Since both = and z belong to D(A), it follows that Az € D(A) and

Az + MNA(Az) = Ax.

Now set w = JyAz. Then
w + NAw = Ax,

and hence (w— Az) + AA(w — Az) = 0. Since A is accretive, we conclude that w = Az, which proves (iii).
(iv) We have

[zllpay = [zl + |A(D)]| = [ Iz + [|Axz]]
[ Iazll + [[IaAz| < [lz]| + [|Az]| = [|z]| p(ay-

(v) This follows from Theorem 5.79. ad
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Remark 5.134 If A is an m-accretive operator in X and if X is reflexive, then D(A) is dense in X.
Proof: See [83], Theorem (4.6), p. 16. O

Remark 5.135 If X is a Hilbert space, then we cannot prove the estimate in (ii). In this case, we have
lAx]z(x) < % Indeed, given © € X, let f = Jyx, so that f + ANAf = x. Taking the inner product with
Af, we obtain

(f, AF) + MAS Af) = (z, Af) < [[=]| |AF].

Thus, by Lemma 5.156 we obtain

MAFI < Nzl 1AS]-

IfI[AfII # 0, then

1471 < lall
lanal < e,
lasel < sl
[Axllex) < %

The purpose of the next proposition is to show that Jy is a good approximation of the identity,
and that the (bounded) operator A, is an approximation of the unbounded operator A as A — 0F.

We now state the following result, which will be used in the next proposition.

Proposition 5.136 Let X and Y be Banach spaces, let E be a subset of X, and let (Ax)re(-1,1) be a
bounded family in L(X,Y). If ;\in%) Axx =0 for every x € E, then )l\in%) Ayxz =0 for every x € E.
— —

Proof: Let # € E and let (z,)nen C E be a sequence converging to x as n — oo. Then there exists
C < oo such that, for all n € N,

[Axz| < [Axznll + Cllz = @n].

Given € > 0, we can choose ng sufficiently large such that C||z —z,,| < 5. Then, for A sufficiently
small, we have [[Ax2y,[| < 5. The result follows. a

Proposition 5.137 Let A be an m-accretive operator in X. If D(A) is dense in X, then

(i) ||Ixx — z|| < A||Az|| for every A > 0 and every x € D(A);
(ii) || Jaz — x| — 0T as X\ = 0 for every x € X;
(iii) ||Axx — Az|| — 0% as X = 0T for every x € D(A);
(iv) ||Jxx — x| pay = 0 as X = 0T for every z € D(A).
Proof: (i) Let x € D(A). We have Jyx —z = —AAxx, and thus (i) follows from Lemma 5.133, item (iii).

(ii) We have [|Jx — I[|z(x) < [/l + [[{]| < 2. Moreover, for z € D(A), item (i) gives ||/xz — 2| <
A Az||. Letting A — 0, we obtain ||Jxx — x| — 0. Since D(A) is dense in X, (ii) follows from Proposition
5.136.
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(iii) Given x € D(A), it follows from (ii) that JyAx — Az — 0 as A — 0" in X. Hence (iii) follows,
since JyAx = Ayx by Lemma 5.133.

(iv) Finally, (iv) follows from (ii) and (iii). a

Remark 5.138 Property (i) also holds if D(A) is not dense. Therefore, if A is an m-accretive operator,
then Jyxx — x as A\ — 0 for each x € D(A) and, consequently, for each x € D(A).

Finally, the next proposition provides a short and usual characterization of m-accretive operators.

Proposition 5.139 Let A be an accretive operator in X. Then the following properties are equivalent:

(i) A is m-accretive;

(i) There exists Ao > 0 such that, for every f € X, there exists a solution x € D(A) of the equation
x + )\()A.’E = f

Proof: (i) = (i7) follows from Corollary 5.88.

(#9) = (i) follows from Proposition 5.87. i

Remark 5.140 Let A be an accretive operator in X . In order to verify that A is m-accretive, the natural
approach is to solve the equation x4+ AAx = [ for every f € X and every A > 0. Proposition 5.139 means
that, in fact, it suffices to solve this equation for every f € X and some fized A > 0.

Corollary 5.141 Let A and B be two operators in X. If Im(I + A) = X, if B is accretive and if
G(A) C G(B), then A= B and A is m-accretive.

Proof: Let (z, f) € G(B) and set g = f+x. In particular, x € D(B) and z+Bx = g. Since Im(I+A) = X,
there exists y € D(A) such that y + Ay = g. As G(A) C G(B), it follows that y € D(B) and y + By = g.
In particular,

(z —y)+B(x—y)=0.

Therefore y = z, since B is accretive. It follows that (z, f) € G(A), and hence A = B.

Finally, A is accretive (because B is accretive) and Im(I + A) = X, so A is m-accretive by
Proposition 5.139. O

Corollary 5.142 Let A and B be two m-accretive operators in X. If G(A) C G(B), then A = B.

5.7.2 Accretive operators and duality applications: sum of accretive operators
Recall the definition of the duality mapping F'. For each 2z € X, we define the duality set F'(z) C X’
by
F(z) ={€ € X'; ||éllx = |||l and (¢,2) = ||z]*}.
It follows from the Hahn—Banach theorem that F(z) # 0.

Lemma 5.143 Let A be a linear operator in X. The following properties are equivalent:

(i) A is accretive;

(ii) for every x € D(A) there exists ' € F(x) such that (x', Az) > 0.
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Proof: This follows from Proposition 5.68. O

Lemma 5.144 Let A be an m-accretive operator in X. Then

(x', Ax) >0, for every x € D(A) and every 2’ € F(x).
Proof: Let x € D(A) and 2’ € F(x). For every A > 0 we have

(@, (I +2A) ") < [l [I(T+ A) " el < Jla® = (2, 2).

Hence,
(¢, 2 — (I +XA)"1z) > 0.

Dividing both sides of the inequality by A we obtain

_ -1
<m,,x (I—i—)\)\A) x>>0.

By Lemma 5.133 we have (z’, Ayxz) > 0. Then, by item (iii) of Proposition 5.137, letting A — 07 we
obtain (2’, Az) > 0 for every x € D(A). O

Corollary 5.145 Let A and B be operators in X. Define the operator A+ B by
D(A+ B)=D(A)N D(B), (A+ B)x = Az + Bx.
If A is m-accretive and B is accretive, then A+ B is accretive.

Proof: Since A is m-accretive, it follows from Lemma 5.144 that
(x', Az) >0, Vx € D(A), V2’ € F(z).

As B is accretive, Lemma 5.143 yields: for every « € D(B) there exists ' € F(z) such that (x’, Bz) > 0.
Let € D(A+ B) = D(A)N D(B). Then z € D(A) and x € D(B). Thus, there exists 2’ € F(x) such
that

(', (A+ B)z) = («, Az) + (z', Bz) > 0.

By Lemma 5.143, A + B is accretive. |
5.7.3 Restriction and extrapolation

In this section we show that, given an m-accretive operator with dense domain, we can either
restrict the domain to a smaller space or extend it to a larger space in such a way that the restricted or
extended operator is again m-accretive.

Theorem 5.146 Let A be an m-accretive operator in X with dense domain and let X1 be the Banach
space (D(A), || - || pcay). The operator Ay in Xy defined by

A(l)x = Az, Vre€ D(A(l))

is m-accretive in X1 and D(A()) is dense in X;.

Proof: Let x € D(A(y)), f € X1 and A > 0 be such that

T+ ANz = f.
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In particular,
T+ Nz = f. (5.7.213)

Since € D(A()) we have Az € X, hence Az € D(A). From (5.7.213) we obtain
Az + \A(Az) = Af. (5.7.214)
As A is accretive, it follows from (5.7.213) and (5.7.214) that ||z|| < ||f|| and ||Az|| < ||Af]|. Thus,
[zl = llzll + | Azl < [[f 1+ 1AF] = [[fllx, = llz + AA@yllx, -

Therefore Ay is accretive.

Now let A > 0, f € X7 and set © = Jyf. Then x = (I + NA)71f, that is, 2 + Mz = f. In
particular, Az € D(A) (since f,z € D(A)), which means € D(A(y)) and x + AAqyz = f. Hence Ay
is m-accretive.

Let x € X and set xyx = Jyz. As above we can check that z) € D(A(;)). Moreover, by item (iv)
of Proposition 5.137,
ry —x as A — 07 in X;.

Therefore D(A(1)) is dense in X;. O

Remark 5.147 Some remarks concerning Theorem 5.146:

(i) We have seen in Theorem 5.146 that the operator
A(l) : Xl — le Xl = (D(A)7 || . HD(A))?

defined by
{ D(A(l)) = {iE S Xl; Ax € Xl},

A(l)x = Ax, Vré€ D(A(l))

is m-accretive in X1 and D(Aqy) = X1. Hence we may apply Theorem 5.146 to the operator A).
Thus, setting Xo = (D(Aqy), || - ||D(A(1))), which is a Banach space, the operator Az defined by

{ D(A(Q)) = {iL’ € Xo; A(l).’b S )(2}7

A(g)x = A(l)a:, Vr € D(A(g))

is m-accretive in Xy and D(A(2)) = Xo.

Applying Theorem 5.146 successively, and setting X,11 = (D(Awy), || - HD(A("))), which is again a
Banach space, the operator A, 1y defined by

{ D(A(nJrl)) = {.’I} € XnJrl; A(n)x € Xn+1}7
A(n+1)$ = A(n)x, VY € D(A(n+1))

is m-accretive in Xp11 and D(A@py1)) = Xny1-

Concerning the norm || - || p(a,,,), recall that || - | p(ay is defined by ||z||pcay = ||=| + [[Az||. Thus,
Izllpeagy) = lzllpeay + Azl peay = llzll + [|Az| + [|Az]| + [ A%x].

We have ||z]|p(ag,,) = ||#]] + [|Az| + [|A%z]|. Indeed,

1zl paay) = llzll + 2 Az]| + [|A%2] < 2(]lz]l + [|Az]| + || A%]]),
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(ii)

and
]| + [[Az|| + [[A%2|] < ||zl + 2| Az|| + [|A%2]| = [zl p(ag,)-

Similarly, we obtain

n
12l DAy = 2l + [|Az] + | A%]| + - + | A"l = Y [|Az]).
3=0

Note that
X1 = (DA, by € X, Xo=(D(Aw): |l lIpa,)) CX1 CX, ...,
X1 = (D(Aw): I Ip(ag,) € Xn €+ C X2 C Xy C X = X,
Moreover,
DA =X=X1=X, DAu)=X1=X2=X1, ..., D(A(ms1)) = Xns1 = Xpi1 = Xn.

Since Ay is m-accretive for every n € N, Corollary 5.129 yields a family (X, )nen of Banach
spaces such that
e = X = X, == X = Xy = X = X,

all continuously and densely embedded.

Also note that the family (A))nen of operators is such that A, is m-accretive in X, with domain
Xny1 and Apyx = Az for every x € Xpq1.

When A is bounded we have X, = X for alln € N. Indeed, since A: D(A) C X — X is bounded
and closed (because A is m-accretive), Proposition 2.89 of [23] implies that D(A) is closed. Under
the assumptions of Theorem 5.146 we have D(A) = X. Therefore D(A) = X, so X1 = X. From the
definition of D(A(y)) it follows that D(A(yy) = X. Considering the definition of D(A(,), n € N,
successively, we obtain D(A(,)) = X for alln € N, or equivalently X,, = X for alln € N.

If A is not bounded, the family (X, )nen is strictly decreasing. In fact, if A is not bounded, then by
Theorem 2.89 of [25], D(A) is not closed and consequently X1 # X. Also, if A is not bounded then
A1) is not bounded. Indeed, suppose by contradiction that Ay is bounded. Then

0o>a = sup A 2| pay
[lz]|[<1, €D (A1)
= sup (IA@zllx + A(A@)2)]Ix)

[lz]|[<1, €D (A1)

Y

sup |Az| x .
[lz]|[<1, z€D(Aq))

Hence A would be bounded, a contradiction.

It follows from Corollary 5.131 that X1 = J1(X) and that ||J1z||x, = ||z||. By iteration we obtain
X = JP(X), for every non-negative integer n, and ||J7z| x, =~ ||z||.

Remark 5.148 Given an operator A in X, we can define “powers of A” as follows:
We define A? by:

D(A?) = {z € D(A); Az € D(A)},
A%z = A(Azx)  for every x € D(A?).

More generally, by induction we define the operator A™, forn > 2, by

D(A™) = {z € D(A"1); An~lx € D(A)},
Aty = A(A™ 1) for every x € D(A™).

The spaces X,, defined in Observation 5.147 coincide with D(A™) with equivalent norms if D(A™)
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is endowed with the norm

n
Iz pgamy =D 1 472].

j=0
Indeed, we have Xy, = (D(A@—1), || lIp(a,_,y)) and

Izllx, = l#llpag,r) = 2l + [Az]| + - + [[A"z]| = [[z]l pan)-

We now show by induction that D(A(,_1)) = D(A™) for every n > 2.
For n =2, we have D(A;) = {z € X1; Az € X1}, where X1 = (D(A), | - [[pcay). Thus,

r€D(A) <= z,Az € X, < z,Ar € D(A) < =z, Az € D(A?).
Hence D(A;) = D(A?).

Assume that for some r € N, r > 2, we have D(A._1)) = D(A"). We prove that the same holds
forr+1, i.e., D(Aqy) = D(A™). First observe that

Az € D(A") <= A’z € D(A). (5.7.215)

Indeed, let x € D(A,). Then x € D(A—1)) = D(A") by the induction hypothesis. Hence x € D(A") and
therefore A" 'z € D(A); from (5.7.215) we infer Az € D(A™™1). Thus A""'(Axz) = A"z € D(A), and
so x € D(A™L).

Conversely, let x € D(A™') (we want to show that x € D(A,), that is, x € D(A;_1)) and
Aq_1yz € D(A_1))). Since x € D(A™), we have x € D(A™) = D(A(,._1)) by the induction hypothesis,
hence & € D(A(,_1y). On the other hand, from x € D(A™1) we also obtain A"x € D(A), and thus by
(5.7.215) we get Ax € D(A") = D(A(—1)) by the induction hypothesis. Therefore Ax € D(A(—1)) = X,
and by Observation 5.147 (namely, Az = Ax for every v € X,y1) it follows that A,_yxz = Az
for every x € X, = D(A,—1)). Since x € D(Ap_y)), we have A_1yx = Ar € D(A—1y). Hence
x € D(4A,).

Therefore D(A(,—1)) = D(A™) for every n € N, n > 2, as desired.

Theorem 5.149 If A is an m-accretive operator in X with dense domain, then there exist a Banach
space X 1 and an operator A_1y in X 1 such that:
(i) X — X_1 with dense embedding;
(ii) For every x € X, the norm of x in X_1 is given by ||z||x_, = ||J1z|;
(iii) A1y is m-accretive in X _i;
(v) D(A—1)) = X and the norms || - || and || - ||x_, are equivalent on X ;
(v) For every x € D(A) we have A(_yyx = Ax. Moreover, X 1 and A(_yy satisfying (i)-(iv) are unique.

Proof: Define |||z||| = ||J1z|| for every x € X. Then ||| ||| is a norm on X. Thus, considering (X, ||| - |||)
as a normed space, there exists a unique Banach space (X_1,||-||x_,) such that the embedding X — X_;
is dense, which proves (i); see [60], p. 69.

Moreover, since |||z||| = ||z|x_, by construction, we have ||z||x_, = ||Jiz| for all x € X, proving
(if).
Note also that
AJyx =x — Jyx, forevery x € X.

Thus, by Lemma 5.133,
J1Ax =x — Jiz, for every x € D(A),
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and hence
[Az||[ = [[J1Az|| = ||z — Jiz|| < |lz]| + [[Jiz] < 2||z[|, for every x € D(A).

Therefore |||Az||] < 2||z| for all z € D(A), so A is bounded as an operator from (D(A),| - ||) into
(X, 1]] - [Il)- Since A is linear, there exists a unique operator A € £(X, X ;) such that Ar = Az for all
x € D(A) and

|||[Az||| < 2|jz|| for every x € X. (5.7.216)

We now define the operator A_yy in X_; by

D(A(—l)) = X,
Az = Az, forevery z € X.

Let A >0, x € D(A) and set v = Jyz. Then
v+ Av = Ji(x + AAx).
Since A is m-accretive, we have

Iz + AAzll] = [[ 1 (x + Az)[| = [[o + AAv]| = o] = [[Jrz]| = [[|z[]]-

Because D(A) = X and A is continuous, it follows that
||z 4+ XAz||| > |||z||]| for every z € X.

Therefore A(_) is accretive.

Now let f € X_; and choose a sequence (f,) C X such that f,, — f as n — co. Set z,, = J1 f,.
Then (z,) is a Cauchy sequence in X. Indeed, using linearity of J; we have

|Zn — zmll = 1J1fn — Jifmll = 1J1(fr — fm)ll = 0,

since (f,,) is Cauchy in X_; (being convergent there). As X is a Banach space, (x,) converges in X; let
x denote its limit. We have
fn=an + Az, = x,, + Az,

Passing to the limit as n — oo yields

f=x+ Az = r+ Az

Hence, by Proposition 5.139, A(_y is m-accretive in X_;, proving (iii).

By the definition of A(_;) we have D(A(_y)) = X. Furthermore, the norms || - || x_, and || - || are
equivalent. Indeed, we have already observed that

lzllx_, = [|[Jiz|| < ||z|| for all z € X.
On the other hand, for every z € D(A) we have

||AJ1(E + Jle
Al eex,x 0y 11zl + || iz
cf| Jiz|| + [| 1z

]

IA A

cllellx_, + llllx_,

d”xHXfu
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where ¢,d > 0 are suitable constants. Since D(A) = X, it follows that ||z| < d||z| x_, for every z € X.
Thus
el < llzll < dllzfx_,,

which proves (iv).
From the definition of A(_;) we have A_pz = Az for every x € X. Since Az = Ax for all

x € D(A), we obtain (v). Finally, the uniqueness of A implies the uniqueness of A(_1). a

Remark 5.150 Observe that, under the assumptions of Theorem 5.149, the operator A(_yy is m-accretive
in X_1, where X_1 is a Banach space and D(A_1)) = X_1, since D(A(_1)) = X and X = X_;. Hence,
applying this theorem to the operator A(_yy, we obtain a Banach space (X_2,| -|x_,) and an operator
A(_gy which is m-accretive in X o and satisfies D(A(_g)) = X_2. Proceeding in this way and applying
the theorem successively, we construct a family of operators (A(_p))nen such that A(_,) is m-accretive
in X_p with domain X_, 11 and A_,yx = Az for every x € D(A).

Moreover, we can construct a family (X_,)nen of Banach spaces such that
Xo—=X 1= =X 11 —=X_, =

all embeddings being dense. Arguing as in Observation 5.147, we prove that if A is bounded then X_, = X
for every n € N, whereas if A is not bounded the family (X_,)nen is strictly decreasing.

Combining this with Observation 5.147, we obtain the bi-infinite scale
=2 Xpp =X, =2 X=X =2 X g5 = X = X, =

with all embeddings dense, and we obtain a family of operators (Ae,))nez such that A,y is m-accretive
in X, with domain X, 1 and

Amyr = Az, for all z € X,, N Xj.
Remark 5.151 Some remarks about Theorem 5.149 and Observation 5.150:

(i) Note that restriction and extrapolation commute, i.e.,
A (A @) = Aw) (A(-n)2)-
In particular, (X1)-1 = (X_1)1 = X and (Aq)) 1) = A1 (Aq)) = A.

(i) Note also that X_,, is the completion of X with respect to the norm ||J{z||. In particular, JY can
be extended by continuity to an isomorphism from X _, onto X. For every x € D(A(_y,)) = X _ny1,
the element A(_pyx is the limit in X _,, of A(J{x), where J{x € D(A).

Corollary 5.152 With the notation of Theorem 5.149, if v € X is such that A(_yyx € X, thenx € D(A).

Proof: Let A be an m-accretive operator in X with D(A) = X. Let f = 2 + A(_;)z € X. Since A
is m-accretive, there exists y € D(A) such that y + Ay = f and then y + Ay = f. As Ay is
m-accretive, it follows that © =y € D(A). d

Corollary 5.153 If A is an m-accretive operator in X with dense domain, then:

(i) |Iae — z||x_, <2M||z|| for every x € X;

(ii) If (zx)x>0 is a bounded family in X and X is reflezive, then Jyzyx —xx — 0 as A — 07,
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To prove Corollary 5.153 we shall use the following results.

Lemma 5.154 Let X — Y and (zp)neny C X. Ifz, =z in X asn — oo, thenx,, = x inY asn — 0.
Proof: The embedding X — Y is continuous; hence it is also continuous with respect to the weak
topologies. The result follows. O
Lemma 5.155 Let X — Y be Banach spaces and let (x,)neny C X be a bounded sequence in X such

that x, =y in'Y asn — oo for somey €Y. If X is reflexive, then y € X and z,, — y in X as n — 0.

Proof: First we show that y € X. Since X is reflexive and (z,,) is bounded in X, there exist x € X and
a subsequence (zp,) such that z,, — x in X as k — oco. By Lemma 5.154,

Tp, =2 inY ask — oo

By uniqueness of the weak limit in Y, we must have x =y € X.

We now prove that z,, — y in X. Suppose, by contradiction, that this is not the case. Then there
exist ' € X', ¢ > 0 and a subsequence (z,, ) such that

[z, xp, —y)| > e, forevery k €N.

On the other hand, since (z,, ) is bounded in X, there exist a further subsequence (xnkj) and z € X such
that Ty, =% in X as j — oco. By the first part we must have z = y, which contradicts the inequality
above. Hence x,, — y in X. |

Proof of Corollary 5.153.
Proof: By item (i) of Proposition 5.137 applied to A(_y), we have

|ar —zl|x_, <AMACyz||x_, forall A >0, z€ D(A_y)=X.
From (5.7.216) we know that
A pelx, = A alll < 2] forallo e X,
which proves (i).

For (ii), we have X < X_;, and X and X_; are Banach spaces. Let (z)) x>0 C X be bounded
and suppose that Jyzy —zy — 0in X_; as A — 07. By Lemma 5.155, since X is reflexive, it follows
that Jyzy —xyx — 0in X as A — 0. |

5.7.4 Hilbert spaces and self-adjoint and skew-adjoint operators
In this section we assume that H is a Hilbert space and denote its inner product by (-, ).

Lemma 5.156 If A is a linear operator in H, then the following properties are equivalent:

(i) A is accretive;
(ii) (Az,x) >0 for every x € D(A).

Proof: Since H is a Hilbert space, it follows from Observation 5.70 that A is accretive if and only if A
is monotone. On the other hand, from the remark following Definition 5.2 we know that A is monotone
if and only if A is positive (here we are assuming that A is linear and single-valued). ad

Corollary 5.157 If A is m-accretive in H, then D(A) is dense in H.
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Proof: Let z € D(A) and write J12 =z € D(A). Then
0=(z,2) = (A+ Dz, 2) = (Az,2) + |[«]|* > [|«]?,
since (Ax,x) > 0 by the previous lemma. Hence x = 0.

As Ji is a bijection, there exists a unique y € H such that Jyy = 0. But J;j is linear, so J;0 = 0,
and thus y = 0. Therefore z = 0 and we conclude that D(A) = H. a

Remark 5.158 The spaces H,, defined above are Hilbert spaces with inner product

(z,9)n, = (x,9)u + (Az, AY) g, + -+ (A" Lo, AV Ly

n—1°

In the case of the spaces H_,,, the inner product is given by

(@ y)u_, = iz, J{Y)u.

Before proceeding, recall that given a linear operator A : D(A) C X — X, with X a Banach space,
we define
D(A*) = {u* € X'; Fv* € X' such that (u*, Au) = (v*,u), Yu € D(A)}.

It is well known that if D(A) is dense in X, then, for each u*, the corresponding v* is unique, which
allows us to define the adjoint operator A* by

A" DAY Cc X' = X/,

u* = AU = 0",

Clearly A* is linear. If X is a reflexive Banach space and A : D(A) C X — X is a linear, closed,
bounded operator with dense domain D(A), then D(A*) is also dense in X’ and the following hold:

(i) If B € L(X), then (A + B)* = A* + B*; in particular,
(A+D)* = A"+ 1T,
(i) (Im A)+ = ker (4%).

Finally, if A: D(A) C X — X is a closed, densely defined linear operator, then the following properties
are equivalent:

(i) D(A) =X;

(i) A is continuous;
(i) D(A") = X';
(

iv) A* is continuous.

(5.7.217)

Remark 5.159 If A is m-accretive in H, then, by Corollary 5.157, we have D(A) dense in H, and
therefore A* is well defined.

Lemma 5.160 Let A be a densely defined operator in H and A* its adjoint. Then:

(i) G(A") ={(z,f) € Hx H; (f,y) = (2,9), Y(y,9) € G(A)}, that is,
(z,f) € G(A") <= (~f,2) € G(A)™

(ii) G(A*) is closed in H x H.
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Proof: See [23]. a
Proposition 5.161 If A is m-accretive, then:

(i) A* is m-accretive;

(i) (I + XA~ = ((I +XA)~H* for every X > 0;
(iii) (A*)x = (A\)* for every A > 0;

(iv) e AN = (etN)* for every A > 0 and t € R.

Proof: (i) Let x € D(A*) and A > 0. Then

(A*z, Jhx) = (x, Adyx) = (z, Ayz) = (||:1:H2 — (z,xz)) > 0.

> =

For A small enough we have % > 1, and thus

1
3 (2117 = (@, Ja2)) > |12 = (z, Jrz),

that is,
(A%x, Jhx) > ||9L‘H2 — (z, Jrx).

As A — 07 we have Jyz — x, and therefore
(A*z, Jhyx) — (A*zx, x),

while
[z]|* = (2, Jxz) — [J«]* = [lz[|* = 0.

Hence
(A*x,2) >0,

and by Lemma 5.156 we conclude that A* is accretive.

To show that A* is m-accretive, let A > 0 and set Ly = ((I + AA)~1)* € L(H), which is bounded
by (5.7.217). Let z € H and © = Lyz. If y € D(A), then

(0, 4y) = [y +7y) ~ (@,9)
= L [(Eae, (T4 24)) — (2.)]
= L[ T+ A0 (T +A4)y) ~ (@)
= Mew) - @)
= LGy
Thus (z, 252) € G(A*), hence & € D(A*) and
Az = Z;x = 2=+

Therefore A* is m-accretive, proving (i). Moreover,
(I4+ M2 =0 = ((I+XA)H)*2,

and by the arbitrariness of z € H we obtain (ii).
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To prove (iii), note that

(A )y = =

Finally, for (iv) we have

—t(A")x i(_t(A*)/\)n

€ o — n!
" (A"
B . - A
= m )

£ n!
= lim (Zk: (_tA/\) >*
k—oo 70 n!
= (eftA*)*.

Proposition 5.162 Let A be accretive with dense domain D(A) in H. If G(A) is closed and A* is
accretive, then A is m-accretive.

Proof: From the discussion at the beginning of this section we have
(Im(I + A))* =ker (I + A*) = {x € D(A*); =+ A*z = 0}.

Thus, if z € (Im(I + A))L, then
x+ A*x =0,

and since A* is accretive we obtain
[z]| < llz + A*z|| =0,

hence z = 0 and consequently
(Im(I + A))* = {0},

which implies
Im(I+A)=H.

Now let f € H and choose (f,) C Im(I 4+ A) such that f,, — f as n — oo. Set
z, = (I+A)7 .
Since A is accretive, we have

|20 — 2wl < (I +A) (20 — zm)]
= T+ +A)"(fo = f)ll
= |lfo—fmll — 0 asn,m— oco.

Thus (x,,) is a Cauchy sequence in H, and hence there exists © € H such that z, — .
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The graph G(A) is closed, and consequently G(I + A) is also closed. Since
2, € D(A)=D(I+A), z,—z, {T+Az,=fn—
we conclude that © € D(A) and f = (I + A)z. Therefore Im(I + A) is closed and hence
Im(I+A)=H,

so A is m-accretive. O

0.5cm

Definition 5.163 An operator A with dense domain in H is said to be symmetric (respectively, skew-
symmetric) if
G(A) C G(A™) (respectively G(A) C G(—A")).

We say that A is self-adjoint (respectively, skew-adjoint) if

A= A" (respectively A= —A").

Remark 5.164 From Definition 5.163 we deduce that

A is symmetric << (Az,y) = (z, Ay), Yz,y € D(A),
(Ail',y) = (iC, _Ay)v V(E,y € D(A),

A is skew-symmetric <=
A self-adjoint = A symmetric,
=

A skew-adjoint A skew-symmetric.

Corollary 5.165 Let A be a densely defined operator in H. Then:

(i) If A is skew-adjoint, then A and —A are m-accretive and (Az,x) =0 for every x € D(A);
(ii) If A is self-adjoint and accretive, then A is m-accretive.
Proof: (i) Let z € D(A). Then

(Az,z) = (z,A"z) = (z, —Az) = —(Az, x),

hence
(Az,z) = 0= (—Azx,z), Vze D(A),

and by Lemma 5.156 both A and —A are accretive.

Next observe that

e —A is accretive;
o (mA)*=—-A*=—(—A) = A is accretive;

o G(—A)=G(A*) is closed by Lemma 5.160;

thus, by Proposition 5.162, — A is m-accretive.

Similarly,

e A is accretive;

e A* = —A is accretive;
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o G(A) is closed, since G(—A) is;

hence, again by Proposition 5.162, A is m-accretive.
(ii) We have A* = A and A is accretive, while G(A) = G(A*) is closed by Lemma 5.160. The

result then follows from Proposition 5.162. a

Corollary 5.166 If A is m-accretive in H, then the following are equivalent:

(i) A is self-adjoint;
(i) (Az,y) = (x, Ay) for all z,y € D(A).
Proof: (i) = (i7) is immediate.

(73) = (i) If A satisfies (ii), then G(A) C G(A*). We show the reverse inclusion. Let (z, f) € G(A*)
and set
g=x+A'z=x+ f.

Since A is m-accretive, there exists y € D(A) such that
g=y+ Ay,

and as G(A4) C G(A*), we have y € D(A*) and
g=y+A%y.

Thus
y+ A'y=x+ A%z

Since A* is accretive,
z —yll < [I(I +A%)(z —y)|| =0,

so x = y. Therefore (z, Az) = (z, f) € G(A), and hence G(A*) C G(A) and A = A*. O

Corollary 5.167 If A is m-accretive, then the following are equivalent:

(i) A is skew-adjoint;
(i) (Az,z) =0 for every x € D(A);
(iii) —A is m-accretive.
Proof: Observe that (i) = (i¢) and (i) = (4i%) follow from Corollary 5.165.
(#91) = (i1) Since A and —A are m-accretive, we have
(Az,2) >0 and (—Az,z)>0, Vae D(A),

whence
(Az,z) =0, Ve D(A).

(#9) = (i) Let z,y € D(A). Then

(Az,y) + (v, Ay) = (A(z + ),z +y) — (Az,z) — (Ay,y) =0,

SO
(Az,y) = (x,—Ay), Vz,y € D(A),
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which implies G(A4) C G(—A*).
We claim that (A*z,z) = 0 for every € D(A*).
Indeed, if x € D(A) C D(—A*) = D(A*), then
(A*z,z) = (x,Az) =0
Now let x € D(A*). For each A > 0 we have Jyz € D(A), hence
(A* Iz, Jyx) = 0.

But
(A*J)\.%‘, J)\LL‘) = ((J)\)*A*J)\l‘,x) = ((A)\)*(JA.”L'),QT), YA >0,

that is,
((AN)"(Jrz), ) =0, VA>0. (5.7.218)

Since Jy, (Ax)* € L(H) and Jyx — z, (Ax)*z — A*z as A — 01, we have
(A\)*(Jyx) — A*x

as A — 07. Passing to the limit in (5.7.218) we obtain (A*z,z) = 0.

From this we also get (—A*z,z) = 0 for every z € D(—A*), and thus —A* is accretive.

Since D(A) C D(—A*) and A is m-accretive (hence maximal), we conclude that A = —A* proving
(i). O
Corollary 5.168 Let A be m-accretive and A, the operator defined in Observation 5.150, for n € Z.
If A is self-adjoint, then Ay, is self-adjoint (the same holds if A is skew-adjoint).

Proof: We argue by induction on n € N. We first prove the result for A(,) with n > 0 and then for
A(_n)7 n > 1.

Assume that A is self-adjoint and let z,y € D(A1). Then

(Arz,y)m, Arz,y)m + (A(A1)z,y)u
Az, y)u + (A, 9)u
z, Ay + (2, A%y)n

x Aly)Hl

(
(
(
(

Since A7 is m-accretive, it follows from Corollary 5.166 that A; is self-adjoint.

Assume now that Ay is self-adjoint and let us show that Agy; is also self-adjoint. For x,y €
D(Ag41) we have

A1z, 9) m, + (Ak(Aks1)2,9) i,
Az, y)Hk + (Aixv y)Hk
z, Ay)m, + (2, AZY) i,

x, Ak+1y)Hk+17

(Ags1, y)Hk+1

(
(
(
(

and again, since Ay is m-accretive, Corollary 5.166 gives that Ajy; is self-adjoint.

Now let =,y € D(A(_1)) = H. Then there exist sequences (), (yn) C D(A) such that z,, — x
and y, — y in H. Moreover, by Theorem 5.149(v),

A(—l)xn = Az, € H, A(—l)yn = Ay, € H,
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and by Theorem 5.149(iv) the norms in D(A(,l)) and H are equivalent. Since, by Corollary 5.129, A(_y)
is continuous on D(A(_y)), we obtain

A(_l)xn — A(_l)x, A(_l)yn — A(_l)y in H,
and, as H < H(_y), also

A(_l)xn — A(_1)$7 A(_l)yn — A(_l)y in H(_l).

Thus,
(A(fl)xnayn)H(_l) (J ( ) len)
(J1 Axn,len)
(AJlmelyn)
(J1$n,AJ1yn)
(Jlx'rut]lAyn)
= (J1$n7J1A( 1)yn)
= (l‘n,A yn)H( 1)
that is,

(An@n,yn)m 1) = @0, A1)Yn)H ) -

Letting n — oo we obtain
(A(,l)x,y)H(fl) = (x,A(,l)y)H(fl). (5.7.219)

From Observation 5.150 we know that A(_;y is m-accretive, and thus, by (5.7.219) and Corollary 5.166,
A(_y) is self-adjoint.

Assume now that A_y) is self-adjoint and let us show that A_(x41)) is also self-adjoint. All the
properties of A(_;y with respect to A and of H(_;y with respect to H hold, in an analogous way, for
A(Z(k+1)) With respect to A_y) and for H(_ (1)) with respect to H(_j). Hence the argument is the
same as in the case n = 1. Therefore A(_ (1)) is self-adjoint and the proof is complete. O

Lemma 5.169 Let A be an m-accretive operator in H. Consider a family (xc).>0 C D(A). If x. — x
in H as e — 0, and if (Ax.) is bounded in H, then x € D(A) and Az, — Az in H ase — 0.

Proof: Since H is a Hilbert space, it is reflexive. This ensures the existence of a sequence ¢, — 0 and
of some y € H such that Az., — y in H as n — +oo. In particular, (z.,,Az.,) — (z,y) in H x H as
n — 400. On the other hand, Proposition 5.89 shows that G(A) is closed, and in particular closed in the
weak topology of H x H, hence z € D(A) and y = Ax.

Assume now that Az, /A Az as ¢ — 0. Then there exist N’ C N and a subsequence (&, )nen with
€n — 0 such that Az, -/ Az as n — co. By definition of weak convergence, there exist ¢y € H' and
1o > 0 with the property that, for every d,, = % > 0, we can find ¢, € R such that 0 < |e,,| < d,, and

|<<p0’Aa:En> - <(p0,Al‘>| 2 Mo,
as required.

Since (Az., ) is bounded, there exist N* C N and h € H such that (Az., ) satisfies Av., — h.
As G(A) is closed and z., — x, we obtain Az = h = Az.

On the other hand, from the existence of N’ C N and (e, )pen with €, — 0 such that Az, A Az
as n — oo, we infer the existence of a neighbourhood V' of Ax such that, for each n € N, there exists
no € N', ng > n, with Az, ¢ V.

Taking this same neighbourhood V' and using the fact that Axenk — Az, there exists mg € N* ¢ N
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such that Az., €V for all k > mg, which contradicts the property above. O

Remark 5.170 The following properties hold:

(i) If A is self-adjoint and n is a non-negative integer, then A?" is self-adjoint and accretive and
therefore m-accretive.

