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Preface

The theory of semigroups of operators is undoubtedly one of the most powerful and elegant tools
in modern functional analysis for the study of evolution equations. From the classical heat diffusion
to complex wave propagation phenomena and quantum mechanics, the abstract language of semigroups
allows us to unify diverse problems under a common framework, providing robust methods for establishing
existence, uniqueness, and asymptotic behavior of solutions.

This book, Linear and Nonlinear Semigroups and Applications, is the result of years of teaching
and research at the State University of Maringá. It has been conceived to serve both as a textbook for
graduate students in Mathematics and as a reference for researchers interested in the analysis of partial
differential equations.

The text is structured to guide the reader from the foundations to the frontiers of the theory. We
begin with a review of differential and integral calculus in Banach spaces, setting the stage for the theory
of C0-semigroups of linear operators. Here, the classical theorems of Hille-Yosida and Lumer-Phillips
are presented not just as abstract results, but as operational tools essential for solving linear evolution
problems.

However, nature is inherently nonlinear. A distinctive feature of this volume is the substantial
treatment dedicated to nonlinear analysis. We introduce the theory of monotone and accretive operators,
multivalued mappings, and the crucial Crandall-Liggett Theorem, which generalizes the generation of
semigroups to the nonlinear setting. This transition is handled with care, highlighting the geometric and
analytic subtleties that arise when linearity is abandoned.

Throughout the book, the abstract theory is constantly motivated by and applied to concrete
problems. We explore in detail the heat equation, the wave equation with various types of damping
(frictional, viscoelastic, and boundary damping), and the Schrödinger equation. Special attention is
given to the regularity of solutions and to the concept of weak and generalized solutions, bridging the
gap between abstract functional analysis and applied mathematics.

We assume the reader has a background in basic functional analysis and Lebesgue integration
theory. Our goal is that, by the end of this journey, the reader will not only understand the "how" and
"why" of semigroup theory but will also be equipped to apply these powerful techniques to their own
research problems.

We are grateful to our colleagues and students whose questions and feedback over the years have
helped shape this material. We hope this book serves as a solid foundation for those venturing into the
vast and dynamic field of evolution equations.

Maringá, 2025
Juan Amadeo Soriano Palomino

Marcelo Moreira Cavalcanti
Valéria Neves Domingos Cavalcanti



Contents

- 2 -



Contents

Preface 1

1 Linear Semigroups 7

1.1 A Review of Differential and Integral Calculus in Banach Spaces . . . . . . . . . . . . . . 7

1.1.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 The Exponential Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Semigroups of class C0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4 The Hille–Yosida Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5 The Lumer–Phillips Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.5.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.6 Stone’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.6.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

1.7 Differentiable Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

1.7.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

1.8 Analytic Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

1.8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

1.9 Spectral Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

1.9.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2 The Abstract Cauchy Problem 113

2.1 The Homogeneous Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

- 3 -



Contents

2.2 Sesquilinear Forms and Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

2.3 The Non-homogeneous Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

2.4 The Nonlinear Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3 Evolution Equations 157

3.1 The Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

3.1.1 Dirichlet boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

3.1.2 Neumann boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

3.2 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.2.1 Dirichlet boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.2.2 Neumann boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.3 Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

3.4 Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

3.5 Some Additional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

3.5.1 The Timoshenko System with Dirichlet–Dirichlet Boundary Conditions . . . . . . 198

3.5.2 Bresse System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

3.5.3 A Non-homogeneous Timoshenko System . . . . . . . . . . . . . . . . . . . . . . . 203

4 Nonlinear Semigroups 209

4.1 Duality Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5 Monotone and Accretive Operators 231

5.1 Monotone Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

5.2 Maximal Monotone and m-Monotone Operators . . . . . . . . . . . . . . . . . . . . . . . . 246

5.3 Accretive Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

5.4 Maximal Accretive and m-Accretive Operators . . . . . . . . . . . . . . . . . . . . . . . . 287

5.5 Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

- 4 -



Contents

5.6 Perturbation of Accretive Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

5.7 Linear contraction semigroups: Hille–Yosida theory and some applications . . . . . . . . . 319

5.7.1 m-accretive operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

5.7.2 Accretive operators and duality applications: sum of accretive operators . . . . . . 324

5.7.3 Restriction and extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

5.7.4 Hilbert spaces and self-adjoint and skew-adjoint operators . . . . . . . . . . . . . . 331

5.7.5 Examples of m-accretive operators and partial differential operators . . . . . . . . 342

5.8 The Hille–Yosida–Phillips Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

5.8.1 The semigroup generated by −A, where A is an m-accretive operator . . . . . . . 357

5.8.2 Semigroups and their generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

5.8.3 Regularity properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

5.8.4 Weak Solutions and Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

5.8.5 Group of Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

5.8.6 The case of Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

5.9 Exponential Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

5.10 Abstract Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

5.11 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

6 Appendix 461

6.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Referências Bibliográficas 464

Index 469

- 5 -



Contents

- 6 -



Chapter 1

Linear Semigroups

1.1 A Review of Differential and Integral Calculus in Banach
Spaces

In this section we recall some preliminary results concerning Differential and Integral Calculus in
Banach spaces , which will be of fundamental importance throughout this text. We start with the notion
of series in Banach spaces. Throughout this section, E will denote a Banach space with norm ∥ · ∥.

Definition 1.1 Let (xn) be a sequence in E. From it we form a new sequence (sn) whose elements
are the sums

s1 = x1, s2 = x1 + x2, sn = x1 + · · ·+ xn,

which we shall call the partial sums of the series
∞∑

n=1
xn. If the limit

s = lim sn = lim
n→∞

(x1 + · · ·+ xn),

exists, we say that the series
∞∑

n=1
xn is convergent and the limit s is called the sum of the series. If the

sequence of partial sums does not converge, we say that the series
∞∑

n=1
xn is divergent. We say that a

series
∞∑

n=1
xn is absolutely convergent in E if

∞∑
n=1
∥xn∥ converges.

Proposition 1.2 Every absolutely convergent series
∞∑

n=1
xn is convergent.

Proof: Let sn =
n∑

k=1
xk, n ∈ N, be the sequence of partial sums of the given series. Since E is a Banach

space, it suffices to prove that

(sn) is a Cauchy sequence in E. (1.1.1)

- 7 -



1 Linear Semigroups

Indeed, let ε > 0 and consider m,n ∈ N with m > n. We have

∥sm − sn∥ =
∥∥∥∥∥

m∑
k=1

xk −
n∑

k=1
xk

∥∥∥∥∥
=

∥∥∥∥∥
m∑

k=n+1
xk

∥∥∥∥∥
≤

m∑
k=n+1

∥xk∥

≤

∣∣∣∣∣
m∑

k=1
∥xk∥ −

n∑
k=1
∥xk∥

∣∣∣∣∣
= |s̃m − s̃n|,

where s̃n =
n∑

k=1
∥xk∥ is the n-th partial sum of the convergent series

∞∑
k=1
∥xk∥, which is therefore a Cauchy

sequence in R. Hence, for the given ε > 0, there exists n0 ∈ N such that, if m,n ∈ N with m > n > n0,
then

∥sm − sn∥ ≤ |s̃m − s̃n| < ε,

which proves the claim in (1.1.1). 2

Another very important result for determining convergence of series is the Weierstrass test, which
we state next.

Proposition 1.3 (Comparison Test) Let Mn ≥ 0 be such that ∥xn∥ ≤Mn for every n ∈ N. If
∞∑

n=1
Mn

is convergent, then
∞∑

n=1
xn is absolutely convergent.

Proof: Since ∥xn∥ ≤Mn for all n ∈ N, it follows that

∞∑
n=1
∥xn∥ ≤

∞∑
n=1

Mn.

By the comparison test for series of real numbers, it follows that
∞∑

n=1
∥xn∥ is convergent, since

∞∑
n=1

Mn is convergent. Hence, by definition, the series
∞∑

n=1
xn is absolutely convergent. 2

Proposition 1.4 (Weierstrass M-test) Suppose that (E, ∥ · ∥) is a Banach space, (Y, d) is a metric
space, and for each n ∈ N, fn : Y → E is a function. Assume that there exists a sequence (Mn) such

that ∥fn(y)∥E ≤Mn for every n ∈ N and
∞∑

n=1
Mn <∞. Then fN (y) =

N∑
n=1

fn(y) converges absolutely and

uniformly to f(y) =
∞∑

n=1
fn(y).

Proof: Define fN (y) = f1(y) + · · ·+ fN (y). For M > N we have

∥fM (y)− fN (y)∥ = ∥fN+1(y) + · · ·+ fM (y)∥

≤
M∑

k=N+1
Mk for each y ∈ Y.

Since
∞∑

k=1
Mk is convergent, (fN (y)) is a Cauchy sequence in E. Thus there exists an element ξ ∈ E with

- 8 -



1.1 A Review of Differential and Integral Calculus in Banach Spaces

ξ = limN→∞ fN (y). Define f(y) = ξ; this gives us a function f : Y → E. Now,

∥f(y)− fN (y)∥ =
∥∥∥∥∥

∞∑
k=N+1

fk(y)
∥∥∥∥∥

≤
∞∑

k=N+1
∥fk(y)∥

≤
∞∑

k=N+1
Mk.

Since
∞∑

k=1
Mk is convergent, given ε > 0, there exists n0(ε) such that

∞∑
k=N+1

Mk < ε whenever N ≥ n0.

Hence ∥f(y)− fN (y)∥ < ε for all y ∈ Y whenever N ≥ n0. 2

From now on, we denote by L(E,F ) the family of bounded linear operators with domain E and
range F , where E and F are Banach spaces, that is, the family of linear operators A : E → F such that

∥A∥ = sup
x∈E,∥x∥≤1

∥Ax∥ = sup
x∈E,∥x∥=1

∥Ax∥.

With this norm, L(E,F ) is a Banach space. In the case where E = F we simply write L(E) instead of
L(E,E). If A,B ∈ L(E), the product of A and B is defined by AB = A ◦B.

An algebra A over a field K is a vector space over K such that for each ordered pair (x, y) ∈ A×A
we can define a unique product xy ∈ A with the following properties:

i) (xy)z = x(yz)

ii) x(y + z) = xy + xz

iii) (x+ y)z = xz + yz

iv) α(xy) = (αx)y = x(αy),

for all x, y, z ∈ A and every scalar α ∈ K.

It follows that L(E) is an algebra and that, for A,B ∈ L(E), we have AB ∈ L(E) and ∥AB∥ ≤
∥A∥∥B∥, that is, L(E) is a Banach algebra.

Proposition 1.5 Let A ∈ L(E). Then
∞∑

n=0

An

n! is absolutely convergent in L(E). By analogy with Calcu-

lus, we define:

exp(A) = eA =
∞∑

n=0

An

n! , with A0 = I.

Moreover, the following inequality holds:

∥eA∥ ≤ e∥A∥.

Proof: We apply the comparison test. First recall the following property, valid in L(E):

∥AB∥ ≤ ∥A∥ ∥B∥, for all A,B ∈ L(E).

- 9 -



1 Linear Semigroups

Thus, it suffices to note that, if n ∈ N and A ∈ L(E) is given, then∥∥∥∥An

n!

∥∥∥∥ = 1
n!∥A

n∥ ≤ 1
n!∥A∥

n ≤Mn,

where Mn = ∥A∥n

n! . Since the series
∞∑

n=0

∥A∥n

n! = e∥A∥ converges, it follows from the comparison test that

the series
∞∑

n=0

An

n! is absolutely convergent and, moreover,

∥eA∥ =
∥∥∥∥∥

∞∑
n=0

An

n!

∥∥∥∥∥ ≤
∞∑

n=0

∥A∥n

n! = e∥A∥,

which completes the proof. 2

Proposition 1.6 (Neumann’s Theorem) Let A ∈ L(E) with ∥A∥ < 1. Then the series
∞∑

n=0
An

converges to (I −A)−1 in L(E) and, moreover,

∥(I −A)−1∥ ≤ 1
1− ∥A∥ .

Proof: By Proposition 1.2, it suffices to show that the series is absolutely convergent. Note first that,
since ∥A∥ < 1,

∞∑
n=0
∥A∥n = 1

1− ∥A∥ , (1.1.2)

as this is a geometric series. By the comparison test, taking Mn = ∥A∥n, n ∈ N, and observing that

∥An∥ ≤ ∥A∥n, for all n ∈ N,

we obtain that the series
∞∑

n=0
An is absolutely convergent and therefore convergent. Furthermore,

∥∥∥∥∥
∞∑

n=0
An

∥∥∥∥∥ ≤
∞∑

n=0
∥An∥ ≤

∞∑
n=0
∥A∥n = 1

1− ∥A∥ . (1.1.3)

To conclude the proof, we show that
∞∑

n=0
An = (I −A)−1. Indeed,

(I −A)
∞∑

n=0
An =

∞∑
n=0

An −
∞∑

n=1
An

= A0 +
∞∑

n=1
An −

∞∑
n=1

An = I.

Also,

∞∑
n=0

An(I −A) = lim
k→∞

k∑
n=0

An(I −A)

= lim
k→∞

(I −Ak+1) = I,

since ∥Ak+1∥ ≤ ∥A∥k+1 → 0 as k → ∞. We conclude that
∞∑

n=0
An = (I − A)−1, and from (1.1.2) and

- 10 -



1.1 A Review of Differential and Integral Calculus in Banach Spaces

(1.1.3) we deduce

∥(I −A)−1∥ ≤ 1
1− ∥A∥ ,

which finishes the proof. 2

Proposition 1.7 Let A ∈ L(E) be such that ∥A∥ < 1. Then
∞∑

n=1

1
nA

n converges in L(E). We denote the

limit of this series by log(I −A).

Proof: We once again use the comparison test to verify that the given series is absolutely convergent
and hence convergent. Indeed,

∞∑
n=1

∥∥∥∥ 1
n
An

∥∥∥∥ ≤ ∞∑
n=1

∥A∥n

n
≤

∞∑
n=1
∥A∥n,

and since the series on the right-hand side converges, as ∥A∥ < 1, the result follows. 2

Let I be an interval in R and consider the function

x : I → E

t 7→ x(t).

We say that x is continuous at t0 ∈ I if

lim
t→t0
∥x(t)− x(t0)∥ = 0.

We say that x is continuous if it is continuous at every point of I. We define

C([a, b], E) = {x : [a, b]→ E;x(t) is continuous},

the space of “curves” in E defined on [a, b].

Proposition 1.8 C([a, b], E) is a Banach space equipped with the norm

∥x∥C([a,b],E) = sup
t∈[a,b]

∥x(t)∥.

Proof: Let (xn) ⊂ C([a, b], E) be a Cauchy sequence. Then, given ε > 0, there exists N1(ε) such that,
for m,n > N1,

∥xm − xn∥C([a,b],E) = sup
t∈[a,b]

∥xm(t)− xn(t)∥ < ε

2 . (1.1.4)

Therefore, for a fixed t0 ∈ [a, b] we have

∥xm(t0)− xn(t0)∥ < ε

2 , (1.1.5)

whenever m,n ≥ N1. This shows that (xn(t0)) is a Cauchy sequence in E. Since E is complete, there
exists x(t0) ∈ E such that xn(t0) → x(t0) as n → ∞. Thus we can associate to each t ∈ [a, b] a unique
element x(t) ∈ E, which defines a function x : [a, b]→ E. Fixing n ≥ N1 and letting m→∞ in (1.1.5),
we obtain

∥x(t0)− xn(t0)∥ < ε

2 ,

for each t0 ∈ [a, b], whenever n ≥ N1. This shows that (xn) converges uniformly to x in [a, b] and hence x
is continuous. We also have the inclusion {∥xn(t0)− x(t0)∥; t0 ∈ [a, b]} ⊂ [0, ε

2 ]. Hence supt∈[a,b] ∥x(t)−
xn(t)∥ ≤ ε

2 < ε, which shows that (xn) converges to x in C([a, b], E). 2
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1 Linear Semigroups

We say that x : (a, b)→ E is right differentiable at t0 ∈ (a, b) if there exists y ∈ E such that

lim
h→0+

∥∥∥∥x(t0 + h)− x(t0)
h

− y
∥∥∥∥ = 0.

Similarly, we define left differentiability . When both one-sided derivatives exist and are equal, we say
that x : (a, b)→ E is differentiable at t0 ∈ (a, b) and we denote y by x′(t0).

Proposition 1.9 Let x : (a, b)→ E be differentiable at t0 ∈ (a, b). Then x is continuous at t0.

Proof: Let ε > 0 and t0 ∈ (a, b). Since x is differentiable at t0, there exists x∗ := x′(t0) ∈ E such that

lim
h→0

∥∥∥∥x(t0 + h)− x(t0)
h

− x∗
∥∥∥∥ = 0.

Thus, for the given ε > 0, there exists δ > 0 such that if 0 < |h| < δ, then

∥x(t0 + h)− x(t0)∥ < ε|h|+ ∥x′(t0)∥ |h|.

Fix ε = 1. Then there exists δ1 > 0 such that

∥x(t0 + h)− x(t0)∥ < (1 + ∥x′(t0)∥)|h|, whenever 0 < |h| < δ1.

Set t = t0 + h. Then

∥x(t)− x(t0)∥ ≤ C|t− t0|, whenever |t− t0| < δ1,

where C = 1 + ∥x′(t0)∥. For a given ε > 0 define δ = min{δ1, ε/C}. Thus, if |t− t0| < δ, it follows that

∥x(t)− x(t0)∥ ≤ C|t− t0| < Cδ ≤ Cε/C = ε,

whenever |t− t0| < δ, which proves the claim. 2

As before, given A ∈ L(E), we define etA =
∞∑

n=0

tnAn

n! . One can also prove that etA ∈ L(E) and

∥etA∥ ≤ e|t|∥A∥.

Proposition 1.10 For t ∈ R, let T (t) = exp(tA), where A ∈ L(E). Then:

(i) lim
t→0
∥T (t)− I∥L(E) = 0 (T (t) is continuous at t = 0 and T (0) = I).

(ii) lim
t→0

∥∥∥∥T (t)− I
t

−A
∥∥∥∥

L(E)
= 0 (T (t) is differentiable at t = 0 and T ′(0) = A).

Proof:

(i) Note that T (t) =
∞∑

n=0

tnAn

n! . Thus

T (t)− I = A0 +
∞∑

n=1

tnAn

n! − I =
∞∑

n=1

tnAn

n! .
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1.1 A Review of Differential and Integral Calculus in Banach Spaces

Consider the series
∞∑

n=1

tnAn

n! . We have

∥∥∥∥∥
∞∑

n=1

tnAn

n!

∥∥∥∥∥ ≤
∞∑

n=1

∥∥∥∥ tnAn

n!

∥∥∥∥ ≤ ∞∑
n=1

|t|n∥A∥n

n! .

If |t| < 1, then the series
∞∑

n=1

|t|n∥A∥n

n! converges uniformly. Moreover, for each n ∈ N,

lim
t→0

|t|n∥A∥n

n! = 0.

Therefore,

lim
t→0

∞∑
n=1

|t|n∥A∥n

n! =
∞∑

n=1
lim
t→0

|t|n∥A∥n

n! = 0. (1.1.6)

On the other hand,

∥T (t)− I∥ =
∥∥∥∥∥

∞∑
n=1

tnAn

n!

∥∥∥∥∥ ≤
∞∑

n=1

|t|n∥A∥n

n! . (1.1.7)

Combining (1.1.6) and (1.1.7) we obtain

0 ≤ lim
t→0
∥T (t)− I∥ ≤

∞∑
n=1

lim
t→0

|t|n∥A∥n

n! = 0,

which proves (i).

(ii) Note that

T (t)− I
t

−A = 1
t

[ ∞∑
n=0

tnAn

n! −A
0

]
−A

= 1
t

[ ∞∑
n=1

tnAn

n! +A0 −A0

]
−A

=
∞∑

n=1

tn−1An

n! −A

=
∞∑

n=2

tn−1An

n! +A−A =
∞∑

n=2

tn−1An

n! .

As in part (i), assume |t| < 1. Then the series
∞∑

n=2

|t|n−1∥A∥n

n! converges uniformly and, in addition,

lim
t→0

∞∑
n=2

|t|n−1∥A∥n

n! = 0. (1.1.8)

However, ∥∥∥∥T (t)− I
t

−A
∥∥∥∥ ≤ ∞∑

n=2

|t|n−1∥A∥n

n! , (1.1.9)
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and (1.1.8)–(1.1.9) yield the desired result. 2

Let f : (a, b) → X, where X is a Banach space, be a continuous function. Given a partition π of
[a, b], that is, n + 1 real numbers t0, . . . , tn satisfying a = t0 < t1 < · · · < tn = b, and n real numbers ξi

with ξi ∈ (ti−1, ti), i = 1, . . . , n, we define a Riemann sum of f by

σπ(f) =
n∑

i=1
(ti − ti−1)f(ξi).

Clearly, σπ(f) ∈ X. Set
|π| = max

1≤i≤n
{ti − ti−1}.

Arguing as in the scalar case, one proves that σπ(f) has a limit x ∈ X as |π| → 0. More precisely,
given ε > 0, there exists δ > 0 such that

∥σπ(f)− x∥ < ε,

for every partition π with |π| < δ. As in the numerical case, we say that x is the integral of f on [a, b]
and we write

x = lim
|π|→0

σπ(f) =
∫ b

a

f(t) dt.

Proposition 1.11 The following properties hold for the integral of a vector-valued function:

i) If K is a constant, then
∫ b

a

Kf(t) dt = K

∫ b

a

f(t) dt.

ii)
∫ b

a

(f + g)(t) dt =
∫ b

a

f(t) dt+
∫ b

a

g(t) dt.

iii) If a ≤ c ≤ b, then
∫ b

a

f(t) dt =
∫ c

a

f(t) dt+
∫ b

c

f(t) dt.

iv)

∥∥∥∥∥
∫ b

a

f(t) dt
∥∥∥∥∥ ≤

∫ b

a

∥f(t)∥ dt.

v)

∥∥∥∥∥
∫ b

a

f(t) dt
∥∥∥∥∥ ≤ max

a≤t≤b
∥f(t)∥(b− a).

Proof: This follows immediately from the definition. 2

Proposition 1.12 Let E and F be Banach spaces, A ∈ L(E,F ) and let x ∈ C([a, b];E). Then

A

∫ b

a

x(t) dt =
∫ b

a

Ax(t) dt.

Proof: Consider the partition a = t0 < t1 < · · · < tn = b of [a, b], where ti = a + i(b−a)
n , and let

ξi ∈ (ti−1, ti). Then,

xn =
n∑

i=1
(ti − ti−1)x(ξi) ∈ E, for each n ∈ N,

since x(ξi) ∈ E for i = 1, . . . , n. As x and Ax are continuous by hypothesis, we have

xn →
∫ b

a

x(t) dt and
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1.1 A Review of Differential and Integral Calculus in Banach Spaces

Axn =
n∑

i=1
(ti − ti−1)Ax(ξi)→

∫ b

a

Ax(t) dt.

Therefore
A

∫ b

a

x(t) dt =
∫ b

a

Ax(t) dt.

2

Lemma 1.13 Let x, y ∈ C([a, b];E) be curves which are differentiable on [a, b] and such that y′(t) = x′(t)
for every t ∈ [a, b]. Then there exists ξ ∈ E such that y(t) = x(t) + ξ for all t ∈ [a, b].

Proof: We first claim that if w ∈ C([a, b];E) is differentiable on [a, b] and w′(t) = 0 for all t ∈ [a, b], then
w is constant on [a, b]. Indeed, let c ∈ (a, b) and ε > 0. Since w′

+ = 0, we have

∥w(t)− w(c)∥ ≤ ε(t− c) (1.1.10)

for t > c sufficiently close to c.

Let [c, t0) be the maximal subinterval of [c, b) on which (1.1.10) is valid. We must have t0 = b.
Suppose on the contrary that t0 < b. Since w′

+ = 0, we have

∥w(t)− w(t0)∥ ≤ ε(t− t0), (1.1.11)

for all t > t0 sufficiently close to t0. Let t > t0 be such that (1.1.11) holds. From (1.1.10) and (1.1.11)
we obtain

∥w(t)− w(c)∥ ≤ ∥w(t)− w(t0)∥+ ∥w(t0)− w(c)∥
≤ ε(t− t0) + ε(t0 − c) = ε(t− c),

that is, (1.1.10) is valid for all t > t0 sufficiently close to t0, which contradicts the definition of t0. Hence
t0 = b and we have ∥w(t)−w(c)∥ ≤ ε(t− c) for all t ∈ [c, b). By the arbitrariness of ε, w(t) = w(c) for all
t ∈ [c, b). Since c is an arbitrary point in (a, b), it follows that w is constant on (a, b) and, by continuity
of w on [a, b], the claim follows.

Now consider x, y continuous curves satisfying the assumptions of the lemma. Defining w = y−x,
we have w ∈ C([a, b];E) and w′(t) = y′(t) − x′(t) = 0 for all t ∈ [a, b]. By what we have just proved,
there exists ξ ∈ E such that w(t) = ξ for all t ∈ [a, b], which completes the proof. 2

Proposition 1.14 Let x ∈ C([a, b];E) and set

y(t) =
∫ t

a

x(s) ds.

Then y ∈ C1([a, b];E) and y′(t) = x(t) for all t ∈ [a, b]. Moreover, if x ∈ C1([a, b];E), then

x(b)− x(a) =
∫ b

a

x′(s) ds.

Proof: In order to prove that y ∈ C1([a, b];E), given that x ∈ C([a, b];E), it suffices to show that
y′(t) = x(t) for all t ∈ [a, b]. Indeed, let t0 ∈ [a, b] and ε > 0. Since x ∈ C([a, b];E), there exists
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δ = δ(ε) > 0 such that if 0 < |h| < δ, then ∥x(t0 + h)− x(t0)∥ < ε. Hence, for all 0 < h < δ we have∥∥∥∥y(t0 + h)− y(t0)
h

− x(t0)
∥∥∥∥ =

∥∥∥∥∥
∫ t0+h

a
x(s) ds−

∫ t0
a
x(s) ds

h
− x(t0)

∥∥∥∥∥
=

∥∥∥∥∥
∫ t0+h

t0
x(s) ds
h

− x(t0)
∥∥∥∥∥

=
∥∥∥∥∥
∫ h

0

x(t0 + ξ)− x(t0)
h

dξ

∥∥∥∥∥
≤ 1

h

∫ h

0
∥x(t0 + ξ)− x(t0)∥ dξ < 1

h

∫ h

0
ε dξ = ε,

since 0 < ξ < h < δ. This shows that the right derivative d+y
dt (t0) exists and d+y

dt (t0) = x(t0). Similarly
one proves that the left derivative d−y

dt (t0) exists and d−y
dt (t0) = x(t0). Therefore y is differentiable at

t0 and y′(t0) = x(t0). By the arbitrariness of t0 ∈ [a, b] we conclude that y is differentiable on [a, b]
and y′(t) = x(t) for all t ∈ [a, b]. When t0 = a or t0 = b, we consider only the corresponding one-sided
derivative. Thus we conclude that y ∈ C1([a, b];E).

Now suppose that x ∈ C1([a, b];E). Define

y(t) = x(a) +
∫ t

a

x′(s) ds, t ∈ [a, b].

Then y′(t) exists for all t ∈ [a, b] and y′(t) = x′(t) for all t ∈ [a, b]. By Lemma 1.13 there exists
ξ ∈ E such that y(t) = ξ + x(t) for all t ∈ [a, b]. In particular, for t = a we obtain

ξ + x(a) = y(a) = x(a),

which implies ξ = 0, that is, y(t) = x(t) for all t ∈ [a, b]. In particular, for t = b we obtain

x(b) = y(b) = x(a) +
∫ b

a

x′(s) ds,

from which

x(b)− x(a) =
∫ b

a

x′(s) ds

follows, completing the proof. 2

From now on, we are interested in functions defined on the unbounded interval [a,+∞) with values
in a Banach space. Let x ∈ C([a,+∞);E). We say that x is integrable on [a,+∞) if the limit in E

lim
t→+∞

∫ t

a

x(s) ds

exists.

Proposition 1.15 (Cauchy criterion) Let f : [a,+∞)→ E. A necessary and sufficient condition for
the limit limt→+∞ f(t) to exist is that for every ε > 0 there exists t0 > 0 such that, if t, s > t0, then
∥f(t)− f(s)∥ < ε.

Proof: Suppose that

lim
t→+∞

f(t) = x0.
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1.1 A Review of Differential and Integral Calculus in Banach Spaces

Then, given ε > 0, there exists t0 > 0 such that if t > t0 then ∥f(t) − x0∥ < ε/2. Hence, for
t, s > t0 we have

∥f(t)− f(s)∥ ≤ ∥f(t)− x0∥+ ∥x0 − f(s)∥ < ε/2 + ε/2 = ε.

Conversely, assume that for every ε > 0 there exists t0 > 0 such that if t, s > t0, then ∥f(t)−f(s)∥ <
ε. Taking ε = 1/n, n ∈ N, there exists tn ∈ (0,+∞) such that if t, s > tn then ∥f(t)− f(s)∥ < 1/n. Note
that we may assume, without loss of generality, that the sequence (tn) is increasing, that is, tm > tn
whenever m > n. Define (xn) ⊂ E by xn = f(tn). We claim that (xn) is a Cauchy sequence. Indeed,
given ε > 0, there exists n0 ∈ N such that 1/n0 < ε. Then

m,n > n0 =⇒ tm > tn > tn0 =⇒ ∥xm − xn∥ = ∥f(tm)− f(tn)∥ < 1
n0

< ε,

which proves the claim. Since E is complete, there exists x0 ∈ E such that xn → x0. Thus, given ε > 0,
there exists n1 ∈ N such that

n > n1 =⇒ ∥xn − x0∥ < ε/2,

that is, there exists tn1 > 0 such that

tn > tn1 =⇒ n > n1 =⇒ ∥f(tn)− x0∥ = ∥xn − x0∥ < ε/2.

On the other hand, there exists n2 ∈ N and hence tn2 > 0 such that

t, s > tn2 =⇒ ∥f(t)− f(s)∥ < ε/2.

Taking n0 = max{n1, n2}, it follows that there exists t0 = tn0 > 0 such that

t > t0 =⇒ ∥f(t)− x0∥ ≤ ∥f(t)− f(tn)∥+ ∥f(tn)− x0∥,

where n ∈ N is chosen so that n > n0, i.e. tn > tn0 = t0. Hence

t > t0 =⇒ ∥f(t)− x0∥ < ε/2 + ε/2 = ε,

which completes the proof. 2

Proposition 1.16 Let x ∈ C([0,∞);E). Suppose there exist positive constants C,ω such that

∥x(t)∥ ≤ Ceωt, for all t ≥ 0. (1.1.12)

Then we can define the Laplace transform of x by

L(x)(λ) =
∫ ∞

0
e−λsx(s) ds, for all λ > ω.

Moreover, if x ∈ C1([0,∞);E) and (1.1.12) holds, then

L(x′)(λ) = −x(0) + λL(x)(λ). (1.1.13)

Proof: We shall use Proposition 1.15. Consider the auxiliary function f : [0,∞)→ E defined by

f(t) =
∫ t

0
e−λsx(s) ds, t ∈ [0,∞) and λ > ω > 0 fixed.

We shall prove that f satisfies Proposition 1.15. First note that for all t > s > 0, it follows from
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(1.1.12) that

∥f(t)− f(s)∥ =
∥∥∥∥∫ t

0
e−λsx(s) ds−

∫ s

0
e−λsx(s) ds

∥∥∥∥
=

∥∥∥∥∫ t

s

e−λsx(s) ds
∥∥∥∥

≤
∫ t

s

e−λs∥x(s)∥ ds

≤ C

∫ t

s

e−(λ−ω)s ds

= Ce−(λ−ω)s

λ− ω

1− e−(λ−ω)t

e−(λ−ω)s︸ ︷︷ ︸
<1

 <
Ce−(λ−ω)s

λ− ω
.

For every s > t0 we have e−(λ−ω)s < e−(λ−ω)t0 and from the inequality above it follows that

∥f(t)− f(s)∥ < Ce−(λ−ω)t0

λ− ω
for all t > s > t0. (1.1.14)

From the above and given ε > 0 such that 0 < ε(λ − ω) < C, or equivalently 1
ε(λ−ω) > C, there

exists t0 >
[
ln
(

C
ε(λ−ω)

)]
/(λ− ω). It then follows from (1.1.14) that

∥f(t)− f(s)∥ < ε for all t > s > t0.

By Proposition 1.15 we obtain

lim
t→∞

∫ t

0
e−λsx(s) ds =

∫ ∞

0
e−λsx(s) ds,

so that the Laplace transform of x is well defined. It remains to verify that if x ∈ C1([0,∞);E) and
(1.1.12) holds, then (1.1.13) also holds. Indeed, integrating by parts the integral

∫ t

0 e
−λsx(s) ds, we obtain∫ t

0
e−λsx(s) ds = x(t)

−λ
e−λt + x(0)

λ
+ 1
λ

∫ t

0
e−λsx′(s) ds.

Taking the limit in the identity above as t tends to infinity, we obtain

λL(x)(λ) = x(0) + lim
t→∞

∫ t

0
e−λsx′(s) ds.

Thus the limit limt→∞
∫ t

0 e
−λsx′(s) ds exists and is precisely L(x′)(λ), which shows (1.1.13) and

completes the proof. 2

Proposition 1.17 Let k ∈ R. Define the space

Xk =
{
u ∈ C([0,∞);E); ∥u(t)∥ ≤ Cekt, for some C > 0 and for all t ≥ 0

}
.

Then

∥u∥Xk
:= sup

t≥0
e−kt∥u(t)∥
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is a norm with respect to which Xk is a Banach space.

Proof: First note that ∥u∥Xk
is well defined. In fact, if u ∈ Xk then u ∈ C([0,∞);E) and ∥u(t)∥ ≤ Cekt

for some C > 0 and for all t ≥ 0. Hence there exists C > 0 such that ∥u(t)∥e−kt ≤ C for all t ≥ 0.
Therefore supt≥0 ∥u(t)∥e−kt makes sense. Moreover, ∥u∥Xk

≥ 0 for every u ∈ Xk. We now prove that

∥u∥Xk
= 0 if and only if u ≡ 0. (1.1.15)

Indeed, if u ≡ 0 then clearly ∥u∥Xk
= 0. Conversely, if ∥u∥Xk

= 0, then, since 0 ≤ e−kt∥u(t)∥ ≤
∥u∥Xk

= 0 for all t ≥ 0, it follows that u ≡ 0, which proves (1.1.15).

Let u ∈ Xk and α ∈ R. From ∥(αu)(t)∥ = |α| ∥u(t)∥ for all t ≥ 0 it follows that

∥αu∥Xk
= |α| ∥u∥Xk

. (1.1.16)

Let u, v ∈ Xk. Then

∥u+ v∥Xk
= sup

t≥0

(
e−kt∥u(t) + v(t)∥

)
(1.1.17)

≤ sup
t≥0

(
e−kt(∥u(t)∥+ ∥v(t)∥)

)
≤ sup

t≥0
e−kt∥u(t)∥+ sup

t≥0
e−kt∥v(t)∥ = ∥u∥Xk

+ ∥v∥Xk
.

From (1.1.15), (1.1.16) and (1.1.17) we conclude that ∥u∥Xk
is indeed a norm.

We now prove that

(Xk, ∥ · ∥Xk
) is a Banach space. (1.1.18)

Let (un) be a Cauchy sequence in Xk, so that

sup
t∈[0,∞)

e−kt∥un(t)− um(t)∥ → 0

as m,n→∞. Define vn,l : [0, l]→ E by vn,l(t) = e−ktun(t), where t ∈ [0, l], l ∈ N. Since

∥vn,l − vm,l∥C([0,l];E) = sup
t∈[0,l]

e−kt∥un(t)− um(t)∥

≤ sup
t∈[0,∞)

e−kt∥un(t)− um(t)∥

it follows that (vn,l) is a Cauchy sequence in the Banach space C([0, l];E); hence there exists vl ∈
C([0, l];E) such that

vn,l → vl

in C([0, l];E). Define

v : [0,∞)→ E,

v(t) = vl(t) for some l ∈ N, l > t.

Note that v is well defined, since

vl(t) = vl′(t) if l < l′,

and v is continuous: given t ∈ [0,∞), the function v coincides with vl, for some l ∈ N, on a neighbourhood
of t, and since vl is continuous, so is v.
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Define

u : [0,∞)→ E,

u(t) = ektv(t).

Then u is continuous. We claim that u ∈ Xk and that

un → u in Xk.

Indeed, given ϵ > 0 there exists n0 ∈ N such that

∥e−ktun(t)− e−ktum(t)∥ < ϵ

for all t ∈ [0,∞) and all m,n > n0. Letting n→∞,

∥e−ktu(t)− e−ktum(t)∥ < ϵ,

(where we have used that v(t) = e−ktu(t)). Since u = u− um + um for some m ∈ N sufficiently large, we
have, for this m,

sup
t∈[0,∞)

∥e−ktu(t)∥ ≤ sup
t∈[0,∞)

e−kt∥u(t)− um(t)∥+ sup
t∈[0,∞)

e−kt∥um(t)∥

< ∞,

hence u ∈ Xk and, since

sup
t∈[0,∞)

∥e−ktu(t)− e−ktum(t)∥ ≤ ϵ

for any ϵ > 0, we conclude that

un → u in Xk.

2

Proposition 1.18 Let F : E → E be a Lipschitz function, that is,

∥F (u)− F (v)∥ ≤ α∥u− v∥, (α > 0).

Let ϕ : Xω → Xω (where Xω is defined in Proposition 1.17) be given by

ϕ(u)(t) = u0 +
∫ t

0
F (u(s)) ds, u0 ∈ E.

If ω > α then ϕ is a contraction on Xω.

Proof: Let u, v ∈ Xω and t ∈ [0,∞). We have

∥ϕ(u)(t)− ϕ(v)(t)∥ ≤
∫ t

0
∥F (u(s))− F (v(s))∥ ds (1.1.19)

≤ α

∫ t

0
∥u(s)− v(s)∥ ds.

On the other hand, since e−ωt∥u(t)− v(t)∥ ≤ ∥u− v∥Xω for all t ≥ 0, it follows that

∥u(t)− v(t)∥ ≤ ∥u− v∥Xω
eωt, for all t ≥ 0. (1.1.20)
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Combining (1.1.19) and (1.1.20) we obtain

∥ϕ(u)(t)− ϕ(v)(t)∥ ≤ α∥u− v∥Xω

∫ t

0
eωs ds (1.1.21)

= α

ω
(eωt − 1)∥u− v∥Xω

≤ α

ω
eωt∥u− v∥Xω

,

and hence

∥ϕ(u)− ϕ(v)∥Xω
= sup

t≥0

(
e−ωt∥ϕ(u)(t)− ϕ(v)(t)∥

)
≤ α

ω
∥u− v∥Xω

,

which completes the proof. 2

A function u ∈ C([0,∞), E) is said to be a solution of the initial value problem in the Banach
space E {

u′(t) = F (u(t)), t > 0,
u(0) = u0,

(1.1.22)

if and only if u is a solution of the integral equation

u(t) = u0 +
∫ t

0
F (u(s)) ds.

It is not difficult to verify that the unique fixed point of the mapping ϕ defined in Proposition 1.18
is a solution of the initial value problem given in (1.1.22). We leave this fact to the reader.

1.1.1 Exercises

1.1.1)Prove that the series
∞∑

n=0

2n

n! cosnt converges absolutely in E = C([−π, π],R) = {f : [−π, π]→

R | f is continuous}, endowed with the norm ∥f∥E = sup
t∈[−π,π]

|f(t)|.

1.1.2) Does the identity exp(log(I −A)) = I −A hold?

1.1.3) Let (An) and (Bn) be sequences in L(X) such that

(i)
∞∑

n=0
An converges absolutely,

(ii)
∞∑

n=0
Bn converges,

(iii) Cn =
n∑

k=0
AkBn−k, n = 0, 1, 2, . . .

Prove that
∞∑

n=0
Cn =

( ∞∑
n=0

An

)( ∞∑
n=0

Bn

)
.

1.1.4) Let x : (a, b)→ E be a function which is continuously differentiable on (a, b). Prove that

∥x(d)− x(c)∥E ≤ (d− c)∥x′∥C([c,d],E), a < c < d < b.
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1.1.5) Let f, g ∈ C([a, b];E), where E is a Banach space. Prove that:

(i)
∫ b

a

Cf(t) dt = C

∫ b

a

f(t) dt, where C is a constant.

(ii)
∫ b

a

(f + g)(t) dt =
∫ b

a

f(t) dt+
∫ b

a

g(t) dt.

(iii) If a ≤ c ≤ b, then
∫ b

a

f(t) dt =
∫ c

a

f(t) dt+
∫ b

c

f(t) dt.

(iv) One has
∫ b

a

f(t) dt = (b− a)x̃, for some x̃ ∈ conv f(a, b),

where conv f(a, b) denotes the closure of the convex combinations of the elements
of the set of values of f on [a, b].
(v) [Mean value theorem].For every t ∈ [a, b] one has

lim
h→0

1
h

∫ t+h

t

f(τ) dτ = f(t).

Hint: use item (iv).

1.1.6) Let A ∈ L(E). Prove that the initial value problem{
u′(t) = A(u(t)), t > 0,
u(0) = u0

admits a unique solution u ∈ C([0,∞);E).

1.1.6) Let T (t) : E → E be the linear operator defined by T (t)u0 = u(t), where u is the unique
solution of {

u′(t) = A(u(t)), t > 0,
u(0) = u0.

(i) Show that T (0) = I and that T (t + s) = T (t) ◦ T (s) for all t, s ∈ [0,∞). Use Gronwall’s
inequality to show that T (t) ∈ L(E) for all t ≥ 0 and that ∥T (t)∥ ≤ e∥A∥t.

(ii) Show that T (t) is continuous in t with respect to the norm of L(E), that is,

lim
t→t0
∥T (t)− T (t0)∥L(E) = 0.

(iii) Show that T (t) is differentiable (in the space L(E)) and that

T ′(t) = AT (t), that is,

lim
h→0

∥∥∥∥T (t+ h)− T (t)
h

−AT (t)
∥∥∥∥

L(E)
= 0.

(iv) Consider the Laplace transform of T (t), namely

L(T )(λ) =
∫ ∞

0
e−λsT (s) ds, λ > ∥A∥.

Show that L(T )(λ) = (λI −A)−1.
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(v) Let B = I − A/λ, λ > ∥A∥. Since ∥I − B∥ < 1, use C. Neumann’s theorem to show that
B−1 ∈ L(E) and that

B−1 =
∞∑

k=0

Ak

λk
.

Recalling that

L(tn) =
∫ ∞

0
e−λttn dt = n!

λn+1 ,

and that if the Laplace transform of a continuous function is zero then the function itself is identically
zero, show that T (t) = etA.

1.2 The Exponential Function

The exponential function etA, where A is a real number and t a real variable, may be defined by
the formula

etA =
∞∑

n=0

(tA)n

n! . (1.2.23)

The series on the right-hand side of (1.2.23) converges for all values of t and therefore defines a
real-valued function. Without much difficulty this definition extends to the case where A is a bounded
(that is, continuous) linear operator on a Banach space (as seen in the preceding section) and, in this
case, the series (1.2.23) converges in norm and, consequently, for each t ∈ R its “sum” is a bounded linear
operator on that space. A rather delicate problem, however, is to define the “exponential function” when
A is unbounded. One of the reasons for the interest in such a function lies in the fact that it is, formally, a
solution of the Cauchy problem: given an unbounded linear operator A on a Banach space X, determine
a function u(t) defined on [0,∞), taking values in D(A) (D(A) = domain of A), which satisfies the initial
value problem 

du(t)
dt

= A(u(t)), t > 0,

u(0) = u0,

(1.2.24)

where u0 is a given element of X.

When A ∈ R and t ≥ 0, the exponential function E : R+ → R has the following properties:

E(0) = 1, (1.2.25)
E(t+ s) = E(t)E(s), (1.2.26)
lim

t→0+
E(t) = 1, (1.2.27)

and, as will be shown below, it is the unique function defined on R+ with values in R having such
properties. The same occurs when E takes values in the algebra of linear operators on any finite-
dimensional space (recalling that every linear map defined on a finite-dimensional space is continuous).
In this case, the number 1 appearing in (1.2.25) and (1.2.27) should be interpreted as the identity operator
I : X → X, and the product in (1.2.26) as the composition of linear operators. To understand what
happens when X is infinite-dimensional, one must take into account that, in this case, three topologies
are usually introduced on the algebra L(X) of bounded linear operators on X, each one giving a different
meaning to the limit in (1.2.27). Thus, we may interpret this limit as a uniform, strong, or weak limit.
Recall that I is the uniform limit of E(t) as t → 0+ if ∥E(t) − I∥L(X) → 0; it is the strong limit if
∥E(t) − I∥X → 0 for all x ∈ X, and it is the weak limit if ⟨[E(t)− I]x, x′⟩X,X′ → 0 for all x ∈ X and
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all x′ ∈ X ′, where X ′ is the topological dual of X. When the limit (1.2.27) is taken in the sense of the
uniform topology, the situation is rather simple, as shown by the following theorem.

Theorem 1.19 A function E : R+ → L(X) satisfies

(a) E(0) = I,

(b) E(t+ s) = E(t)E(s),

(c) ∥E(t)− I∥L(X) → 0 as t→ 0+,

if and only if E(t) = etA, where A ∈ L(X) and etA is defined by (1.2.23).

Proof: Assume first that A ∈ L(X) and that

etA =
∞∑

n=0

(tA)n

n! .

Since, for each t ≥ 0, the series
∑∞

n=0
(tA)n

n! converges absolutely and L(X) is a Banach space, we
have that etA defines, for each t ≥ 0, a linear and continuous operator on X. Thus E(t) = etA is such
that E : R+ → L(X). It remains to prove that E(t) satisfies conditions (a), (b) and (c). Indeed,

(a)

E(0) =
∞∑

n=0

(0A)n

n! = I.

(b) Observe that, by the binomial theorem,

(t+ s)p =
p∑

k=0

(
p

k

)
tksp−k

=
p∑

k=0

p!
k!(p− k)! t

ksp−k,

which implies

(t+ s)p

p! =
p∑

k=0

tk

k!
sp−k

(p− k)! .

Hence

e(t+s)A =
∞∑

n=0

(t+ s)n

n! An

= lim
n→∞

n∑
p=0

(t+ s)p

p! Ap

= lim
n→∞

n∑
p=0

p∑
k=0

(tA)k

k!
(sA)p−k

(p− k)! .

Since
∑∞

n=0
(tA)n

n! converges absolutely, it follows from Exercise 1.1.3 of the previous section that e(t+s)A =
etAesA, that is, E(t+ s) = E(t)E(s).
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(c) We have

etA =
∞∑

n=0

(tA)n

n! = I +
∞∑

n=1

(tA)n

n! .

Thus

etA − I =
∞∑

n=1

(tA)n

n!

= tA

1! + (tA)2

2! + (tA)3

3! + · · ·

= tA

(
I + tA

2! + (tA)2

3! + · · ·
)

= tA

∞∑
n=0

(tA)n

(n+ 1)! .

Note that the series
∑∞

n=0
(tA)n

(n+1)! converges absolutely, since∥∥∥∥∥
∞∑

n=0

(tA)n

(n+ 1)!

∥∥∥∥∥ ≤
∞∑

n=0

∥(tA)n∥
(n+ 1)! ≤

∞∑
n=0

∥(tA)n∥
n! = e∥tA∥ = et∥A∥.

Hence

∥etA − I∥L(X) ≤ t∥A∥L(X)e
t∥A∥L(X) .

As t→ 0+ we have et∥A∥ → 1 and, consequently, ∥etA − I∥L(X) → 0 as t→ 0+.

Conversely, suppose that E : R+ → L(X) satisfies (a), (b) and (c). We first show that ∥E(t)∥ is
bounded on every bounded interval. Indeed, given ε = 1, there exists, by property (c), a δ > 0 such
that if 0 ≤ t ≤ δ then ∥E(t) − I∥ < 1. Since ∥E(t)∥ − ∥I∥ ≤ ∥E(t) − I∥, it follows that ∥E(t)∥ < 2 for
0 ≤ t ≤ δ. Now let t ≥ 0 be arbitrary. Then there exists n ∈ N such that t = nδ + r, where 0 ≤ r < δ.
Hence, by property (b),

E(t) = E(nδ + r) = E(nδ)E(r) = E(δ)nE(r),

and therefore

∥E(t)∥ ≤ ∥E(δ)∥n∥E(r)∥ < 2n+1.

Since t = nδ + r, we have t ≥ nδ, i.e. n ≤ t/δ. Consequently,

∥E(t)∥ ≤ 2n2 ≤ 2t/δ2 = 2t/δ+1.

Setting ω = (1/δ) ln 2, the inequality above may be written as

∥E(t)∥ ≤ 2eωt, for all t ≥ 0, where ω = (1/δ) ln 2. (1.2.28)

Now let t ∈ [T0, T ], where 0 ≤ T0 < T < +∞. Then, from (1.2.28),

∥E(t)∥ ≤ 2eωT , for all t ∈ [T0, T ],
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that is, ∥E(t)∥ is bounded on bounded intervals, which proves the claim.

We now prove that E is continuous with respect to the uniform topology on L(X). Let h > 0 and
t ≥ 0. From property (c) and the boundedness of ∥E(t)∥ on bounded intervals we have

∥E(t+ h)− E(t)∥L(X) = ∥E(t)E(h)− E(t)∥L(X)

≤ ∥E(t)∥L(X) ∥E(h)− I∥L(X) → 0 as h→ 0+.