(ii) If A is self-adjoint and accretive and if n is a non-negative integer, then A*"*' is self-adjoint and
hence m-accretive.

(iii) If A is skew-adjoint and n is a non-negative integer, then A?" is self-adjoint and accretive and
therefore m-accretive.

(iv) If A is skew-adjoint and n is a non-negative integer, then A*"*1 is skew-adjoint and hence m-
accretive.

Remark 5.171 If A is an m-accretive operator, then A™ is not necessarily accretive.

Indeed, consider H = R? and for each x = (a,b) € R? let A be the operator that rotates x by an
0=m.

angle 0 = 5. Then A? is the rotation by an angle

In particular, for x = (||z|| cos @, ||z| sinf) we have

(A’z,2) = (||z] cos(0 + ), ||z| sin(0 + 7)) - (||| cos b, ||z| sin )
l|[|? cos(f + ) cos 6 + ||x||* sin(# + 7) sin 6

|z||* cos ((6 + ) — )

= o] cos(m)

= —lz]*<o0.

Consequently, A% is not m-accretive. We already know that A is monotone from the first example in the
chapter on Monotone and Accretive Operators. Since H is a Hilbert space, A is accretive. Now, given
f = (y,2) € R?, it suffices to take x = (a,b) = (y;’z, ”—;Z) to see that x + Ax = f, and consequently A is
m-accretive.

Let A be an m-accretive operator in H and let A* be its adjoint. It follows from Proposition 5.161
that A* is also m-accretive. In particular, D((A*)™) is dense in H for each non-negative integer n. Hence,
n

if D((A*)") is endowed with the norm ||z|| p((a=)n) = Z |(A*) 2|, then

D((A")") = H — D((A")")’,

where both embeddings are dense. Thus we obtain the following result.

Proposition 5.172 Let A be as above and (H_,)n>0 the spaces defined in Observation 5.150. Then
H_,, = D((A*)™) with equivalent norms.

Proof: It is enough to prove that ||z|x_, ~ H.’,L'||D((A*)7L)/. By density, we may assume that v € H. It
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follows from Observation 5.151(ii), Proposition 5.162, Observation 5.148 and Observation 5.147(ii) that

lzllz_, = [Ji(A)"=|
sup (J1(A)" 2, y)m.u
[lyll=1

= sup (z,J1(A")"Y)uu
lyll=1

N ||Sl\|1p (@, J1(A")"Y) D((am)my . D((A"))
yl|=1

= sup (I7Z)D((A*)n)/7D((A*)n)
Izllp(axyny=1

= ||$HD((A*)H)/~

This proves the claim. O

Corollary 5.173 Let A be a self-adjoint and accretive operator, or a skew-adjoint operator, in H, and
let (Hy)nez be the spaces introduced in Observation 5.150. Then H_, = H] with equivalent norms for
eachn € 7.

Proof: Consider n > 0. By Observation 5.148 we have H,, = D(A™) = D((A*)"), and thus H_,, = H],
by Proposition 5.172. By Observation 5.158, the spaces H,, are Hilbert spaces and therefore reflexive.
Hence H' , = H! = H,. O

Recall that H is said to be a complex Hilbert space if there exists a mapping b : H x H — C
satisfying:

b(Ax + py, z) = Ab(z, z) + ub(y, z), for all x,y,z € H and all A\, u € R;
by, z) = b(z,y), for all z,y € H;

bliz,y) = ib(zx,y), for all z,y € H;

b(z,r) = ||x|?, for all x € H.

Moreover, H is a Banach space with respect to the norm induced by b: H x H — C.

It is easy to see that H, endowed with the inner product

(z,y) = Re(b(z, y)),

is a real Hilbert space.

Lemma 5.174 Let H be a complex Hilbert space and let A be an operator in H. Assume that A is
C-linear and define iA by

{ D(iA) = D(A),
(1A)x = iAx, for every x € D(A).

If D(A) is dense in H, then A* is C-linear and (1A)* = —iA*.

Proof: Recall that G(A*) = {(z, f) € H x H; (f,y) = (x,9), V(y,9) € G(A)}. Let (z, f) € G(A*). We
want to show that for each A € C we have (Az, \f) € G(A*), or equivalently, that for each (y, g) € G(4),

(Afyy) = (Az, g).
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Indeed,
Ay = (fW)
(A*z, \y)
— (@, A())
(2, XAy)
— (. 4y)
= (A*(M\x),y), forevery y € D(A).
By density we obtain A*(Az) = AA*(z) for every x € D(A*). Similarly,
(A"(z+y),2) = (v+y A2)
(z, A2) + (y, Az)
= (Az,z)+ (A%, 2)
= (A*(z+vy),z), foreveryze D(A),

so A* is C-linear.

Now, if (z, f) € G(A*), then z € D(A*) and f = A*z, hence —if = A*(—ix) = —iA*z, that is,
(x,—if) € G(—iA*). We now show that (x, —if) € G((iA)*). Indeed, for (y,g) € G(A) we have

(_ifv y) =

Therefore (z, —if) € G((iA)*), and so G(—iA*) C G((iA)*). Applying this to the operator iA, we get
G(—i(iA)*) C G(—A*). By C-linearity it follows that G((¢A)*) C G(—iA*). Consequently,

G((iA)*) = G(—iA").

Corollary 5.175 Let H be a complex Hilbert space and let A be an operator in H. If A is C-linear, then
the following properties are equivalent:

(i) A is self-adjoint;
(it) iA is skew-adjoint.

Proof: Assume that A is self-adjoint. It follows from Lemma 5.174 that
(A)* = —iA* = —iA = —(iA),
so 1A is skew-adjoint.

Conversely, if 1A is skew-adjoint, then
A* = (—i(1A))* = i(iA)" = —i(iA) = A,

that is, A is self-adjoint. O
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5.7.5 Examples of m-accretive operators and partial differential operators

In this section we describe some examples of partial differential operators associated with classical
evolution equations.
5.7.5.1 First-order operators

We now present a series of examples related to transport equations.

Example 5.176 A first-order operator in R. Let X = C,(R) and define the operator A in X by

D(A) = {ue CYR) N X; o/ = ZL‘ e X},
XL

Au=u', forue D(A).

(5.7.220)

Proposition 5.177 If A is defined by (5.7.220), then A and —A are m-accretive.

Proof: We first show that A is accretive. To this end, take A > 0 and (u, f) € D(A) x X satisfying
u 4+ AAu = f. This implies that

u+ A/ =f, forallzeR. (5.7.221)
Let | o
Lf(x) =5 / e f(s)ds. (5.7.222)
Then
]. x s—x
ILf@)] < 5 [ e |f(s)lds
1 -
< Ml [ eFas
= [ llee-
Indeed,
z S—T z S—x
/ e> ds = lim e~ ds
—50 b— 400 —b
0
=, liI_P \ Ae* du, via the change of variables u = u(s) = (s — 2)\™*
—+oo ) —b—=z
"0
= A lim e
b—+o00 —b—=z
—b—zx
— A(1— i
A= tim e
= A\
Therefore,
ILflloe < [Iflloos (5.7.223)
since

[fllee = inf{e; [f(2)] <¢, Vo € R} = 8161£|f(x)|~

In general, the solution of (5.7.221) is given by

u(z) = Lf(z) +ae” %,
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Indeed, we know that the general solution of an equation of the form ¢’ + p(z)y = ¢q(z) is

y(x) = e~ JP@ ( / gla)e) P@ dz gy | a> :

In our case the equation has the form
!4 l — lf
y )\y - )\ ’

and hence

y(z) = e Jrd G/f(x)efidwdmm)
(i/eif(a:) dx+a>

(i eif(s)ds+a>
1

= X/e%f(s)ds—f—ae_%.

- &

M

= €

>8

Since u and Lf are bounded, we must have a = 0. If we assume a # 0, then there exists K € N
such that
lae™X| < |u(z) — Lf(z)| < K, VzeR

As ) is fixed, this leads to a contradiction as x — —oo.

Therefore u = Lf, and from (5.7.223) we obtain

lulloo = 1L lloo < [1flloe = llu+ Mt lloo = [t + At .

Hence A is accretive.

Lemma 5.178 Let f : [a,b] — R be continuous and o, : I — [a,b] differentiable. Let ¢ : I — R be

defined by
B(x)

cp(x):/() f@)ydt, =zel.

Then ¢ is differentiable and

Let A > 0 and f € X. By the lemma above and by (5.7.223), we have Lf € X N C'(R). Indeed,
defining a,  : R — [=b, 2] by a(z) = b and S(z) = z, it is clear from the lemma that (Lf) = f. Thus
Lf € CY(R) and satisfies (5.7.221). Consequently Lf € D(A), since (Lf)' = f € X. In summary,
Lf € D(A) and Lf + AM(Lf)" = f. Hence A is m-accretive. The same argument shows that —A is
m-accretive. O

Remark 5.179 Note that in the previous example D(A) is not dense in X. For instance, u(z) = sin(z?)
belongs to X. However, if z € C*(R) satisfies ||z — ullc < 1, then sup,cp |#/(z)| = 00, so z ¢ D(A).
Therefore u cannot be approzimated by elements of D(A).

Remark 5.180 We can modify the examples above as follows:

(i) Let X = L>®(R) and define A by

D(4) = Wh>(R),
Au=1u/, forue D(A).
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Then A and —A are m-accretive. The proof is essentially the same as that of Proposition 5.177.
Note that in this example it is easy to see that D(A) is not dense in X.

Indeed, let u(z) = sin(z?). Then u(z) € X = L®(R). However, given ¢ = %, if there existed
z € WH(R) such that ||z — ulls < 7, we would have sup,cy |2/ (z)| = oo, contradicting the fact
that 2 € L= (R). Thus W1>°(R) is not dense in L>=(R).

(ii) Let now X = Cy(R), where Co(R) is the closure of D(R) in L=, and D(R) is the Fréchet space

of C* functions from R to R with compact support in R, endowed with the topology of uniform
convergence of all derivatives on compact subsets of R. Define A in X by
D(A)={ueC'R)NX; v € X},
Au=1/, forue D(A).

Then A and —A are m-accretive with dense domain. The proof that A and —A are m-accretive is
the same as in Proposition 5.177. To show that D(A) is dense in X, note that

X=0=®)" cDA" cxF =x.

(iii) Now let 1 < p < o0, take X = LP(R) and define A by

D(4) = Wh(R),
Au=1/, forue D(A).

Then A and —A are m-accretive with dense domain. If p = 2, then A is skew-adjoint. Since
D(R) C D(A), we have

X = IP(R) = C=(R) C WI#(R) = D(A).
Hence X C D(A) and therefore D(A) = X.

We show that A is m-accretive; following the proof of Proposition 5.177, it suffices to show that
L€ L(LP) and || Ll zrery) < 1, e, [L]lp < [Iflp-

For p =1 we have

LS ()]

<3 /
fpsenass [[ vorarisas

[ 1ns@)da (/ e*ds)(/|fs+x|dx>
([ eras) ([ 1rnar)

1
A
1
A
- / )| dz = |||

Thus

By Fubini’s theorem,

IN

Therefore | Lf[l1 < ||
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Now let 1 < p < oo and let p' be the conjugate exponent, i.e. % + ]% =1. Then

By Holder’s inequality,

LS ()]

Therefore

Hence

By Fubini’s theorem,

JZEIRE

Thus || Lf|l, < || f]l,-

L@l = |5 [ ST

0
%/ e3|f(s + )| ds

0 1 1
/ eX(y+;)(|f(5+m)|p)1/Pd5

IN

0
/ eﬁe%(|f(s+x)|p)l/pds.

0 N V4 0 . 1/p
i(/ |e*;’pds) (/ (e§|f(s+x)|p)ds)
0 1/p' 0 1/p
1\(/ eids) </ ei|f(s—|—x)|pds)
0 1/p’ 0 1/p
i()\/ esds) (/ ei|f(s+3:)|pds>

0 1/p
AT/ (/ ei|f(s+:c)|pds) .

0
L o

— 00

/R|Lf(a:)|pda:§ i/R/Oooeﬂf(s—&—x)pdsdx.

IN

([ ) (v
(o) ([

- / @) dz = || ]2,
R

As in the proof of Proposition 5.177, it follows that A is m-accretive, and by the same argument

—A is m-accretive.

If p=2, then WH2(R) = H'(R) is a Hilbert space and, by Corollary 5.167, A is skew-adjoint.

Example 5.181 A first-order operator on a bounded interval. Let X = {u € C([0,1]); u(0) =
u'(0) = 0} endowed with the supremum norm. Define the operator A in X by

Before stating the first result we recall a proposition that will be used in its proof.

D(A) = {u € C*([0,1]); u(0) =u'(0) =0},
Au=1', forue D(A).

(5.7.224)
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Proposition 5.182 Assume that f € C(R™). Then (p, * f) — [ as n — oo uniformly on compact
subsets of R™.

Proof: See [14], Proposition IV.2.1, p. 70. m

Proposition 5.183 The operator A defined above is m-accretive with dense domain.
Proof: Following the proof of Proposition 5.177, given f € X and A > 0, the unique solution of
ut+ ' =f

is

from which it follows that A is m-accretive. We now show that D(A) is dense in X.

Let v € X and § > 0, and define us € X by

Then |lus —ul| - 0in X as 6 — 0*.

Given € > 0, choose ¢ sufficiently small so that

€

Jug —uf < <.
Define vs € C(R) by
0, z <0,
ugs(x), 0<z<1,
vs(z) =

(2—-2)us(l), 1<z<2,
0, x> 2.

Note that suppwvs C [0, 2] and the intervals on which it is defined are closed; moreover, if A = [0, 1] and
B =[1,2], then us(z) = (2 — z)us(1) for all z € AN B. By the gluing lemma, vs is continuous.

Let (pn) C R be a mollifier sequence. By Proposition 5.182 we have p,, % vs — v5 = us uniformly
on [0,1]. Thus, for n sufficiently large,

lu = (pn *vs)j0,1) || < [lu—usl| + llus — (pn * vs)|| < e.

Clearly (py *vs)0,1] € D(A) for n large enough, since v5 € L{,.(R) and p,, € C°(R), and as the supports
shrink we have

(P v5)'(0) = (po * 04)(0) = 0.

Remark 5.184 We can modify the examples above as follows:

(i) Let X = L*°(0,1) and define A by

D(A) = {u € Wl,oo(()’ 1); u(O) = O}a
Au =1/, forue D(A).

Then A is m-accretive. The proof is an adaptation of the proof of Proposition 5.183. Note that
D(A) is not dense in X.
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(ii) Let 1 <p < oo, X = LP(0,1), and define A by

D(A) = {u € W'P(0,1); u(0) =0},
Au=1/, forue D(A).

Then A is m-accretive with dense domain. Since D(0,1) C D(A), it follows that D(A) is dense in

X. The rest of the proof is an adaptation of the proof of Proposition 5.183.

(iii) Let X ={u € C([0,1]); w(0) = u(1)} and define A by

D(A) ={u e C'([0,1]); u(0) = u(1) and v/'(0) = u'(1)},
Au=1', forue D(A).

Then A is m-accretive.

Example 5.185 First-order operators in R*. We may modify the ezamples above by considering
operators on the half-line. The proof of the corresponding result is almost the same as in the case of the
whole line. For instance, let

X =Co(RT) = {u € C'([0,00)); u(0) =0 and lim u(zx) =0}

r—r00

and define

(5.7.225)
Au=1', forue D(A).

{ D(A) = {u e C([0,00)) N X; v € X},

We have the following result.

Proposition 5.186 If A is as above, then A is m-accretive with dense domain.

Proof: We first show that A is accretive. Let A > 0 and (u, f) € D(A) x X satisfy u + AAu = f. Then

u+ M =f, Vxel0,00). (5.7.226)
Set L e
Lf(x)zx/ e x f(s)ds.
Then ) . )
LA < Ml [ €5 ds = L0 = Il
SO

ILflloo < [If]loc- (5.7.227)

The general solution of (5.7.226) is
u(z) = Lf(z) + ceX.

Since v and Lf are bounded, we must have ¢ = 0. Therefore u = Lf, and from (5.7.227) it follows that
A is accretive.

Now let A > 0 and f € X. We show that Lf € X. In fact,

Tr— 400 r—+00

lim Lf(z) = lim %/ e f(s)ds
0
1 b

s—x

= lim lim 7/ e > f(s)ds.
AJo

T—~+00 b—+o00
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Using integration by parts we obtain

’/1\/0 eS;xf(s)ds

s)ds

IN
q

0)| +
/() = ()Hlf O] —0

IN

as r — +00.

Hence lim, oo Lf(x) = 0. Moreover, Lf(0) = 0, and since Lf is the integral of continuous
functions, Lf is continuous, and so Lf € X. Furthermore, (Lf) () = f(x) € C[0,00), hence Lf €
C1[0,00) and (Lf)" € X, because f € X.

Thus Lf € D(A). O

Remark 5.187 We can modify the example above as follows.

(i) Let p =00, X = L>®(R,) and A be defined by

{ D(A) = {u € WH=(R); u(0) =0},
Au =1/, forue D(A).

Then A is m-accretive and D(A) is not dense in X.

Arguing as in the proof of Proposition 5.177, one checks that A is accretive. Let f € X and X > 0.
Consider

Lf(z)= %/O e x f(s)ds.

We have

x

1 [* sa 1 T ez
LI@I <5 [ U@lds < S [ ds =l (1= 7F) <

Hence
sup [Lf(2)] < || flloo

rz€RY

that is, ||Lf|lcc < ||fllcc- Consequently, Lf € X. Moreover, Lf € D(A) since

1 /0.
(L) = €1*®y) and Lf0) =5 [ X f)ds o

Therefore A is m-accretive.

Arguing as in Observation 5.179, one sees that D(A) is not dense in X.
(i) Let 1 <p < oo, X = LP(R;) and A be defined by

D(A) = {ue WHP(Ry); u(0) = 0},
Au =1, foru e D(A).
Then A is m-accretive with dense domain.

As in item (iii) of Observation 5.180, one verifies that A is accretive. Let f € X and A > 0 and

define
1/“C -
=— e
A Jo
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Again, as in item (iii) of Observation 5.180, we obtain

ILflp < [1flp-

Hence Lf € X. Since (Lf) = f € X and Lf(0) = 0, we have Lf € D(A), and therefore A is

m-accretive.

Moreover,

LP(Ry) =X =C*(Ry) € D(A) C X,

so that D(A) = X.

We can also modify the examples above by considering the operator —u’ instead of «’. For instance,

let
X ={u e C([0,00)); lim u(xz) =0},

Tr—r0o0

and let A be the operator defined by

D(A) = {u € C1([0,00)); lim u(z) = lim v/(z) = 0} ,

Tr—r00 Tr—r00

Au = =/, for u € D(A).
We have the following result.

Proposition 5.188 If A is as above, then A is m-accretive with dense domain.
Proof: Let A > 0 and (u, f) € D(A) x X satisfy
u+ Nu = f,
or, equivalently,
u—XM'=f, Vxel0,00).
Define

z—s

Lf(a:):—%/ooe > f(s)ds.

Then
1 z=s 1
L@ < 31l [ 5 ds= S0l [ e du= | fle

00 0
x —o0

Hence || Lf]loc < ||f|loo-

We may rewrite (5.7.228) as

whose general solution is

u(:r) = _i e%f(S) ds + C€§ = Lf(:[') + ce%.

(5.7.228)

Since lim u(x) = 0, given, say, ¢ = 1, there exists xo such that |u(x)| < 1 for all z > x¢. By
T—r00

continuity of u on the compact interval [0, z¢], there is M > 0 such that |u(z)| < M for all z € [0, xo].

Let K = max{M,1}. Then |u(x)| < K for all z € R;. Thus u € L>®(R,).

Since f € X, we have f € C([0,00)) and lim, o f(x) = 0. As (Lf)'(z) = f(x), it follows that

lim, oo (Lf)'(z) =0 and (Lf) € C(]0,00)), so Lf € C1([0,00)). Moreover,

b

lim Lf(:n):—1 lim e%f(s)ds:O.

T—00 A b—oo b
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Therefore Lf € D(A) and A is m-accretive. In addition, D(A4) = X. O

Remark 5.189 We may modify the preceding example as follows.

(i) Let X = Cp(]0,00)) and A be defined by

{ D(A) ={u e C*[0,00)) N X; u' € X},
Au = —u/, foru € D(A).

Then A is m-accretive and D(A) is not dense in X.
(i) Let X = LP(0,00) and A be defined by

D(A) = W (0, 00),
{ Au = —u/, foru € D(A).

Then A is m-accretive and D(A) is not dense in X.
(#ii) Let 1 <p < oo, X = LP(0,00) and A be defined by

D(A) = WP(0, 00),
Au = —u!, forue D(A).

Then A is m-accretive with dense domain.

Remark 5.190 Let X = {u € C([0,1]); u(0) = 0}, endowed with the supremum norm, and consider the
operator A in X defined by

{ D(4) = {u € C((0,1]); u(0) = u/(0) = 0},
Au =/, foru e D(A).

In Observations 5.189, 5.184 and 5.187, the operator —A is not m-accretive.

Example 5.191 (A first-order operator in R") Let X = C,(R") and a € R™. Define the operator A
in X by
DA)={ueX; a-Vue X},

" Ou (5.7.229)
Au=a-Vu= j;lajgj7 for u € D(A).

The condition a - Vu € X is understood in the sense of distributions.
We have the following result.

Proposition 5.192 If A is defined by (5.7.229), then A and —A are m-accretive.
The proof relies on two lemmas.

Lemma 5.193 Let A >0 and 1 <p < oo. Ifu € LP(R™) satisfies
u+Aa-Vu=0 inR",

then u = 0 almost everywhere.
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Proof: Let (p,)nen be a mollifying sequence and set u,, = p, *u. Then u,, € C°(R")NL>(R™). Indeed,
by Proposition 4.20 in [18], u, € C*°(R™). Moreover,

un(@)| = [(pn * u)(z)] < /Rn lon(x = y)uy)| dy < llpn ()| Lol zr-

Thus

sup [un(z)| < sup (|pn(2)LallullLr) = ¢ sup [pn(z)|Ls-
zER" zER® z€R"

Since p, € C°(R™), there exists k(n) > 0 such that

sup |un(z)] < ck(n),
rER™

and therefore u,, € L>(R") for each n.
Furthermore,
0 <||up +Aa- Vu,|| — |Ju+ Aa-Vul]| =0, asn — oo,

so that
U, + Aa - Vu,, = 0. (5.7.230)

For a fixed x € R™, define
h(t) = e'u,(z + Aat), teER.

From (5.7.230) we have
W (t) = e'uy(z + Aat) + €' Vu, (x + Aat) - (Aa) = €' (un(z + Aat) + Aa - Vu,(z + Aat)) = 0.
Hence h is constant. Since u,, is bounded, there exists C' > 0 such that
0 < |h(t)] = |e'un(z + Aat)| < Cet,

and letting ¢ — —oo yields |h(t)] — 0 and therefore h(¢) = 0. In particular, h(0) = 0 implies u,(z) = 0.
As x € R™ was arbitrary, we deduce that u,, = 0.

Since u,, = pp *u — u in Li (R™), it follows that u = 0 almost everywhere. ad

Lemma 5.194 Let A > 0 and f € Cp(R™), and define

Lf(z)= i/ooo e > f(z — as)ds.

Then
Lf4+Xa-V(Lf)=f (5.7.231)

in D'(R™). Moreover,
ILflle < ||fllze for every 1 < p < oo such that f € LP(R™). (5.7.232)

Proof: Define 1 o
Mf(z) = X/ e X f(x +as)ds, feCy(R").
0

Observe that Lf € L (R™), since Lf(x) is continuous (being an integral of continuous functions) and

thus integrable on any compact set.
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By Fubini’s theorem, for every f € C3(R™) and ¢ € D(R™) we have

Indeed,

(Lf, o)

In addition,

Using integration by parts with u = e~* and dv =

That is,

Therefore,

M(Xa-Ve)(z)

/Rn Lf(z)e

(Lf,¢) = - [ Mydz.

(z) dx

/ %/ooeféf(xfas)dsga(x)dx
n A Jo

l/°°
a8
J

R

fz

(p(a + as)) ds

(Lf, o)

f

/n e > flx — as)p(x) dzds

[
)[)\/0 e Ago(quas)ds} du

) Mp(z) dx.

o(u+as)duds (u=x—as)

hyw

e~ 3a-Vo(x + as) ds

b

73
A

(¢(z + as)) ds.

&=~

js (¢(x 4 as)) ds, we obtain

L1
A

’ oo

e~ Xo(x +as) .

—p(x) + Mop(z).

/ e~ Xp(x +as)ds
0

Vo) (z) = —p(z) + Mp(z).

fMpdx
RTL

[ 10100 To)@) + ¢(@) de
fM(Aa-V)dx + /Rn fo(x)d
(f ).

Rn
(Lf,Ma V) +
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On the other hand,
(Lf.\a-Vo) = (Lf Zn:Aa-a—‘p
) ¥ ) £ lal‘i
_ N O
= Z Aa; <Lf7 axi>
B OLf
= Z Aa; < Fr >
7 - OLf
= <;)\aZ oz, ,<p>

= (“Xa- V(L) ).

Hence

(Lf,p) = Aa-V(Lf)+ f ).

Since ¢ € D(R™) is arbitrary, we obtain
Lf+Xa-V(Lf) =,
which proves (5.7.231).

We now prove (5.7.232).

For p = oo, we have

L@l = |5 [ et e
1 [ _s
< X/o e X f(x—as)|ds
1 Sl
< Sl [ as
= [ fll>

and therefore ||Lf|loo < || f]lco-

For 1 < p < oo, one argues as in item (iii) of Observation 5.180 to obtain ||Lf|lzr < ||f|lze-

Returning to the proof of Proposition 5.192.
Proof: We first show that A is m-accretive. Let A > 0, f € X and u € D(A) satisfy

u+ Au = f.
Set w = Lf, where L is defined in Lemma 5.194. Then Lf + Aa - V(Lf) = f. Hence
Lf+Xa-V(Lf)=u+ Au=u+ Aa- Vu,

so that
(u—w)+Aa-V(iu—w)=0

in D'(R™). Applying Lemma 5.193, we obtain u = w = Lf.

Accretivity follows from Lemma 5.194, since for every 1 < p < oo,

lullee = [1Lf e < 1 flle = [lu+ AAul|Lo.

- 353 -



5 Monotone and Accretive Operators

To prove m-accretivity, let A > 0and f € X. Thenu = Lf € D(A). Indeed, by Lemma 5.194, Lf is
bounded and continuous (as an integral of continuous functions), hence Lf € X. Moreover, Lemma 5.194
yields

@ V(Lf) = 5(f - Lf € X.

Thus u = Lf € D(A) and
Lf+Xa-V(Lf)=f,

that is, f = u + AAu. Therefore A is m-accretive. The same argument, with a replaced by —a, shows
that —A is m-accretive as well. m|

Remark 5.195 In Proposition 5.192, the domain D(A) is not dense in X.

Remark 5.196 We can slightly modify the example above as follows:

(i) Let X = Co(R™) and a € R™. Define the operator A in X by

DA)={ueX; a-Vue X},

" Ou (5.7.233)
Au=a-Vu= j;aj%j, for u e D(A).

Then A and —A are m-accretive with dense domain.
Proof: The proof that A and —A are m-accretive follows exactly as in Proposition 5.192. To see

that D(A) = X, note that

X=Cr®Y) D@ X =x.

0O

(ii) Let X = L*>°(R™) and a € R™. Define the operator A in X as in (5.7.233). Then A and —A are
m-accretive and D(A) is not dense in X.

(iii) Let X = LP(R™), 1 < p < o0, and a € R™. Define the operator A in X as in (5.7.233). Then A and

—A are m-accretive with dense domain in X. Moreover, if X = L*(R™), then A is anti-adjoint.
Proof: The proof that A and —A are m-accretive is essentially the same as in Proposition 5.192.

Density follows from the fact that

X =LP(R") = Cx(R") C D(A).
If p =2, then L?>(R™) is a Hilbert space and, by Corollary 5.167, A is anti-adjoint. a
5.7.5.2 The Laplacian with Dirichlet boundary condition
Example 5.197 Let  C R" be an open set. Let X = H=(Q) and define the operator A in X by

D(A) = Hg(9),
Au = —Au for every u € D(A).

(5.7.234)
We equip H}(Q) with the usual norm
1
lull gy = (lullZe + [IVullZ2)*

We have the following result.

Proposition 5.198 The operator A defined by (5.7.234) is self-adjoint, accretive, and || - || p(ay is equiv-
alent to || - ||gr. In particular, A is m-accretive with dense domain.
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To prove Proposition 5.198, we first recall the following facts.

Remark 5.199 (i) It is well known that
Hy(Q) C L*(Q) = L*()' ¢ H (),

see [23], p. 445. In particular, if u € HE () and v € L*(Q), then
(w,v) gy g1 = / u(z)v(x) dz. (5.7.235)
Q

(ii) The Laplace operator A is linear and continuous from H*(Q) into H=1(Q). Note that, foru € H' (),

the linear functional
Auc HH(Q)

on HY(Q) is defined by
(Au,v) = / Vu(x) - Vo(x)dz, forve Hy(Q), (5.7.236)
Q
see [25], p. 452.

Lemma 5.200 For each f € H(Q) there exists a unique solution u € HE () of the equation

~Autu=f in H Q).

Moreover,

[f -1 = llulle (5.7.237)
and

luller < 11fllz2 (5.7.238)
whenever f € L?().
Proof: By the Lax-Milgram Theorem (see [23], p. 181), for each f € H~1(2) there exists a unique
u € H}(Q) such that

(w,v)r = (f,v) g1,y for every v € Hj (). (5.7.239)

On the other hand, (5.7.239) is equivalent, by density, to
/QVu Vo +uv = (f,v)g-1 g1, forevery v € D(Q),
which is equivalent to —Au +u = f in H~1(Q).
Moreover, taking v = u in (5.7.239) we obtain
lullzr < W Flle-2 llell o

and hence ||u|lgr < ||fllg-1-

Furthermore, it follows again from (5.7.239) that
[(fo0) a1 gl < llullm vl for every v e HY(Q).
Therefore || f||g-1 < ||u| g, and (5.7.237) follows. Finally, from (5.7.239) we also have
Fll2s = (Foud sy < I lalllze < 1l lluln,

which proves (5.7.238). O
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Remark 5.201 Some applications of Lemma 5.200.

(i) It follows from Lemma 5.200 that the differential operator —A + I defines an isometry from Hg(€2)
onto H=1(Q).

(ii) In particular, from (5.7.237) and (5.7.238) we obtain || f||g-+ < || fllzz for every f € L*().

We now prove Proposition 5.198.
Proof: By Lemma 5.200, for each f € X = H~1(Q) there exists a unique solution u € H}(Q) of

—Au+u=f inX=H"

We denote by J the operator f +— wu. It follows from Observation 5.201(i) that J is an isometry from
H=1(Q) onto H}(Q). In particular,

(u,v) -1 = (Ju, Jv) gz (5.7.240)

Let u,v € H}(Q). From (5.7.236) and (5.7.235) we obtain

(u, Jv) 1 / Vu - V(Jv)de + (u, Jv) g2
Q
= <U,—A(J’U>>H‘%7H—1 + <U/7 JU)Hé,H—l

(u,v) g1 -1 = (u,v)p2.
0

Hence
(u, Jv)gr = (u,v) 2. (5.7.241)

Moreover, from (5.7.240) we have

(—Au,v)g-1 = (—Au+u,v)g-1 — (u,v) g1
J(=Au+u), Jv) g — (u,v) g1
—A(Ju) + Ju, Jo) g — (u,v) g

u, Ju) gy — (u,v) -1

(
(
(
(

Applying (5.7.241) yields
(—Au,v)g-1 = (u,v)rz — (u,v)g-1. (5.7.242)

In particular, for each u € H}(2), combining (5.7.242) with Observation 5.201(ii), we obtain
(Au,u)H*1 = (—A’U,, U)H*I = (U,U)LZ - (U,U)H—l = ||UH%2 - ||uHiI*1 = 0.
Therefore, by Lemma 5.156, the operator A is accretive.

We now prove that A is m-accretive. Given f € X = H~!, from the above observations we have
u=Jf € D(A)and u+ Au = f. Thus A is m-accretive.

Furthermore, it follows from (5.7.242) that
(Au,v)g-1 = (u, Av)g-1  for all u,v € D(A).
Indeed,
(Au,v)g-1 = (u,v) 2 — (u,v)g—1 = (v,u)p2 — (v, u)g-1 = (Av,u)g—1 = (u, Av)g-1.

Hence, by Corollary 5.166, A is self-adjoint.
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Finally, by Corollary 5.129,
lullpeay = llullx + [[Aullx = [lullz-+ + | = Aullg-1 =~ [lu = Aul[g-+ on D(A).
On the other hand, by Lemma 5.200 we have
lu—Aul|g-2 = [[fllz— = lulla = llullg,

which completes the proof. m|

Proposition 5.202 Let 2 C R™ be open and let A be as defined in the previous proposition. Then the
following properties hold:

(i) Jr € LH X)) and
I Ixllzr-1)) <1 for every A > 0;

(i) Jy € L(HY(Q), HE(Q)) for every A > 0;
(iii) I |Hé(Q)€ E(H&(Q)) and
HJA |Hé(9)||L(H5(Q)) <1 for every A > 0;
(iv) Jau — u in H7Y(Q) as A — 0F, for every u € H=1(Q);
(v) Jau— uin HF () as X — 0%, for every u € H}(Q).

Proof: This follows from Definition 5.128, Corollary 5.131, Lemma 5.133 and Proposition 5.137. O

5.8 The Hille-Yosida—Phillips Theorem

In this section we study the evolution equation

du
— 4+ Au=0
dt+u ’

where A is an m-accretive operator with dense domain.
5.8.1 The semigroup generated by —A, where A is an m-accretive operator

In this section, X is a Banach space endowed with the norm || - ||.

Lemma 5.203 Let A be an m-accretive operator in X with dense domain. Then, for every X > 0, the
operator Ay belongs to L(X) and the following hold:

i) He*m*Hﬁ(X) <1 forallt > 0;
(ii) [le=a — e Mz < t||Arz — Az for every x € X, every t > 0 and every A, pu > 0.
Proof: From Lemma 5.133 we know that Ay € £(X).

(i) Let € X. We have

_ _tryt _t ot
e Mg = e XX = %ek‘]*x,
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and thus

|e"t x| = He*%tﬁ‘]*xu

I
[q]
>
]
>
~
>
8

IN
o
|

~ e+
9

o
M
@
M+ >

I
£}

which proves (i).

(ii) Let A, > 0. We already know that Ay and A, commute. For every x € X, ¢t > 0 and s € [0,1] we

have

—stAAe—(l—s)tA —tAHe—st(A)\—Au)

e Ly =ce x.
Now,
i(e—stA)\e—(l—s)tAux) _ i(e—tAue—st(Ak—A“)x)
ds ds
= e_tA"e_St(AA_A“)t(Au — Az
_ tefstAAef(lfs)tA“ (AM . AA){ZZ,
and hence

di (e—st,che—(l—s)f,AM m)
S

‘ _ Hte—stAAe—(l—s)tAM (AM _ A}\)xH
< t[(Ap = An)z|.

On the other hand,

td
e—tArg _ p—tAuy — a (efstAAef(lfs)tA,L:o ds,
o ds

and therefore

1
”eftAAx _ e*tAux” < / i (efstAx ef(lfs)tA#x) ‘ ds
0 ds
1
< [ e el ds
0
= ¢4, - Avall,
which proves (ii). o

Corollary 5.204 Let A be an m-accretive operator in X with dense domain. Then there exists a family
{T'(t) }+>0 C L(X) such that:

@) ITM)]lex) <1 for allt > 0;
(ii) e ™z — T(t)z as A — 0%, for every x € X, uniformly on bounded subsets of [0, +00).
Proof: (i) Let T)\(t) = e~*"*. From the previous lemma we have
1T\l exy) <1, VA>0, V>0, (5.8.243)
Now let € D(A). For A\, u > 0 and fixed T > 0 we obtain

ITA(t)e = Tu(t)e| = e~z — e™ vz < t]Are — Auz|| < Tl Axz — Auzl),
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and therefore

sup || Ta(t)z — T, (t)z|| < T||Axz — Ayz|| — 0, as A\, p— 0T
t€[0,T]

Hence {Tx(-)x}x is a Cauchy sequence in C([0,T7]; X).
Define T'(t)x = limy_,0+ T (t)x. It is clear that T'(¢) is a linear map from D(A) into X. Moreover,

by (5.8.243),
IT(t)al| < lall, V¢ o0.

Since D(A) is dense in X, we may extend T'(t) by continuity to a unique operator T'(t) € £(X), and
1Tl cx) < 1.
(ii) Item (ii) follows directly from the construction of T'(¢) in (i). a

Remark 5.205 The family {T(t)} constructed in the previous corollary is sometimes denoted by e *4.

Note that, when A is bounded, this coincides with the usual definition of the exponential of an operator.

Proposition 5.206 Let A be an m-accretive operator in X with dense domain, and consider the family
{T'(t) }+>0 constructed in Corollary 5.204. For each v € D(A) and every t > 0, the following properties
hold:

T _
@ |2 < el or atte = 0

(ii) the map t — T'(t)x belongs to
C([O, 00); D(A)) nct ([O, 00); X);
(iii) AT (t)z = T(t)Azx for allt > 0.

In addition, the function u(t) = T(t)x is the unique solution of the problem
d
M oau = 0, t>0,

dt (5.8.244)
u(0) = =,

in C([0,00); D(A)) N C*([0,00); X).
Proof: (i) Let x € D(A) and set

uw(t) =T(t)x, ux(t)=Tr(t)x, va(t) = —u\(t) = Axux(t) = Tx(t)Axz.

From Lemma 5.133 we have
Jxlpay € L(D(A)),

and consequently
Axlpay € L(D(A)) and  Tx(t)[p(ay = ¢ " [pra) € L(D(A)).
Thus uy(t) € D(A) for every t > 0. Moreover,
ox(t) — T()) Az = T (8)(Axz — Az) + (T (t) — T(1)) Az,
and hence

[[oa(t) = T () Az|| ITA () (Axz — Az)|| + [[(TA () = T(t)) Ax||

[Axz — Az|| + [(Ta(t) - T(#)) Az| — 0

IA A

- 359 -



5 Monotone and Accretive Operators

as A — 07, uniformly on bounded intervals of [0, cc).
On the other hand,
t
writ) =o [ on(s)ds,
0
and therefore, as A — 07,

u(t) =x — /Ot T(s)Ax ds. (5.8.245)

Thus .
Tt)x=x— / T(s)Ax ds,
0

or equivalently,
T(t)x — I
M:_,/ T(s) Az ds,
t t Jo

and consequently
T(t)x — I Az|| [
A=l <2 [ acas < 220 [ = .
t t Jo t

(i) From (5.8.245) we obtain

du
= = ~T(t)Az € C([0,00); X),
so u € C*([0,00); X).

Now let wy(t) = Jyux(t). Then wy(t) € D(A) and wy(t) — u(t) in X as A — 0T, for each fixed
t > 0. Moreover, vy (t) = Awx(t), hence

(wa(t), Awr(t)) — (u(t),T(t)Az) in X xY.
Since the graph G(A) is closed, it follows that u(t) € D(A) and
Au(t) = T(t) Az, (5.8.246)
so that u € C([0,00); D(A)).
(iii) This is precisely (5.8.246).

Finally,

‘(%f + Au(t) = —T(t) Az + T(t) Az = 0

and

that is, u is a solution of (5.8.244).

It remains to prove uniqueness. Let
w € C([0,00); D(A)) N C([0, 00); X))
be another solution of (5.8.244). Given ¢ > 0, define
2(s) =T(t - s)w(s), se€]l0,t].

Then
z € O([0,]; D(A)) n C([0,¢]; X)
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and

L syus))

ds ds
= T(t—s)Aw(s)+ T — s)%w(s)
= T({t—2s) (Aw(s) + %w(s))
— T(t—s)-0=0,

so z is constant on [0, t]. Now,
z(t) =w(t) and 2z(0)=T(t)x,

whence
w(t) =T(t)x.

By the arbitrariness of ¢ > 0 we obtain uniqueness of the solution. O
5.8.2 Semigroups and their generators

In this subsection we deal with contraction semigroups and their generators.

Definition 5.207 A family (T'(t))i>0 C L(X) is called a contraction semigroup if it has the following
properties:
(1) T(0) = I;
(i) T(t+s)=T()T(s) for all s,t > 0;
(i) for each v € X the map t — T (t)x is continuous from [0,+o0) into X ;
(i) IT(®) ey < 1 for all £ 2 0.
Remark 5.208 In this definition we explicitly require the continuity of the map t — T(t)x. Many

authors do not include this condition and use instead the terminology “(contraction) semigroup of class
co”

Definition 5.209 Let (T'(t))i>0 C L(X) be a contraction semigroup. The generator L of (T'(t))i>o is
the linear operator in X defined by:

(i) -
t —
D(L) = {xGX; % has a limit in X ast%OJr};

(i)
Lz = lim M7 for all x € D(L).

Remark 5.210 Note that if (T'(t))i>0 C L(X) is a contraction semigroup, then for each x € X the
function t — ||T(t)z|| is non-increasing on [0, +00). Indeed,
1T+ s)xl| = [ T(s)T ()] < T (t)]]

Proposition 5.211 If (T'(t))i>0 C L£(X) is a contraction semigroup in X and L is its generator, then
—L is m-accretive with dense domain.
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The proof of Proposition 5.211 is based on the following lemma.

Lemma 5.212 If (T(t))i>0 C L(X) is a contraction semigroup in X and L is its generator, then the

following properties hold:

(i) Given x € X and t > 0, define

I(t,x):/o T(s)x ds.

Then I(t,xz) € D(L) and LI(t,z) =T (t)x — z;

(i) Given x € X, define

+o0
Jr = / e T (t)z dt.
0

Then Jx € D(L) and Jr — LJx = x.

Proof: Fix t > h > 0. We have

(T(h])l_f> I(t,)

¢ 1/t
/0 T(h)(T(s)x)ds — E/o T(s)xds
T(s+h)rds — %/0 T(s)xds

t+h 1t
T(s)xds — E/ T(s)xds
0

t 1 t+h 1 h 1 t
T(s)xds—kf/ T(s)xds—f/ T(s)xds—f/ T(s)xds
h ), A h ),

S

h
T(s)xds — % /o T(s)xds — T(t)x — x,

as h — 07, since for each t > h > 0,

1

h

t+h
- /t T(s)xds —T(t)x

1 t+h 1 t+h
- T - T
h/t (s)x ds h/t (t)x ds

1

t+h
[ Imee = as

IN

IN

sup || T(s)x —T(t)z|| — 0,
s€[t,t+h]

as h — 07. This implies that I(¢,z) € D(L) and LI(t,z) = T(t)z — .
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On the other hand,

() -

L(hi)z_ I) /O+OO e T (t)a dt

+
8

e (Tt + h)x —T(t)z)dt

S = A/~

1 [+
e~ WM (w)x du — 7 / e 'T(t)x dt
0

+
8

S| =

I
==
;\;\Jro\
8

1 [*ee
e~ M) dt — E/ e 'T(t)x dt
0
1 [t
e 'T(t)xdt — E/ e 'T(t)x dt
0

I
>
:\
8

D
=
|

—

+o0 1 h
= / e 'T(t)x dt — 7/ e T (t)x dt.
h h Jo

>

Using that (e" — 1)/h — 1 and the continuity of ¢ — T'(t)z, together with the dominated convergence
theorem, we conclude that

(T(h;L_I>Jx—>Jx—x in X as h— 07T,

Thus limy,_o+ T(hT)_IJx = Jx —z in X, which implies that Jz € D(L) and Jz — LJz = x. O
Proof:[Proposition 5.211] Let € D(L) and A, h > 0. We have

:v—)\% = <1+ 2) x— %T(h)x.

Hence
T(h)x —z

~A
v h

A A
> z — 2zl = ||z|.
(1+3) el = el = el

In view of the inequality above, we obtain in the limit as h — 0 that —L is accretive.

Moreover, given f € X, define x = Jf, where J is defined in Lemma 5.212. Then z = Jf € D(L)
and x — Lz = f. Therefore, —L is m-accretive.

It remains to show that D(—L) = D(L) is dense in X. Indeed, given € X and ¢ > 0, consider

Te = é[(s,x), I(e,x) = /OE T(s)xds.

Clearly . — = in X. Since z. € D(L), it follows that D(L) is dense in X. a

Proposition 5.213 Let A be an m-accretive operator in X with dense domain. The family (T(t))i>0 C
L(X) introduced in Corollary 5.204 has the following properties:

(i) (T'(t))e>0 is a contraction semigroup in X ;
(ii) the generator of (T'(t))i>0 is —A;
(#i3) if a contraction semigroup (S(t))i>0 has generator —A, then S(t) = T'(t) for each t > 0.

Proof: From Corollary 5.204 we know that ||7(t)|z(x) < 1 for each ¢ > 0. Moreover,

T(t+s)z = lim e” ¢+,
A—0t
= lim e e My

A—0t

= TWT(s)x, for each z € D(A).
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By density, T(t + s) = T'(t)T(s) for all ¢,s > 0 in X. From Proposition 5.206(ii) it follows that, for each
x € X, the map t — T'(t)x is continuous from [0, +00) into X. Also,

T(0)z = lim e "z =g
A—0t

for each z € D(A), and again by density we have T(0) = I.
From Proposition 5.206 we have

! T(t)x — 1/
Ttz ==z —/ T(s)Axds <— % = _E/ T(s)Ax ds.
0 0
Letting ¢ — 0T we obtain that € D(L) and Lz = —Az. In other words, G(A) C G(—L). Since both A

and —L are m-accretive, it follows from Corollary 7?7 that A = —L.

Assume now that another contraction semigroup (S(t)):>0 has generator —A. We shall prove that
T(t) = S(t) for each t > 0. Take x € D(A) and set u(t) = S(t)x. Given ¢t > 0 and h > 0, we have

u(t+h)—ut)  S(h)—1
_ S(@)S(h)x — S(t)x
N h
_ S(t)s(h);f T _S(t)Ax,
as h — 0T. Hence u(t) € D(A) and the right derivative % exists for each ¢t > 0, with
dtu
A = Ar = —.
u(t) = S(t)Ax o

By Dini’s lemma, together with the definition of semigroup, we obtain u € C1([0,4+00); X). We now
show that u € C'([0, +00); D(A)).

Given a sequence (t,) C [0, +00) such that ¢, — ¢, we have

[u(tn) —u®)llpay = lultn) —u@®)lx + [Alultn)) — Alu®))]lx
= lutn) —u(®)llx + [[S(tn) Az — S(t)Az|x — 0,

which follows from property (iii) in the definition of semigroup, combined with the fact that « is continuous

in X and 2 € D(A). Dini’s lemma also yields d;—t“ = %, that is, u is the solution of the problem
du
—+Au = 0, t>0,
ar A
u(0) = =

In view of Proposition 5.206 it follows that S(¢)x = T'(t)x for each t > 0 and x € D(A). By density, we
conclude that T'(t) = S(t) for all ¢ > 0. This completes the proof. a

Remark 5.214 Property (iii) in Proposition 5.213 ensures that if A is an m-accretive operator, then the
contraction semigroup generated by —A is unique. In particular, there exists a bijection between the sets

X = {contraction semigroups} and = {m-accretive operators with dense domain},

given by (T(t))e>0 — —L.

Applying Propositions 5.211 and 5.213 we obtain the following result, known as the Hille-Yosida—Phillips
theorem.
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Theorem 5.215 A linear operator A in X is the generator of a contraction semigroup in X if, and only
if, —A is m-accretive with dense domain.

Theorem 5.216 Let A be an m-accretive operator in X with dense domain, and let (T'(t))i>0 be the
contraction semigroup generated by —A. Let L € L(X) be such that L|pay € L(D(A)). If ALy = LAx
for every x € D(A), then T(t)L = LT(t) for allt > 0. In particular, if Lz =0, then LT(t)x = 0 for all
t>0.

Proof: Let x € D(A) and consider u(t) = T(t)z. Then u is the solution of problem (5.8.244). Setting
v(t) = Lu(t), we have, for each h > 0 and t > 0,

v(t+h) —v(t) _ Lu(t + h) — Lu(t)
h
B u(t + h) — u(t)
)
Thus o+ o J
o Ll =Ll e C°([0, +00); X).

If (t,) C [0,400) is such that ¢, — ¢, then

[o(tn) = v®)lpay = lolt) —v@®)llx +[[Alv(tn)) = A(w(®))]x
[Lu(tn) = Lu(®)]| + [A(Lu(tn)) — A(Lu(?))]]
= |[Lu(ty) = Lu@)] + [[L(A(u(tn))) = L{A(u(?))|
= |Lu(tn) = Lu@)| + [[L(A(T (n)x)) — LIA(T(¢)2))||
= |Lu(ty) = Lu@)| + | L(T(tn) Az) — L(T(t) Az)| — 0,

because L € £(X) and Lowu and ¢t — T'(t)z are continuous. Hence
v € C([0, +00); D(A)) N C*([0, +00); X),

and moreover,

dv du
— 4+ Av = L— + AL
7 + Av p + ALu(t)

= L% + LAu(t)

du
= L{—+A4
(G + )
= L(0)=0.
Note that v(0) = Lu(0) = LT(0)x = LI(z) = Lz. By uniqueness of the solution, we obtain v(¢) = T'(t) Lx.
Therefore, T(t)Lx = LT (t)x for each x € D(A). The result follows by density. a

Corollary 5.217 Let A be an m-accretive operator in X with dense domain and let (T'(t))i>0 be the
contraction semigroup generated by —A. If Jy is the operator introduced in Definition 5.128, then
T(t)Jx = J\T(t), for each A >0 and t > 0.
Proof: This follows from Lemma 5.133 combined with the previous proposition with L = Jj. O
We conclude this subsection by characterising the domain of an m-accretive operator in reflexive

Banach spaces. For the next proposition we shall need the following result:

Corollary 5.218 Assume that X is reflezive. If f : I — X s Lipschitz and bounded, then f €
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Wb (I, X) and
I |1, x) < L,

where L is the Lipschitz constant of f.

Proposition 5.219 Let A be an m-accretive operator in X and let (T'(t)):>0 be the contraction semigroup
generated by —A. If X is reflexive, then any x € X such that

1
sup —||T(h)z — z|| < +o0
h>0 h

belongs to D(A). In particular,
D(A) = {x € X; 3C > 0 such that ||T(h)x — z|| < Ch, Vh > 0}.

Proof: Let x be as in the statement and define u(t) = T'(t)x. Given 0 < s < t, we have

[u(®) —u(s)ll = T(t)z—T(s)x]|

= ||T(s+t—s)x—T(s)z|
IT(s)(T(t = s)z — )|
IT(t = s)x — x|
C(t—s).

It follows that w is Lipschitz and hence continuous from [0, +00) into X. Note that

IN A

[u@®lx = IT(Ozlx <z,

so u is bounded and, by Corollary 5.218, we have u € W°((0, +00), X). Thus there exists a sequence
t, — 0 such that u is differentiable at each ¢, and ||u'(¢,,)] < C. In particular,

ulty +h) —u(t,)  T(h)—1
h h

has a limit as h — 0, for each n € N. This implies that T(¢,)z € D(A) and ||AT(t,)z| < C for each
n € N. Since X is reflexive, there exist a subsequence (still denoted (¢,)nen) and y € X such that
AT (tp)r — y in X as n — +o00. As T(t,)z — = when n — 400, it follows that

(T(tn)x, AT (ty)x) = (2,y) in X x X.

Since G(A) is closed, we conclude that x € D(A). o
5.8.3 Regularity properties

In this subsection we show that certain subspaces of X are invariant under the action of contraction
semigroups.

Proposition 5.220 Let A be an m-accretive operator in X and let (T'(t))i>0 be the contraction semi-
group generated by —A. If T1y(t) = T(t)|pcay and Ay is the operator defined in Theorem 5.146, then
(T1)(t))e>0 is a contraction semigroup in D(A) and its generator is —Ay.

Proof: From Proposition 5.206 we know that T'(¢t)(D(A)) C D(A). Moreover, if ¢ > 0 and = € D(A),
then

IT®)zlpey = IT@lx + [AT(H)z]x
1Tzl x + [T () Az| x

lellx + 1Azl x = [zl pca)-

IN
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Therefore T'(t)| p(ay € L(D(A)) and || T'(t)| pcay|| < 1. It follows from Proposition 5.206(ii) that (T{1)(t)):>0
is a contraction semigroup in D(A), since the other properties are immediate.

Let L be its generator and consider 2 € D(A(1)) = D(A?). Then

Tiy(h)x — -
(1)(f)Lx x:T(h)}f T Az in X,

as h — 0%. Moreover, Az € D(A) and by Proposition 5.206 we obtain

Toy(h)x —x  Ty(h)Az — Az

A
h h

— —A(Az) in X,

as h — 07. Consequently,

T(l)(h)l’ — X

— Az — Az — 0.

T(l)(h)x — T
h

()

e X

Therefore, € D(L) and Lr = —Az. In other words, G(A«)) C G(—L). Since —L and A are
m-accretive in D(A), it follows from Corollary 5.142 that Ay = —L. O

Corollary 5.221 Let A be an m-accretive operator in X, and let (T'(t))i>0 be the contraction semigroup
generated by —A. Given a positive integer n, consider the space X,, and the operator A, defined in
Observation 5.147. If Tiny(t) = T(t)|x, for each t > 0, then (T(y)(t))i>0 is a contraction semigroup in
X, and its generator is —A(y).

Proof: It suffices to iterate Proposition 5.220 and Observation 5.147, noting that

n
|zl = Az x.
=0

Corollary 5.222 Let A be an m-accretive operator in X and let (X,,)n>0 be the spaces defined in Ob-
servation 5.147. Given x € D(A), let

u € C([0, +00); D(A)) N C*([0, 4+00); X)

be the solution of problem (5.8.244). If x € X,, for some n > 1, then

ut) =Tz e ﬁ C7((0,+00); Xp—j)- (5.8.247)
Moreover, ‘
% = (YT Az = (1) Au(t), (5.8.248)

foreacht >0 and0<j<n, and

i
(Z:) =0, (5.8.249)

d (d'u

e hyere .A

ﬁ<w>+
for each t >0 and every 0 < j <mn —1. In particular, if x € ﬂnzo D(A™), then

u € C%([0,400); X,,)  for each n > 0.

Proof: The case n = 1 follows from Proposition 5.206. Assume that the result holds for some n > 1,
and let € X,,;1. In particular, A’z € Xn—j+1 foreach 0 < j <n+1, and for j = 1 we have Az € X,,.
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Thus B
() =T(-) Az € () CH([0, +00); Xn—;). (5.8.250)
j=0
Equivalently,
n+1
v(-) =T()Az € ﬂ C?([07+00)§Xn+1—j)~ (5.8.251)

Jj=1

Taking j = 0 in (5.8.250), we see that v € Cp([0, +00); X,,). Since v = Au € Cy([0, +00); X,,) and

[ullnta = llulln + | Aulln,

it follows that u € Cp([0,4+00); X,,4+1). Hence

n+1
u € ﬂ C]b([ov +OO);Xn+lfj)'
§=0
Now observe that
d (du . d .
Bl il — (_1y 2 J
dt (dtj> (=17 g (T(0)A%)

Consequently,

d (dty ity
dt (dtj+1> +A(dtﬁ‘+1> -

(—1) (AT (t)Alx
= (1T AT
(—=1)7 L AT ().

(—1)7P2ATT2q(t) + A((—1)7 T AT ()

= (=1)7T2ATT2y(t) + (—1)T T AT (1)

= 0’

which proves (5.8.249) and completes the induction.

5.8.4 Weak Solutions and Extrapolation

If x € D(A) then u(t) = T(t)x is the solution of problem 5.204, according to Proposition 5.206.
On the other hand, if x € X\D(A) then u ¢ C([0,00), D(A)) and, in particular, u is not a solution of

5.204 on [0, 00).

In this section, we will show that u is a solution in a "weak" form of problem 5.204.

Lemma 5.223 Let A be an m-accretive operator in X and (T'(t))i>0 be the contraction semigroup gen-
erated by —A. Consider the space X_1 and the operator A(_qy defined by Theorem 5.149. If (T_1(t))¢>o0
is the contraction semigroup in X_1 generated by A_q, then T_1(t)|x = T(t) for allt > 0.

Proof: Let x € D(A). We have

T_yx—=x T_px—x
ST L + Ax 2D T + Az
t X t D(A(_1))
B T—nx—=x
= |/ T4cnr|  +]Aey
t X,

T—nx—=x
7t + A(_l)x — 0,

Hxl

when A — 0T, since (T_1(t))t>0 is the contraction semigroup in X_; generated by A_; and A_; is
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continuous. Let L be the generator of (7_1(¢)|x)¢>0. From the limit above, we have that Lz = —Ax and
G(A) C G(—L). Since A and —L are m-accretive, it follows from Corollary 5.142 that L = —A. Thus,
from item (¢4¢) of Proposition 5.213 we have the result. o

Corollary 5.224 Let A be an m-accretive operator in X and (T'(t))i>0 be the contraction semigroup in
X generated by —A. Consider the space X 1 and the operator A_yy defined in Theorem 5.149. Let
x € X and u(t) = T(t)x, for all t > 0. Then, u is the unique solution of the problem

du

—+ A =0;
dt (=0
u(0) = z;

in the space C([0,00), X) N C*(]0,00), X_1).

Proof: We know that A_y) is m-accretive in X 1, D(A_y)) = X and X = X_,. By Proposition 5.206,
for all x € D(A(_1)) = X and all t > 0, u(t) = T(—1)(t)x is the unique solution of the problem

du

AL —
a =+ (-1)U 0,
u(0) = z;

in the space C([0,00), X) N C1([0,00), X_1). But, by Lemma 5.223, T (t)|x = T(t). Thus, we have the
desired result. ad

Corollary 5.225 Let A be an m-accretive operator in X and (T'(t))i>0 be the contraction semigroup in
X generated by —A. Given n > 0, consider the space X_,, and the operator A_,, defined in Remark 5.23/.
If (T(—n))t>0 is the contraction semigroup in X _, generated by A(_yy, then T(_p(t)|x_, = T(—;(t) for
all0<j<nandallt>0.

Proof: The result follows by applying Lemma 5.223 iteratively and Remark 5.151. O
Corollary 5.226 Let A be an m-accretive operator in X and (T'(t))i>o0 be the contraction semigroup in
X generated by —A. Given n > 0, consider the space X _,, and the operator A(_, defined in Remark

5.150 and let (T(—y))¢>0 be the contraction semigroup in X _,, generated by A(_yy. Let x € X and consider
u(t) =T (t)x, fort > 0. Then, u € CJ*(]0,00), X_,,) for all n > 0. In addition,

dnu n n n n
dim (—=1)" Ty () ALy X = (=1)" ALy u(t),

d (d" il d" 1ty
a (dtn—l ) + (_1) A(_n) <dtn—1 ) =0

Proof: The result follows by applying Corollary 5.222 to the operator A(_,,, for all n > 0. O

and,

forallt >0 and all n > 1.

5.8.5 Group of Isometries

We will show that, under some appropriate hypotheses, some contraction semigroups can be em-
bedded into larger families of operators.

A family (T'(¢))ier C L(X) is called a group of isometries if it satisfies the following properties:

(i) T(0) = 1I;

(ii) T(t+s) =T ()T (s), for all s,t € R;
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(iii) The mapping ¢t — T'(¢)x is continuous from R into X, for all x € X;

(iv) |IT(t)z| = ||z||, for all t € R and all x € X.

Remark 5.227 (i) If (T(t))ier C L(X) is a group of isometrias, then (T'(t))i>0 is a contraction
semigroup. In addition, if we set S(t) = T(—t), for all t € R, then (S(t))ter C L(X) is also a
group of isometries, and thus, (S(t))i>0 is a contraction semigroup.

(#i) Recall that in a Banach space, an isometry, that is, a linear map T : X — X such that ||Tz| = ||z||
for all x € X, need not be surjective. For example, Tp(t) = p(t + h) in X = LP(0,00) with h > 0.
Note, also, that if (T'(t))ter C L(X) is a group of isometries, then T(t) : X — X is surjective for
allt € R, that is, T(t)X = X for allt € R. Indeed, we have T'(t)X C X. On the other hand, given
teR and x € X, we have x = T(t)y with y = T(—t)x. Thus, x € T(t)X. Hence, X C T(t)X.

Conversely, if (T'(t))i>0 C L(X) is a contraction semigroup such that T'(t) is a surjective isometry
for all t > 0, then (T'(t))ier can be embedded into a group of isometries (S(t))ier. For this, it
suffices to consider the map i given by

i LX) — LX)

() — {gg

Note that S(t) is a group of isometries. Indeed,
(a) S(0)=T(0)=1.
(b) Case 1: if t >0 and s > 0 then t+ s >0 and

T(t), ift >0
(T(-t)~t, ift<o.

S(t+s)=T(t+s) = T(t)T(s) = S(t)S(s);

Case 2: ift <0 and s <0 thent+s <0 and

S(t+s) =

Case 3: ift <0, s >0 andt+ s <0 then

Sit+s) =

Case 4: ift >0, s <0 and t + s < 0 is stimilar to the previous item;
Case5: ift <0, s>0 andt+ s >0 then

S(t+s) =T(t+s) = (T(=t)) ' T(t+5)T(—t) = (T(=t)) ' T(t+s—t) = (T(=t)) T (s) = S(t)S(s);
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Case 6: if t >0, s <0 and t+ s > 0 is similar to the previous item.
In all cases, it holds that S(t + s) = S(t)S(s).

(¢) The mapping t — S(t)x is continuous from R into X, for all x € R. Indeed, fort > 0 it follows
from the continuity of t — T(t)x. Fort < 0, it follows from the fact that the inverse of a linear,
bijective and continuous mapping is a linear and continuous mapping.

(d) |St)z| = [|IT#)z|| = ||lz||, if t > 0. And, ||S@t)z| = |(T(—t)) " z|| = ||z||, since the inverse of
an isometry is an isometry.

Also, i is an embedding. Indeed, if t > 0, ||S(t)|| = [|T(@t)]]. Ift <0,

IS@I = ITE) = =1=T@)l

Lemma 5.228 Let (T(t))icr C L(X) be a group of isometrias. If L is the generator of the contraction

semigroup (T'(t))i>0 and L is the generator of the contraction semigroup (S(t))i>0, where S(t) = T'(—t),
then L = L. In particular, L and —L are m-accretive with dense domain.

Proof: Let © € D(L). Given h > 0, we have

Sh)x —x T(-h)x—z T(h)z —x
- L = T(-h) = — —La,
when h — 0F. Thus, 2 € D(L) and Lz = —La. Hence, G(L) C G(—L).
Now, given z € D(L) and h > 0, we have
T — T(— — — -
(h);; r _T(h) ( h})Lac T —T(h)S(h); z e

when h — 0F. Thus, z € D(L) and Lz = —Lx. Hence, G(L) C G(—L). Therefore, L = —L. Moreover,
by Proposition 5.211, L and —L are m-acretivos with dense domain. O

Lemma 5.229 Let A be an m-accretive operator with dense domain such that —A is m-accretive. Let
(T'(t))t>0 be the contraction semigroup in X generated by A and (S(t))i>0 be the contraction semigroup
in X generated by —A. Define (U(t))ier C L(X) by

[T, ift>0;
ue) { S(—t), ift<0.

Then, (U(t))ier is a group of isometries.

Proof: Given A > 0, consider the operator Ay € £(X) introduced in Definition 5.132. Let z € X and
t € R. We have that (e7#4),cg is a group of isometries, indeed

(i) e =T,
(i) e~ ()4 = e~tAxe=54 for all 5,t € R;

iii e mapping ¢t — e~ ">z is continuous from R into X, for all z € X, since it is the composition o
iii) Th ing t tAg ti from R into X, for all z € X, since it is th ition of
continuous maps;

(iv) We have e=5a]| < [lz]) = ei4re—t4ra] < e~t45g]|. Thus, [let4a] =[]
From Corollary 5.204, for all z € X,
e My — U(t)z,

when ¢ — 07, uniformly on bounded intervals. Therefore, (U(t))scr is a group of isometries. O
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Proposition 5.230 If (T'(t));>0 is a contraction semigroup in X with generator A, then the following
properties are equivalent:

(i) —A is m-accretive;

(i) There exists a group of isometries (U(t))ier such that T(t) = U(t), for all t > 0.
Proof: From Lemma 5.229 we have that (i) = (i7). And, from Lemma 5.228 we have (i7) = (). a
Corollary 5.231 Let (T(t))icr C L(X) be a group of isometries and —A be the generator of the con-

traction semigroup (T(t))i>0. Then, for all x € D(A), the function u(t) = T(t)x, t € R, is the unique
solution of the problem

du

220 Au=0:
dt+ u = 0;
u(0) = x;

in the space C(R, D(A)) N CH(R, X).

Proof: For ¢ > 0, it follows from Proposition 5.206. For ¢ < 0, we have (S(—t))t<o is a contraction
semigroup with generator A. Applying Proposition 5.206 for S(—t) we have that u(t) = S(t)x is the
unique solution of the problem

in the space C((—00,0), D(A)) N C((—c0,0), X).

For t = 0 we have

dtu u(h) — u(0) T(h)x —x
g (0= Jim = R — v
And,
U0 = lim uh) —u(©) _ . SCEhz—2 . SOr-z
dt h—0— h h—0— h t—0+ t

Thus, u is differentiable at the origin, therefore, continuous and

du
E(O) = — Az = —Au(0).

Remark 5.232 Consider the group of isometries (T'(t))ier C L(X) and let x € X. If T(tg)x € D(A)
for some tg € R, then T(t)x € D(A) for all t € R. Indeed, given t € R, there exists s € R such that
t=s+tg. Thus, T(t)x =T (s+ to)x = T(s)T(to)x which belongs to D(A), since T (to)x € D(A).

Therefore, if x ¢ D(A) then T(t)x ¢ D(A) for allt € R. Indeed, if T(t)x € D(A) for some
t € R then, by what was done above, T(t)x € D(A) for all t € R. In particular, for t = 0 we have
T(0)z =z € D(A). Contradiction!

5.8.6 The case of Hilbert Spaces
In this section, X is a Hilbert space endowed with scalar product (-, -).
Lemma 5.233 If (T'(t))i>0 s a contraction semigroup with generator —A, then:

(i) (T'(t)*)i>0 is a contraction semigroup;
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(ii) The generator of (T(t)*);>0 is —A*.

Proof: Since (T'(t)):>0 is a contraction semigroup generated by —A, then by Proposition (5.211), A
is m-accretive in X with dense domain. Thus by Proposition (5.161) and Corollary (5.157), it follows
that A* is also m-accretive with dense domain. Thus, by Proposition (5.215) —A* is the generator of
a contraction semigroup in X. Let then (S(t));>0 be the contraction semigroup generated by —A*. By
Corollary (5.204) and by Proposition (5.161), we have

S(t)z = lim e MM = lim (e7*)*z =T(t)*z forall t>0 andall z € X.
A—0Tt A—0t

Thus, by Proposition (5.213) S(t) = T(t)* whose generator is —A*. a

Remark 5.234 Some comments on Lemma (5.233). Let (T'(t))i>0 be a contraction semigroup in a Ba-
nach space X and let A be its generator.

(i) One can always consider T(t)*.
The family (T(t)*)i>0 satisfies properties (i), (it) and (iv) of Definition (5.207). However, property
(iii) may not hold. For example, let X = L'(R) and let (T(t));>0 be defined by T(t)p(z) = o(x —1).
We have that (T(t)*)i>0 is defined in X' = L=(R) by T(t)*¢(x) = p(x +t) and it can be verified
that (T'(t)*) is not continuous in X'.

(ii) Since D(A) is dense in X, we can consider the operator A* in X'. If A* is m-accretive with dense
domain, then the proof of Lemma (5.233) shows that (T'(t)*)i>0 is a contraction semigroup in X’
and that its generator is —A*.

(iii) In particular, if X is reflezive, then —A* is m-accretive with dense domain. see [53] Thm.4.6, p.
16. And then (T(t)*)i>0 s a contraction semigroup and its generator is —A*.
Corollary 5.235 If A is a self-adjoint and accretive operator in X and if (T(t))i>0 is a contraction
semigroup generated by —A, then (T(t)) = (T'(t))* for allt > 0.

Proof: By Corollary (5.165), we have that A is m-accretive with dense domain and, since A is self-

adjoint, then A = A* whence —A = —A*. But from Lemma (5.233), (T'(¢)*);>0 is the contraction
semigroup generated by —A* = —A. Thus, since (T(¢))¢>0 and (T(t)*):>0 have the same generators then
(T(t)) = (T(t)*) for all t > 0. O

Corollary 5.236 If A is a skew-adjoint operator in X, then there exists a group of isometries (T (t)ier
such that —A is the generator of the contraction semigroup (T'(t))i>0. Moreover, (T'(t))* =T (—t) for all
teR.

Proof: By Corollary (5.165), we have that —A and A are m-accretive with dense domain. Thus, by
Proposition (5.215), there exists a contraction semigroup (7'(t)):>0 generated by —A. On the other hand,
from Proposition (5.230), since —A is m-accretive, then there exists a group of isometries (T'(¢))er such
that for ¢ > 0 it coincides with the semigroup (T'(¢)):>0 generated by —A.

Let us show that (T'(t))* = T(—t) for all t € R. Given z,y € D(A), note that

STy = (LT, TOn) + (T, 5 (T(0y)
= CATORTOW) + (0 -ATO)
= (@O, ~A"T(1)y) ~ (T (0, AT(D)
AP

Therefore, (z,y) = (T'(t)x, T(t)y) for all x,y € D(A). In particular, taking y = T'(—t)z, we have
(x,T(—t)z) = (T(t)z, Tt)T(—t)z) = (T(t)z,T(0)z) = (T(t)z, 2).

Thus, (T'(t))* = T(—t) for all £ € R. Then, the result follows by density. ad
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Theorem 5.237 Let A be an accretive and self-adjoint operator in X and let (T'(t))i>0 be the contraction
semigroup generated by —A. For each x € X the function u(t) = T(t)x for t > 0 has the following
properties:

(i) u € C(]0,00), X) N C((0,0), D(A)) N C*((0,00), X) and u is the unique solution of the problem

du
= +Au=0 forall t>0 (5.8.252)
u(0) =2

in this class;

1
i) | Au(t)]] < —=
(ii) [[Au(t)|| < tﬁl

o 1
| shauts)Pds <
0

|z|| for all t > 0. Moreover, the function t — /t||Au(t)|| belongs to L*(0,00) and

1
(ii7) (Au(t),u(t)) < EH.T”Q for all t > 0. Moreover, the function t — (Au(t),u(t)) belongs to L*(0,00)

and /OOO(Au(t),u(t))ds < %HojHQ,

(iv) If x € D(A) then ||Au(t)|? < %(Ax,x) for all t > 0. Moreover, Au € L*((0,00),X) and
1
[AuZ2 (0,000, x) < §(A337$)~

Proof: Let x € X and let u(t) = T(t)z. Given A > 0, consider the operator Ay and uy(t) = e"*4*z. By
Lemma (5.133), it follows that Ay is m-accretive and it follows from Proposition (5.161) and from the
fact that A is self-adjoint, that Ay is self-adjoint since (Ay)* = (A*) = Ay. Therefore, (e #4*),5¢ is a
contraction semigroup. Applying Remark (5.210) we obtain that the map

t s |[ul (1)]| = [le > Ay is non-increasing. (5.8.253)
Indeed, for 0 <t <t + s, we have
[uh(t+ )| = [le” T Ayz|| = [le*Pre N Aya|| < [le™ M Ayl = [[uy gy -

Moreover, we have the following identities:

d
%Hu,\(t)HQ = —2(Axux(t),ux(t)) forall t>0. (5.8.254)
d
%(Aku,\(t),uk(t)) = 2(Axux(t),uh(t)) = =2|[uA(®)||* for all t>0. (5.8.255)
Indeed, since uf (t) = —Axe 4 = —Ayu,(t), we have
d d
A NG RN ORING)

= (uj(t),ua(t)) + (ux(t),u)(t))
2(u\ (1), ua(t))
= —2(Axux(t),ur(?))

and thus, proving (5.8.254). Similarly, using the fact that A, is self-adjoint, we have

L aur®,un(t) = (Ariy(t)ur(t)) + (Axua(t),u
( Axuy

dt )
ul\(t), Axua(t)) + (
= 2(Axux(t),u)(t)).
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proving (5.8.255). From (5.8.255), we have that (Axux(t),ux(t)) is a non-increasing function in ¢. Then
integrating (5.8.254) from 0 to ¢, we have:

t
1
t(Axux(t), ux(t)) §/ (Axun(s),ux(s))ds < §Hﬂc||2 (5.8.256)
0
Indeed, since (Axux(t), ux(t)) is non-increasing, then for 0 < s < ¢, we have

(Axua(t),ux(t)) < (Axua(s), ux(s))

whence

HAyun(8), ua(t)) = /0 (At (t), s (£))ds < /0 (Ayun(s), us ())ds.

d
On the other hand, from (5.8.254) and since s > 0, it follows that d—||u)\(s)||2 = —2(Axur(s),ur(s))
s

whence

! 1 [t d 2 [N 1 N 72N GO o [
- __ - —_ = — <
e e = =5 [ L puneypas = A0 = BaBE L L < 1
Applying (5.8.253) and integrating (5.8.255) between 0 and ¢ > 0 we obtain:
t
2t|Juh (1) ||* < / |luh (8)]|2ds = (Axz, z) — (Anux(t),ur(t)) < (Aaz, ). (5.8.257)
0

Indeed, using (5.8.253) and integrating (5.8.255) between 0 and ¢ > 0 we have

t
2t (1) < 2 / e (5)]ds.