Similarly, if 0 < h ≤ t, i.e. 0 ≤ t− h < t, we obtain

∥E(t− h)− E(t)∥L(X) = ∥E(t− h)− E(t− h)E(h)∥L(X)

≤ ∥E(t− h)∥L(X) ∥E(h)− I∥L(X) → 0 as h→ 0+.

From these convergences we conclude that E is continuous in the uniform topology of L(X). It
follows that E is Riemann integrable with respect to the uniform topology of L(X) and, moreover, from
the mean value theorem (see Exercise 1.1.5 (v) of the previous section) we have

lim
h→0+

1
h

∫ h

0
E(t) dt = E(0) = I in L(X).

Thus, given ε = 1, there exists δ > 0 such that∥∥∥∥∥1
δ

∫ δ

0
E(t) dt− I

∥∥∥∥∥
L(X)

< 1,

and therefore 1
δ

∫ δ

0
E(t) dt is invertible in L(X), by Proposition 1.6, and, consequently, so is

∫ δ

0
E(t) dt.

With this in mind, let 0 < h < δ. Then[
E(h)− I

h

] ∫ δ

0
E(t) dt P rop.(1.12)= 1

h

∫ δ

0
E(t+ h) dt− 1

h

∫ δ

0
E(t) dt

= 1
h

[∫ δ+h

h

E(t) dt−
∫ δ

0
E(t) dt

]

= 1
h

[∫ δ

h

E(t) dt+
∫ δ+h

δ

E(t) dt−
∫ h

0
E(t) dt−

∫ δ

h

E(t) dt
]

= 1
h

[∫ δ+h

δ

E(t) dt−
∫ h

0
E(t) dt

]
,

which implies

E(h)− I
h

=
[

1
h

∫ δ+h

δ

E(t) dt− 1
h

∫ h

0
E(t) dt

][∫ δ

0
E(t) dt

]−1

.

Since the right-hand side of the last identity converges in norm to (E(δ) − I)
( ∫ δ

0 E(t) dt
)−1 as

h→ 0+, the same occurs for the left-hand side. We denote by A the uniform limit of E(h)−I
h in L(X) as

h→ 0+. Thus,

d+E(0)
dt

= A.

(We use the notation d+E(0)
dt

for lim
h→0+

E(h)− I
h

.)
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Moreover, for t > 0 and h > 0 we have

E(t+ h)− E(t)
h

= E(t)
(
E(h)− I

h

)
,

and since E(h)−I
h converges in norm to A, it follows that E(t+h)−E(t)

h converges in norm to E(t)A as
h→ 0+. Hence E is right differentiable for all t ≥ 0 with respect to the uniform topology of L(X) and

d+E(t)
dt

= E(t)A. (1.2.29)

Similarly, if t, h > 0 and 0 < h < t, then

E(t− h)− E(t)
−h

= E(t)− E(t− h)
h

= E(t− h)
[
E(h)− I

h

]
.

Since E is continuous in the uniform topology of L(X), we have that E(t − h) converges to E(t)
in L(X) as h→ 0+. Also, E(h)−I

h converges to A as h→ 0+, and therefore

d−E(t)
dt

= lim
h→0+

E(t− h)− E(t)
−h

= E(t)A. (1.2.30)

Thus, from (1.2.29) and (1.2.30) we conclude that

dE(t)
dt

= E(t)A, for all t ≥ 0. (1.2.31)

Finally, consider the function

φ(t) = E(t)e−tA, t ≥ 0. (1.2.32)

Recalling that differentiation in L(X) has the same properties as classical differentiation, we obtain
from (1.2.31) that

φ′(t) = E′(t)e−tA − E(t)Ae−tA

= E(t)Ae−tA − E(t)Ae−tA = 0.

Consequently, φ is constant. But φ(0) = I and, therefore, E(t)e−tA = I for all t ≥ 0, so E(t) = etA,
which completes the proof. 2

Remark 1.20 In finite-dimensional spaces, the uniform, strong and weak topologies all coincide with
the usual topology and, since the proof of Theorem 1.19 did not involve the dimension of the space, this
theorem remains valid in the finite-dimensional setting.

As uniform convergence implies strong convergence, Theorem 1.19 shows that the definition given
below (in the next section) generalises the usual definition of the exponential function.
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1.3 Semigroups of class C0

Definition 1.21 Let (X, ∥ · ∥) be a Banach space and let L(X) denote the algebra of bounded linear
operators on X. We say that a mapping S : R+ → L(X) is a semigroup of bounded operators on X if:

(i) S(0) = I, where I is the identity operator on X.
(ii) S(t+ s) = S(t)S(s), for all t, s ∈ R+.

The semigroup is said to be of class C0 if

(iii) lim
t→0+

∥(S(t)− I)x∥ = 0, for all x ∈ X.

Proposition 1.22 If S is a semigroup of class C0, then ∥S(t)∥L(X) is a bounded function on every
bounded interval [0, T ].

Proof: We first claim that there exists an interval of the form [0, δ] on which the function ∥S(t)∥ is
bounded, that is,

There exist δ > 0 and M > 0 such that ∥S(t)∥ ≤M, for all t ∈ [0, δ]. (1.3.33)

Indeed, suppose by contradiction that this is not the case, that is, for every interval of the form [0, δ]
the function ∥S(t)∥ is unbounded. In other words, for every δ > 0 and M > 0 there exists tδ,M ∈ [0, δ]
such that ∥S(tδ,M )∥ > M . Hence, for δ = 1/n and M = n, n ∈ N, there exists tn ∈ [0, 1/n] such that
∥S(tn)∥ > n. Thus there exists a sequence tn → 0+ with ∥S(tn)∥ > n for all n ∈ N. By the Uniform
Boundedness Principle (Banach–Steinhaus theorem), there exists x ∈ X for which ∥S(tn)x∥ is unbounded
in n ∈ N, which contradicts property (iii) of S, since S is assumed to be of class C0. This proves the
claim in (1.3.33). Moreover, note that M ≥ 1, because ∥S(t)∥ ≤ M for all t ∈ [0, δ] and, in particular,
∥S(0)∥ = ∥I∥ = 1 ≤M .

Now let t ∈ [0, T ], where T > 0 is arbitrary. Then t = nδ+ r for some n ∈ N and 0 ≤ r < δ. Hence

∥S(t)∥ = ∥S(nδ + r)∥ = ∥S(δ)nS(r)∥
≤ ∥S(δ)∥n∥S(r)∥
≤ MnM

≤ M t/δM = Meωt ≤MeωT ,

where ω := 1
δ lnM , which completes the proof. 2

Corollary 1.23 Every semigroup of class C0 is strongly continuous on R+, that is, if t ∈ R+, then

lim
s→t

S(s)x = S(t)x, for all x ∈ X.

Proof: Let t ∈ R+ and x ∈ X. If h ≥ 0, then

∥S(t+ h)x− S(t)x∥ = ∥S(t)[S(h)− I]x∥ (1.3.34)
≤ ∥S(t)∥L(X)∥[S(h)− I]x∥.

Since S is of class C0, we have

∥[S(h)− I]x∥ → 0 as h→ 0+, (1.3.35)

and therefore, from (1.3.34), (1.3.35) and Proposition 1.22 we obtain

lim
s→t+

S(s)x = S(t)x. (1.3.36)
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Now, if 0 < h < t, we have

∥S(t− h)x− S(t)x∥ = ∥S(t− h)[I − S(h)]x∥ (1.3.37)
≤ ∥S(t− h)∥L(X)∥[S(h)− I]x∥.

Again, since S is of class C0, we have

∥[S(h)− I]x∥ → 0 as h→ 0+, (1.3.38)

and, using (1.3.37), (1.3.38) and Proposition 1.22 in the same way, we infer that

lim
s→t−

S(s)x = S(t)x. (1.3.39)

Combining (1.3.36) and (1.3.39) yields the desired conclusion. 2

Remark 1.24 Semigroups of class C0 are also called continuous semigroups, which is justified by Corol-
lary 1.23. We have seen in the proof of Proposition 1.22 that if S is a semigroup of class C0, then there
exist real numbers M and ω such that

∥S(t)∥L(X) ≤Meωt, for all t ≥ 0.

A more refined result will be proved later. As a preliminary step we shall prove the following result
about subadditive functions, that is, functions p : R→ R such that p(t+ s) ≤ p(t) + p(s) for all t, s ∈ R.

Lemma 1.25 Let p be a subadditive function defined on R+ and bounded from above on every bounded
interval. Then p(t)

t has a limit as t→ +∞, and

lim
t→∞

p(t)
t

= inf
t>0

p(t)
t
.

Proof: Set

ω0 := inf
t>0

p(t)
t
.

Then ω0 ≥ −∞. We first consider the case ω0 > −∞. Given ε > 0, there exists T = T (ε) > 0 such that

p(T )
T

< ω0 + ε. (1.3.40)

Let t ∈ R+. Then there exists n ∈ N such that t = nT + r with 0 ≤ r < T . By the subadditivity
of p and (1.3.40) we obtain

ω0 ≤
p(t)
t

= p(nT + r)
t

≤ p(nT ) + p(r)
t

(1.3.41)

≤ np(T ) + p(r)
t

= nTp(T )
tT

+ p(r)
t

≤ nT

t
(ω0 + ε) + p(r)

t
.

Since p is bounded from above on [0, T ), there exists c ∈ R such that

p(r) ≤ c, for all r ∈ [0, T ). (1.3.42)
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Moreover, because t = nT + r, we have

nT

t
= t− r

t
→ 1 as t→ +∞. (1.3.43)

Therefore, from (1.3.41), (1.3.42) and (1.3.43) we get

ω0 ≤ lim inf
t→+∞

p(t)
t
≤ ω0 + ε,

ω0 ≤ lim sup
t→+∞

p(t)
t
≤ ω0 + ε.

By the arbitrariness of ε > 0 it follows that

ω0 = lim inf
t→+∞

p(t)
t

= lim sup
t→+∞

p(t)
t
,

and hence the desired limit exists.

Now consider the case ω0 = −∞. In this case, for each real number ω there exists T = T (ω) > 0
such that

p(T )
T
≤ ω.

Let t ∈ R+ and ω ∈ R. Then there exist T = T (ω) > 0 and n ∈ N such that

p(T )
T
≤ ω and t = nT + r, with 0 ≤ r < T.

Proceeding as in the previous case, we obtain

p(t)
t
≤ ω + c

t
, for some c > 0.

Hence

lim inf
t→+∞

p(t)
t
≤ ω and lim sup

t→+∞

p(t)
t
≤ ω.

By the arbitrariness of ω we conclude that

lim
t→+∞

p(t)
t

= −∞,

which completes the proof. 2

Proposition 1.26 Let S be a semigroup of class C0. Then

lim
t→+∞

ln ∥S(t)∥
t

= inf
t>0

ln ∥S(t)∥
t

= ω0, (1.3.44)

and for each ω > ω0 there exists a constant M ≥ 1 such that

∥S(t)∥ ≤Meωt, for all t ≥ 0. (1.3.45)
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Proof: We have

ln ∥S(t+ s)∥ = ln ∥S(t)S(s)∥ ≤ ln
(
∥S(t)∥ ∥S(s)∥

)
= ln ∥S(t)∥+ ln ∥S(s)∥,

since the logarithm function is increasing. Thus ln ∥S(t)∥ is subadditive. By Proposition 1.22 we know
that ∥S(t)∥ is bounded on every bounded interval, hence ln ∥S(t)∥ is bounded from above there as well.
Setting p(t) = ln ∥S(t)∥, we infer from Lemma 1.25 that

lim
t→+∞

ln ∥S(t)∥
t

= inf
t>0

ln ∥S(t)∥
t

= ω0.

Let ω > ω0. We claim that there exists t0 ∈ R+ such that

ln ∥S(t)∥
t

< ω, for all t ≥ t0. (1.3.46)

Indeed, if ω0 < +∞, take ε = ω− ω0 > 0. By the definition of the limit, there exists t0 ∈ R+ such
that ∣∣∣∣ ln ∥S(t)∥

t
− ω0

∣∣∣∣ < ε, for all t ≥ t0,

which yields (1.3.46). If ω0 = −∞, the desired inequality in (1.3.46) follows directly from the definition
of infinite limit.

On the other hand, since ∥S(t)∥ is bounded on [0, t0] and ∥S(0)∥ = 1, there exists M0 ≥ 1 such
that

∥S(t)∥ ≤M0, for all t ∈ [0, t0].

Thus

ln ∥S(t)∥ ≤ lnM0, for all t ∈ [0, t0]. (1.3.47)

Let ω ≥ 0. From (1.3.46) and (1.3.47) we obtain

ln ∥S(t)∥ ≤ ωt+ lnM0, for all t ≥ 0,

and hence

∥S(t)∥ ≤M0e
ωt, for all t ≥ 0.

Setting M = M0, we obtain the desired estimate. If ω < 0, then −ωt0 > 0 and, therefore, by
(1.3.46) we have

ln ∥S(t)∥ < ωt− ωt0, for all t ≥ t0. (1.3.48)

From (1.3.47), (1.3.48) and the fact that ω(t− t0) > 0 on [0, t0] we conclude that

ln ∥S(t)∥ ≤ ω(t− t0) + lnM0, for all t ≥ 0.
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Hence

∥S(t)∥ ≤M0e
ω(t−t0), for all t ≥ 0.

Setting M = M0e
−ωt0 , the proposition follows. 2

Remark 1.27 When ω0 < 0, we may choose ω0 < ω < 0 and, from (1.3.45), obtain M ≥ 1 such that

∥S(t)∥ ≤M, for all t ≥ 0.

In this case S is called a uniformly bounded semigroup of class C0. If, in addition, M = 1, then S

is called a semigroup of contractions of class C0 .

Definition 1.28 Let S be a semigroup of class C0. The operator A : D(A)→ X defined by

D(A) =
{
x ∈ X; lim

h→0+

(
S(h)− I

h

)
x exists

}
,

and

Ax = lim
h→0+

(
S(h)− I

h

)
x, for all x ∈ D(A),

is called the infinitesimal generator of the semigroup S.

Proposition 1.29 D(A) is a vector subspace of X and A is a linear operator.

Proof: This is an immediate consequence of Definition 1.28 and the properties of limits. 2

Proposition 1.30 Let S be a semigroup of class C0 and let A be the infinitesimal generator of S. Then

(i) If x ∈ D(A), then S(t)x ∈ D(A) for all t ≥ 0 and the following identities hold:

d

dt
S(t)x = AS(t)x = S(t)Ax, ∀t ≥ 0, (1.3.49)

where d

dt
S(t)x = lim

h→0

S(t+ h)x− S(t)x
h

and, when t = 0, this limit is understood as a right-hand limit
only.

(ii) If x ∈ D(A), then

S(t)x− S(s)x =
∫ t

s

AS(ξ)x dξ =
∫ t

s

S(ξ)Axdξ, 0 ≤ s ≤ t. (1.3.50)

(iii) If x ∈ X, then
∫ t

0
S(ξ)x dξ ∈ D(A) and

A

∫ t

0
S(ξ)x dξ = S(t)x− x. (1.3.51)

Proof:

(i) If t = 0 then S(0) = I, so

S(0)x = x ∈ D(A).
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Consequently, by Definition 1.28 we have

d

dt

+
S(0)x = lim

h→0+

(
S(h)x− S(0)x

h

)
= Ax.

Now let t > 0. We shall prove that S(t)x ∈ D(A), i.e. that the limit

lim
h→0+

(
S(h)− I

h

)
S(t)x (1.3.52)

exists. Indeed, for h > 0 we have(
S(h)− I

h

)
S(t)x = (S(t+ h)− S(t))x

h
= S(t)

(
S(h)− I

h

)
x. (1.3.53)

Since x ∈ D(A) we know that

lim
h→0+

(
S(h)− I

h

)
x = Ax,

and, as S(t) ∈ L(X), we obtain from (1.3.53) that

lim
h→0+

S(t)
(
S(h)− I

h

)
x = S(t) lim

h→0+

(
S(h)− I

h

)
x = S(t)Ax,

which implies that S(t)x ∈ D(A) and, therefore, by the very definition of A,

AS(t)x = S(t)Ax.

We now prove identity (1.3.49). For h > 0 and t > 0, from the above we have

d

dt

+
S(t)x = lim

h→0+

(S(t+ h)− S(t))x
h

= S(t)Ax = AS(t)x. (1.3.54)

Now suppose 0 < h < t. Then

S(t− h)x− S(t)x
−h

= S(t− h)
(
x− S(h)x
−h

)
= S(t− h)

(
S(h)x− x

h

)
(1.3.55)

= S(t− h)
[(

S(h)− I
h

)
x−Ax+Ax

]
= S(t− h)

[(
S(h)− I

h

)
x−Ax

]
+ S(t− h)Ax.

Since ∥S(t− h)∥ is bounded on bounded intervals and

lim
h→0+

(
S(h)− I

h

)
x = Ax (because x ∈ D(A)),

we obtain

lim
h→0

[(
S(h)− I

h

)
x−Ax

]
= 0. (1.3.56)
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Moreover, since S is strongly continuous, we have

lim
h→0+

S(t− h)Ax = S(t)Ax. (1.3.57)

Combining (1.3.55), (1.3.56) and (1.3.57) we conclude that

d

dt

−
S(t)x = S(t)Ax, (1.3.58)

and consequently S(t)x is left differentiable for all t ≥ 0. From (1.3.54) and (1.3.58) it follows that

d

dt
S(t)x = AS(t)x = S(t)Ax,

which proves item (i).

(ii) Let x ∈ D(A). From item (i) we know that d

dt
S(t)x is a continuous function of t for all

x ∈ D(A), since S is strongly continuous. Hence we may integrate over compact intervals in R+ and
obtain ∫ t

s

d

dξ
S(ξ)x dξ =

∫ t

s

AS(ξ)x dξ =
∫ t

s

S(ξ)Axdξ,

that is,

S(t)x− S(s)x =
∫ t

s

AS(ξ)x dξ =
∫ t

s

S(ξ)Axdξ,

which proves (ii).

(iii) Let x ∈ X. We shall prove that

lim
h→0+

(
S(h)− I

h

)∫ t

0
S(ξ)x dξ = S(t)x− x. (1.3.59)

Indeed, let 0 < h < t. By linearity and continuity of the operator S(h)−I
h we have

S(h)− I
h

(∫ t

0
S(ξ)x dξ

)
(1.3.60)

= 1
h

(∫ t

0
S(ξ + h)x dξ −

∫ t

0
S(ξ)x dξ

)
= 1
h

∫ t+h

h

S(ξ)x dξ − 1
h

∫ t

0
S(ξ)x dξ

= 1
h

∫ t

h

S(ξ)x dξ + 1
h

∫ t+h

t

S(ξ)x dξ − 1
h

∫ h

0
S(ξ)x dξ − 1

h

∫ t

h

S(ξ)x dξ

= 1
h

∫ t+h

t

S(ξ)x dξ − 1
h

∫ h

0
S(ξ)x dξ.

On the other hand, by the mean value theorem (see Exercise 1.1.5 of Section 1.1),

lim
h→0+

1
h

∫ t+h

t

S(ξ)x dξ = S(t)x, and lim
h→0+

1
h

∫ h

0
S(ξ)x dξ = S(0)x. (1.3.61)
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From (1.3.60) and (1.3.61) we obtain (1.3.51), and, by the definition of A,

A

∫ t

0
S(ξ)x dξ = S(t)x− x.

2

Proposition 1.31 The infinitesimal generator of a semigroup of class C0 is a closed linear operator and
D(A) is dense in X.

Proof: We first prove that D(A) is dense in X by constructing a sequence (xn)n∈N ⊂ D(A) converging
to x ∈ X. Let x ∈ X and, for each n ∈ N∗, define

xn = 1
1/n

∫ 1
n

0
S(t)x dt.

Note that for each n ∈ N∗ we have xn ∈ D(A) in view of Proposition 1.29 and Proposition
1.2.24(iii). Moreover, by the mean value theorem we have

xn = 1
1/n

∫ 1
n

0
S(t)x dt→ S(0)x = x as n→∞,

which proves the density. We now show that A is closed. Let (xn)n∈N ⊂ D(A) be such that

xn → x and Axn → y in X. (1.3.62)

From (1.3.50) we may write

S(h)xn − xn =
∫ h

0
S(t)Axn dt, h > 0. (1.3.63)

By (1.3.45) there exists C > 0 such that

∥S(t)Axn − S(t)y∥ ≤ ∥S(t)∥L(X)∥Axn − y∥ (1.3.64)
≤ C∥Axn − y∥, for all t ∈ [0, h].

From (1.3.62) and (1.3.64) we conclude that

S(t)Axn → S(t)y as n→∞. (1.3.65)

Thus, from (1.3.62), (1.3.63) and (1.3.65), and using that S(h) ∈ L(X), we obtain in the limit that

S(h)x− x =
∫ h

0
S(t)y dt,

whence

S(h)x− x
h

= 1
h

∫ h

0
S(t)y dt.

Letting h→ 0+ in the identity above and using the mean value theorem, we conclude that x ∈ D(A)
and Ax = y, which shows that A is closed and completes the proof. 2

0.5 cm
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Example 1.32 Let S be a C0–semigroup, A the infinitesimal generator of S, and λ ∈ C. Then

S̃(t) := e−λtS(t), t ≥ 0,

is a C0–semigroup whose infinitesimal generator is (A− λI).

Indeed, it is clear that for every t ≥ 0, S̃(t) ∈ L(X) since S(t) ∈ L(X). Moreover:

(i) S̃(0) = S(0) = I.

(ii) S̃(t+ s) = e−λ(t+s)S(t+ s) = e−λte−λsS(t)S(s) = S̃(t)S̃(s).

(iii)

∥S̃(t)x− x∥ = ∥e−λtS(t)x− x∥
≤ ∥e−λtS(t)x− e−λtx∥+ ∥e−λtx− x∥
= |e−λt| ∥S(t)x− x∥+ |e−λt − 1| ∥x∥ → 0 as t→ 0+,

since S is a C0–semigroup and hence

lim
t→0+

∥S(t)x− x∥ = 0, lim
t→0+

|e−λt − 1| = 0.

Therefore, S̃ is a C0–semigroup. On the other hand, if Ã denotes the infinitesimal generator of S̃,
then

D(Ã) =
{
x ∈ X; lim

h→0+

S̃(h)x− x
h

exists
}
.

For all x ∈ X we have

S̃(h)x− x
h

= e−λhS(h)x− x
h

(1.3.66)

= e−λhS(h)x− e−λhx

h
+ e−λhx− x

h

= e−λh(S(h)x− x)
h

+ (e−λh − 1)x
h

.

Thus, for every x ∈ D(Ã) it follows from (1.3.66) that

S(h)x− x
h

= eλh

(
S̃(h)x− x

h

)
− eλh

(
e−λh − 1

h

)
x→ Ãx+ λx as h→ 0+,

since

lim
h→0+

eλh = 1, lim
h→0+

(
e−λh − 1

h

)
= −λ, lim

h→0+

S̃(h)x− x
h

= Ãx.

Hence if x ∈ D(Ã), then x ∈ D(A) and

Ax = Ãx+ λx,

that is, Ãx = Ax− λx.

Conversely, for x ∈ D(A), using (1.3.66) we analogously obtain

S̃(h)x− x
h

= e−λh(S(h)x− x)
h

+ (e−λh − 1)x
h

→ Ax− λx, h→ 0+,
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showing that x ∈ D(Ã) and Ãx = Ax− λx. Thus,

D(Ã) = D(A) and Ãx = Ax− λx.

1.3.1 Exercises

Exercise 1.3.1 Let S1 and S2 be C0–semigroups with infinitesimal generator A for both S1 and S2.
Prove that S1 = S2.

Exercise 1.3.2 Exponential functions are examples of C0–semigroups, which follows from Theorem 1.1
and from the fact that uniform convergence implies strong convergence. Prove that the infinitesimal
generator of etA, A ∈ L(X), is A.

Exercise 1.3.3 Let X be a Banach space and f : (a, b)→ X a continuous function such that f ′
+(t) = 0

for every t ∈ (a, b). Prove that f is constant on (a, b).

Exercise 1.3.4 (Dini’s lemma) Let X be a Banach space and let f : (a, b)→ X be a continuous function
on (a, b) which admits a right derivative f ′

+ continuous on (a, b). Prove that f is of class C1(a, b). [Kosaku
Yosida – Functional Analysis]

Exercise 1.3.5 Let Cb(R) be the Banach space of bounded and uniformly continuous functions on R,
with the norm ∥u∥ = sup

x∈R
|u(x)|. Consider the mapping

S : R+ → L(Cb(R)),

defined by
(S(t)u)(x) = ut(x) = u(x+ t), for all x ∈ R.

Prove that:

• S is well defined.

• S(t) is an isometry.

• S is a C0–semigroup.

• Determine the infinitesimal generator A of S (use Dini’s lemma – Exercise 1.3.4).

Exercise 1.3.6 Let Nt, t > 0, be the function on Rn defined by

Nt(x) = (4πt)− n
2 e− ∥x∥2

4t .

Define

S : [0,∞)→ L(L2(Rn)),
[S(0)u](x) = u(x), ∀x ∈ Rn,

[S(t)u](x) = (Nt ∗ u)(x), ∀x ∈ Rn, ∀t > 0.

Prove that:

• S is well defined and
∥S(t)u∥L2(R⋉) ≤ ∥u∥L2(Rn), ∀u ∈ L2(Rn).
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• S is a C0–semigroup.

• Determine the infinitesimal generator A of S.

Exercise 1.3.7 Let S be a C0–semigroup with infinitesimal generator A. Define A0 = I, A1 = A, and,
assuming An−1 is defined, define An by

D(An) = {x ∈ X; x ∈ D(An−1) and An−1x ∈ D(A)},

Anx = A(An−1x), ∀x ∈ D(An).

Prove that:

• D(An) is a subspace of X and An is a linear operator on X.

• If x ∈ D(An) then S(t)x ∈ D(An) for all t ≥ 0 and

dn

dtn
S(t)x = AnS(t)x = S(t)Anx, ∀n ∈ N.

• If x ∈ D(An), prove that Taylor’s formula holds:

S(t)x =
n−1∑
k=0

(t− a)k

k! AkS(a)x+ 1
(n− 1)!

∫ t

a

(t− u)n−1AnS(u)x du.

• Prove that

(S(t)− I)nx =
∫ t

0
· · ·
∫ t

0
S(u1 + · · ·+ un)Anx du1 · · · dun, ∀x ∈ D(An).

• Prove that
∞⋂

n=1
D(An) is dense in X.

1.4 The Hille–Yosida Theorem

In this section we present a necessary and sufficient condition for a linear operator A to be the
infinitesimal generator of a C0–semigroup. Before that, however, we make some preliminary considera-
tions.

Let A be a linear operator on a Banach space X. The set of all λ ∈ C for which the operator
λI − A is invertible, its inverse is bounded and densely defined, is called the resolvent set of A and is
denoted by ρ(A). The set σ(A) = C\ρ(A) is called the spectrum of A.

If λ ∈ ρ(A), the operator (λI − A)−1, denoted by R(λ,A), is called the resolvent of A. Hence
R(λ,A) is, by definition, a linear and bounded operator and densely defined. Observe that R(λ,A) is an
operator defined on Im(λI −A) with values in D(A), where the closure of Im(λI −A) equals X.

Proposition 1.33 Let A be a closed linear operator on a Banach space X and let λ ∈ ρ(A). Then
D(R(λ,A)) = X and hence R(λ,A) is closed.

Proof: Let y ∈ X. Since D(R(λ,A)) is dense in X, there exists a sequence (yn)n∈N ⊂ D(R(λ,A)) such
that

yn → y in X. (1.4.67)
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However, for each n ∈ N, there exists xn ∈ D(λI −A) such that

yn = (λI −A)xn. (1.4.68)

On the other hand, for every x ∈ D(A), by the continuity of R(λ,A) we have

∥x∥ = ∥R(λ,A)(λI −A)x∥ ≤ C1∥(λI −A)x∥,

where C1 is a positive constant. Hence

∥(λI −A)x∥ ≥ C2∥x∥, for all x ∈ D(A), (1.4.69)

where C2 > 0 is a constant. In particular, for the sequence (xn)n∈N, it follows from (1.4.69) that

∥(λI −A)xn − (λI −A)xm∥ = ∥(λI −A)(xn − xm)∥ (1.4.70)
≥ C2∥xn − xm∥, for all m,n ∈ N.

Thus, from (1.4.67) and (1.4.70) it follows that the sequence (xn)n∈N is Cauchy in X. Hence there
exists x ∈ X such that

xn → x in X. (1.4.71)

Moreover, from (1.4.67) and (1.4.68) we have

(λI −A)xn → y in X. (1.4.72)

Since A is closed, (λI −A) is also closed and from (1.4.71) and (1.4.72) we obtain

x ∈ D(A) and (λI −A)x = y,

that is, y ∈ Im(λI −A) = D(R(λ,A)), which proves D(R(λ,A)) = X.

Therefore, R(λ,A) is a continuous operator defined on the whole space X and hence closed, which
completes the proof. 2

Proposition 1.34 Let S be a C0–semigroup with infinitesimal generator A. If λ ∈ C is such that
Reλ > ω0, where

ω0 = lim
t→∞

ln ∥S(t)∥
t

,

then the integral
∫∞

0 e−λtS(t)x dt exists for every x ∈ X and λ ∈ ρ(A). Moreover,

R(λ,A)x =
∫ ∞

0
e−λtS(t)x dt, for all x ∈ X.

Proof: Let x ∈ X and λ ∈ C be such that Reλ > ω0. Choose ω with Reλ > ω > ω0. Then, from
(1.3.45) there exists M ≥ 1 such that

∥S(t)∥ ≤Meωt, for all t ≥ 0. (1.4.73)
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It follows from (1.4.73) that

∥e−λtS(t)x∥ ≤ M∥x∥e−(Re λ)teωt (1.4.74)
= M∥x∥e−(Re λ−ω)t.

The function t 7→M∥x∥e−(Re λ)teωt is continuous on [0,∞) and integrable, since∫ ∞

0
M∥x∥e−(Re λ)teωt dt = M∥x∥

[
e−(Re λ−ω)t

−(Reλ− ω)

]t=∞

t=0
(1.4.75)

= M∥x∥
Reλ− ω < +∞,

since Reλ > ω. Now the mapping t 7→ e−λtS(t)x is continuous on [0,∞) with values in X and is thus
Bochner–integrable on each interval [0, b], b > 0. From (1.4.74), (1.4.75) and the Weierstrass test it
follows that ∫ ∞

0
∥e−λtS(t)x∥ dt < +∞,

and consequently the integral
∫∞

0 e−λtS(t)x dt exists. For each λ ∈ C with Reλ > ω > ω0, define the
linear operator on X:

Rλx =
∫ ∞

0
e−λtS(t)x dt.

From (1.4.74) and (1.4.75) we get

∥Rλx∥ ≤
(

M

Reλ− ω

)
∥x∥,

that is,

Rλ ∈ L(X) and ∥Rλ∥L(X) ≤
M

Reλ− ω . (1.4.76)

We claim that

lim
h→0+

(
S(h)− I

h

)
Rλx = λRλx− x, for all x ∈ X. (1.4.77)
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Indeed, let h > 0. Then(
S(h)− I

h

)
Rλx =

(
S(h)− I

h

)∫ ∞

0
e−λtS(t)x dt

= 1
h

∫ ∞

0
e−λtS(t+ h)x dt− 1

h

∫ ∞

0
e−λtS(t)x dt

= 1
h

∫ ∞

h

e−λ(ξ−h)S(ξ)x dξ − 1
h

∫ ∞

0
e−λtS(t)x dt

= 1
h

∫ ∞

h

e−λ(t−h)S(t)x dt+ 1
h

∫ h

0
e−λ(t−h)S(t)x dt

− 1
h

∫ h

0
e−λ(t−h)S(t)x dt− 1

h

∫ ∞

0
e−λtS(t)x dt

= eλh

h

∫ ∞

h

e−λtS(t)x dt+ eλh

h

∫ h

0
e−λtS(t)x dt

−e
λh

h

∫ h

0
e−λtS(t)x dt− 1

h

∫ ∞

0
e−λtS(t)x dt

=
(
eλh − 1

h

)∫ ∞

0
e−λtS(t)x dt− eλh

h

∫ h

0
e−λtS(t)x dt,

that is, (
S(h)− I

h

)
Rλx =

(
eλh − 1

h

)∫ ∞

0
e−λtS(t)x dt− eλh

h

∫ h

0
e−λtS(t)x dt. (1.4.78)

By l’Hôpital’s rule,(
eλh − 1

h

)∫ ∞

0
e−λtS(t)x dt→ λ

∫ ∞

0
e−λtS(t)x dt = λRλx in X as h→ 0+,

and by the Mean Value Theorem

eλh

h

∫ h

0
e−λtS(t)x dt→ x in X as h→ 0+.

From these convergences and (1.4.78) we obtain (1.4.77). It follows that

Rλx ∈ D(A) and ARλx = λRλx− x, for all x ∈ X. (1.4.79)

Thus, from (1.4.79) we deduce

x = λRλx−ARλx = (λI −A)Rλx, for all x ∈ X, (1.4.80)

that is, Rλ is a right inverse of λI − A. It remains to prove that Rλ is also a left inverse of λI − A. Let
x ∈ D(A). Then

S(t)x ∈ D(A) and AS(t)x = S(t)Ax,

which implies that, for λ ∈ C with Reλ > ω > ω0 we may write

RλAx =
∫ ∞

0
e−λtS(t)Axdt =

∫ ∞

0
e−λtAS(t)x dt. (1.4.81)

Since A is a closed linear operator, we use the theorem which says:
“Let A be a closed operator on X (that is, an operator with domain and image contained in X) and
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let f be a continuous function on [a, b] with values in D(A) such that Af is continuous on [a, b]. Then∫ b

a

f(t) dt ∈ D(A) and A

∫ b

a

f(t) dt =
∫ b

a

Af(t) dt.” This guarantees that

∫ ∞

0
e−λtAS(t)x dt = A

∫ ∞

0
e−λtS(t)x dt. (1.4.82)

From (1.4.81) and (1.4.82) we conclude that

RλAx = ARλx, for all x ∈ D(A). (1.4.83)

Finally, combining (1.4.79) and (1.4.83) we obtain

RλAx = λRλx− x, for all x ∈ D(A),

that is,

x = λRλx−RλAx = Rλ(λI −A)x,

which shows that Rλ is a left inverse of λI −A and therefore

Rλ = (λI −A)−1, for all λ ∈ C such that Reλ > ω0.

Consequently, (λI − A)−1 exists, is bounded (by the Open Mapping Theorem and the fact that
Rλ is bounded) and, in addition,

D((λI −A)−1) = D(Rλ) = X,

so that (λI −A)−1 is densely defined. Hence λ ∈ ρ(A) and

R(λ,A)x = Rλx =
∫ ∞

0
e−λtS(t)x dt, for all x ∈ X,

which completes the proof. 2

Corollary 1.35 Under the same assumptions as in Proposition 1.34, we have

(i) dn

dλnR(λ,A)x = (−1)nn!R(λ,A)n+1x, for every x ∈ X.

(ii) dn

dλnR(λ,A)x =
∫∞

0 e−λt(−t)nS(t)x dt, for every x ∈ X.

Proof: (i) We first show that

lim
µ→λ

R(µ,A)x = R(λ,A)x, for every x ∈ X. (1.4.84)

Let λ ∈ C be such that Re(λ) > ω1 > ω > ω0, and consider a sequence (µν) ⊂ C such that µν → λ

as ν → +∞ and Re(µν) > ω1. We claim that

For each x ∈ X and t ∈ R+, we have (1.4.85)
lim

ν→+∞
e−µν tS(t)x = e−λtS(t)x in X.

Indeed,

∥e−µν tS(t)x− e−λtS(t)x∥ = |e−µν t − e−λt| ∥S(t)x∥ → 0, as ν → +∞,
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since the exponential function is continuous, which proves (1.4.85).

On the other hand, from (1.4.73) we have

∥e−µν tS(t)x∥ = |e−µν t| ∥S(t)x∥
≤ e− Re(µν )t∥S(t)∥L(X)∥x∥
≤ Me−(Re µν −ω)t∥x∥
≤ Me−(ω1−ω)t∥x∥.

Since −(ω1 − ω) < 0, it follows that∫ ∞

0
M∥x∥e−(ω1−ω)t dt < +∞,

and furthermore,∫ C

0
e−µν tS(t)x dt < +∞ and

∫ C

0
e−λtS(t)x dt < +∞, for all ν ∈ N and C > 0.

Hence, by the Lebesgue Dominated Convergence Theorem,

lim
ν→∞

∫ ∞

0
e−µν tS(t)x dt︸ ︷︷ ︸
=R(µν ,A)

=
∫ ∞

0
e−λtS(t)x dt︸ ︷︷ ︸
=R(λ,A)

,

which proves (1.4.84).

Now, if Reλ > ω0 and Reµ > ω0, we have

[(λI −A)(µI −A)]−1 = (µI −A)−1(λI −A)−1,

and since (λI −A)(µI −A) = (µI −A)(λI −A), it follows that

[(λI −A)(µI −A)]−1 = [(µI −A)(λI −A)]−1 = (λI −A)−1(µI −A)−1,

hence
(µI −A)−1(λI −A)−1 = (λI −A)−1(µI −A)−1.

Thus,

R(λ,A)−R(µ,A) = (λI −A)−1 − (µI −A)−1

= (µI −A)(µI −A)−1(λI −A)−1

−(λI −A)(λI −A)−1(µI −A)−1

= [(µI −A)− (λI −A)](λI −A)−1(µI −A)−1

= (µ− λ)I(λI −A)−1(µI −A)−1

= (µ− λ)R(λ,A)R(µ,A).

Therefore,

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A),
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which implies

R(λ,A)−R(µ,A)
µ− λ

= R(λ,A)R(µ,A), (µ ̸= λ),

or equivalently,

R(µ,A)−R(λ,A)
µ− λ

= −R(λ,A)R(µ,A), (µ ̸= λ). (1.4.86)

Let µ ∈ C and µ → λ. Then, from (1.4.84) and (1.4.86), and using the continuity of R(λ,A), we
obtain

lim
µ→λ

[
R(µ,A)−R(λ,A)

µ− λ

]
x = lim

µ→λ
[−R(λ,A)R(µ,A)]x

= −R(λ,A) lim
µ→λ

R(µ,A)x

= −R(λ,A)2x.

Therefore,

d

dλ
R(λ,A)x = −R(λ,A)2x, for every x ∈ X, (1.4.87)

which proves item (i) for n = 1. We now use induction on n. Assume that (i) holds for n and let us prove
it for n+ 1. From the induction hypothesis we have

dn+1

dλn+1R(λ,A)x = d

dλ

(
dn

dλn
R(λ,A)

)
x (1.4.88)

= d

dλ

(
(−1)nn!R(λ,A)n+1x

)
= (−1)nn! d

dλ
R(λ,A)n+1x.

We claim that

d

dλ
R(λ,A)nx = nR(λ,A)n−1 d

dλ
R(λ,A)x =︸︷︷︸

by (1.4.87)

−nR(λ,A)n+1x. (1.4.89)

For n = 1, identity (1.4.89) follows directly from (1.4.87). Assume (1.4.89) holds for n and let us
prove it for n+ 1. Then

d

dλ
R(λ,A)n+1x = d

dλ

(
R(λ,A)R(λ,A)nx

)
= d

dλ
R(λ,A)R(λ,A)nx+R(λ,A) d

dλ
R(λ,A)nx

= −R(λ,A)2R(λ,A)nx+R(λ,A)
(
− nR(λ,A)n+1x

)
= −R(λ,A)n+2x− nR(λ,A)n+2x

= −(n+ 1)R(λ,A)n+2x,

which proves (1.4.89). Combining (1.4.88) and (1.4.89) we obtain

dn+1

dλn+1R(λ,A)x = (−1)nn! d
dλ
R(λ,A)n+1x

= (−1)nn!
(
− (n+ 1)R(λ,A)n+2x

)
= (−1)n+1(n+ 1)!R(λ,A)n+2x,
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which completes the proof of item (i).

(ii) First note that the function tne−λtS(t)x is continuous in λ, as is its derivative with respect to
λ, namely −tn+1e−λtS(t)x. Moreover, for Re(λ) > ω1 > ω > ω0 we have

∥tne−λtS(t)x∥ ≤ tn|e−λt| ∥S(t)∥L(X)∥x∥ (1.4.90)
≤ tne− Re(λ)tMeωt∥x∥
= Mtne−(Re(λ)−ω)t∥x∥
≤ Mtne−(ω1−ω)t∥x∥.

We claim that ∫ ∞

0
tne−(ω1−ω)t dt < +∞ for ω1 > ω > ω0. (1.4.91)

Indeed, we proceed by induction on n. For n = 0 we have∫ ∞

0
e−(ω1−ω)t dt = 1

ω1 − ω
< +∞.

Assume that (1.4.91) holds for n and let us prove it for n+ 1. Let b > 0 and consider∫ b

0
tn+1e−(ω1−ω)t dt.

Integrating by parts, we obtain∫ b

0
tn+1e−(ω1−ω)t dt = −tn+1e−(ω1−ω)t

ω1 − ω

∣∣∣∣b
0

(1.4.92)

+ n+ 1
ω1 − ω

∫ b

0
tne−(ω1−ω)t dt.

Note that
−tn+1e−(ω1−ω)t

ω1 − ω

∣∣∣∣b
0

= −b
n+1e−(ω1−ω)b

ω1 − ω
,

and therefore, by L’Hôpital’s rule,

lim
b→∞

−bn+1e−(ω1−ω)b

ω1 − ω
= −1
ω1 − ω

lim
b→∞

bn+1

e(ω1−ω)b
= 0.

Moreover, by the induction hypothesis,

lim
b→∞

∫ b

0
tne−(ω1−ω)t dt < +∞.

Hence, from (1.4.92) and the above, we conclude that∫ ∞

0
tne−(ω1−ω)t dt < +∞,

which proves (1.4.91). From (1.4.90) we obtain

∥tne−λtS(t)x∥ ≤Mtne−(ω1−ω)t∥x∥, for all λ ∈ C with Re(λ) > ω1 > ω > ω0,
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and ∫ ∞

0
Mtne−(ω1−ω)t∥x∥ dt < +∞.

Thus, by the Weierstrass M–test, the integral∫ ∞

0
tne−λtS(t)x dt

converges absolutely and uniformly for Re(λ) > ω1 > ω > ω0 and n = 0, 1, . . .. Consequently,∫ ∞

0
tn+1e−λtS(t)x dt

also converges absolutely and uniformly in the same region, and therefore it is legitimate to differentiate∫ ∞

0
tne−λtS(t)x dt

with respect to λ, obtaining

d

dλ

∫ ∞

0
tne−λtS(t)x dt =

∫ ∞

0

d

dλ

(
tne−λtS(t)x

)
dt (1.4.93)

= −
∫ ∞

0
tn+1e−λtS(t)x dt.

We now prove (ii) by induction on n. For n = 0, Proposition 1.34 gives

R(λ,A)x =
∫ ∞

0
e−λtS(t)x dt,

so the formula holds. Assume (ii) holds for n and let us prove it for n+1. From the induction hypothesis
and (1.4.93) we obtain

dn+1

dλn+1R(λ,A)x = d

dλ

(
dn

dλn
R(λ,A)x

)
= d

dλ

(∫ ∞

0
e−λt(−t)nS(t)x dt

)
= (−1)n d

dλ

(∫ ∞

0
e−λttnS(t)x dt

)
= (−1)n(−1)

∫ ∞

0
tn+1e−λtS(t)x dt

=
∫ ∞

0
e−λt(−t)n+1S(t)x dt,

which completes the proof. 2

We now prove the main result of this section, which provides a characterisation of the infinitesimal
generator of a C0–semigroup.
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Theorem 1.36 [Hille–Yosida] For a linear operator A, defined on D(A) ⊂ X with values in X, to be
the infinitesimal generator of a C0–semigroup it is necessary and sufficient that:
(i) A be closed and its domain be dense in X.
(ii) There exist real numbers M and ω such that, for each real λ > ω, we have λ ∈ ρ(A) and

∥R(λ,A)n∥L(X) ≤
M

(λ− ω)n
, for all n ∈ N.

In this case, ∥S(t)∥L(X) ≤Meωt, t ≥ 0.

Proof:

(1) Necessity.

Assume that a linear operator A : D(A) ⊂ X → X is the infinitesimal generator of a C0–semigroup.
Then item (i) of the theorem follows immediately from Proposition 1.31. We now prove item (ii). Let
ω > ω0 = limt→∞

ln ∥S(t)∥
t . Since S is a C0–semigroup, it follows from (1.3.45) that there exists M ≥ 1

such that

∥S(t)∥ ≤Meωt, t ≥ 0. (1.4.94)

Thus, if λ > ω, then by Proposition 1.34, λ ∈ ρ(A) and, by item (i) of Corollary 1.35, we have

R(λ,A)nx = (−1)n−1

(n− 1)!
dn−1

dλn−1R(λ,A)x, for all x ∈ X,

which, by item (ii) of Corollary 1.35, is equal to

R(λ,A)nx = (−1)n−1

(n− 1)!

∫ ∞

0
e−λt(−t)n−1S(t)x dt (1.4.95)

= 1
(n− 1)!

∫ ∞

0
e−λttn−1S(t)x dt.

Hence, for each x ∈ X, from (1.4.94) and (1.4.95) we obtain

∥R(λ,A)nx∥ ≤ M∥x∥
(n− 1)!

∫ ∞

0
tn−1e−(λ−ω)t dt. (1.4.96)

We now prove that ∫ ∞

0
tn−1e−(λ−ω)t dt = (n− 1)!

(λ− ω)n
. (1.4.97)

Indeed, for n = 1 we have ∫ ∞

0
e−(λ−ω)t dt = 1

λ− ω
.

Assume that (1.4.97) holds for n and let us prove it for n+ 1. For any b > 0, integrating by parts
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yields ∫ b

0
tne−(λ−ω)t dt =

[
tn
e−(λ−ω)t

−(λ− ω)

]t=b

t=0
−
∫ b

0
ntn−1 e

−(λ−ω)t

−(λ− ω) dt

=
[
tn
e−(λ−ω)t

−(λ− ω)

]t=b

t=0
+ n

λ− ω

∫ b

0
tn−1e−(λ−ω)t dt.

Taking the limit as b→ +∞ in the last identity and using the induction hypothesis, we obtain∫ ∞

0
tne−(λ−ω)t dt = n

λ− ω
(n− 1)!
λ− ω

= n!
(λ− ω)n+1 ,

which proves (1.4.97). From (1.4.96) and (1.4.97) it follows that

∥R(λ,A)nx∥ ≤ M

(λ− ω)n
∥x∥, for all x ∈ X,

that is,

∥R(λ,A)n∥L(X) ≤
M

(λ− ω)n
,

which proves necessity.

(2) Sufficiency.

Assume now that there exist real numbers M and ω such that, for each real λ > ω, we have

λ ∈ ρ(A) and ∥R(λ,A)n∥L(X) ≤
M

(λ− ω)n
, for all n ∈ N, (1.4.98)

and, in addition, that A is closed and densely defined. For each λ > ω, we define

Bλ := λ2R(λ,A)− λI. (1.4.99)

The operator defined in (1.4.99) is known as the Yosida approximation of A. Since λ ∈ ρ(A),
R(λ,A) is bounded and hence Bλ is also bounded. We shall prove that the exponential etBλ converges,
as λ→∞, to a C0–semigroup whose infinitesimal generator is A. The proof is organised in several steps.

1st step.

We first show that

lim
λ→∞

Bλx = Ax, for all x ∈ D(A). (1.4.100)

Indeed, let x ∈ D(A). Then

R(λ,A)(λI −A)x = x,

and consequently

λR(λ,A)x− x = R(λ,A)Ax. (1.4.101)

From (1.4.98) and (1.4.101) we obtain

∥λR(λ,A)x− x∥ = ∥R(λ,A)Ax∥ ≤ M

λ− ω
∥Ax∥.
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Since the right-hand side tends to zero as λ→∞, we deduce that

lim
λ→∞

λR(λ,A)x = x, for all x ∈ D(A). (1.4.102)

We now show that the convergence in (1.4.102) actually holds for every x ∈ X. From (1.4.98) we
have

∥R(λ,A)∥L(X) ≤
M

λ− ω
,

and hence

∥λR(λ,A)∥L(X) ≤
|λ|

λ− ω
M. (1.4.103)

Since |λ|
λ−ω → 1 as λ → ∞, we obtain |λ|M

λ−ω → M as λ → ∞. From this and the fact that M > 0,
there exists η > 0 such that, if λ > η, then∣∣∣∣ |λ|Mλ− ω

−M
∣∣∣∣ < M,

and from (1.4.103) we conclude that

∥λR(λ,A)∥L(X) −M ≤ |λ|M
λ− ω

−M

≤
∣∣∣∣ |λ|Mλ− ω

−M
∣∣∣∣ < M, if λ > η,

that is,

∥λR(λ,A)∥L(X) < 2M, if λ > η. (1.4.104)

Now let x ∈ X. Since D(A) is dense in X, there exists a sequence (xn) ⊂ D(A) such that

xn → x in X as n→∞. (1.4.105)

Let ε > 0 be given. From (1.4.105) there exists n0 ∈ N such that

∥xn − x∥ <
ε

2M + 2 , for all n ≥ n0, (1.4.106)

and from (1.4.102) there exists δ > 0 such that

∥λR(λ,A)xn0 − xn0∥ <
ε

2M + 2 , if λ > δ. (1.4.107)

Hence, from (1.4.104)–(1.4.107), setting ξ = max{η, δ}, we obtain

∥λR(λ,A)x− x∥ ≤ ∥λR(λ,A)x− λR(λ,A)xn0∥+ ∥λR(λ,A)xn0 − xn0∥
+∥xn0 − x∥

< 2M ε

2M + 2 + ε

2M + 2 + ε

2M + 2 = ε,

which proves that

lim
λ→∞

λR(λ,A)x = x, for all x ∈ X. (1.4.108)
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From (1.4.99) and (1.4.101) we can write

Bλx = λ2R(λ,A)x− λx = λ
[
λR(λ,A)x− x

]
= λR(λ,A)Ax, for all x ∈ D(A).