On the other hand, from (5.8.255), we have

2 [g@Pas = = [ )

= —(Axua(s),ux(s)) .

= —(Axur(®),ur(?)) + (Axur(0),uxr(0))
= (A,\x,x) — (AAu)\(t),u,\(t))

< (Axz,x)

where the last inequality follows from Lemma (5.156). Thus proving (5.8.257). Multiplying (5.8.255) by
t > 0, using the fact that «)(t) is non-increasing and integrating from 0 to ¢, we have for 0 < s <t that

t
202 = / sl (5)]|%ds
t
2 / sl (5)]%ds
= —/0 sg(AAu,\(s),uA(s))ds

IN
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Using integration by parts with u = s and dv = £ (Ayux(s),ux(s))ds, we obtain

_/ s£(A,\u>\(s),u>\(s))ds = —t(A)\uA(s)mA(s))—}—/(AAuA(s)m)\(s))ds
0 0
t
< /(AAuA(s),u,\(s))ds
0
1
< Sl
Applying (5.8.256), it follows that
262||u\ ()| < || (5.8.258)

Consider now ¢t > 0. By Corollary (5.204) and Proposition (5.137), it follows that Jyux(t) — w(t) in X
when A — 07. On the other hand, A(Jyux(t)) = Axux(t) = u)(¢) is bounded in X. Applying Lemma
(5.169), since A, is m-accretive, we have that uy € D(A) and Ayuy(t) = Au(t) when A — 0F.

Thus, property () follows now by applying Proposition (5.206) with the initial value u(e) for any € > 0
and letting ¢ — 0 and using the fact that u)(¢) converges to u/(t). Furthermore, passing the limit as
A — 0% in (5.8.256) we obtain (iii), passing the limit as A — 0% in (5.8.257) since x € D(A) we obtain
(iv) and finally, passing the limit as A — 0" in (5.8.258) we obtain (ii). O

5.9 Exponential Formula

Just as in the case of linear semigroups, one can define the exponential of an operator under certain
hypotheses:

Theorem 5.238 (Crandall-Liggett) Let A € A(w) such that D(A) C Im(I + AA), for 0 < XA < Ao
with Xolw| < 1. Then, for any x € D(A) and t > 0, the limit exists

t -n
lim (I + A) x, (5.9.259)
n—r00 n

and the convergence is uniform on bounded intervals. Setting

n—oo

S(t)x := lim <I—|— ;A) x,

we have that S € Q. (D(A)) and for all x € D(A), S(t)x is Lipschitz continuous on bounded
intervals.

To prove this theorem, we will make use of two technical lemmas, which will be used to obtain
estimates that enable us to prove the existence of the limit given by (5.9.259).

Lemma 5.239 Let A € A(w), 0 < 1 < X < Ao, such that whg < 1 and x € D(JY') N D(J}}) with m and
n positive integers such that m < n. Then

m—1
R TR SEL I (] Ve
=0

+ Z (1- ,uw)_j amﬁj_m<] _11) HJﬁ_jx —x

m

7 (5.9.260)

j=m
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Proof: To avoid overburdening the notation, for 0 < j < n and 0 < k < m, let us set

a(k;j) := ||Ji:z - Jf:v” .

By Theorem 5.79, item (iv), we can write

a(k; j)

| = T (0 e+ BT ||

(1— pw) ™ HJi_lx - (an_lx + BJ5x) 1
(1) (@40 = 75+ 8|5 = e
ona(k —1;5 = 1) + pra(k; j — 1),

INIA

where a1 = a(1 — pw) ™! and B; = B(1 — pw) L. We will use the formula
a(k; j) < ara(k — 1,5 — 1) + Bra(k; j — 1), (5.9.261)
to demonstrate (5.9.260) by induction.
Let us say that the validity of (5.9.260) is property Py, ,. Let us prove P, ,, for all n > m > 1.

Firstly, let us prove that P; , holds, for all n > 1, by induction on n. Indeed, we have that

a(l;1) < aq a(0;0) + By a(1;0)
= (1—pw) Bl Ire — |,

whence it follows that P, ; is verified. Now, suppose P, ,,_; is valid and let us prove that P, , is verified.
We have

a(l;n) <oy a(0;n—1) + B a(l;n—1)

n—1 .
n-1(n—1 i—1(J—1 .
<ara(0;n—1)+ By 4 By 1( 0 )a(l;O)+j§1alﬂi 1( 0 )a(O;n—l—J)

n—1
=oa; a(0;n—1) 4+ 87 a(l;O)—i—ZalB{ a(0;n —1—7)
j=1

=B a(1;0)+ > ol a(0;n - j),

j=1
and thus, P; ,, holds.

Let us assume that Pp,_1 5, is true for n > m — 1. We want to prove P, , for n > m. Again, we
will use induction on n. The first case is n = m, which must be verified. Note that

alm;m) < ajalm—1;m—1)4 S a(m;m—1)
< o?a(m—2n—2)+ 206 a(m —1;n —2) + 57 a(m;m — 2)
m—1
<

P om—i m .
et (et - o

Jj=0

which proves that P, .
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Now, suppose that P, ,—1 is true for n —1 > m. Then
a(m;n) < a; alm—1;n—1)+ f1 a(m;n —1)

m—2

(1= pw) =D N "I gt <” - 1) a(m —1- j;0)
: J
J=0

<o

3 e N

1 .
; ; -1
+j§ (1= oy igr (;_2)a<0;n—1—j)

m—1
. n—1
#5110 S i1 (" a0
=0 J
n—1

0=y (17 Jatoin-1-3)

e m—1
m—2 _1
(1—pw)™" Z ot gn=G+) < ) )a(m —(j+1);0) (5.9.262)
J
7=0
_ _ ‘ o
1— —(+1) o mgli+1)—m (J n— (i1 99
+jm21< T )0 =+ 1)) (5.9.263)
m—1 ) n—1
+(1—pw)™ Z oﬂﬁ”’( i )a(m —7;0) (5.9.264)
j=0
n—1 ] 1
_ -+ m g+ -—m [ J e — (i
+];(1 pw)~UFD Mgl (m_1>a(0,n (4 1)). (5.9.265)

Let us set j/ = 7+ 1 in (5.9.262), rewriting j' by j (just a change in indices so that it does not alter
the sum). In (5.9.264), let us separate from the sum the term corresponding to j = 0 and group the
remaining terms with the terms of (5.9.262) to obtain

(1— pw)~"{ B a(m;0) + mz;f ol g [(;‘_ D + (” ; 1>} a(m — j;0) % . (5.9.266)

Now decoupling the term corresponding to j = m — 1 in (5.9.263) and adding with the expression in
(5.9.265) we obtain,

(1= o) a(0im = m) + $° (1 = o) -GV g [(] - 1) ¥ (j _11)} a(0;n — (j +1)).

= m—2 m
(5.9.267)
From Stiefel’s formula,
G-+ -0)
. + , =1{.),
J—1 J J
making the change j' = j + 1, and adding the resulting expression with (5.9.266) we obtain,
m—1 ) /n
a(m;n) < (1—pw)™ Z a]B"_J( _)a(m —7;0)
=0 J
= —1
+ jz 1 — pw)a™pi~ m( 1) (0;n — 4).
O

Lemma 5.240 Let m and n be positive integers with m < n and o, > 0 such that a« + = 1. Then
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(i) Z( )ajﬁ” i(m - §) < /(na —m)? + nap;

(%) ]i (T{%__ll)amﬁj_m(n —j) < \/725 + (mﬂ +m

(67

Proof:

)

(i) Initially, considering n = 1, we have m = 1 and the inequality becomes

3 (;) B —j) =B <

Jj=0

which is true, since 0 < 8 < 1.

Vie=1)2+ap =/p,

For n > 2, from the Cauchy-Schwarz inequality, we have

ﬁé(?)wﬂ"j@n—j> < ﬁf(z)wﬂn

J=0 J=0

since

IN
(]
/‘}
S~
e
<
=®
3
|
<
INgh
/‘;
S~
e
<
=
3
<
I
=

Il
[
P
. 3
~_
Q
.
=
3
<
3
I
<
o

(a+pB)" = i (ﬁ)oﬂﬂ"‘j and a+p=1

j=o
Now note that if a, 8 > 0, we have
n—1 _ = (n—1)! jan—1—j
an(a+ ) = cmjz:;) mu B
— n(n—1 » ;
i Z:“* EaliTeEa
S
j=0
and
o®n(n —1)(a+B)"? +an(a+ B)" !

= an(a(n—1)(a+ )"+ (a+p)""")

n—1
An—=1\ o
= an j( ) )oﬂﬂ" J

n—1

n nz_:l (” - 1> o gr-1-3
=0~ J

= Z n(j +1) (n = 1! aj-l-lﬂn—(j-i-l)

= =G+ D)

- S

(5.9.268)

(5.9.269)
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Therefore, from (5.9.268) and (5.9.269), besides the fact that § =1 — «, it follows that

Nl

n

> (?) o’ B9 [m? — 2mj + j%

Jj=0

IN

i (;‘) o 3" (m — j)

Jj=0

Nl

= (m?—2amn+a’n(n— 1)+ an)

[N

2n2 —a’n + an
N——

an(l—a)

= m? — 2amn + a
1
= (m2 — 2amn + o’n? + naﬂ) 2

= ((an—m)? —|—na6)% .

(if) For 0 < 8 < 1, consider

=3 (37 )

j=m

We claim that F,(3) is convergent and F,,,(5) = (1 — 8)~™.

Indeed, let

S (j—1> _G-DG-2...(—m+])
7 m—1 (m —1)! )

for j > m. Then

| [G-1,/7-2 fi—m-1
1< ga = § g
= v m—1Vm—2 1

whence,

1< lim gy < (lim /)" =170 =1,
which shows us that li)m /a; = 1, and thus, the radius of convergence of the series given by F,,(3)
is 1. Hence, Fy,,(5) cénvogrges absolutely for all § € (—1,1). We shall prove that F,,(8) = (1—-5)"™
by induction. We have

Fi(B)=) <‘j o 1>6j‘1 =S =01-p""
j=1 j=0
Assume - .
Foca®)= Y (7)o == gy,
j=m—1
Thus,

(1=8)"" = Fua(B)FL(B)

Jj=m— 1 =t
(1 g S i) S
= _o)8 > 8 = > o
Jj=m-—1 j=m-—1 Jj=m-—1
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J

where ¢; = Z ak bjy(m—1)—k, With ay = (:f;_é)ﬂk_(m_l) and by, = gr—(m=1),

k=m—1

Thus,
[eS) rJ k
a-pm - |2 ()
j=m—1 Lk=m—1
oo r g k
- > | =
j=m—1 Lk=m—1
e rJ-1
- > X
j=m—1 Lk—1=m—2
2

1 > Bk(ml)ﬂj+(m1)k(m1)‘|

-2
k—1

5j—(m—1)]

)ﬁj—(m—l)]

-1
-2

where the penultimate identity is justified by the Pascal’s column theorem (the sum of the first j

elements of a column of Pascal’s triangle is equal
column over the last term of the sum).

to the element that is advanced one row and one

Since the power series Fy,, () converges absolutely in (0, 1), the same happens with its derivatives

F! (B) and F)! (). Moreover,

Fulf) = Z(é_i)ﬂjm(lﬂ)m;
j=m
CAORED D GO O I
j=m+1
FnB) = ) (jf_ﬁ)(j—m)(j—m—l)ﬁjm2—m<m+1)<1—/3>””.
j=m-+2
Thus,
e — [(j-1Y\,. A
m(1- )t = j:%l(mJ(J‘mW 1
1 - ‘771 - nj—m —m
- S X (AT mam g
j=m+1
whence - _
> (ﬁfﬂ)jﬁj—m = Bm(1—8)"" 4+ m(1-p)"
Jj=m
Also
Cgmer _ LSS (GG g (J—l) —m)gi—m
m(m +1)(1 ) > j_;z(m_l)@ m)*p :% o) mmE
or even,
> (j_1)(j—m)2/3]'—m:52m(m+1)(1—5)‘m—2+ > (j_1>(j—m)ﬂj‘m7
) m—1 ) m—1
j=m+2 Jj=m-+2

- 381 -



5 Monotone and Accretive Operators

whence

Thus, from the Cauchy-Schwarz inequality,

> (ﬁfll)amﬁj—m(n—j) <

Jj=m

B*m(m +1)(1 - B)"" " + fm(1 - )"

2m [Bm(1 - B)""H +m(l - B)7"] = mA(1 - B)T™

ma~ ™" (1 + 5) = mofm;
e o

m?+Bm\ _,.
(az ) o,

1

[N

< S (2T | (27 a2
J=m Jj=m
_ [m2 —&-Qﬂm o™y n2] :
«
mf m 273
[a2 (5 ] ~

Note that m_ mf3
o

—— + m, and we obtain the desired inequality.
@

0O

Proof of Theorem 5.238. Let x € D(A), 0 < u < A < Ag, n > m and Ag|w| < 1. Since, by

hypothesis,

D(A) C

(4) C

(A) C Im(I + AA), for all A € (0, \g), it follows that

ﬂ D.

A€(0,20)

But by Proposition 5.73, item (i), we have that Jy : Dx — D(A), thus = € D(J}}) N D(J{").

By Theorem 5.79, item (iv), if x € Dy, A # 0 and p € R then

B A
X.T"_ 2 J)\x c DN
and \
Jy (/;ZE + )\'u(])\l'> = Jyx.
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Let us denote a = § and = “5#. By Lemma 5.239 we have

m—1
n m —n i A—4 n s
e — el < Q- ple) ™ Y adf J(j)nJ;“ iz a

7=0

n .
i mapj—m| J -1 n—j
+ J:Em (1-plw])™a™p? (m B 1) [z — . (5.9.270)

By Theorem 5.79, items (ii) and (iii), it follows that

Iz =] < (m— )1 = Awl) " - 2
< (m— )1 = Aw) TN - dw) T Az
< (m=7(1 = AMw]) ™\ Az|. (5.9.271)
Analogously
172 — o] < (n— )(1 - plel) ™+ | Aal. (5.9.272)

Substituting (5.9.271) and (5.9.272) into (5.9.270) and recalling that (1 — A|w|)? < 1, we obtain

m—1
iz — Izl < (1— plwl)” H—AM”QE:aW"](>Un—ﬂAﬂ
7=0
+ (1= plw))™"u Z Q™ pIT m( B 11) (n —j)|Az|. (5.9.273)

Let f(&) = (1 —&)"e?, so f/(§) > 0 for £ € [0,1], that is, f is increasing on [0, 1], whence it
follows that

1=70) < £9). vee |o.3].

that is,

(1-¢ ™ <™, Ve [0, ﬂ : (5.9.274)

If AMjw| < &, from (5.9.273), (5.9.274) and Lemma 5.240, we obtain

1
[ Jiw — Jiz|| < e2nlwln g2miwid y [(na = m)* + nap]? |Az|

2
mp (f +m— n) ] |Az]. (5.9.275)

Nl

+ 62"‘W|#/_L
(0%

But recalling that a = § and § = ’\_T“, it follows that

[N

A[(no—m)? + naﬁ]% = [(np —mA)® + npu(A — p)]®  and

N

(5.9.276)

Zﬁ+<"w+m_n)2] = [mAO = ) + (mA = )] *
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Substituting the identities above into (5.9.275) we obtain

1
|7 — Il < RO [ m) ()] * [ Aal

£ A = )+ (mA - np)?] A, (59277)

for0<u§)\</\oand)\|w|§%.

Setting p = % and A = L, ¢t > 0, we obtain that 0 < u < A, since m < n. Furthermore

m
t
A= — < A& t<mhg
m

and

Mol <2<
wl < = _m
-2 = 2w|’

w # 0, that is, if m — oo, we can take values for ¢ arbitrarily large.

From (5.9.277), it follows that

1
1 1)\:2
| T2z — T2 < [2tetllt 4 te2lelt] <—> |Az|. (5.9.278)
n m m n

Therefore the sequence { Zx} is Cauchy, V¢t > 0 and V « € D(A). Since X is a Banach space,
it follows that there exists "

S(t)e = lim (I + %A)‘"m, (5.9.279)

n— oo

for all z € D(A), and such convergence is uniform on bounded intervals by virtue of (5.9.278).

Since for each z,y € D(A) we have

t
172 = T2yl < (1= Zw) "z =y, (5.9.280)

it follows that the limit given in (5.9.279) exists for all z € D(A). Indeed, let x € D(A) then given € > 0
there exists y € D(A) such that ||z — y| < e.

Note that

12— T2l < 2w = T2yl + | TEy — TRyl + T2y — Tl

IN

t . _ t
(1= )" =yl + 172y — T2yl + (1= S) "z —y

IN

t t
1——w)™ 1——w)™ Ty —J7Tyl-
ea=Lomsa- Lo gy - ol

Since

: wt o wt
lim 1— — =e“",
n—o0 n

the sequence {(1 — £w)™"},, is convergent, hence, bounded, it follows that

|22 — 0]l < Ce+ [ TEy — T2yl

and due to the fact that {Jz y} is Cauchy, it follows that for the given € there exists ng € N such that

n

n
if m,n > ng, then ||ng —JTyl <e

0
t
m

- 384 -



5.9 Exponential Formula

Therefore,

for all m,n > ng, proving that the sequence {Jﬁ x} is Cauchy, for x € D(A), thus, convergent.

n

Moreover, the map

S(t): D(A) — D(A)

x — S(t)r = lim Jtx

n— oo n

is Lipschitzian with constant e“?.

Let now z € D(A) and 0 < ¢ < 7. Taking m =n, u = % and A = T in (5.9.277) we obtain

=

12w~ J2al| < (- )2 4

)| s

S
SEES

N|=

3‘\] —

+ eQ\w\t |:7_<

S|

)+ (7 —t)Q} | Ax|.

Letting n — oo we obtain

I1S(t)z — S(r)z| < (e2\w\(t+7> + e2\w\t) | Az||t — 7. (5.9.281)

Showing that the map t — S(t)z is Lipschitz continuous on bounded intervals, V x € D(A).

From inequality (5.9.281), the strong continuity of S follows, that is, lim; .o+ S(¢)z = z, for all

x € D(A). To show that S € Q,(D(A)), it remains to prove that S(t + s) = S(¢)S(s) in D(A), since
S(0) = I is trivially satisfied.

Indeed, let m € N and z € D(A), then

S(mt)r = lim Jk.x = lim J7*z = lim (Jlf)mz =[S(t)]"z. (5.9.282)

n—oo n k—oo & k—o0

Now, if I, k,r,s € N, from (5.9.282) we have
ls+ 1k 1]kt

s(55) b))

s( IV s ()] eos (L S(f) (5.9.283)
ks ks v k s) o

proving that S(t+s) = S(t)S(s) for all s,¢ € Q, s,t > 0. From the strong continuity of S and the density
of Q in R, the desired result follows.

Theorem 5.241 () Let (e,)n be a sequence of positive real numbers such that €, — 0 when n — oo, {i}

€n

the integer part of } and A an operator satisfying the hypotheses of Theorem 5.238. Then ¥V x € D(A)
one has that

S(t)x = lim (I—i—enA)*[i]x = lim (I + enA)*[i]*lx,

n—oo n—oo

uniformly on bounded intervals.
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Proof: Let z € D(A). We define k, = {é] . Observe that we can take n sufficiently large so that
0< ﬁ < Mg, since

t t
en—>0:>——>oo:>kn—>oo:>k——>0.

En n

Therefore, it makes sense to speak of J* z. Note that

n

| JEre — S(t)a|| < || Jora — i x| + || Tz 2 — S(t)|. (5.9.284)
Fn Fn

Since 0 < é — k, < 1, it follows that 0 < t — k,e, < €,, so k,€e, — t when n — oo. Moreover,
t—knen > 0= = > €.

Thus, applying inequality (5.9.277) for n =m = k,, p =€, and A = kin we have

t 2
||Jf:3: — J’l"mH < e2lwlknentt) [(k:nen — )2 + knen(k— — en)] |Az|
kn mn
¢ 3
4+ elwlknen [t(k —en) + (t— knen)ﬂ |Az| — 0, (5.9.285)
n

since kne, — t, €, — 0 and 7= — 0.

Moreover, applying Theorem 5.238, for n = k,,, we have

|5 2 = S(t)x]| — 0. (5.9.286)

Therefore, from (5.9.284), (5.9.285) and (5.9.286), we obtain

lim (I + enA)f[i]x = S(t)z, Ve D(A).

n—oo

Now if x € D(A), then for each € > 0 there exists y € D(A), such that ||z — y|| <e.

Note that

e = T all < e = Jhryll+ 1Ty = Tyl + 175y — T

IN

t
—hn n kn —hn
(1= lwlen) ™™ llz = yll + 1750y = Tyl + (1= wl =)™ |l =yl
n n

A

Ce+[l75y = Tyl

Therefore,
| JEra — T x| — 0, (5.9.287)
k

n

for all x € D(A).

Since for x € D(A) we have
|JEne = S)a|l < | Jora — T x|l + | T 2 = S(t)z]),
Tn Tn

we obtain, by (5.9.287) and by Theorem 5.238, that
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S(t)r = li_{n I+ 6nA)7[€tﬁ]x, Ve D(A)

proving the first equality.

The second equality is proved analogously by replacing k,, with &k, + 1. O

Remark 5.242 More generally, if (€,) is a sequence of non-negative numbers and such that e, — 0,
when n — oo, (k) a sequence of non-negative integers such that kne, — t and A is an operator satisfying
the conditions of Theorem 5.238, then

S(t)x = lim (I + e, A)"*rx, ¥V 2 € D(A).

n— oo

Proposition 5.243 Let © € D(A) and 0 < 7 < t. Assuming the hypotheses of Theorem 5.238 are
satisfied, we have
[IS(#)x — S(r)x| < e“+(t_T)e“T(t —7)|Ax| (5.9.288)

where w? = max{w, 0}.
Proof: Take z € D(A) and 0 < 7 < t. Since S € Q,(D(A)) it follows that
IS(t)x — S(m)z|| = ||S(T)S(t — 7)x — S(T)z| < e“T||S(t — )z — | (5.9.289)
We have two cases to consider:
a) w<0

In this case, we have, by the proof of item (iii) of Theorem 5.79, for n sufficiently large and s > 0

n n (

. . S —’n—i)
Jie—z| < Jn—itl _ i) < (1—7 ) Jex—
2ol < 3| A EDM (BN IR

=1

(12 2 1 2) e

i=1

IN

I
/N
=
|

Slw
€
N——

3
T
L
Slw
N
=

(5.9.290)

Now, bearing in mind that 1 — (s/n)w > 1, since w < 0 and n is sufficiently large, and since —n+i—1 <
—i <0, Vi such that 0 <4 < n, it follows from (5.9.290) that

3

1722 — 2| < Z (1 - ﬂ,u) i%|Ax| < i%mﬂ - n%|Ax| = s|Az]

i=1 i=1
From this last inequality it follows, when n — oo, by Theorem 5.238
I1S(s)x — x| < s]Az|, ¥s>0
whence by (5.9.289) follows (5.9.288), since, in this case, w™ =0 and s =t — 7.
b)w>0

From item (iii) of Theorem 5.79 for n sufficiently large and s > 0, noting that (s/n)w < 1, we have

—n+1
| 22—z <n(1- %) Tz — 2 (5.9.291)
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and from item (ii) of the same theorem, we obtain
s s \!
ez —af <2 (1 - 7w> | Az| (5.9.292)
n n n
From (5.9.291) and (5.9.292) it follows that

—n+1 —1
|[Jix -z < n (1 - ﬁw) 2 (1 - fw) |Ax|
n n n
s

whence,
I1S(s)x — x| < se”*|Ax|.

From there and from (5.9.289) follows (5.9.288), since wt = w and writing s =t — 7. ad

Definition 5.244 The semigroup associated to A € A(w) by Theorem 5.238 will be called the
semigroup generated by —A and —A the exponential generator of S.

5.10 Abstract Cauchy Problem

Let X be a Banach space, A : X — X an operator and consider the following Abstract Cauchy
Problem

d
YW Aus0 (5.10.293)

dt
u(0) =z (5.10.294)

Definition 5.245 A function u : [0,00) — X is called a strong solution of (5.10.293) if
i) u is continuous on [0,00) and Lipschitz continuous on every compact subset of (0,00);
it) w is differentiable at almost every point of (0, 00);

i1) u(t) € D(A) for almost every t € (0,00);

i) —%(t) € Au(t) for almost every t € (0,00).

If w is a strong solution of (5.10.293), then by i) and iii), u(t) € D(A), for all ¢ € [0, T].

Indeed, suppose by contradiction that, for some ¢y € (0,T), we have u(tg) ¢ D(A). Then, there
exists r > 0 such that B(u(ty),r) N D(A) = 0. Since u is continuous, there exists § > 0 such that
u(to — &,t0 +8) C B(u(to),r), that is, u(ty — d,to + ) N D(A) = (). Which contradicts iii). If ¢, € {0,T'}

then tg = lim¢,, with ¢, € (0,T), for each n € N. Hence, u(t,) € D(A). Since u(t,) — u(to), we have
that u(to) € D(A).

In particular, if u satisfies (5.10.294), then x € D(A).

Lemma 5.246 Let u be a function defined on an interval and taking values in a Banach space X.
d
Suppose that u has a weak derivative, u'(t) at the point t (i.e., that the derivative %<u(t),x*> erists at
d
the point t and £<u(t),x*> = (W' (t),z*) for each z* € X') and that the function ||u(t)|| is differentiable
at the point t. Then,
d * *
lull 7w = (' (@), u") - Vu™ € Fu(h)).
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Proof: Note that F(u(t)) = {u* € X', (u*,u(t)) = |[u(t)||* = ||u*||*}. For all u* € F(u(t)), we have

[t + B[] = [lu)]* =
Ju(t + R)[[[lu@)]| = [lu@))* = (lult + )| = [lu@ D ]u@)]

Thus, if ~ > 0 we have, dividing by h and passing to the limit as h — 0,

(u(t+ h),u*) — (u(t),u")

(W (1), 2*) < ()| u)|

and, if A <0,
. d
(W' (©),27) = u®ll 7 lu@®]

whence we conclude the desired result. O

Proposition 5.247 Let A : X — X, A € A(w) and u and v be strong solutions of (5.10.293) with
u(0) =z and v(0) =y. Then

u(t) —v(t)| < etz —yl; Vte[0,00). (5.10.295)
Proof: By definition, we have
du v .
i € Au and -— e € Av almost everywhere in (0, c0),

whence, by the accretivity of A 4+ wl, and from what was observed above,

<u(t)7—cf;:(t)+wu(t)> € Atwl and (v(t)7—‘$(t) +wv(t)) €Atwl,

by corollary 5.69, there exists u* € F(u(t) — v(t)) such that
du v " .
_E(ﬂ +wu(t) + —(t) —wo(t),u” ) >0 a.e. in (0,00).

Thus, it follows

<Cf;:(t)—i?t)(t)7u*> < wlu(t) —o(t).u")
() —o@)[[u"|

wlu(t) —v@)|* a.e. in (0,00),

IA
£
=

that is,

<d(“d;”)(t)7u*> < wlfu(t) —v(®)|? ae. in (0,00) (5.10.296)

and since by hypothesis u and v are Lipschitz continuous on each compact subset of (0, c0), it follows that
t — u(t) — v(t) is Lipschitz continuous on each compact subset of (0,00) and consequently is absolutely
continuous. Applying Lemma 5.246 on the left side of inequality (5.10.296) we obtain

[Ju(t) — v(ﬂll%llﬂ(t) —v(®)] < wlu(t) —v(®)].
If ||u(t) — v(t)]| # 0, it follows that

%Hu(t) — ()] < wlu(t) —v(®)]| ae. in (0,00). (5.10.297)
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Multiplying (5.10.297) by e~ “*, we obtain

—wt d —wt 1
e %Hu(t) —o(@)|| —we™“ u(t) —v(@)|| <0 a.e. in (0,00)

d
= £(e_‘“t||u(t) —o(@)|]) <0 a.e. in (0,00).
Integrating from 0 to ¢, since e~ “*||u(t) — v(t)|| is absolutely continuous, we have
™! lu(t) —v(t)]| — e™lu(0) —v(0)[| <0, V€ [0,00).

Therefore
u(t) —o()|| < el —yll, Ve [0,00).

Corollary 5.248 Let A € A(w). Then, (5.10.293) has at most one strong solution satisfying (5.10.294).

Proof: Immediate consequence of Proposition 5.247 O

Lemma 5.249 Let A € A(w), u be a strong solution of (5.10.293) and h > 0. Then the function
p(t) = e lu(t + h) — u(t)]
s monotone.

Proof: Since u(t) is a strong solution of (5.10.293) then v(t) := u(t + h) also satisfies each of the items
of Definition 5.245 and therefore v(t) is a strong solution of (5.10.293) with initial value v(0) = u(h).
Proceeding analogously to proposition 5.247, using lemma 5.246, we obtain

%Ilv(t) —u(t)] < wllv(t) = u®)]-

Multiplying by e~¢? it follows that

%[e‘“t\\v(t)—u(t)ﬂ] <0 ae in [0,00),

and from the definition of v and ¢ we have

—[e(t)] = % le=“!lu(t +h) —u(t)]]] <0 ae. in [0,00).

Since ¢(t) = e~ “!||u(t + h) — u(t)|| is absolutely continuous, we can integrate from ¢; to to, t; < to
and obtain

t
olt2) ~o(t) = [ golt) de<o
that is,
p(t2) < o(t),
i.e., ¢ is monotonically decreasing. |

Theorem 5.250 Let A € A(w), u be a strong solution of the abstract Cauchy problem (5.10.293)-
(5.10.294). Then:

(1) Jlu(t) —

(5)|| < e t=3)(t — s) |Au(s)|, for almost every t € (0,00) and every s such that u(s) €
D(A),0<s

<t
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d
1) ||—=u(t)|| = |Au(t)| almost everywhere in (0, 00).
dt

(iii) The function e=** |Au(t)| is monotonically decreasing.

Proof: Let 2 be the set of points t € (0, 00) such that u(¢) € D(A), u is differentiable at the point ¢ and

d
%u(t) + Au(t) 3 0. Since u is a strong solution of (5.10.293)-(5.10.294), it follows that (0,00) \ € has
measure zero.

d
(i) Let t € Q. Then —%u(t) € Au(t). Let us fix s such that u(s) € D(A), 0 < s < t and take
y € Au(s). Since A + w]I is accretive, there exists u* € F(u(t) — u(s)) such that

d
<u*, —%u(t) +wu(t) —y — wu(s)> > 0.
From this it follows that

<“ui“”> <t ult) - u(s)) — (", y)

wlu(t) = u(s)[* + flu(t) — uls)] Tyl

IN

Bearing in mind that u(s) does not depend on ¢, from Lemma 5.246 we have

I
—
N
|
=
Va)
-
&l
Rl
s
—~
~
=
|
<
—
[V
-
|
N
S
“*
S
—
<
=~
=
|
=
&
~_—

IN

wllu(t) = u(s)I* + [lu(t) — uls)|l [yl
that is,

%I\U(t) —u(s)|l < [lyll +wlu(t) —uls)] < llyll +w ™ flu(t) — uls)], (5.10.298)

where w' = max {0,w}. Therefore

%IIU(t) —u(s)ll < llyll +w™ flu(t) — u(s)l-

Multiplying by e« (¢=%)_ we have

d

—wt(t—s —wt(t—s
= e O ) — ()] < eIy (5.10.200)

Let us consider two cases:

Case I (wt =0): From (5.10.298) we have that
—lu(t) —ul(s)| < llyll, forall y € A(u(s)),

and integrating from s to t,
[ut) = uls)]| < (£ = s)llyll.

Taking the infimum over y € Au(s), we have

[u(®) —u(s)ll < (£ = s) [Au(s)] .
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Case IT (w' > 0): Integrating (5.10.299) from s to ¢, we have

! d —wt(r—s) ! —wt(r—s)
e lu(r) ~u(s)|] dr< [ e Iyl dr.

And since e~ ("= ||u(7) — u(s)|| is absolutely continuous in 7, it follows that

—w+ —S w T
e ) < el [
ev —wts
- Hyn[ et
l_efw'*'(tfs)
= =l
Whence,
ewt (t=s) _
t) — < -
Ju(t) — u()) < Syl

Considering that e* — 1 < ze® for all > 0, we obtain

lu(t) — uls)[| < (¢ — s)e” =) |y]|.

Since this relation holds for all y € Au(s), we can take the infimum over y € Au(s) and

conclude that

lu(t) — uls)|| < (¢ —s)e” =) |Au(s)],

for all ¢t € Q and s such that u(s) € D(A) and 0 < s < 1.

(ii) Let s,t € Q, 0 <t <s. By i) we have:

d . u(s) —
7] = fam = H
) e
s—t s—t
7 wh(s—t) (g _
2 lime (s —t) |Au(s)]
s—t s—t
= JAu).

On the other hand, since —%u(t) € Au(t), it follows that |Au(t)| < Hiu(t)

| Au(t)] = H;ltu(t)H .

(iii) By Lemma 5.249, for h > 0 and 0 < s < ¢, we have
e “u(t +h) —u®)|| = ¢(t) < @(s) = e “*|lu(s + h) — u(s)].

Assuming s, t € 0, then

u(s), ult) € D(A), —%u( 1 e Au(t), —%u(s) € Auls).

Dividing (5.10.300) by h and taking the limit as h — 0, we obtain

d

and therefore,

(5.10.300)
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From item ii) it follows that
e “HAu(t)| < e ¥ |Au(s)|, 0<s<t,

that is, the function e~“! | Au(t)| is monotonically decreasing.

Corollary 5.251 Let X be a reflexive, strictly convex and smooth space and A+ wl be an accretive and

mazimal operator in C, D(A) C C. If u is a strong solution of (5.10.293), then A u(t) has a unique
element and

d

p ()—I—Au() 0 ae in (0,00).

Proof: Since X is smooth, A € A(w), D(A) C C and A+ wI is maximal in C then, by Proposition 5.94,
Au(t) is convex and closed for all ¢ such that u(t) € D(A).

Since X is reflexive and strictly convex, Au(t) C X, Au(t) # ) for each ¢ such that u(t) € D(A), and
Au(t) is convex and closed, by Theorem 5.102, we have that (Au( ))° has a unique element.

By item ii) of Theorem 5.250 we know that [Au(t)| = ||Lu(t)|. It follows that —<u(t) is the unique
element of (Au(t))°, and thus, from definition 5.104 we have

d o ©
=t = (Au(®))” =A u(?),

or even,

d

T u(t)+ Au( )=0 ae. in (0,00).

O

Definition 5.252 Let 7 be the partition 0 =ty <t; < --- <ty =T of [0,T]. The scheme

LiZ Vil 4 Ag; 30, i=1,---,N, (5.10.301)

ti —ti—1

is called discretization of the equation (5.10.293).
If R {ti —ti—1} <&, (5.10.5301) will be called e-discretization of (5.10.293) on [0, T].
If the sequence xg,x1, -+ ,x N satisfies (5.10.301), the function u,., defined by
ur(0) =29 and ug(t) =x; if t € (ti—1,ti,
is called a solution of (5.10.293) on [0,T] with initial value .