From the last identity and the convergence in (1.4.108) we obtain (1.4.100).

2nd step.

The next step is to establish an estimate for etBλ . More precisely, we shall prove that

Given γ > ω there exists λ0 > ω such that if λ > λ0 (1.4.109)
∥etBλ∥L(X) ≤Metγ .

Indeed, let x ∈ X. We have

∥etBλx∥ = ∥etλ2R(λ,A)−tλIx∥ (1.4.110)
= ∥etλ2R(λ,A)e−tλIx∥
≤ ∥etλ2R(λ,A)∥L(X)∥e−tλIx∥.

Now,

∥e−tλIx∥ =
∥∥∥∥∥

∞∑
n=0

(−tλ)n

n! x

∥∥∥∥∥ (1.4.111)

=
∣∣∣∣∣

∞∑
n=0

(−tλ)n

n!

∣∣∣∣∣ ∥x∥ = e−tλ∥x∥,

and

∥etλ2R(λ,A)∥L(X) =
∥∥∥∥∥

∞∑
n=0

(tλ2)n

n! R(λ,A)n

∥∥∥∥∥ (1.4.112)

≤
∞∑

n=0

(tλ2)n

n! ∥R(λ,A)n∥.

From (1.4.98) and (1.4.112) we have

∥etλ2R(λ,A)∥L(X) ≤ M

∞∑
n=0

(tλ2)n

n! (λ− ω)−n (1.4.113)

= M

∞∑
n=0

(
tλ2(λ− ω)−1)n

n! = Metλ2(λ−ω)−1
.

From (1.4.110), (1.4.111) and (1.4.113), for all x ∈ X, we obtain

∥etBλx∥ ≤ Metλ2(λ−ω)−1
e−tλ∥x∥ (1.4.114)

= Metλ2(λ−ω)−1−tλ∥x∥
= Met(−λ+λ2(λ−ω)−1)∥x∥.
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Note that

−λ+ λ2(λ− ω)−1 = −λ(λ− ω) + λ2

λ− ω
(1.4.115)

= −λ2 + λω + λ2

λ− ω
= λω

λ− ω
.

Hence, from (1.4.114) and (1.4.115) we arrive at

∥etBλx∥ ≤Metλω(λ−ω)−1
∥x∥, ∀x ∈ X. (1.4.116)

However, λω
λ−ω → ω as λ → ∞. Let γ > ω and set ε = γ − ω > 0. From this convergence there

exists λ0 > ω such that, if λ > λ0, then

λω

λ− ω
− ω < ε = γ − ω,

that is,

λω(λ− ω)−1 < γ. (1.4.117)

From (1.4.116) and (1.4.117) we obtain the desired estimate (1.4.109).

3rd step.

We now show that etBλ converges to a bounded linear operator as λ → ∞. For this purpose we
define

Sλ(t) = etBλ , for all t ≥ 0 and λ > ω. (1.4.118)

We shall prove that

{Sλ(t)x}λ>ω is a Cauchy family in X uniformly on bounded intervals of [0,∞). (1.4.119)

Observe that

(etBλ − etBµ)x =
∫ t

0

d

dτ
(e(t−τ)BµeτBλ)x dτ, for all x ∈ X, (1.4.120)

that is, from (1.4.118) and (1.4.120) we may write

(Sλ(t)− Sµ(t))x =
∫ t

0

d

dτ

(
Sµ(t− τ)Sλ(τ)

)
x dτ, for all x ∈ X. (1.4.121)

But

d

dτ

(
Sµ(t− τ)Sλ(τ)

)
x = d

dτ

(
e(t−τ)BµeτBλ

)
x (1.4.122)

= d

dτ

(
etBµ+τ(Bλ−Bµ))x

= (Bλ −Bµ)etBµ+τ(Bλ−Bµ)x

= (Bλ −Bµ)e(t−τ)BµeτBλx

= (Bλ −Bµ)Sµ(t− τ)Sλ(τ)x.
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Substituting (1.4.122) into (1.4.121) and observing that Bλ and Bµ commute with Sµ(t) (we leave
the verification of this fact to the reader), we obtain

∥Sλ(t)x− Sµ(t)x∥ ≤
∫ t

0
∥Sµ(t− τ)Sλ(τ)∥ ∥Bλx−Bµx∥ dτ. (1.4.123)

Let γ > ω. Then, from (1.4.109) and (1.4.123), for λ, µ > λ0, we get

∥Sλ(t)x− Sµ(t)x∥ ≤
∫ t

0
(Me(t−τ)γ)(Meτγ)∥Bλx−Bµx∥ dτ

= M2teγt∥Bλx−Bµx∥.

In the particular case in which x ∈ D(A), it follows from (1.4.100) that the right-hand side of the
last inequality tends to zero as λ, µ→∞, uniformly in t on any bounded interval, that is,

{Sλ(t)x}λ>ω is a Cauchy family on bounded intervals of t (1.4.124)
for every x ∈ D(A).

Now let x ∈ X. By the density of D(A) in X there exists a sequence (xn) ⊂ D(A) such that

xn → x in X as n→∞. (1.4.125)

Let J be a bounded interval of [0,∞) and γ > ω. From (1.4.109) and (1.4.118) we infer that

∥Sλ(t)∥L(X) = ∥etBλ∥L(X) ≤Metγ ≤ C, for all t ∈ J and λ > λ0. (1.4.126)

Let ε > 0 be given. From (1.4.125) there exists n0 ∈ N such that

∥xn − x∥ <
ε

2C + 1 , for all n ≥ n0, (1.4.127)

where C is the constant in (1.4.126).

On the other hand, from (1.4.124), applied to the interval J , there exists α > 0 (coming from the
Cauchy property of {Sλ(t)xn0} with parameter η = ε

2C+1 ) such that if λ, µ > max{ω, λ0, α} := β, then

∥Sλ(t)xn0 − Sµ(t)xn0∥ <
ε

2C + 1 , for all t ∈ J. (1.4.128)

Hence, from (1.4.125), (1.4.126), (1.4.127) and (1.4.128) we conclude that

∥Sλ(t)x− Sµ(t)x∥
≤ ∥Sλ(t)x− Sλ(t)xn0∥+ ∥Sλ(t)xn0 − Sµ(t)xn0∥+ ∥Sµ(t)xn0 − Sµ(t)x∥
≤ ∥Sλ(t)∥ ∥x− xn0∥+ ∥Sλ(t)xn0 − Sµ(t)xn0∥+ ∥Sµ(t)∥ ∥xn0 − x∥

≤ 2C∥xn0 − x∥+ ∥Sλ(t)xn0 − Sµ(t)xn0∥ < 2C ε

2C + 1 + ε

2C + 1 = ε,

for all λ, µ > β and all t ∈ J , which proves (1.4.119). Since X is a Banach space, we deduce the existence
of a linear mapping S(t) : X → X such that, for every x ∈ X,

S(t)x = lim
λ→∞,λ>ω

Sλ(t)x in X, uniformly on (1.4.129)

bounded intervals of the real line.
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We now prove that S(t) ∈ L(X). Indeed, from (1.4.129), for each x ∈ X we have

sup
λ>ω
∥Sλ(t)x∥ < +∞.

By the Banach–Steinhaus Uniform Boundedness Principle it follows that

sup
λ>ω
∥Sλ(t)∥L(X) < +∞,

or equivalently, there exists C > 0 such that

∥Sλ(t)x∥ ≤ C∥x∥, for all x ∈ X and λ > ω.

Taking limits as λ→∞ and using (1.4.129) we obtain

∥S(t)x∥ ≤ C∥x∥, for all x ∈ X,

and therefore S(t) ∈ L(X), as claimed.

4th step.

We now show that S is a C0–semigroup. From (1.4.129) we have

S(0)x = lim
λ→∞

Sλ(0)x = lim
λ→∞

x = x, for all x ∈ X. (1.4.130)

Moreover, given t, s ≥ 0 and x ∈ X, we have

S(t+ s)x = lim
λ→∞

Sλ(t+ s)x = lim
λ→∞

Sλ(t)Sλ(s)x. (1.4.131)

We claim that

lim
λ→∞

Sλ(t)Sλ(s)x = S(t)S(s)x. (1.4.132)

Indeed, let ε > 0 and γ > ω. From (1.4.109) we have

∥Sλ(t)∥L(X) ≤Metγ , for all λ > λ0. (1.4.133)

Thus, if J is a bounded interval of [0,∞) containing t and s, from (1.4.133) we infer that

∥Sλ(ξ)∥L(X) ≤ C, for all λ > λ0 and all ξ ∈ J. (1.4.134)

On the other hand, from (1.4.129) and the given ε > 0, there exist λ1, λ2 > ω such that

∥Sλ(s)x− S(s)x∥ < ε

C + 1 , for all λ ≥ λ1, (1.4.135)

and

∥Sλ(t)S(s)x− S(t)S(s)x∥ < ε

C + 1 , for all λ ≥ λ2. (1.4.136)
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From (1.4.134), (1.4.135) and (1.4.136) we obtain

∥Sλ(t)Sλ(s)x− S(t)S(s)x∥
≤ ∥Sλ(t)Sλ(s)x− Sλ(t)S(s)x∥+ ∥Sλ(t)S(s)x− S(t)S(s)x∥
≤ ∥Sλ(t)∥L(X)∥Sλ(s)x− S(s)x∥+ ∥Sλ(t)S(s)x− S(t)S(s)x∥

< C
ε

C + 1 + ε

C + 1 = ε,

for all λ ≥ λ∗
0 := max{λ0, λ1, λ2}, which proves (1.4.132). Combining (1.4.131) and (1.4.132) we conclude

that

S(t+ s) = S(t)S(s), for all t, s ≥ 0. (1.4.137)

Let ε > 0, x ∈ X and 0 < h < 1. Then, by (1.4.129), there exists λ0 > ω such that

∥Sλ(h)x− S(h)x∥ < ε

2 , for all λ ≥ λ0 and h ∈ (0, 1). (1.4.138)

Since Sλ0 is a C0–semigroup, there exists δ > 0 such that, if 0 < h < δ, then

∥Sλ0(h)x− x∥ < ε

2 . (1.4.139)

Therefore, for 0 < h < min{1, δ}, from (1.4.138) and (1.4.139) we obtain

∥S(h)x− x∥ ≤ ∥S(h)x− Sλ0(h)x∥+ ∥Sλ0(h)x− x∥
<

ε

2 + ε

2 = ε,

which proves that

lim
h→0+

S(h)x = x in X. (1.4.140)

Thus, from (1.4.130), (1.4.137) and (1.4.140), we have shown that S is a C0–semigroup.

5th step.

To complete the proof it remains to show that A is the infinitesimal generator of S. Let B denote
the infinitesimal generator of S. We first show that D(A) ⊂ D(B). Indeed, let x ∈ D(A), λ > ω and
h > 0.

We have

Sλ(h)x− x =
∫ h

0

d

dt
(Sλ(t)x) dt.

But

d

dt
(Sλ(t)x) = d

dt
(etBλx) = Bλe

tBλx = BλSλ(t)x,

so that

Sλ(h)x− x =
∫ h

0
Sλ(t)Bλx dt, h > 0, (1.4.141)

since Sλ(t) and Bλ commute for λ ≥ 0.
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We claim that

lim
λ→∞

Sλ(t)Bλx = S(t)Ax, (1.4.142)

uniformly on bounded intervals of the real line.

Indeed, let J be a bounded interval of the real line, γ > ω and ε > 0. From (1.4.129) there exists
λ1 > ω such that

∥Sλ(t)Ax− S(t)Ax∥ < ε

C + 1 , for all λ ≥ λ1 and t ∈ J, (1.4.143)

where C is the constant appearing in (1.4.134). Now, from (1.4.100), (1.4.134) and (1.4.143), for λ >
max{λ0, λ1, λ2} we have

∥Sλ(t)Bλx− S(t)Ax∥
≤ ∥Sλ(t)Bλx− Sλ(t)Ax∥+ ∥Sλ(t)Ax− S(t)Ax∥
≤ ∥Sλ(t)∥L(X)∥Bλx−Ax∥+ ∥Sλ(t)Ax− S(t)Ax∥

< C
ε

C + 1 + ε

C + 1 = ε,

which proves (1.4.142). From (1.4.129) and (1.4.141), passing to the limit as λ→∞, we obtain

S(h)x− x =
∫ h

0
S(t)Axdt, h > 0.

From this identity and the Mean Value Theorem we deduce that

Bx = lim
h→0+

S(h)x− x
h

= lim
h→0+

1
h

∫ h

0
S(t)Axdt = Ax, for all x ∈ D(A). (1.4.144)

The relation (1.4.144) shows that

D(A) ⊂ D(B) and A ≡ B on D(A). (1.4.145)

We now prove, in fact, that

D(A) = D(B). (1.4.146)

By hypothesis, if λ > ω then λ ∈ ρ(A). Now, since B is the infinitesimal generator of S, it follows
from Proposition 1.34 that if λ > ω0 = limt→∞

ln ∥S(t)∥
t , then λ ∈ ρ(B). Therefore, if λ > max{ω, ω0},

then λ ∈ ρ(A) ∩ ρ(B). For such values of λ we have

(λI −A)D(A) = X and (λI −B)D(B) = X, (1.4.147)

since D((λI −A)−1) = Im(λI −A) = X, by Proposition 1.33 (because A is closed).

On the other hand, from (1.4.145) and (1.4.147) we may write

(λI −B)D(B) = (λI −A)D(A),

which implies

D(B) = (λI −B)−1(λI −A)D(A) = (λI −B)−1(λI −B)D(A) = D(A),

which proves (1.4.146). 2
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Corollary 1.37 Let A be the infinitesimal generator of a C0–semigroup T . If Bλ is the Yosida approxi-
mation of A, then

T (t)x = lim
λ→∞

etBλx, for all x ∈ X.

Proof: From the proof of the Hille–Yosida Theorem (Theorem 1.36) it follows that the right-hand side
of the above identity defines a C0–semigroup S whose infinitesimal generator is A. By Exercise 1.3.1 we
conclude that T = S. 2

Theorem 1.38 [Hille–Yosida for Contractions] A linear operator A is the infinitesimal generator of a
contraction semigroup S if and only if
(i) A is closed and densely defined.
(ii) For every λ > 0, we have λ ∈ ρ(A) and, moreover,

∥R(λ,A)∥L(X) ≤
1
λ
.

Proof: The proof is analogous to that of Theorem 1.36, with the obvious adaptations. 2

To simplify the terminology we shall write

A ∈ G(M,ω)

to express that A is the infinitesimal generator of a C0–semigroup satisfying

∥S(t)∥L(X) ≤Meωt, t ≥ 0.

We have the following result:

Proposition 1.39 (A− ωI) ∈ G(M, 0) if and only if A ∈ G(M,ω).

Proof: Let A ∈ G(M,ω). Then A is the infinitesimal generator of a C0–semigroup S such that

∥S(t)∥L(X) ≤Meωt, t ≥ 0.

Setting

S̃(t) = e−ωtS(t),

it follows, in view of Example 1.3.1, that S̃ is a C0–semigroup whose infinitesimal generator is A − ωI.
Moreover,

∥S̃(t)∥ = e−ωt∥S(t)∥ ≤ e−ωtMeωt = M,

which shows that A− ωI ∈ G(M, 0).

Conversely, suppose that A − ωI ∈ G(M, 0). Then A − ωI is the infinitesimal generator of a
C0–semigroup S satisfying

∥S(t)∥ ≤M, t ≥ 0.

Defining

S̃(t) = eωtS(t),
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it follows, by the same reasoning, that S̃ is a C0–semigroup whose infinitesimal generator is A−ωI+ωI =
A. Also,

∥S̃(t)∥ ≤ eωt∥S(t)∥ ≤Meωt, t ≥ 0,

which completes the proof. 2

1.5 The Lumer–Phillips Theorem

In this section we present a result due to Lumer and Phillips which gives a necessary and sufficient
condition for a linear operator A to be the infinitesimal generator of a contraction semigroup. The proof of
this result follows from the Hille–Yosida Theorem, as we shall see below, and its advantage in comparison
with the Hille–Yosida Theorem is that its hypotheses are easier to verify. Before that, however, we need
some definitions and preliminary results, which we state next.

Let X be a Banach space, X ′ its topological dual, and ⟨·, ·⟩ the duality pairing between X ′ and X.
For each x ∈ X we define

F (x) = {x∗ ∈ X ′; ⟨x∗, x⟩ = ∥x∗∥2 = ∥x∥2}.

As a consequence of the Hahn–Banach Theorem , F (x) ̸= ∅ for each x ∈ X. This leads to the notion
of a duality mapping, that is, a mapping j : X → X ′ such that, for each x ∈ X, we have j(x) ∈ F (x).
We immediately obtain

∥j(x)∥ = ∥x∥ = (⟨j(x), x⟩)1/2
. (1.5.148)

Observe that if X is a Hilbert space, the duality can be expressed in terms of the inner product
(via the Riesz Representation Theorem). In this case, F (x) = {x}.

Definition 1.40 A linear operator A is said to be dissipative with respect to a duality mapping j if

Re ⟨j(x), Ax⟩ ≤ 0, for all x ∈ D(A).

Definition 1.41 A dissipative operator A which satisfies Im(I −A) = X is called m-dissipative.

Remark: If A is dissipative, then λA is dissipative for every λ > 0.

Proposition 1.42 If A is a linear dissipative operator with respect to some duality mapping, then

∥(λI −A)x∥ ≥ Reλ ∥x∥, for all λ ∈ C and x ∈ D(A).

Proof: Let λ ∈ C and x ∈ D(A). Let j : X → X ′ be the duality mapping with respect to which A is
dissipative. From (1.5.148) we have

⟨j(x), (λI −A)x⟩ = ⟨j(x), λx⟩ − ⟨j(x), Ax⟩
= λ∥x∥2 − ⟨j(x), Ax⟩ ,

whence

(Reλ)∥x∥2 = Re ⟨j(x), (λI −A)x⟩+ Re ⟨j(x), Ax⟩ .

- 57 -



1 Linear Semigroups

By Definition 1.40 and again by (1.5.148), it follows that

(Reλ)∥x∥2 ≤ Re ⟨j(x), (λI −A)x⟩
≤ |⟨j(x), (λI −A)x⟩|
≤ ∥j(x)∥X′∥(λI −A)x∥
= ∥x∥ ∥(λI −A)x∥,

which implies

(Reλ)∥x∥ ≤ ∥(λI −A)x∥, if x ̸= 0.

If x = 0, the inequality is trivial, which completes the proof. 2

Proposition 1.43 Let A : D(A) ⊂ X → X be a linear, closed and dissipative operator with respect to
some duality mapping. Then ρ(A) ∩ (0,∞) is an open subset of R.

Proof: If ρ(A) ∩ (0,∞) = ∅, there is nothing to prove. Assume, therefore, that ρ(A) ∩ (0,∞) ̸= ∅ and
let λ0 ∈ ρ(A) ∩ (0,∞). Now, given λ ∈ C and f ∈ X, consider the identity

λu−Au = f, (1.5.149)

which can be rewritten as

λ0u−Au = f + (λ0 − λ)u,

or, equivalently,

(λ0I −A)u = f + (λ0 − λ)u. (1.5.150)

Since λ0I −A is invertible, (1.5.150) yields

u = (λ0I −A)−1(f + (λ0 − λ)u). (1.5.151)

Define

G : X → X (1.5.152)
u 7→ Gu := (λ0I −A)−1(f + (λ0 − λ)u).

Note that G is well-defined, since A is closed, and G is continuous, because (λ0I −A)−1 is contin-
uous. Moreover, for all u, v ∈ X, we have

∥Gu−Gv∥ = ∥(λ0I −A)−1(f + (λ0 − λ)u)− (λ0I −A)−1(f + (λ0 − λ)v)∥
= ∥(λ0I −A)−1[(λ0 − λ)(u− v)]∥
≤ ∥(λ0I −A)−1∥ |λ0 − λ| ∥u− v∥.

If we assume that

|λ− λ0| <
1

∥(λ0I −A)−1∥
:= r0, (1.5.153)

then, in view of (1.5.153), the mapping defined in (1.5.152) is a contraction, and by the Banach Fixed
Point Theorem, there exists a unique u ∈ X which solves (1.5.151), and hence a unique solution of
(1.5.149). In other words, the operator (λI − A) is bijective for every λ satisfying condition (1.5.153),
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and therefore admits an inverse (λI − A)−1 for every λ ∈ C such that |λ − λ0| < r0. Note that, since
λ0 > 0, we may choose r0 sufficiently small so that |λ − λ0| < r0 implies Reλ > 0. It follows that, if
λ ∈ Br0(λ0) (where Br0(λ0) denotes the open ball in the complex plane centred at (λ0, 0) with radius
r0 > 0) and x ∈ X, then (λI −A)−1x ∈ D(A) and, by Proposition 1.42,

∥x∥ = ∥(λI −A)(λI −A)−1x∥ ≥ Reλ ∥(λI −A)−1x∥,

that is,

∥(λI −A)−1x∥ ≤ 1
Reλ∥x∥, for all x ∈ X and λ ∈ Br0(λ0),

which shows the continuity of the family of operators (λI − A)−1 for every λ ∈ Br0(λ0). Hence (λ0 −
r0, λ0 + r0) ⊂ ρ(A) ∩ (0,∞), which completes the proof. 2

Theorem 1.44 [Lumer–Phillips Theorem] If A ∈ G(1, 0) then
(i) A is dissipative with respect to any duality mapping.
(ii) Im(λI −A) = X, for every λ > 0.
Conversely, if
(iii) D(A) is dense in X.
(iv) A is dissipative with respect to some duality mapping.
(v) Im(λ0I −A) = X, for some λ0 > 0,
then A ∈ G(1, 0).

Proof: Assume that A ∈ G(1, 0). Thus, A is the infinitesimal generator of a contraction semigroup S,
that is,

∥S(t)∥ ≤ 1, for all t ≥ 0. (1.5.154)

Let j : X → X ′ be a duality mapping and consider x ∈ D(A) and t ≥ 0. From (1.5.148) and
(1.5.154) we get

Re ⟨j(x), S(t)x− x⟩ = Re ⟨j(x), S(t)x⟩ − Re ⟨j(x), x⟩
≤ | ⟨j(x), S(t)x⟩ | − ∥x∥2

≤ ∥j(x)∥ ∥S(t)∥ ∥x∥ − ∥x∥2

≤ ∥x∥2 − ∥x∥2 = 0.

From the last inequality we deduce

Re
〈
j(x), S(t)x− x

t

〉
≤ 0, for all t > 0.

Taking the limit as t→ 0+ and using the fact that S(t)x−x
t → Ax as t→ 0+, we obtain

Re ⟨j(x), Ax⟩ ≤ 0,

which proves item (i).

On the other hand, according to the Hille–Yosida Theorem for contractions (Theorem 1.38), we
infer that (0,∞) ⊂ ρ(A). It follows that R(λ,A) = (λI − A)−1 exists, is continuous, and has domain
equal to the whole space X, since A is closed, for every λ > 0, which proves item (ii).

Conversely, let A : D(A) ⊂ X → X be a linear operator satisfying items (iii), (iv) and (v) of the
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theorem. We shall prove that A ∈ G(1, 0). To this end we shall again use the Hille–Yosida Theorem for
contractions. We first prove that

A is closed, (1.5.155)

since A is densely defined by hypothesis. Indeed, by (iv) A is dissipative with respect to some duality
mapping j. By Proposition 1.42 we have

∥(λI −A)x∥ ≥ λ∥x∥, for all λ > 0 and x ∈ D(A),

which shows that {(λI −A)}λ>0 is a family of injective operators. Now, from (v) we have

Im(λ0I −A) = X,

for some λ0 > 0. In this particular case, it follows that (λ0I−A) is a bijection from D(A) onto the whole
space X. Therefore,

(λ0I −A)−1x ∈ D(A), for all x ∈ X,

and, again by Proposition 1.42, we can write

∥(λ0I −A)−1x∥ ≤ 1
λ0
∥x∥, for all x ∈ X,

that is,

(λ0I −A)−1 ∈ L(X,D(A)) (D(A) endowed with the topology of X). (1.5.156)

Now consider (xν)ν ⊂ D(A) such that

xν → x in X and Axν → y in X as ν →∞. (1.5.157)

From (1.5.157) we have

−Axν → −y in X and λ0xν → λ0x in X as ν →∞,

and hence

(λ0I −A)xν → λ0x− y in X as ν →∞. (1.5.158)

From (1.5.156) and (1.5.158) we conclude that

(λ0I −A)−1(λ0I −A)xν → (λ0I −A)−1(λ0x− y) in X as ν →∞,

that is,

xν → (λ0I −A)−1(λ0x− y) in X as ν →∞. (1.5.159)

From (1.5.157) and (1.5.159), by uniqueness of limits, we obtain

x = (λ0I −A)−1(λ0x− y),

which shows that x ∈ D(A). Moreover, from this relation we also have

(λ0I −A)x = λ0x− y,
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that is, y = Ax, which proves (1.5.155).

To conclude the theorem it remains to prove that

Given λ > 0, we have λ ∈ ρ(A) and ∥R(λ,A)∥ ≤ 1
λ
. (1.5.160)

Indeed, let

Λ = (0,∞) ∩ ρ(A),

which is non-empty because, by item (v), there exists λ0 ∈ ρ(A) such that λ0 > 0. By Proposition 1.43
it follows that

Λ is open in (0,∞), (1.5.161)

since Λ is an open subset of R contained in (0,∞). We now prove that

Λ is closed in (0,∞). (1.5.162)

Let (λν)ν ⊂ Λ be such that

λν → λ in R, with λ ∈ (0,∞). (1.5.163)

Since (λν)ν ⊂ ρ(A), then, by (1.5.155) and Proposition 1.33, for each ν ∈ N,

Im(λνI −A) = X. (1.5.164)

Let y ∈ X be arbitrary. From (1.5.164), for each ν ∈ N there exists xν ∈ D(A) such that

λνxν −Axν = y.

By Proposition 1.42 we infer

∥xν∥ ≤
1
λν
∥(λνI −A)xν∥ = 1

λν
∥y∥, (1.5.165)

since λν > 0. From (1.5.163) we see that (1/λν) is bounded and from (1.5.165) there exists C > 0 such
that

∥xν∥ ≤ C, for all ν ∈ N, (1.5.166)

where C is a constant depending on y.

Let ν, µ ∈ N with µ > ν. By Proposition 1.42 we have

λµ∥xµ − xν∥ ≤ ∥(λµI −A)(xµ − xν)∥ (1.5.167)
= ∥λµ(xµ − xν)−A(xµ − xν)∥.

However, since

λνxν −Axν = y and λµxµ −Axµ = y,
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we obtain

λµxµ − λνxν = Axµ −Axν ,

which implies

λµ(xµ − xν) + (λµ − λν)xν = A(xµ − xν). (1.5.168)

From (1.5.167) and (1.5.168) we can write

λµ∥xµ − xν∥ ≤ |λµ − λν | ∥xν∥,

and from (1.5.166) we deduce

λµ∥xµ − xν∥ ≤ C|λµ − λν |. (1.5.169)

From (1.5.163), (1.5.169) and the boundedness of (1/λν), it follows that (xν)ν is a Cauchy sequence
in X. Thus, there exists x ∈ X such that

xν → x in X as ν →∞. (1.5.170)

From (1.5.163) and (1.5.170) we obtain

λνxν → λx in X as ν →∞,

and consequently

Axν = λνxν − y → λx− y in X as ν →∞, (1.5.171)

Hence, from (1.5.155), (1.5.170) and (1.5.171) we conclude that x ∈ D(A) and Ax = λx− y, i.e.

(λI −A)x = y. (1.5.172)

From (1.5.172), reasoning as in the proof of (1.5.155), we obtain that (λI − A)−1 exists and is
continuous (using Proposition 1.42), that is, λ ∈ ρ(A), which proves that λ ∈ Λ and hence (1.5.162).
From (1.5.161) and (1.5.162) we deduce that Λ = (0,∞) and, since

Λ = (0,∞) ∩ ρ(A) ⊂ ρ(A),

it follows that (0,∞) ⊂ ρ(A). It remains to prove that

∥R(λ,A)∥ ≤ 1
λ
, for all λ > 0.

Indeed, since (0,∞) ⊂ ρ(A), for every λ > 0 we have Im(λI − A) = X and, therefore, by
Proposition 1.42,

∥R(λ,A)x∥ = ∥(λI −A)−1x∥ ≤ 1
λ
∥x∥, for all x ∈ X,

which completes the proof. 2

Remark 1.45 In terms of m-dissipative operators, the Lumer–Phillips Theorem can be reformulated as
follows: A densely defined operator A is the infinitesimal generator of a C0–contraction semigroup if and
only if A is m-dissipative.

- 62 -



1.6 Stone’s Theorem

Remark 1.46 It follows from the proof of the Lumer–Phillips Theorem that if A is m-dissipative, then
Im(λI −A) = X for every λ > 0.

1.5.1 Exercises

1.5.1) Let A ∈ G(1, 0) and B be dissipative with respect to some duality mapping. If D(A) ⊂ D(B)
and there exist constants a and b with 0 ≤ a < 1 and b ≥ 0 such that ∥Bx∥ ≤ a∥Ax∥ + b∥x∥ for all
x ∈ D(A), prove that A+B ∈ G(1, 0).

1.5.2) Use Exercise 1.5.1 to prove the following result: If A ∈ G(1, 0) and B ∈ L(X), prove that
A+B ∈ G(1, ∥B∥).

1.6 Stone’s Theorem

In this section we present a necessary and sufficient condition for a linear operator A to be the
infinitesimal generator of a C0–group. To this end we first define what we mean by a group of bounded
operators. Throughout, X denotes a Banach space.

Definition 1.47 A function S : R→ L(X) is called a group of bounded operators if
(1) S(0) = I.
(2) S(t+ s) = S(t)S(s), for all t, s ∈ R.
We say that S is of class C0 if
(3) lim

h→0
∥S(h)x− x∥ = 0 for all x ∈ X.

The operator A defined by

D(A) =
{
x ∈ X; lim

h→0

S(h)x− x
h

exists
}
,

and

Ax = lim
h→0

S(h)x− x
h

, for all x ∈ D(A),

is called the infinitesimal generator of S.

Before stating Stone’s Theorem, we make some preliminary remarks that will be needed later. Let
A : D(A) ⊂ X → X be a linear operator. Defining

D(A∗) = {u∗ ∈ X ′; there exists v∗ ∈ X ′ such that ⟨u∗, Au⟩ = ⟨v∗, u⟩ for all u ∈ D(A)},

it is well known that if D(A) is dense in X, then the v∗ corresponding to a given u∗ is unique, which
allows us to define the adjoint operator A∗ by

A∗ : D(A∗) ⊂ X ′ → X ′

u∗ 7→ A∗u∗ = v∗.

Some relevant conclusions are:

(A1) A∗ is clearly linear and is also closed. A proof can be found in [23, Proposition 2.45].

(A2) If X is a reflexive Banach space and A : D(A) ⊂ X → X is a closed linear operator with D(A)
dense in X, then D(A∗) is also dense in X ′. A proof can be found in [83, Lemma 10.5].

(A3) If A : D(A) ⊂ X → X is a closed, densely defined linear operator, then the following properties are
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equivalent:
(i) D(A) = X.

(ii) A is continuous.
(iii) D(A∗) = X ′.

(iv) A∗ is continuous.

(1.6.173)

Under these conditions we have

∥A∥L(X) = ∥A∗∥L(X′). (1.6.174)

A proof of this fact can be found in [14, Théorème II.21].

Lemma 1.48 Let T : D(T ) ⊂ X → X be a bijective linear operator with D(T ) dense in X. If T−1 is
closed, then (T ∗)−1 exists and (T ∗)−1 = (T−1)∗.

Proof: Since D(T ) = X, the adjoint T ∗ is well defined. On the other hand, as T is bijective, T−1 exists
and D(T−1) = X. Therefore, (T−1)∗ is also well defined. Moreover, since T−1 is closed, it follows from
(1.6.173)(iv) that D((T−1)∗) = X ′.

Let u∗ ∈ D(T ∗) and u ∈ X. Then, by the definition of adjoint operator, in particular for v = T ∗u∗,
we have 〈

(T−1)∗T ∗u∗, u
〉

=
〈
T ∗u∗, T−1u

〉
=

〈
u∗, T (T−1u)

〉
= ⟨u∗, u⟩ .

From the density of u∗ ∈ D(T ∗) and u ∈ X it follows that

(T−1)∗T ∗u∗ = u∗, for all u∗ ∈ D(T ∗). (1.6.175)

On the other hand, let u∗ ∈ X ′ and u ∈ D(T ). Then〈
(T−1)∗u∗, Tu

〉
=
〈
u∗, T−1(Tu)

〉
= ⟨u∗, u⟩ ,

from which we deduce that

(T−1)∗u∗ ∈ D(T ∗) and T ∗(T−1)∗u∗ = u∗, for all u∗ ∈ X ′. (1.6.176)

From (1.6.175) and (1.6.176) the desired identity follows. 2

Proposition 1.49 Let X be a reflexive Banach space and S a C0–semigroup with infinitesimal generator
A. Define S∗ : R+ → L(X ′) by S∗(t) = [S(t)]∗ for all t ∈ R+. Then S∗ is a C0–semigroup whose
infinitesimal generator is A∗.

Proof: First observe that S∗ is well defined because, for each t ∈ R+, we have S(t) ∈ L(X) and
D(S(t)) = X, and thus, by (1.6.173)(iv), [S(t)]∗ ∈ L(X ′). Moreover, since X is a reflexive Banach space
and A is closed and densely defined, it follows from (A1) and (A2) that A∗ is closed and densely defined.
Our aim is to apply the Hille–Yosida Theorem to A∗, and hence we must show that there exist M,ω ∈ R
such that, if λ > ω, then λ ∈ ρ(A∗) and ∥R(λ,A∗)n∥ ≤ M

(λ−ω)n for all n ∈ N.

Indeed, if λ ∈ ρ(A) then λ ∈ ρ(A∗), because if λ ∈ ρ(A), then (λI −A)−1 exists and (λI −A)−1 ∈
L(X). By Lemma 1.48 we have that [(λI −A)∗]−1 exists and, moreover,

[(λI −A)−1]∗ = [(λI −A)∗]−1.

- 64 -



1.6 Stone’s Theorem

From (1.6.173)(iv) it follows that [(λI − A)−1]∗ ∈ L(X ′) and D{[(λI − A)−1]∗} = X ′, since
D(λI −A)−1 = X. Thus [(λI −A)∗]−1 ∈ L(X ′) and D{[(λI −A)∗]−1} = X ′. Furthermore,

(λI −A)∗ = λI −A∗,

and therefore λ ∈ ρ(A∗).

Since A is the infinitesimal generator of a C0–semigroup, by the Hille–Yosida Theorem there exist
real constants M,ω such that, if λ > ω, then λ ∈ ρ(A) and

∥R(λ,A)n∥ ≤ M

(λ− ω)n
, for all n ∈ N.

Thus, for the above M and ω, let λ > ω. Since λ ∈ ρ(A), we have λ ∈ ρ(A∗) (because λ ∈ R) and,
moreover, from

(λI −A∗)−1 = [(λI −A)∗]−1 = [(λI −A)−1]∗ (note that λ ∈ R),

and by (1.6.174) we obtain

∥R(λ,A∗)n∥ = ∥([R(λ,A)]∗)n∥
= ∥[R(λ,A)n]∗∥

= ∥R(λ,A)n∥ ≤ M

(λ− ω)n
.

From the above we conclude that:

(i) A∗ is closed and densely defined.

(ii) There exist real constants M and ω such that, if λ > ω, then λ ∈ ρ(A∗) and ∥R(λ,A∗)n∥ ≤
M

(λ−ω)n .

Hence, by the Hille–Yosida Theorem, A∗ is the infinitesimal generator of a C0–semigroup T . By
Corollary 1.37 we may write

T (t)x∗ = lim
λ→∞

et(λ2R(λ,A∗)−λI)x∗, for all x∗ ∈ X ′.

Setting Bλ := λ2R(λ,A)− λI, we have B∗
λ = (λ2R(λ,A)− λI)∗ = λ2R(λ,A∗)− λI. Thus

T (t)x∗ = lim
λ→∞

etB∗
λx∗, for all x∗ ∈ X ′. (1.6.177)

Recall that Bλ ∈ L(X) and, therefore, from (1.6.173)(iv) it follows that B∗
λ ∈ L(X ′).

We claim that

if Ln → L in L(X), then L∗
n → L∗ in L(X ′). (1.6.178)

Indeed, by (1.6.174),

∥L∗
n − L∗∥L(X′) = ∥(Ln − L)∗∥L(X′) = ∥Ln − L∥L(X),

which proves (1.6.178).
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Hence, for t ≥ 0,

Tλ,n(t) =
n∑

i=0

(tBλ)i

i! −→ Sλ(t) = etBλ as n→∞,

and therefore, by (1.6.178),

T ∗
λ,n(t) =

(
n∑

i=0

(tBλ)i

i!

)∗

−→ [Sλ(t)]∗ =
(
etBλ

)∗ as n→∞. (1.6.179)

On the other hand,

T ∗
λ,n(t) =

n∑
i=0

(tB∗
λ)i

i! −→ Tλ(t) = etB∗
λ as n→∞. (1.6.180)

Since
Tλ(t) = etB∗

λ −→ T (t) as λ→∞

and
[Sλ(t)]∗ −→ [S(t)]∗ as λ→∞,

it follows, by uniqueness of limits, that [S(t)]∗ = T (t) for all t ≥ 0. 2

Proposition 1.50 For a linear operator A on a Banach space X to be the infinitesimal generator of a
C0–group S it is necessary and sufficient that both A and −A be infinitesimal generators of C0–semigroups.

Proof: Assume first that A is the infinitesimal generator of a C0–group S. The restriction of S to R+,
which we denote by S+, is clearly a C0–semigroup whose infinitesimal generator is A. The same holds for
the mapping S− : R+ → L(X) defined by S−(t) = S(−t), which has −A as its infinitesimal generator.
This proves the necessity.

Conversely, suppose that A and −A are, respectively, the infinitesimal generators of C0–semigroups
S+ and S−. By Corollary 1.37, for all x ∈ X,

S+(t)x = lim
λ→∞

etBλx and S−(t)x = lim
λ→∞

etB̃λx, (1.6.181)

where

Bλ = λ2R(λ,A)− λI, λ > ω > ω0 = lim
t→∞

ln ∥S+(t)∥
t

,

B̃λ = λ2R(λ,−A)− λI, λ > ω > ω̃0 = lim
t→∞

ln ∥S−(t)∥
t

,

are the Yosida approximations of A and −A, respectively. Now, since R(λ,A) commutes with R(µ,−A)
for λ, µ > ω > max{ω0, ω̃0}, it follows that

etBλetB̃µx = etB̃µetBλx, for all x ∈ X and λ, µ sufficiently large.

Fixing such a µ, it follows from (1.6.181) and from the fact that etB̃µ ∈ L(X) that, in the limit as
λ→∞,

S+(t)etB̃µx = etB̃µS+(t)x.

Now, taking the limit as µ→∞ in the last identity and using that S+(t) ∈ L(X), we obtain

S+(t)S−(t)x = S−(t)S+(t)x, for all x ∈ X and t ≥ 0. (1.6.182)
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Define

T (t) = S+(t)S−(t), t ≥ 0. (1.6.183)

It follows immediately that T is a C0–semigroup, since S+ and S− are C0–semigroups and satisfy (1.6.182).
Let B denote the infinitesimal generator of T . We claim that

D(A) ⊂ D(B) and Bx = 0, for all x ∈ D(A). (1.6.184)

Indeed, let x ∈ D(A) and h > 0. From (1.6.183) we have

T (h)x− x
h

= S+(h)S−(h)x− x
h

(1.6.185)

= S+(h)S−(h)x− S+(h)x+ S+(h)x− x
h

= S+(h)
[
S−(h)x− x

h

]
+ S+(h)x− x

h
.

Taking the limit in (1.6.185) as h→ 0+, we obtain

lim
h→0+

T (h)x− x
h

= −Ax+Ax = 0,

which proves (1.6.184).

Now let x ∈ D(B). Since D(A) is dense in X, there exists a sequence (xν)ν ⊂ D(A) such that
xν → x in X. But from (1.6.184) we have Bxν = 0 for all ν ∈ N, and hence Bxν → 0 as ν →∞. Since
B is closed, we conclude that Bx = 0, that is,

Bx = 0, for all x ∈ D(B). (1.6.186)

However, by Proposition 1.30(iii), for all x ∈ X we have∫ t

0
T (s)x ds ∈ D(B), t ≥ 0,

and

T (t)x− x = B

∫ t

0
T (s)x ds. (1.6.187)

From (1.6.186) and (1.6.187) it follows that T (t)x = x for all x ∈ X and t ≥ 0, that is,

T (t) = I, for all t ≥ 0. (1.6.188)

From (1.6.182), (1.6.183) and (1.6.188) we obtain

S+(t)S−(t) = S−(t)S+(t) = I. (1.6.189)

Identity (1.6.189) shows that S+(t) is invertible and

(S+(t))−1 = S−(t), for all t ≥ 0. (1.6.190)
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Define

S(t) =
{
S+(t), t ≥ 0,
S−(−t), t < 0.

(1.6.191)

We now prove that S is a C0–group with infinitesimal generator A. Clearly,

S(0) = I, (1.6.192)

and

lim
h→0
∥S(h)x− x∥ = 0. (1.6.193)

It remains to show that

S(t+ s) = S(t)S(s), for all t, s ∈ R. (1.6.194)

We consider several cases:

(i) t, s ≥ 0 (trivial).

(ii) t, s < 0 (trivial).

(iii) t ≥ 0, s ≤ 0 and t+ s ≥ 0. From (1.6.190) we can write

S(t+ s) = S+(t+ s)
= S+(t+ s)S+(−s)[S+(−s)]−1

= S+(t)S−(−s) = S(t)S(s).

The remaining cases are analogous to (iii).

Next we show that A is the infinitesimal generator of S. Let Ã denote the infinitesimal generator
of S. Then, for all x ∈ D(A),

lim
h→0+

S(h)x− x
h

= lim
h→0+

S+(h)x− x
h

= Ax,

lim
h→0−

S(h)x− x
h

= lim
h→0−

S−(−h)x− x
h

= − lim
h→0−

S−(−h)x− x
−h

= −(−Ax) = Ax,

which shows that x ∈ D(Ã) and Ãx = Ax, that is,

D(A) ⊂ D(Ã) and Ax = Ãx, for all x ∈ D(A).

Conversely, D(Ã) ⊂ D(A), because if x ∈ D(Ã), then the limit

lim
h→0+

S+(h)x− x
h

= lim
h→0+

S(h)x− x
h

= Ãx

exists, which completes the proof. 2

Proposition 1.51 Let X be a Banach space and S a C0–semigroup. If, for some t0 > 0, the inverse
S(t0)−1 exists and S(t0)−1 ∈ L(X), then S(t)−1 exists for all t ≥ 0 and S(t)−1 ∈ L(X).

Proof: Suppose there exists t0 > 0 such that S(t0)−1 exists and S(t0)−1 ∈ L(X). Then S(t0) is bijective
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and continuous. Hence, for each n ∈ N, [S(t0)]n is bijective and continuous, and since

S(nt0) = S(t0 + · · ·+ t0︸ ︷︷ ︸
n times

) = S(t0) · · ·S(t0)︸ ︷︷ ︸
n factors

= [S(t0)]n, (1.6.195)

it follows that S(nt0) is bijective and continuous.

Now let t > 0. Then there exists n ∈ N such that nt0 > t. Let x ∈ X be such that S(t)x = 0.
Then

S(nt0)x = (S(nt0 − t)S(t))x = S(nt0 − t)(S(t)x) = 0,

and by the injectivity of S(nt0) we obtain x = 0, that is, N(S(t)) ⊂ {0}, which proves that S(t) is
injective for all t ≥ 0 (the case t = 0 is trivial). Moreover, from the surjectivity of S(nt0) we have

X = S(nt0)X = (S(t)S(nt0 − t))X = S(t)(S(nt0 − t)X︸ ︷︷ ︸
=Y

).

Thus S(t)Y = X, where Y = S(nt0 − t)X, i.e. X ⊂ S(t)X ⊂ X, which implies S(t)X = X, and
therefore S(t) is surjective for all t ≥ 0. Hence S(t) is bijective for all t ≥ 0 and therefore invertible for
all t ≥ 0. In addition, since S(t) ∈ L(X) for all t ≥ 0, we deduce that

S(t)−1 is closed, for all t ≥ 0. (1.6.196)

Indeed, let (xn)n ⊂ D(S(t)−1) = X be such that

xn → x and S(t)−1xn → y, as n→∞. (1.6.197)

It remains to prove that y = S(t)−1x. Since S(t) is surjective, we have, for each n ∈ N, xn = S(t)yn,
and thus, from (1.6.197), we infer

S(t)yn → x and yn = S(t)−1(S(t)yn)→ y as n→∞. (1.6.198)

By the continuity of S(t), from (1.6.198) we obtain

S(t)yn → S(t)y as n→∞, (1.6.199)

and by uniqueness of limits, from (1.6.198) and (1.6.199) we conclude that S(t)y = x, i.e. y = S(t)−1x,
which proves (1.6.196). Furthermore, we conclude that S(t)−1 ∈ L(X) for all t ≥ 0, which completes the
proof. 2

Proposition 1.52 Let X be a Banach space and S a C0–semigroup with infinitesimal generator A. If
for some t0 > 0 the inverse S(t0)−1 exists and S(t0)−1 ∈ L(X), then A is the infinitesimal generator of
a C0–group.

Proof: Since A is the infinitesimal generator of a C0–semigroup, by Proposition 1.50 it suffices to show
that −A is also the infinitesimal generator of a C0–semigroup. Indeed, by Proposition 1.51 we have that
for every t ≥ 0, S(t) is invertible and S(t)−1 ∈ L(X). Define

T : R+ → L(X) (1.6.200)
t 7→ T (t) = [S(t)]−1.

We now prove that the mapping (1.6.200) is a C0–semigroup whose infinitesimal generator is −A.
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Indeed,

(i) T (0) = [S(0)]−1 = I.

(ii) T (s+ t) = [S(t+ s)]−1 = [S(s)S(t)]−1

= [S(t)]−1[S(s)]−1 = T (t)T (s), for all t, s ∈ R+.

It remains to show that:
(iii) lim

h→0+
∥T (h)x− x∥ = 0, for all x ∈ X.

Let x ∈ X and r > 1. Since S(t) is invertible and S(t)−1 ∈ L(X) for all t ≥ 0, we have that S(t)
is bijective for all t ≥ 0. Therefore S(t)X = X for all t ≥ 0 and, consequently, there exists y ∈ X such
that S(r)y = x. Let 0 < h < 1. Then

x = S(r)y = S(h)S(r − h)y,

and hence

T (h)x = T (h)S(h)S(r − h)y = [S(h)]−1S(h)S(r − h)y = S(r − h)y,

that is,

T (h)x = S(r − h)y.

Since S is strongly continuous, it follows that

lim
h→0+

S(r − h)y = S(r)y,

and therefore

lim
h→0+

T (h)x = S(r)y = x,

which proves item (iii) and consequently that the mapping defined in (1.6.200) is a C0–semigroup.

It remains to prove that −A is the infinitesimal generator of T . Let B be the infinitesimal generator
of T and consider x ∈ D(−A) = D(A). Note that

T (h)x− x
h

= [S(h)]−1x− x
h

= [S(h)]−1x− [S(h)]−1S(h)x
h

= [S(h)]−1
(
x− S(h)x

h

)
= −[S(h)]−1

(
S(h)x− x

h

)
= −T (h)

(
S(h)x− x

h

)
.
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From the last identity we obtain∥∥∥∥T (h)x− x
h

+Ax

∥∥∥∥ =
∥∥∥∥−T (h)

(
S(h)x− x

h

)
+Ax

∥∥∥∥ (1.6.201)

≤
∥∥∥∥−T (h)

(
S(h)x− x

h

)
+ T (h)Ax

∥∥∥∥+ ∥ − T (h)Ax+Ax∥

≤ ∥T (h)∥
∥∥∥∥S(h)x− x

h
−Ax

∥∥∥∥+ ∥T (h)Ax−Ax∥.

Since ∥T (h)∥ is bounded on bounded intervals and

S(h)x− x
h

→ Ax as h→ 0+,

it follows that

∥T (h)∥
∥∥∥∥S(h)x− x

h
−Ax

∥∥∥∥ −→ 0 as h→ 0+. (1.6.202)

Moreover, since T is strongly continuous we obtain

∥T (h)Ax−Ax∥ −→ 0 as h→ 0+. (1.6.203)

Thus, from (1.6.201), (1.6.202) and (1.6.203) we conclude that∥∥∥∥T (h)x− x
h

+Ax

∥∥∥∥ −→ 0 as h→ 0+.