If (5.10.501) is an e-discretization, u, will be called e-approxzimate solution of (5.10.293) with initial
value xg.

If uy is an e-approximate solution of (5.10.293) on [0,T] with initial value xoy and ||z — ol < €, ugy
will be called e-approzimate solution of the problem (5.10.293)-(5.10.294) on [0,T].

Proposition 5.253 Let A be an operator under the conditions of Theorem 5.238, that is,
A € A(w) such that D(A) C Im(I +XA), 0 <X < Ao with Xo|w| < 1.

Then, for each partition 0 = tg < t1 < --- <ty =T of [0,T] such that t; —t;—1 < Ao and for each
xo € D(A), the discretization (5.10.301) admits a unique solution with initial value xg.
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Proof: For i = 1, the discretization (5.10.301) with initial value z¢ is equivalent to

1 — Zo

Ax
" + 1

0e
and therefore,
0€z —x +t1A(£1,

or equivalently
o € 1 + t1Axy.

That is,

Since A € A(w) and 0 < t; < Ag, we have that 0 < #1]w| < Ao|w| < 1, and by Theorem 5.79, J;, is
single-valued. Moreover, from (5.10.302) it follows that

Jtll‘o =21, XgtE (A) C Im([ + tlA) = Dt17 (510303)
that is, there exists a unique 1 € Im(Jy,) = D(A) such that

X € (I+ tlA)xl and (I + tlA)ilafo = Jtlaio = .

By recurrence, it is seen that, for each i = 1,2,..., N there exists a unique z; € D(A) that satisfies
(5.10.301), or equivalently

T; = (I+ (ti — ti_l)A)_l Ti_1, 0<t;—t1< /\07 (510304)

or even,

zi= T4t —tii))A) T I+ (biog — tiio)A) o (T + 1 A) g (5.10.305)
and thus the sequence {z;}, i =1,2,..., N defines a solution for (5.10.301) with initial value xo.

For uniqueness, suppose there exists another solution of (5.10.301) with initial value xg given by a
sequence {y;}. Then y; satisfies
Y1 — o
tq

0e

+ Ayl

and, analogously to what was done for x;, we have J;, g = y1. Considering (5.10.303) and the fact that
Ji, is single-valued, it follows that x1 = y;. Recursively we have that x; = y; for alli =1,2,..., N, thus
guaranteeing the uniqueness of the solution. O

Proposition 5.254 Let A € A(w) such that D(A) C Im(I + MA), for 0 < XA < Ag, Aolw| < 1. Ifuc, s
the solution of the en-discretization (5.10.301) in the form

T -1
0=t t1 = e <tnog = T<ty=T
0o <Ttl1 N < <IN-1 N <IN )
with initial value xo € D(A), then
]\}im Uey (B) = S(E)xo, (5.10.306)
—00

uniformly on [0,T], where S(t) is the semigroup generated by —A.
T : .
Proof: Let N € N such that ey = N < Ap. According to Proposition 5.253, the sequence

Zo
€T, = (I+ ENA)7i130
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defines the unique solution of the discretization

LT | Az 0,i=1,...,N.
EN
T —1 Ti 3
Ift,_1 <t <t then M <t< =% and consequently i — 1 < — < 4. Thus by (5.10.305),
N N EN
N , — 1)T T
(I+ENA) I:EN:I 1, lf%<t<%
UEN(t) = X; = (I+ENA)_i$0 =
[+ )T
(I +enAd) 5], it ="

In both cases, by Theorem 5.241, we have

lim w., (t) = S(t)xo.

N—o00

Theorem 5.255 Let A € A(w) such that D(A) C Im(I + AA), for 0 < A < Ao, Aolw| < 1. Take

x € D(A) and let u be a strong solution of (5.10.293) with uw(0) = x. Then u(t) = S(t)z, t € [0,00),
where S is the semigroup generated by —A.

S

Proof: Suppose initially that x € D(A). Consider s > 0 and N € N such that ¢ = i < Xp. Let us
extend the strong solution u to negative values so that it remains continuous: u(t) = z, for ¢ < 0. We
can then define the function 0 (-0 d
u(t) —u(t—e¢ u
ty=—A "
g1 - (1),
so that g. is defined almost everywhere in (0, ).
_ du , du :
Since —%(t) € Au(t) almost everywhere in (0, s), or even, | u(t), _E(t) € A, it follows that

(u(t), —€C$ (t)) € eA.

From the definition of g., we have (u(t),eg.(t) + u(t — &) — u(t)) € eA whence

(u(t),ege(t) + u(t — e)) € (I +A).

Since € < Ao, we have that u(t) = (I +cA)~! (ege(t) + u(t — €)) almost everywhere in (0, s). Now
let us set ue(t) = for ¢ <0.
By (5.10.304),
uc(t) = (I +eA) tu(t—¢), t>0.

Thus,

[[ue(t) = u(@)| [ Jeus(t —€) = Je(u(t —€) + eg=(t))]|
(1 —ew) " Hue(t — &) —u(t — ) — eg=(1)]

(1 —elw)) ™ (lue(t =€) —ut — )| +ellg= M),

IN A

almost everywhere in (0, s).
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Therefore,
Awwawwwmﬁ < a—dw>1AS%u—@—uu—awt
" dl—ﬂmrﬁéw%anw,
whence
i/ e (t) — u(t)]|dt < “‘Z"”D/O e (t — &) — u(t — &) dt
1 Ss—¢ 1 S
—EA e (£) — u(t)ldt + (1 — l]) A lge (6) ]t (5.10.307)
(1 efu])!

—_ _ 1 S—¢& _1 S
té e (t) — w(®)lldt + (1 — ele) AI@AﬂMt

If e < t < s, from Theorem 5.250, items (i) and (iii),

lu(t) —u(t—e)|| < e elAu(t —e)
< €w+€6€w(t_s)|A$‘
< e Tt Ay
< ew+55|Ax|,
almost everywhere in (e, s).
Ifo<t<e,
lu(t) — ult — )|l = u(t) — z|| < e 't Az| < e *¢| A,

almost everywhere in (0, ).

Thus,
N
llu(t) — u(t —e)|| < ¥ *ec|Az| almost everywhere in (0, s).
Moreover,
d
’ C;Z(t)H = |Au(t)] < e'|Az] < 7| Ac]
almost everywhere in (0, 7).
Consequently,
_ du
ool < 7t = ute =l + |G|
< 26“+S|Ax|.

Since g.(t) — 0 almost everywhere in (0, s), as u is a strong solution of (5.10.293), by the dominated
convergence theorem

lim /O lg-(8)dt = 0. (5.10.308)

We have that
. (I—glw)t-1
lim ——M———

- 10.
lim . |w] (5.10.309)
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and, from Proposition 5.254,
s

im [ fuc(t) — u(t)|dt = /0 1S()z — u(t) | dt. (5.10.310)

e—0 Jo

Combining (5.10.308), (5.10.309) and (5.10.310), we obtain

limsupé/i e (t) — u(®)]|dt < w|/os 1S() — u(®)|dt. (5.10.311)

e—0
Let us calculate the limit on the left side of (5.10.311):

[ et - utlar - 156s)e - |

e

_|L [ \|u6(t)—u(ze)||dt—1 S 1S(s)z — u(s)||dt
‘5 s—e € Js—e

) = Stalde+ L [ ) - s

IN

Let s1 € (s — ¢, s] be a Lebesgue point of both u(t) and S(¢)x. Then

‘i / e () — u(®) || dt — ||S(s)x — u(s)ll‘

< l/i lue(t) — S(s1)z||dt + % /i 1S (s1)z — S(s)x||dt

e

2 [ o et 2 [ futsn) - u)a

<2 [ ) =Sl + = [ 1502 = S(e)a

+e||z|| —|—/ llu(t) — u(s1)||dt +e€ — 0, when e — 0,
S—¢&
since uc(t) — S(t)z uniformly on bounded intervals. Thus, from (5.10.311), it follows that

15(s)a — u(s)l| < |w] /Os 15 () — u(t)||dt.

Consider ¢(t) = ||S(t)z — u(t)||. Since s > 0 is arbitrary, we have

o(t) < ] / o(r)dr.

By Gronwall’s lemma, ¢(t) = 0.

Let now x € D(A). Since u is a strong solution, we have that u(t) € D(A) almost everywhere.
Choose a sequence {e,} converging to zero, such that u(e,) € D(A) for all n. The function

Un(t) = un(t +en)
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is a strong solution of the equation
dditn(t) + Av,(t) 20
v (0) = u(ep).
By what we have already demonstrated, S(t)u(e,) = vy (t). Thus, in the limit S(t)z = u(t). O
Our interest now is to prove the converse of the previous theorem. For this, we will need the
following lemma.

Lemma 5.256 Let A € A(w) such that D(A) C Im(I + AA), for 0 < X < Ao, Aolw| < 1 and S the
semigroup generated by —A. If x € D(A) and (xo,y0) € A then

<S(t)3: —

sup lim sup +w xo—x,§’>§ Yo, To — T)s
L ; ( ) ( )
Proof: Let us denote by [%] the integer part of %, t > 0and A > 0. By (ii) and (iii) of Theorem 5.79,

for A sufficiently small we have that

e L R B
< |:/t\:| (1 — )\|w|)7[%]+1)\(1 _ /\W)il‘AxO‘
< t(1— Aw)) 1] Az

By hypothesis, x € D(A) C Dy, 0 < A < Ag. According to item (i) of Theorem 5.79, using the
previous inequality we have, for A sufficiently small, that

s — ol < 18— g 4 115 20 — 20

(1= M) |z = 2ol + (1 = Mw|)[3]) Az (5.10.312)

IN

For each A > 0 and k € N, define
| k
y/\,k:X(JA x — Jyx).

We have,
(I — ) (J5 o) = ATy te € Adba,

> =

Yxk =
that is, (J¥z, AyJE tz) € A.
Since A € A(w), it follows by Proposition 5.77 that there exists 1’ € F(xq — J¥x) such that
(', 90 — yak) + w20 — Jiz) >0,

', 50 — ya k) +wllzo — Jiz|* >0,

thus
M yxk) < (', yo) + wl|zo — Jiz||. (5.10.313)

- 398 -



5.10 Abstract Cauchy Problem

But,
Moy = AN, J,]\C_lx - Jiz)
= AN (w0 — J¥x) — (w0 — Y )
> A (|lwo — JRzl® = |lwo — I 2 [lwo — Ji])
> 20 M (llwo — Jxz]|® — [lwo — I 2)?)

Therefore, by (5.10.313) it follows that

2\ (yo, ') + 2Mwl|zo — Jiz|?

o — Jiall? — llzo — FEla]? <
< 2Myo, zo — JKx)s + 20w||zo — J¥ 2|

For 7 € [kA, (K + 1)) we have that k < § <k + 1, so

[;} =k= Ji\ﬂg; = Jfa:.

Thus by the previous inequality we obtain

(k4+1)X
lwo — JXz|® = llwg — 3 a2l < 2Ak (Yo, 0 — JXT)odT + 2)w]|z0 — JNz|?

(k+1)A z]
2/ (Yo, x0 — S, ) sdT 4+ 2Dz — JEx||?
Ak

(5.10.314)

Let t > A. Summing (5.10.314) from k =1 to k = [£], it follows that

4, e 2y [l 8 e
|lzo — I3 Ma||* — [Jeo — 2] < 2/ (Yo, o — J3* x)sdT—i—Q/\wZon—J)\mH (5.10.315)
A k=1

We have that (-, -)s is upper semicontinuous (u.s.c.). So defining

f()\) = <y0,$0 - J£§]$>s, ifA>0
(yo, 0 — S(T)x)s, fA=0

and,

g()\): <y0,—.130+¢]>[\§]$>s, ifA>0
(Yo, —xo + S(T)x)s, HA=0

it follows that f and g are u.s.c. in [0, c0).

Observe that —f(A\) < g(A), for A > 0 and due to the u.s.c. of f and g at A = 0, we have that for
all € > 0, there exists V¢(0) such that

f(A) < f(0)+€ and g(A) <g(0) +¢,

for all A € V,(0).

Thus setting ¢ = 1, it follows for A sufficiently small that

FO) < IFO)]+1 and — F(N) < g(A) < |g(0)] + 1.
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Note also that
|£O)] < lyolll|zo — S(r)zl| and [g(0)] < [lyollllzo — S(7)z]-

Therefore
LFO] < lwollllzo — S(T)z|| +1 (5.10.316)

Now letting A — 0 in (5.10.312) we obtain

|S(t)z — xo|| < ||@ — 20|t + | Azgle“!, (5.10.317)

since A
. o _[L]: . A _[l]: tw
lim (1 = Aw)™x = lim (1 — —(tw)) ™ = €™,

and

lim (1 — Aw|)~[3] = eIl
A—0

We conclude then by (5.10.316) and (5.10.317) (we used (5.10.317) with ¢t = 7), that

[(0s 20 — J5 )l < llgollllz — wolle™ + ollre“!"| Azo| + 1 := h(r) € L1(0,20).

Note that the integral appearing in (5.10.315) can be written as

.

([£]+D)A . 2t
/ <y0,x0—J£*}Q:>sdT:/ <y0,xof‘])[f]x>sx>\('r)d7'
A 0

where
1 oitre (] + DN

xXa(m) = { 0, if e [0,20\[\, ([£] + 1)A]
Thus applying the Dominated Convergence Theorem (replacing the hypothesis of convergence almost

everywhere by lim sup), we obtain

T

s [ 8 o 8
)lg%sup//\ (Yo, x0 — J\M @) odr = )1\126 sup/O (Yo, w0 — J3M @) xa(T)dT

2t t
< / (0,70 — S(r))sx 0. ()T = / (o0 — S(r))adr

0

Therefore by (5.10.315) we have, taking the lim sup on both sides, that

¢
llzo — S)z||* — ||lz — z0))* < 2/ (Yo, x0 — S(T)x)sdr + I, (5.10.318)
0

where

(%]
I=1 2\ — J¥z|)?
lim sup w; lxo Nl

Since our interest is to let A — 0 then we can consider n € N such that

t
n+1
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Thus using (5.10.312) it follows that

[x]

t n
2w Y [lzo — Jial|* < 2w~ > llwo — Jix|)?
k=1 k=1

n —k —k 2
t t tk t
< 2w— E l(l—w) |z — o] + — (1—|w|> |Azo|
n n n n

e

(5.10.319)

Observe now that setting

n

t *[%] t *[T]
ou(r) = (1 - w) & — o + 7 (1 - |w|) | Aol
n n

we have

2
lim o, (7) = {eWHx — x| + Te|w|T|Ax0|} = o(T)

n—oo
uniformly on [0, t].

Next observe that the Riemann sum of ¢,, relative to the decomposition of (0, ) into n equal parts
is given by

t
Sen = D 0lm)

k=1

n

tk t(k+1)].

n,’ n

for some 73, € |

Thus for each 7, = X it follows by (5.10.319) and from the definition of ¢,, that

2w Y [z — JEz|? < 2wS,, (5.10.320)
k=1

Since ¢y, — ¢ uniformly on [0, ] we have that

t t
IS5, = [ wtrll < 1S, = 5,141, = [ wir]

t — ¢

S R E R

k=1

t t

< Lswpllen(n) — ¢(ln+S, - [ wdr| 0 (s1032)
7 Jo,4) 0

when n — oco.
Thus, by (5.10.320) we obtain
< 1 o Tka2 < 1
I nh_>rrgosup QAM; |lzg = Jyz||* < nh_}n;o 2wS,,

t t 2
= 2w/ o(r)dr = Qw/ [e‘””x — xo|| + Te‘”|T|Axo|} dr
0 0

Consider now, ' € F(z — x¢). We have then
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2(S(t)e —,&") = 2(S(t)x —x0,&) + 2(xo — 2, &) < 2||lwo — S(t)z||l& — o — 2l — 2o?

IN

¢
llzo — S(t)z||? — ||z — xo|* < 2/ (Yo, xo — S(T)x)sdr + I (5.10.322)
0

But, (yo,x0 — S(-)z)s : [0,00) — R is u.s.c. Then for all € > 0, there exists § > 0 such that
(Yo, o — S(7)x)s < (Yo, T0 — T)s + €, (5.10.323)

for all 7 € [0,6), and therefore if ¢ € (0, ), we have according to (5.10.322) and (5.10.323) that

<S(t)x_$’€/> : 1/(:@079”0 — S(r)a)sdr + =

t 4 2t

I
< (yo,zo —)s Fet oo (5.10.324)

Since £ < ¢ fg [e“T ||z — zol| + Tel“I™| Azg|] ? dr, we obtain according to the Mean Value Theorem
that

I
1 —_— < — 2 = —_ ! .
thﬁm()sup 5 = wlz — zo||* = wlx — x, &)

Therefore taking }111(1) sup on both sides of (5.10.324) we obtain
—

S(t)r —
lim sup <()mx7§,> < {yo, 0 — x)s + wlw — 20,&", (5.10.325)
t—0 t
or even,
S(t)x —
7111% sup <()1€x + w(wo — x),§’> < (yo,z0 — )5, V& € F(x — m0). (5.10.326)
e
Proving the desired result. m]

Theorem 5.257 Let A € A(w), D(A) C Im(I+ XA), for 0 < X < Ao, Ao|lw| <1, A be a closed operator,

S € Qu(D(A)) the semigroup generated by —A, z € D(A) and S(t)z differentiable almost everywhere in
(0,00). Then S(t)z is a strong solution of (5.10.293)-(5.10.294).

Proof: Let z € D(A) and ty > 0 such that 4 S(t)z exists at the point ¢ = ¢;. We can write
d
S(to)z — S(to — h)z = <dtS(to)z> h+a(h), 0<h<ty, (5.10.327)

where lim w =0.
h

—0

Since S(to — h)z € D(A) and by hypothesis D(A) C Im(I + AA), 0 < A < X, it follows that if
0 < h < Ag, then
S(to — h) € Im(I + hA),

that is, there exists (zn,ypn) € A such that

S(to — h)z = xp + hyp.
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Thus, from (5.10.327) it follows that

S(to)z —Tp = <jtS(to)Z + yh> h+ a(h), 0<h< . (510328)

Setting (x0,v0) = (n,yn) € A and S(tg)z € D(A) in Lemma 5.256 it follows that

<S(t +to)z — S(to)z

sup lim sup

¢'eF(S(to)z—ay) t0

y +w(zh — 5(t0)2)7§/> < (yn,xn — S(to)z)s  (5.10.329)

Since by Proposition 4.4, F(x) — S(tp)z) is compact in the weak-* topology, it follows that there
exists ) € F(xp, — S(to)z) such that

sup lim sup
€ €F(S(to)z—azp) t0

< S(t + to)Z - S(to)Z

; + w(zy — S(to)z),§/> <A{yn,n")

Since S(-)z is differentiable, we obtain that

<(§iS(to)z +w(zp — S(to)z),§/> < (yn, 1),

for all & € F(S(to)z — zp).
In particular for £ = 7/, we have

d

{55000z + wlan = S(0)2) + i) 2 0

By (5.10.328), it follows that
(S(to)z — xp, — a(h) + whxy, — whS(ty)z,n') >0,

that is,

(1 - Wh)<xh - S(to)z, 77I> + <Oé(h), 77,> <0,
with ' € F(x, — S(to)z).

Whence,
(1= wh)lan — S(to)z |2 < lla(h)lan — S(to)z]. (5.10.330)
It then follows that g
lim 202 =20
h—0 h

therefore xp, — S(t9)z when h — 0. And considering (5.10.328), letting h — 0, we conclude that

, d
lim yp = = 5(to)2

But (xp,yn) € A and A is closed. Thus

<S(t0)z, —jtS(to)z) €A
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Therefore setting u(t) = S(t)z, we have that

d
—£u(t) € Au(t), for almost every ¢ € (0, c0).

The other properties of the definition of strong solution follow immediately from the semigroup
properties. O

Remark 5.258 In the previous Theorem it is sufficient to assume that D(A) C Im(I+AA), 0 < A < Ay,
since by hypothesis A is closed, consequently, by Proposition 5.84, it follows that Dy = Im(I + \A) is
closed.

Corollary 5.259 Let X be a reflexive Banach space. If A satisfies the conditions of Theorem 5.257 and
S is the semigroup generated by —A, then S(t)x is the strong solution of (5.10.293)-(5.10.294), for all
x € D(A).

Proof: By Theorem ??, we have that, for all z € D(A), S(-)x is Lipschitz continuous on bounded
intervals, hence absolutely continuous on [0,7], V T' > 0, and therefore differentiable almost everywhere
in (0, 00), since X is reflexive. Then by Theorem 5.257, u(t) = S(t)x is the strong solution of 5.10.293)-
(5.10.294). O

Remark 5.260 If A satisfies the hypotheses of Theorem 5.257, Theorems 5.255 and 5.257 show that
problem (5.10.293)-(5.10.294) has a strong solution if and only if the function S(-)x is differentiable
almost everywhere, and in case differentiability occurs, the strong solution is S(t)x, for allz € D(A). This
fact, combined with what was established in Proposition 5.254, suggests considering S(t)x as a solution of
problem (5.10.293)-(5.10.29/4) even if S(t)x is not differentiable, and therefore, does not satisfy conditions
(i) and (iv) of Definition 5.245.

Thus when A is under the conditions of Theorem 5.238, the function S(-)x will be called general-
ized solution of (5.10.293)-(5.10.294).

Theorem 5.261 Let X' be uniformly conver, A+ wl and B 4+ wI be m-accretive and Sa and Sp be the
semigroups generated by —A and —B on D(A) and D(B) respectively. If Sa(t) = Sp(t), V¢t > 0, then
A=B.

Proof: Initially observe that since A+wI and B+ wI are m-accretive, hence maximal accretive on D(A)
and D(B) respectively, it follows by Proposition 5.97 that A and B are demiclosed and therefore closed.

Moreover, X'’ is uniformly convex, thus X is smooth, and also reflexive.

We will now prove that D(A) = D(B). Let © € D(A). By hypothesis Sa(t) = Sg(t), then D(A) =
D(B). Let us set S(t) = Sa(t) = Sp(t), thus by Lemma 5.256 we have

}i_r)r(l) sup <S(t)9tc—x +w(xo — ), Fo — m0)> < (yo, F'(zo — x)), (5.10.331)

for all (x0,y0) € B.

Since by Corollary 5.259, S(t)z is a strong solution of (5.10.293)-(5.10.294) it follows by Theorem

5.250 (i) for s = 0 that
t —
Mn < e Az < e T|Az|, te (0,T).

1=

Without loss of generality we can then assume that

St)yr — =z

; — gy in X,
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when ¢ — 0. Thus by (5.10.331) we obtain that

(y +w(xo — 2), F(x — 20)) < (y0, F(x0 — ), V (T0,%0) € B.

Therefore,
(—y + wz —wxg — Yo, F(x —x0)) >0, V (x0,y0) € B,

and since B 4+ wl is m-accretive it follows by Theorem 5.92(iii) that (x,—y) € B, that is, x € D(B),
proving that D(A) C D(B). Analogously it is proved that D(B) C D(A), which shows the desired
equality.

We now denote D = D(A) = D(B). If x € D, then by Corollary 5.259, u(t) = S(t)x is a
strong solution of (5.10.293)-(5.10.294). Thus setting ¢(t) = — 4% S(t)x, we have that ¢(t) € AS(t)z and
p(t) € BS(t)x almost everywhere in (0, 00).

By (iii), of Theorem 5.250 we have that e~“!|Au(t)| is decreasing. Thus, if t > 0,
| Au(t)] < e Az| < e T| Azl

where wt = max{w,0} and ¢ € [0, T].

Therefore p

wt
le@®ll = | Zu®] = [Au@)] < e 7| Az].

Since X is reflexive, we obtain the existence of a sequence (t,) such that ¢, — 0 and p(t,) — v,

when n — oo.

Due to the strong continuity of S(¢)z we have that
S(tn)r — =,

and since
o(tn) € AS(tn)x N BS(ty)x,

it follows that y € Az N Bz, since A and B are demiclosed. Thus, we obtain that |ly|| > |Az| and
lyll > |Bz|.

On the other hand, since ¢(t,) — y and ||p(t,)]| = |Au(t,)| < e¥"|Az|, we have

llyl| < lminf [|p(t,)] < lime¥'"|Az| = |Ax|.

Analogously, ||y|| < |Bz|. Therefore ||y|| = |Az| = |Bz|, that is, y € A2 N B2 and by Corollary
5.111 it follows that A = B. |

Theorem 5.262 Let X' be uniformly convex. If A+wl is an m-accretive operator, then A° is a principal
section of A.

Proof: Let g € D(A) and yo € X be such that

(Yo + wxg — v — wu, F(zg —u)) >0, Y(u,v)e A° (5.10.332)

and S be the semigroup generated by —A on D(A).

We will show that (zg,y0) € A. In order to use proposition 5.110 we will show that xg € D(A).
Indeed, since X is reflexive, S(t)x is, by corollary 5.259, a solution of (5.10.293)-(5.10.294), for all z €
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D(A). Thus, by item ii) of theorem 5.250, it follows that
d o .
—ﬁS(t)m € A°S(t)x a.e. in (0, 00)
From (5.10.332) it follows, then
d :
Yo + wxo + £S(t)x —wS(t)x, F(xg — S(t)x) ) > 0 a.e. in (0,00)

Thus,

_ <dS(t)x,F(xo — S(t)l‘)>

IA

= o = S(t)a, Flao = SO)2) + (yo, Flao - S(t)z)

IA

wl|S(t)z — woll* + llyoll 1S (t)x — ol

a.e. in (0,00), but, by lemma 5.246, it follows that

1502~ aall G180l = { SO F(SW - 20))
< wlS(t)z - zoll® + IyllIS )z — zol

a.e. in (0, 00), thus

d + .

$||S(t)x — x| LW ||S(#)x — 20| + ||yo]| a-e. in (0,00) (5.10.333)
integrating from 0 to ¢, if w™ = 0, we have

1S() — ol < [l = ol + tyol

and multiplying (5.10.333) by et and integrating from 0 to ¢, we obtain

t d _ t -~
[ e s —aalydr < [ e unlar
0 0

dr
Thus,
—wtr T=t
—wtt —e
e S —aoll < e~ zoll + ol [w]
7=0
1—e vt
= iz~ woll + == lgol
whence, if wt >0
N
+ et —1
IStz — 2ol < ez — o + THZJOH
< e — wof| + te* o

for all z € D(A). Since g € D(A), it follows, in both cases
IS(t)z = woll < te" ol
S(t)l‘o — Xp

t
t, — 0 when n — 0o, and a z € X such that

thus, is bounded in every bounded interval. Therefore, there exists a sequence (t,,) with

S(tn)wo — X
tn

— z when n — oo
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By lemma 5.256 and since F(u — xg) is single-valued, we have, then
(z+w(u — x0), F(zg —u)) < (v, F(u—x)), Y(u,v) € A

that is,
(—z 4wz —v—wu,F(zg—u)) >0, Y(u,v) € A

hence, by the maximality of A+ wl, (zg, —2) € A and, therefore, g € D(A). From (5.10.332) it follows,
then, by proposition 5.110 that (zg,%0) € A. Thus A° is a principal section of A. O

For the next result we will state two lemmas, whose proofs can be found in [62] and [47] respectively.

Lemma 5.263 Let M and N be metric spaces. A function f : M — N is continuous at a point a, if
Xy, — a implies that {f(xz,)} has a subsequence converging to f(a).

Lemma 5.264 If X is reflexive, every absolutely continuous function, u : [0,T] — X is differentiable
a.e. in (0,T) and

u(t)—u(O)z/O %U(T)dﬂ vt € [0,7].

Theorem 5.265 Let X and X' be uniformly convex Banach spaces, A € A(w) a closed operator such
that
D(A) C Im(I+XA4), 0< X <),

with Aglw| < 1. Then, for all x € D(A),

[e]
i) The set Ax has a unique element of minimal norm, A x;

it) If S is the semigroup generated by —A, then S(t)x is the unique strong solution of (5.10.293)-
(5.10.294);

iii) The function @(t) = e || A S(t)zx|| is monotonically decreasing;
iv) A S(t)x is right continuous at every t > 0;
v) S(t)x is differentiable from the right at every t > 0 and

+ o
%S(t)x—i— AS({t)x =0, Vt >0

vi) The function S(t)x is continuously differentiable, except on an at most countable set and
L s =4 S(t)
- T = T
dt

at the points where differentiability occurs.

Proof:

i) By Theorem 5.106 there exists a demiclosed extension A of A, which satisfies A z = /Cl) x, for all

x € D(A). By Theorem 5.105, A is single-valued, and thus A s single-valued, since

D(A) = D(A) = D(A) = D(A).

o

Let y € Az with ||y|| = |Az|. Then y €A =A x, for some = € D(A). Since A is single-valued, it
follows that y :,Zi x.
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ii) Since X is reflexive (Milman’s Theorem), Corollary 5.259 guarantees that S(t)z is a strong solution
and by Corollary 5.248, the solution is unique.

iii) It is an immediate consequence of item (iii) of Theorem 5.250.

iv) Let t > 0, {t,} be a sequence such that ¢, > ¢, for all n =1,2,..., with ¢, — ¢ when n — co. We
have that S(t,)x € D(A), for all n > 1. By iii) we have

e AS(ty)z| < | Ax| vn.

Since X is reflexive, there exist a subsequence {t,, } of {¢,} and y € X such that

o

A S(tp, )r — y when k — oo. (5.10.334)

Since tp, — ¢ then S(t,, )xr — S(t)z.

Moreover, let us note that
(S(tnk)xv A S(tnk)l‘) €AC AC A

Since A is demiclosed, it results that
S(t)z € D(A) = D(A) and y € AS(t)z.
Now, since the norm is lower semicontinuous in the weak topology of X,

eyl < Tliminfe | A S(tn, )|
k—oo §

< limsupe @'k || f(i S(tn, )zl
k—oo
< el AS(

= e Y AS@t)x (5.10.335)

=yl < I AS®H)ll.

Since y € AS(t)z, it follows that ||y|| = || A S(t)z||, and hence, y €A S(t)x =A S(t)x. Therefore,
from (5.10.334) it follows that

A S(tn)z —A S(t)z. (5.10.336)
We also have
limsup|| A S(ty, )z = limsupe | A S(ty, x|
k—o0 k—o0
< limsupe “i || A S(tn, )| lim sup e
k

k—o0 —00
e~ A S(t)alle*
| A S(t)zl. (5.10.337)

IN

Thus, from (5.10.336) and (5.10.337), considering that X is uniformly convex, we have that

o

A S(tn ) —A S(t)z.
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vi)

Thus, considering the function

f:]0,00) — X
t—s f(t) =A S(t)x

it follows by Lemma 5.263 that A S(t)zx is continuous.

By Corollary 5.259, S(t)z is a strong solution of (5.10.293)-(5.10.294) and, by item ii) of Theorem
5.250,

= |AS(t)z|, for almost every ¢ € (0, c0), (5.10.338)

d

which implies

—%S(t)x —A S(t)x, for almost every t € (0, 00).

Since S(t)x is Lipschitz continuous on bounded intervals, by Lemma 5.264 we have

S(t+h)x—St)x = /Hh iS(T):EdT

for allt > 0 and h > 0. Then

S+ h)x — S(t)z
h

o] t+h o (o]
+ASH)r=—— / A S(T)xdr+ A S(t)x.
t

Knowing that
1

lim

t+h o o
Lim /h A S(T)xdr =A S(t)x,

it follows o+
St AS(H)z =0, Vt>0.

By iv) the function A (t)z is defined for all ¢ > 0. Since p(t) = e || A S(t)z|| is monotonically
decreasing, it follows that the set of discontinuity points of ¢ is, at most, countable.

If || A S(-)x|| is continuous at a point ¢, then A S(-)x also is. Indeed, if {t,} is a sequence with
t, — t, we have that
et A S(ta)all < M,

for some constant M > 0 and for all n € N. With this, following the same reasoning used in iv),

we conclude that klim A S(tn, ) =A S(t)z, for some subsequence {t,,} C {t,}. With this, we
—00

conclude that the set of discontinuity points of A S(-)z is, at most, countable.

As we have already seen,

d o
f%S(t)x =A S(t)z, for almost every t > 0.

[e]
Hence, it follows that S(-)x is continuously differentiable at every continuity point of A4 S(-)x, and
with this, we conclude the desired result.

We now wish to prove Theorem 5.265, which guarantees us that if

Im(I +AA) D conv D(A), 0 < A< Ao, (5.10.339)
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then the strong solution of the Cauchy problem (5.10.293)-(5.10.294) can be obtained as the limit of the
solution of the approximate problem

(5.10.340)

where Ay = %(I — Jy) is the Yosida approximation of A.

To prove Theorem 5.265, we need some auxiliary results which we present below.

Theorem 5.266 Let X be a Banach space, C C X a closed convexr cone with verter 0 and J a Lips-
chitzian map from C into C, i.e.

|Jo — Jy|| < allz—yl, Yo,y € C, a>0. (5.10.341)

If f € LY0,T;X), T > 0, is such that f(t) € C for almost every t € (0,T), then for each x¢ € C there
exists a unique function u : [0,T] = C satisfying

i) w is absolutely continuous on [0,T], differentiable almost everywhere in (0,T) and

u(t) € C, vt € [0, T); (5.10.342)
ii) %u(t) + (I = J)u(t) = f(t) a.e. in (0,T); (5.10.343)
i) u(0) = . (5.10.344)

Proof: Initially, observe that since C' is a convex cone with vertex 0, then a +b € C and Aa € C for any
A > 0 and a,b € C. Therefore, defining

j)x=Jx+ f(t), Vx e C, for almost every ¢t € [0,T],
we have that j(t) is a map from C into C such that
l7@®)x — i@yl < allz —y|, Vz,y e C, for almost every t € [0, T,

whence it follows that j(¢)z is integrable on [0,T] for each # € C. With the definition of the map 7,
expression (5.10.343) becomes

Consider N
C={uel(0,T;X); u(t)e C, vVt € (0,1},

which is a closed convex subset of C(0,T; X). Let us consider a contraction with fixed point in C. Given
xo € C, let us define ¢ : C(0,T; X) — C(0,T; X) by

pu(t) = e g +/0 e*7ti(s) (u(s))ds.

First, let us verify that d)(é) C C. Let u € C. It is clear that e~txg € C, for all t € [0,T], and also
J(s)(u(s)) € C, whence e*tj(s)(u(s)) € C, for any s,t € [0, 7]. Furthermore, since

[ Tu(s) = Ju(®)]| < aflu(s) —u(@)ll, Vs, te€l0,T],
it follows that Ju : [0,7] — C' is a continuous map, whence fot e*~tJu(s)ds € C.

Now, observe that, for each fixed ¢t € [0,T], the function g(s) = e*~tf(s) belongs to L'(0,T; X),
and, in particular, L*(0,7;C), which is a complete subset of L'(0,T;X). Since C°(0,T;C) is dense in
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L'(0,T;C), we can obtain a sequence {g,,} C C°(0,T;C) that converges to g in L*(0,T; C). In particular,

we have . ,
/ gn(8)ds —>/ g(s)ds,
0 0

with f(f gn(s)ds € C, for all t € [0,T]. Since C is closed, we conclude f(fg(s)ds € C, for all t € [0,T).
Therefore,

t
/ e*ti(s)(u(s))ds € C, vVt e [0,T],
0
and thus, ¢u(t) € C, for all ¢ € [0, T]. Hence, ¢u € C.

We will prove that for n € N sufficiently large, ¢™ is a strict contraction. For this, we will prove
by induction, that

n4n

n n at
lo"u(t) — " v(®)ll < —=llw = vlle,r:x),

for any u,v € C(0,T; X), t € [0,T] and for all n € N.