This last convergence shows that if x ∈ D(A) then the limit limh→0+
T (h)x−x

h exists and is equal
to −Ax, that is,

D(A) ⊂ D(B) and Bx = −Ax, for all x ∈ D(A). (1.6.204)

On the other hand, if x ∈ D(B), we have

lim
h→0+

∥∥∥∥S(h)x− x
h

+Bx

∥∥∥∥ = lim
h→0+

∥∥∥∥−S(h)
(
T (h)x− x

h

)
+Bx

∥∥∥∥
= lim

h→0+

∥∥∥∥−S(h)
(
T (h)x− x

h
−Bx+Bx

)
+Bx

∥∥∥∥
= lim

h→0+

∥∥∥∥−S(h)
(
T (h)x− x

h
−Bx

)
− S(h)Bx+Bx

∥∥∥∥
≤ lim

h→0+

[
∥ S(h)x ∥L(X)

∥∥∥∥T (h)x− x
h

−Bx
∥∥∥∥+ ∥ S(h)Bx−Bx ∥

]
= lim

h→0+
∥ S(h)x ∥L(X)

∥∥∥∥T (h)x− x
h

−Bx
∥∥∥∥+ lim

h→0+
∥ S(h)Bx−Bx ∥

= 0,

because ∥ S(h) ∥ is bounded on bounded intervals and the limit lim
h→0+

T (h)x− x
h

exists. Thus we conclude

that the limit lim
h→0+

S(h)x− x
h

exists and hence

D(B) ⊂ D(A). (1.6.205)
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From (1.6.204) and (1.6.205) we deduce that D(A) = D(B) and Bx = −Ax for all x ∈ D(B), that
is, B = −A. Therefore −A is the infinitesimal generator of a C0–semigroup, which completes the proof.
2

Remark 1.53 Under the hypotheses of Proposition 1.52, that is, with X a Banach space, S a C0–semigroup
whose infinitesimal generator is A and S(t0)−1 ∈ L(X) for some t0 > 0, the operator −A generates a
C0–semigroup

T : R+ → L(X) (1.6.206)
t 7→ T (t) = (S(t))−1.

Now, according to Proposition 1.50, A generates the group U : R→ L(X) defined by

U(t) =
{
S(t), t ≥ 0,
T (−t) = (S(−t))−1, t < 0.

(1.6.207)

Proposition 1.54 Let S1 and S2 be groups generated by A. Then S1 = S2.

Proof: From the proof of Proposition 1.50 we know that A is the infinitesimal generator of the semigroups
S1,+ and S2,+ and −A is the infinitesinal generator of the semigroups S1,− and S2,−. However, by Exercise
1.3.1 we have uniqueness of the semigroup generated by an operator. Hence

S1,+ = S2,+ and S1,− = S2,−,

that is, S1(t) = S2(t) as well as S1(−t) = S2(−t) for all t ≥ 0, since Si,+(t) = Si(t) and Si,−(t) = Si(−t)
for all t ≥ 0 and i = 1, 2. Let t ∈ R. If t ≥ 0 we have S1(t) = S2(t), and if t < 0 then t = −ξ for some
ξ > 0 and hence S1(−ξ) = S2(−ξ), that is, S1(t) = S2(t), which implies S1 = S2. 2

0.5 cm

Definition 1.55 We say that an operator T ∈ L(H), where H is a Hilbert space, is unitary if T is
invertible and T ∗ = T−1.

Remark 1.56 Note that if D(T ) = H and T is continuous, then T ∗ exists and T ∗ ∈ L(H). Moreover,
if T is unitary, then T−1 = T ∗ ∈ L(H). Furthermore,

∥Tx∥2 = (Tx, Tx)
= (x, T ∗Tx)
= (x, T−1Tx) = ∥x∥2,

that is,

∥Tx∥ = ∥x∥, for all x ∈ H. (1.6.208)

Thus unitary operators are isometries. Also, since x = TT−1x, from (1.6.208) it follows that

∥x∥ = ∥TT−1x∥ = ∥T−1x∥,

and therefore

∥T−1x∥ = ∥x∥, for all x ∈ H, (1.6.209)

or equivalently

∥T ∗x∥ = ∥x∥, for all x ∈ H. (1.6.210)

Hence, if T : H → H is unitary, then T , T−1 and T ∗ are isometries.
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Definition 1.57 We say that a group S of bounded linear operators on a Hilbert space H is a
unitary group if, for each t ≥ 0, S(t) is a unitary operator, that is, S(t)∗ = S(t)−1 for all t ≥ 0.

Theorem 1.58 [Stone’s Theorem] A linear operator A on a Hilbert space H is the infinitesimal generator
of a unitary C0–group if and only if A∗ = −A.

Proof: Let A be the infinitesimal generator of a unitary C0–group S. By Proposition 1.50, A and
−A generate, respectively, C0–semigroups S+ and S−. Since S is a unitary group, S(t)−1 exists and
S(t)−1 ∈ L(H). Then, by Proposition 1.49, A∗ is the infinitesimal generator of S∗

+, where S∗
+ = (S+(t))∗

for all t ≥ 0. It follows from this and from the fact that S is unitary that, if h > 0, we have

S∗
+(h) = (S+(h))∗ = (S(h))∗ = (S(h))−1 = S(−h) = S−(h),

because I = S(t)S(−t) = S(−t)S(t) for all t ≥ 0. Hence

S∗
+(h)x− x

h
= S−(h)x− x

h
, for all x ∈ H, (1.6.211)

which implies D(A∗) = D(−A) and A∗x = −Ax, proving the necessity.

We now prove the sufficiency. Let A be a linear operator on H such that A∗ exists and satisfies

A∗ = −A. (1.6.212)

We will show that A and −A are infinitesimal generators of C0– semigroups. To that end we use
the Lumer–Phillips Theorem. From the existence of A∗ it follows that A and −A are densely defined.
We will prove that

Re(±Ax, x) = 0, for all x ∈ D(A). (1.6.213)

Indeed, let x ∈ D(A). From (1.6.212) we have

(Ax, x) = (x,A∗x) = (x,−Ax) = −(x,Ax) = −(Ax, x),

hence

Re(Ax, x) = 0, for all x ∈ D(A),

which proves (1.6.213) and therefore shows that A and −A are dissipative with respect to the duality
mapping j = I.

It remains to show that there exists λ0 > 0 such that Im(λ0I ± A) = H. Indeed, let x ∈ D(A).
Then

((I ±A)x, x) = ∥x∥2 ± (Ax, x).

From this identity and (1.6.213) we obtain

∥x∥2 = Re((I ±A)x, x) ≤ ∥x±Ax∥ ∥x∥,

which implies

∥x∥ ≤ ∥x±Ax∥, for all x ∈ D(A). (1.6.214)
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As we know, A∗ is a closed operator. From (1.6.212) it follows that ±A are also closed, and
consequently (I ±A) are closed as well. We claim that

Im(I ±A) are closed subsets of H. (1.6.215)

Indeed, let (yν)ν ⊂ Im(I ±A) be such that

yν → y in H as ν →∞. (1.6.216)

For each ν ∈ N, there exist xν , ων ∈ D(A) such that

yν = (I +A)xν and yν = (I −A)ων .

We will prove the claim for the operator I + A; the proof for I − A is analogous. From (1.6.214)
it follows that, if ν, µ ∈ N, then

∥xν − xµ∥ ≤ ∥(I +A)xν − (I +A)xµ∥ = ∥yν − yµ∥.

From (1.6.216) the expression on the right-hand side of the last inequality converges to zero as
ν, µ→∞. Hence, (xν)ν is a Cauchy sequence in H and therefore there exists x ∈ H such that

xν → x in H as ν →∞. (1.6.217)

From (1.6.216) we also have

(I +A)xν → y in H as ν →∞. (1.6.218)

Since (I +A) is closed, from (1.6.217) and (1.6.218) we conclude that x ∈ D(A) and y = (I +A)x,
which proves that y ∈ Im(I +A) and hence (1.6.215). It follows from this and from the fact that H is a
Hilbert space that

H = Im(I +A)⊕ [Im(I +A)]⊥. (1.6.219)

We claim that

[Im(I +A)]⊥ = {0}. (1.6.220)

Indeed, recall that

[Im(I +A)]⊥ = {y ∈ H; (y, x+Ax) = 0, for all x ∈ D(A)}.

Let y ∈ [Im(I +A)]⊥. Then

(y, x) = (y,Ax), for all x ∈ D(A). (1.6.221)

From identity (1.6.221) it follows that ±y ∈ D(A∗), and since D(A) = D(A∗), from (1.6.213) and
(1.6.221), taking y = x, we obtain

∥y∥2 = Re(y,Ay) = 0,

that is, y = 0, which proves (1.6.220), since trivially 0 ∈ [Im(I + A)]⊥. It follows from (1.6.219) and
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(1.6.220) that

H = Im(I +A). (1.6.222)

From (1.6.213) and (1.6.222) and the fact that D(A) = D(−A) is dense in H, it follows, by the
Lumer–Phillips Theorem, that A and −A are, respectively, the infinitesimal generators of the contraction
C0–semigroups S+ and S−. By Proposition 1.50 it follows that A generates the group S given by

S(t) =
{
S+(t), t ≥ 0,
S−(−t), t < 0.

It remains to show that S is a unitary group. Indeed, since A∗ is the infinitesimal generator of
S∗

+(t) for all t ≥ 0, where

S∗
+(t) = (S+(t))∗, ∀t ≥ 0, (1.6.223)

it follows from (1.6.212) and from the uniqueness of the semigroup that

S∗
+(t) = S−(t), ∀t ≥ 0. (1.6.224)

From (1.6.223) and (1.6.224) we obtain

(S+(t))∗ = S−(t), ∀t ≥ 0.

But since

S+(t) = S(t) and S−(t) = S−(−(−t)) = S(−t), ∀t ≥ 0,

we get

(S(t))∗ = S(−t), ∀t ≥ 0. (1.6.225)

Since I = S(t)S(−t) = S(−t)S(t), we have

(S(t))−1 = S(−t), ∀t ∈ R,

and therefore, from (1.6.225), we obtain

(S(t))∗ = (S(t))−1, ∀t ≥ 0,

which completes the proof. 2

1.6.1 Exercises

1.6.1) Let A be the infinitesimal generator of a C0–semigroup S+ and−A the infinitesimal generator
of a C0–semigroup S−. Define

Bλ = λ2R(λ,A)− λI and B̃λ = λ2R(λ,−A)− λI; λ > ω > M0 = max{ω0, ω̃0},

where
ω0 = lim

t→+∞

log ∥S+(t)∥
t

and ω̃0 = lim
t→+∞

log ∥S−(t)∥
t

.
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Given λ, µ > ω > M0, prove that

R(µ,−A)R(λ,A) = R(λ,A)R(µ,−A).

1.6.2) Prove that, for A to be the infinitesimal generator of a C0–group, it is necessary and sufficient
that A be closed, densely defined, and that there exist real numbers ω and M such that, if λ ∈ R and
|λ| > ω, then λ ∈ ρ(A) and

∥R(λ,A)n∥ ≤ M

(|λ| − ω)n
.

1.6.3) Let A be the infinitesimal generator of a C0–semigroup T (t) satisfying ∥T (t)∥ ≤Meωt. Show
that, for all λ ∈ C such that Reλ > ω, one has λ ∈ ρ(A) and

∥R(λ;A)n∥ ≤ M

(Reλ− ω)n
, n = 1, 2, 3, . . .

Solution:
Define

R(λ)x =
∫ +∞

0
e−λtT (t)x dt.

Since ∥T (t)∥ ≤Meωt, the operator R(λ) is well defined for all λ with Reλ > ω. Using arguments similar
to those employed in the proof of the Hille–Yosida Theorem, it follows that R(λ) = R(λ,A)⇒ λ ∈ ρ(A).
Hence, if Reλ > ω, then

d

dλ
R(λ,A)x = d

dλ

∫ +∞

0
e−λtT (t)x dt =

∫ +∞

0
t e−λtT (t)x dt.

Proceeding by induction, we can show that

d

dλ
R(λ,A)x = d

dλ

∫ +∞

0
e−λtT (t)x dt =

∫ +∞

0
t e−λtT (t)x dt. (1.6.226)

On the other hand,
R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A),

and from the fact that, for λ ∈ ρ(A), the map λ 7→ R(λ,A) is holomorphic, we obtain

d

dλ
R(λ,A)x = −R(λ,A)2x. (1.6.227)

Again, by induction, we have

dn

dλn
R(λ,A)x = (−1)nn!R(λ,A)n+1x. (1.6.228)

From (1.6.226) and (1.6.228) we obtain

R(λ,A)n+1x = 1
n!

∫ +∞

0
tne−λtT (t)x dt.

Thus
∥R(λ;A)n∥ ≤ M

(n− 1)!

∫ +∞

0
tn−1e(ω−Re λ)t dt = M

(Reλ− ω)n
,

as claimed.
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1.6.4) Let B be a bounded operator. If γ > ∥B∥, prove that

etB = 1
2πi

∫ γ+i∞

γ−i∞
eλtR(λ;B) dλ.

(Suggestion: Choose γ > r > ∥B∥ and consider Cr, the circle of radius r centred at the origin. Observe
that, for |λ| > r, we have

R(λ;B) =
∞∑

k=0

Bk

λk+1 .

Multiply the last identity by (1/2πi)eλt, integrate over Cr and conclude by applying Cauchy’s Theorem.)

The convergence above is in the sense of the uniform topology in t on bounded intervals.

1.6.5) Let A be the infinitesimal generator of a C0–semigroup T (t) satisfying ∥T (t)∥ ≤Meωt. Let
µ be a real number, µ > ω ≥ 0, and consider

Aµ = µAR(µ;A) = µ2R(µ;A)− µI,

the Yosida approximation of A. Prove that:

(i) For Reλ > ωµ/(µ− ω) we have

R(λ;Aµ) = (λ+ µ)−1(µI −A)R
(

µλ

µ+ λ
;A
)
, and

∥R(λ;Aµ)∥ ≤M
(

Reλ− ωµ

µ− ω

)−1
.

(Suggestion: Multiply the identity above by λI − Aµ and use the commutativity of A with its resolvent
to obtain the desired expression. To prove the inequality, note that Aµ is the infinitesimal generator of
etAµ and use Corollary 1.37.)

(ii) For Reλ > ε+ ωµ/(µ− ω) and µ > 2ω, there exists a constant C, depending only on M and
ε, such that for all x ∈ D(A),

∥R(λ;Aµ)x∥ ≤ C

|λ|
(∥x∥+ ∥Ax∥).

1.6.6) Let A be as in Exercise 1.6.4, and let λ = γ + iη with fixed γ > ω + ε. Prove that for every
x ∈ X we have

lim
µ→∞

R(λ;Aµ)x = R(λ;A)x,

and for every Y > 0 the limit is uniform in η for |η| ≤ Y . (Suggestion: Let ν = µλ/(µ+ λ). Use item (i)
of Exercise 1.6.5 to conclude that R(λ;Aµ)− R(λ;A) = (µ+ λ)−1A2R(ν;A)R(λ;A). For γ > ω + ε use
the Hille–Yosida Theorem to deduce ∥R(λ;A)∥ ≤Mε−1. From this, first obtain the desired convergence
for elements of D(A2) and then, by density, for all x ∈ X.)

1.6.7) Let A be the infinitesimal generator of a C0–semigroup T (t) satisfying ∥T (t)∥ ≤ Meωt and
consider γ > max(0, ω). If x ∈ D(A), prove that∫ t

0
T (s)x ds = 1

2πi

∫ γ+i∞

γ−i∞
eλtR(λ;A)xdλ

λ
,

and that the integral on the right-hand side converges uniformly in t on bounded intervals. (Suggestion:
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Take µ > 0 and, for δ > ∥Aµ∥, consider

ρk(s) = 1
2πi

∫ δ+ik

δ−ik

eλsR(λ;Aµ)x dλ.

Using Exercise 1.6.3, conclude that ρk(t)→ etAµx uniformly on [0, T ] and that limk→∞
∫ δ+ik

δ−ik
R(λ;Aµ)x dλ

λ =
0. Conclude then that ∫ t

0
esAµx ds = 1

2πi

∫ γ+i∞

γ−i∞
eλtR(λ;A)xdλ

λ
.

To complete the exercise, use Exercises 1.6.4(ii) and 1.6.5 together with the Hille–Yosida Theorem.)

1.6.8) Let A be the infinitesimal generator of a C0–semigroup T (t) satisfying ∥T (t)∥ ≤ Meωt.
Consider γ > max(0, ω). If x ∈ D(A2), prove that

T (t)x = 1
2πi

∫ γ+i∞

γ−i∞
eλtR(λ;A)x dλ.

(Suggestion: use Exercise 1.6.7.)

1.7 Differentiable Semigroups

Let A be the infinitesimal generator of a C0–semigroup S. As proved in Proposition 1.30, if x ∈
D(A) then S(t)x ∈ D(A) for all t ≥ 0, and therefore S(t)D(A) ⊂ D(A) for all t ≥ 0. This property does
not, in general, hold for all x ∈ X, because if S(t)X ⊂ D(A) for all t ≥ 0, then X = IX = S(0)X ⊂ D(A),
so that D(A) = X and hence, by the Closed Graph Theorem, A is a bounded linear operator. We then
fall back into the particular case of uniform convergence, already studied earlier (see Theorem 1.19). This
does not happen, however, if S(t)X ⊂ D(A) only for t > 0 and, more generally, only for t > t0 ≥ 0. It is
precisely this particular case that we now consider.

Definition 1.59 A C0–semigroup S with infinitesimal generator A is said to be
differentiable for t > t0 ≥ 0 if S(t)X ⊂ D(A) for all t > t0. The semigroup S is said to be
differentiable if S is differentiable for t > 0.

Theorem 1.60 Let S be a semigroup that is differentiable for t > t0 ≥ 0. Then:
(i) The operator A ◦ S(t) is continuous in x for t > t0.
(ii) The function S(t)x is continuously differentiable for all t > t0 and all x ∈ X. Moreover,

d

dt
S(t)x = AS(t)x.

(iii) For every t > nt0, n = 1, 2, . . . , we have S(t) : X → D(An) and, defining S(n) by S(n)(t) = An◦S(t),
we have that S(n) is a linear and continuous operator, S(n)(t)x = dn

dtnS(t)x for all x ∈ X, and the mapping
t 7→ S(t)x is n times continuously differentiable.
(iv) For t > nt0, n = 1, 2, . . . , S(n−1)(t) is continuous in the uniform topology, where S(0)(t) = S(t).

Proof:

(i) First note that, since S(t)X ⊂ D(A), the composition A ◦ S(t) is well defined for t > t0. As
S(t) is bounded and A is closed (see Proposition 1.31), it follows that A ◦ S(t) is closed for t > t0, and
by the Closed Graph Theorem, A ◦ S(t) is continuous for t > t0.

(ii) By hypothesis, S(t)x ∈ D(A) for all t > t0 and all x ∈ X. Thus, let x ∈ X. For every t > t0
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the limit

lim
h→0+

S(h)S(t)x− S(t)x
h

= lim
h→0+

S(t+ h)x− S(t)x
h

= AS(t)x

exists, that is, S(t)x is right–differentiable for all t > t0 and

d+

dt
S(t)x = AS(t)x.

Our goal is to use Dini’s Lemma (Exercise 1.3.4), and therefore it remains to show that AS(·)x is
continuous for all t > t0. Indeed, let t > t0 and choose s with t > s > t0. Then, by item (i), AS(s) is a
bounded operator and, since

AS(t) = AS(s)S(t− s),

we have, for 0 < h < t− s,

∥AS(t+ h)x−AS(t)x∥ = ∥AS(s)S(t+ h− s)x−AS(s)S(t− s)x∥
≤ ∥AS(s)∥ ∥S(t+ h− s)x− S(t− s)x∥ −→ 0

as h→ 0+, because S is strongly continuous. Hence, AS(t)x is continuous for all t > t0. From the above
and Dini’s Lemma (see Exercise 1.3.4) it follows that S(t)x is continuously differentiable for all t > t0
and

d

dt
S(t)x = AS(t)x.

(iii) We use induction on n to prove this item. From item (i) we know that S(1)(t) = A ◦ S(t) is
continuous in x for t > t0. Moreover, from item (ii) we know that the mapping

t 7−→ S(t)x

is differentiable in t for every t > t0 and every x ∈ X, and in fact it is C1(t0,+∞). Furthermore,

d

dt
S(t)x = AS(t)x := S(1)(t)x, t > t0.

Therefore, we have proved item (iii) for n = 1.

Assume now that (iii) holds for some n and prove it for n+1. Let t > (n+1)t0 and choose s > nt0
such that t− s > t0. Then

S(n)(t)x = AnS(t)x = AnS(t− s)S(s)x = S(t− s)AnS(s)x, ∀x ∈ X

(see that S(s)x ∈ D(An)). By item (ii) the right-hand side is continuously differentiable, and thus S(t)x
is (n+ 1) times differentiable. Moreover,

d

dt
S(n)(t)x = d

dt

(
S(t− s)AnS(s)x

)
= AS(t− s)AnS(s)x, ∀x ∈ X.

Since S(t− s)AnS(s)x = AnS(t)x, it follows that

d

dt
S(n)(t)x = An+1S(t)x = S(n+1)(t)x.

Hence S(n+1)(t)x = dn+1

dtn+1S(t)x for all x ∈ X. Also, S(n)(t)x ∈ D(A) for all t > (n + 1)t0, and since
S(n)(t) is a bounded operator and A is closed, it follows that S(n+1)(t) = AS(n)(t) is closed. By the
Closed Graph Theorem, S(n+1)(t) : X → D(An+1) is continuous, which completes the proof of item (iii).
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(iv) We first show that, for t > t0, the operator S(t) is continuous in the uniform topology. Indeed,
since ∥S(t)∥L(X) is bounded on bounded intervals, there exists M1 ≥ 0 such that

∥S(t)∥L(X) ≤M1, ∀t ∈ [0, 1].

Let t0 < t1 ≤ t2 ≤ t1 + 1. Then

S(t2)x− S(t1)x =
∫ t2

t1

AS(s)x ds

=
∫ t2

t1

AS(s− t1)S(t1)x ds

=
∫ t2

t1

S(s− t1)AS(t1)x ds.

Hence

∥S(t2)x− S(t1)x∥ ≤
∫ t2

t1

∥S(s− t1)AS(t1)x∥ ds

≤
∫ t2

t1

∥S(s− t1)∥L(X)∥AS(t1)x∥ ds

≤M1

∫ t2

t1

∥AS(t1)x∥ ds

≤M1

∫ t2

t1

∥AS(t1)∥L(X)∥x∥ ds

= M1∥AS(t1)∥L(X)∥x∥ |t2 − t1|.

Therefore
∥S(t2)− S(t1)∥L(X) ≤M1∥AS(t1)∥L(X)|t2 − t1|.

Thus S(t) is continuous in the uniform topology, and we have proved item (iv) for n = 1.

Using induction on n one checks easily that

S(n)(t)x ∈ D(A), ∀x ∈ X and ∀t > (n+ 1)t0. (1.7.229)

We also have that, for all t > nt0 and all s such that t− t0 > s > (n− 1)t0,

S(n−1)(t)x = S(t− s)S(n−1)(s)x, ∀x ∈ X, n = 1, 2, . . .

To prove this assertion we again use induction on n. Let t > t0 and t − t0 > s > 0. Then
t− s > t0 > 0, and hence

S(0)(t)x := S(t)x = S(t− s)S(s)x = S(t− s)S(0)(s)x, ∀x ∈ X.

Thus the assertion holds for n = 1. Assume it holds for n− 1 and we show it for n.

Let t > (n+ 1)t0 and t− t0 > s > nt0. Since s > nt0, it follows from (1.7.229) that

S(n−1)(s)x ∈ D(A), ∀x ∈ X.

By Proposition 1.30,
S(t− s)S(n−1)(s)x ∈ D(A)

and
AS(t− s)S(n−1)(s)x = S(t− s)AS(n−1)(s)x, ∀x ∈ X.
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But t > (n+ 1)t0 > nt0 and t− t0 > s > nt0 > (n− 1)t0. Hence, by the induction hypothesis, we have

S(n−1)(t)x = S(t− s)S(n−1)(s)x, ∀x ∈ X,

and so

S(n)(t)x := AnS(t)x = AAn−1S(t)x := AS(n−1)(t)x
= AS(t− s)S(n−1)(s)x = S(t− s)AS(n−1)(s)x
:= S(t− s)AAn−1S(s)x = S(t− s)S(n)(s)x, ∀x ∈ X,

which completes the proof of the assertion.

We now prove item (iv) in the general case (we have only proved (iv) for n = 1). Let t > nt0.
We will show that S(n−1)(t) is continuous in the uniform topology. Take t − t0 > s > (n − 1)t0. Then
t− s > t0, and if |h| < t− s− t0, we have

s+ t0 − t < h < t− s− t0, t+ h− t0 > s > (n− 1)t0

and t+ h > nt0. Therefore, by the assertion proved above, we obtain

S(n−1)(t) = S(t− s)S(n−1)(s)

and
S(n−1)(t+ h) = S(t+ h− s)S(n−1)(s).

Thus

∥S(n−1)(t+ h)− S(n−1)(t)∥L(X) = ∥S(t+ h− s)S(n−1)(s)− S(t− s)S(n−1)(s)∥L(X)

≤ ∥S(t+ h− s)− S(t− s)∥L(X) ∥S(n−1)(s)∥L(X) −→ 0

as h −→ 0. Therefore, S(n−1)(t) is continuous in the uniform topology for t > nt0. 2

1.7.1 Exercises

1.7.1) Let T (t) be a differentiable C0–semigroup and let A be its infinitesimal generator. Prove
that

Tn(t) =
(
AT

(
t

n

))n

=
(
T ′
(
t

n

))n

, n = 1, 2, . . .

1.8 Analytic Semigroups

Definition 1.61 Let ∆ = {z : φ1 < arg z < φ2, φ1 < 0 < φ2} and, for z ∈ ∆, let T (z) be a bounded
linear operator. The family T (z), z ∈ ∆, is called an analytic semigroup in ∆ if
(i) z 7→ T (z) is analytic in z.
(ii) T (0) = I and lim

z∈∆, z→0
T (z)x = x for every x ∈ X.

(iii) T (z1 + z2) = T (z1)T (z2) for z1, z2 ∈ ∆.
The semigroup T (t) is said to be analytic if it is analytic in some sector ∆ containing the non-negative
real axis.

Remark 1.62 In the definition above we have 0 < |φ1|, φ2 ≤ π.
Clearly, the restriction of an analytic semigroup to the non-negative real axis is a C0-semigroup.

In what follows, we are interested in the possibility of extending a given C0-semigroup to an analytic
semigroup in some sector ∆ around the non-negative real axis.

Since multiplication of a C0-semigroup T (t) by eωt does not affect the possibility (or impossibility)
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of extending it to an analytic semigroup in some sector ∆, we may restrict ourselves to the case of
uniformly bounded C0-semigroups. The results for general C0-semigroups follow from the corresponding
results for uniformly bounded C0-semigroups. Without loss of generality, we shall assume that 0 ∈ ρ(A),
where A is the infinitesimal generator of a semigroup T (t). This can always be achieved by multiplying
the uniformly bounded semigroup T (t) by e−εt, for ε > 0, and using Proposition 1.34.

Let A be a densely defined operator on a Banach space X satisfying the following conditions:

For some 0 < δ < π/2, ρ(A) ⊃ Σδ = {λ : |arg λ| < π/2 + δ} ∪ {0}. (1.8.230)
There exists a constant M such that

∥R(λ,A)∥ ≤ M

|λ|
, for λ ∈ Σδ, λ ̸= 0. (1.8.231)

We have the following result:

Theorem 1.63 Let A be a closed, densely defined operator on a Banach space X satisfying conditions
(1.8.230) and (1.8.231). Then A is the infinitesimal generator of a C0-semigroup S(t) satisfying ∥S(t)∥ ≤
C for some constant C. Moreover,

S(t) = 1
2πi

∫
Γ
eλtR(λ,A) dλ,

where Γ is a regular curve in Σδ going from ∞e−iθ to ∞eiθ, with π/2 < θ < π/2 + δ. The integral above
converges for t > 0 in the uniform operator topology.

Before proving Theorem 1.63 we need some auxiliary results, which we now establish. Let 0 < δ < π
2

and let A satisfy conditions (1.8.230) and (1.8.231). Note that for 0 < δ′ < δ, conditions (1.8.230) and
(1.8.231) are also satisfied. For each r > 0 and 0 < δ′ < δ, we define a family of operators (S(t))t≥0 by

S(t) =


1

2πi

∫
γ(r,δ′)

etλR(λ,A) dλ, t > 0,

I , t = 0,
(1.8.232)

where γ(r, δ′) = γ1(r, δ′) ∪ γ2(r, δ′) ∪ γ3(r, δ′) is the piecewise C1 curve defined by

γ1(r, δ′) = {ρei(π/2+δ′); ρ ∈ [r,+∞)},
γ2(r, δ′) = {reiβ ; −π

2 − δ
′ ≤ β ≤ π

2 + δ′},

γ3(r, δ′) = {−ρe−i(π/2+δ′); ρ ∈ [r,+∞)},
(1.8.233)

oriented counterclockwise, as in Figure 1.1:

Figure 1.1:
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Lemma 1.64 If A satisfies (1.8.230) and (1.8.231), then the operator S(t) given by (1.8.232) is well
defined and is independent of r > 0 and of 0 < δ′ < δ.

Proof: Let t > 0, r > 0 and δ′ > 0 be such that 0 < δ′ < δ and 0 < δ < π
2 . We first show the convergence

of the integral in (1.8.232) over the curve γ(r, δ). If λ ∈ γ1(r, δ), then λ = ρeiθ, with θ = π
2 + δ and

ρ ∈ [r,+∞). Let η = arg λ. Define

f(λ) = etλR(λ,A),

and set

x = ρ cos η = ζ(ρ)⇒ ζ ′(ρ) = cos η,
y = ρ sin η = ξ(ρ)⇒ ξ′(ρ) = sin η.

Then, by (1.8.231),∥∥∥∥∥
∫

γ1(r,δ)
etλR(λ,A) dλ

∥∥∥∥∥ ≤
∫ ∞

r

∥∥f(ζ(ρ) + iξ(ρ))[ζ ′(ρ) + iξ′(ρ)]
∥∥ dρ (1.8.234)

=
∫ ∞

r

∥∥etρeiη

R(ρeiη, A)eiη
∥∥ dρ

≤
∫ ∞

r

∣∣etρeiη ∣∣ M

|ρeiη|
|eiη| dρ

=
∫ ∞

r

etρ cos ηM

ρ
dρ.

Since π/2 < η < 3π/2, there exists a positive constant C such that cos η = −C. Hence∫ ∞

r

e−ρtC

ρ
dρ ≤ 1

r

∫ ∞

r

e−ρtC dρ = 1
rCt

e−rCt. (1.8.235)

From (1.8.234) and (1.8.235) we obtain∥∥∥∥∥
∫

γ1(r,δ)
etλR(λ,A) dλ

∥∥∥∥∥ ≤M
∫ ∞

r

e−ρtC

ρ
dρ ≤ C1, (1.8.236)

where C1 = M e−rCt

rCt , for t > 0.

Similarly, for λ ∈ γ3(r, δ), if x ̸= 0 we obtain∥∥∥∥∥
∫

γ3(r,δ)
etλR(λ,A) dλ

∥∥∥∥∥ ≤ C2, for t > 0. (1.8.237)

For the case λ ∈ γ2(r, δ), we note that∥∥∥∥∥
∫

γ2(r,δ)
etλR(λ,A) dλ

∥∥∥∥∥ ≤M
∫ 2π

0
etr cos β dβ ≤M2πetr. (1.8.238)

Thus, from (1.8.236), (1.8.237) and (1.8.238) it follows that the integral defined in (1.8.232) con-
verges in L(X) for each t > 0.

We now show that the definition is independent of the curve. Let r, r′, δ′,m′ > 0 and let Dρ be
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the region bounded by the curves Γ, Rρ,Λ, Sρ, given by

Γ = Γ(ρ, r, δ′) = ∪3
j=1Γj(ρ, r, δ′),

Λ = Λ(ρ, r′,m′) = ∪3
j=1Λj(ρ, r′,m′),

where,

Γ1(ρ, r, δ′) = {sei(π/2+δ′); s ∈ [r, ρ]},

Γ2(ρ, r, δ′) = {reiν ; −π/2 − δ′ ≤ ν ≤ π/2 + δ′},

Γ3(ρ, r, δ′) = {se−i(π/2+δ′); s ∈ [r, ρ]},

Λ1(ρ, r′, m′) = {sei(π/2+m′); s ∈ [r′, ρ]},

Λ2(ρ, r′, m′) = {r′eiν ; −π/2 − m′ ≤ ν ≤ π/2 + m′},

Λ3(ρ, r′, m′) = {sei(π/2+m′); s ∈ [r′, ρ]},

Rρ = {ρeiη : η ∈ (π/2 + m′, π/2 + δ′)},

Sρ = {ρeiη : η ∈ (−π/2 + δ′, −π/2 + m′)}.

The boundary of Dρ is oriented counterclockwise, as in Figure 1.2.

Figure 1.2:

By analyticity of the function λ 7→ etλR(λ,A) in Σδ′ and by Cauchy’s Theorem, we have∫
∂Dρ

eλtR(λ,A) dλ = 0,

that is,∫
Γ
eλtR(λ,A) dλ+

∫
Λ
eλtR(λ,A) dλ+

∫
Rρ

eλtR(λ,A) dλ+
∫

Sρ

eλtR(λ,A) dλ = 0. (1.8.239)

Moreover, the integrals over the two arcs Rρ, Sρ tend to zero as ρ → ∞. Indeed, if λ ∈ Rρ then
λ = ρeiη with −K0 ≤ cos η = −K, where K0 and K are positive constants. In this case,∥∥∥∥∥

∫
Rρ

eλtR(λ,A) dλ
∥∥∥∥∥ ≤M

∫ π/2+δ′

π/2+m′
e−ρK dη = K1e

−ρK → 0 as ρ→∞,

with K1 = M(δ′−m′). For λ ∈ Sρ, the estimate is analogous. Therefore, passing to the limit in (1.8.239)
as ρ→∞, we conclude that∫

γ(r′,m′)
etλR(λ,A) dλ = lim

ρ→∞

∫
Λ
eλtR(λ,A) dλ = − lim

ρ→∞

∫
Γ
etλR(λ,A) dλ =

∫
γ(r,δ′)

etλR(λ,A) dλ,
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which proves the claim. 2

Proposition 1.65 Assume that A satisfies (1.8.230) and (1.8.231). If {S(t)}t≥0 is the family of operators
defined in (1.8.232), then the following properties hold:

(i) The operator S(t), t > 0, is linear and continuous on X. There exists C > 0 such that
∥S(t)∥ ≤ C, for all t ≥ 0.

(ii) S(0) = I.

(iii) S(t+ s) = S(t)S(s), for all t, s ≥ 0.

(iv) For each x ∈ X, S(t)x→ x as t→ 0+.

Proof:

(i) Linearity follows from the linearity of R(λ;A) and of the integral operator. Continuity follows
directly from (1.8.236), (1.8.237) and (1.8.238), and from the fact that for t > 0,

∥S(t)x∥ ≤ 1
2π

3∑
i=1

∥∥∥∥∫
Γi

etλR(λ,A)x dλ
∥∥∥∥ ≤ C̃∥x∥,

where C̃ = C̃(t).

We now show uniform boundedness. If t > 0, then, from (1.8.232),

S(t) = 1
2πi

∫
γ(r,δ)

eλtR(λ,A) dλ. (1.8.240)

Performing the change of variables ξ = λt and using Lemma 1.64, we obtain

S(t) = 1
2πi

∫
γ(r,δ′)

eξR(ξ/t, A)dξ
t
.

Let ξ ∈ γ1(r, δ′) and set η = arg ξ. Defining f(ξ) = eξR(ξ/t;A) 1
t and taking

x = ρ cos η = φ(ρ)⇒ φ′(ρ) = cos η,
y = ρ sin η = ϕ(ρ)⇒ ϕ′(ρ) = sin η,

we have ∥∥∥∥∥
∫

γ1(r,δ′)
eξR(ξ/t, A)dξ

t

∥∥∥∥∥ ≤
∫ ∞

r

∥f(φ(ρ) + iϕ(ρ))[φ′(ρ) + iϕ′(ρ)]∥ dρ

≤
∫ ∞

r

∥eρeiη

R(ρeiη/t, A)eiη/t∥ dρ

≤
∫ ∞

r

|eρeiη

| Mt

|ρeiη|
|eiη|
t

dρ = M

∫ ∞

r

eρ cos η dρ

ρ
.

Since π
2 < η < 3π

2 , there exists a constant C > 0 such that cos η = −C. Hence,

M

∫ ∞

r

eρ cos η dρ

ρ
≤ M

r

∫ ∞

r

e−Cρ dρ = M

rC
e−rC .
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Thus, ∥∥∥∥∥
∫

γ1(r,δ′)
eξR(ξ/t, A)dξ

t

∥∥∥∥∥ ≤M
∫ ∞

r

eρ cos η dρ

ρ
≤ M

rC
e−rC := C2. (1.8.241)

Note that C2 does not depend on t.

Similarly, if ξ ∈ γ3(r, δ′), we obtain∥∥∥∥∥
∫

γ3(r,δ′)
eξR(ξ/t, A)dξ

t

∥∥∥∥∥ ≤ C2. (1.8.242)

Now, if ξ ∈ γ2(r, δ′), then ξ = reiν and, using the parametrisation

x = r cos ν = φ(ν)⇒ φ′(ν) = −r sin ν,
y = r sin ν = ϕ(ν)⇒ ϕ′(ν) = r cos ν,

we have ∥∥∥∥∥
∫

γ2(r,δ′)
eξR(ξ/t, A) dξ

t

∥∥∥∥∥ ≤
∫ δ′+ π

2

−δ′− π
2

∥ereiν

R(reiν/t, A) ireiν 1
t
∥ dν (1.8.243)

≤
∫ δ′+ π

2

−δ′− π
2

|ereiν

| M
|reiν |

t |ireiν |1
t
dν

≤
∫ δ′+ π

2

−δ′− π
2

er cos ν dν ≤ C3,

where C3 is independent of t.

Thus, from (1.8.241), (1.8.242) and (1.8.243), we obtain

∥S(t)∥ ≤ 1
2π

3∑
i=1

∥∥∥∥∫
γi

eξR(ξ/t, A)dξ
t

∥∥∥∥ ≤ C4, for all t ≥ 0.

(ii) This follows immediately from the definition.

(iii) Let t1, t2 > 0, and let γ(r, δ) and γ(r+c, δ′), c > 0, with δ′ < δ and π
2 < δ′, δ < π, be piecewise

C1 curves defined as in (1.8.233). For µ ∈ γ(r, δ) and λ ∈ γ(r + c, δ′), define

f(µ) = eµt1

λ− µ
and g(λ) = eλt2 .

Consider the regions Ξ and Θ, bounded respectively by Γ∪Λρ,δ and Υ∪Λρ,δ′ , oriented positively,
where

Γ = Γ(r, δ) = ∪3
l=1Γl(r, δ),

Γ1(r, δ) = {sei(π/2+δ); s ∈ [r, ρ]},
Γ2(r, δ) = {reiν ;−π/2− δ ≤ ν ≤ π/2 + δ},
Γ3(r, δ) = {−se−i(π/2+δ); s ∈ [−ρ,−r]},
Λρ,δ = {ρeiη; η ∈ (π/2 + δ, 3π/2− δ)};

as in Figure 1.3, and
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Figure 1.3:

Υ = Υ(r + c, δ′) = ∪3
l=1Υl(r + c, δ′)

Υ1(r + c, δ′) = {sei(π/2+δ′); s ∈ [r + c, ρ]},
Υ2(r + c, δ′) = {ρeiν ;−π/2− δ′ ≤ ν ≤ π/2 + δ′},
Υ3(r + c, δ′) = {−se−i(π/2+δ′); s ∈ [−ρ,−(r + c)]},
Λρ,δ′ = {ρeiθ; θ ∈ (π/2 + δ′, 3π/2− δ′)};

as in Figure 1.4.

Figure 1.4:

Observe that f(·) is analytic in Ξ and g(·) is analytic in Θ. Thus, by Cauchy’s theorem,∫
∂Ξ
f(µ) dµ = 0,

that is, ∫
Γ
f(µ) dµ+

∫
Λρ,δ

f(µ) dµ = 0. (1.8.244)
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Since |µ− λ| ≥ |µ| − |λ| = ρ− |λ| > 0 for ρ sufficiently large, we obtain

ρ

ρ− |λ|
= 1

1− |λ|
ρ

→ 1, as ρ→∞.

Hence there exists M > 0 such that ρ
ρ−|λ| ≤M for ρ sufficiently large, and therefore∥∥∥∥∥

∫
Λρ,δ

f(µ) dµ
∥∥∥∥∥ ≤

∫ 3π/2−δ

π/2+δ

|et1ρeiη |
ρ− |λ|

|ρi| dη

≤ M

∫ 3π/2−δ

π/2+δ

eρt1 cos η dη

≤ Me−ρt1k(2(π/2 + δ))→ 0, as ρ→∞,

where k = −k0, k0 < 0 is such that k0 = max cos η, η ∈ [ π
2 + δ, 3π

2 − δ].

Hence ∫
Λρ,δ

f(µ) dµ→ 0, as ρ→∞. (1.8.245)

From (1.8.232) (with δ′ = δ), (1.8.244) and (1.8.245) we deduce that

1
2πi

∫
γ(r,δ)

eµt1

λ− µ
dµ = 0, for all λ ∈ γ(r + c, δ′). (1.8.246)

Moreover, by Cauchy’s integral formula, we obtain∫
Υ

g(λ)
λ− µ

dλ+
∫

Λρ,δ′

g(λ)
λ− µ

dλ = 2πieµt2 . (1.8.247)

Using the same reasoning as for (1.8.245), we see that∫
Λρ,δ′

g(λ)
λ− µ

dλ→ 0, as ρ→∞.

Thus

1
2πi

∫
γ(r+c,δ′)

eλt2

λ− µ
dλ = eµt2 , for all µ ∈ γ(r, δ). (1.8.248)

On the other hand,

S(t1)S(t2) =
(

1
2πi

)2 ∫
γ(r,δ)

eµt1R(µ,A)
∫

γ(r+c,δ′)
eλt2R(λ,A) dλ dµ.

Using the identity

R(µ,A)R(λ,A) = R(µ,A)−R(λ,A)
λ− µ

,
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it follows that

S(t1)S(t2) =
(

1
2πi

)2 ∫
γ(r,δ)

∫
γ(r+c,δ′)

eµt1eλt2
R(µ,A)−R(λ,A)

λ− µ
dλ dµ

= 1
2πi

∫
γ(r,δ)

eµt1R(µ,A)
(

1
2πi

∫
γ(r+c,δ′)

eλt2

λ− µ
dλ

)
dµ

− 1
2πi

∫
γ(r+c,δ′)

eλt2R(λ,A)
(

1
2πi

∫
γ(r,δ)

eµt1

λ− µ
dµ

)
dλ.

Therefore, from (1.8.246), (1.8.248) and the last identity we obtain

S(t1)S(t2) = 1
2πi

∫
γ(r,δ)

eµ(t1+t2)R(µ,A) dµ = S(t1 + t2),

which proves item (iii).

(iv) Let x ∈ D(A). From the representation of S(t) we can write

S(t)x− x = 1
2πi

∫
γ(r,δ)

etλR(λ,A)x dλ− x.

Now consider Υ = Γ∪Λδ,r, where Γ = ∪3
i=1Γi and Cr is the circle of radius r

2 centred at the origin,
as in Figure 1.5.

Figure 1.5:

By Cauchy’s theorem, ∫
Υ

eλt

λ
dλ =

∫
Cr

eλt

λ− 0 dλ = 2πie0t,

where the last identity holds by Cauchy’s integral formula. Thus∫
Υ

eλt

λ
dλ = 2πi,
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and therefore, using an argument analogous to the previous item, we conclude that

1
2πi

∫
γ(r,δ)

eλt

λ
dλ = 1.

Using the identity R(λ,A)Ax = λR(λ,A)x− x for all x ∈ D(A) (see (1.4.101)), we obtain

S(t)x− x = 1
2πi

∫
γ(r,δ)

etλ

(
R(λ,A)− 1

λ

)
x dλ

= 1
2πi

∫
γ(r,δ)

etλ

λ
R(λ,A)Axdλ. (1.8.249)

We now show that for each x ∈ X we have S(t)x→ x as t→ 0+.

Let x ∈ D(A). Then, from (1.8.249), we have

S(t)x− x = 1
2πi

∫
γ(r,δ)

etλ

λ
R(λ,A)Axdλ.

We estimate the integral above. Let

ft(λ) = etλ

λ
R(λ,A)Ax

be a net of functions. We wish to apply the Lebesgue Dominated Convergence Theorem (see [92, p. 1015])
to {ft(λ)}t>0. To this end, we verify the hypotheses of that theorem.

Note that

∥ft(λ)∥ =
∥∥∥∥etλ

λ
R(λ,A)Ax

∥∥∥∥ ≤ |etλ|
|λ|
∥R(λ,A)∥ ∥Ax∥ ≤ et Re(λ)

|λ|2
M∥Ax∥. (1.8.250)

Claim. There exists δ̄ > 0 such that etRe(λ) ≤ et + 1, for all t ∈ (0, δ̄).

Indeed, write Re(λ) = a ∈ R (t ≥ 0) and consider two cases:

(i) If a ≤ 1, then ta ≤ t and thus eta ≤ et ≤ et + 1.

(ii) If a > 1, define f(t) = (1 + et) − eat. From real analysis we know that if f(x0) > 0 and f is
continuous, there exists δ > 0 such that f(x) > 0 for all x ∈ (x0 − δ, x0 + δ). For this f , taking
x0 = 0, there exists δ̄ > 0 such that f(t) > 0 for all t ∈ (0, δ̄). That is, for all t ∈ (0, δ̄), we have
eta ≤ et + 1.

Therefore,

et Re(λ)

|λ|2
M∥Ax∥ ≤ et + 1

|λ|2
M∥Ax∥ < eδ̄ + 1

|λ|2
M∥Ax∥ = K

|λ|2
:= g(λ), (1.8.251)

where the constant K is given by (eδ̄ + 1)M∥Ax∥. From (1.8.250) and (1.8.251) we see that the net
{ft(λ)}t>0 is dominated (for each t > 0) by the function g(λ) defined above. We now show that g(λ) is
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integrable over γ(r, δ). Indeed,∫
γ(r,δ)

K

|λ|2
dλ = K

(∫
γ1(r,δ)

1
|λ|2

dλ+
∫

γ2(r,δ)

1
|λ|2

dλ+
∫

γ3(r,δ)

1
|λ|2

dλ

)

= K

(
ei( π

2 +δ) lim
ρ→+∞

∫ ρ

r

1
s2 ds+ i

r

∫ π
2 +δ

− π
2 −δ

eiν dν − ie−i( π
2 +δ) lim

ρ→+∞

∫ −r

−ρ

1
s2 ds

)

= K

(
ei( π

2 +δ) lim
ρ→+∞

(
−1
ρ

+ 1
r

)
+ 1
r

(
ei( π

2 +δ) − ei(− π
2 −δ)

)
− ie−i( π

2 +δ) lim
ρ→+∞

(
1
r
− 1
ρ

))
= K

[(
1
r
ei( π

2 +δ)
)

+
(
i

r
ei( π

2 +δ)
)
−
(
i

r
ei(− π

2 −δ)
)
−
(
i

r
e−i( π

2 +δ)
)]

,

which is finite.

Moreover,

lim
t→0+

ft(λ) = lim
t→0+

etλ

λ
R(λ,A)Ax = 1

λ
R(λ,A)Ax.

Hence, all the hypotheses of the Lebesgue Dominated Convergence Theorem are satisfied and we
obtain

lim
t→0+

(S(t)x− x) = 1
2πi lim

t→0+

∫
γ(r,δ)

etλ

λ
R(λ,A)Axdλ

= 1
2πi

∫
γ(r,δ)

lim
t→0+

etλ

λ
R(λ,A)Axdλ

= 1
2πi

∫
γ(r,δ)

1
λ
R(λ,A)Axdλ. (1.8.252)

It remains to show that the integral in (1.8.252) is zero. In order to use the Cauchy–Goursat
Theorem, consider the closed curve Γ̄ ∪ Λ̄ρ,δ where Γ̄ = ∪3

i=1Γ̄i and

Λ̄ρ,δ =
{
ρe−iθ ; −π2 − δ ≤ θ ≤

π

2 + δ
}
,

as in the figure below.

Figure 1.6:

The function 1
λR(λ,A)Ax is analytic in the whole region R bounded by Γ̄ ∪ Λ̄ρ,δ. Thus, by the

Cauchy–Goursat Theorem, ∫
Γ̄∪Λ̄ρ,δ

1
λ
R(λ,A)Axdλ = 0,
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that is, ∫
Γ̄

1
λ
R(λ,A)Axdλ+

∫
Λ̄ρ,δ

1
λ
R(λ,A)Axdλ = 0. (1.8.253)

We claim that ∫
Λ̄ρ,δ

1
λ
R(λ,A)Axdλ→ 0 as ρ→∞. (1.8.254)

Indeed, ∥∥∥∥∥
∫

Λ̄ρ,δ

1
λ
R(λ,A)Axdλ

∥∥∥∥∥ =
∥∥∥∥∥
∫ π

2 +δ

− π
2 −δ

1
ρe−iθ

R(ρe−iθ, A)Ax (−iρe−iθ) dθ
∥∥∥∥∥

≤
∫ π

2 +δ

− π
2 −δ

1
|ρe−iθ|

M

|ρe−iθ|
∥Ax∥ | − iρe−iθ| dθ

≤ M ∥Ax∥
ρ

∫ π
2 +δ

− π
2 −δ

dθ

= M ∥Ax∥
ρ

(π + 2δ)

= C̃

ρ
,

and the last expression tends to zero as ρ→ +∞, which proves the claim.

From (1.8.252), (1.8.253) and (1.8.254) it follows that

0 = 1
2πi

(
lim

ρ→+∞

[∫
Γ̄

1
λ
R(λ,A)Axdλ+

∫
Λ̄ρ,δ

1
λ
R(λ,A)Axdλ

])

= 1
2πi

∫
γ(r,δ)

1
λ
R(λ,A)Axdλ

= lim
t→0+

(S(t)x− x).

So far we have shown that limt→0+(S(t)x− x) = 0 for every x ∈ D(A). To conclude the proof, we
must extend this to all x ∈ X.

Let (tn)n∈N be a sequence in R+ with tn → 0 as n→ +∞. Then, by what we have just proved,

S(tn)x→ S(0)x = x, ∀x ∈ D(A),

that is, given ε > 0, we have

∥S(tn)x− x∥ < ε, ∀x ∈ D(A). (1.8.255)

Moreover, from item (i) of this proposition, we have

∥S(tn)∥ ≤ C. (1.8.256)

Thus, for the same given ε > 0 and any y ∈ X, since D(A) is dense in X, there exists y0 ∈ D(A) such
that

∥y − y0∥ < ε. (1.8.257)
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Hence, from (1.8.255), (1.8.256) and (1.8.257), it follows that

∥S(tn)y − y∥ = ∥S(tn)y − S(tn)y0 + S(tn)y0 − y0 + y0 − y∥
≤ ∥S(tn)y − S(tn)y0∥+ ∥S(tn)y0 − y0∥+ ∥y0 − y∥
≤ ∥S(tn)∥ ∥y − y0∥+ ∥S(tn)y0 − y0∥+ ∥y0 − y∥
< C ε+ ε+ ε = (C + 2)ε,

which shows that S(tn)y → y as n→∞ for all y ∈ X. Since (tn) was arbitrary with tn → 0, we conclude
that S(t)x→ x as t→ 0+ for every x ∈ X, which completes the proof. 2

Lemma 1.66 Let A be the infinitesimal generator of a C0–semigroup T (t) satisfying ∥T (t)∥ ≤ Meωt.
Let γ > max(0, ω). If x ∈ D(A2), then

T (t)x = 1
2πi

∫ γ+i∞

γ−i∞
eλtR(λ;A)x dλ,

and for each δ > 0, the integral converges uniformly in t for t ∈ [δ, 1/δ].

Proof: See [83, p. 29]. 2

0.6 cm

We now proceed to the proof of Theorem 1.63.

Proof: Define

U(t) =


1

2πi

∫
γ(r,δ)

eλtR(λ;A) dλ, if t > 0,

I, if t = 0.

Let λ ∈ R+ be such that λ > ω0 = lim
t→∞

ln ∥U(t)∥
t

. By hypothesis, A is a closed, densely defined
linear operator on a Banach space X and λ ∈ ρ(A). Hence A satisfies the hypotheses of Proposition 1.34.
By Corollary 1.35, we have

R(λ;A)n+1x = 1
n!

∫ +∞

0
tne−λtU(t)x dt.

Therefore,

∥R(λ;A)nx∥ =
∥∥∥∥ 1

(n+ 1)!

∫ +∞

0
tn−1e−λtU(t)x dt

∥∥∥∥
≤ C

1
(n+ 1)!

∫ +∞

0
tn−1e−λt∥x∥ dt

= C

λn
∥x∥

≤ C

(λ− ω0)n
.

By the Hille–Yosida Theorem, A is the infinitesimal generator of a C0–semigroup T (t) satisfying
∥T (t)∥ ≤ Ceωt, t > 0. Also, λ > max{0, ω0}. If x ∈ D(A2), then

T (t)x = 1
2πi

∫ λ+i∞

λ−i∞
eλtR(λ;A)x dλ.

It remains to prove that T (t) = U(t) for every t ≥ 0. Let k > r.
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Now consider the path Λk given by

Λk =
4⋃

l=1
Λl

k,

where

Λ1
k = {α : α = λ+ is, −k ≤ s ≤ k},

Λ2
k = {α : α = s− ik, −k ≤ s ≤ λ},

Λ3
k =

3⋃
i=1

Γi(k, r, δ),

with

Γ1(k, r, δ) = {−sei(π/2+δ); s ∈ [−k
√

2,−r]},
Γ2(k, r, δ) = {−reiµ; −π

2 − δ ≤ µ ≤
π
2 + δ},

Γ3(k, r, δ) = {se−i(π/2+δ); s ∈ [r, k
√

2]},
Λ4

k = {α : α = s+ ik; s ∈ [−λ, k]},

oriented counter–clockwise, as in Figure 1.7. Note that 0 < θ < 1.

Figure 1.7:

We denote

lim
k→∞

∫
Λ1

k

eλtR(λ,A)x dλ =
∫ α+i∞

α−i∞
eλtR(λ,A)x dλ.

We have

lim
k→∞

∫
Λj

k

eλtR(λ,A) dλ = 0, j = 2, 4.

Indeed, we shall treat the case j = 2, since the case j = 4 is analogous.

Note that ∫
Λ2

k

eλtR(λ,A) dλ =
∫ λ

−k

e(s−ik)tR(s− ik, A) ds.
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Hence ∥∥∥∥∥
∫

Λ2
k

eλtR(λ,A) dλ
∥∥∥∥∥ ≤

∫ λ

−k

∥est−iktR(s− ik, A)∥ ds

=
∫ λ

−k

| cos(kt)− i sin(kt)| C

|s− ik|
ds

≤ C

k

∫ λ

−k

est ds

= C

k

[
est

t

]λ

−k

= C

k

[
eλt

t
− e−kt

t

]
−−−−−→
k→+∞

0.

Moreover,
∫

Λk

eλtR(λ,A) dλ = 0, that is,

4∑
i=1

∫
Λi

k

eλtR(λ,A) dλ = 0,

and therefore

lim
k→∞

4∑
i=1

∫
Λi

k

eλtR(λ,A) dλ = 0,

that is, ∫ α+i∞

α−i∞
eλtR(λ,A) dλ−

∫
Γ(r,δ)

eλtR(λ,A) dλ = 0.

Thus,

T (t)x = 1
2πi

∫
γ(r,δ)

eλtR(λ,A)x dλ = U(t)x, (1.8.258)

for every x ∈ D(A2). Since D(A2) is dense in X, it follows that (1.8.258) holds for all x ∈ X, completing
the proof. 2

We now turn to the most important result of this section.
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Theorem 1.67 Let T (t) be a uniformly bounded C0–semigroup and let A be the infinitesimal generator
of T (t), assuming that 0 ∈ ρ(A). The following assertions are equivalent:
(a) T (t) can be extended to an analytic semigroup in a sector ∆δ = {z : | arg(z)| < δ} and ∥T (t)∥ is
uniformly bounded in any closed subsector ∆δ′ , δ′ < δ;
(b) There exists a constant C such that, for every σ > 0, τ ̸= 0,

∥R(σ + iτ, A)∥ ≤ C

|τ |
;

(c) There exist 0 < δ < π/2 and M > 0 such that

ρ(A) ⊃ Σ =
{
λ : | arg λ| < π

2 + δ
}
∪ {0}

and
∥R(λ,A)∥ ≤ M

|λ|
, for λ ∈ Σ, λ ̸= 0;

(d) T (t) is differentiable for t > 0 and there exists a constant C such that

∥AT (t)∥ ≤ C

t
.

Proof:

(a)⇒ (b)

By hypothesis, there exists δ > 0 such that T (t) can be extended to an analytic semigroup in

∆δ = {z ∈ C; | arg(z)| < δ}. (1.8.259)

Moreover, ∥T (z)∥ is uniformly bounded in any closed subsector ∆δ′ ⊂ ∆δ ∪ {0}, 0 < δ′ < δ. Fix
0 < δ′ < δ. Then there exists M > 0 such that

∥T (z)∥ ≤M, ∀z ∈ ∆δ′ = {z ∈ C; | arg(z)| ≤ δ′}. (1.8.260)

Observe that, since T (t) is a uniformly bounded C0–semigroup, we have w0 ≤ 0. By Proposition
1.34 we obtain, for σ > 0 and τ ∈ R, that σ + iτ ∈ ρ(A), where A is the infinitesimal generator of T ,
and, moreover,

R(σ + iτ, A)x =
∫ ∞

0
e−(σ+iτ)tT (t)x dt, ∀x ∈ X. (1.8.261)

First assume that τ > 0. For each R > 0, define the piecewise C1 curve CR by

CR =
4⋃

i=1
CR,i, where CR,1 = {ρe−iδ′

; ρ ∈ [1/R,R]}, (1.8.262)

CR,2 = {Reiρ; ρ ∈ [−δ′, 0]},
CR,3 = {−ρ; ρ ∈ [−R,−1/R]},
CR,4 = { 1

Re
−iρ; ρ ∈ [0, δ′]}, with 0 < δ′ < π

2 ,

and oriented as in Figure 1.8.

The mapping

z ∈ C 7→ e−(σ+iτ)z ∈ C (1.8.263)
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Figure 1.8:

is an analytic (indeed, entire) function, and since T is an analytic semigroup in ∆δ, it follows that

z ∈ ∆δ 7→ e−(σ+iτ)zT (z) ∈ X (1.8.264)

is also analytic.

Hence

0 =
∫

CR

e−(σ+iτ)zT (z) dz =
4∑

i=1

∫
CR,i

e−(σ+iτ)zT (z) dz. (1.8.265)

For CR,4 we have∫
CR,4

e−(σ+iτ)zT (z) dz =
∫ δ′

0
e−(σ+iτ) 1

R e−iρ 1
R

(−i)e−iρT

(
1
R
e−iρ

)
dρ

=
∫ δ′

0
e− 1

R σ(cos(−ρ)+i sin(−ρ))− i
R τ(cos(−ρ)+i sin(−ρ)) 1

R
ie−iρT

(
1
R
e−iρ

)
dρ

=
∫ δ′

0
e− 1

R σ(cos ρ+τ sin ρ)− i
R τ(cos ρ−iσ sin ρ) 1

R
ie−iρT

(
1
R
e−iρ

)
dρ.

Thus ∥∥∥∥∥
∫

CR,4

e−(σ+iτ)zT (z) dz
∥∥∥∥∥ ≤ M

R

∫ δ′

0

∣∣∣e− 1
R (σ cos ρ+τ sin ρ)− i

R (τ cos ρ−σ sin ρ)
∣∣∣ dρ

= M

R

∫ δ′

0
e− 1

R (σ cos ρ+τ sin ρ) dρ ≤ M

R
δ′,

since σ, τ > 0 and 0 < ρ < π
2 imply e− 1

R (σ cos ρ+τ sin ρ) ≤ 1. We conclude that

lim
R→+∞

∥∥∥∥∥
∫

CR,4

e−(σ+iτ)zT (z) dz
∥∥∥∥∥ = 0. (1.8.266)

Note that ∫
CR,2

e−(σ+iτ)zT (z) dz =
∫ 0

−δ′
e−(σ+iτ)Reiρ

T (Reiρ)Reiρ dρ

=
∫ 0

−δ′
e−(σ+iτ)R(cos ρ+i sin ρ)T (Reiρ)Reiρ dρ

=
∫ 0

−δ′
e−R(σ cos ρ−τ sin ρ)T (Reiρ)Reiρ dρ.
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Hence ∥∥∥∥∥
∫

CR,2

e−(σ+iτ)zT (z) dz
∥∥∥∥∥ ≤ RM

∫ 0

−δ′
e

−R (σ cos ρ− τ sin ρ)︸ ︷︷ ︸
≥0 dρ.

The right–hand side tends to zero as R→ +∞, since sin ρ ≤ 0. Thus

lim
R→+∞

∥∥∥∥∥
∫

CR,2

e−(σ+iτ)zT (z) dz
∥∥∥∥∥ = 0. (1.8.267)

From (1.8.265), (1.8.266) and (1.8.267) we obtain

lim
R→+∞

∥∥∥∥∥
∫

CR,1

e−(σ+iτ)zT (z) dz +
∫

CR,3

e−(σ+iτ)zT (z) dz
∥∥∥∥∥ = 0. (1.8.268)

We also note that
lim

R→+∞

∫
CR,1

e−(σ+iτ)zT (z) dz

exists, because

lim
R→+∞

∣∣∣∣∣
∫ R

1/R

e−(σ+iτ)ρe−iδ′

T (ρe−iδ′
)e−iδ′

dρ

∣∣∣∣∣ ≤ lim
R→+∞

∫ R

1/R

∣∣∣e−(σ+iτ)ρe−iδ′ ∣∣∣ ∥T (ρe−iδ′
)∥ dρ

≤ M lim
R→+∞

∫ R

1/R

e−ρ(σ cos δ′+τ sin δ′) dρ

= M

σ cos δ′ + τ sin δ′ < +∞.

Therefore, by (1.8.268), the limit

lim
R→+∞

∫
CR,3

e−(σ+iτ)zT (z) dz

also exists. Thus ∫ ∞

0
e−(σ+iτ)ρT (ρ) dρ = lim

R→+∞

∫ R

1/R

e−(σ+iτ)ρT (ρ) dρ

= lim
R→+∞

∫ −1/R

−R

e−(σ+iτ)(−ρ)T (−ρ) dρ

= − lim
R→+∞

∫
CR,3

e−(σ+iτ)zT (z) dz

= lim
R→+∞

∫
CR,1

e−(σ+iτ)zT (z) dz

= lim
R→+∞

∫ R

1/R

e−(σ+iτ)ρe−iδ′

T (ρe−iδ′
)e−iδ′

dρ

=
∫ ∞

0
e−(σ+iτ)ρe−iδ′

T (ρe−iδ′
)e−iδ′

dρ. (1.8.269)

From (1.8.261) and (1.8.269) we conclude that

R(σ + iτ, A)x =
∫ ∞

0
e−iδ′

e−(σ+iτ)ρe−iδ′

T (ρe−iδ′
)x dρ, for all x ∈ X. (1.8.270)
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Estimating (1.8.270) we obtain

∥R(σ + iτ, A)x∥ ≤
∫ ∞

0
|e−iδ′

|
∣∣∣e−(σ+iτ)ρe−iδ′ ∣∣∣ ∥T (ρe−iδ′

)∥ ∥x∥ dρ (1.8.271)

≤ M

∫ ∞

0
e−ρ(σ cos δ′+τ sin δ′)∥x∥ dρ

≤ M

σ cos δ′ + τ sin δ′ ∥x∥

≤ M

τ sin δ′ ∥x∥, ∀x ∈ X,

whence

∥R(σ + iτ, A)∥ ≤ C

τ
, with C = M

sin δ′ > 0. (1.8.272)

Now assume τ < 0. For each R > 0, consider the piecewise C1 curve γR in ∆δ given by

γR =
4⋃

i=1
γR,i, where γR,1 = {−ρeiδ′ ; ρ ∈ [−R,−1/R]}, (1.8.273)

γR,2 = {Reiρ; ρ ∈ [0, δ′]},
γR,3 = {ρ; ρ ∈ [1/R,R]},

γR,4 = {1/Re−iρ; ρ ∈ [−δ′, 0]},

as shown in Figure 1.9.

Figure 1.9:

Again, by Cauchy’s Theorem, ∫
γR

e−(σ+iτ)zT (z) dz = 0. (1.8.274)

Proceeding as in the previous case (τ > 0) we deduce that

lim
R→+∞

∥∥∥∥∥
∫

γR,2

e−(σ+iτ)zT (z) dz
∥∥∥∥∥ = 0,

lim
R→+∞

∥∥∥∥∥
∫

γR,4

e−(σ+iτ)zT (z) dz
∥∥∥∥∥ = 0.

Hence

R(σ + iτ, A)x = lim
R→∞

∫
γR,1

e−(σ+iτ)zT (z)x dz (1.8.275)

=
∫ ∞

0
eiδ′

e−(σ+iτ)ρeiδ′

T (ρeiδ′
)x dρ, ∀x ∈ X.
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Estimating (1.8.275), we obtain

∥R(σ + iτ, A)x∥ ≤ M∥x∥
∫ ∞

0
e−ρ(σ cos δ′−τ sin δ′) dρ (1.8.276)

≤ M ∥x∥
σ cos δ′ − τ sin δ′ ≤

−M
τ sin δ′ ∥x∥, ∀x ∈ X,

whence

∥R(σ + iτ, A)∥ ≤ C

−τ
, C = M

sin δ′ > 0. (1.8.277)

From (1.8.272) and (1.8.277) we conclude that there exists C > 0 such that

∥R(σ + iτ, A)∥ ≤ C

|τ |
, ∀σ > 0 and τ ̸= 0, (1.8.278)

which proves (b).

(b)⇒ (c)

Since A is the infinitesimal generator of a uniformly bounded C0–semigroup T , by Proposition 1.34
we have

{λ ∈ C; ℜλ > 0} ⊂ ρ(A), (1.8.279)

and, moreover, by Exercise (1.6.3), for every λ ∈ C with ℜλ > 0 we obtain

∥R(λ,A)∥ ≤ M

ℜλ
, where ∥T (t)∥ ≤M, ∀t ≥ 0. (1.8.280)

From (b) we infer

∥R(λ,A)∥ ≤ C

|ℑλ|
, ∀λ ∈ C with ℜλ > 0 and ℑλ ̸= 0. (1.8.281)

We claim that there exists C1 > 0 such that

∥R(λ,A)∥ < C1

|λ|
, ∀λ with ℜλ > 0. (1.8.282)

Indeed, let λ be such that ℜλ > 0. There are two cases:

If |ℑλ| ≥ ℜλ, then

|λ|2 = (ℜλ)2 + (ℑλ)2 ≤ 2(ℑλ)2,

whence

|λ| ≤
√

2 |ℑλ| ⇐⇒ 1
|ℑλ|

≤
√

2
|λ|

. (1.8.283)

From (1.8.281) and (1.8.283) we deduce

∥R(λ,A)∥ ≤
√

2C
|λ|

, (1.8.284)

and (1.8.282) follows by taking C1 >
√

2C.
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If |ℑλ| < ℜλ, then

|λ|2 = (ℜλ)2 + (ℑλ)2 < 2(ℜλ)2,

which implies, similarly,

|λ| <
√

2ℜλ ⇐⇒ 1
ℜλ

<

√
2
|λ|

. (1.8.285)

From (1.8.280) and (1.8.285) we obtain

∥R(λ,A)∥ < M
√

2
|λ|

, (1.8.286)

which also yields (1.8.282).

Fix σ+iτ ∈ ρ(A) with σ > 0 and τ ̸= 0. By Corollary 1.35, we have the following Taylor expansion
of R(λ,A) around σ + iτ :

R(λ,A) =
∞∑

n=0

1
n!

dn

dλn
R(σ + iτ, A)(λ− (σ + iτ))n (1.8.287)

=
∞∑

n=0

(−1)nn!
n! R(σ + iτ, A)n+1(λ− (σ + iτ))n

=
∞∑

n=0
R(σ + iτ, A)n+1(σ + iτ − λ)n.

Let 0 < k < 1. Then, for λ ∈ ρ(A) such that

C

|τ |
|σ + iτ − λ| ≤ k, (1.8.288)

the series in (1.8.287) converges absolutely and, since τ ̸= 0, we have

|σ + iτ − λ| ≤ k|τ |
C

. (1.8.289)

We claim that

ρ(A) ⊃ A1 = {λ ∈ C; ℑλ ̸= 0 and 0 ≤ |ℜλ| < |ℑλ|
C } ∪ {0}. (1.8.290)

Figure 1.10:
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Indeed, let λ ∈ C be such that ℑλ ̸= 0 and |ℜλ| < |ℑλ|
C (see Figure 1.10). Then

|ℜλ| < k
|ℑλ|
C

, (1.8.291)

for some 0 < k < 1 (note that this k depends on λ). In fact, since 0 ≤ |ℜλ| < |ℑλ|
C , we have 0 < |ℑλ|

C −|ℜλ|.

Hence there exists ε > 0 such that

0 < ε <
|ℑλ|
C
− |ℜλ| ≤ |ℑλ|

C
, (1.8.292)

and therefore

|ℜλ| < |ℑλ|
C
− ε = |ℑλ|

C

(
1− ε C

|ℑλ|

)
. (1.8.293)

Setting k = 1− ε C
|ℑλ| , we obtain (1.8.291).

It then follows that there exists σ > 0, also depending on λ, such that

|ℜλ|+ σ <
k|ℑλ|
C

. (1.8.294)

Consider σ + iℑλ ∈ C. Since σ > 0 and ℑλ ̸= 0, we have σ + iℑλ ∈ ρ(A) and

|σ + iℑλ− λ| = |ℜλ− σ| ≤ |ℜλ|+ σ < k
|ℑλ|
C

. (1.8.295)

Therefore, the series in (1.8.287) converges and hence λ ∈ ρ(A), proving (1.8.290).

Figure 1.11:

Thus

∥R(λ,A)∥ ≤
∞∑

n=0
∥R(σ + iℑλ,A)∥n+1|σ + iℑλ− λ|n (1.8.296)

< ∥R(σ + iℑλ,A)∥ 1
1− k .

Since, for the complex number σ + iℑλ ∈ ρ(A), inequality (1.8.281) holds, (1.8.296) becomes

∥R(λ,A)∥ < C

|ℑλ|(1− k) . (1.8.297)
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Moreover, for λ in the region |ℜλ| < |ℑλ|
C , we have

C

|ℑλ|
<

(C2 + 1)1/2

|λ|
. (1.8.298)

On the other hand, putting δ = arctan( 1
C ) and defining A2 = {λ ∈ C; | arg λ| < π

2 + δ} ∪ {0} as
in Figure 1.11, we see that if λ ∈ A2 \A1, then (1.8.282) yields

∥R(λ,A)∥ < M

|λ|
, (1.8.299)

where M = max
{

(C2+1)1/2

(1−k) , C1

}
> 0, which proves (c).

(c)⇒ (d)

From the hypotheses in (c) and Theorem 1.63 we have

T (t) = 1
2πi

∫
Γ
eλtR(λ,A) dλ, ∀t > 0, (1.8.300)

where Γ = {ρei(θ+ π
2 ); 0 < ρ < +∞}∪{−ρe−i(θ+ π

2 ); −∞ < ρ < 0} ⊂ Σ, with 0 < θ < δ (see Figure 1.12).

Figure 1.12:

Let 0 < r < +∞ be fixed but arbitrary. Define

Tr(t) = 1
2πi

∫
{ρei(θ+ π

2 ); 0<ρ<r}∪{−ρe−i(θ+ π
2 ); −r<ρ<0}

R(λ,A)eλt dλ, t > 0. (1.8.301)

Then Tr(t) is differentiable and

T ′
r(t) = 1

2πi

∫
{ρei(θ+ π

2 ); 0<ρ<r}∪{−ρe−i(θ+ π
2 ); −r<ρ<0}

λR(λ,A)eλt dλ, t > 0. (1.8.302)

Furthermore,

∥T ′
r(t)∥ ≤ M

2π

∫
{ρei(θ+ π

2 ); 0<ρ<r}∪{−ρe−i(θ+ π
2 ); −r<ρ<0}

|eλt| dλ. (1.8.303)

Computing the integral above on each of the sets and using that the cosine function is even, we
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obtain ∫
{ρei(θ+ π

2 ); 0<ρ<r}∪{−ρe−i(θ+ π
2 ); −r<ρ<0}

|eλt| dλ = 2
∫ r

0
eρt cos( π

2 +θ) dρ

= 2
t cos( π

2 + θ)
(
ert cos( π

2 +θ) − 1
)
. (1.8.304)

From (1.8.303) and (1.8.304) we conclude that

∥T ′
r(t)∥ ≤ M

πt cos( π
2 + θ)

(
ert cos( π

2 +θ) − 1
)
. (1.8.305)

Thus the integral
∫

Γ λe
λtR(λ,A) dλ converges uniformly, for every t > 0. Hence (1.8.300) is

differentiable for all t > 0 and

T ′(t) = 1
2πi

∫
Γ
λeλtR(λ,A) dλ, ∀t > 0. (1.8.306)

From (1.8.305) we obtain

∥AT (t)∥ = ∥T ′(t)∥ ≤ C

t
, ∀t > 0, (1.8.307)

with C = M
π cos δ > 0, which proves (d).

(d)⇒ (a)

Since T is differentiable, it follows from Exercise 1.7.1 that

T (n)(t) =
(
T ′(t/n)

)n
, ∀n ∈ N∗, ∀t > 0. (1.8.308)

Hence, by the hypothesis in (d) and by (1.8.308), we have

∥T (n)(t)∥ ≤ ∥T ′(t/n)∥n ≤
(
C

t

)n

, ∀t > 0. (1.8.309)

We claim that

enn! ≥ nn, ∀n ∈ N∗. (1.8.310)

Indeed, we prove this by induction on n. Clearly, for n = 1, (1.8.310) holds because e > 1. Assume
now that (1.8.310) is valid for some n > 1, that is,

n!en ≥ nn. (1.8.311)

We prove that (1.8.311) is valid for n+ 1. Equivalently, we shall prove that (n+ 1) + ln((n+ 1)!) ≥
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(n+ 1) ln(n+ 1). In fact,

(n+ 1) + ln((n+ 1)!) = n+ 1 + ln((n+ 1)n!)
= n+ 1 + ln(n+ 1) + lnn!
= (n+ lnn!) + 1 + ln(n+ 1)
≥ n lnn+ 1 + ln(n+ 1)

= ln(n+ 1) + 1 + n

∫ n

1

1
x
dx

≥ ln(n+ 1) + n

∫ n

1

1
x
dx+ n

∫ n+1

n

1
x
dx

= ln(n+ 1) + n

∫ n+1

1

1
n+ 1

1
x
dx

= ln(n+ 1) + n(ln(n+ 1)− ln(1))
= (n+ 1) ln(n+ 1),

which proves the claim.

From (1.8.309) and (1.8.310) we conclude that

1
n!∥T

(n)(t)∥ ≤
(
Ce

t

)n

. (1.8.312)

Now consider the power series

T (z) = T (t) +
∞∑

n=1

T (n)(t)
n! (z − t)n, (1.8.313)

with t > 0 and z ∈ C. Proceeding formally, from (1.8.312) we infer∥∥∥∥T (n)(t)
n! (z − t)n

∥∥∥∥ ≤ ∥T (n)(t)∥
n! |z − t|n ≤

(
Ce|z − t|

t

)n

. (1.8.314)

Thus, from (1.8.314) we conclude that the series in (1.8.313) converges uniformly in L(X) for every
0 < k < 1 and all z ∈ C such that

Ce|z − t|
t

< k ⇐⇒ |z − t| < tk

Ce
. (1.8.315)

Now, setting δ = arctan(1/Ce) we obtain 0 < δ < π/2, and defining

∆ = {z ∈ C; | arg(z)| < δ}, (1.8.316)

we see that the series in (1.8.313) converges uniformly in ∆ (see Figure 1.13).

Indeed, let z ∈ ∆. Then

| arg(z)| < arctan
( 1
Ce

)
⇐⇒ | tan(arg z)| < 1

Ce
(1.8.317)

⇐⇒ |ℑz|
ℜz

<
1
Ce

⇐⇒ |ℑz| < ℜz
Ce

.
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Figure 1.13:

From (1.8.317) it follows that there exists k ∈ (0, 1) such that

|ℑz| < k
ℜz
Ce

. (1.8.318)

Choosing t = ℜz > 0, we deduce

|z − t| = |ℑz| < k
ℜz
Ce

= kt

Ce
, (1.8.319)

which proves the assertion. Moreover, if 0 < δ′ < δ, then

∆δ′ = {z ∈ C; | arg z| ≤ δ′} ⊂ ∆, (1.8.320)

and hence there exists 0 < k0 < 1 such that

δ′ < arctan
( k0

Ce

)
< δ, (1.8.321)

and, therefore, for z ∈ ∆δ′ , we infer

|z − t| ≤ tk0

Ce
⇐⇒ Ce|z − t|

t
< k0, (1.8.322)

with t = ℜz > 0. Thus, by (1.8.314) and (1.8.322),

∥T (z)∥ ≤
∞∑

n=0

∥∥∥∥T (n)(t)
n! (z − t)n

∥∥∥∥
≤

∞∑
n=0

(
Ce|z − t|

t

)n

≤
∞∑

n=0
kn

0 = 1
1− k0

, ∀z ∈ ∆δ′ ,

that is, {T (z)}z∈∆ is uniformly bounded in every closed subsector of ∆, which completes the proof. 2

1.8.1 Exercises

1.8.1) Let T (t) be a C0–semigroup which is differentiable for t > 0, and let A be the infinitesimal
generator of T (t). If

lim sup
t→0

t∥AT (t)∥ < 1
e
,
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prove that A is a bounded operator and that T (t) can be extended analytically to the whole complex
plane.

1.8.2) Let A be the infinitesimal generator of a C0–semigroup T (t) satisfying ∥T (t)∥ ≤ Meωt.
Prove that T (t) is analytic if and only if there exist constants C > 0 and Γ > 0 such that

∥AR(λ,A)n+1∥ ≤ C

nλn
for λ > nΓ, n = 1, 2, . . .

1.9 Spectral Properties

Let T (t) be a C0–semigroup on a Banach space X and let A be its infinitesimal generator. In
what follows we are interested in the relationship between the spectrum of A, σ(A) = C\ρ(A), and the
spectrum of each operator T (t), t ≥ 0. From a purely formal point of view, one might expect the relation
σ(T (t)) = etσ(A). However, this is not true in general. There are counterexamples (see Exercise 1.9.1,
and also Pazy [83], p. 44) which justify this assertion.

Proposition 1.68 Let T (t) be a C0–semigroup and A its infinitesimal generator. Define

Bλ(t)x =
∫ t

0
eλ(t−s)T (s)x ds.

Then

(i) (λI −A)Bλ(t)x = eλtx− T (t)x, for all x ∈ X.

(ii) Bλ(t)(λI −A)x = eλtx− T (t)x, for all x ∈ D(A).

Proof: First observe that Bλ(t), for each fixed λ and t, is a bounded linear operator on X. Linearity is
immediate, so it remains to show boundedness. In fact, we have

∥Bλ(t)∥L(X) = sup
x∈X

∥x∥=1

∥∥∥∥∫ t

0
eλ(t−s)T (s)x ds

∥∥∥∥
≤ sup

x∈X
∥x∥=1

∫ t

0
|eλ(t−s)| ∥T (s)∥ ds ≤M,

where M = M(λ, t), which proves the claim. Moreover, for every x ∈ X we have(
T (h)− I

h

)
Bλ(t)x = 1

h

∫ t

0
eλ(t−s)T (h+ s)x ds (1.9.323)

− 1
h

∫ t

0
eλ(t−s)T (s)x ds.

From the first integral on the right-hand side of (1.9.323), we obtain

1
h

∫ t

0
eλ(t−s)T (h+ s)x ds =︸︷︷︸

s̃=h+s

1
h

∫ h+t

h

eλ(t−s̃+h)T (s̃)x ds̃ (1.9.324)

= eλh

h

∫ h+t

h

eλ(t−s̃)T (s̃)x ds̃.
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Thus, from (1.9.323) and (1.9.324) we deduce(
T (h)− I

h

)
Bλ(t)x =

(
eλh − 1

h

)∫ t+h

h

eλ(t−s)T (s)x ds

+ 1
h

∫ t+h

t

eλ(t−s)T (s)x ds− 1
h

∫ h

0
eλ(t−s)T (s)x ds.

Taking the limit as h→ 0+ in the last equality, and using the Mean Value Theorem (see Exercise
1.1.5 (v)), we obtain

lim
h→0+

(
T (h)− I

h

)
Bλ(t)x = λBλ(t)x+ T (t)x− eλtx. (1.9.325)

From (1.9.325) it follows that Bλ(t)x ∈ D(A) and that

ABλ(t)x = λBλ(t)x+ T (t)x− eλtx,

or equivalently,

(λI −A)Bλ(t)x =
(
eλt − T (t)

)
x, for all x ∈ X, (1.9.326)

which proves item (i).

Now let x ∈ D(A). Then limh→0

(
T (h)−I

h

)
x exists and limh→0

(
T (h)−I

h

)
x = Ax. Proceeding with

Bλ(t)
(

T (h)−I
h

)
x in a way analogous to the previous argument, we obtain

Bλ(t)Ax = λBλ(t)x+ T (t)x− eλtx,

or equivalently,
Bλ(t)(λI −A)x = eλtx− T (t)x.

This establishes (ii).

From what we have seen above, we also obtain

Bλ(t)Ax = ABλ(t)x, for all x ∈ D(A), (1.9.327)

that is, the operators Bλ and A commute on D(A). 2

Proposition 1.69 Let T (t) be a C0–semigroup and A its infinitesimal generator. Then

σ(T (t)) ⊃ etσ(A), for t ≥ 0.

|

Proof: Let t ≥ 0. If t = 0, then

etσ(A) = {β ∈ C; β = etλ; λ ∈ σ(A) and t = 0} = {1}.

Moreover, note that 1 is an eigenvalue of T (0) = I, hence 1 ∈ σ(T (t)), and therefore etσ(A) ⊂ σ(T (t)).

If t ̸= 0, we have two cases to consider: ρ(T (t)) ̸= ∅ or ρ(T (t)) = ∅. If ρ(T (t)) = ∅, then σ(T (t)) = C
and the inclusion etσ(A) ⊂ σ(T (t)) is trivial. Now assume that t ̸= 0 and ρ(T (t)) ̸= ∅. Then there exists
β ∈ ρ(T (t)), and we write β in the form β = eλt. Let eλt ∈ ρ(T (t)) and set Q = (eλtI − T (t))−1. First
note that the operator Bλ(t) defined in Proposition 1.68 and the operator Q defined above commute (we
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leave this verification to the reader; see Exercise 1.9.2). It follows from Proposition 1.68 that

(λI −A)Bλ(t)Qx = x, for all x ∈ X, (1.9.328)

and

QBλ(t)(λI −A)x = x, for all x ∈ D(A). (1.9.329)

Since Bλ(t) and Q commute, we have

Bλ(t)Q(λI −A)x = (λI −A)Bλ(t)Qx = x, for all x ∈ D(A). (1.9.330)

Therefore, as Bλ(t)Q ∈ L(X) and Bλ(t)Q = (λI − A)−1, we conclude that λ ∈ ρ(A) and hence
eλt ∈ eρ(A)t. Thus ρ(T (t)) ⊂ eρ(A)t, and consequently

eσ(A)t ⊂ σ(T (t)), for all t ≥ 0,

which completes the proof. 2

Recall that the spectrum of A consists of three mutually disjoint parts: the point (or discrete)
spectrum σp(A), the continuous spectrum σc(A), and the residual spectrum σr(A), which are defined as
follows: λ ∈ σp(A) if λI − A is not injective; λ ∈ σc(A) if λI − A is injective, λI − A is not surjective
and its range is dense in X; and finally λ ∈ σr(A) if (λI − A) is injective but its range is not dense in
X. From these definitions it is clear that σp(A), σc(A) and σr(A) are mutually disjoint and their union
is σ(A). In summary:

σp(A) = {λ ∈ C; (λI −A) is not injective},
σc(A) = {λ ∈ C; (λI −A) is injective, not surjective, but its range is dense},
σr(A) = {λ ∈ C; (λI −A) is injective but its range is not dense}.

Theorem 1.70 Let T (t) be a C0–semigroup and A its infinitesimal generator. Then

etσp(A) ⊂ σp(T (t)) ⊂ etσp(A) ∪ {0},

or more precisely, if λ ∈ σp(A), then eλt ∈ σp(T (t)); and if eλt ∈ σp(T (t)), there exists k ∈ N such that
λk = λ+ 2πik/t ∈ σp(A).

Proof: We first show that

etσp(A) ⊂ σp(T (t)). (1.9.331)

Indeed, if λ ∈ σp(A), then there exists x0 ∈ D(A), x0 ̸= 0, such that (λI − A)x0 = 0. From the
identity

Bλ(t)(λI −A)x =
(
eλtI − T (t)

)
x, for all x ∈ D(A) (see Proposition 1.69),

we obtain (
eλtI − T (t)

)
x0 = 0,

and hence eλt ∈ σp(T (t)), which proves (1.9.331).
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We now prove that

σp(T (t)) ⊂ etσp(A) ∪ {0}. (1.9.332)

Indeed, let β ∈ σp(T (t)). If β = 0, the inclusion is trivial. If β ̸= 0, we may write β as β = eλt ∈
σp(T (t)) and choose x0 ̸= 0 such that

(
eλtI − T (t)

)
x0 = 0. We claim that the continuous function f

defined by f(s) = e−λsT (s)x0 is periodic with period t, i.e., f(s+ t) = f(s). Indeed, first observe that(
eλtI − T (t)

)
x0 = 0⇐⇒ T (t)x0 = eλtx0.

Then

f(s+ t) = e−λ(s+t)T (s+ t)x0 = e−λse−λtT (s)T (t)x0

= e−λsT (s)e−λtT (t)x0

= e−λsT (s)Ix0 = e−λsT (s)x0 = f(s),

which proves the claim. Since this function is not identically zero, at least one of its Fourier coefficients
must be nonzero. Hence there exists k ∈ N such that

xk =
∫ t

0
e−(2kπi/t)s(e−λsT (s)x0) ds ̸= 0. (1.9.333)

We shall show that λk = λ + 2πik
t is an eigenvalue of A. Indeed, since T (t) is a C0–semigroup,

there exist constants M ≥ 1 and ω ∈ R such that

∥T (t)∥ ≤Meωt.

By Proposition 1.34, for every µ ∈ C with ℜµ > ω, we have µ ∈ ρ(A) and, moreover,

R(µ,A)x0 =
∫ ∞

0
e−µsT (s)x0 ds =

∞∑
n=0

∫ (n+1)t

nt

e−µsT (s)x0 ds (1.9.334)

=
∞∑

n=0

∫ t

0
e−µ(r+nt)T (r + nt)x0 dr (1.9.335)

=
∞∑

n=0
en(λ−µ)t

∫ t

0
e−µre−λntT (r + nt)x0 dr

=
∞∑

n=0
en(λ−µ)t

∫ t

0
e−µreλre−λ(r+nt)T (r + nt)x0 dr

=
∞∑

n=0
en(λ−µ)t

∫ t

0
e−µreλre−λrT (r)x0 dr

=
∞∑

n=0
en(λ−µ)t

∫ t

0
e−µsT (s)x0 ds

=
(
1− e(λ−µ)t

)−1
∫ t

0
e−µsT (s)x0 ds.

The last integral on the right-hand side of (1.9.334) is an entire function, and therefore R(µ,A)x0
can be extended to a meromorphic function with poles at λn = λ+ 2πin

t , n ∈ N (see [44], pp. 169, 184).

We claim that

lim
µ→λk

(µ− λk)R(µ,A)x0 = xk. (1.9.336)
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Indeed, from (1.9.334) we can write

(µ− λk)R(µ,A)x0 = (µ− λk)
(
1− e(λ−µ)t

)−1
∫ t

0
e−µsT (s)x0 ds.

Passing to the limit as µ→ λk in the last identity and using L’Hôpital’s Rule, we obtain

lim
µ→λk

(µ− λk)R(µ,A)x0 = 1
t

∫ t

0
e−λksT (s)x0 ds,

and, recalling that λk = λ+ 2πik
t , we have

lim
µ→λk

(µ− λk)R(µ,A)x0 = 1
t

∫ t

0
e−(2πik/t)s(e−λsT (s)x0) ds = xk,

which proves (1.9.336).

From the proof of Proposition 1.34 we know that, for every x ∈ D(A), AR(µ,A)x = R(µ,A)Ax =
µR(µ,A)x− x. Thus

(λkI −A)
[
(µ− λk)R(µ,A)x0

]
= λk(µ− λk)R(µ,A)x0 − µ(µ− λk)R(µ,A)x0 + (µ− λk)x0.

Letting µ→ λk and using (1.9.336), we obtain

lim
µ→λk

(λkI −A)
[
(µ− λk)R(µ,A)x0

]
= λkxk − λkxk + 0 = 0.

Since A is closed and

{(µ− λk)R(µ,A)x0} ⊂ D(A),
lim

µ→λk

(µ− λk)R(µ,A)x0 = xk,

lim
µ→λk

A(µ− λk)R(µ,A)x0 = λkxk,

it follows that xk ∈ D(A) and Axk = λkxk. Hence λk is an eigenvalue of A, that is, λk ∈ σp(A), and
therefore eλkt ∈ etσp(A). But

eλt = eλkte2πki = eλkt.

Thus eλt ∈ etσp(A), which proves the result. 2

1.9.1 Exercises

1.9.1) Prove that, in general, the relation σ(T (t)) = etσ(A) does not hold by constructing a
counterexample.

1.9.2) Prove that the operators Bλ and Q = (eλtI − T (t))−1 given in Propositions 1.68 and 1.69
commute.

1.9.3) Let T (t) be a C0–semigroup and A its infinitesimal generator. Prove that:

(i) If λ ∈ σr(A) and none of the λn = λ+ 2πin/t, n ∈ N, belongs to σp(A), then eλt ∈ σr(T (t)).

(ii) If eλt ∈ σr(T (t)), then none of the λn = λ+ 2πin/t, n ∈ N, belongs to σp(A) and there exists
k ∈ N such that λk ∈ σr(A).

1.9.4) Let T (t) be a C0–semigroup and A its infinitesimal generator. If λ ∈ σc(A) and none of the

- 111 -



1 Linear Semigroups

λn = λ+ 2πin/t belongs to σp(A) ∪ σr(A), prove that eλt ∈ σc(T (t)).
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Chapter 2

The Abstract Cauchy Problem

2.1 The Homogeneous Problem

Let (X, ∥ · ∥) be a Banach space, A : D(A) ⊂ X → X a linear operator on X, and for each u0 ∈ X
consider the Abstract Cauchy Problem:

du

dt
(t) = Au(t), t > 0,

u(0) = u0,
(2.1.1)

Definition 2.1 A function u : R+ → X is called

(a) a classical solution (or strong solution) of (2.1.1) if:

i) u is continuous for all t ≥ 0;
ii) u is continuously differentiable for t > 0;

iii) u(t) ∈ D(A) for all t > 0;
iv) u satisfies (2.1.1).

(b) a mild solution (or generalised solution) of (2.1.1) if:

i) u is continuous for all t ≥ 0;

ii)
∫ t

0
u(s) ds ∈ D(A) for all t ≥ 0;

iii) u(t) = A

∫ t

0
u(s) ds+ u0.

The second condition appearing in (2.1.1) is called the initial condition of the problem, and u0 its
initial value. Note that, since u(t) ∈ D(A) for all t > 0 and u is continuous at t = 0, problem (2.1.1)
cannot admit a classical solution if u0 /∈ D(A).

Lemma 2.2 Let A be a closed operator. For each x ∈ D(A), set ∥x∥D(A) = ∥x∥X + ∥Ax∥X . Then
∥ · ∥D(A) is a norm on D(A) and

(
D(A), ∥ · ∥D(A)

)
is a Banach space. The norm ∥ · ∥D(A) is called the

graph norm.

Proof: The verification that ∥ · ∥D(A) is a norm on D(A) is left to the reader. We shall prove that(
D(A), ∥ · ∥D(A)

)
is a Banach space. To this end, let (xn)n∈N be a Cauchy sequence in

(
D(A), ∥ · ∥D(A)

)
,

where ∥x∥D(A) = ∥x∥X + ∥Ax∥X . Then

∥xn − xm∥D(A) → 0 as m,n→ +∞.
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Hence
∥xn − xm∥D(A) = ∥xn − xm∥X + ∥Axn −Axm∥X → 0 as m,n→ +∞.

Thus ∥xn−xm∥X → 0 and ∥Axn−Axm∥X → 0 as m,n→ +∞. Since X is Banach, there exist x, y ∈ X
such that xn → x and Axn → y. However, as (xn, Axn) ∈ G(A) and G(A) is closed, we get (x, y) ∈ G(A),
that is, y = Ax. Therefore xn → x in

(
D(A), ∥ · ∥D(A)

)
. 2

Theorem 2.3 Let A be the infinitesimal generator of a C0–semigroup S. Then:

(a) for each u0 ∈ D(A) there exists a unique function

u ∈ C0([0,+∞);D(A)) ∩ C1([0,+∞);X),

called the regular solution of the Cauchy problem in (2.1.1). Moreover, if S is a contraction semi-
group, then

∥u(t)∥ ≤ ∥u0∥ and
∥∥∥∥dudt (t)

∥∥∥∥ = ∥Au(t)∥ ≤ ∥Au0∥ ∀t ≥ 0.

(b) If u0 ∈ X, there exists a unique mild solution of the Cauchy problem in (2.1.1).

Proof: (a) Let u0 ∈ D(A) be given and set

u(t) = S(t)u0, t ≥ 0. (2.1.2)

By Proposition 1.30 we have u(t) = S(t)u0 ∈ D(A) for all t ≥ 0. Moreover,

du

dt
(t) = AS(t)u0 = S(t)Au0, ∀t ≥ 0. (2.1.3)

From (2.1.2) we obtain, in particular,

u(0) = S(0)u0 = u0. (2.1.4)

From (2.1.3) and (2.1.4) we conclude that the map u defined in (2.1.2) indeed satisfies (2.1.1).
Now, since S is a strongly continuous semigroup, if t0 ∈ [0,+∞) and tn → t0 in [0,+∞), then by (2.1.2)
and (2.1.3) we have

∥u(tn)− u(t0)∥ → 0 as n→ +∞, (2.1.5)

and
∥Au(tn)−Au(t0)∥ → 0 as n→ +∞, (2.1.6)

that is,
∥u(tn)− u(t0)∥D(A) = ∥u(tn)− u(t0)∥X + ∥Au(tn)−Au(t0)∥X → 0

as n→ +∞, which shows that
u ∈ C0([0,+∞);D(A)

)
.

Also, by (2.1.3), (2.1.5) and (2.1.6), we obtain

u ∈ C0([0,+∞);X
)

and du

dt
∈ C0([0,+∞);X

)
,

that is,
u ∈ C0([0,+∞);D(A)

)
∩ C1([0,+∞);X

)
,

which proves that the map u defined in (2.1.2) is indeed a strong solution of (2.1.1).

We now prove uniqueness. Let u and v be two solutions of (2.1.1). Then w = u − v satisfies the
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Cauchy problem 
dw

dt
(t) = Aw(t), t > 0,

w(0) = 0.
(2.1.7)

Let t > 0 and 0 ≤ s < t < +∞. If |h| < t− s, then

d

ds
[S(t− s)w(s)] = lim

h→0

S(t− s− h)w(s+ h)− S(t− s)w(s)
h

=

= lim
h→0

{
S(t− s− h)w(s+ h)− S(t− s− h)w(s) + S(t− s− h)w(s)− S(t− s)w(s)

h

}
.

(2.1.8)

We claim that

lim
h→0

S(t− s− h)
(
w(s+ h)− w(s)

h

)
= S(t− s)w′(s) = S(t− s)Aw(s), (2.1.9)

where the last equality follows from the fact that w(t) is a solution of (2.1.7). Indeed,∥∥∥S(t− s− h)
(

w(s+h)−w(s)
h

)
− S(t− s)w′(s)

∥∥∥ =

=
∥∥∥S(t− s− h)

(
w(s+h)−w(s)

h

)
− S(t− s− h)w′(s) + S(t− s− h)w′(s)− S(t− s)w′(s)

∥∥∥
≤
∥∥∥S(t− s− h)

(
w(s+h)−w(s)

h − w′(s)
)∥∥∥+ ∥S(t− s− h)w′(s)− S(t− s)w′(s)∥ → 0

as h→ 0, since on bounded intervals ∥S(t− s− h)∥ ≤M ,

lim
h→0

w(s+ h)− w(s)
h

= w′(s),

and S is strongly continuous. Hence (2.1.9) is proved.

Next, we prove that

lim
h→0

(
S(t− s− h)− S(t− s)

h

)
w(s) = −S(t− s)Aw(s). (2.1.10)

Indeed, we distinguish two cases: h < 0 and h > 0.

(i) h < 0. In this case −h > 0 and thus(
S(t− s− h)− S(t− s)

h

)
w(s) =

(
S(t− s)S(−h)− S(t− s)

h

)
w(s)

= −S(t− s)
(
S(−h)− I
−h

)
w(s)→ −S(t− s)Aw(s)

as h→ 0−, since S(t− s) ∈ L(X) and lim
h→0−

(
S(−h)− I
−h

)
w(s) = Aw(s).
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(ii) h > 0. In this case,(
S(t− s− h)− S(t− s)

h

)
w(s) =S(t− s− h)

(
I − S(h)

h

)
w(s)

= − S(t− s− h)
(
I − S(h)
−h

)
w(s)

= − S(t− s− h)
(
S(h)− I

h

)
w(s)

= − S(t− s− h)
[(

S(h)− I
h

)
w(s)−Aw(s) +Aw(s)

]
= − S(t− s− h)

[(
S(h)− I

h

)
w(s)−Aw(s)

]
− S(t− s− h)Aw(s),

and, since S is strongly continuous, ∥S(t− s− h)∥ is bounded on bounded intervals, and

lim
h→0+

(
S(h)− I

h

)
w(s) = Aw(s),

we obtain
lim

h→0+

(
S(t− s− h)− S(t− s)

h

)
w(s) = −S(t− s)Aw(s).