Indeed, we have

[pu(t) — vl < /0es’tl\j(S)(u(S))—j(S)(U(S))IIdS

IA

a/ e*tu(s) — v(s)||ds
0

IN

t
o [ dsllu=vllcoran
0

= atllu—vlleemrx), Vte0,T]

Suppose, now, that

(at)"~t

9"~ u(t) = 6"l < Ty,

||uiv||C(0,T;X)7 vVt € [OaT]

Therefore,

9" u(t) — ¢"v(®)] < /Oes‘tllj(S)(W“lu(t))—j(S)(¢"‘1v(t))|Id8

¢
< a [ e tun - o o) ds
0
t Sn—l
n s—t
< a /o e m”u —vll¢o,r;x)ds
n t
o -1
= = _ju- _ n-1g
(n—1)! [u—="2lcomrx) /0 S S
at)”
_ n? lu—vllcorx), Ve 0,T],
whence we conclude the desired result.
Since
||¢ ’U,(t) _¢ U(t)H S n ||u_v||C(O,T;X)a V’U/,’U S C(O,T,X)7
it follows that for n sufficiently large, ¢" is a strict contraction (see [60]). Therefore, ¢ has a unique fixed

point in C. Let @ be such fixed point. Then, since,

() = e tao + /0 e~ j(s)(ii(s))ds (5.10.345)

it results that u is absolutely continuous on [0, T, differentiable almost everywhere in (0,T) and u(t) € C,
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for all t € [0, T]. Moreover, u(0) = z( and, differentiating both sides of (5.10.345) we see that

d__

au(t) + (I = J)u(t) = f(t) a.e. in (0,7).

Now, let us prove the uniqueness of the function satisfying i), ii) and iii). Let, then, u and v be
functions satisfying such conditions. In particular, we have

u(T) + (I — J)u(r) = f(7) a.e. in (0,T). (5.10.346)

and
ve(T) + (I — J)v(r) = f(7) a.e. in (0, 7). (5.10.347)

Subtracting (5.10.347) from (5.10.346) we obtain

(u(1) = v(7)) + (u(7) = ve(7)) = Ju(r) — Ju(7) a.e. in (0,7).
Multiplying both sides of the equality above by (u(r) — v(7))s, integrating in X and using Holder’s
inequality, we obtain

5 7 (™) = (D)2 + lue () — v (7P < [ Tu(r) = Jo(7)[[[[us(7) = ve(7)]| a-e. in (0,7).

Integrating the inequality above on (0,t), for ¢ € [0, T| given, we have

1 2 ¢ 2 ¢ 2 i 2
St — o0 + / lue(7) — v (r)|Pdr < / | Tu(r) — Jo()|2dr + / lue(r) = ()P

In particular,
t
lu(t) = v(®)]|* < Oe/o lu(r) —v(7)|dr,

and by Gronwall’s Inequality it follows u(t) = v(t). Thus, we obtain the desired uniqueness. o

Corollary 5.267 Under the same hypotheses of Theorem 5.266, for each x¢g € C and each A\ > 0 there
exists a unique function u : [0,T] — C satisfying (5.10.342), (5.10.344) and
d 1 .
au(t) + X(I — Ju(t) = f(t) a.e. in (0,T). (5.10.348)

Proof: Let v be the unique function satisfying (5.10.342), (5.10.344) and

d

Z0(t) + (I = J)o(t) = M), ae. in (0,XT).

t
Considering u(t) = v ()\> , we have u(At) = v(t) and

%[u()\t)] + (I = J)u(rt) = Af(At), a.e. in (0,AT),

whence it follows p )
au(t) + X(I — Du(t) = f(t), a.e. in (0,7T),

with u satisfying (5.10.342) and (5.10.344). a

Corollary 5.268 Let C be a closed convex subset of X, J : C — C' Lipschitzian with constant o > 0,
and A > 0 and T > 0. Then, for each xo € C there exists a unique function u : [0,T] — C satisfying

(5.10.342), (5.10.344) and
d 1
%u(t) + X(I — Du(t) =0 a.e. in (0,T). (5.10.349)
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Proof: It follows from the previous Corollary, with f = 0. In this case, the proof of Theorem 5.266 is
applicable without assuming that C is a cone, since the map j(t) : C — C given by j(t) = J, for all
t € 10,77, is well defined. O

Corollary 5.269 Under the conditions of Corollary 5.268, if xo,y0 € C and u and v satisfy (5.10.342)
and u(0) = zq, v(0) = yo, then

(a—1)t

) lu(t) - o)) < 5 o — woll

.. d d

i) gt 4 (to)
at t + tg and tg.

< X (t+t0)

T for all t,ty such that u is differentiable

Proof: i) We have

t 1 ¢ s—t
u(t) =e Xz + X/ e > Ju(s)ds,
0

: L[t
v(t) =e Yyo+ X/ e~ Ju(s)ds,
0

whence .
t « El
ex|Ju(t) —v(@®)l < [lzo — yoll + X/o e [u(s) —v(s)llds
and, therefore, by Gronwall’s Inequality

a—1)

(
lu(t) = v(®)[l < e "[lzo — yol-

ii) Let t € [0,T] and ¢¢ € [0,T—h) such that u is differentiable at to and at t+to. Let also h € (0, T—to—t).
Considering zg = u(to) and yo = ug(to + h), we observe that the solutions of (5.10.349) associated to the
respective initial data xg and yo are given by u(t + to) and u(t + tg + h), and by ) we have

u(t +to + h) — u(t + o)

u(to + h) — u(to)
h

‘ < 5 (o)

h )
and letting h — 0 we obtain
d (a=1) d
—u(t+to)|| < e x o) || (¢
Hdtu( +io)|| <e dtu( 0)
0O
The estimate that will be established next is due to Chernoff [25] in the linear case and to Miyadera
and Oharu [70] in the general case. The proof we will give is found in Brezis [17] and Pazy [83].
Lemma 5.270 Let {¢,} be a sequence of locally integrable functions on [0,00) such that
—t (6] ¢ (s—t)
on(t) <naex + X/ e x pp_1(8)ds, n=1,.., a>1 and A >0 (5.10.350)
0
and @o(t) < %eLAl)t. Then, for every non-negative integer, n, and t > 0 we have
) 1
n lo=Dt t t
on(t) < a’e > n-—axy + ay (5.10.351)

Proof: We have that
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since @« > 1 and ¢ > 0. Thus, (5.10.351) is valid for n = 0. Assuming valid for n, that is,

Then, (5.10.351) will be demonstrated if we prove that

1
g1 la=b t\? ¢’
Png1(t) <a" e n+1fo<X +04X ;

but, thanks to (5.10.350) it suffices to show that

—t n+l t as—t 2 %
(n+1Da"ex + a}\ / e x {(n -1- %) + ozs} ds
0

A A
1
2 3
<a"+1eLA1)t (n_|_1_at> _|_a7t

A A

or, equivalently,

n—i—l—i—l/teu; (71—%)24—g %ds<eaTt
A Jo A A -

and since both members are equal to n + 1 at the point ¢ = 0 it is sufficient to demonstrate that the
derivative of the first is less than or equal to the derivative of the second, that is, that

1 1
laTt OE 2_|_O£ ’ < gaTt +1 Oit 2_‘_0[715 ’
A TN ) = 3° " ) )

1
2

PR AR
A A

But this inequality is true because the second member is positive, since

p1ooh) o proon) et
" ) ) " ) ) 2 "
_1
b1 2+0‘i 2 o 2+1+
" ) ) TN 2 7"
and since n + 1 > n and (a + b)? > a2, with a,b > 0 we have
o1 @) L a
A A

> n—aft 2_’_0471?
- A A

it follows that

1
2

+

1
2

+
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1 o
which multiplying by XeT and using that a > 1 gives us the desired result. |

Theorem 5.271 Let C be a closed convexr subset of X, J : C — C a Lipschitzian map with constant
a>1,20€C,T>0andu:[0,T] = C satisfying (5.10.342), (5.10.344) and (5.10.349). Then, for each
positive integer n and each t > 0 we have

1
2

(5.10.352)

2
a—1)t t t
() = T | < 0"e 5 |lag — Jaol [(” ) “A) +as

Proof: By ii) of Corollary 5.269, we have for all ¢, ¢, such that v is differentiable at t + ¢y and ¢,

d (e-1@+te) || d (a=D)(t+tg) || 1
Hdtu@ﬂo) <e TR Zult)| < e TR |50 = Dulto)
Taking the limit as ¢ty tends to 0 we have
d a=1)@) || 1
Hdtu(t)H < e (I = Dao|. (5.10.353)

Therefore, if Jxg = g, then u(t) = xg, for all ¢ > 0 and, in this case, the estimate (5.10.352) is valid.
Let, then, Jxg # x¢ and let us set for n = 0,1, ...

en(t) = [lu(t) — J"zo| lzo — Jao . (5.10.354)
Since,
t 1 t s—t
u(t) = e Xz + */ e~ Ju(s)ds
A Jo
forn=1,2,... we have
t « ¢ s—t
Ju(®) = I"aoll < K llzo ~ ol + 5 [ uls) = Twolds
0
Thus,
¢
On(t) < e %X ||lzg — J zol|||x0 — Jxo| Tt + %/ e> pn_1(s)ds. (5.10.355)
0
But,
HJL‘()—Jnl‘QH e ||J0130—J130—|—J$0—...—JnZL‘QH

IN

n
D NI g = Tl
i=1
n
< Y atMlao — Ja|
i=1

and since, by hypothesis, a > 1, ||xg — J"xg|| < na™||xg — Jxo||. From there and from (5.10.355) it

follows, for n =1, ...,
s—t

t
on(t) < na’e X + a/ Tcpn_l(s)ds. (5.10.356)
0

Moreover,

u(t) — xo
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But from (5.10.353), we have

1 d a=ns || 1
50 = Dl = | )] < =5 o - a0
Thus,
_t t t
Jute) = ol < 5 [l = Tzl [ eXast [ e uts) — anlas]. (5.10.357)
0 0

that is, the formula

t

t t
X as n_ £
|u(t) — 20| < |xofJx0H/ Z )\kk' d5+m+1 '/(tfs) eX|lu(s) — xo||ds

is valid for n = 0. Let us show that it is valid for all n. Assume that it is valid for n and let us prove
that it remains valid for n + 1.

Indeed, observe that

1 t N 1 t e—} s at s €
)\nm/o(t—s)"eAHu(s)—xOHds < W/O(t—s)"e { 3 [on—Jon/o ekdﬁ—i—/o 6A||u(§)—$0|d5]}ds

1t 1 5 ac b
— t—s)" = — ~d X - d¢| d
/\nn!/o( )" [on J~TOH/O e §+/O e [|u(s) — o 5} 5

Mo

A

and, since,
t s t _ n+1
/(t—s)”/ e“%dgds:/ S Gk Y
0 0 0 n—i—l
and . . -
A (=4
Je=or [ et - olagas = [ eH S ) - anlag
we have
L /t(t s)" eA||u( )—xo|lds < ; lzo — Jx ||/ "HeA ds+/t iw(tfs)"“Hu(s)fx |lds
An! 0 - )\n-i-l( + 1) (U 0 0 0

which, comparing with the induction hypothesis gives us the desired result and the formula is valid for
alln=0,1,....

Thus, letting n — oo, we obtain

1 ¢ ) t (a1
lu®) = woll < 3lleo = Taoll | €5 ds < Te 5 g = Tl
0
So 1 (e=1)
wot) = u(®) = zollllzo — Jwo 7 < e 3 (5.10.358)

From (5.10.354), (5.10.356) and (5.10.358) follows (5.10.352) from the previous lemma follows the result.
O

Now we are in conditions to state and prove the following result:

Theorem 5.272 Let A € A(w), such that D(A) C Im(I + AA) for 0 < XA < Ay with Mo|lw| < 1 and
satisfies condition (5.10.339). Then, for each A > 0 such that A|w| < %, Vo € C and for all T > 0, there

exists a unique function uy : [0,T] — C, absolutely continuous in (0,T), differentiable a.e. in (0,T),

d
% + Ayuy =0 a.e. in (0,T) and ux(0) = z. Moreover,

}\IH%) ux(t) = S(t)x, Yo € D(A) and VT >0, (5.10.359)
—
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Proof: Since C' C Im(I + MA) = Dy and Jy : Dy — Im(D)) = D(A) C conv D(A) and J, is
Lipschitzian with constant (1—Aw) ™! (see Theorem 5.79), then the restriction of J) to C' is a Lipschitzian
map from C' into C with Lipschitz constant o = (1 — Mw|)™! > 1, since (1 — )™t < (1 — AMw|)~h

By Corollary 5.268 there exists a unique function uy satisfying the stated conditions. It remains
to demonstrate (5.10.359).

First let us show (5.10.359) for € D(A). Let, then, x € D(A), t € [0,T] and n € N such that
n = [%]. Setting Sx(t)z = ux(t) we have:

lux(t) — S@)z] = [1x (D) — St (5.10.360)
< ISa(0)z — Sa(nN)z]| + [Sr(n\)a — Jia] + [ e — SN )z] + [S(nh)e - S@)e|
I II III v

Now let us estimate each of the terms above.
Estimate I: From Corollary 5.269, item ii), we have that, for almost every ¢y € [0,7 — t] it holds that

t+to t
[ e = | [ G+ s

Aty s by

[lua(t + to)z — ur(nA + to)zx| < ’

t s+t t4t
= /A e DT | Ayun(to)llds < eI TRE (£ = nA)[[ Ayua(to)-

Taking the limit as tg — 0 it follows that
lua(t)z — ux(nX)z|| < eV (¢ — nA)||Axz|.

Note that
! =a-—1 Alw]
a=———0: —1=—
1= Alwl 1= Alwl

And,

t
[ crormen

Whence it follows that

1Sx (82 = Sx(nA) (@) = lur(B)z — ur(pA)a]| < DX (t —nX)|Arz]

|w|t |wlt 1
= eI (t —nA)||Arz| < eT=3T (¢ — n)\)mMﬂ

|wl
< e (L — Aw|) " Az|.

Note that the term on the right converges to zero when A — 0 independently of ¢ € [0, T].
Estimate IT: Bearing in mind that Sy (¢)x = ux(t) one has, by Theorem 5.271, that:

[Sx(nA)x — T[] = [[ux(nA) = J3z]|

1
2

< e ol [(n-a) 4o
S e x AL n « b\ « \
< a2 — Jhz|[(n — an)? — om]%
L, mAlwl . 2 3
< (1= Aw|) "eTARTA(1 — Aw|) ™" |Az] {(n—an) —l—om}
¢ _tlel A 1
< (1)\|w)kel—/\lw1_\C|w||Ax| (A (n2(1704)2+0m)]2
1
Lt VA Awl]? t ]2
< (1- =Xl t? A 5.10.361
< (-t o e e L el oo
(5.10.362)
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since
¢ < ¢ = > ¢ d
n=|- — —n > —— an
A - A

A(1—a)f +an) = A ([ir (1 1 —1A|w|>2 T —[&]luﬂ)

2 2 t
t Alw] X
< _
: *(A) (1—A|w|> T

Aw|? n t
(1 =Aw)? 1= M|’

< #

The last term of (5.10.361) also converges to zero when A — 0 independently of ¢ € [0,T].
Estimate III: Since Alw| < 1 one has, by (5.9.279) that

Tz — S(nN)z| = lim ||Jyz — Jmz||= lm ||Joaz — sz
m—r oo m m—roo n m

1
1 1)\?2
< lim 2nAetlen? (n - ) |Az|

m— o0 m

1
= 271)\64‘w|n>\%|141‘|

2VnAV e | A
= 2ynxetlnN| Az
< 2Vt Az

where the term on the right converges to zero when A — 0 uniformly with respect to ¢ € [0, T7.

Estimate IV: By Proposition 5.243 it follows that

1S(n\)z — S(t)z|| e (=N A (4 3| A

<
< e”+’\e”+t)\|Ax|

which converges to zero independently of the value of ¢ € [0,T].

From estimates I, II, IIT and IV we have that (5.10.360) tends to zero when A — 0, uniformly on

[0, 77, that is,

lim wuy(t) = S(t)z, Vo € D(A) and Vvt > 0,
A—0

or even, given z € D(A) and € > 0, there exists d(e, z) such that

[lua(t) — S(t)z|| < € whenever A < d(e, z).

Thus, given x € D(A) there exists y € D(A) such that ||y — z|| < € and

[ux(t) = S@)z|| = [|Sx(t)x — Sx(t)y + Sx(t)y — S(t)y + S(t)y — S(t)z||
< ISz = Syl + [[Sx@)y — SOyl +[[S(H)y — S(t)z||
v <e by (5.10.363) VI

Estimate V: Note that, setting Sy (t)y = va(t), by Corollary 5.269

[Sx () = Sx(O)yll = [lua(t) = oa(D)]]
(a—1)t |

|t
< T |z -yl = e |z -y

|w|T
< el ¢
N——

bounded

(5.10.363)

(5.10.364)
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Estimate VI: Since we are under the hypotheses of Theorem ??, S(¢) is Lipschitz continuous on bounded
intervals, and therefore
[S(t)y — S(t)z|| < Lljx —y|| < Le. (5.10.365)

In this way, from (5.10.363), (5.10.364) and (5.10.365) it follows that

lim uy(t) = S(t)x, Yo € D(A) and ¥Vt > 0
A—0

which concludes the proof. m]

Before stating the next theorem, we will prove some auxiliary results.

Lemma 5.273 Let X be a Hilbert space and ¢ : X — (—00,00] be a convex, proper and lower semi-
continuous function. Considering A = Op and S the semigroup generated by —A, define, for A > 0, the
function ¢y : X — (—o00, 00| given by

er(0) = mip { Sl = ol + o)}

Then:
. Moo
() palz) = SllAz]® + ¢(Jrz)

(ii) @x is convex, Gateaux differentiable and dpy = Aj.

Proof:

(i) Set
9(0) = 55l — ol + (o).

1
Then, 0¢(y) D X(y — z) 4+ 0p(y). By definition, Jyz is the unique solution of

0€ %(y —x) + 0p(y).

Thus, Jyz is a minimum of the function v, that is,

ere) = min{ Sl ol + o)}

1 A
= oylhe =zl +e(he) = Sl Ae]® + o(Nrz).
(if) Since Ayx € A(Jrx) = Op(Jrx), we have
o(JIay) —e(Jrx) > (Arz, ay — ax).

Thus,

W)~ r@) = Sl — Sl + (o) ~ o(r2)

A
> 5 (||AAyH2 — ||A,\33||2) + (Axz, hy—y+y—z+xz— Jyx)
A
3 (IAxy[1? = [[Axz]?) + (Axz, Jay — y) + (Aaz,z — Jaz) + (Arz,y — @)
A
(1AYI1? + [Axz]?) — Ml Azl Axyll + (Axz,y — z)

(I Axyll = [ Axz])* + (Axz, y — ). (5.10.366)

DO > o
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Therefore,

ex(y) — oa(x) — (Axz,y — 2) > 5 ([Axy] = [|Axz])* > 0.

| >

Multiplying (5.10.366) by —1 we have

A
pa(@) —ealy) = =5 (Al = [Axz])® = (Axz + Axy — Ay, y — @)
A
= —3 (lAxyll = |Axz])® + (Any — Axz,y — ) + (Ary, = — ),
whence
ox(r) —pa(y) — (Ary, 2 —y) < (Ayy — Aya,y — o). (5.10.367)

Thus, exchanging x with y in (5.10.367) and combining with (5.10.366) it follows that
0 < pa(y) — pa(z) — (Arz,y — ) < (Any — Az, y — x), (5.10.368)

for all z,y € X and A > 0.
If y is of the form y =z + tz, t > 0, we have

0 <or(z+tz) —pr(x) — (Arz,tz) < (Ax(z +t2) — Axz, t2),

whence
t —
0< ox(z + Zt) er(z) —(Axz,2) < (Ax(z+t2) — Aya, 2)
< el Ar(e +t2) — Asa
< Mﬂx—i-tz—xﬂ.
- A
Therefore,

lim Az +12) — pa(2) = (Ayz, 2).
t—0 t

Let us prove that ¢y is convex. From (5.10.366),
oA(y) — pa(@) > (Axz,y — ), (5.10.369)
for all z,y € X. Setting y := x and x := (1 — ¢)x + ty, we have
ox(x) —ea((1 =tz +ty) > t(Ax((1 =)z + ty), z — y). (5.10.370)
Substituting now in (5.10.369) z := (1 — t)x + ty it follows

ox(y) —ea((l =tz +ty) > (A1 -tz +ty),y — (1 —t)z +ty)
= —(1-t)(A\x((1-t)z+ty),z—y) (5.10.371)

Do (1 —t)(5.10.370) + ¢(5.10.371) to obtain
(1 =t)pa(z) + toa(y) — ea((1 —t)z +ty) > 0.
It only remains to calculate dpy. Now, ¢, is convex and proper. Since it is also Gateaux differ-

entiable, by proposition 4.16 we have that ¢, is subdifferentiable at every point and Az is the
unique element of dpy(x).

Corollary 5.274 ¢, is Frechet differentiable.
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Proof: From (5.10.368),

0<oa(y) —oa(z) — (Axz,y — ) < (Axy — Axz,y — ),

whence 9
0 < fea(y) — ea(@) = (Ana,y —2)l < Slly — |?.

Lemma 5.275 If A is an m-monotone operator on a Hilbert space, then D(A) is convez.

We will also use the following properties:

(i) If x € De(f) N De(g), then d(f + g)(z) D df(x) + dg(x).

(ii) x is a minimum point of f if, and only if, 0 € df(x).

Now we can state the following result:

Theorem 5.276 Let X be a Hilbert space and ¢ : X — (—o00,00] be a convex, proper and lower
semicontinuous function. Considering A = Op and S the semigroup generated by —A, if v € D(A) and

t >0, then S(t)x € D(A) and the following hold:
. o 1
() | AS@)z]| < 2 lISH)z —2ll;

e o 1
(@) | AS@)z]| < [l Avll + Sllv -z, Yve D(A).

Proof: Let © € D(A). We have that A = dy is m-accretive, and thus, D(A) is convex. Thus, according

to Theorem 5.272, the problem

dU)\

—— + A = A

i + Axuy =0, A >0,
ux(0) =z,

possesses a strong solution uy, for all x € D(A).

According to Lemma 5.273, for all v € X

ox(v) —ea(ua(t)) = (pa(ur(?)),v —ua(t))

(
= (Ayua(t),v —ua(t))
_ ( dur g, uA(t)>

1
2 dt

lv — uA ()]

&‘Q‘

Integrating from 0 to T
1 2 1 2 g
Sl =@ = Sllv =2l < Tea(v) = [ ea(ua(t))dt.
0

d
From (5.10.372), composing with t%(t) we have

dU)\ 2
—(t
Q)

t ’

t<A,\u,\(t), ‘Z‘;(t)> =0.

(5.10.372)

(5.10.373)

(5.10.374)
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By Corollary (5.274), ¢, is Frechet differentiable and its derivative is Ay. Thus,
dpx duy
— t))=(A t), —(t
o (uat)) < aun(t), — ()>

by a generalization of the chain rule. Thus, from (5.10.374)

2

d’LL)\ d
t|——(1 t— t)) =0.
%20 + tgpentunon =0
Therefore, we have
T 2 T
du,\ d
ti|— ()| dt = — t— t)dt
/0 ‘ o (1) /0 g (Paua)(t)
T
= ~Tar(T)+ [ ealur(o)i
0
1 1
< =Toa(ua(T)) + Ta(v) — §||U —ux(D)|I* + §||U —z|*.
duy || . . .
By Theorem 5.250, a is non-increasing. Thus,
T2 ||duy . |I” 1 1
Setting v = u)(T),
du>\

1
||A)\U)\(t)|| < zH’LL)\(t) - 1’”, t>0. (510376)

20 < gl - al.

Since T is arbitrary,

We also have, by Theorem 5.272,

;ii%ux(t) =S(t)xr Vz e D(A).

Then, for ¢ > 0,
. 1
limsup | Ayux (&) < SIS(@)z — 2.
A—0 t

Therefore, for each ¢ > 0, there exists a sequence \,, converging to zero and y(¢) € X such that
Ay, uy, (t) — y(t). Since
ux, (8) = Jx, (ux, ) (O] = AnllAx, ux, (D],

we have that Jy, uy, (t) — S(t)z. By Proposition 5.97, A is demiclosed and by Proposition 5.75,
(I, un, (1), Ax, ua, (1)) € A,
hence it follows that S(t)x € D(A). It remains to prove estimates (i) and (ii).

Since A is demiclosed, we have that y(t) € AS(t)x. From Theorem 5.265, item (i), AS(¢t)z has a
unique element of minimal norm,
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[AS@Hz < [y@)l

< liminf |4y, ux, (t)]]

< limsup [[Axux(t)]]
1

< Listye - al.

Now, if v € D(A), note that
oa(v) —oa(ua(T)) < (Ao, ux(T) —v)|

< JlAxv[lflua(T) = 2|

From (5.10.375),

T2 2

2

W ()

1 1
7 < Tl Axv[lllua(T) = vl + Fllv ~ zl|* — llv = ux (7).

By Young’s inequality we have

1 1
Tl AxellJuxcr = ol € STANI + 5[0 = wrcry I

Thus,
d 2 1 1 2
|92 < bavolP + gl ol < (14l + o —al) -
Since T is arbitrary
dU)\ 1
— (D) = lAu @l < [Axvll + 2o —2ll, v >0, Yo € D(A).

By Proposition 5.108, item (ii), it follows that
o o 1
FAS@zl < | Avll+ Zllv— =,
completing the proof. O

Corollary 5.277 Under the conditions of Theorem 5.276, Vx € D(A):

(i) S(t)x is a strong solution of (5.10.293)-(5.10.294);
(i) A S(t)x is right continuous at every t > 0;

(iii) S(t)x is differentiable from the right at every t > 0 and

dr °
ES(t)er AS{t)x =0, V£ > 0.
Proof: Immediate consequence of Theorems 5.265 and 5.276. a

5.11 Examples

Example 5.278 Let X be a Hilbert space and f : X — (—o00, +00] be a convex, proper and l.s.c. function.
By Proposition 5.46, Of is an m-monotone operator and, therefore, m-accretive. Since D(Of) = D.(f)

’
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it follows by Corollary 5.277, that the problem

iu—l—@f(u) 50

dt (5.11.377)
u(0) =z Va € D.(f)
has a strong solution, S(t)x, where S is the semigroup generated by —0f on D.(f).
(1) Consider in particular X = R,
/iR — (—o0,+0]
z— f(z) = [l
In this case, the operator A = Of is defined by
-1, ifx <0
D(A)=R, Az=<{[-1,1], ifx=0 (5.11.378)
1, if x > 0.
Indeed, we have that
D.(f)={z eR; f(z) < +oo} ={x € R; ||z| < +o0} =R.
Thus, D(0f) = R.
We saw in Example 4.17 that 0f(0) = [—1,1]. Moreover, since R is smooth (since it is Hilbert),

(2)

it follows from Theorem 5.42 that the norm in R is Gateaux differentiable. Thus, by Proposition
4.16, the norm in R is subdifferentiable on R\ {0} and the Gateauz derivative f'(x) is the unique
element of Of (x) for all x € R\ {0}. Now, by Remark 5.44, we have

, _@:i: -1, ifx<0
)= ol = Tl {1, >0
Therefore,
)L ife <0
0f(w) = {1, if x > 0.

Thus, we obtain the characterization of the operator A = 0f given in (5.11.378). Since the norm
is a convex, proper and l.s.c. function, it follows that problem (5.11.377) has a strong solution for
all z € R when 0f = A.

Let us consider another particular case of (5.11.377). Take X = L?(S2), where Q C R™ is open,
bounded and with smooth boundary, and f : L?(Q) — (—o0, +00] the function given by

1 / 9 .
= [ |Vul|*dz, ifue HY(Q)
flu) =142 Ja
400, otherwise.
Note that the function f is proper, since

Do(f) = {u e L% f(u) < +o0} = H'(Q) # 0.
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We saw in Example 4.11 that f is l.s.c., and moreover, f is convex. Indeed,

fu+ (1 —tw) = %[)|V(tu+(1—t)u)|2dx

< 1/(1?|Vu|—l—(l—t)|Vv|)2dac
2 Ja

1
= 5/ 2| Vul? 4+ 2t(1 — t)|Vul|Vo| + (1 — t)?|Vo|?dz
Q

1
_ 5/t|w|2+(1—t)|vu|2—t(1—t)(|vu|—|W|)2dgc
Q

2
= tf(w)+ (1 =)f(v).

1
< 7/t|Vu|2+(1—t)|Vv|2dm
Q

We conclude that f is convex, proper and l.s.c.. Therefore, by Proposition 5.46, the operator Of is
m-monotone. Hence, by Theorem 5.54, Of is maximal monotone.

Let A be the operator on L*(Q)) defined by

D(A) {u € H*(Q); d,v =0 on 9N}
Au = —Au, Yu € D(A).

We saw in Example 5.57 that A is mazimal monotone.

We claim that A = 0f, i.e., —A = 0f. Indeed, let u € D(A) and v € D.(f). We have,
(Au,v —u) = /(—Au)(v —u) dz
Q
/(fAu)v der/(Au)u dx
Q

Q

= /vuvv d:cf/ |Vul|? da
Q Q

1
< 7/(\Vu\2 +|Vo|?) d:cf/ |Vu|? dx
2 Ja 0
= 1/ |Vo|? do — 1/ \Vul|? da
2 2 Ja
= f(v) = f(u).
It follows that Au € Of(u), Yu € D(A). Thus, —A C 0f and, since —A is mazimal monotone,

—~A = 0f.

Therefore, problem (5.11.377) with x = ug has a strong solution S(t)ug for all ug € L*(S2), where
S is the semigroup generated by —0f = A on L*(Q).

Example 5.279 If Q C R™ is open, bounded and has smooth boundary, the operator A of LPQ, 1 <p <
00, defined by

D(A) = W2PQ N W, 70
Au = —Au

is m-accretive, as was seen in Example 5.91. Since A is closed (because A is m-accretive) and LP) is
reflexive, if S is the semigroup generated by —A, the function S(t)ug is, by Corollary 5.259, a strong
solution of the problem
d
TV +Au =0
u(0) = ug
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for all ug € W2PQ N Wol’pQ.

Example 5.280 Let § : R — R be a monotone operator and € an open set of R™. Let us define the
operator B : LPQY — LPQ, 1 < p < o0, by

D(B) = {u € LPQ; Jv € LPQ such that v(z) € B(u(x)) a.e. in Q}
B(u) = {v € LPQ; v(z) € B(u(x)) a.e. in Q}, Yu € D(J)

we will show that B is m-accretive.

Claim 1: B is accretive.

Indeed, by item b) of Example 5.71, we have F(u) = ululP~?|u|2?, Vu € LPQ. Thus, if (u1,v1), (ug,v2) €
B, we have

(v1 — ve, F(up —u2)) = |jug — U2H2_p (uy — ug)|ug — uQ|p_2(v1 —vg)dz >0
P Ja

since (up(x) —ug(x))( vi(z) — wao(xz) ) >0, since 8 is monotone. It follows from Corollary 5.69 that
~—— ——
€B(ui(w))  €PB(uz(w))

B is accretive.

Claim 2: 3 is m-accretive if Q is bounded or if 0 € 5(0). Indeed, it suffices to show that Im(I+ ) =
LrQ.

Case I: ) bounded

Let v € LPQ), since (3 is, by hypothesis, accretive (since, in Hilbert spaces, monotonicity is equivalent to
the accretivity condition), (I + B)~' is, by Proposition 5.75, a single-valued operator. Thus, setting, for
each x € (Q,

u(z) = (I +8)'o(x)
it suffices to show that w € LPQY, since from there it follows v(x) € (I + B)u(z), that is, v(z) — u(z) €
B(u(x)) with v —u € LPQ, hence u € D(B) and v —u € S(u), or even, v € (I + B)u as we wanted.

Let us show that uw € LPQ). Indeed, by Proposition 5.76, since the operator 8 : R — R is accretive, then,
Ji = (I +B)~! is a contraction, and since u is measurable, set c = (I + 3)~1(0), then

u(@)| = Ju(z) +c—c] < |u(z) —c|+]c]
(I +B) " w(@) = (L +8)"(0)] + c|
[v(@)] + ]

IN

in this way, if Q is bounded, c € LPQ) and, therefore, u € LP().
Case II: 0 € 5(0)

If 0 € B(0) then ¢ = (I 4+ B)~*(0) = 0, whence |u(zx)| < |v(z)| which implies u € LPQ. Now, since 3
is closed and LPQ is reflexive for 1 < p < oo, if S is the semigroup generated by —[3, then the function

S(t)ug, up € D(B), is, by Corollary 5.259, in both cases, a strong solution of the problem

%u + ) 50
u(0) = ug

Example 5.281 The operator A+ 3 of LPQ), 1 < p < oo, where A = —A and 8 are the operators
described in the examples above, is m-accretive. Indeed, first let us make considerations in order to use
Corollary 5.119.
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If u € LPQ, then F(u)(x) = u(z)|u(z)[P~2|lul|27? and, therefore, if (u,v) € A, we have

(v, F(Bu)) IIﬂwHi_p/ —Au(@) (B (u(x))|Bx(u()) P~ dw

(= DlBvalE [ |l Vala) 2B (u(w)do > 0

since the derivative 85 of B is non-negative since, by Theorem 5.79, By is accretive. By Corollary 5.119,
A+ =—A+ 8 is m-accretive. Thus, by Proposition 5.89, it is closed and since LPS) is reflexive, the
problem

d
St (At B0

u(0) = ug

has, by Corollary 5.259, for all ug € D(A + ), a strong solution S(t)ug, where S is the semigroup
generated by —(A+ ).

Example 5.282 Let C be a closed convex subset of a reflexive Banach space, T : C'— C a Lipschitzian

—T€A<a—1).
t

map with constant o and t > 0. By Example 5.80, item a)

Note that o7

D (;) = D(T) =C. (5.11.379)

Let us show that there exists A\g > 0 such that for 0 < A < Ag
I1-T

CciIm (I + At) . (5.11.380)
Indeed, let x € C, A > 0 and define

Gly) = ——a+ 21

D= ety

Note that G : C — C. Indeed, let y € C. We have to show that G(y) € C. SinceT : C — C, Ty € C and
from the fact that G(y) = H_)\w—i— H_)\Ty and t+)\ + t+>\ =1 it follows that G(y) is a convex combination
of x and Ty. Thus G(y) € C. Moreover,

pYe
1G(y) = G(2)|| = 1Ty —T=| < th)\Ily— z||-

t+ /\
e If a <1 then G is a strict contraction for all X > 0.

t
e Ifa <1 then G is a strict contraction whenever A\ < P

t
In any case, taking Ao = 71 we have that G is a strict contraction. Thus it has a unique fixed point
a —
y € C, that is,

Y= (Z/):ﬁf‘*‘ﬁ Yy
or even,
t+ A A
LAY, A
t ST YT
which implies
I+T
)

and therefore,

zelm (I /\ItT)
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which shows (5.11.380) and from (5.11.379) it follows that

D<I_tT>—Cc1m<IAI+tT>.

Observe that is a closed operator. Setting A = 1=L and x € C, by Corollary 5.259 S(t)x is

t
T-1

a strong solution of (5.10.293)-(5.10.294) where S is the semigroup generated by —A = —

Example 5.283 Let ¢ : R — R be a continuous, strictly increasing function such that ¢(0) = 0,
»(R) =R. Consider the operator
A:LY0,1) — LY(0,1),

defined by
D(A) = {ue C([0,1];L'(0,1));u(0) = 0 and p(u) is absolutely continuous }
and J
Au = p(u) = - [p(u(z))]

Note that Au € L1(0,1) since ¢ o u is continuous on [0,1]. Then the problem

ur + (p(u), =0,t>0, 0<z<1
u(0,2) =up(z), 0<z <1
u(t,0) =0, t >0

Can be rewritten as
{ dy+Au=0,t>0 0<z<l

u(0,2) =up(z), 0<z <1

since u(t) € D(A) implies that u(t,0) =0 for all t > 0.

Let us show that A is m-accretive.
A is accretive: Indeed, let p : R — R be a Lipschitzian, non-decreasing function, such that |p| < 1 and
p(0) =0, and j: R — R defined by

i) = [ pryan
0
Let u,v € D(A). Then

1
lu — v+ AMAu — Av)||p1(0,1) = / |lu— v+ A(Au — Av)|dzx
0

1

I
B
[
<
+
>

(p(uw) = p(v)')|dx

V
=
\
<
+
>

; (e(w)" = o@))lp(p(u) — p(v))|dz

/O it — v+ Alp() — ()] plep() — (o)) de

v

- / (1 — 0)p(p () — p(v))dz + A / () — p(0) Do) — p(v))dz  (5.11.381)
(5.11.382)

From the definition of j we have that

s(x)
Zitata) = 4o [ pr)ar = als(@) = pls(e)) oste).
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Setting s = p(u) — p(v) it follows that

that is,

/ (p(u) — o(0))plip(u) — (v))dz = / (i(p(u) — @(v)))de (5.11.383)
0 0

= Jle(u(1)) — p(v(1)) = jle(u(0)) — (v(0))) >0, (5.11.384)
>0 =0
since p(0) = 0 and p does not decrease, i.e., j(s) = [J p(T)dr > 0. Thus, (5.11.381) and (5.11.383) we
>
obtain .
lu—v+ ANAu — Av)| p10,1) > /0 (u—v)plp(u) — p(v))dx (5.11.385)

In particular, (5.11.385) holds for p = p,, where, for eachn € N, p, : R — R is defined by

B ns, if |s| < %
2= ggnr, 1> 1
where
1, ifs>0
sign(s) = 0, ifs=0
-1, ifs<0

But p, converges at every point s € R to sign(s). Thus, p,(p(u) — ¢(v)) converges, at each point of
[0,1], to sign(e(u) — @(v)). Moreover, since ¢ is strictly increasing, sign(p(u) — p(v)) = sign(u — v).
Hence, pn(p(u) — p(v)) converges at each point of [0,1] to sign(u —v). Since

(= v)pn(p(u) = (V)] = [u =] [palp(u) = p(v))] < |u = v|

and by hypothesis u — v is integrable, then, by the Lebesque Dominated Convergence Theorem, it follows
that

1 1
lu —v 4+ AMAu — Av)|[110,1) > / (u —v)sign(u — v)dx = / |lu — v|dz,
0 0

that is,
lu — v+ XMAu — Av)||L1(0,1) > [J[u —v| L1(0,1)dz,

that is, A is accretive.
A is m-accretive: For this, we must show that for all h € L*(0,1) there exists u € D(A) such that

u+Au=u+p(u) =h

Land v = o(u), show that there exists v absolutely continuous satisfying

{ Zl((;; 5:(1(’)) =h (5.11.386)

or, setting 5= o~

Consider first h € C([0,1]). By Peano’s Theorem, equation (5.11.386) has a local solution v on an interval
[0,a), 0 < a <1, such that v(0) = 0. Let us show that v is unique. Indeed, suppose there exists another
solution w, then
W+ pw)=nh
{ w(0)=0

Hence,

(v —w) + B(v) = B(w) =0
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which itmplies that
2o+ [80) — B (0~ ) = 0.

Since 8 is increasing we have that [3(v) — B(w)] (v —w) > 0 and therefore
d
%h) —wl*<o0.

Integrating from 0 to x, 0 < x < a we have:

0> [v(z) — w(z)[? = [0(0) — w(0)[2
=0

which implies v = w in [0,a) proving the uniqueness of solution.

To extend v to the interval [0,1], observe that, exactly as it was shown that A is an accretive
operator of L'(0,1), it is shown that A is accretive in L*(0,a). Observe also that 0 € D(A) and A(0) =

4 [©(0)] = 0. Hence, setting u = [(v) we have:

dz
/ lulde = / |u—0|da:§/ |lu — 0+ Au — AO|dx
0 0 0

a 1
/W+MW§/MW=MMW>
0 0

and therefore, if 0 < x < a,

o(z)] =

/ v'(s)ds S/ |v'|ds

0 0

/ |h—ﬁ(v)|ds§/ \h|d8+/ lulds
0 0 0

2/l 0.1)

IN

that is,
lv(@)] < 2[|hllL10,1)

and therefore the solution v can be extended to the interval [0,1].

Let now h € L*(0,1) and (h,) C C([0,1]) such that h, — h in L1(0,1). From what has already
been demonstrated, for each n € N there exists u,, such that u, + Au, = h,. From this and the accretivity
of A it follows

||un - um”Ll(O,l) < ||Un — U, + Auy, — AumHLl(O,l) = ”hn - hm” —0

when m,n — co. Thus there exists u € L*(0,1) such that w, — w in L*(0,1). But then, Au, = hy, —u, —
h—w in L1(0,1).

To complete the proof it suffices to demonstrate that A is a closed operator. Let, for this, (u,) C
D(A), u, — u and Au,, — w in L'(0,1). We must show that u € D(A) and Au = w. By hypothesis
o(uy) is absolutely continuous, thus

\wun)(x) - [ wtryr

| ety = xmar

< / |(p(un)’ = w)(T)ldr = || Aup — ], Yz €0, 1].
0 —_——

—0

Therefore,

n—oo

lim o(uy,)(z) = /Omw(r)dT.
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By the continuity of 0
nhHH;O up(z) = (/0 w(T)dT) .

On the other hand, since u,, — u in L1(0,1), there exists a sequence ny, such that

lim w,, () = u(z) a.e. in [0,1].
k—o0

Hence,

(@) = 8 (/Oxw(T)dT) ae. in[0,1].

Now, redefine u so that the equality holds at every point of [0, 1], from where it follows that u is continuous,
u(0) =0 and

@(U)CF)ZZW(B(]gwa%T)dT))::jﬁmu(T)dT

Note that p(u) is absolutely continuous. Thusu € D(A) and Au = p(u)’ = w. Therefore A is m-accretive.

From this it follows that A is under the conditions of Theorem 7?7 (Crandall-Liggett) and by Remark
5.260 the function S(t)ug, where S is the semigroup generated by —A, is a generalized solution for all
up € D(A)

Example 5.284 Let p : R — R, be strictly increasing and such that ¢(0) = 0 and p(R) = R. Consider
A:LY0,1) — L'(0,1) defined by

D(A) = {u e C([0,1]);u(0) = u(1) = 0, p(u) and [p(u)]" are absolutely continuous}

and
Au = ~[p(u)]",u € D(A).

Let us prove that A is m-accretive.

Let p and j be as in the previous example. From the fact that |p| < 1, |||a] — |b]|| < |a — b| and
a < lal, it follows that

1
lu—v+ AAu— Av)|L101) = / lu—v = Mep(u) = ¢(v))"|dz
0

Y

1
/0 lu—v = AMep(u) = ©)"| - Ip(e(u) — o(v))|dx

Y%

1 1
| = vmtet) = ctw)dr = [ (et = o))" - ple() = ot0))da.
The idea now is to prove that the second term of the sum above is positive, for if this is the case,

1
[u = v = A(Au = Av)||L1(0,1) > / (u = v)p(p(u) = ¢(v))dr — [lu = v]|L1(0,1),
0

as already done previously.

If s = p(u) — p(v), then j'(s) = s'p(s) is absolutely continuous. In this way

LAU@D”%=U@WG%%%$W®=0
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But
(7(5))" = [s" p(s)) = (s)% ' (s) + &" p(s),

whence
A<ﬂw—ﬂwwmaw—@wmmz—4<wwuwwn%ﬂ¢w—ww»sm

since p is increasing (p’ > 0).
This proves that A is accretive.

To prove that A is m-accretive, set 3 = =1 and v = @(u). As in the previous example, we must

prove that given h € L'(0,1), there exists v such that v and v' are absolutely continuous, v(0) = v(1) = 0

and B(v) —v" = h.

Observe initially that if v satisfies the statement above, then v is bounded and |[v||oc < 2||AllL1(0,1)-
Indeed, since A is accretive and A(0) = 0,

1Bl 0,1) = llullzro) = llu = 0llzr(0,1) < llu =0+ (Au = A0)[|Lr(0,1) = IAllL1(0,1)-
Since v(0) = v(1) = 0, there exists & € (0,1) such that v'(§) = 0. Thus,

‘v |</ ‘7}” |d7‘</ |ﬁ )|dT<2||h||L1(O 1)
whence .
lo(z)| < / ' (7)|dr < 2|[hl|x, ¥ € [0,1]. (5.11.387)
0

Let us keep, for a moment, this information and consider an auziliary map B : R — R, bounded,
non-decreasing and such that 3(0) =0

And let us define,

To(x) =/0 9(z,9)(B(v(y)) — h(y))dy, v € L*(0,1), (5.11.388)

where
Jyle—-1) if 0<y<az<l;
g(x’y)_{m(y—l) if 0<z<y<l.

Then it is obvious that Tv(0) = Tw(l) = 0, Tv and (Tv)" are absolutely continuous. To conclude
the proof, it suffices to show that T : S — S, S C C([0,1]), has a fized point.

Let K > 0, such that |3(s)] < K,Vs € R. Then

1 ~
To(z)| < /wum«ww@fmmw

< [ 18I0 - ey < K+ 0l

and also

(To)’ |</w h(y)ldy < K + |[A]1.
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Then, T(L*(0,1)) C S where

S ={w e C([0,1]);w(0) = w(1) = 0, [w]loc, |w'[lec < K +[|A]l1}-

By the Arzela-Ascoli theorem, S is relatively compact in C([0,1]). By Schauder’s fized point theo-
rem, it suffices to prove that T is continuous.

Let {v,} € C([0,1]) such that v, — v in C([0,1]). Then B(vn)(y) — B(v)(y) and § is bounded.
We have

Tun(z) - To(x) = / 9z, 9) (Bwn) (9) — Bv)(v))dy,

whence
(Ton () — To(x)] < / 1B(0a) () — Alo)(w)ldy — 0,

by the Lebesgue dominated convergence theorem. Therefore, T has a fized point which is a solution of

B(v) —v" = h.

Let us return then to the proof, let h € C(]0,1]), and consider

i 2/|pllecif  B(s) > 2[|lloo;
Bls) = Bls) if  1B(s)] < 2hlloc
“2fhlle if  Bls) < =2[|h]lco-

Thus, B : R — R is non-decreasing and B(O) =0, so, by what was done above, there exists v € S, such
that f(v) —v" = h. Now, let yo € [0,1] such that v(yo) = maxgep,11{v(x)}, so, v"(yo0) <0, hence

B(v()) < Bu(yo)) < B(v(yo)) —v"(yo) = h(yo) < max {h(x)}

z€[0,1]

for all x € [0,1]. Analogously, let yi such that v(y1) = mingejo1){v(z)}, in this case, we have

Bv(x)) > min {h(z)}

z€[0,1]
for all x € [0,1]. That is, for all x € [0,1]
Bu(@))] < [1Allos
and, therefore, B(v) = B(v) and v satisfies B(v) — v = h.

If h € LY0,1), there exists {h,} C C([0,1]) such that h, — h in L'(0,1). We can consider
hnlls < ||l With this, define for each n € N

) 2(lhnllif  B(s) > 2[|hnlli;
Bn(s) = B(s) if  1B(s)] < 2[hnll;
=20halls if  B(s) < =2[|hn1-
and
) Uhlloe  if  Bls) > 2l
B(s) = B(s) if  1B(s)] < 2[h]loo;
=2||hlls if  B(s) < —2h]lso-

It is left as an exercise to the reader to verify that 5, — 8 uniformly on R. Thus, if T,, is the operator,
as in (5.11.388), but associated to B, and h, and T the operator associated to 5 and h, we have that

T,, — T uniformly on [0, 1].
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On the other hand, if vy, is a fixed point of T, we have, by the argument above, that
B(vn) — vy = hy

and from (5.11.387) ||v||loo < 2||Anll1, but, ||hn]l1 < ||R]|1, so,

[onlleo < [[R]l1,

since {vn} C S = S(B, h) which is relatively compact, we have that there exist v € S and {v,, } C {vn, }
(which we will continue to denote by {v,}) such that v,, — v uniformly on [0,1], consequently,

T (vn) — T(v) uniformly on [0, 1]
but,
Tn(vn) =v,Vn €N

therefore,
vp, — T'(v) uniformly on [0, 1]

and, by uniqueness of the limit, we have
Tv =v.

Thus, v is a fized point of T and, therefore, satisfies, B(v) —v” = h. Still, from B, — B uniformly on R
and v, — v uniformly on [0, 1], we have

Bn(vy) = B(v) uniformly on [0,1]
but, ﬁ:z(vn) = B(vy), for allm € N and, 8 is continuous, so
B(vyn) — B(v) uniformly on [0, 1]

thus, by uniqueness of the limit, we have
Bv) = B(v)

as we wanted.

Therefore, A is m-accretive. And thus, for all ug € D(A), S(t)ug is a generalized solution of the
problem
ug — (p(u))ee =0, t>0, 0<z<1;
u(0, ) = up(z), 0<z<l (5.11.389)
u(t,0) =u(t,1) =0, t>0.

Example 5.285 Let ¢ : R — R be continuous, non-decreasing and such that ©(0) = 0. Define A :
c([0,1)) — c([0,1]) by

D(A) = {u € C([0,1]);u(0) = u(1) = 0, u,u’,u" € C([0,1])},
Au={w € C([0,1]); o(—w) = u"}.
Let us prove that A is m-accretive.
Let uy,us € D(A), w1 € Auy and we € Aug and suppose uy # ug. Then

||U1 — U2|| = |U1(I0) — UQ(I0)| > 0, Xo € (0,1)

Since uy —ug is continuous, the set of points where this function attains its maximum is closed, so
it has a smallest element xo. To fix ideas, suppose ui(xg) > ua2(xo). We must have wy(zo) > wa(zo).
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Indeed, if w1(xo) < wa(xo), then wi(z) < wa(zx) for all x in some open interval J containing .
Since ¢ is non-decreasing,

(u1 —u2)" () p(—wi(z)) — p(—w2(z))

> —wi(x) +wa(x) >0, Vo € J.

Thus, (u1 —us) is a conver function on J. But xq is a maximum of u1 — ug, whence uy — ug must
be constant on J, which contradicts the minimality of x.

Thus, for A >0

[ur — uz + AMwr — w2)|| [u1 (o) — uz(wo) + Awi(wo) — wa(zo))|

lui(z0) — ua(wo)| = |lur — uall,

VARV

proving that A is accretive.

It remains to prove that given h € C([0,1]), there exists u € D(A) such that h € (I + A)u, that is,
u” = p(u—h).

Let us assume initially that |p(s)| < K, Vs € R. Consider, as in the previous example, T :
c((0,1]) — ¢([0,1])

1
Tua) = [ gle.w) - elulw) - b))y
0
Then (Tu)" = @(u — h). It suffices to prove that T has a fized point. We have

1
Tu(z)| < / lo(u(y)) — h(y)ldy < K

and |(Tu) (z)] < K.

Thus T(C([0,1])) € S = {w; ||w||,||w'|| < K}. It is sufficient then to prove that T is continuous.

Let un — u in C([0,1]). Then o(un(y) — h(y)) — ¢(uly) = h(y)) and [o(un(y) —h(y))| < K.
By the Lebesgue dominated convergence theorem,

(Tun() — Tu(z)] < / [o(tn () — () — (uly) — h(y))|dy — 0.

Since Tu = u, we have that v € D(A).

Observe now that if v is a solution of our problem, then it is bounded, whether ¢ is bounded or
not:

[oll < flv =0+ 1((h = v) = 0)[| = [|A]].

Hence, if p is unbounded, define

elrlD), if s> 2[hl);
p(s),  if sl <2[hl;
e(=2[nll) if s <Al

Yl
I

Then ¢ is bounded and satisfies the conditions imposed on . Therefore, if u is a solution of
u”" = @(u— h), since ||ul| < ||h||, it follows that p(uw — h) = p(u — h). In any case, h € (I + A)u.
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Therefore, for all ug € D(A), S(t)ug is a generalized solution of the problem

@(ut)*uzrzo, t>0,0<l‘<1;
u(0, ) = up(z), 0<z<I; (5.11.390)
u(t,0) =wu(t,1) =0, t>0.

Indeed
0€u+ Au <= —uy € Au <= o(uy) = Ugy-

Example 5.286 Let 2 C R"™ be a bounded open subset with sufficiently smooth boundary. Consider the
Cauchy problem:

uy —Au =0 in £ x (0, 00),

u=0 on F()X(0,00),

0 5.11.391
(971: + g(ut) =0 on I'y x (0, OO), ( )

u(:c,()) = UO(x)a ut(x,()) - ul(z)v z € (),

where g : R = R 4is a monotone increasing, continuous function satisfying the conditions:
g(s)s >0 for s #0 and ks < g(s) < Ks for|s| > 1, k,K > 0.

Also, assume that 00 = T' = Ty UT satisfies To N T, = (. We will show the existence of strong and
generalized solutions for problem (5.11.591).

Initially, consider the set

H%O(Q) ={uec H(); vou=0 onTy}.

This set is a closed subspace of H (), when both are endowed with the inner product given by

(u,v); = (Vu, Vo).

Moreover, there exists a constant ¢ > 0 such that

lull < cl[Vull, Vue Hyp, (9.

Let us denote V = Hy, (Q). Consider also the Laplacian operator —A : D(=A) C L*(Q) — L*(Q)
with domain

D(-A) = {v €Vn H*(Q); % =0 on I‘l}.

Such operator is defined by the triple {V, L?(2),a}, where a : V x V — R is given by a(u,v) =
(Vu, Vo), Yu,v € V. From this it follows that

D(—=A) = {u € V; 3f, € L*(Q) such that a(u,v) = (f,v), Yo e V}

and that D(—A) is dense in V. Also from the fact that —A is defined by a triple, with a coercive, it
follows that —A admits an extension, which we will still denote by —A, that is, we have —A : V — V',
which satisfies || — Aully = ||ully, for allu € V, and also

(—Au,w)yry = alu,w), Yu,w e V.

Regarding the operator —A, we can state:

Claim 1: Ifv € V then yov € HY?(T).
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0
Claim 2: Ifu € VN H?(Q) with 8—3 =0 on Ty and v €V then (y1u,v0v) g-1/2(ry,m1/2(r) = 0.

Claim 3: The map v : V — HY?(T1) is surjective.
For the proofs of the claims made about —A, consult the appendiz.
The operator N

Consider the Neumann operator N : H=Y/2(T'y) — V given by

—Ap = 0 in €
Nqg=p<—= p = 0 on Ty

@ on T

ov a 1'

19)
Note that, in principle, the conditions p =0 on 'y and Bip = q on I'1 are in the sense of the trace
v

of order zero and one, respectively.
Let us show that this operator is well defined and continuous.

Let g € H-Y/%(Ty). Define p:V — R by

p(v) = <q7VoU>H—1/2(r1),H1/2(r1)-

We have vov € HY?(T), for allv € V, by Claim 1.
From the continuity of q and the continuity of the trace map of order 0, we have that ¢ € V'.

Since a(u,v) = (Vu, Vv)2(q) is a bilinear, continuous and coercive function, by the Lax-Milgram
lemma, there exists a unique p € V such that

(@,7%V) g-12(0y), 11720y = (V) = a(p,v) = (Vp, V) r2(q), YveEV. (5.11.392)

In particular, for v e C§(Q2), from (5.11.392) and (?7) we obtain
(Vp,Vu) =0, Y v e Ci°(Q), (5.11.393)
By 5.11.393, since (—Ap,v) = (Vp,Vv), then —Ap = 0 in D'(Q), and hence, Ap = 0 € L*(Q).

With this, the second generalized Green’s formula and an argument analogous to that used in Claim 2,
we obtain

(Ap,v) + (Vp, Vo) = (1P, Y%0v) g-1/2(0y,m1/2(r) = (NP, Y00) g-1/2(0y),11/2(r,), TV €V,

that is,
(Vp, V’U) = <')/1p,’}/01}>H71/2(p1)’H1/2(F1), Yv € V.

From (5.11.392) it follows that
<q770v>H71/2(F1)7H1/2(F1) = <’)/1p, ’YO’U>H*1/2(I‘1),H1/2(F1)) Yv € V.
By Claim 3, it follows that ¢ = y1p in H=/2(T'1).

Now, let us prove that N is a continuous operator.

Initially, let us prove that N is a closed operator. For this, let us consider {q,} C D(N) and
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q € H-Y2('y) such that g, — q in H-Y/2(T1), and let us assume that there exists f € V such that
Ng, — [ in V. To obtain that N is a closed operator, we must prove that ¢ € D(N) and f = Nq. Now,
but it is clear that ¢ € D(N), since D(N) = H~Y2(Ty). It remains to prove that f = Nq.

For each n € N, letting p, = Nq,, we have

-Ap, = 0 in
Yopn = 0 on Ty
YPn = qn on Iy

Since p, — f in V, it follows that Ap, — Af in D' (), whence Af = 0 € L?(Q), and hence,
f € HYQ), with p, — f in HY(Q). Since v1 : HY(Q) — H~Y3(T) — HY2(T'y) is continuous, (the
last embedding holds by arguments analogous to those of Claim 1) it follows that v, f = q in H=*/?(I'y).
Moreover, by the continuity of vo : H'(Q) — HY?(I') < H'Y/2(T'1), we have yof = 0 on Ty. Therefore,
by the definition of the operator N, we obtain Nq = f.

Since D(N) = H='/2(Ty), by Theorem 1, it follows that N and N* are continuous, with D(N*) =
V.

Now, let us prove that N*(—Av) = ~v, for all v € V. It suffices to prove the equality for
v € D(—=A), since D(—A) is dense in V.

Since 5
D(-A) = {u c H*(Q)NV; 8—1: =0 on Fl} )
then 5
—~Av € LX(Q) = V' and a—” =0 onTy, forve D(-A). (5.11.394)
v
From the adjoint property, it follows that
(N*(=Av), >H1/2(F1) H-1/2(1y) = (—Av, Ng)v v, (5.11.395)
for q € H-Y/2(Ty).
Now, let p satisfying
Ap =01inQ
p =0only & Ng=p. (5.11.396)
9p
W q on Ty

From (5.11.894)-(5.11.396), the first generalized Green’s formula and an argument analogous to
that of Claim 2,

Av,Nq)yry
Av,p)yry
Av,p)

(N*(=A0),q) grr2(0y),m-1/2(1y) (-
(-
(-
(Ap,v) — (p, Av) (5.11.397)
(
(
(

NP, Y0V) H- 3/2(T),H3/2(T') — (vop, 10) 1~ 1/2(T),H'/2(T)
V1P Y0U) - 3/2(),H3/2(T)
V1P, ’YOU>H 3/2(Ty),H3/2(Iy)"

But v € HY(Q) implies yov € HY?(T'y) and p € H () implies v, € H~Y/2(Ty), and thus,

<N*(*Av)aQ>H1/2(F1),H—1/2(F1) = <’YO’Ua’71Pa>H1/2(F1),H—1/2(F1) = <70U,Q>H1/2(F1),H—1/2(F1)7
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as we wanted.
The Operator A

Consider the phase space H =V x L%()), endowed with the inner product

(( " )( " ))H = (Vur, Vuz) + (v1,02).

Consider also the operator A given by

4 <Z> - (—A(u +J$g(vov))> ’

D(A) = {(u,v) €V x Viu+ Ng(yov) € D(—A)}.

with

Initially, let us verify that Ng(yov) is well defined, that is, that g(yov) € H-Y2(Ty), for allv € V.
Indeed, by Claim 1, yov € H'/? (T'1) for v € V. Then, to conclude the desired result, it suffices to prove
that gow € L?(T'y), for allw € HY?(Ty). By the continuity of g and by the growth hypothesis at infinity,
it holds that

<
l9(s)| < _max |g(r)| + max{k, K}|s|, vreR,

that is, there exists ¢c1 > 0 such that
lg(s)] < e1+cils|, Vs€eR,
whence,

lg(w(a)|? dr < / (e1 + erw(@)])? dT < oo,
I Iy

since w € HY/2(T'y) «— L*(Ty) < LY(Ty). Thus, gow € L*(Ty) = H~Y2(Ty), for all w € H/?(Ty).

Now, let us prove that A is monotone. For this, considering (u1> , <u2) € D(A), we have
U1 V2

(() () () (). = 5= 5t

= (A(u1 + Ng(yov1)) — A(uz + Ng(yov2)),v1 — v2).

By the definition of the operator N,
ANg(yov1) = ANg(vyov2) =0 € L2(Q)

and since
A(uy 4+ Ng(yov1)), Aluz + Ng(yov2)) € L*(Q)

it follows that Auy, Aus € L%(2), and thus,

uy, uz, Ng(yov1), Ng(yovz) € H'(Q).
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We have that

— (A(u1 + Ng(yov1)) — A(uz + Ng(yov2)), v1 — v2)
(V(u1 + Ng(vov1)) — V(uz + Ng(yov2)), Vor — V)

= (m(u + Ng(yov1)) =7 (u2 + Ng(yov2)),  y0v1 —Yv2 ) r-1/2(0),m1/2(D)
=0 on I'1, since ui+Ng(yovi)ED(—A) =0 on I'g, since v;EV

(V(u1 + Ng(vov1)) — V(uz + Ng(yov2)), Vor — V)

By an argument analogous to that of Claim 2,

(VNg(yov1) — VNg(yov2), Vo — Vug)

—(ANg(vov1) — ANg(vov2), v1 — v2)

(11(Ng(0v1)) = 11 (Ng(v0v2)): Yov1 — Yov2) r-1/2(r), m1/2(r)
{g9(ov1) — g(
(9(v0v1) — 9(70)v2, Y01 — YoV2) H-1/2(Dy), H1/2(1y)
(9(vov1) — g(0v2), Y011 — Y0v2)L2(1y),

0v1) — 9(70)v2, Y01 — 'YOU2>H*1/2(F)’H1/2(F)

whence we conclude that

(A (ul) —A <u2> ) (ul) - (u2>> = (9(70v1) — 9(v0v2), Y001 — 70112)L2(r1) >0,
U1 V2 U1 V2 u

since g is monotone increasing. Thus, A is monotone.

Now, let us prove that A is maximal monotone, that is, Im(I + A) = H.

Given (Zl> € H =V x L*(Q), we must exhibit (5) € D(A) such that
2

u—v="h
v — Au— ANg(yv) = ha,

that is,

u—v=h

v —Au— ANgN*(—Av) = hs.
Since u = v + hy, we obtain

v—Av — Ahy — ANgN™(—Av) = ha,

or equivalently,
—Av+v—ANgN*(—Av) = Ahy + hy € V'. (5.11.398)

Define
B=(—A)oNogoN*o(-A).

Let us consider the duality map F :V — V' and the extension of the Laplacian operator —A : YV —
V'. Then, given v € V, there exists v' € V' such that F(v) = v'. Moreover,

(W' )y = [[olly = (Vo, Vo) = —(Av,0)vr v,
which implies v/ = Fv = —Av. Thus, —A : V — V' is the duality map.

To prove that A is mazimal monotone, we will prove that there exists v € V satisfying (5.11.398).
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This is equivalent to demonstrating the surjectivity of the operator
-A+(I+B): V=V,

We know that —A + (I + B) is surjective if, and only if, I + B is maximal monotone in V x V'. So,
initially, let us prove that I + B is maximal monotone in V x V'. Let us note that I : V —V < V' is
continuous, monotone and bounded. We will prove that B is mazimal monotone to guarantee that I + B
is maximal monotone.

Identifying L*(T1) = (L*(T'1)), consider the operator G : HY?(T'y) — (L*(T1))" — H~Y*(T;)
given by

(Gu,v)p2ry) = / g(u)v dT, Yo € L*(T'y).
Iy

G is well defined since we showed that g o u € L*(I'y), for all w € H'Y*(I'}), and moreover, we have
Gz=goz, forall z€ HY/*(T,).

Let us also take the functional ¢ : HY/?(T1) — R given by

b(u) = /F 1 /[Oyu(w)]g(T) dr dr,

where [0,u(z)] denotes the interval with endpoints 0 and u(x). We will prove that
9¢(u) = ¢'(u) = Gu.

First, let us see that ¢ is well defined.

()] < / /[  Jo) drar = / / lg(r)| dr dT + / / lg(r)| dr dT.
Lo (€l u(a)[>1} [0,u(x)] (€l u(x)| <1} [0,u(2)]

When u(z) < —1, we have

0 -1 0 1
[ —amar<— [ gwir= [ goyir < lgllan+ 8 [ rdr =gl + 5 0@ - 1)

(=) u(x) -1 u(z)

When u(z) > 1, we have
[ s = [amiar+ [ gy < gllsan + K [ 7= lgli + 5 (@) - .
0 0 1 1

Thus, setting co = max{k, K}, it follows

()| dr df < Talllghor oy + 2 / (u?(x) — 1)dT
{zeTy;|u(z)|>1} [0,u(z)] {z€l;|u(z)[>1}
< ITlllgllzrcnn + o llulaq,.

Also,
1
lg(7)| dr dT’ < / / (c1 + c1|7|) dr dT < 3¢q|Ty],
~1
{welys]u(@)|<1} [0,u(x)] {wel;|u(@)|<1}
and with this we conclude that |p(u)| < oo.

Now, let us prove that ¢ is continuous. Let {u,} C H'/?(Ty) and v € H'/?(T') such that u, — u
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in HY?(T1). We have

|p(un) — p(u)] = ‘// T)d7dl — // g(T)deP‘
Ty J[0,un(z)] ry J[0,u(z)]
_ ‘// g(T)der‘
Ty Jup(z),u(z))

< // 7)|d7dl
Ty Jup(z),u(x))
< cl// (14 |7|)drdr
'y Jun(z),u(z)]
< / fun() — ula |dr+c1/ n(@)? — () P|dT
< a \Un(w)—u($)|df+01/ (Jun(2)] + u(z)])|un () — u(z)|dT.
Iy

ry
Since {u,} is bounded in L'(T1) and converges to u in L*(T'1), it follows that ¢(u,) — ¢(u), as
we wanted.

Now, let us prove that ¢ is Gateaux differentiable. Let u,v € Hl/Q(I’l), 6 € R and x € T'y be given.
Take \ = dv(x), we have

1 1 1
[/ g(s)ds—/ g(s)ds} = [/ g(s)ds] = [/ g(s)ds|v(x).
Y [0,u(z)+dv()] [0,u(=)] Y [u(@),u(z)+ov(z)] AL fute).u(e) ]

By the Mean Value Theorem,

1 1
lim — [/ g(s)ds —/ g(s)ds} = lim — [/ g(s)ds]v(x) = g(u(z))v(x).
5200 LJfo,u(w)+50 () 0,u(2)] A0 AL (e u(@)+]

Moreover,

1 1
] / g(s)dso(z)
A Jlu(@) u(@)+A]

< @I flu@) = Jut) + AP[)
= @RI+ A u) + )

= [o(@)] + [v(@)|[2u(z) + A,

which is integrable on I'y. Then, by the Lebesque Dominated Convergence Theorem,

ov) —
%I_I?(l) ¢(u+ 7;.) ¢(U) _ /F1 g(u)v dl = (GU,’U)L2(F1),

whence it follows that ¢ is Gateauz differentiable, with ¢'(u) = Gu.

Note that ¢'(u) € H=Y/?(Ty), since
(@ (u), )] S/F lg(w)[[v]dl" < lg o ul[ 2oy l[ol L2,y < esllg o ullLzp vl (e,
1

where c3 > 0 is the constant of the embedding HY/?(T'y) < L*(Ty).

To prove that ¢ is convez, it suffices to prove that

<¢/(U,) - ¢/(1}), u— ’U>H*1/2(F1),H1/2(F1) > 07 \V/U,’U S Hl/z(l“l).
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Indeed, since g is monotone increasing,

(¢'(w) = ¢'(v),u = V) g-12(0,), m1/2(r,) = (Gu — Gu,u—v)p, = /F [9(u) = g(v)][u = v]dl" > 0.

Thus, since ¢ is convex, the subdifferential is unitary and consists of the Gateauz derivative, that
18,

¢'(u) = Gu=gou=0dp(u), Yue HY*I).

Since N : H=Y/2(I'y) — V is continuous, N** = N and then, defining A = N* o (=A), we obtain
A* = (=A)o N, and thus,

B=(—A)oNogoN*o(-A)=A"ogoA.
Since —A:V = V', N: HY2(I'}) -V and N* : V' — HY?(T'}) are continuous, it follows that
A:V — HY?(T,) is continuous. Recall that ¢ : HY/?(T';1) — R is also continuous. Then, it follows that
O(poAN)=A"00¢poA,

that is,
b0 N* o (~A)) = B.
Since ¢ is convex and A = N* o (—=A) is linear, then ¢ o A is conver and also continuous, from

where it follows that B = d(¢ o A) is mazimal monotone.

Knowing that I : V — V < V' is continuous, bounded, monotone, and B is maximal monotone, it
follows that I+ B is maximal monotone. Therefore, —A+1+ B is surjective. Thus, given h = ha+Ahy €
V', there exists v € V satisfying (5.11.398).

Since
u=v+h €V

we obtain
—Au — ANg(yov) = hg — v € L*(Q).

Bearing in mind that

D(=A) = {w € V;3f, € L*(Q) such that (Vw,Vv) = (fu,v) Yv €V},

it results (Z) € D(A) and thus,

Therefore, A is mazimal monotone.

Existence of solution

Consider U(t) = (;i%) and the abstract formulation of the problem:
t

{Ut(t) =—AU(t), t>0

Since A is a maximal monotone operator, —A generates a nonlinear semigroup. Then, if Uy =
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(Z()) € D(A), the problem has a unique strong solution, with U(t) € D(A) for allt > 0 and, for each
1

T > 0 given, U € C([0,T]; H), that is,
we (10,7 V) 1 CH(0,T)s ().
Moreover, U € W1°([0,00); H). In this case, we have

uw € C([0,T]; V) N L*>®(0,00; V),
ug € C([0,T]; L2(2)) N L*°(0, 00; V) N L*°(0, 00; L2(£2)), (5.11.399)
U € LOO(O, (6 o LQ(Q))

Therefore,
i) uy — Au =0 in L>(0,00; L*(Q));
ii) you € L>=(0,00; H/2(I'1)) and you = 0 on Ty;
iii) Since u(t) + Ng(youe(t)) € D(—=A), for allt > 0, then

y[u(t) + Ng(yout(t))] =0 on Ty, for allt >0,

€HL/2(T'y)

whence
yu(t) + g(yout(t)) =0 on Ty, for allt > 0.

To obtain the reqularity of each term of the sum above, let us consider, for each t € [0,T],

A(t) = /O u(s)ds.

We have z € C([0,T]; V) and
t
Az(t) = / Au(s)ds = ug(t) — ug(0), for each t € [0,T).
0

Thus, Az € C([0,T], L?(2)). Denoting V' = {v € V; Av € L?(2)}, we see that z € C([0,T]; V'), whence
u=z € HY0,T; V"), and then, yyu € H=1(0,T; H-1/2(Ty)).

Furthermore, by the reqularity obtained in (5.11.399), it follows that uy € L*(0,T;V), which
implies youy € L>(0,T; L*(T'1)), and since g is increasing by hypothesis, g(yous) € L>(0,T; L?(T1)).
Therefore,

yu + g(yous) =0 in L=(0,T; L*(T'1)).

Observe also that, since U € W1°°([0,00); H), then AU = —U; € L>=(0,00;H). Thus,
AU @[3 = llv@®)lly + | = Alu(t) + Ng(voue ()] < ca VE =0,
for some ¢4 > 0. But (u(t),u(t)) € D(A), for all t > 0, and with this it follows that
—Alu+ Ng(youe(t))] = —Au(t) € L*(Q).
Thus, u € H*(Q), and so,

[AU ()l = [IVo@)]| + [Au@)]| < s, VE>0.
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Therefore,
u € L>(0,00; H2(Q)NV); up € L™(0,00; V) N WH(0,00; L2()).
When Uy = <ZO) € H, the given problem has a unique generalized solution U which, for each
1

T > 0 satisfies U € C([0,T);H), by the Crandall-Liggett Theorem.

n)

(
Let Uén) = (uo

(n)> € D(A) be a sequence of initial data such that Uén) — Uy in H. Let U, be the
g

strong solution of (5.11.391) with initial data Uén). Composing (5.11.391) with uin), integrating on (0,t),

fort > 0 and using the second generalized Green’s formula, we obtain

t
ud™ ()12 + [ Vu™ (1)) + 2 / (9(rou™ ), vous™) 2 (ryy dt = [[uf™ |12 + | Vu§™ |12, (5.11.400)

By the linearity of (5.11.391), we obtain that

Uy — Au=0 in Hil(O,T; V'), for any T > 0 given.

Since u € C([0,T]; V), then vou =0 on Iy x (0,T).
Finally, if we consider that there exists a > 0 such that
9(s1) —g(s2) > afs1 —s2), Vs1—s2>0,

then (5.11.400) gives us
t
ud™ (@)1 + [ Vu™ (1) + 20 / lvoud™ I, dt < [lu{™ |2 + || Vug” 2.

From the last inequality and the growth condition of g, it follows that {g(ugn))} is bounded in L?(0,T; L?(T'1)).
Then, {g(ugn))} converges weakly to g(uy) in L?(0,T; L?(T'1)). On the other hand, using the continuity
of the trace of order one, we obtain that

g(ugn)) = —’ylu(”) — —mu in L*(0, T, H_l/Q(Fl)).