Thus (2.1.10) is proved.

Therefore, from (2.1.8), (2.1.9) and (2.1.10), for 0 ≤ s ≤ t < +∞ we obtain

d

ds

[
S(t− s)w(s)

]
= S(t− s)Aw(s)− S(t− s)Aw(s) = 0,

which implies that
S(t− s)w(s) = c(t), (2.1.11)

where c(t) is a constant with respect to s. If sn → t, then S(t− sn)w(sn)→ S(0)w(t), hence

S(0)w(t) = c(t) ∀t ≥ 0,

and since S(0) = I we get
w(t) = c(t) ∀t ≥ 0. (2.1.12)

On the other hand, taking s = 0 in (2.1.11) we obtain

S(t)w(0) = c(t) ∀t ≥ 0,

and since w(0) = 0 it follows that c(t) = 0 for all t ≥ 0. Returning to (2.1.12) we conclude that w(t) = 0
for all t ≥ 0, that is, u(t) = v(t) for all t ≥ 0, which proves uniqueness.

Finally, if S is a contraction semigroup, then from (2.1.2) and (2.1.3) we have

∥u(t)∥ = ∥S(t)u0∥ ≤ ∥S(t)∥ ∥u0∥ ≤ ∥u0∥ ∀t ≥ 0,

and ∥∥∥∥dudt (t)
∥∥∥∥ = ∥AS(t)u0∥ = ∥S(t)Au0∥ ≤ ∥S(t)∥ ∥Au0∥ ≤ ∥Au0∥, ∀t ≥ 0,

which completes the proof of (a).

(b) By Proposition 1.30, item (iii), if S is a C0–semigroup with infinitesimal generator A, then,
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given x ∈ X, ∫ t

0
S(ξ)x dξ ∈ D(A) and A

∫ t

0
S(ξ)x dξ = S(t)x− x,

that is,

S(t)x = A

∫ t

0
S(ξ)x dξ + x, for x ∈ X. (2.1.13)

Let u(t) = S(t)u0. From (2.1.13) we have u(t) = A
∫ t

0 u(s) ds+u0, that is, u satisfies condition (iii)
in Definition 2.1 (b). Moreover, by item (iii) of Proposition 1.30, we have

∫ t

0 u(s) ds ∈ D(A), so condition
(ii) in the definition of mild solution is satisfied. Finally, we check condition (i), i.e., the continuity of
u(t) for all t ≥ 0.

Let tn → t0 in R+. Then

∥u(tn)− u(t0)∥ = ∥S(tn)u0 − S(t0)u0∥ → 0,

as n → +∞, since S is strongly continuous. Hence u(tn) → u(t0), which implies that u is continuous
for all t ≥ 0, i.e., u ∈ C0([0,+∞);X). Thus u(t) = S(t)u0 is a mild solution of the Cauchy problem in
(2.1.1).

To complete the proof, we show uniqueness of this mild solution, in two steps.

Step 1: u0 ≡ 0.

In this case, it is immediate that u(t) ≡ 0 is a mild solution of (2.1.1). Suppose that u is a mild
solution of (2.1.1) for u0 ≡ 0 and fix t > 0. Then, for each s ∈ (0, t),

d

ds

(
S(t− s)

∫ s

0
u(r) dr

)
= S(t− s)u(s)− S(t− s)A

∫ s

0
u(r) dr = 0. (2.1.14)

Integrating (2.1.14) over (0, t) with respect to s we obtain∫ t

0
u(r) dr = 0,

and applying A to both sides we conclude that u(t) ≡ 0 on (0, t) and, since u(0) = 0, we have u ≡ 0.
Hence, if u is a mild solution of (2.1.1) with u0 ≡ 0, then u ≡ 0.

Step 2: Let v, w be mild solutions of (2.1.1) and consider u(t) = v(t)−w(t) for t ∈ R+. Note that

A

∫ t

0
u(s) ds = A

∫ t

0
v(s) ds−A

∫ t

0
w(s) ds = v(t)− w(t) = u(t), for u0 ≡ 0,

that is, u satisfies condition (iii) in the definition of mild solution. In addition, u is continuous (for all
t ≥ 0) since v and w are, and also

∫ t

0 u(s) ds ∈ D(A). Thus u is a mild solution of (2.1.1) with u0 ≡ 0.
By Step 1 we conclude that u ≡ 0, i.e., v(t) = w(t) for all t ≥ 0. This proves uniqueness of the mild
solution and completes the proof of the theorem. 2

0.4 cm We now complete Theorem 2.3 by showing that the solution u of (2.1.1) is more regular
under additional assumptions on the initial data. Recall that, since A is the infinitesimal generator of a
C0–semigroup, it is a closed operator. For each k ∈ N, k ≥ 2, we define

D(Ak) = {v ∈ D(Ak−1); Ak−1v ∈ D(A)}, k ∈ N, k ≥ 2. (2.1.15)
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We shall prove that D(Ak) is a Banach space with norm

∥u∥D(Ak) =

 k∑
j=0
∥Aju∥2

X

1/2

. (2.1.16)

Indeed, let {uν}ν∈N be a Cauchy sequence in D(Ak) and let µ, ν ∈ N with ν > µ. Then, as
ν, µ→ +∞,

∥uν − uµ∥2
D(Ak) =

k∑
j=0
∥Ajuν −Ajuµ∥2

X → 0.

From this convergence it follows that for each j = 0, 1, . . . , k the sequence {Ajuν}ν∈N is Cauchy in
X. Hence, for each j ∈ {0, 1, . . . , k} there exists uj ∈ X such that, as ν → +∞,

Ajuν → uj in X.

We now show that u0 ∈ D(Ak). Since A is closed, we have

u0 ∈ D(A) and Au0 = u1. (2.1.17)

Similarly,
u1 = Au0 and A2u0 = u2. (2.1.18)

Proceeding by induction, we obtain

uj−1 = Aj−1u0 ∈ D(A) and Aju0 = uj , j = 1, . . . , k,

which proves the claim.

Theorem 2.4 Let A be the infinitesimal generator of a C0–semigroup S such that A ∈ G(1, w). Suppose
that u0 ∈ D(Ak), with k ∈ N, k ≥ 2. Then the solution of problem (2.1.1) also satisfies

u ∈ Ck−j([0,∞);D(Aj)) for j = 0, 1, . . . , k.

Proof: We start with the case k = 2 and let u0 ∈ D(A2). Consider the initial value problem
dv

dt
(t) = Av(t),

v(0) = Au0.
(2.1.19)

By Theorem 2.3, v(t) = S(t)Au0 is the unique solution of (2.1.19) and satisfies

v ∈ C([0,∞);D(A)) ∩ C1([0,∞);X).

Since u is the solution of (2.1.1) with initial data u0, we have

v(t) = S(t)Au0 = AS(t)u0 = Au(t) = du

dt
(t), ∀t ≥ 0, (2.1.20)

that is,
du

dt
∈ C([0,∞);D(A)) ∩ C1([0,∞);X),

and therefore
u ∈ C1([0,∞);D(A)) ∩ C2([0,∞);X). (2.1.21)
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It remains to show that
u ∈ C([0,∞);D(A2)). (2.1.22)

Indeed, since u is the solution of (2.1.1), we have

u = S(·)u0 ∈ C([0,∞);D(A)).

Thus, if {tn} ⊂ [0,∞) and t0 ∈ [0,∞) are such that tn → t0, then

∥u(tn)− u(t0)∥D(A) = ∥u(tn)− u(t0)∥X + ∥Au(tn)−Au(t0)∥X −→ 0. (2.1.23)

Moreover, since v ∈ C([0,∞);D(A)), we have

∥v(tn)− v(t0)∥D(A) = ∥v(tn)− v(t0)∥X + ∥Av(tn)−Av(t0)∥X −→ 0,

and, as v = Au, it follows that

∥A2u(tn)−A2u(t0)∥X = ∥Av(tn)−Av(t0)∥X −→ 0.

Therefore

∥u(tn)− u(t0)∥D(A2) = ∥u(tn)− u(t0)∥X + ∥Au(tn)−Au(t0)∥X

+∥A2u(tn)−A2u(t0)∥X −→ 0, (2.1.24)

and hence u ∈ C([0,∞);D(A2)). This proves the claim for k = 2.

Now suppose that the result holds for k − 1 and we prove it for k. That is, if u0 ∈ D(Ak), then

u ∈
k⋂

j=0
Ck−j([0,∞);D(Aj)).

Indeed, we have Au0 ∈ D(Ak−1) and, by the induction hypothesis,

v = S(·)Au0 ∈
k−1⋂
j=0

Ck−j−1([0,∞);D(Aj)). (2.1.25)

But
v(t) = S(t)Au0 = du

dt
(t),

where u(t) = S(t)u0, and hence

u ∈
k−1⋂
j=0

Ck−j([0,∞);D(Aj)).

It remains to show that
u ∈ C([0,∞);D(Ak)). (2.1.26)

From (2.1.25), with j = k − 1, we have

Au = v ∈ C([0,∞);D(Ak−1)),
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so u(t) ∈ D(Ak) for all t ≥ 0, and moreover

∥Au(tn)−Au(t0)∥D(Ak−1) = ∥Au(tn)−Au(t0)∥X + · · ·
+∥Ak−1(Au(tn))−Ak−1(Au(t0))∥X

= ∥Au(tn)−Au(t0)∥X + · · ·+ ∥Aku(tn)−Aku(t0)∥X

−→ 0, (2.1.27)

as tn → t0 in [0,∞). By Theorem 2.3, u ∈ C([0,∞), D(A)), hence

∥u(tn)− u(t0)∥X −→ 0.

Thus
∥u(tn)− u(t0)∥D(Ak) −→ 0

as tn → t0, which proves (2.1.26) and completes the proof of the theorem. 2

Theorem 2.5 If A is the infinitesimal generator of a differentiable C0–semigroup, then for each u0 ∈ X
there exists a unique function

u ∈ C0((0,+∞);D(A)) ∩ C0([0,+∞);X) ∩ C1((0,+∞);X)

which satisfies 
du

dt
(t) = Au(t), in (0,+∞),

u(0) = u0,

and
u ∈ Ck((0,+∞);D(Al)) ∀k, l ∈ N.

Proof: Defining u(t) = S(t)u0 for all t > 0, we obtain
du

dt
(t) = Au(t), in (0,+∞),

u(0) = u0,

since S is a differentiable semigroup. Moreover, by Theorem 1.60, the map

t ∈ (0,∞) 7−→ AS(t)u0 = du

dt
(t)

is continuous, hence ∥∥∥∥dudt (tn)− du

dt
(t0)

∥∥∥∥
X

= ∥AS(tn)u0 −AS(t0)u0∥X −→ 0,

as tn → t0 in (0,∞). Also,

∥u(tn)− u(t0)∥X = ∥S(tn)u0 − S(t0)u0∥X −→ 0,

and we conclude that
u ∈ C0((0,∞);D(A)) ∩ C1((0,∞);X).

Since S is a C0–semigroup, we also have

u ∈ C0([0,∞);X),
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hence
u ∈ C0((0,+∞);D(A)) ∩ C0([0,+∞);X) ∩ C1((0,+∞);X).

Uniqueness follows from the same arguments used in Theorem 2.3.

Finally, let k, l ∈ N be given. Since S is a differentiable semigroup, u(t) = S(t)u0 ∈ D(Al).
Moreover, the map t ∈ (0,∞) 7→ S(t)u0 = u(t) ∈ X is k–times continuously differentiable by Theorem
1.60, and thus

u ∈ Ck((0,+∞);D(Al)).

2

Lemma 2.6 Let A be a dissipative operator on a Hilbert space H and u : [0,∞) → H a continuously
differentiable function satisfying

du

dt
(t) = Au(t), ∀t ≥ 0.

Then ∥u∥ is a decreasing function.

Proof: Since
du

dt
(t) = Au(t),

we have
(u(t), du

dt
(t)) = (u(t), Au(t)), ∀t ≥ 0.

Moreover,

1
2
d

dt
∥u(t)∥2 = 1

2
d

dt
(u(t), u(t)) = 1

2

[(du
dt

(t), u(t)
)

+
(
u(t), du

dt
(t)
)]

= 1
2 2 Re

(
u(t), du

dt
(t)
)

= Re
(
u(t), du

dt
(t)
)
,

that is,
1
2
d

dt
∥u(t)∥2 = Re

(
u(t), Au(t)

)
.

Integrating the last identity from s to t, with 0 ≤ s ≤ t, we obtain

1
2∥u(t)∥2 − 1

2∥u(s)∥2 =
∫ t

s

Re
(
u(τ), Au(τ)

)
dτ ≤ 0,

since A is dissipative. Hence
∥u(t)∥ ≤ ∥u(s)∥ for 0 ≤ s ≤ t.

2

Lemma 2.7 Let A be a dissipative and self-adjoint operator on a Hilbert space H and let u ∈ C2([0,∞);H)
satisfy

du

dt
= Au and d2u

dt2
= A2u.

Then ∥∥∥∥dudt (t)
∥∥∥∥ ≤ 1

t
∥u(0)∥.

Proof: Notice that
du

dt
: [0,∞) −→ H

is a continuously differentiable function satisfying

d

dt

(
du

dt

)
= A2u = A(Au) = A

(
du

dt

)
,
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and since A is dissipative, Lemma 2.6 implies that
∥∥du
dt

∥∥ is a decreasing function. Thus, for T > 0,

∫ T

0

(
Au(t), du

dt
(t)
)
t dt =

∫ T

0

∥∥∥∥dudt (t)
∥∥∥∥2
t dt ≥

∥∥∥∥dudt (T )
∥∥∥∥2
T 2

2 . (2.1.28)

On the other hand, since A is self-adjoint and

(
Au,

du

dt

)
= (Au,Au) = ∥Au∥2 ∈ R,

we obtain

d

dt
(u(t), Au(t)) =

(du
dt

(t), Au(t)
)

+
(
u(t), d

dt
Au(t)

)
=

(du
dt

(t), Au(t)
)

+
(
u(t), A2u(t)

)
= 2

(du
dt

(t), Au(t)
)
, (2.1.29)

and, integrating by parts,∫ T

0

(du
dt

(t), Au(t)
)
t dt = 1

2

∫ T

0

d

dt
(u(t), Au(t))t dt

= 1
2(u(T ), Au(T ))T − 1

2

∫ T

0
(u(t), Au(t)) dt. (2.1.30)

Moreover,
1
2
d

dt
∥u(t)∥2 = Re(u(t), Au(t)),

and since
(u(t), Au(t)) = (Au(t), u(t)) = (u(t), Au(t)),

we have
(u(t), Au(t)) ∈ R,

hence
1
2
d

dt
∥u(t)∥2 = (u(t), Au(t)),

and consequently
1
2∥u(T )∥2 − 1

2∥u(0)∥2 =
∫ T

0
(u(t), Au(t)) dt.

Thus ∥∥∥∥dudt (T )
∥∥∥∥2
T 2

2 ≤
∫ T

0

(
Au(t), du

dt
(t)
)
t dt =

∫ T

0

(du
dt

(t), Au(t)
)
t dt

= 1
2(u(T ), Au(T ))T − 1

4∥u(T )∥2 + 1
4∥u(0)∥2,

and since 1
2(u(T ), Au(T ))T, −1

4∥u(T )∥2 ≤ 0,

we obtain ∥∥∥∥dudt (T )
∥∥∥∥ T√

2
≤ 1

2∥u(0)∥,

or equivalently ∥∥∥∥dudt (T )
∥∥∥∥ ≤ √2

2T ∥u(0)∥ ≤ 1
T
∥u(0)∥.
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2

Proposition 2.8 If A is an m–dissipative and self-adjoint operator on a Hilbert space H, then the
C0–semigroup S generated by A is differentiable.

Proof: Let x ∈ H and t > 0. We prove that S(t)x ∈ D(A).

Since D(A2) is dense in H, there exists a sequence {xn} ⊂ D(A2) such that xn → x in H. Now,

∥S(t)xn − S(t)x∥H ≤ ∥S(t)∥L(H)∥xn − x∥H ,

and since xn ∈ D(A2) for all n ∈ N, Theorem 2.4 gives S(·)xn ∈ C2([0,∞);H) and, moreover,

d

dt
S(·)xn = AS(·)xn and d2

dt2
S(·)xn = A2S(·)xn.

Thus,
∥AS(t)xn −AS(t)xm∥H = ∥AS(t)(xn − xm)∥H ≤

1
t
∥xn − xm∥H ,

by Lemma 2.7. Hence, as n→∞ we have S(t)xn → S(t)x in H and AS(t)xn → y in H, for some y ∈ H,
since H is complete. As A is closed, it follows that S(t)x ∈ D(A) and y = AS(t)x. 2

2.2 Sesquilinear Forms and Semigroups

Let V and H be complex Hilbert spaces, whose inner products and norms we denote, respectively,
by ((·, ·)), ∥ · ∥ on V and (·, ·), | · | on H, such that

V ↪→ H, (2.2.31)

where ↪→ denotes the continuous embedding of one space into the other. We also assume that

V is dense in H. (2.2.32)

Let

a : V × V −→ C (2.2.33)
(u, v) 7−→ a(u, v)

be a continuous sesquilinear form. We define

D(A) =
{
u ∈ V ; v ∈ V 7→ a(u, v) is continuous with respect to the topology induced by H

}
.(2.2.34)

In other words, in D(A) we collect those elements u ∈ V for which the antilinear form

gu : V → C (2.2.35)
v 7−→ gu(v) = a(u, v)

is continuous when V is endowed with the topology of H.
Consider the set

M := {u ∈ V ; there exists f ∈ H such that a(u, v) = (f, v), for all v ∈ V }. (2.2.36)

Claim 1. D(A) = M .
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Indeed, note that D(A) ̸= ∅ because 0 ∈ D(A).

Let u ∈ D(A). Since V is dense in H, we can extend the continuous antilinear map gu in (2.2.35)
to a map

g̃u : H → C,

which is antilinear and continuous, and satisfies

g̃u(v) = gu(v), for all v ∈ V. (2.2.37)

By the Riesz representation theorem, there exists a unique fu ∈ H such that

g̃u(v) = (fu, v), for all v ∈ H. (2.2.38)

In particular, from (2.2.35), (2.2.37) and (2.2.38) we obtain

a(u, v) = gu(v) = g̃u(v) = (fu, v), for all v ∈ V. (2.2.39)

Thus u ∈M and so D(A) ⊂M .

Conversely, let u ∈M . Then there exists f ∈ H such that a(u, v) = (f, v) for all v ∈ V . We show
that the map in (2.2.35) is continuous when V is endowed with the topology of H. Indeed,

|gu(v)| = |a(u, v)| = |(f, v)| ≤ |f | |v|, for all v ∈ V,

which shows that M ⊂ D(A).

Remark 2.9 From the above discussion we obtain a new characterisation of D(A), namely

D(A) = {u ∈ V ; there exists f ∈ H such that a(u, v) = (f, v), for all v ∈ V }. (2.2.40)

Claim 2. D(A) is a vector subspace of H.

Indeed, note first that 0 ∈ D(A). Moreover, let u1, u2 ∈ D(A) and α ∈ C. By the characterisation
in (2.2.40), there exist f1, f2 ∈ H such that

a(u1, v) = (f1, v), a(u2, v) = (f2, v), ∀v ∈ V.

Thus

a(u1 + αu2, v) = a(u1, v) + αa(u2, v)
= (f1, v) + α (f2, v)
= (f1 + α f2, v) = (f̃ , v),

where f̃ = f1 + α f2 ∈ H. Hence u1 + αu2 ∈ D(A), which proves the claim.

In this setting, we can define a linear operator

A : D(A) ⊂ H −→ H

u 7−→ Au,

by

(Au, v) = a(u, v) for all u ∈ D(A) and all v ∈ V. (2.2.41)
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We say that the operator A is defined by the triple {V,H; a(u, v)} and we write

A←→ {V,H; a(u, v)}. (2.2.42)

Now consider

a : V × V −→ C (2.2.43)
(u, v) 7−→ a(u, v)

a sesquilinear, Hermitian and continuous map, and suppose that there exist λ0 ∈ R and α > 0 such that

Re a(v, v) + λ0|v|2 ≥ α∥v∥2, ∀v ∈ V. (2.2.44)

Let A : D(A) ⊂ H → H be the operator defined by the triple {V,H, a(u, v)} and B : D(B) ⊂
H → H the operator defined by the triple {V,H, b(u, v)}, where

b(u, v) = a(u, v) + λ0(u, v).

Observe that b is clearly a sesquilinear, Hermitian form, and we now show that b is continuous.
Indeed, for u, v ∈ V we have

|b(u, v)| = |a(u, v) + λ0 (u, v)|
⩽ |a(u, v)|+ |λ0| |(u, v)|
⩽ C∥u∥ ∥v∥+ |λ0| |u|H |v|H
⩽ C∥u∥ ∥v∥+ |λ0| C ′ ∥u∥ ∥v∥
= (C + |λ0| C ′) ∥u∥ ∥v∥
= K ∥u∥ ∥v∥,

where C ′ is a constant given by the embedding V ↪→ H.

Besides continuity, b satisfies the coercivity condition, namely

There exists a constant α > 0 such that (2.2.45)
|b(v, v)| ≥ α∥v∥2, for all v ∈ V.

Indeed,

|b(v, v)| ⩾ Re b(v, v) = Re a(v, v) + λ0 |v|2 ⩾ α∥v∥2, ∀v ∈ V.

Therefore, the operator B defined by the triple {V,H; b(u, v)} satisfies the assumptions of Propo-
sition 5.129 in [23] and hence:

(i) D(B) is dense in H;

(ii) B is a closed operator.

Claim 3. D(A) = D(B) and B = A+ λ0 I.

Indeed, let u ∈ D(B). Then

b(u, v) = (Bu, v), ∀v ∈ V,
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or equivalently
a(u, v) + λ0 (u, v) = (Bu, v), ∀v ∈ V.

Hence

(Au, v) = a(u, v) = (Bu, v)− λ0 (u, v) =
(

(B − λ0I)u︸ ︷︷ ︸
=fu∈H

, v
)

= (fu, v).

Thus u ∈ D(A) and we obtain the inclusion D(B) ⊂ D(A).

Conversely, let u ∈ D(A). Then

a(u, v) = (Au, v), ∀v ∈ V.

But

(Bu, v) = b(u, v) = (Au, v) + λ0 (u, v) =
(

(A+ λ0I)u︸ ︷︷ ︸
=fu∈H

, v
)

= (fu, v).

Hence u ∈ D(B) and, consequently, D(A) ⊂ D(B).
Thus D(A) = D(B).

Moreover, for all u ∈ D(A) = D(B) and all v ∈ V we have

(Bu, v) = b(u, v) = a(u, v) + λ0 (u, v) = (Au, v) + λ0 (u, v) =
(
(A+ λ0I)u, v

)
.

Therefore B = A+ λ0 I, which proves the claim.

From the previous claim we deduce that D(A) is dense in H and, since B is closed, it follows that
A is closed.

We now wish to prove that D(A) is dense in V .

Claim 4. D(B) is dense in V .

We use the following corollary of the Hahn–Banach theorem: “Let E be a normed vector space
and F a vector subspace of E. If for every functional f ∈ E′ such that ⟨f, x⟩ = 0 for all x ∈ F we have
f ≡ 0 (i.e. ⟨f, x⟩ = 0 for all x ∈ E), then F is dense in E (that is, F = E).”

We take E = V and F = D(B). Let f ∈ V ′ be such that

⟨f, u⟩ = 0, ∀u ∈ D(B).

We want to show that
⟨f, v⟩ = 0, ∀ v ∈ V.

Since f ∈ V ′ and b(·, ·) is a sesquilinear, continuous and coercive form on V , the Lax–Milgram
lemma yields an element uf ∈ V such that

⟨f, v⟩ = b(uf , v), ∀ v ∈ V. (2.2.46)

In particular, for all u ∈ D(B) we have

0 = ⟨f, u⟩ = b(uf , u) = b(u, uf ) = (Bu, uf ), (2.2.47)
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that is,

0 = (Bu, uf ), ∀u ∈ D(B). (2.2.48)

Let w ∈ H be arbitrary. Since b(·, ·) is sesquilinear, continuous and coercive on V , Proposition
5.126 in [23] guarantees the existence of a unique u0 ∈ D(B) such that w = Bu0.

Taking u = u0 in (2.2.48) we obtain

0 = (Bu0, uf ) = (w, uf ), ∀w ∈ H. (2.2.49)

In particular, for w = uf ∈ V ⊂ H we get

0 = |uf |2 ⇒ uf = 0.

Therefore, going back to (2.2.46), we find

⟨f, v⟩ = b(0, v) = 0, ∀ v ∈ V.

This proves the claim and shows that D(A) = D(B) is dense in V .

Theorem 2.10 Under the preceding assumptions, we have:
(a) −A is the infinitesimal generator of a C0–semigroup S on H satisfying

∥S(t)∥L(H) ≤ eλ0t, ∀t ≥ 0. (2.2.50)

(b) −A is the infinitesimal generator of an analytic semigroup.

Proof: (a) We shall use the Hille–Yosida Theorem. From spectral theory we know that

D(A) = D(−A) is dense in H and −A is a closed operator. (2.2.51)

We shall prove that, for each λ > λ0,

λ ∈ ρ(−A) and ∥R(λ,−A)∥L(H) ≤
1

λ− λ0
. (2.2.52)

Indeed, let λ > λ0. We first show that (λI +A) is invertible, which is equivalent to showing that

Given f ∈ H; there exists a unique u ∈ D(A) such that (λI +A)u = f, (2.2.53)

or, equivalently,

Given f ∈ H; there exists a unique u ∈ D(A) such that λ(u, v) + a(u, v) = (f, v), ∀v ∈ V, (2.2.54)

since (Au, v) = a(u, v) for all u ∈ D(A) and all v ∈ V .

By (2.2.44) we have, for every v ∈ V ,

Re
[
a(v, v) + λ(v, v)

]
= Re

(
a(v, v)

)
+ λ|v|2 − λ0|v|2 + λ0|v|2

≥ α∥v∥2 + (λ− λ0)|v|2 > α∥v∥2.
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Hence
bλ(u, v) = a(u, v) + λ(u, v)

is, for λ > λ0, a continuous, coercive sesquilinear form on V . Identifying H ≡ H ′, we have f ∈ V ′, and
by the Lax–Milgram lemma there exists a unique u ∈ V such that

bλ(u, v) = (f, v), ∀v ∈ V.

It follows that
a(u, v) = (f − λu, v), ∀v ∈ V and ∀λ > λ0,

and since f − λu ∈ H we obtain u ∈ D(A), which proves (2.2.54) and consequently (2.2.53). Therefore,
for each λ > λ0 there exists (λI +A)−1 : H → D(A). We now show that

(λI +A)−1 is closed in H. (2.2.55)

Indeed, suppose

yn → y in H and (λI +A)−1yn → x in H. (2.2.56)

We must prove that y ∈ H and x = (λI + A)−1y. Since it is clear that y ∈ H, it suffices to show
that

(λI +A)x = y. (2.2.57)

In fact, setting xn = (λI +A)−1yn, from (2.2.56) we have xn → x in H and (λI +A)xn = yn → y

in H.

Since (λI + A) is closed, it follows that x ∈ D(A) and y = (λI + A)x, which proves (2.2.57) and
consequently (2.2.55). Hence (λI + A)−1 ∈ L(H) for all λ > λ0 and therefore λ ∈ ρ(−A) for λ > λ0. It
remains to prove that

∥(λI +A)−1∥L(H) ≤
1

λ− λ0
. (2.2.58)

Indeed, taking v = u in (2.2.54) we obtain

λ|u|2 + a(u, u) = (f, u),

which implies
λ|u|2 + Re

(
a(u, u)

)
= Re (f, u). (2.2.59)

Combining (2.2.44) and (2.2.59) we get

|f ||u| ≥ Re (f, u) = λ|u|2 + Re a(u, u)
≥ λ|u|2 + α∥u∥2 − λ0|u|2

= (λ− λ0)|u|2 + α∥u∥2

≥ (λ− λ0)|u|2,

and for λ > λ0 it follows that
|u| ≤ 1

λ− λ0
|f |. (2.2.60)

Combining (2.2.53) and (2.2.60) we obtain

|(λI +A)−1f | ≤ 1
λ− λ0

|f |, ∀λ > λ0.
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Consequently,
∥(λI +A)−1∥L(H) ≤

1
λ− λ0

,

which proves item (a).

(b) Set B = A+ λ0I.

By (2.2.44) and the continuity of b(u, v) we have

Re (Bu, u) = Re
(
a(u, u)

)
+ λ0|u|2 ≥ α∥u∥2 ≥ 0, ∀u ∈ D(B), (2.2.61)

and
| Im (Bu, u)| ≤ |(Bu, u)| ≤ |b(u, u)| ≤ c∥u∥2, ∀u ∈ D(B). (2.2.62)

Introduce the set in the complex plane

S(B) =
{

(Bu, u)
|u|2

; u ∈ D(B) and u ̸= 0
}

(2.2.63)

and consider z ∈ S(B). Then z = (Bu, u)
|u|2

for some u ∈ D(B), u ̸= 0. We have

tan(arg z) = sin(arg z)
cos(arg z) =

Im z
|z|

Re z
|z|

= Im z

Re z =
Im
( (Bu,u)

|u|2

)
Re
( (Bu,u)

|u|2

) = Im (Bu, u)
Re (Bu, u) . (2.2.64)

From (2.2.61) and (2.2.62) we may write

−c
α
≤ −c∥u∥2

Re (Bu, u) ≤
Im (Bu, u)
Re (Bu, u) ≤

c∥u∥2

Re (Bu, u) ≤
c

α
.

From this inequality and (2.2.64) we infer the existence of a constant c1 such that

−c1

α
<
−c
α
≤ tan(arg z) ≤ c

α
<
c1

α
.

From the last inequality, together with the arbitrariness of z and the independence of the constants with
respect to z, we conclude that

S(B) ⊊
∑
θ1

=
{
z ∈ C; −θ1 < arg z < θ1; θ1 = arctan

(c1

α

)
<
π

2

}
.

Therefore
S(B) ⊊

∑
θ1

⊊
∑

θ

=
{
z ∈ C; −θ < arg z < θ; θ1 < θ <

π

2

}
. (2.2.65)

We claim that there exists a constant cθ such that, if d(p, S(B)) denotes the distance from p to
S(B), then

d(p, S(B)) ≥ d(p,
∑
θ1

) ≥ cθ|p|, ∀p /∈
∑

θ

. (2.2.66)

For the sake of clarity, consider Figure 2.1.

The first inequality in (2.2.66) is evident from the inclusions in (2.2.65). We now prove the second
one. Consider p /∈

∑
θ and set φ = arg p. There are three cases:

(i) θ < φ <
π

2 + θ1.
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Figure 2.1:

In this case 0 < θ− θ1 < φ− θ1 ≤
π

2 . Since the sine function is increasing on [0, π
2 ], it follows that

0 < sin(θ − θ1) < sin(φ− θ1), whence

d(p,
∑
θ1

) = |p| sin(φ− θ1) ≥ |p| sin(θ − θ1).

Note that the constant cθ = sin(θ − θ1) > 0 is independent of p such that θ < φ ≤ π

2 + θ1.

(ii) π2 + θ1 ≤ φ ≤
3π
2 − θ1.

In this range we always have
d(p,

∑
θ1

) = |p|,

as illustrated in Figure 2.2.

(iii) 3π
2 − θ1 < φ < 2π − θ.

In this case the argument is analogous to that in (ii).

From (i), (ii) and (iii) we obtain the desired estimate in (2.2.66). Now let u ∈ D(B), u ̸= 0, set
v = u

|u|
and let p ∈ C. Observe that (Bv, v) ∈ S(B) since

(Bv, v) =
(
B
( u
|u|

)
,
u

|u|

)
= (Bu, u)
|u|2

.

Hence

d(p, S(B)) ≤ |(Bv, v)− p| = |(Bv, v)− p|v|2| = |(Bv, v)− p(v, v)|

= |(Bv − pv, v)| = 1
|u|2

(Bu− pu, u).

Thus
d(p, S(B)) ≤ 1

|u|
|Bu− pu|. (2.2.67)
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Figure 2.2:

Note that if Re p ≥ 0, then (pI +B)−1 exists. Indeed, it suffices to show that{
Given f ∈ H; ∃!u ∈ D(B) = D(A) such that
[(p+ λ0)I +A]u = f,

or equivalently, {
Given f ∈ H; ∃!u ∈ D(B) such that
p(u, v) + λ0(u, v) + a(u, v) = (f, v), ∀v ∈ V.

This holds because the continuous sesquilinear form

b∗(u, v) = p(u, v) + λ0(u, v) + a(u, v)

is coercive whenever Re p ≥ 0. Similarly, if Re p ≤ 0 then Re(−p) ≥ 0, and the same argument shows
that (−pI +B)−1 exists.

Now, if f ∈ H and p ∈ C is such that Re p < 0, then there exists u ∈ D(B) such that

(−pI +B)−1f = u, (2.2.68)

and hence
|(−pI +B)−1f |

|f |
= |u|
|f |
≤ |Bu− pu|
d(p, S(B)) ·

1
|f |

= 1
d(p, S(B)) , (2.2.69)

so that
sup

f∈H, f ̸=0

|(−pI +B)−1f |
|f |

<∞, (2.2.70)

and therefore (−pI +B)−1 ∈ L(H), that is, R(−p,−B) = (−pI +B)−1.

From (2.2.66) and (2.2.69), for p ∈ C \ Σθ with Re p < 0 we also have

∥R(−p,−B)∥L(H) ≤
1

d(p, S(B)) ≤
1
|p|
· 1
cθ
.

Finally, let λ, µ ∈ R with λ > 0 and µ ̸= 0. Writing p = −λ − iµ ∈ C, we have −λ < 0 and
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therefore Re p < 0 with p ∈ C \ Σθ. Thus

∥R(λ+ iµ,−B)∥L(H) ≤
1
cθ
· 1√

λ2 + µ2
≤ 1
cθ
· 1
|µ|
,

that is,
∥R(λ+ iµ,−B)∥L(H) ≤

C

|µ|
, ∀λ > 0, ∀µ ∈ R∗, where C = 1

cθ
. (2.2.71)

On the other hand, note that −A ∈ G(1, λ0) and, by Proposition 1.39, −A− λ0I = −B ∈ G(1, 0).
Moreover, (0I + B)−1 = (λ0I + A)−1 exists and B−1 = (λ0I + A)−1 ∈ L(H), and therefore 0 ∈ ρ(−B).
By Theorem 1.67 and (2.2.71), −B is the infinitesimal generator of an analytic semigroup, say S̃.

Define S(z) = eλ0zS̃(z). Then S(z) is an analytic semigroup whose infinitesimal generator is −A.
2

2.2.1 Applications

(A) Parabolic case:
Under the assumptions of Theorem 2.10 we have, by virtue of Theorem 2.3, that, given u0 ∈ D(A) =
D(B), the problems 

du

dt
= −Bu

u(0) = u0
and


du

dt
= −Au

u(0) = u0
(2.2.72)

admit unique solutions in the class

u ∈ C0([0,∞);D(A)) ∩ C1([0,∞);H). (2.2.73)

Moreover, if u0 ∈ D(Ak) with k ≥ 2, it follows from Theorem 2.4 that the solutions of problems
(2.2.72) satisfy the condition

u ∈ Ck−j([0,∞);D(Aj)) for j = 0, 1, . . . , k. (2.2.74)

Now, given u0 ∈ H, the problems (2.2.72) admit unique solutions in the class

u ∈ C0((0,∞);D(A)) ∩ C0([0,∞);H) ∩ C1((0,∞);H), (2.2.75)

by Theorem 2.5 and the fact that −A and −B generate analytic semigroups.

Remark 2.11 Another way of obtaining regular solutions for problems (2.2.72) in the class (2.2.73) is
to make use of the Lumer–Phillips theorem.

Indeed, for each λ > 0 we define

bλ(u, v) = a(u, v) + (λ+ λ0)(u, v) = b(u, v) + λ(u, v), u, v ∈ V.

Then, for each λ > 0, bλ(u, v) is a bilinear form and, from (2.2.44), we also obtain the coercivity
of bλ(u, v). Therefore, the operator

Bλ = B + λI ↔ {V,H; bλ(u, v)}

is a bijection from D(B) onto H. Consequently,

Im[λI − (−B)] = H, ∀λ > 0. (2.2.76)
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On the other hand, observe that if u ∈ D(B), then from the fact that B ↔ {V,H, b(u, v)} we
obtain

Re(−Bu, u) = −Re(b(u, u)) = −Re[a(u, u) + λ0|u|2] ≤ −α∥u∥2 ≤ 0, ∀u ∈ D(B). (2.2.77)

Thus, since D(B) is dense in H and in view of (2.2.76) and (2.2.77), we conclude, by the
Lumer–Phillips theorem, that

−B ∈ G(1, 0), (2.2.78)

that is, −B is the infinitesimal generator of a contraction semigroup. But since D(A) = D(B) and
B = A+ λ0I, Proposition 1.39 yields

−A ∈ G(1, λ0), (2.2.79)

that is, −A is the infinitesimal generator of a C0–semigroup satisfying

∥S(t)∥ ≤ eλ0t, ∀t ≥ 0. (2.2.80)

In this way, given u0 ∈ D(A) = D(B), the Cauchy problems in (2.2.72) admit, in view of Theorem
2.3, unique solutions in the class (2.2.73), as mentioned at the beginning of the Remark. Moreover, the
solution associated with the operator B satisfies

∥u∥ ≤ ∥u0∥ and
∥∥∥∥dudt (t)

∥∥∥∥ ≤ ∥Bu0∥.

(B) Hyperbolic case

Let V and H be Hilbert spaces such that

V ↪→ H and V is dense in H. (2.2.81)

Let a(u, v) be a continuous, coercive, hermitian sesquilinear form on V . Hence a(u, v) defines an
inner product on V , denoted by ((·, ·))1. From the continuity and coercivity of a(·, ·) one can show that
the norm ∥ · ∥ on V arising from the inner product ((·, ·)) is equivalent to the norm ∥ · ∥1 coming from
the inner product ((·, ·))1 defined by a(·, ·). Thus (V, ∥ · ∥1) is complete.

Moreover, since D(A) is dense in V with respect to the norm ∥ · ∥, we obtain, by the equivalence
of norms, that D(A) is also dense in V with respect to the norm ∥ · ∥1.

Let
A↔ {V,H, a(u, v)}.

As is well known, D(A) is dense in V and A is a closed, self-adjoint, non-limited1 and bijective
operator. Consider the problem  d2u

dt2
+Au = 0

u(0) = u0, ut(0) = u1

. (2.2.82)

We shall prove that if u0 ∈ D(A) and u1 ∈ V , then problem (2.2.82) admits a unique regular
solution. Indeed, consider the change of variables

v = du

dt
, (2.2.83)

1By a non-limited operator we mean an operator which may or may not be bounded.
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and set
U =

[
u

v

]
, (2.2.84)

then, in view of (2.2.82) and (2.2.83), we obtain

dU

dt
=
[

du
dt
dv
dt

]
=
[

v

−Au

]
=
[

0 I

−A 0

] [
u

v

]
. (2.2.85)

Define D(B) = D(A)× V and

B : D(B)→ V ×H

[u, v] 7−→ B([u, v]) =
[

0 I

−A 0

] [
u

v

]
.

(2.2.86)

From (2.2.82)–(2.2.86) we obtain 
dU

dt
= BU ;

U(0) = U0,
(2.2.87)

where
U0 =

[
u0
u1

]
.

Notice that, through the change of variables given in (2.2.83), problems (2.2.82) and (2.2.87) are
equivalent.

Set
H = V ×H. (2.2.88)

Observe that D(B) is dense in H, since D(A) is dense in V and the latter is dense in H. Thus, we
may consider the adjoint of B. Recall that B∗ is an operator on H whose domain is given by

D(B∗) = {v ∈ H;∃v∗ ∈ H such that (Bu, v)H = (u, v∗)H, ∀u ∈ D(B)}

and B∗v = v∗ for all v ∈ D(B∗). We claim that

B∗ = −B. (2.2.89)

Indeed, let v ∈ D(B∗). Then v = [v1, v2] ∈ V ×H and there exists v∗ = [v∗
1 , v

∗
2 ] ∈ V ×H such that

(B[u1, u2], [v1, v2])H = ([u1, u2], [v∗
1 , v

∗
2 ])H

for all [u1, u2] ∈ D(A)× V , that is,

([ u2,−Au1 ], [v1, v2])H = ([u1, u2], [v∗
1 , v

∗
2 ])H

for all [u1, u2] ∈ D(A)× V , which implies

((u2, v1))1 + (−Au1, v2) = ((u1, v
∗
1))1 + (u2, v

∗
2), (2.2.90)

for all u1 ∈ D(A) and all u2 ∈ V .

Taking in particular u1 = 0 in (2.2.90) we obtain

((u2, v1))1 = (u2, v
∗
2), ∀u2 ∈ V. (2.2.91)

- 134 -



2.2 Sesquilinear Forms and Semigroups

From (2.2.91) we deduce that

v1 ∈ D(A) and v∗
2 = Av1, (2.2.92)

since
((u2, v1))1 = (u2, v

∗
2) ⇒ ((u2, v1))1 = (u2, v∗

2) ⇒ ((v1, u2))1 = (v∗
2 , u2).

Thus, from (2.2.91) there exists v∗
2 ∈ H such that

((v1, u2))1 = (v∗
2 , u2), ∀u2 ∈ V,

which implies v1 ∈ D(A). Moreover,

(v∗
2 , u2) = ((v1, u2))1 = a(v1, u2) = (Av1, u2), ∀u2 ∈ V.

Hence
(Av1 − v∗

2 , u2) = 0 ∀u2 ∈ V. (2.2.93)

Since V is dense in H, (2.2.93) holds for all u2 ∈ H. Thus, in particular, for u2 = Av1 − v∗
2 we get

(Av1 − v∗
2 , Av1 − v∗

2) = 0 ⇒ Av1 − v∗
2 = 0 ⇒ Av1 = v∗

2 .

Substituting (2.2.92) into (2.2.90), we obtain

((u2, v1))1 + (−Au1, v2) = ((u1, v
∗
1))1 + (u2, Av1), ∀u1 ∈ D(A), ∀u2 ∈ V.

In particular, for u2 = 0 we obtain

(−Au1, v2) = ((u1, v
∗
1))1, ∀u1 ∈ D(A),

which implies, in view of the bijectivity of A : D(A)→ H, that

v∗
1 = −v2. (2.2.94)

From (2.2.92) and (2.2.94) it follows that

[v1, v2] ∈ D(A)× V = D(B),

that is,
D(B∗) ⊂ D(B). (2.2.95)

Furthermore,

B∗v = v∗ = [v∗
1 , v

∗
2 ] = [−v2, Av1] = −[v2,−Av1] = −Bv. (2.2.96)

Conversely, let [v1, v2] ∈ D(B) = D(A)× V . We show that there exists [v∗
1 , v

∗
2 ] ∈ V ×H such that

(2.2.90) holds. Indeed, let [u1, u2] ∈ D(A)× V and set v∗
1 = −v2 and v∗

2 = Av1. Then

((u1, v
∗
1))1 + (u2, v

∗
2) = ((u1,−v2))1 + (u2, Av1)

= (−Au1, v2) + ((u2, v1))1

= ((u2, v1))1 + (−Au1, v2),

which proves (2.2.90) and consequently that [v1, v2] ∈ D(B∗), that is,

D(B) ⊂ D(B∗). (2.2.97)
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From (2.2.95), (2.2.96) and (2.2.97) we obtain (2.2.89). It then follows, by Stone’s theorem, that
B is the infinitesimal generator of a unitary C0–group and, consequently, of a C0–semigroup S with the
property

(S(t))∗ = (S(t))−1, ∀t ≥ 0. (2.2.98)

Thus, setting
U(t) = S(t)U0, ∀t ≥ 0, (2.2.99)

we deduce, by Theorem 2.3, that U is the unique regular solution of the Cauchy problem (2.2.87), and it
belongs to the class

U ∈ C0([0,+∞);D(B)) ∩ C1([0,+∞);H). (2.2.100)

Now, from (2.2.100) and using the change of variables (2.2.83), we conclude that problem (2.2.82)
admits a unique solution u in the class

u ∈ C0([0,+∞);D(A)) ∩ C1([0,+∞);V )

with
ut ∈ C0([0,+∞);V ) ∩ C1([0,+∞);H),

and hence
u ∈ C0([0,+∞);D(A)) ∩ C1([0,+∞);V ) ∩ C2([0,+∞);H). (2.2.101)

We also note that, from (2.2.88) and (2.2.99), we have

∥S(t)U0∥H = ∥U0∥H, ∀t ≥ 0,

that is,
∥U(t)∥V ×H = ∥[u0, u1]∥H, ∀t ≥ 0,

or equivalently,
∥u(t)∥2 + |u′(t)|2 = ∥u0∥2 + |u1|2, ∀t ≥ 0. (2.2.102)

Identity (2.2.102) is known as the energy identity.

Now define
Ã : V −→ V ′

by
⟨Ãu, v⟩V ′×V = a(u, v), ∀u, v ∈ V.

Then Ã is a linear isometry and induces on V ′ the following inner product

(u, v)V ′ = ((Ã−1u, Ã−1v))1, ∀u, v ∈ V ′,

and moreover
Ãu = Au, ∀u ∈ D(A).

Consider the problem  d2u

dt2
+ Ãu = 0

u(0) = u0, ut(0) = u1

. (2.2.103)

We shall prove that, if u0 ∈ V and u1 ∈ H, then problem (2.2.103) admits a unique regular
solution.
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As before, consider the change of variables

v = du

dt
, (2.2.104)

and define
U =

[
u

v

]
, (2.2.105)

then, in view of (2.2.103) and (2.2.104), we obtain

dU

dt
=
[

du
dt
dv
dt

]
=
[

v

−Ãu

]
=
[

0 I

−Ã 0

] [
u

v

]
. (2.2.106)

Define
B : V ×H → H × V ′

[u, v] 7→ B([u, v]) =
[

0 I

−Ã 0

] [
u

v

]
(2.2.107)

and from (2.2.103)–(2.2.107) we arrive at 
dU

dt
= BU

U(0) = U0,

(2.2.108)

where
U0 =

[
u0
u1

]
.

Observe that, via the change of variables given in (2.2.104), problems (2.2.103) and (2.2.108) are
equivalent.

As before, our goal is to show that B is the infinitesimal generator of a C0–semigroup, and for this
we shall use the Hille–Yosida theorem. We have already seen that D(B) = V ×H is dense in H × V ′.
Thus, it remains to verify that:

(i) B is closed.

(ii) There exist real numbers M and ω such that, for each real λ > ω, we have λ ∈ ρ(B) and

∥R(λ,B)n∥L(H×V ′) ≤
M

(λ− ω)n
, ∀n ∈ N.

Indeed, let ([un, vn])n ⊂ V ×H = D(B) be such that

[un, vn] −→ [ũ, ṽ] in H × V ′

and
B([un, vn]) −→ [f, g] in H × V ′.

We shall show that [ũ, ṽ] ∈ D(B) and that B([ũ, ṽ]) = [f, g]. From the convergences above we have

un −→ ũ in H,

vn −→ ṽ in V ′,

vn −→ f in H,

− Ãun −→ g in V ′.
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Thus, un −→ −Ã−1g in V . Since V is continuously embedded into H, we also have un −→ −Ã−1g in H.
By uniqueness of limits, we obtain

−Ã−1g = ũ.

Moreover, f = ṽ. Therefore, [ũ, ṽ] ∈ D(B) and B([ũ, ṽ]) = [ṽ,−Ãũ] = [f, g]. That is, B is closed.

We now show that, for each real λ > 0, we have λ ∈ ρ(B) and

∥R(λ,B)n∥L(H×V ′) ≤
1
λn
, ∀n ∈ N.

Since Ã is bijective, it follows that λI −B is bijective for every λ > 0, i.e., λ ∈ ρ(B) for all λ > 0.

Given u, v ∈ D(A), we have

(λI −B)[u, v] = [f, g], f ∈ H, g ∈ V ′.

Hence
[λu− v, λv + Ãu] = [f, g],

which is equivalent to {
λu− v = f in H,

λv + Ãu = g in V ′.

Thus {
λ(u, u)− (v, u) = (f, u),
λ(v, v)V ′ + (Ãu, v)V ′ = (g, v)V ′ .

Adding the last two equalities we get

λ|u|2 + λ|v|2V ′ + (Ãu, v)V ′ − (v, u) = (f, u) + (g, v)V ′ . (2.2.109)

However,

(Ãu, v)V ′ = ((Ã−1Ãu, Ã−1v))1

= ((u, Ã−1v))1

= a(u, Ã−1v)
= (Au, Ã−1v)
= (u,AÃ−1v)
= (u, v), ∀u, v ∈ D(A).

(2.2.110)

From (2.2.109) and (2.2.110) we obtain

λ(|u|2 + |v|2V ′) + (u, v)− (v, u) = (f, u) + (g, v)V ′ .

Hence
λ(|u|2 + |v|2V ′) + Re

[
(u, v)− (v, u)

]
= Re

[
(f, u) + (g, v)V ′

]
,

that is,

λ(|u|2 + |v|2V ′) = Re
[
(f, u) + (g, v)V ′

]
≤ |(f, u) + (g, v)V ′ |
≤ |f | |u|+ |g|V ′ |v|V ′

≤ (|f |2 + |g|2V ′)
1
2 (|u|2 + |v|2V ′)

1
2 ,

- 138 -



2.3 The Non-homogeneous Problem

and thus
λ(|u|2 + |v|2V ′)

1
2 ≤ (|f |2 + |g|2V ′)

1
2 .

Therefore,
∥[u, v]∥H×V ′ ≤ 1

λ
∥[f, g]∥H×V ′ , ∀u, v ∈ D(A).

Since D(A)×D(A) is dense in V ×H, it follows that

∥[u, v]∥H×V ′ ≤ 1
λ
∥[f, g]∥H×V ′ , ∀[u, v] ∈ V ×H. (2.2.111)

Moreover,
[u, v] = R(λ,B)[f, g], ∀[u, v] ∈ V ×H. (2.2.112)

From (2.2.111) and (2.2.112) we conclude that

∥R(λ,B)[f, g]∥V ×H ≤
1
λ
∥[f, g]∥H×V ′ , ∀[f, g] ∈ H × V ′.

Hence
∥R(λ,B)∥L(H×V ′) ≤

1
λ
.

Furthermore,

∥R(λ,B)n∥L(H×V ′) ≤ ∥R(λ,B)∥L(H×V ′) · · · ∥R(λ,B)∥L(H×V ′) ≤
1
λn
, ∀n ∈ N.

Thus B satisfies the hypotheses of the Hille–Yosida theorem, from which we obtain that B is the
infinitesimal generator of a C0–semigroup S : R+ −→ L(H × V ′). The conclusion is analogous to the
case [u0, u1] ∈ D(A)× V .

2.3 The Non-homogeneous Problem

Let A be the infinitesimal generator of a C0–semigroup S, f : R+ → X a continuous function with
values in a Banach space X, and consider the Abstract Cauchy Problem

du

dt
(t) = Au(t) + f(t), t > 0,

u(0) = u0.
(2.3.113)

Definition 2.12 A function u : R+ → X is said to be a classical solution of (2.3.113) if:

i) u is continuous for t ≥ 0;

ii) u is continuously differentiable for t > 0;

iii) u(t) ∈ D(A) for t > 0;

iv) u satisfies (2.3.113).

Let u be a classical solution of (2.3.113) and set

g(s) = S(t− s)u(s), 0 ≤ s ≤ t.
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We have, as in the proof of Theorem 2.3, that

dg

ds
(s) = S(t− s)du

ds
(s)− S(t− s)Au(s). (2.3.114)

Hence, from (2.3.114), Proposition 1.30 and (2.3.113), it follows that

dg

ds
(s) = S(t− s)[Au(s) + f(s)]− S(t− s)Au(s),

that is,
dg

ds
(s) = S(t− s)f(s).

Integrating this last identity from 0 to t we obtain

g(t)− g(0) =
∫ t

0
S(t− s)f(s) ds,

or equivalently,

u(t) = S(t)u0 +
∫ t

0
S(t− s)f(s) ds, (2.3.115)

which is a necessary condition for u to be a classical solution of (2.3.113).

Under the hypotheses stated above, the formula (2.3.115) makes sense whether or not u is a classical
solution of (2.3.113). For this reason we introduce the following definition.

Definition 2.13 Let A be the infinitesimal generator of a C0–semigroup, and let u0 ∈ X and f ∈
L1(0, T ;X). The function u ∈ C0([0, T ];X) given by

u(t) = S(t)u0 +
∫ t

0
S(t− s)f(s) ds, 0 ≤ t ≤ T,

is called a generalized (mild) solution of problem (2.3.113) on [0, T ].

Note that generalized solutions of (2.3.113) are not necessarily classical solutions, even when f is
continuous, as can be seen by taking

f(t) = S(t)v /∈ D(A), ∀t ≥ 0, v ∈ X.

In this case,

u(t) = S(t)u0 +
∫ t

0
S(t− s)S(s)v ds

= S(t)u0 +
∫ t

0
S(t)v ds

= S(t)u0 + tS(t)v

is a generalized solution which is not a classical solution, because this function is not differentiable for
t ≥ 0. Furthermore, this example shows that the mere continuity of f does not ensure the existence of
a classical solution. Thus, for a generalized solution to be classical, it is necessary that A or f satisfy
additional conditions, as we shall see below.

As an immediate consequence of (2.3.115) and Theorem 2.3 we have:

Proposition 2.14 System (2.3.113) has at most one classical solution.
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Theorem 2.15 System (2.3.113) has a classical solution for each u0 ∈ D(A) if and only if the function
v defined by

v(t) =
∫ t

0
S(t− s)f(s) ds (2.3.116)

is continuously differentiable for t > 0.

Proof: Let u be a classical solution of (2.3.113) for u0 ∈ D(A). From (2.3.115) and (2.3.116) we may
write

v(t) = u(t)− S(t)u0.

Since u is a classical solution of (2.3.113), by definition u is continuous for t ≥ 0, u(t) ∈ D(A) for t > 0,
and u is continuously differentiable for t > 0. Moreover, since u0 ∈ D(A), it follows from Proposition
1.30 that S(t)u0 ∈ D(A) for all t ≥ 0 and, in addition,

v′(t) = u′(t)− S(t)Au0,

which is continuous for t > 0. Hence v is continuously differentiable.

Conversely, suppose that v(t) given by (2.3.116) is continuously differentiable for t > 0. For h > 0,
define

Ahv(t) = S(h)v(t)− v(t)
h

. (2.3.117)

Then, from (2.3.116) and (2.3.117), we obtain

Ahv(t) = 1
h

[∫ t

0
S(t− s+ h)f(s) ds−

∫ t

0
S(t− s)f(s) ds

]
= 1

h

[∫ t+h

0
S(t− s+ h)f(s) ds−

∫ t

0
S(t− s)f(s) ds−

∫ t+h

t

S(t− s+ h)f(s) ds
]

= v(t+ h)− v(t)
h

− 1
h

∫ t+h

t

S(t− s+ h)f(s) ds. (2.3.118)

Since f is continuous on R+, the second term on the right-hand side of (2.3.118) has limit f(t) as
h→ 0+, and the first term has limit v′(t) as h→ 0+. Hence, in the limit h→ 0+ in (2.3.118) we obtain

v(t) ∈ D(A) and Av(t) = v′(t)− f(t).

Moreover, from (2.3.116) we have v(0) = 0. Thus, the function

u(t) = S(t)u0 + v(t)

is a classical solution of (2.3.113). 2

Corollary 2.16 If v(t) ∈ D(A) for all t > 0 and Av is continuous, then problem (2.3.113) has a classical
solution for every u0 ∈ D(A).

Proof: From (2.3.118) we obtain

v(t+ h)− v(t)
h

= Ahv(t) + 1
h

∫ t+h

t

S(t− s+ h)f(s) ds. (2.3.119)

Since v(t) ∈ D(A), we have

Ahv(t)→ Av(t), ∀t > 0 as h→ 0+. (2.3.120)
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Also,

1
h

∫ t+h

t

S(t− s+ h)f(s) ds→ f(t) as h→ 0+, since f is continuous for all t > 0. (2.3.121)

Therefore, from (2.3.119), (2.3.120) and (2.3.121) it follows that v is right differentiable at every
t > 0 and

d+v

dt
(t) = Av(t) + f(t).

By the continuity of Av and f , by hypothesis, we have that d+v
dt (t) is continuous. Hence, by Dini’s

lemma, v is continuously differentiable for t > 0, and from Theorem 2.15 it follows that problem (2.3.113)
has a classical solution for all u0 ∈ D(A), which is given by (2.3.115). 2

Proposition 2.17 Let A be the infinitesimal generator of a C0–semigroup S, and f : R+ → X a
continuous function. Suppose that f satisfies one of the following conditions:

i) f is continuously differentiable for all t ≥ 0;

ii) f(t) ∈ D(A) for all t ≥ 0 and Af is integrable (in L1
loc(0,∞;X)).

Then, for every u0 ∈ D(A), (2.3.113) has a unique classical solution.

Proof: Assume that (i) holds. Let v(t) be given by (2.3.116), that is,

v(t) =
∫ t

0
S(t− s)f(s) ds =

∫ t

0
S(s)f(t− s) ds.

Then, for h > 0,

v(t + h) − v(t)
h

= 1
h

∫ t+h

0 S(s)f(t + h − s) ds − 1
h

∫ t

0 S(s)f(t − s) ds

= 1
h

∫ t+h

0 S(s)(f(t + h − s) − f(t − s)) ds + 1
h

∫ t+h

t
S(s)f(t − s) ds

= 1
h

∫ t

0 S(s)(f(t + h − s) − f(t − s)) ds

+ 1
h

∫ t+h

t
S(s)(f(t + h − s) − f(t − s)) ds

+ 1
h

∫ t+h

t
S(s)(f(t + h − s) − f(t − s)) ds + 1

h

∫ t+h

t
S(s)f(t − s) ds

= 1
h

∫ t

0 S(s)(f(t + h − s) − f(t − s)) ds +
∫ t+h

t
S(s)f ′(γ) ds

+ 1
h

∫ t+h

t
S(s)f(t − s) ds,

(2.3.122)

where γ ∈ (t− s, t− s+ h), by the Mean Value Theorem, since f(t− s+ h)− f(t− s) = f ′(γ)h for some
γ ∈ (t− s, t− s+ h). The right-hand side of (2.3.122) converges to∫ t

0
S(s)f ′(t− s) ds+ S(t)f(0) (2.3.123)

as h→ 0+. From the hypothesis that f is continuously differentiable for t ≥ 0, it follows from (2.3.122)
and (2.3.123) in the limit that

dv+

dt
(t) = S(t)f(0) +

∫ t

0
S(s)f ′(t− s) ds

is continuous for t > 0. Hence, by Dini’s lemma, v is continuously differentiable for t > 0. Therefore, by
Theorem 2.15, system (2.3.113) has a classical solution for all u0 ∈ D(A).
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Now assume that (ii) holds. Since f(s) ∈ D(A), by Proposition 1.29 we have

S(t− s)f(s) ∈ D(A) and AS(t− s)f(s) = S(t− s)Af(s).

From this last identity, since Af is integrable and A is closed, we obtain∫ t

0
S(t− s)Af(s) ds =

∫ t

0
AS(t− s)f(s) ds = A

∫ t

0
S(t− s)f(s) ds = Av(t),

that is, v(t) ∈ D(A) for t > 0 and Av is continuous. Hence, by Corollary 2.3.114, problem (2.3.113) has
a unique classical solution for all u0 ∈ D(A). Uniqueness follows as in the homogeneous case. 2

0.5 cm

We conclude this section with some results concerning a notion of solution that we now introduce.

Definition 2.18 Let A be the infinitesimal generator of a C0–semigroup S. A function u which is
differentiable almost everywhere on [0, T ] and such that u′ ∈ L1(0, T ;X) is called a strong solution of
the initial value problem (2.3.113) if u(0) = u0 and u′(t) = Au(t) + f(t) almost everywhere on [0, T ].

Note that if A ≡ 0 and f ∈ L1(0, T ;X), then the initial value problem (2.3.113) does not, in
general, admit a classical solution unless f is continuous. However, it always admits a strong solution
given by

u(t) = u0 +
∫ t

0
f(s) ds.

As in the classical case, a natural question is to determine when a generalized (mild) solution of (2.3.113)
is a strong solution.

Theorem 2.19 Let A be the infinitesimal generator of a C0–semigroup S and let f ∈ L1(0, T ;X). Define

v(t) =
∫ t

0
S(t− s)f(s) ds, 0 ≤ t ≤ T,

and suppose that v(t) satisfies one of the following conditions:

(i) v(t) is differentiable almost everywhere on [0, T ] and v′(t) ∈ L1(0, T ;X);

(ii) v(t) ∈ D(A) almost everywhere on [0, T ] and Av(t) ∈ L1(0, T ;X).

Then (2.3.113) admits a strong solution u on [0, T ] for some u0 ∈ D(A).
Conversely, if (2.3.113) admits a strong solution u on [0, T ] for some u0 ∈ D(A), then v satisfies (i) and
(ii).

Proof: First observe that items (i) and (ii) are equivalent.
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(i)⇒ (ii). Note that(
S(h)− I

h

)
v(t) = 1

h

[
S(h)

∫ t

0
S(t− s)f(s) ds−

∫ t

0
S(t− s)f(s) ds

]
= 1

h

[∫ t

0
S(t− s+ h)f(s) ds−

∫ t

0
S(t− s)f(s) ds

]
(2.3.124)

= 1
h

[∫ t+h

0
S(t− s+ h)f(s) ds−

∫ t+h

t

S(t− s+ h)f(s) ds

−
∫ t

0
S(t− s)f(s) ds

]
= v(t+ h)− v(t)

h
− 1
h

∫ t+h

t

S(h)S(t− s)f(s) ds.

The first equality is justified because S(t− s)f(s) ∈ L1(0, T ;X) and S(h) is bounded on X. Thus(
S(h)− I

h

)
v(t) = v(t+ h)− v(t)

h
− 1
h

∫ t+h

t

S(h)S(t− s)f(s) ds.

Now, since v is differentiable almost everywhere, the limit of the first term on the right-hand side exists
almost everywhere as h → 0+. Moreover, by standard results on Bochner integration (see, for instance,
[24], p. 10), the second term also has a limit almost everywhere as h→ 0+. Furthermore, as h→ 0+ we
have

v(t+ h)− v(t)
h

− 1
h

∫ t+h

t

S(h)S(t− s)f(s) ds −→ v′(t)− f(t) a.e. in [0, T ].

Therefore
v(t) ∈ D(A) and Av(t) = v′(t)− f(t) ∈ L1(0, T ;X),

which proves (ii).

(ii) ⇒ (i). Since v(t) ∈ D(A), we have lim
h→0+

(
S(h)− I

h

)
v(t) = Av(t). Now, from (2.3.124) it follows

that
v(t+ h)− v(t)

h
=
(
S(h)− I

h

)
v(t) + 1

h

∫ t+h

t

S(h)S(t− s)f(s) ds.

Thus, as h→ 0+,
d+v

dt
(t) = Av(t)− f(t).

Considering h < 0 and replacing h by −h in (2.3.124), we obtain

d−v

dt
(t) = Av(t)− f(t).

Hence v(t) is differentiable almost everywhere on [0, T ] and

v′(t) = Av(t)− f(t) ∈ L1(0, T ;X),

which proves (i) (and therefore the equivalence).

We now prove Theorem 2.19. Suppose that (i) holds (and hence (ii) also holds).

Since
u(t) = S(t)u0 + v(t),

S(t)u0 is differentiable (because u0 ∈ D(A)) and, by hypothesis, v(t) is differentiable almost everywhere,
it follows that u is differentiable almost everywhere on [0, T ].
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Moreover,
du

dt
(t) = d

dt
(S(t)u0 + v(t)) = S(t)Au0 + v′(t) ∈ L1(0, T ;X).

Finally, to show that u satisfies (2.3.113) almost everywhere, it suffices to follow the same arguments
used in the proof of Theorem 2.15.

Conversely, if (2.3.113) admits a strong solution u, then

u(t) = S(t)u0 + v(t),

whence v is differentiable almost everywhere, since u and S(·)u0 are. Furthermore, as S(t)Au0, u
′(t) ∈

L1(0, T ;X) and
v′(t) = u′(t)− S(t)Au0,

we have v′(t) ∈ L1(0, T ;X). This proves (i) (and thus (ii)) and completes the proof of the theorem. 2

As a consequence of Theorem 2.19 we obtain:

Corollary 2.20 Let A be the infinitesimal generator of a C0–semigroup S. If f is differentiable almost
everywhere on [0, T ] and f ′ ∈ L1(0, T ;X), then for every u0 ∈ D(A) the problem (2.3.113) admits a
unique strong solution on [0, T ].

Proof: Observe that
v(t) =

∫ t

0
S(t− s)f(s) ds =

∫ t

0
S(s)f(t− s) ds,

and hence

v(t+ h)− v(t)
h

= 1
h

[∫ t+h

0
S(s)f(t+ h− s) ds−

∫ t+h

0
S(s)f(t− s) ds

+
∫ t+h

t

S(s)f(t− s) ds
]

=
∫ t

0
S(s)

[
f(t+ h− s)− f(t− s)

h

]
ds+ 1

h

∫ t+h

t

S(s)f(t− s) ds

+ 1
h

∫ t+h

t

S(s)
(
f(t+ h− s)− f(t− s)

)
ds.

Thus v is differentiable almost everywhere and

dv

dt
(t) =

∫ t

0
S(s)f ′(t− s) ds+ S(t)f(0).

Since f(0) ∈ X, the function S(·) f(0) belongs to L1(0, T ;X). Note also that

φ(t) =
∫ t

0
S(s)f ′(t− s) ds =

∫ t

0
S(t− s)f ′(s) ds,
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and therefore ∫ T

0
∥φ(t)∥ dt ≤

∫ T

0

∫ t

0
∥S(t− s)f ′(s)∥ ds dt

≤
∫ T

0

∫ T

0
∥S(t− s)f ′(s)∥ ds dt

≤
∫ T

0

∫ T

0
MeωT ∥f ′(s)∥ ds dt

= MeωT

∫ T

0
∥f ′(s)∥ ds,

so that
∫ t

0 S(t− s)f ′(s) ds ∈ L1(0, T ;X).

Hence, by Theorem 2.19, the result follows. 2

Before we state the next corollary of Theorem 2.19, let us introduce the following notion.

Definition 2.21 A function f : R+ → X is said to be Hölder continuous for t ≥ 0 if

∥f(t)− f(s)∥ ≤ L(t− s)k, 0 ≤ s ≤ t,

where L and k are constants with 0 ≤ k ≤ 1. When k = 1 we say that f is Lipschitz continuous.

In general, the Lipschitz continuity of f on [0, T ] is not sufficient to ensure the existence of a strong
solution of (2.3.113) for u0 ∈ D(A). However, if X is reflexive and f is Lipschitz continuous on [0, T ],
then by classical results (see [24], p. 17) f is differentiable almost everywhere and f ′ ∈ L1(0, T ;X). In
view of this, Corollary 2.20 implies:

Corollary 2.22 Let X be a reflexive Banach space and let A be the infinitesimal generator of a C0–semigroup
S on X. If f is Lipschitz continuous on [0, T ], then for every u0 ∈ D(A) the initial value problem (2.3.113)
admits a unique strong solution u on [0, T ], given by

u(t) = S(t)u0 +
∫ t

0
S(t− s)f(s) ds.

2.4 The Nonlinear Problem

Let X be a reflexive Banach space. Consider the initial value problem
du

dt
(t) = Au(t) + F (u(t)), t > 0,

u(0) = u0,
(2.4.125)

where F : X → X is a continuous function and A is the infinitesimal generator of a C0–semigroup S(t)
such that ∥S(t)∥ ≤ M for all t ≥ 0. If u is a classical or strong solution of (2.4.125), then, as in the
previous section, it is not difficult to verify that u satisfies the integral equation

u(t) = S(t)u0 +
∫ t

0
S(t− s)F (u(s)) ds. (2.4.126)

We have the following result.
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Theorem 2.23 Let F : X → X be a Lipschitz function, that is,

∥F (u)− F (v)∥X ≤ L∥u− v∥X , ∀u, v ∈ X.

Then, for every u0 ∈ X, there exists a unique function u ∈ C0([0,+∞);X) which is a generalized solution.
i) If u0, v0 ∈ X are initial data for (2.4.125), then the corresponding generalized solutions u and v satisfy

∥u(t)− v(t)∥X ≤MeLMt∥u0 − v0∥X . (2.4.127)

ii) If u0 ∈ D(A), then the solution is strong on the interval [0, T ], for every T > 0.

Proof: (i) Let u0 ∈ X. For each k > 0, define

Xk =
{
u ∈ C0([0,+∞);X) ; ∥u(t)∥X ≤ Cekt for some C > 0 and all t ≥ 0

}
.

By Proposition 1.17, Xk is a Banach space endowed with the norm

∥u∥Xk
= sup

t≥0
e−kt∥u(t)∥X .

Define ϕ : Xk → Xk by

ϕu(t) = S(t)u0 +
∫ t

0
S(t− s)F (u(s)) ds.

We claim that ϕ(Xk) ⊂ Xk. Indeed, we first show that, for each u ∈ Xk, the function ϕu is
continuous. We already know that S(t)u0 is continuous (see Corollary 1.23), so it remains to show that

g(t) =
∫ t

0
S(t− s)F (u(s)) ds =

∫ t

0
S(s)F (u(t− s)) ds

is continuous on [0,∞). Let (tn)n∈N be a sequence in R+ such that tn → t0 as n→∞ and tn ⩾ t0 for all
n ∈ N. Then

∥g(tn)− g(t0)∥ =
∥∥∥∥∫ t0

0
S(s)

(
F (u(tn − s))− F (u(t0 − s))

)
ds+

∫ tn

t0

S(s)F (u(tn − s)) ds
∥∥∥∥ .

Using the triangle inequality, the boundedness of the semigroup and the fact that F is Lipschitz,
we obtain

∥g(tn)− g(t0)∥ ≤ ML

∫ t0

0
∥u(tn − s)− u(t0 − s)∥ ds+M

∫ tn

t0

∥F (u(tn − s))∥ ds.

Choose T > 0 so that t0, tn ∈ (0, T ) and, consequently, tn − s, t0 − s ∈ (0, T ). Then

∥g(tn)− g(t0)∥ ≤M
(
L

∫ t0

0
∥u(tn − s)− u(t0 − s)∥ ds+

∫ T

t0

χ[t0,tn](s)∥F (u(tn − s))∥ ds
)
,(2.4.128)

where χ[t0,tn] denotes the characteristic function of the interval [t0, tn].

Now define, for s ∈ (t0, T ),

fn(s) = χ[t0,tn](s)∥F (u(tn − s))∥ and f(s) = χ[t0,t0](s)∥F (u(t0 − s))∥.

Since χ[t0,t0](s) = 0 almost everywhere and ∥F (u(tn − s))∥ is bounded, it follows that fn(s)→ 0 almost

- 147 -



2 The Abstract Cauchy Problem

everywhere as n→∞. Hence, by the Dominated Convergence Theorem,∫ T

t0

fn(s) ds→ 0,

that is, ∫ T

t0

χ[t0,tn](s)∥F (u(tn − s))∥ ds→ 0.

Moreover, since u is continuous, as n→∞ we have

∥u(tn − s)− u(t0 − s)∥ → 0.

Furthermore, because u ∈ Xk, we have

∥u(tn − s)− u(t0 − s)∥ ≤ 2Cekt.

Thus, again by the Dominated Convergence Theorem,∫ t0

0
∥u(tn − s)− u(t0 − s)∥ ds→ 0,

as n→∞.

Therefore, the right-hand side of (2.4.128) converges to zero as tn → t0 with tn ⩾ t0 for all n ∈ N,
which implies that g is right-continuous on [0, T ]. Since T > 0 is arbitrary, it follows that g is right-
continuous on [0,∞) and, consequently, that ϕu is right-continuous on [0,∞). A similar argument shows
that ϕu is left-continuous on [0,∞). Hence ϕu is continuous, that is, ϕu ∈ C([0,∞), X).

It remains to show that ϕu ∈ Xk. For u ∈ Xk we have

∥ϕu(t)∥ ≤ ∥S(t)u0∥+
∫ t

0
∥S(t− s)∥∥F (u(s))∥ ds

≤ M∥u0∥+M

∫ t

0
∥F (u(s))− F (0)∥ ds+M

∫ t

0
∥F (0)∥ ds

≤ M∥u0∥+ML

∫ t

0
∥u(s)∥ ds+M∥F (0)∥t

≤ M∥u0∥+MLC

∫ t

0
eks ds+M∥F (0)∥t

≤ M∥u0∥+MLC
ekt − 1
k

+M∥F (0)∥t, ∀t ≥ 0,

and, for k > 0,

e−kt∥ϕu(t)∥ ≤ Me−kt∥u0∥+MLC
1− e−kt

k
+M∥F (0)∥ t

ekt

≤ M∥u0∥+ MLC

k
+MM ′∥F (0)∥ <∞, ∀t ≥ 0,

where C > 0 is a constant depending on u and M ′ > 0 is such that
∣∣ t
ekt

∣∣ ≤ M ′ for all t ∈ R. Thus
supt≥0 e

−kt∥ϕu(t)∥ <∞, and therefore ϕu ∈ Xk, as claimed.
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We now show that ϕ : Xk → Xk is ML

k
–Lipschitz continuous. Indeed, if u, v ∈ Xk, then

e−kt∥ϕu(t)− ϕv(t)∥ ≤ Me−kt

∫ t

0
∥F (u(s))− F (v(s))∥ ds

≤ MLe−kt

∫ t

0
∥u(s)− v(s)∥ ds

≤ MLe−kt

∫ t

0
∥u(s)− v(s)∥e−kseks ds

≤ ML

k
e−kt(ekt − 1)∥u− v∥Xk

≤ ML

k
∥u− v∥Xk

, ∀t ≥ 0,

and hence
∥ϕu− ϕv∥Xk

= sup
t≥0

e−kt∥ϕu(t)− ϕv(t)∥ ≤ ML

k
∥u− v∥Xk

.

Thus, when k = 2ML we have that ϕ : Xk → Xk is a contraction, that is,

∥ϕu− ϕv∥Xk
≤ c∥u− v∥Xk

,

with c = 1
2 < 1. Hence, by the Banach fixed point theorem there exists a unique fixed point of ϕ, i.e.,

there exists u ∈ Xk such that

u(t) = S(t)u0 −
∫ t

0
S(t− s)F (u(s)) ds,

which proves the existence of a generalized solution of (2.4.125).

Let u and v be generalized solutions of (2.4.125) corresponding to the initial data u0 and v0,
respectively. Then, from (2.4.126) we obtain

∥u(t)− v(t)∥X =
∥∥∥∥S(t)u0 +

∫ t

0
S(t− s)F (u(s)) ds−

(
S(t)v0 +

∫ t

0
S(t− s)F (v(s)) ds

)∥∥∥∥
≤ ∥S(t)(u0 − v0)∥+

∫ t

0
∥S(t− s)∥∥F (u(s))− F (v(s))∥ ds

≤ M∥u0 − v0∥+ML

∫ t

0
∥u(s)− v(s)∥ ds,

and, by Gronwall’s lemma,

∥u(t)− v(t)∥ ≤MeMLt∥u0 − v0∥ for all t ∈ [0, T ],

for every given T > 0, which proves (2.4.127) as well as the uniqueness of generalized solutions.

(ii) Now suppose that u0 ∈ D(A). We shall prove that u is Lipschitz continuous on [0, T ] for every
T > 0, which implies that F (u(t)) is also Lipschitz continuous. Then, by Corollary 2.22, we conclude
that u is a strong solution. Indeed, let h > 0 and define

v(t) = u(t+ h), ∀t ≥ 0. (2.4.129)

Note that v is a generalized solution of (2.4.125) with initial data v0 = u(h). From (2.4.127) and (2.4.129)
we have

∥u(t+ h)− u(t)∥ ≤MeLMt∥u(h)− u(0)∥. (2.4.130)

On the other hand, from (2.4.126) we can write
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u(h) = S(h)u0 +
∫ h

0 S(h− s)F (u(s)) ds. (2.4.131)

From (2.4.131) we obtain

∥u(h)− u(0)∥ =
∥∥∥∥∥S(h)u0 − u0 +

∫ h

0
S(h− s)Fu(s)ds

∥∥∥∥∥
=
∥∥∥∥∥S(h)u0 − u0 +

∫ h

0
[S(h− s)Fu(s)− S(h− s)Fu(0) + S(h− s)Fu(0)] ds

∥∥∥∥∥
≤ ∥S(h)u0 − u0∥+ ∥

∫ h

0
[S(h− s) (Fu(s)− Fu(0)) + S(h− s)Fu(0)] ds∥

≤ ∥S(h)u0 − u0∥+
∫ h

0
∥S(h− s)∥∥Fu(s)− Fu(0)∥ds

+
∫ h

0
∥S(h− s)∥∥Fu(0)∥ds

≤ ∥S(h)u0 − u0∥+ML

∫ h

0
∥u(s)− u(0)∥ds+Mh∥F (u(0))∥

(2.4.132)

Since u0 ∈ D(A), we have

S(h)u0 − u0 = A

∫ h

0
S(s)u0 ds =

∫ h

0
S(s)Au0 ds,

and hence
∥S(h)u0 − u0∥ ≤

∫ h

0
∥S(s)∥∥Au0∥ ds ≤M∥Au0∥h. (2.4.133)

Combining (2.4.132) and (2.4.133) we obtain

∥u(h)− u0∥ ≤Mh∥Au0∥+Mh∥F (u0)∥+ML

∫ h

0
∥u(s)− u(0)∥ ds,

and by Gronwall’s lemma

∥u(h)− u0∥ ≤Mh(∥Au0∥+ ∥F (u0)∥)eMLh. (2.4.134)

Thus, from (2.4.130) and (2.4.134) we conclude that

∥u(t+ h)− u(t)∥ ≤MeMLt MeMLh(∥Au0∥+ ∥F (u0)∥)h, ∀t ≥ 0, ∀h > 0. (2.4.135)

Now let T > 0 be given and take t, t′ ∈ [0, T ]. From (2.4.135) it follows that

∥u(t)− u(t′)∥ ≤Me2MT (∥Au0∥+ ∥F (u0)∥) |t− t′|,

which proves that u is Lipschitz continuous on [0, T ], and since T > 0 is arbitrary, on any bounded
interval. This implies that F (u(t)) is also Lipschitz continuous and, in view of Corollary 2.22, u is a
strong solution of (2.4.125) on [0, T ], which completes the proof. 2

Theorem 2.24 Let F : D(A) → D(A) be a Lipschitz continuous function. Then, for every u0 ∈ D(A)
there exists a classical solution of (2.4.125) on [0, T ], for every given T > 0.
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Proof: Set
X1 = D(A),

and
A1 = A|D(A2) : D(A1) = D(A2) ⊂ X1 → X1.

Then S1(t), the semigroup generated by A1, is the restriction of S(t) to D(A). Hence, by Theorem 2.4,
there exists a generalized solution u ∈ C0([0,+∞);X1) such that

u(t) = S1(t)u0 +
∫ t

0
S1(t− s)F (u(s)) ds. (2.4.136)

Since u0 ∈ D(A) and F (u(s)) ∈ D(A), we may replace S1(t) by S(t) in (2.4.136), so that u ∈
C0([0,+∞);D(A)). Moreover, since F : D(A)→ D(A) is Lipschitz continuous, we have

g(·) = F (u(·)) ∈ C0([0,+∞);D(A)) ↪→ L1(0, T ;D(A)), (2.4.137)

for any fixed T > 0. In particular,

g(s) ∈ D(A) ∀s ∈ [0, T ], and Ag ∈ L1(0, T ;X). (2.4.138)

Taking into account (2.4.136), (2.4.137), (2.4.138) and Proposition 2.17, we conclude that u is a
classical solution of (2.4.125). 2

Theorem 2.25 Let F : X → X be a locally Lipschitz function, that is, for every R > 0 there exists
LR ≥ 0 such that ∥u∥ ≤ R and ∥v∥ ≤ R imply

∥F (u)− F (v)∥ ≤ LR∥u− v∥.

(i) Then, for every u0 ∈ X there exists a function u ∈ C0([0,+∞);X) which is a generalized solution of
(2.4.125) on [0, T ], and which can be extended to a maximal solution on [0, Tmax), where either Tmax =
+∞ or Tmax < +∞ and lim

t→T −
max

∥u(t)∥ = +∞.

(ii) If u0 ∈ D(A), then the solution is strong.

Proof: (i) For each T > 0, define

KT = {u ∈ C0([0, T ];X) ; ∥u(t)∥ ≤M∥u0∥+ 1 ∀t ∈ [0, T ]}. (2.4.139)

Note that KT is closed, since it is a closed ball in C([0, T ], X) and, by Proposition 1.8, C([0, T ], X) is a
Banach space. Hence KT is also a Banach space.

Define further the map Φ : KT → C0([0, T ];X) by

Φu(t) = S(t)u0 +
∫ t

0
S(t− s)F (u(s)) ds. (2.4.140)

Let R = M∥u0∥+ 1 and u ∈ KT . Then, by hypothesis, there exists L = L(∥u0∥) > 0 such that

∥F (u(t))− F (u0)∥ ≤ L∥u(t)− u0∥, ∀t ∈ [0, T ], (2.4.141)
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since ∥u(t)∥ ≤M∥u0∥+ 1. Hence

∥Φu(t)∥ ≤ ∥S(t)u0∥+
∫ t

0
∥S(t− s)∥∥F (u(s))∥ ds

≤ M∥u0∥+M

∫ t

0
∥F (u(s))− F (u0) + F (u0)∥ ds

≤ M∥u0∥+M

∫ t

0
∥F (u(s))− F (u0)∥ ds+M

∫ t

0
∥F (u0)∥ ds

≤ M∥u0∥+ML

∫ t

0
∥u(s)− u0∥ ds+MT∥F (u0)∥

≤ M∥u0∥+MLT (M∥u0∥+ 1 + ∥u0∥) +MT∥F (u0)∥.

Choosing
0 < T ∗ <

1
ML(M∥u0∥+ 1 + ∥u0∥) +M∥F (u0)∥ ,

we see that ∥Φu(t)∥ ≤M∥u0∥+ 1 for every t ∈ [0, T ∗]. Thus Φ(KT ∗) ⊂ KT ∗ .

Next, we show that for T sufficiently small, Φ is a contraction. Indeed, for u, v ∈ KT ∗ and
R = M∥u0∥+ 1 there exists L = L(∥u0∥) > 0 such that

∥F (u(t))− F (v(t))∥ ≤ L∥u(t)− v(t)∥, ∀u, v ∈ KT ∗ , ∀t ∈ [0, T ∗]. (2.4.142)

Hence, for 0 < T ≤ T ∗,

∥Φu(t)− Φv(t)∥ =
∥∥∥∥∫ t

0
S(t− s)

(
F (u(s))− F (v(s))

)
ds

∥∥∥∥
≤ M

∫ T

0
∥F (u(s))− F (v(s))∥ ds

≤ MLT∥u− v∥C0([0,T ];X), ∀u, v ∈ KT ∗ , ∀t ∈ [0, T ].

Thus, if we choose 0 < T <
1

2ML
, then Φ is a contraction. Setting

T0 = min
{
T ∗

2 ,
1

2ML

}
,

we conclude that Φ has a unique fixed point, which is a generalized solution of (2.4.125) on [0, T0].

Let u1 be the generalized solution of
du1

dt
(t) = Au1(t) + F (u1(t)) on [0, T0],

u1(0) = u0,
(2.4.143)

mentioned above. Since u1 ∈ KT0 , it follows that u1 ∈ C0([0, T0];X) and ∥u1(t)∥ ≤ M∥u0∥ + 1 for all
t ∈ [0, T0].

Now consider the problem
dv1

dt
(t) = Av1(t) + F (v1(t)) on [0, T ],

v1(0) = u1(T0),
(2.4.144)

and arguing in the same way as for (2.4.143), we find T1 > 0 such that (2.4.144) admits a generalized
solution v1 on [0, T1].
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Observe that, by Theorem 2.4, if u0 ∈ D(A) then u1 is a strong solution of (2.4.125) on [0, T0].
Likewise, v1 is a strong solution of the same problem on [0, T1].

Define
u2(t) =

{
u1(t), t ∈ [0, T0],
v1(t− T0), t ∈ [T0, T0 + T1].

Set T ∗
0 = T0 and T ∗

1 = T0 + T1. We show that u2 is a generalized solution of (2.4.125) on [0, T ∗
1 ].

Note that
u1(t) = S(t)u0 +

∫ t

0
S(t− s)F (u1(s)) ds, ∀t ∈ [0, T0],

and
v1(t) = S(t)u1(T0) +

∫ t

0
S(t− s)F (v1(s)) ds, ∀t ∈ [0, T1].

If 0 ≤ t ≤ T0, then

u2(t) = u1(t) = S(t)u0 +
∫ t

0
S(t− s)F (u1(s)) ds

= S(t)u0 +
∫ t

0
S(t− s)F (u2(s)) ds.

Thus u2 is a generalized solution of (2.4.125) on [0, T0]. Now, if T0 ≤ t ≤ T0 + T1, then

u2(t) = v1(t− T0) = S(t− T0)u1(T0) +
∫ t−T0

0
S(t− T0 − s)F (v1(s)) ds

= S(t− T0)
[
S(T0)u0 +

∫ T0

0
S(T0 − s)F (u1(s)) ds

]

+
∫ t−T0

0
S(t− T0 − s)F (v1(s)) ds

= S(t− T0)S(T0)u0 +
∫ T0

0
S(t− T0)S(T0 − s)F (u1(s)) ds

+
∫ t−T0

0
S(t− T0 − s)F (v1(s)) ds

= S(t)u0 +
∫ T0

0
S(t− s)F (u1(s)) ds

+
∫ t

T0

S(t− T0 − w + T0)F (v1(w − T0)) dw

= S(t)u0 +
∫ T0

0
S(t− s)F (u1(s)) ds+

∫ t

T0

S(t− s)F (v1(s− T0)) ds

= S(t)u0 +
∫ T0

0
S(t− s)F (u2(s)) ds+

∫ t

T0

S(t− s)F (u2(s)) ds

= S(t)u0 +
∫ t

0
S(t− s)F (u2(s)) ds, (2.4.145)

and the claim follows. Thus, for the problem (2.4.125) with initial data u0, we have

u1 is a generalized solution of (2.4.125) on [0, T ∗
0 ],

u2 is a generalized solution of (2.4.125) on [0, T ∗
1 ].

Proceeding in this way, we obtain a family of functions {ui}i∈I and a collection of numbers {T ∗
i−1}i∈I

such that
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ui is a generalized solution of (2.4.125) on [0, T ∗
i−1],

where I is a subset of the natural numbers.

Set
[0, Tmax) =

⋃
i∈I

[0, T ∗
i−1[.

We now define a function u with values in X and domain [0, Tmax[ as follows: given i ∈ I, we
define u on [0, T ∗

i−1[ as the restriction of uj to [0, T ∗
i−1[ for any j ≥ i. This makes sense because if k, j ≥ i,

then uk and uj coincide on [0, T ∗
i−1[.

We now prove that u is the unique generalized solution of (2.4.125) on [0, Tmax). By definition,
u ∈ C0([0, Tmax[;X). Given t ∈ [0, Tmax[, there exists i ∈ I such that T ∗

i−1 ≤ t ≤ T ∗
i and, by induction,

by arguments analogous to those used in (2.4.145), we obtain

u(t) = S(t)u0 +
∫ t

0
S(t− s)F (u(s)) ds,

which shows that u is a generalized solution of (2.4.125) on [0, Tmax[. To prove uniqueness, suppose there
exists another function v which is a generalized solution of (2.4.125) on [0, Tmax[. In particular, for each
i ∈ I we have that v satisfies

v(t) = S(t)u0 +
∫ t

0
S(t− s)F (v(s)) ds, ∀t ∈ [T ∗

i−1, T
∗
i ].

But, by Theorem 2.4, ui is the unique generalized solution of (2.4.125) on [T ∗
i−1, T

∗
i ], hence v = ui on

[T ∗
i−1, T

∗
i ] for each i ∈ I. Thus u = v.

It remains to show that

Tmax = +∞ or, if Tmax < +∞, then lim
t→T −

max

∥u(t)∥ = +∞.

Indeed, suppose, by contradiction, that

Tmax <∞ and lim
t→T −

max

∥u(t)∥ <∞.

Then
∥u(t)∥ ≤ C, ∀t ∈ [0, Tmax], (2.4.146)

for some C > 0.

Consider, in view of (2.4.146), the solution v of the problem
dv

dt
(t) = Av(t) + F (v(t)),

v(0) = u(Tmax) = lim
t→T −

max

u(t),

and set
w(t) =

{
u(t), t ∈ [0, Tmax],
v(t− Tmax), t ∈ [Tmax, Tmax + δ], δ > 0.

Then w is a generalized solution of (2.4.125) which extends the maximal solution u, a contradiction.

(ii) Let u be the generalized solution of (2.4.125) on [0, Tmax[ and write u = ui for its restriction
to [T ∗

i−1, T
∗
i ]. As in part (i), if u0 ∈ D(A) then each ui is a strong solution of (2.4.125) on [T ∗

i−1, T
∗
i ]. By

the arbitrariness of i ∈ I, it follows that u is a strong solution of (2.4.125). 2
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Theorem 2.26 Assume that ∥S(t)∥ ≤ 1. Let F : D(A) → D(A) be a locally Lipschitz function. Given
u0 ∈ D(A), there exists u ∈ C1([0, Tmax), X) ∩ C0([0, Tmax), D(A)); moreover, u is a classical solution
on [0, Tmax), and either Tmax = +∞ or Tmax < +∞ and lim

t→Tmax

(∥u(t)∥+ ∥Au(t)∥) = +∞.

Proof: In Theorem 2.25, consider X = D(A) endowed with the graph norm. Then, for u0 ∈ D(A), we
have that

u(t) =



u1(t), t ∈ [0, T1),
u2(t− T1), t ∈ [T1, T2),
...
un(t− Tn−1), t ∈ [Tn−1, Tn),
...

(2.4.147)

is a strong solution of (2.4.125), with u ∈ C0([0, Tmax), D(A)) and Tmax = +∞ or Tmax < +∞ and
lim

t→Tmax

(∥u(t)∥+ ∥Au(t)∥) = +∞. Recall that ui is a classical solution of (2.4.125) on [0, Ti] with ui(0) =
ui−1(Ti−1) and T0 = 0.

It remains to show that u ∈ C1([0, Tmax), X). Since u(t) ∈ D(A) for every t ∈ [0, Tmax) and
u ∈ C0([0, Tmax), D(A)), we have u ∈ C0([0, Tmax), X). Now observe that, for each interval [Ti−1, Ti),
the derivative du

dt is continuous. Thus, it suffices to prove continuity at Ti.

Indeed, note that

du

dt

+
(Ti) = lim

h→0+

u(Ti + h)− u(Ti)
h

= lim
h→0+

ui+1(h)− ui+1(0)
h

= dui+1

dt

+
(0),

and

du

dt

−
(Ti) = lim

h→0−

u(Ti + h)− u(Ti)
h

= lim
h→0−

ui(Ti + h)− ui(Ti)
h

= dui

dt

−
(Ti).

Hence we must show that
dui+1

dt

+
(0) = dui

dt

−
(Ti).

Since ui is a classical solution of (2.4.125) on [0, Ti], we have
dui

dt
(t) = Aui(t) + F (ui(t)), t ∈ [0, Ti],

ui(0) = ui−1(Ti−1),
(2.4.148)

and 
dui+1

dt
(t) = Aui+1(t) + F (ui+1(t)), t ∈ [0, Ti+1],

ui+1(0) = ui(Ti).
(2.4.149)

Thus
dui

dt

−
(Ti) = Aui(Ti) + F (ui(Ti))
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and

dui+1

dt

+
(0) = Aui+1(0) + F (ui+1(0))

= Aui(Ti) + F (ui(Ti))

= dui

dt

−
(Ti),

which proves the claim. 2
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Chapter 3

Evolution Equations

3.1 The Heat Equation

In this section we consider Ω a bounded open subset of Rn with sufficiently smooth boundary Γ.

3.1.1 Dirichlet boundary condition

Consider the following problem with Dirichlet boundary condition:
ut −∆u = 0 in (0,∞)× Ω,
u = 0 on (0,∞)× Γ,
u(0) = u0 in Ω.

(3.1.1)

We shall study existence and uniqueness of solutions of (3.1.1), taking the initial datum u0 in each
of the following sets: H1

0 (Ω) ∩H2(Ω), L2(Ω), H1
0 (Ω), and H−1(Ω).

First case u0 ∈ H1
0 (Ω) ∩H2(Ω)

We rewrite (3.1.1) in the abstract form{
ut = ∆u,
u(0) = u0,

(3.1.2)

where
∆ : H1

0 (Ω) ∩H2(Ω) ⊂ L2(Ω)→ L2(Ω).

We first use the Lumer–Phillips theorem to prove that ∆ ∈ G(1, 0). Indeed:

i) We know that H1
0 (Ω) ∩H2(Ω) is dense in L2(Ω);

ii) ∆ is dissipative, since

(∆u, u)L2(Ω) =
∫

Ω
∆uu dx = −

∫
Ω
∇u · ∇u dx+

∫
Γ

∂u

∂ν
u dΓ︸ ︷︷ ︸

=0

≤ 0,

for every u ∈ H1
0 (Ω) ∩H2(Ω);

iii) Im(I − ∆) = L2(Ω). In fact, proving Im(I − ∆) = L2(Ω) is equivalent to proving that, for
each f ∈ L2(Ω), the problem u−∆u = f has a solution u ∈ H1

0 (Ω) ∩H2(Ω). To prove this, we use the
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Lax–Milgram lemma. Define

a(u, v) =
∫

Ω
(∇u · ∇v + uv) dx, ∀u, v ∈ H1

0 (Ω),

which is clearly bilinear. This bilinear form is continuous, since

|a(u, v)| =
∣∣∣∣ ∫

Ω
(∇u · ∇v + uv) dx

∣∣∣∣
≤

∫
Ω
|∇u||∇v| dx+

∫
Ω
|u||v| dx

≤ ∥∇u∥L2(Ω)∥∇v∥L2(Ω) + ∥u∥L2(Ω)∥v∥L2(Ω)

≤
(
∥u∥2

L2(Ω) + ∥∇u∥2
L2(Ω)

) 1
2
(
∥v∥2

L2(Ω) + ∥∇v∥2
L2(Ω)

) 1
2

= ∥u∥H1(Ω)∥v∥H1(Ω)

≤ c∥u∥H1
0 (Ω)∥v∥H1

0 (Ω).

Moreover, it is coercive, since

a(u, u) =
∫

Ω
|∇u|2 dx+

∫
Ω
|u|2 dx ≥

∫
Ω
|∇u|2 dx = ∥u∥2

H1
0 (Ω).

By the Lax–Milgram lemma, there exists a unique u ∈ H1
0 (Ω) such that a(u, v) = ⟨f, v⟩ for all v ∈ H1

0 (Ω),
that is ∫

Ω
(∇u · ∇v + uv) dx =

∫
Ω
fv dx, ∀v ∈ H1

0 (Ω).

From this and the regularity theory for the associated elliptic problem, we obtain u ∈ H2(Ω). Hence,
using Green’s identity, we see that there exists a unique u ∈ H1

0 (Ω)∩H2(Ω) satisfying u−∆u = f , which
proves the claim.

By (i), (ii) and (iii), the operator ∆ is m–dissipative with dense domain and, by the Lumer–Phillips
theorem, it follows that ∆ ∈ G(1, 0). Thus, if u0 ∈ H1

0 (Ω) ∩H2(Ω), then by Theorem 2.3, the problem
(3.1.2) admits a unique solution

u ∈ C([0,∞);H1
0 (Ω) ∩H2(Ω)) ∩ C1([0,∞);L2(Ω)).

Second case u0 ∈ L2(Ω)

We first show that ∆ : H1
0 (Ω) ∩ H2(Ω) ⊂ L2(Ω) → L2(Ω) is self-adjoint. Indeed, since ∆ is

m–dissipative, −∆ is maximal monotone. Moreover, −∆ is symmetric, because

(−∆u, v)L2(Ω) = (∇u,∇v)L2(Ω) = (u,−∆v)L2(Ω), ∀u, v ∈ H1
0 (Ω) ∩H2(Ω),

so that −∆ is self-adjoint and hence ∆ = ∆∗.

Since ∆ is m–dissipative and self-adjoint, it follows that ∆ generates a differentiable semigroup,
by Proposition 2.8. Then, by Theorem 2.5, if u0 ∈ L2(Ω) the problem (3.1.2) has a unique solution in
the class

u ∈ C((0,∞);H1
0 (Ω) ∩H2(Ω)) ∩ C([0,∞);L2(Ω)) ∩ C1((0,∞);L2(Ω)).

Third case u0 ∈ H1
0 (Ω)

We first show that the operator −∆ : H1
0 (Ω) ∩H2(Ω) ⊂ L2(Ω) → L2(Ω) is defined by the triple

{H1
0 (Ω), L2(Ω), b(u, v)}, where b(u, v) = (∇u,∇v)L2(Ω) = (u, v)H1

0 (Ω) is a sesquilinear form, continuous
and coercive on H1

0 (Ω).
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Let A be the operator defined by the triple {H1
0 (Ω), L2(Ω), b(u, v)}. We shall prove that

D(−∆) = D(A) and Au = −∆u, ∀u ∈ D(−∆).

Let u ∈ D(−∆) = H1
0 (Ω) ∩H2(Ω). Since

D(A) = {u ∈ H1
0 (Ω); ∃f ∈ L2(Ω) such that b(u, v) = (f, v)L2(Ω), ∀v ∈ H1

0 (Ω)},

we must exhibit f ∈ L2(Ω) such that b(u, v) = (f, v)L2(Ω) for all v ∈ H1
0 (Ω). Taking f = −∆u ∈ L2(Ω),

we obtain the desired identity, since

b(u, v) = (∇u,∇v)L2(Ω) = (−∆u, v)L2(Ω) = (f, v)L2(Ω), ∀v ∈ H1
0 (Ω).

Thus u ∈ D(A) and −∆u = Au.

Conversely, if u ∈ D(A), there exists f ∈ L2(Ω) such that

(f, v)L2(Ω) = (∇u,∇v)L2(Ω), ∀v ∈ H1
0 (Ω).