By the uniqueness of the weak limit in L*(0, T; H='/2(T'1)), we obtain that g(u;) = —y1u in L*(0,T; H~Y/2(T';)),
but by the regularity of g(us), we conclude

y1u+ g(ug) =0 in LQ(O,T; L2(F1)).

Example 5.287 Let us show that the following problem has a regular solution

v —Au=0 in Qx (0,00),
ou

% = —g(u/) — f(’u,) on I'y x (0,00),
w=0 on Ty x (0,00),

w(0) =u’ € V, ¥/ (0) =ut € L3(Q),

where () C R" is an open, bounded set with sufficiently smooth boundary, g is assumed as

in the previous exercise and satisfies

(9(s) —g())(s = 1) = (s = 1)?
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and f is a locally Lipschitz function satisfying

_1
< OlslFo kg < 1=
£(8)] < Clalo.ky < 22

Solution: Initially, let us consider f Lipschitz with constant L and consider the operator N as in the
previous exercise. In this case, our problem is of the form

U, =AU

where, for U = (u,v),

()= o )
v —A(u+ N(g(yov) + f(you) )’
with
D(A) = {(u,v) € V x Viu+ N(g(yov) + f(you)) € D(=A).
From the previous exercise, we have that N(g(yov) is well defined and, since f is Lipschitz, we have

that N(f(you) is also well-posed. Let us show then, that A + wl is monotone for some w. Indeed, given
(u1,v1), (uz,v2) € D(A), we have

(A(ur,v1) = A(uz,v2), (ur,v1) — (u2,v2)) = —((v1 — v2), (u1 — u2))v
(A(u1 + N(g(yov1) + f(you1))) — Aluz + N(g(yov2) + f(youz2))), v1 — v2).

—(A(ur + N(g(yovi) + f(rour))) — Aluz + N(g(yov2) + f(r0uz2))),v1 — v2)
(V(u1 + N(g(vov1) + f(rour))) — V(uz + N(g(vov2) + f(vo0u1))), Vor — Vua)
(1 (w1 + N(g(vov1) + f(vour)) — y1(uz2 + N(g(rove) + f(ouz)), vov1 — Yov2)

= (V(u1 + N(g(vov1) + f(your))) — V(uz + N(g(yov2) + f(rouz2))), Vor — Vog)

= (w1 —u2), (v1 —v2))y + (N(9(v0v1) + f(rou1) — g(hov2) — f(ou2)), —A(v1 — v2))
((u1 = u2), (v1 — v2))v + (g(yov1) + f(you1) — g(vove) — f(youz), =N * A(vr — v2))

where the duality is in H='/?(T1) x HY2(I'1). Since —N * A(vy —v2) = Yo(v1 — v2), then

(g(vov1) +  f(your) —g(yova) — f(youz), =N * A(vr — v2))
(9(v0v1) = g(70v2),7v0(v1 — v2)) + (f(vour) — f(vouz2), Y0 (v1 — v2))

mollvo(v1 — v2)|IE, — Lllvo(u1 — u2)|Ir, [0 (v1 — v2)lIr,

AV

v

L
(mo = &)no(vr = v2)lIE, — = lho(ur = w)ll, -

Thus,

(A(ur,v1) — Aug, va), (u1,v1) = (ug,v2)) + wllur — us|l3, + wl|vr — v2llL2(q)

= (mo —)lo(vr = w2)llE, = Zlho(ur —uo)llf, +wllur —uslly
L+C
> (ma — Mho(or )}, + (0= “2 )
) L ) . L+C
where C' is the continuity constant of vo in V. Hence, choosing ¢ < my and w > e we have the
€

desired result.

N It remains to show the maximality of A + wl, that is, there exists X > 0 such that (A+wl+
M) (D(A)) = V x L3(Q). Let us denote A\ = w + X, thus we must find A\ > w such that (A + \) is
surjective.
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Given (hy,ha) € V x L3(2), we must exhibit (u,v) € D(A) such that

Au—v="h

Av — Au— A(N(g(rov) + f(rou))) = he,
Writing
u= %(v + h)

we obtain

1 1 1
v — XA’U — AN(gyov) — AN (f’yo ()\(v + hl))> = ho + XAhl'

In this case, our problem reduces to showing the surjectivity of the operator T : V — V'

Tv:= v — %Av —AN(gyov) — AN (f’YO (1\(” + hl))) :

or even,
1
T= _XA + A+ B

where

1
Bv = —-AN(gyw) — AN <f70 ()\(U + h1)>>
As argued in the previous exercise, it suffices to show that \I + B is maximal monotone.

Now, observe that, since —AN : H='/2(T'1) — V' is bounded and f is Lipschitz, then

1
By := -AN (f% ()\(U + h1)>) is Lipschitz from V into V'.

Indeed, let v1 and vy €V, then

s () )

V!

1 1
< C Hf% ((711 + h1)> — [ ((vz + h1)||H1/2(1"1)) H
A A H-1/2(r)
CL
< ol = eellaeey
CCLL
< \ [lvr — U2||H1/2(r1)
CCCyL CsL
S =y = ==llos = valy

where C,Cy and Cy are the continuity constants of —AN, of the embedding HY/? < H~Y/2(T'y) and of
the continuity of the trace map ~o, respectively. Furthermore, By + I is maximal monotone for A > C5L,
since, if v1 and vy € V, then

(-8 (o) o (o)) -,

Rl

> 3 o1 = va 3

Thus, By + I is monotone and continuous and, therefore, by Theorem 1.3, page 40, Barbu, we have
B1 + I mazimal monotone. Now, if Bs := —AN(gvyov) then, Bo+ I is mazimal monotone by the previous
exercise and, thus, by Corollary 1.1, page 39, Barbu, we have that By + By + 2I = B + 21 is mazximal
monotone. Therefore, if X > maz{2,C3L} we have B + A mazimal monotone, as we wanted. Whence
it follows that T is surjective and wl + A is mazimal monotone.
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Assuming that f is Lipschitz, we know that there exists an w > 0 sufficiently large such that A4+wl
is mazimal monotone. Thus, by the Crandall-Liggett Theorem, we conclude that there exists a unique
solution

uwe O([0,T; V) n ([0, T]; L*(92)),
of (??) for any finite T > 0.
To prove that v/, ? € L?(0,T;L3(T1)), observe that if (u®,ul) € D(A), we have that yo(ul) €
v

H'Y2(T), whence

o 0
5 900u!) € ().

If (u(t),u'(t)) is a solution of the problem for the initial data (u°,u') € D(A), then, by the semi-
group property, we have (u(t),u’(t)) € D(A) and, consequently,

W' € L®(0,T; L*(T1)) and % € L>(0,T; LA(T)).
v
Now, consider the following energy identity
1 1 1 1 b oou
(6= I O + IV = gl + 1wl + [ [ 5 wtaras
Thus, we have

t
0
@2+ IVa@I? = a2 + [Va]? +2 / / Ou raras
0 T 31/

= 2.E(0) —Q/Ot /F g(u)’ dFds—Q/Ot 5 fluyu drds

t t .11.401
< 2-E(0) 7204/ ' |? dFds+2L/ / lu||u'| dT'ds (5.11.401)
0 Fl 0 1_‘1
t
< 2-E(0) —2a/ |u'|* dTds
0o Jry
1 [t t
+2L{/ |u|2dFds+e/ u'|2dI‘ds}.
4e Jo Jr, 0 Jry
Choose € = % and we obtain
t
[/ (0)]1* + [ Vu(t)||? + a/O [/ ()1 72,) < C LIV + [ + [Jut]?} - (5.11.402)

By the density of D(A) in H, we can extend the previous inequality to all H. From the hypotheses
on g it is concluded that g(u') € L*(0,00; L?(T1)) and, in this case, it makes sense to speak of the normal

derivative % in the space H=1(0,T; H-Y/2(Ty)). But, by the equality
v

o gy~ I

0
and, from the reqularity of the functions in question, we obtain = L?(0,00; L3(T'y)).

ov
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When f is only Lipschitz we can consider the following approximation of our problem

u;/ —Au; =0 in QX (0, OO),

8“! /

St = —glup) — fiw) on Ty x (0, 00), (5.11.403)
w =0 on Lo x (0, 00),

w(0) =u® €V, u)(0) =u' € L*(),

where the functions f; are defined by

f(s), sl <4
fitsy=9 f(), s>1l; i=0,1
F(=D), s< L.

We have that f; is Lipschitz for each | and fi(s) — f(s) for all s. Thus, there exists a solution
w € C([0,T); V) N CH([0,T]; L*(€2)),
with

aul

57 ’U,27 g(u;) € Lz(O,OO;Lz(Fl))'

Let us prove that this sequence of solutions has a convergent subsequence, whose limit is a solution
of our problem. For that, we first claim that

/ Fl(u)dF <, (5.11.404)
Iy

¢
where Fy(t) = / fi(s) ds and C = C(||lu||y). Furthermore,
0

fitw) — f(u) in L*(Ty). (5.11.405)

Indeed, since |fi(s)| < C|s|*, then foru €V,

/F Fi(u(a) do

g/ (Cilu(@)[*) dx < Co,
1)

2n—2

by the embeddings HY/?(T'y) « L*(I'y) and HY?(Ty) — L7==2 (T'y) < L*(T'y) and using the continuity
of the trace.

Thus, (5.11.404) is proved. To prove (5.11.405), let us set Ty = {x € Ty : |u(x)| > 1}.

. |fi(w(2)) — f(u(z))[*dT
= 2{ [fi(ui(2)) = fur()) Pl + [ [f(w(x)) - f(u(x))QdI‘},
I I

In view of the compact embedding HY/%(T'y) < L2(T'y) and the continuity of the function f, by
the Lebesgue dominated convergence theorem the second integral on the right side of the inequality above
tends to zero. Let us analyze then the first integral:
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Since fi(s) = f(s) for|s| <1, then

. |fulwi(2)) — f(uy(z))2dT
< 2{ . | f(w(x))[dl + /rl (FO + [F(=D)?) dF} .

One has

(/ l::z) g(/ ul(x):—_2> <0 =0(luly)
I r

by the embedding H/2(I'y) <> L%(Fl) and by the continuity of the trace map of order 0. From this it
—2nt2

follows that meas(I';) < C-1™n-2.

[flw(@)PdD < C [ |u(2)**dr
I r
En3)
ne2] = k1 (n—2)
< C[ |ul(x)|2n22] - (measTy)'~ T — 0,
I,

since ki(n —2) <n—1.

|f1(il)|2dF < C- 12" measT, < C- 2= ).
Iy

Now, if

Ei(t) = 5 (I @ + IVu@®?) + [ Fi(u)dl,

Iy

N | =

by the energy identity we have

t
B0+ [ [ o) v dr ds = Ei0) < € (el o 2o
0o Jry
where the inequality follows from the claim.
From (5.11.402), it follows that

w1725,y < C ([W®llvs [[ut]l 22 ()
lwilleqo.rvy + llwlleqor2 @y < C.

From the bounds above, it follows that
You; — You in L*(%1)
You, = you' in L*(Xq).
Since the Sobolev embeddings H'(Q) < L2*0(Q) and HY/2(T') <% L2*1(T') hold, together with the
convergence of {f;} we conclude that

filw) = f(u) in L*(%1) (5.11.406)

The convergences above allow us to pass to the limit in (5.11.403), completing the proof of the exercise.

Example 5.288 Let us determine the existence of weak solutions (in HZ(S)) for the problem below:
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iOu—Au+uPu=0 inQ x (0,00)
u=0 on 99 x (0, 00) (5.11.407)

u(z,0) = up(x) inx e

where Q@ CR™ (n =1,2,3) is a bounded open set with smooth boundary.

Definition 5.289 Let T > 0 and given ug € X = H'(Q) N L*(Q). A weak solution of problem
(5.11.407) 4n [0,T) is a function u in the class L°>°(0,T; X) N C([0,T]; L2()) that satisfies the identity

T
/0 —(u(t), O Lp(t))Lz(Q) + 4 (Vul(t), th(t))Lz(Q) dt (5.11.408)

T
+/0 i(|u(t)|2u(t),<p(t)>L%(Q))L4(Q) dt =0

for all p € C§°(0,T; HE () N LA(Y)) and for almost every t € [0,T].

Theorem 5.290 If ug € X = H*(Q) N L*(Q). Then problem ?? has a weak solution in the sense of
definition (5.11.408).

Proof: Let ¢ : L*(Q) — (—00,00] be a convex, proper and lower semi-continuous function. Then, the
subdifferential of v (u) where u € D(3) is defined as the set of all g € L?(Q) such that

Y(u) < Re(g,u— 2)r2(0) +9¥(2), Vze L*Q). (5.11.409)
and denoted by 0 v¥(u).
Consider the nonlinear operator B in L?(Q) defined by

D(B) {ue L*(Q); [ul*u e L3(Q)}, (5.11.410)
Bu = |ul*u, Yue D(B). (5.11.411)

By the next lemma it follows that B is m-accretive, its proof can be found in Okazawa and Yokota

[ [72], Lemma 3.1, page 258].
Lemma 5.291 Let B be defined as above. Then, B is m-accretive.

Now, we can define the Yosida approzimations (which are Lipschitz continuous) B, of B in terms
of the resolvent J,,

-1
Jn = (1 41 B) (5.11.412)
n

and

By, :=n(I—J,)=BJ,. (5.11.413)

Moreover, from the general theory of monotone operators we know that we can represent the oper-
ators B and B, by subdifferentials of 1 and v, given by

1 4
LT LY(Q
o(z) = 3 1 Flleey  Jorz € LS (5.11.414)

00 otherwise
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and

Un(z) = min {2 llo— 2lae) +0)} = 5 1Bu(E)Fag) +00a(2), z€ (@) (511.415)

m
ve L2(Q)

so that
B=0vy and B, =0,.

Furthermore,

Y(Jn(2)) < Pnl2) <h(2). (5.11.416)

On the other hand, given ug € X, then there exists {un o0} C HE(Q) N H?(Q) such that

Upo —> Ug 0 X. (5.11.417)
Let us consider now the following approzimate problem:

10 Uy, — Aty + Br(u,) =0 in Q x (0,00)
Up =0 on IQ x (0,00) (5.11.418)

Un (2,0) = up o(x) inx el

Let us prove that problem (5.11.418) is well-posed for each m. For this, observe that problem
5.11.418 can be rewritten as the following Cauchy problem:

duy,
dt
Un(0) = unpo

+ Auy, = Fr(uy)

(5.11.419)

where
A:D(A) — L*(Q) p F, : L*(Q) — L*(Q)
an
z = Az=1ilAz w = Fy(w):=—B,(w)

where D(A) = H§(Q) N H*(Q).

Note that A is a skew-adjoint operator in Q). Thus, from [ [15], proposition 1, page 13], we know
that A is a maximal monotone operator in Q. Moreover, since I3, is Lipschitz continuous for each n, we
have that for each n, the operator F,, is Lipschitz continuous in L*(2).

Thus, from [ [15], theorem 1, page 18], for each m, given uno € H{(2) N H%(Q), there exists a
unique solution w, for problem (5.11.418) in the class

C ([0,00); Hy () N H*(Q)) N C* ([0, 00); L*()) . (5.11.420)

We observe that problem (5.11.418) is an approzimation of the original problem (77).

Now, taking the inner product in L? of (5.11.418) with u,, the imaginary part becomes

Re(0r tn, un) 12(0) + Im(Vn, Vy) 12 (0) + Im( By (un ), un) 120y = 0,

=0 =0
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from (5.11.413), we have

1B ()13 22y + (Br (i), I (1n)) 12 (5.11.421)

L2(Q)
1
n
1
=B (un) 1720 + n ()| 210 -

Therefore, we obtain the identity

1d
5 gllwnllzz = 0. (5.11.422)

Thus, taking the inner product in (L*(Q)) of (5.11.418) with ; u, and looking at the real parts,
we have:

Re(i O U, Oy un)LZ(Q) + Re(Vun, Vo, un)LZ(Q) + Re(Bn(un), Oy Un)L2(Q) =0. (5.11.423)

=0

Now, using the following classical lemma given in Showalter’s book [ [87], chapter IV, lemma 4.3,
page 186] for functions vy, uy, and Oy u, both with By, (u,) = 0, (uy), it follows that

d

Combining (5.11.422), (5.11.423) and (5.11.424), we conclude that

d[1
= |3 Ten @l ) + ¥nlun)| =0. (5.11.425)

From (5.11.416) and integrating (5.11.425) from 0 to t, we observe that

1 1
7unt2 + Ynlun) = 5 f|un 21 + Yn(un
3 ln Oy + ¥ (n) = 5 i olrsoy + ¥ (tno) 142
< Cllun,oll% -
Moreover, from (5.11.416), it derives
lun (D11 @) + 1a(un)[Ls) < Cllunoll% - (5.11.427)

Inequality (5.11.427) and the boundedness of the sequence (un ) in X, allow us to conclude that
{un} is bounded in  L>(0,T; H'(Q)) (5.11.428)
{Jn(un)}  ids bounded in  L>(0,T; L*(R)) < L*(0,T; L*(Q)) . (5.11.429)
Let us note that

Bo(un) = B(Jn(un)) = | Jn(un) |? Jn (un) (5.11.430)

Thus, from (5.11.429) and (5.11.430), it follows that

{Bnun} is bounded in L%(O,T;L%(Q)). (5.11.431)
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On the other hand, from (5.11.428) and (5.11.431) we have:

108 wn () |2

sup {(815 un(t), <P)L2(Q) }

llellx=1

= sup {<_iAun(t)7 @)L2(Q) + ('L Bn(“n)v @)]ﬂ(g)}

llellx=1

IN

b {IV (02 19 el + 182 w0 4 g 9100
Pllx=

< o0,
thus,

{O;un} s bounded in  L>*(0,T;X’). (5.11.432)

Combining (5.11.428), (5.11.429), (5.11.431) and (5.11.432), it follows that {u,} has a subsequence
(still denoted by {u,}) such that

U, — u in L0, T; H(Q)). (5.11.433)
Joluy) = U in  L°°(0,T; L*(Q)). (5.11.434)
B.(u,) — Z  in  L5(0,T;L3(Q)). (5.11.435)
Orun — Oyu in  L>(0,T;X'). (5.11.436)

The next step is to prove that U = u and Z = |u|?u. Indeed, from (5.11.433) and (5.11.436) it
follows by the Aubin-Lions Theorem that there exists a @ € L*(0,T; L*()) and a subsequence of u,, (still
denoted by u, ) such that

u, — @ in L*0,T;L*Q)) (5.11.437)

On the other hand, from (5.11.433) and (5.11.437), by the uniqueness of the weak limit in L?(0,T; L?(Q2)),
we infer that @ = u a.e. in Q x (0,00). Therefore, again from (5.11.437), we have

Up — U in  L*(0,T; L*(Q)) (5.11.438)
Up — u  ae in Qx (0,7). (5.11.439)

Next, let us consider the fact that the operator B is also accretive in C. Thus, from Showalter,
[ [87], page 211], we know that the resolvents J, given in (5.11.412) are contractions in C, that is,
|0 (2) — Jn(w)] < |z —w|, Vz,w € C, (5.11.440)

note that B, and J, are essentially the same operators given at the beginning of the section, except that
we are considering them in C instead of L*(Q).

From this, we define

[l|C|| = inf{|z| : z € C}.
Again, from Showalter [ [87], proposition 7.1, item c, page 211], we obtain
|Bn(w)| < [[[B(w)]|| = [B(w)], Vw € C, (5.11.441)

where the equality on the right side of (5.11.441) is from the fact that the operator B given in (5.11.410)
is single-valued in C.
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1
On the other hand, from (5.11.413), we have w—J,(w) = EBn(w). Therefore, combining (5.11.440)
and (5.11.441), we obtain

n(2) = 0] < 1a(2) = Jn(w)] + () — w]
< Jz =l + - [Bafo) (5.11.442)

1
< |sz|+E|B(w)|,Vw,z€ C.

It follows from (5.11.439):

lup, —ul =0  a.e inQx(0,T). (5.11.443)

Now, let (z,t) € Q x (0,T) such that the convergence (5.11.443) holds, and let z = u,(z,t) and
w = u(z,t) in (5.11.442) and letting n — oo, considering (5.11.443), it follows that

Jn(un) — a.e. in  Q x (0,T). (5.11.444)

Moreover, from (5.11.444) and since B(z) = |z|? z is continuous, it follows that

B(Ju(un)) — Bu) =|ul*u ae in Q x (0,T).

Using the definition of the Yosida approximations B, given in (5.11.430), it results that

B,(u,) — |uPu ae in Q x (0,T). (5.11.445)

Now, combining (5.11.429), (5.11.444) and (5.11.431), (5.11.445), we have by Lions’ lemma [J.
L. Lions, [0/], lemma 1.3, page 12] the following convergences:

Jo(u,) — w in  L*0,T; L*(B)). (5.11.446)
Bu(up) — |ulPu in L3(0,T;L3(B)). (5.11.447)

Thus, by the convergences (5.11.434), (5.11.435) (5.11.446) and (5.11.447), we have that U = u
and Z = |u|?u almost everywhere in Q x (0,T). Moreover, from the convergence (5.11.434) together with
(5.11.433) we infer that

we L®(0,T; X). (5.11.448)
Finally, let p € C§°([0,T); HE(Q) N LY(Q)). Then, from (5.11.418), we have

| 00000000y 1 (T 00 0). T (0 (5.11.449)

T
=i [ & P .00, 4 ) ot =0

From (5.11.433) and (5.11.434) taking the limit as n — oo, we obtain the variational formula
given in (5.11.408).
Finally, from (5.11.408), it follows that u belongs to the space

W = {uc L*0,T;X) such that d;u € L*(0,T;X")}.
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Then, employing Showalter [ [S7], proposition 1.2, page 106], we have that W can be continuously
embedded into the space C([0,T]; L*(Q)) and, therefore, combining this fact with (5.11.448), we obtain
that w has the reqularity given in definition 5.289 and, thus, the proof of the theorem is concluded. a

Example 5.292 Let us determine the existence of solutions for the problem

Of(u) — Au =0, in Q x (0, 400);
u =0, on 99 x (0, 400); (5.11.450)
w(z,0) =u’(z) =0, z€q,

where Q is a bounded domain with smooth boundary 02 and B : R — R is a monotone increasing map
such that 3(0) = 0. We assume that |3| has polynomial growth, for ezample, B(s) = |s|P~2s, p > 2. We
will use two results that can be found in [S7] and which are stated below.

Proposition 11.9.1: Let D(A;) = {u € W' (G); Aju € LY(G)} where Aju = f € L'(G) means

uwe Wil (Q); / Z a;;0;udjv — Zaiu@-v +auww | = / fu, Yo € Wy (G).
G P G

i,j=1

a) D(Ay) is dense and (I + A\A1)™! is a contraction in L' for each \ > 0;
b) D(A)) C Wy for1<q< = and there exists c(q) > 0 such that

c(@)ullwia < [[Aul|pr for u € D(Ar);
c) Ay is the L*-closure Ay of As;
d) supg(I + MA1) 7L f < max{0,supg f} for each A\ > 0 and f € L*, that is,

11+ AAD) " fllze oy < 1 @

where 7 = max{0,x} denotes the positive part of x € R.

Theorem 11.9.2 (Brezis-Strauss): Let a be a mazimal monotone graph in R x R and 0 € «(0). Let
A: D(A) = LYG) be linear and satisfying

(i) D(A) is dense and (I + AA)~! is a contraction in L* for each \ > 0;
(ii) supe(I +AA)"Lf < (supg f)T = [|f Tl for f € L' and X\ > 0;

(i@i) There exists ¢ > 0 such that c||ul|pr < ||Au||r for uw € D(A).

Then, for each f € L' there exists a unique pair u € L', v € D(A) such that
u+ Av = f and v(z) € a(u(x)) a.e. z € G.
If uy, vy and ug, vy are solutions corresponding to f1, fo as above, then

(ur —u2) ¥l <I(fr = f2) T ller, Mwr —u2) [l < (= f2) "o,

and, therefore,
[ur —u2)llzs < [ f1 — follrr-

If f1 > fo a.e. then uy > us a.e. in G.
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Initially, let us make a change of variables. Let u = ¢(w) and consider B(-) = ¢(-)~1, then the
equation of problem 5.11.450 becomes
6tw - A(;S(’UJ) = 07

which is known as the generalized porous medium equation (GPME). Let us define, D(A o ¢) = {w €
Wy (G); (Ao ¢)(w) € LYG)} where (Ao ¢)(w) =0 € L*(G) means

wemﬁmm‘/vwmvu=mvuewyﬂey
G

Therefore, (Ao ¢)(w) = —A¢(w) € L*(G). Applying Proposition I1.9.1 and Theorem I1.9.2, we have that
for each XA > 0 there exists a unique pair

we LNG), d(w) e Wy (G)

for which A¢(w) € LY(G) and
w(z) — Ap(w(x)) =0 a.e. z €G.

Thus, A o ¢ is m-acretive. Thus, from Corollary 5.88 we have that Im(I + M\A) = LY(G), YA > 0. In
this way, the operator A o ¢ satisfies the hypotheses of the Crandall-Liggett Theorem and according to
Remark 5.260 we have that problem 5.11.450 admits a generalized solution. That is, there exists a unique
solution w of the problem and the solution is continuous.

Example 5.293 Determine the existence of weak solutions in (L?(Q)) for the problem below:

tug + Au+ig(u) =0, in Qx(0,00)
u=0, on 900 x (0,00) (5.11.451)
u(z,0) =up(z), if xze€Q

where ) is a bounded open set with smooth boundary and

g:C—= C s a continuous function satisfying: (5.11.452)

(5) Relg(z) — gw)(5 — @) 2 0¥ z,w € C.
(i) Im(g(z)z) =0 Vz € C.

(iii) There exist positive constants c1,co such that ci|z|* < |g(2)z|* < e2|z|* Vz € C with |z| > 1.

We will use the following results:

Let us consider the following problem

{szmm+%®,%®m) (5.11.453)

u(0) = ug

posed in a Banach space X.

Definition 5.294 A map u : [0,00) — X is called a weak solution of problem (5.11.453) if u is
continuous on [0,00),u(0) = 0 and satisfies the inequality for each T > 0

t
lu(t) —v||3% < |lu(s) —v||% + 2/ < Tv+ Su(r),u(r) — v >, dr. (5.11.454)

Theorem 5.295 Let H be a real Hilbert space and T : H — H an m-dissipative operator and let

S : H — H be continuous such that D(S) = H. Then for each uy € D(T) there exists a unique map
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w: [0,00) = H weak solution of problem (5.11.453).

Proof: See Barbu( [7], Theorem 3.1, p.152) i

It is important to observe that we will work with complez-valued functions, so that, in order for
the spaces L*(Q), as well as, H™(), m € N, to become real Hilbert spaces, we define

(u,v)p2(0) = Re/ wudz.
Q
Finally, we will denote by H(Q) the Hilbert space
HY(Q) = {w € H(Q);w|pq = 0}.

Let us now prove the following existence theorem of weak solution for problem (5.11.451).

Theorem 5.296 Under the hypotheses of the function g given in (5.11.452), we have: problem (5.11.451)
is well-posed in the space L?(SY), that is, for each initial value ug € L*(Q), there exists a unique weak
solution of (5.11.451).

Proof: Problem (5.11.451) can be rewritten as
up —iAu~+g(u) =0, in Qx(0,00)

u=0, on 00 x (0,00) (5.11.455)
u(z,0) =up(z), if ze€Q

Define the following operators:

and

B : D(B)CL?(Q) — L*Q)
u — Bu = g(u)

Then D(A) = H(Q) N H?(Q) and D(B) = L*(9).
Our goal is to show that A+ B is a maximal monotone operator. First, observe that using Green’s The-

orem and the Lax-Milgram Theorem, we have that A is maximal monotone. Next, we will show some
properties associated with the operator B.

e B maps bounded sets into bounded sets

Indeed, let u € L*(Q) such that ||u||2L2(Q) < R. Thus, by hypothesis (iii) of function g we obtain

1Bula = /Q lg(u(e))Pde
< 03/|u(x)\2d:£

Q

S RCg.

e B is monotone

Indeed, let uy,us € L?(Q). Then by hypothesis (i) of function g, we obtain:
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(Bu1 — B’LLQ, uy — 'LLQ)LZ(Q) = RC/ (Bu1 — Buz)(ul — ’LLQ)d.’E
Q

/Q Re{(g(ur) — g(uz)) (a7 — w3)}dx > 0

e B is hemicontinuous

Indeed, we have to prove that given any sequence t,, C R such that t,, — 0 then
lim (B(u + t,v), w)r2(q) = (Bu,w)r2(q) for all u,v € L*().

n—oo

For this purpose, define f, = g(u + t,v)w. Thus,

| fn ()]

lg(u(z) + tov())|Jw(z)]
< olu(z) + ty(a)||w(@))|
<

cou(@)||w(z)| + calv(z)||w(x)| almost everywhere in

where cq s such that |t,| < cq.

Since u,v,w € L*(Q) then f, € L*(Q) ¥V n € N. Moreover, if h is the function defined by h(x) =
calu(x)||w(z)| + calv(x)||w(zx)], it follows that h € L*(Q) and |f,| < h(x) almost everywhere in 2.

Note that due to the continuity of g, we deduce that nl;ngo g(u(z) + tpv(x))w(x) = g(u(z))w(z). Thus, by

the Lebesgue Dominated Convergence Theorem, we conclude that

/Q 9(u(z) + tav(@))w @) — g(u(z))w(@)|dz — 0.

Then

— 0

’/QQ(U(w)thnv(x))w(w)—Q(U(x))w(x)dx

and, consequently,

Re/ﬂg(u(z) + tov(z))w(z)de — Re/ﬂg(u(m))w(m)dw

that is, lim (B(u +t,v),w)r2q) = (Bu, w)r2(q).
n—r oo

Therefore, B is a monotone map, maps bounded sets into bounded sets and is hemicontinuous and,
since A is a mazimal monotone operator, then by (5.59) [Linear and nonlinear semigroups lecture notes.
Cavalcanti, Marcelo.] we conclude that T = A+ B : D(A+ B) C L*(Q) — L?(Q) is mazimal mono-
tone in L*(Q). Thus, assuming S = 0 in problem (5.11.453), then according to Theorem 5.295 for each
up € D(A+ B) = H}(Q) N H2(Q) = L*(Q) there exists a unique map u : [0,00) — L*(Q) weak solution
of problem (5.11.451). a
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Chapter 6

Appendix

6.1 Properties

Results used in Example 5.286.
TECHNICAL RESULTS ON TRACE OPERATORS
Claim 1: If v € V then yov € H'/?(Ty).

Proof of Claim 1: Let {(U1, 1), .., Uk, 0k), (Uk+1, ©kt1), s (Uk+1, 41)  be a system of local
charts for I'g U T'1, such that

{(U1,¢1); .., U, k) } is a system of local charts for Ty,

and
{(Ug+1, k+1)s -y (Ugt1, pr+1) } is a system of local charts for I'y,

such that
UnNU,=0, VYm=1,...,k; Vn=k+1,.. k+1

Such consideration is possible because, by hypothesis, [y N T; = .
Consider also C'*° partitions,
00,01, ..., 0k and 0(, O 11, ..., Oy1
subordinate to the respective open covers
Q U, ...,Ug and Q,Ugy1, ..y Ug4r-

Then

bo , 0 0 )
o« supp| 5 + 5 C Q, supp ) cU, Vi=1,.,k+1I

1 1 k+1 .
. 5[90(9:)+06<:c>]+5;9i<z> =1, Voel;
e 0<O)<1, 0<6;, <1, Vi=0,1,...k+1.

We know that yov € HY?(T'y UT). Then, letting ¢;(u) = (ub;) o p; ' be the null extension of
(u;) o p; !, we obtain
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k+1
oo ey = 3 I6:G00) 2
i=k+1
k+l1
= S 16000 s saqan s, (since o0 =0 on Ty)
Z:1k+l d) )
= \@Z ?l(’YOv) :\/i||70”‘)‘|§[1/2(1“)<007
° 1/2(Rn—1
i=1 H/2(R )

which gives us yov € HY/?(Ty).

0
Claim 2: If u € VN H?(Q) with 8—1: =0on Iy and v € V then (y1u,Y0v) g-1/2(1y, mr1/2(r) = 0.

—_~—

Proof of Claim 2: Consider the system of local charts for I'o N I'; and u6; o %—1 as in claim 1.

—~—

0i  _
Define, here, ¢;(u) = Wi, o7t

Now, by the Riesz Representation Theorem, there exists a unique w € H'/? (T") such that

<'Ylu7'YO'U>H*1/2(F),H1/2(F) = (wa’YOU)Hl/z(r),

and then
k+1
<’YlU7’YOU>H—1/2(F)7H1/2(F) = (w770U)H1/2(F) = Z(¢i(w)a¢i(70”))H1/2(R"—1)'
i=1
But w = 0 in H'/?(T), whence
Pr+1(w) = ... = ppi(w) =0 on I'y,
and thus,
k
1
<’Ylu,’YOU>H—1/2(F),H1/2(F) = Z(@(w),¢¢(70U))H1/2(Rn—1) = §(w770v)H1/2(F0)'
i=1

Since v € V, then yyv = 0 on 'y, and with this, we conclude that

1
(V1Us Y0) gr-1/2(1y, 11 /2(1) = 5(%70“)}11/2@0) =0.
(For more details or better understanding of the arguments used in the proof of claims 1 and 2,
consult (MC-S), page 277.)
Claim 3: The map o : V — HY?(T';) is surjective.

Proof of Claim 3: Given z € HY/?(I';), we can consider the extension Z € H'/?(TI") of z on T
given by

Z(x):{ z(z), if xely,

0, if zeTly.

Since the trace v : H'(Q) — H/2?(T) is surjective, there exists y € H'(Q) such that yoy = 2. But

Yoy = g|1—‘0 = 07
whence it follows y € V.

AUXILIARY RESULTS
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6.1 Properties

Theorem 1: Let F and F be Banach spaces and A : D(A) C E — F a linear, closed operator
with D(A) = E. Then,
i) A is bounded;
ii) D(A*) = F';
iti) A* is bounded.

Proof: See Theorem 2.50, page 95 of (MC-A).

Theorem 2: Let X and X' be reflexive and strictly convex. Let F': X — X’ be the duality map
of X. Let A be a monotone subset of X x X’. Then A is maximal monotone in X x X’ if, and only if,
for some A > 0 (equivalently, for all A > 0), Im(A+ \F) = X'.

Proof: See Theorem 1.2, page 39 of (VB).

Corollary 3: Let X be reflexive and B be monotone, hemicontinuous and bounded from X into
X'. Let A be a maximal monotone operator on X x X’. Then A + B is maximal monotone.

Proof: See Corollary 1.1, page 39 of (VB).
Theorem 4 (Kachurovskii): Let K be a convex set in V and let ¢ : V' — (—o00, +00] be Gateaux
differentiable at each u € K, where K = D(y). The following statements are equivalent:
i) ¢ is convex;
ii) ¢ (u)(v—u) < p(v) — p(u), for all u,v € K;

iii) (¢’ (u) —¢'(v),u —v)vr v >0, Vu,veK.

Proof: See Proposition 7.4, page 80 of (RS).

Theorem 5: Let ¢ : W — (—o00, +00] be convex, A : V. — W continuous and linear, and assume
that ¢ is continuous at some point of Im(A). Then d(p o A) = A’ 0 dp o A.

Proof: See Proposition 7.8, page 82 of (RS).

Theorem 6: Let X be a real Banach space. If ¢ is a proper, convex and lower semicontinuous
function on X, then Oy is a maximal monotone operator from X to X’

Proof: See Theorem 2.1, page 54 of (VB).

Theorem 7: Let ¢ : V — (—o00,+00] be convex and proper. If ¢ is Gateaux-differentiable at
u € int(dom(yp)), then dp(u) = {¢'(u)}. If ¢ is continuous and dp(u) has a unique element, then ¢ is
Gateaux-differentiable at u.

Proof: See Proposition 7.6, page 81 of (RS).

Theorem 8: Let A be an w—accretive operator, closed in a Banach space X, and satisfying

D(A) C Im(I + AA), for all A > 0 small.

Let X be reflexive and yg € D(A). Then there exists a unique y € W>°([0,00); X) satisfying

dy
— +Ay>30, t>0
0t + Ay 2 0, >

y(0) = vo-

Proof: See Theorem 1.5, page 216 of (VB2).
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