In particular,
(f, φ)L2(Ω) = (∇u,∇φ)L2(Ω), ∀φ ∈ D(Ω),

and, using Green’s identity, we deduce that f = −∆u in D′(Ω). As f ∈ L2(Ω), it follows that −∆u ∈
L2(Ω). Therefore, u satisfies the problem{

−∆u = f in Ω,
u = 0 on Γ, (3.1.3)

and hence u ∈ H2(Ω). Thus u ∈ H1
0 (Ω) ∩ H2(Ω) = D(−∆). We conclude that the operator −∆ :

H1
0 (Ω) ∩H2(Ω) ⊂ L2(Ω)→ L2(Ω) is defined by the triple {H1

0 (Ω), L2(Ω), b(u, v)}.

Consider the following chain of continuous and dense embeddings:

H1
0 (Ω) ∩H2(Ω) ↪→ H1

0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) ↪→ (H1
0 (Ω) ∩H2(Ω))′,

where we identify L2(Ω) with its topological dual.

Since the bilinear form b(u, v) = (∇u,∇v)L2(Ω) is coercive, the operator −∆, defined by the triple
{H1

0 (Ω), L2(Ω), b(u, v)}, admits an extension

−∆̃ : H1
0 (Ω) −→ H−1(Ω)
u 7−→ −∆̃u,

where −∆̃u : H1
0 (Ω)→ C is defined by

⟨−∆̃u, v⟩H−1(Ω),H1
0 (Ω) = (∇u,∇v)L2(Ω) = (u, v)H1

0 (Ω).

This extension is a bijection and, endowing H−1(Ω) with the inner product

(x, y)H−1(Ω) = (−∆̃−1x,−∆̃−1y)H1
0 (Ω) = (∆̃−1x, ∆̃−1y)H1

0 (Ω),

we obtain ∥∆̃u∥H−1(Ω) = ∥u∥H1
0 (Ω) for all u ∈ H1

0 (Ω).

Now consider the problem 
ut − ∆̃u = 0 in (0,∞)× Ω,
u = 0 on (0,∞)× Γ,
u(0) = u0 in Ω.

(3.1.4)
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We now prove that ∆̃ ∈ G(1, 0).

i) We know that H1
0 (Ω) is dense in H−1(Ω);

ii) We prove that ∆̃ is dissipative. Let u ∈ D(∆). Then

(∆̃u, u)H−1(Ω) = (∆̃−1∆̃u, ∆̃−1u)H1
0 (Ω) = (u, ∆̃−1u)H1

0 (Ω)

= (∇u,∇∆̃−1u)L2(Ω)

=
∫

Ω
∇u · ∇∆̃−1u dx = −

∫
Ω
u∆∆̃−1u dx

= −
∫

Ω
u2 dx ≤ 0.

Now let u ∈ D(∆̃). Then there exists {un} ⊂ D(∆) such that un → u in D(∆̃). From the previous
computation we have

(∆̃un, un)H−1(Ω) ≤ 0 ∀n ∈ N.

Observe that

|(∆̃un, un)H−1(Ω) − (∆̃u, u)H−1(Ω)|
= |(∆̃un, un)H−1(Ω) − (∆̃u, un)H−1(Ω) + (∆̃u, un)H−1(Ω) − (∆̃u, u)H−1(Ω)|
≤ |(∆̃un − ∆̃u, un)H−1(Ω)|+ |(∆̃u, un − u)H−1(Ω)|
≤ ∥∆̃un − ∆̃u∥H−1(Ω) ∥un∥H−1(Ω) + ∥∆̃u∥H−1(Ω) ∥un − u∥H−1(Ω)

≤ c∥∆̃un − ∆̃u∥H−1(Ω) ∥un∥H1
0 (Ω) + c∥∆̃u∥H−1(Ω) ∥un − u∥H1

0 (Ω) → 0,

where c > 0 is the constant in the embedding H1
0 (Ω) ↪→ H−1(Ω) and we have used that ∆̃ is a bijective

isometry. From this convergence we conclude that (∆̃u, u)H−1(Ω) ≤ 0.

iii) We prove that Im(I − ∆̃) = H−1(Ω). Let f ∈ H−1(Ω) be given. Consider again

a(u, v) =
∫

Ω
(uv +∇u · ∇v) dx, ∀u, v ∈ H1

0 (Ω),

which is a bilinear, continuous and coercive form. By the Lax–Milgram lemma, there exists a unique
u ∈ H1

0 (Ω) such that
a(u, v) = ⟨f, v⟩, ∀v ∈ H1

0 (Ω).

Using
⟨−∆̃u, v⟩ = (∇u,∇v)L2(Ω), ∀v ∈ H1

0 (Ω),

we obtain
⟨u− ∆̃u, v⟩ = ⟨f, v⟩, ∀v ∈ H1

0 (Ω),

which yields the desired conclusion.

Therefore, ∆̃ is m–dissipative with dense domain and, by the Lumer–Phillips theorem, ∆̃ ∈ G(1, 0).
Thus, when u0 ∈ H1

0 (Ω), Theorem 2.3 implies that the problem (3.1.4) has a unique solution

u ∈ C([0,∞);H1
0 (Ω)) ∩ C1([0,∞);H−1(Ω)).

Fourth case u0 ∈ H−1(Ω)
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First note that, if u, v ∈ D(∆), then

(u, ∆̃v)H−1(Ω) = (∆̃−1u, ∆̃−1∆̃v)H1
0 (Ω) = (∆̃−1u, v)H1

0 (Ω)

= (∇∆̃−1u,∇v)L2(Ω)

= −(∆∆̃−1u, v)L2(Ω)

= −(u, v)L2(Ω),

and also

(∆̃u, v)H−1(Ω) = (∆̃−1∆̃u, ∆̃−1v)H1
0 (Ω) = (u, ∆̃−1v)H1

0 (Ω)

= (∇u,∇∆̃−1v)L2(Ω)

= −(u, ∆̃∆̃−1v)L2(Ω)

= −(u, v)L2(Ω),

so that
(u, ∆̃v)H−1(Ω) = (∆̃u, v)H−1(Ω), ∀u, v ∈ D(∆),

and, by density, the same equality holds for all u, v ∈ D(∆̃), which shows that ∆̃ is symmetric.

Since ∆̃ is m–dissipative, −∆̃ is maximal monotone and, being symmetric, it follows that it is
also self-adjoint. Hence ∆̃ is self-adjoint as well. As ∆̃ is m–dissipative and self-adjoint, Proposition 2.8
implies that this operator generates a differentiable semigroup. Therefore, by Theorem 2.5, the problem
(3.1.4) with initial data u0 ∈ H−1(Ω) has a unique solution

u ∈ C((0,∞);H1
0 (Ω)) ∩ C([0,∞);H−1(Ω)) ∩ C1((0,∞);H−1(Ω)).

3.1.2 Neumann boundary condition

Let Ω be as at the beginning of the chapter. We now consider the heat equation with Neumann
boundary condition 

ut −∆u = 0 in (0,∞)× Ω,
∂u

∂ν
= 0 on (0,∞)× Γ,

u(0) = u0 in Ω.
(3.1.5)

We shall study existence and uniqueness of solutions to (3.1.5), taking the initial datum u0 in each
of the following sets: L2(Ω), H1(Ω), (H1(Ω))′.

First case: u0 ∈ L2(Ω) We first consider the Laplace operator ∆ : D(∆) ⊂ L2(Ω) → L2(Ω) with
domain

D(∆) =
{
u ∈ H2(Ω); ∂u

∂ν
= 0 on Γ

}
,

and we prove that the operator I −∆ : D(I −∆) ⊂ L2(Ω)→ L2(Ω), with D(I −∆) = D(∆), is defined
by the triple {H1(Ω), L2(Ω), a(u, v)}, where

a(u, v) = (∇u,∇v)L2(Ω) + (u, v)L2(Ω), ∀u, v ∈ H1(Ω).

Since a is a bilinear and continuous mapping, we know that the triple {H1(Ω), L2(Ω), a(u, v)}
defines an operator A. We shall show that

D(∆) = D(A) and Au = (I −∆)u, ∀u ∈ D(∆).
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Indeed, let

u ∈ D(A) =
{
u ∈ H1(Ω); ∃f ∈ L2(Ω) such that a(u, v) = (f, v)L2(Ω), ∀v ∈ H1(Ω)

}
.

Then there exists f ∈ L2(Ω) such that

(∇u,∇v)L2(Ω) + (u, v)L2(Ω) = (f, v)L2(Ω), ∀v ∈ H1(Ω). (3.1.6)

In particular, for φ ∈ D(Ω) we have

(∇u,∇φ)L2(Ω) + (u, φ)L2(Ω) = (f, φ)L2(Ω),

whence
f = −∆u+ u in D′(Ω).

Since f ∈ L2(Ω) and u ∈ H1(Ω), we get −∆u ∈ L2(Ω). Then, from (3.1.6) we obtain

(∇u,∇v)L2(Ω) + (∆u, v)L2(Ω) = 0, ∀v ∈ H1(Ω).

On the other hand, by the second Green’s formula in its general form,

(∇u,∇v)L2(Ω) + (∆u, v)L2(Ω) =
〈∂u
∂ν
, v
〉

H−1/2,H1/2
,

and thus 〈∂u
∂ν
, v
〉

H−1/2,H1/2
= 0, ∀v ∈ H1(Ω).

Since the trace operator is surjective, we deduce ∂u

∂ν
= 0 on Γ. Moreover, by the regularity theory for

the Neumann problem, we have u ∈ H2(Ω), and therefore u ∈ D(∆).

Conversely, let u ∈ D(∆). We must exhibit f ∈ L2(Ω) such that a(u, v) = (f, v)L2(Ω) for all
v ∈ H1(Ω). Taking f = −∆u + u ∈ L2(Ω) we obtain the desired identity, so u ∈ D(A). Now, since
u ∈ D(A) we have a(u, v) = (Au, v)L2(Ω), and using the second Green’s formula again we conclude that

u−∆u = Au, ∀u ∈ D(∆).

Thus, the operator I −∆ is defined by the triple {H1(Ω), L2(Ω), a(u, v)}. Therefore, applying the
parabolic case, when z0 ∈ L2(Ω), the problem{

zt + (I −∆)z = 0 in (0,∞)× Ω,
z(0) = z0 in Ω (3.1.7)

has a unique solution

z ∈ C(]0,∞[;D(∆)) ∩ C0([0,∞[;L2(Ω)) ∩ C1(]0,∞[;L2(Ω)).

Setting u(t) = etz(t), we see that u is the unique solution of (3.1.5) with u0 = u(0) ∈ L2(Ω) in the
class

u ∈ C(]0,∞[;D(∆)) ∩ C0([0,∞[;L2(Ω)) ∩ C1(]0,∞[;L2(Ω)).

Second case u0 ∈ (H1(Ω))′

Since I −∆ is defined by a triple, we may consider its extension

Ĩ −∆ : H1(Ω) −→ (H1(Ω))′

u 7−→ Ĩ −∆u : H1(Ω)→ C,
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where
⟨Ĩ −∆u, v⟩(H1(Ω))′,H1(Ω) = a(u, v) = (∇u,∇v)L2(Ω) + (u, v)L2(Ω).

This extension is a bijective isometry, and via it we define an inner product on (H1(Ω))′ by

(u, v)(H1(Ω))′ = ((Ĩ −∆)−1u, (Ĩ −∆)−1v)H1(Ω).

We first show that Ĩ −∆ is maximal monotone. Indeed, let u ∈ D(I −∆) = D(∆). Then

((Ĩ −∆)u, u)(H1(Ω))′ = ((Ĩ −∆)−1(Ĩ −∆)u, (Ĩ −∆)−1u)H1(Ω)

= (u, (Ĩ −∆)−1u)H1(Ω)

= (∇u,∇(Ĩ −∆)−1u)L2(Ω) + (u, (Ĩ −∆)−1u)L2(Ω)

= (u,−∆(Ĩ −∆)−1u)L2(Ω) + ⟨γ1u, γ0(Ĩ −∆)−1u⟩H−1/2,H1/2

+(u, (Ĩ −∆)−1u)L2(Ω)

= (u, (I −∆)(Ĩ −∆)−1u)L2(Ω)

= ∥u∥2
L2(Ω) ≥ 0, ∀u ∈ D(∆).

Now let u ∈ H1(Ω); then there exists {un} ⊂ D(∆) such that un → u in H1(Ω). Since Ĩ −∆ is con-
tinuous, we have (Ĩ −∆)un → (Ĩ −∆)u in (H1(Ω))′. As ((Ĩ −∆)un, un)(H1(Ω))′ → ((Ĩ −∆)u, u)(H1(Ω))′ ,
we obtain ((Ĩ −∆)u, u)(H1(Ω))′ ≥ 0. Hence Ĩ −∆ is monotone.

Next we prove that Im(I + ˜(I −∆)) = (H1(Ω))′, that is, given f ∈ (H1(Ω))′ we must find
u ∈ H1(Ω) such that u+ (Ĩ −∆)u = f . Consider

b(u, v) = (u, v)L2(Ω) + a(u, v).

Then, by the Lax–Milgram lemma, there exists a unique u ∈ H1(Ω) such that

b(u, v) = ⟨f, v⟩(H1(Ω))′,H1(Ω), ∀v ∈ H1(Ω).

It follows that
⟨u, v⟩+ ⟨(Ĩ −∆)u, v⟩ = ⟨f, v⟩, ∀v ∈ H1(Ω),

which yields the desired conclusion. Therefore Ĩ −∆ ∈ G(1, 0).

Moreover,

((Ĩ −∆)u, v)(H1(Ω))′ = ((Ĩ −∆)−1(Ĩ −∆)u, (Ĩ −∆)−1v)H1(Ω)

= (u, (Ĩ −∆)−1v)H1(Ω)

= (∇u,∇(Ĩ −∆)−1v)L2(Ω) + (u, (Ĩ −∆)−1v)L2(Ω)

= (u,−∆(Ĩ −∆)−1v)L2(Ω) + (u, (Ĩ −∆)−1v)L2(Ω)

= (u, (Ĩ −∆)(Ĩ −∆)−1v)L2(Ω)

= (u, v)L2(Ω)

= ((Ĩ −∆)(Ĩ −∆)−1u, v)L2(Ω)

= ((Ĩ −∆)−1u, v)L2(Ω) + (−∆(Ĩ −∆)−1u, v)L2(Ω)

= ((Ĩ −∆)−1u, v)L2(Ω) + (∇(Ĩ −∆)−1u,∇v)L2(Ω)

= ((Ĩ −∆)−1u, v)H1(Ω).
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Therefore, Ĩ −∆ is symmetric for all u, v ∈ D(∆). Again, by density we conclude that Ĩ −∆ is
symmetric for all u, v ∈ H1(Ω). Since this operator is maximal monotone, we have (Ĩ −∆)∗ = Ĩ −∆.
Hence Ĩ −∆ generates a differentiable semigroup.

Thus, the problem {
zt + (Ĩ −∆)z = 0 in (0,∞)× Ω,
z(0) = u0 in Ω

(3.1.8)

has a unique solution in the class

z ∈ C((0,∞);H1(Ω)) ∩ C([0,∞); (H1(Ω))′) ∩ C1((0,∞); (H1(Ω))′)

whenever u0 ∈ (H1(Ω))′.

The operator

−∆̃ : H1(Ω)→ (H1(Ω))′ (3.1.9)
u 7→ −∆̃u, where − ∆̃u : H1((Ω))→ C is given by

v 7→ (∇u,∇v)L2((Ω)),

is a continuous extension of −∆. Moreover, Ĩ −∆ = Ĩ − ∆̃ = I − ∆̃.

Setting u(t) = etz(t), we see that u is the unique solution of{
ut − ∆̃u = 0 in (0,∞)× Ω,
u(0) = u0 in Ω

(3.1.10)

in the class
u ∈ C((0,∞);H1(Ω)) ∩ C0([0,∞);H1(Ω)) ∩ C1((0,∞);H1(Ω)),

when u(0) = u0 ∈ (H1(Ω))′.

3.2 Wave equation

3.2.1 Dirichlet boundary condition

Let Ω ⊂ Rn be a bounded open set with sufficiently smooth boundary Γ. Consider the problem
utt −∆u = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× Γ,
u(0) = u0, ut(0) = v0 in Ω.

(3.2.11)

We shall study existence and uniqueness of solutions to (3.2.11), considering the pair of initial data
(u0, u1) in each of the following spaces:

H1
0 (Ω) ∩H2(Ω)×H1

0 (Ω), H1
0 (Ω)× L2(Ω), and L2(Ω)×H−1(Ω).

First case: (u0, u1) ∈ H1
0 (Ω) ∩H2(Ω)×H1

0 (Ω) and (u0, u1) ∈ H1
0 (Ω)× L2(Ω).

We first observe that, by what was done in the Third Case in the study of the heat equation, the
operator −∆ : H1

0 (Ω) ∩H2(Ω) ⊂ L2(Ω)→ L2(Ω) is defined by the triple {H1
0 (Ω), L2(Ω), b(u, v)}, where

b(u, v) = (∇u,∇v)L2(Ω) = (u, v)H1
0
.
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Thus, by the Hyperbolic Case of Section 2.2, problem (3.2.11) has a unique solution u for (u0, u1) ∈
H1

0 (Ω) ∩H2(Ω)×H1
0 (Ω), with

u ∈ C0([0,+∞);H1
0 (Ω) ∩H2(Ω)) ∩ C1([0,+∞);H1

0 (Ω)) ∩ C2([0,+∞);L2(Ω)),

and, moreover, u satisfies the energy identity

∥∇u(t)∥2
L2(Ω) + ∥u′(t)∥2

L2(Ω) = ∥∇u0∥2
L2(Ω) + ∥u1∥2

L2(Ω), ∀t ≥ 0.

Again by the Hyperbolic Case of Section 2.2, problem (3.2.11) has a unique solution u for (u0, u1) ∈
H1

0 (Ω)× L2(Ω), with

u ∈ C0([0,+∞);H1
0 (Ω)) ∩ C1([0,+∞);L2(Ω)) ∩ C2([0,+∞);H−1(Ω)),

and, moreover, u satisfies the energy identity

∥u(t)∥2
L2(Ω) + ∥u′(t)∥2

H−1(Ω) = ∥u0∥2
L2(Ω) + ∥u1∥2

H−1(Ω), ∀t ≥ 0.

Second case: (u0, u1) ∈ L2(Ω)×H−1(Ω).

Following the steps of the Hyperbolic Case in Section 2.2, consider the extension

˜̃∆ : L2(Ω) −→ (H1
0 (Ω) ∩H2(Ω))′

and ˜̃
B : L2(Ω)×H−1(Ω) −→

(
H−1(Ω)× (H1

0 (Ω) ∩H2(Ω))′
)

:= ˜̃
X

(u, v) 7−→ ˜̃
B(u, v) = (v, ˜̃∆u).

Once again we have ˜̃B∗
= − ˜̃B and hence ˜̃B generates a unitary group. Therefore there exists a unique

solution
U ∈ C([0,∞), D( ˜̃B)) ∩ C1([0,∞), ˜̃X),

that is,
u ∈ C([0,∞), L2(Ω)) ∩ C1([0,∞), H−1(Ω)) ∩ C2([0,∞), (H1

0 (Ω) ∩H2(Ω))′).

Remark 3.1 To justify the boundary condition u = 0 on Γ × (0,∞) one must use the results obtained
in [69].

3.2.2 Neumann boundary condition

Let Ω ⊂ Rn be a bounded open set with sufficiently smooth boundary Γ. Consider the problem
utt −∆u = 0 in (0,∞)× Ω,

∂u

∂ν
= 0 on (0,∞)× Γ,

u(0) = u0, ut(0) = v0 in Ω.
(3.2.12)

We shall study existence and uniqueness of solutions to (3.2.12), considering the pair of initial data
(u0, v0) in each of the following spaces:

D(∆)×H1(Ω), H1(Ω)× L2(Ω),

where
D(∆) =

{
u ∈ H2(Ω); ∂u

∂ν
= 0 on Γ

}
.
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First case: (u0, v0) ∈ D(∆)×H1(Ω).

Consider the change of variables
v = du

dt
, (3.2.13)

and set
U =

[
u

v

]
, (3.2.14)

so that we obtain

dU

dt
=

 du

dt
dv

dt

 =
[

v

∆u

]
=
[

0 I

∆ 0

] [
u

v

]
. (3.2.15)

Let D(B) = D(∆)×H1(Ω) and

B : D(B) ⊂ H1(Ω)× L2(Ω) −→ H1(Ω)× L2(Ω)

[u, v] 7−→ B([u, v]) =
[

0 I

∆ 0

] [
u

v

]
.

(3.2.16)

From (3.2.12) we obtain 
dU

dt
= BU,

U(0) = U0,
(3.2.17)

with
U0 =

[
u0
v0

]
.

Now, setting U(t) = etZ(t) we obtain
dZ

dt
= (B − I)Z,

Z(0) = U0,
(3.2.18)

with
U0 =

[
u0
v0

]
.

We need to show that B − I is the generator of a C0–semigroup. To this end we use the
Lumer–Phillips theorem. We have

B − I : D(∆)×H1(Ω) ⊂ H1(Ω)× L2(Ω) −→ H1(Ω)× L2(Ω).

Note that

i) D(B − I) = D(∆)×H1(Ω) is dense in H1(Ω)× L2(Ω), since

D(B − I) = D(∆)×H1(Ω) = D(∆)×H1(Ω) = H1(Ω)× L2(Ω).
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ii) B − I is dissipative. Indeed, let (u1, v1) ∈ D(B − I) = D(∆)×H1(Ω). Then(
(B − I)(u1, v1), (u1, v1)

)
H1(Ω)×L2(Ω)

=
(
(v1 − u1,∆u1 − v1), (u1, v1)

)
H1(Ω)×L2(Ω)

= (v1 − u1, u1)H1(Ω) + (∆u1 − v1, v1)L2(Ω)

= (v1 − u1, u1)L2(Ω) + (∇(v1 − u1),∇u1)L2(Ω) + (∆u1 − v1, v1)L2(Ω)

=
∫

Ω
(v1 − u1)u1 dx+

∫
Ω

(∇v1 −∇u1)∇u1 dx+
∫

Ω
(∆u1 − v1)v1 dx

=
∫

Ω
(v1u1 − u2

1) dx+
∫

Ω
(∇v1∇u1 − |∇u1|2) dx+

∫
Ω

(∆u1)v1 − v2
1 dx

=
∫

Ω
v1u1 − u2

1 dx+
∫

Ω
∇v1∇u1 dx−

∫
Ω
|∇u1|2 dx−

∫
Ω
∇u1∇v1 dx−

∫
Ω
v2

1 dx

=
∫

Ω
v1u1 dx−

∫
Ω
u2

1 dx−
∫

Ω
|∇u1|2 dx−

∫
Ω
v2

1 dx.

If
∫

Ω
v1u1 dx < 0, then the last expression is clearly less than or equal to zero. If

∫
Ω
v1u1 dx ≥ 0, then

∫
Ω
v1u1 dx−

∫
Ω
u2

1 dx−
∫

Ω
|∇u1|2 dx−

∫
Ω
v2

1 dx

≤ 2
∫

Ω
v1u1 dx−

∫
Ω
u2

1 dx−
∫

Ω
|∇u1|2 dx−

∫
Ω
v2

1 dx

= −
∫

Ω
(u1 − v1)2 dx−

∫
Ω
|∇u1|2 dx ≤ 0.

Thus, in both cases, we conclude that B − I is dissipative.

iii) Im(I− (B− I)) = H1(Ω)×L2(Ω). Equivalently, Im(2I−B) = H1(Ω)×L2(Ω). We must show that,
given (w, z) ∈ H1(Ω)×L2(Ω), there exists (u, v) ∈ D(∆)×H1(Ω) such that (2I−B)(u, v) = (w, z), that
is, such that (2u− v, 2v −∆u) = (w, z), or equivalently{

2u− v = w,

2v −∆u = z
⇒
{

4u− 2v = 2w,
2v −∆u = z.

(3.2.19)

Adding the two equations in the system above, we obtain 4u −∆u = 2w + z. We now show that there
exists u ∈ D(∆) such that (4I −∆)u = 2w + z.

Define
a(u, v) =

∫
Ω

(∇u∇v + uv) dx, ∀u, v ∈ H1(Ω),

which, as we have already seen, is bilinear and satisfies

|a(u, v)| ≤ ∥u∥H1(Ω)∥v∥H1(Ω),

showing that a is continuous. It is also coercive, since

a(u, u) =
∫

Ω
|∇u|2 dx+

∫
Ω
|u|2 dx = ∥u∥2

H1(Ω).

By the Lax–Milgram lemma, there exists a unique u ∈ H1(Ω) such that a(u, v) = ⟨2w+ z− 3u, v⟩ for all
v ∈ H1(Ω), that is, ∫

Ω
(∇u∇v + uv) dx =

∫
Ω

(2w + z − 3u)v dx, ∀v ∈ H1(Ω). (3.2.20)

From (3.2.20) and the regularity theory for the Neumann problem we obtain u ∈ H2(Ω). Furthermore,
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from (3.2.20) we have

(∇u,∇v)L2(Ω) + (u, v)L2(Ω) = (2w + z − 3u, v)L2(Ω), ∀v ∈ H1(Ω). (3.2.21)

Since (3.2.21) holds for all v ∈ H1(Ω), in particular for φ ∈ D(Ω), we get

(∇u,∇φ)L2(Ω) + (u, φ)L2(Ω) = (2w + z − 3u, φ)L2(Ω).

Hence −∆u + u = 2w + z − 3u in D′(Ω). Since 2w + z − 3u ∈ L2(Ω) and u ∈ L2(Ω), it follows that
∆u ∈ L2(Ω). Thus, from (3.2.21),

(∇u,∇v)L2(Ω) + (∆u, v)L2(Ω) = 0, ∀v ∈ H1(Ω).

By the second Green’s formula in its general form,

(∇u,∇v)L2(Ω) + (∆u, v)L2(Ω) =
〈∂u
∂ν
, v
〉

H−1/2,H1/2
,

and therefore 〈∂u
∂ν
, v
〉

H−1/2,H1/2
= 0, ∀v ∈ H1(Ω).

Since the trace operator is surjective, we obtain ∂u

∂ν
= 0 on Γ. Hence u ∈ D(∆).

Observe that, from (3.2.19), we have v = 2u− w. Since u,w ∈ H1(Ω), it follows that v ∈ H1(Ω).
Therefore, we conclude that (u, v) ∈ D(∆)×H1(Ω), as required.

By (i), (ii) and (iii), the operator B − I is m-dissipative with dense domain. Hence, by the
Lumer–Phillips theorem, we obtain B − I ∈ G(1, 0). Thus, when U0 ∈ D(B − I), the theorem 2.3
guarantees the existence of a unique function

Z ∈ C([0,∞);D(B − I)) ∩ C1([0,∞);H1(Ω)× L2(Ω))

solving (3.2.18). We have

Z(t) = e−tU(t) = e−t

[
u(t)
v(t)

]
=
[
e−tu(t)
e−tv(t)

]
∈ C([0,∞);D(∆)×H1(Ω)) ∩ C1([0,∞);H1(Ω)× L2(Ω)).

We conclude that

u ∈ C([0,∞);D(∆)) ∩ C1([0,∞);H1(Ω)) ∩ C2([0,∞);L2(Ω)).

Second case: (u0, v0) ∈ H1(Ω)× L2(Ω).

We know, by Corollary 1.23, that every C0–semigroup is strongly continuous on R+, that is, if
t ∈ R+, then

lim
s→t

S(s)(x, y) = S(t)(x, y), for all (x, y) ∈ H1(Ω)× L2(Ω).

Thus, if (u0, v0) ∈ H1(Ω)× L2(Ω), the corresponding solution satisfies

u ∈ C([0,∞);H1(Ω)× L2(Ω)).

3.3 Schrödinger equation

We now state a result that will be useful in the study of the Schrödinger equation.

Proposition 3.2 Let H be a Hilbert space and A : D(A) ⊂ H → H a symmetric linear operator such
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that Im(λ0I −A) = H for some λ0 ∈ R with λ0 ∈ ρ(A). Then A is self-adjoint.

Proof: Since λ0 ∈ ρ(A) and Im(λ0I − A) = H, the domain of the operator R(λ0, A) is H. Given
x, y ∈ H, write x′ = R(λ0, A)x and y′ = R(λ0, A)y. Then

x = λ0x
′ −Ax′ and y = λ0y

′ −Ay′.

Since A is symmetric, (x′, Ay′) = (Ax′, y′) because x′, y′ ∈ D(A). Thus,

(x′, λ0y
′ − y) = (x′, Ay′) = (Ax′, y′) = (λ0x

′ − x, y′),

and hence (x′, y) = (x, y′), that is, (R(λ0, A)x, y) = (x,R(λ0, A)y). Since Dom(R(λ0, A)) = H and by
the equality above, it follows that R(λ0, A) is self-adjoint.

To prove that A is self-adjoint, it suffices to show that D(A∗) ⊂ D(A), since A is symmetric by
hypothesis. Let x ∈ D(A∗) and set z = (λ0I −A)∗x. Given y ∈ H with w = R(λ0, A)y we obtain

(w, z) = (R(λ0, A)y, z) = (y,R(λ0, A)z)

and also
(w, z) = (w, (λ0I −A)∗x) = ((λ0I −A)w, x) = (y, x),

so that
(y,R(λ0, A)z) = (y, x).

By the arbitrariness of y ∈ H it follows that x = R(λ0, A)z ∈ D(A). 2

Let H be a Hilbert space and A : D(A) ⊂ H → H a linear operator with dense domain in H. We
have A∗ = −A if and only if iA is self-adjoint. Indeed, if A∗ = −A, then

(iA)∗ = iA∗ = i(−A) = (−i)(−A) = iA.

Conversely, if iA is self-adjoint, then

iA = (iA)∗ = iA∗ = (−i)A∗ = i(−A∗),

which implies A = −A∗, that is, −A = A∗. In this way, by Stone’s theorem, the operator A generates a
unitary C0–group if and only if iA is self-adjoint.

We now consider the Schrödinger equation
du

dt
(t) = i∆u(t) in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0) = u0 in Ω,

(3.3.22)

where Ω is a bounded open subset of Rn with smooth boundary.

Let A : H1
0 (Ω)∩H2(Ω) ⊂ L2(Ω)→ L2(Ω) be the operator defined by Au = i∆u. We already know

that the operator −iA = ∆ is self-adjoint, that is, (−iA)∗ = (−iA). On the other hand,

(−iA)∗ = −iA∗ = iA∗,

so iA∗ = −iA, and hence iA is self-adjoint. Thus A generates a unitary C0–group and, in particular, a
C0–semigroup. By Theorem 2.3, problem (3.3.22) admits a unique solution u in the class

C0([0,∞);H1
0 (Ω) ∩H2(Ω)) ∩ C1([0,∞);L2(Ω))

whenever u0 ∈ H1
0 (Ω) ∩H2(Ω) = D(A).
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Our aim now is to study the Schrödinger equation in L2(Rn):
1
i

du

dt
(t) = ∆u(t)− qu(t) in Rn × (0,∞),

u(0) = u0 in Rn,
(3.3.23)

where ∆ is the Laplacian and q is a real-valued measurable function defined on Rn. Before studying this
equation, we shall prove that the operators

A1 : D(A1) ⊂ L2(Rn) −→ L2(Rn)
u 7−→ A1u = i∆u

and
iMq : D(Mq) ⊂ L2(Rn) −→ L2(Rn)

u 7−→ iMqu = iqu,

where D(A1) = H2(Rn) and D(Mq) = {u ∈ L2(Rn); qu ∈ L2(Rn)}, generate unitary C0–groups.

We first prove that −iA1 is self-adjoint. Note that S(Rn) ⊂ H2(Rn) ⊂ L2(Rn) and since
S(Rn)L2(Rn) = L2(Rn), it follows that H2(Rn)L2(Rn) = L2(Rn). Hence D(A1) = H2(Rn) is dense in
L2(Rn). Moreover,

(∆u, v)L2(Rn) =
∫
Rn

∆u(ξ)v(ξ) dξ

=
∫
Rn

∆̂u(ξ) v̂(ξ) dξ

=
∫
Rn

(−4π2)∥ξ∥2û(ξ) v̂(ξ) dξ

=
∫
Rn

û(ξ) (−4π2)∥ξ∥2v̂(ξ) dξ

=
∫
Rn

û(ξ) ∆̂v(ξ) dξ

= (u,∆v)L2(Rn), ∀u, v ∈ D(A1),

and therefore (−iA1u, v)L2(Rn) = (u,−iA1v)L2(Rn) for all u, v ∈ D(A1), so that −iA1 is symmetric.
Furthermore,

(−iA1u, u)L2(Rn) = (∆u, u)L2(Rn)

=
∫
Rn

∆̂u(ξ) û(ξ) dξ

=
∫
Rn

(−4π2)∥ξ∥2û(ξ) û(ξ) dξ

= −
∫
Rn

4π2∥ξ∥2|û(ξ)|2 dξ ≤ 0, ∀u ∈ D(A1),

so that −iA1 is dissipative. By Proposition 1.42,

∥(I − (−iA1))u∥ ≥ ∥u∥, ∀u ∈ D(A1). (3.3.24)

Thus I − (−iA1) is injective.

Given v ∈ L2(Rn), we know that there exists a unique u ∈ H2(Rn) such that

−∆u+ u = v in L2(Rn),

that is,
(I − (−iA1))u = v in L2(Rn),
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which shows that I − (−iA1) is surjective. Hence (I + iA1)−1 : L2(Rn) → H2(Rn) exists. Given
v ∈ L2(Rn), let u = (I + iA1)−1v ∈ H2(Rn). From (3.3.24),

∥(I + iA1)−1v∥ = ∥u∥ ≤ ∥(I + iA1)u∥ = ∥v∥,

so (I + iA1)−1 is continuous and therefore 1 ∈ ρ(−iA1).

We have that −iA1 is symmetric, Im(I − (−iA1)) = L2(Rn) and 1 ∈ ρ(−iA1). By Theorem 3.2,
−iA1 is self-adjoint. Thus iA1 is self-adjoint and therefore A1 generates a unitary C0–group.

The operator
Mq : D(Mq) ⊂ L2(Rn) −→ L2(Rn)

u 7−→ Mqu = qu,

is called the multiplication operator.

We now prove that iMq generates a unitary C0–group. For this, it suffices to show that Mq is
self-adjoint.

For each n ∈ N, set En = {x ∈ Rn : |q(x)| ≤ n}. Fix an arbitrary u ∈ L2(Rn). We have∫
Rn

|uχEn
(x)|2 dx ≤

∫
Rn

|u(x)|2 dx <∞,

so uχEn
∈ L2(Rn) for all n ∈ N. Also,

|uχEn
(x)− u(x)| → 0 as n→∞ for almost every x ∈ Rn,

and since |uχEn(x) − u(x)|2 ≤ 4|u(x)|2 for almost every x ∈ Rn, the Dominated Convergence Theorem
implies that uχEn

→ u in L2(Rn). Moreover,∫
Rn

|q(x)u(x)χEn(x)|2 dx ≤ n2
∫
Rn

|u(x)|2 dx <∞, ∀n ∈ N,

so uχEn ∈ D(Mq) for all n ∈ N. Thus D(Mq) is dense in L2(Rn).

Given u, v ∈ D(Mq), since q is real-valued, we have (Mqu, v) = (u,Mqv), and therefore Mq

is symmetric. Hence D(Mq) ⊂ D(M∗
q ) and M∗

q u = Mqu for all u ∈ D(Mq). We now prove that
D(Mq) = D(M∗

q ). Note that if u, v ∈ D(Mq), then

(±iI +Mq)u = (±iI +Mq)v

implies u = v. Thus the operators ±iI +Mq are injective. Moreover,

| ± i+ q(x)| =
√

12 + (q(x))2 ≥ 1, ∀x ∈ Rn,

and therefore, for u ∈ L2(Rn), ∣∣∣∣ ±iu±i+ q

∣∣∣∣ ≤ | ± iu| = |u|,
which shows that ∣∣∣∣ ±iu±i+ q

∣∣∣∣ ∈ L2(Rn),

and hence
u− ±iu
±i+ q

= ±iu+ qu

±i+ q
+ ∓iu
±i+ q

= qu

±i+ q
∈ L2(Rn),

so
u

±i+ q
∈ D(Mq) and (±iI +Mq)

(
u

±i+ q

)
= u,

which shows that the operators ±iI +Mq : D(Mq)→ L2(Rn) are surjective.
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Suppose, by contradiction, that D(M∗
q ) ̸= D(Mq).

Claim: iI +M∗
q : D(M∗

q )→ L2(Rn) is not injective.

Indeed, since D(Mq) ⊊ D(M∗
q ), there exists w ∈ D(M∗

q ) \ D(Mq). As iI + Mq is surjective and
(iI +M∗

q )w ∈ L2(Rn), there exists v ∈ D(Mq) such that

(iI +Mq)v = (iI +M∗
q )w.

But v ∈ D(Mq) ⊂ D(M∗
q ) and Mqv = M∗

q v, so (iI +Mq)v = (iI +M∗
q )w with v ̸= w.

Since iI + M∗
q is not injective, there exists v ̸= 0 in D(M∗

q ) such that (iI + M∗
q )v = 0, that is,

M∗
q v = −iv. Hence

(Mqu, v)L2(Rn) = (u,M∗
q v)L2(Rn) = (u,−iv)L2(Rn) = (iu, v)L2(Rn), ∀u ∈ D(Mq),

and therefore
((−iI +Mq)u, v)L2(Rn) = 0, ∀u ∈ D(Mq).

Since −iI +Mq is surjective, the above equality implies v = 0, which is a contradiction. Thus D(Mq) =
D(M∗

q ) and so Mq is self-adjoint.

Returning to problem
1
i

du

dt
(t) = ∆u(t)− qu(t) in Rn × (0,∞),

u(0) = u0 in Rn,
(3.3.25)

we restrict ourselves to the following three cases:

a) q(x) = 0 for almost every x ∈ Rn;

b) q ∈ L∞(Rn);

c) (i) H2(Rn) ⊂ D(Mq) and there exist constants a, b ∈ R with 0 ≤ a < 1 and b ≥ 0 such that

∥Mqu∥L2(Rn) ≤ a∥iA1u∥L2(Rn) + b∥u∥L2(Rn), ∀u ∈ H2(Rn);

(ii) q(x) ≥ 0 for almost every x ∈ Rn.

a) In this case, Mq ≡ 0. We have already seen that A1 generates a C0–semigroup. Thus, if u0 ∈ D(A1) =
H2(Rn), then there exists a unique solution u of (3.3.25) in the class

u ∈ C([0,∞);H2(Rn)) ∩ C1([0,∞), L2(Rn)).

b) Since q ∈ L∞(Rn), we have D(Mq) = L2(Rn), because

∥Mqu∥L2(Rn) =
(∫

Rn

|q(x)u(x)|2 dx
) 1

2

≤ ∥q∥L∞(Rn)∥u∥L2(Rn) <∞, ∀u ∈ L2(Rn),

and hence Mq ∈ L(L2(Rn)) with ∥Mq∥L(L2(Rn)) ≤ ∥q∥L∞(Rn). Moreover, Im(I − (−iA1)) = L2(Rn),
−iA1 has dense domain and is dissipative. By the Lumer–Phillips theorem, −iA1 ∈ G(1, 0). By Exercise
1.52 we obtain −iA1 −Mq ∈ G(1, ∥Mq∥L(L2(Rn))), and therefore

−iA1 −Mq − ∥Mq∥L(L2(Rn))I ∈ G(1, 0),

by Proposition 1.37. By the Lumer–Phillips theorem,

Im(λ− (−iA1 −Mq − ∥Mq∥L(L2(Rn))I)) = L2(Rn),
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for some fixed λ > 0. Setting λ0 = λ+ ∥Mq∥L(L2(Rn)), we have

Im(λ0 − (−iA1 −Mq)) = L2(Rn).

Moreover, since −iA1−Mq ∈ G(1, ∥Mq∥L(L2(Rn))) and λ0 > ∥Mq∥L(L2(Rn)), it follows that λ0 ∈ ρ(−iA1−
Mq). As

D(−iA1 −Mq) = D(A1) ∩D(Mq) = H2(Rn) ∩ L2(Rn) = H2(Rn)

and −iA1 and Mq are symmetric, we deduce that −iA1−Mq is also symmetric. Hence Im(λ0− (−iA1−
Mq)) = L2(Rn) and λ0 ∈ ρ(−iA1−Mq), and by Theorem 3.2 we conclude that −iA1−Mq is self-adjoint.
Therefore iA1 + Mq is also self-adjoint and A1 − iMq generates a C0–semigroup. Arguing as in the
previous case, if u0 ∈ H2(Rn), then there exists a unique solution u of (3.3.25) in the class

u ∈ C([0,∞);H2(Rn)) ∩ C1([0,∞), L2(Rn)).

c) By (ii) we have

(−Mqu, u)L2(Rn) = (−qu, u)L2(Rn) =
∫
Rn

−q(x)u(x)u(x) dx = −
∫
Rn

q(x)|u(x)|2 dx ≤ 0, ∀u ∈ D(Mq),

so −Mq is dissipative. We have already seen that −iA1 ∈ G(1, 0). By the hypotheses and Exercise 1.5.1
it follows that −iA1 −Mq ∈ G(1, 0). Thus, for some λ0,

Im(λ0 − (−iA1 −Mq)) = L2(Rn) and λ0 ∈ ρ(−iA1 −Mq).

Since −iA1−Mq is symmetric and D(−iA1−Mq) = H2(Rn), we conclude that −iA1−Mq is self-adjoint,
so iA1 + Mq is also self-adjoint and A1 − iMq generates a unitary C0–group. In particular, A1 − iMq

generates a C0–semigroup. Hence, if u0 ∈ H2(Rn), there exists a unique solution u of (3.3.25) in the
class

u ∈ C([0,∞);H2(Rn)) ∩ C1([0,∞), L2(Rn)).

Example 3.3 Consider the problem
ut = i∆u in Ω× (0,+∞),
u = 0 on Γ× (0,+∞),
u(0) = u0 in Ω,

(3.3.26)

where Ω ⊂ Rn is open.

Let u0 ∈ H1
0 (Ω) and consider the operator

I −∆ : H1
0 (Ω)→ H−1(Ω)

u 7→ (I −∆)u.

We show that I −∆ is a bijection; for this we shall use the Lax–Milgram lemma.

Define

a : H1
0 (Ω)×H1

0 (Ω)→ R
(u, v) 7→ a(u, v) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω).

We have:

(i) a(·, ·) is bilinear.

(ii) a(·, ·) is continuous.
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Indeed,

|a(u, v)| = |(u, v)L2(Ω) + (∇u,∇v)L2(Ω)| = |(u, v)H1
0 (Ω)| ⩽ ∥u∥H1

0 (Ω)∥v∥H1
0 (Ω), ∀u, v ∈ H1

0 (Ω).

(iii) a(·, ·) is coercive.

Indeed,

|a(u, u)| = |(u, u)L2(Ω) + (∇u,∇u)L2(Ω)| = ∥u∥2
H1

0 (Ω).

Since a(·, ·) is bilinear, continuous and coercive, by the Lax–Milgram lemma, given f ∈ H−1(Ω) =
(H1

0 (Ω))′, there exists a unique u ∈ H1
0 (Ω) such that

a(u, v) = ⟨f, v⟩H−1(Ω),H1
0 (Ω), ∀v ∈ H1

0 (Ω).

In particular, a(u,w) = ⟨f, w⟩H−1(Ω),H1
0 (Ω) for every w ∈ C∞

0 (Ω), that is,

(u,w)L2(Ω) + (∇u,∇w)L2(Ω) = ⟨f, w⟩H−1(Ω),H1
0 (Ω), ∀w ∈ C∞

0 (Ω). (3.3.27)

Hence
⟨u,w⟩D′(Ω),D(Ω) − ⟨∆u,w⟩D′(Ω),D(Ω) = ⟨f, w⟩D′(Ω),D(Ω),

because

D(Ω) ↪→ H1
0 (Ω) ↪→ L2(Ω) ≡ (L2(Ω))′ ↪→ H−1(Ω) ↪→ D′(Ω). (3.3.28)

Thus

⟨u−∆u,w⟩D′(Ω),D(Ω) = ⟨f, w⟩D′(Ω),D(Ω), ∀w ∈ C∞
0 (Ω).

Hence u−∆u = f in D′(Ω).

Since the equality above holds in D′(Ω), it follows from (3.3.28) that there exists a unique u ∈
H1

0 (Ω) such that

(I −∆)u = f in H−1(Ω), (3.3.29)

as desired.

Thus there exists the operator (I −∆)−1 : H−1(Ω)→ H1
0 (Ω).

From (3.3.29) and (3.3.27) we get

(u,w)L2(Ω) + (∇u,∇w)L2(Ω) = ⟨(I −∆)u,w⟩H−1(Ω),H1
0 (Ω), ∀w ∈ H1

0 (Ω). (3.3.30)

Moreover,

|⟨(I −∆)u,w⟩H−1(Ω),H1
0 (Ω)| = |(u,w)L2(Ω) + (∇u,∇w)L2(Ω)|

⩽ ∥u∥L2(Ω)∥w∥L2(Ω) + ∥∇u∥L2(Ω)∥∇w∥L2(Ω). (3.3.31)

Using Hölder’s inequality for series (with p = q = 2), we deduce from (3.3.31) that

|⟨(I −∆)u,w⟩H−1(Ω),H1
0 (Ω)| ⩽ (∥u∥2

L2(Ω) + ∥∇u∥2
L2(Ω))

1
2 (∥w∥2

L2(Ω) + ∥∇w∥2
L2(Ω))

1
2

= ∥u∥H1
0 (Ω)∥w∥H1

0 (Ω).
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Hence

∥(I −∆)u∥H−1(Ω) = sup
w∈H1

0 (Ω)
∥w∥⩽1

|⟨(I −∆)u,w⟩H−1(Ω),H1
0 (Ω)| ⩽ ∥u∥H1

0 (Ω).

Therefore

∥(I −∆)u∥H−1(Ω) ⩽ ∥u∥H1
0 (Ω). (3.3.32)

On the other hand, from (3.3.30) we have

∥u∥2
H1

0 (Ω) = ∥u∥2
L2(Ω) + ∥∇u∥2

L2(Ω) = |⟨(I −∆)u, u⟩H−1(Ω),H1
0 (Ω)|.

For u ̸= 0 we obtain

∥u∥H1
0 (Ω) = 1

∥u∥H1
0 (Ω)
|⟨(I −∆)u, u⟩H−1(Ω),H1

0 (Ω)|

=

∣∣∣∣∣∣
〈

(I −∆)u, u

∥u∥H1
0 (Ω)

〉
H−1(Ω),H1

0 (Ω)

∣∣∣∣∣∣
⩽ sup

w∈H1
0 (Ω)

∥w∥=1

|⟨(I −∆)u,w⟩H−1(Ω),H1
0 (Ω)| = ∥(I −∆)u∥H−1(Ω).

Thus

∥u∥H1
0 (Ω) ⩽ ∥(I −∆)u∥H−1(Ω). (3.3.33)

From (3.3.32) and (3.3.33) we conclude that ∥u∥H1
0 (Ω) = ∥(I − ∆)u∥H−1(Ω). Hence (I − ∆) :

H1
0 (Ω) → H−1(Ω) is a surjective isometry, that is, an isometric isomorphism. Consequently, R(1,∆) =

(I −∆)−1 exists.

Define on H−1(Ω) the inner product

((u, v))1 = ((I −∆)−1u, (I −∆)−1v)H1
0 (Ω), ∀u, v ∈ H−1(Ω).

Moreover, (I−∆)−1 is also an isometry, hence ∥(I−∆)−1u∥H1
0 (Ω) = ∥u∥H−1(Ω) for all u ∈ H−1(Ω).

We first show that there exist constants C1, C2 > 0 such that

C1∥u∥H−1(Ω) ⩽ ∥u∥H1
0 (Ω) ⩽ C2∥u∥H−1(Ω), ∀u ∈ H−1(Ω).

Indeed, ∥u∥H−1(Ω) = ∥(I −∆)−1u∥H1
0 (Ω) = ∥u∥1 for all u ∈ H−1(Ω), where the first equality follows from

the isometry and the second from the definition.

We now prove the continuity of R(1,∆).

Recall that R(1,∆) = (I−∆)−1 : H−1(Ω)→ H1
0 (Ω) ⊂ H−1(Ω). We wish to show that (I−∆)−1 ∈

L(H−1(Ω)), that is, there exists C > 0 such that

∥(I −∆)−1u∥1 ⩽ C∥u∥1, ∀u ∈ H−1(Ω). (3.3.34)

Indeed,
∥(I −∆)−1u∥H−1(Ω) ⩽ C∥(I −∆)−1u∥H1

0 (Ω) = C∥u∥H−1(Ω),
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where the inequality follows from the chain of embeddings in (3.3.28) and the equality from the definition.

Furthermore,

∥(I −∆)−1u∥1 = ∥(I −∆)−1u∥H−1(Ω) ⩽ C∥u∥H−1(Ω) = C∥u∥1, ∀u ∈ H−1(Ω).

Thus R(1,∆) ∈ L(H−1(Ω)), which implies that 1 ∈ ρ(∆) and, from the surjectivity of (I −∆) already
proved, we also have Im(I −∆) = H−1(Ω).

In order to apply Proposition 3.2, it remains to show that ∆ : H1
0 (Ω) ⊂ H−1(Ω) → H−1(Ω) is a

symmetric operator (with respect to the inner product ((·, ·))1 defined on H−1(Ω)).

We first observe that D(∆) = H1
0 (Ω) is dense in H−1(Ω).

Let u ∈ H−1(Ω). Then there exists w ∈ H1
0 (Ω) such that u = (I − ∆)w. Since w ∈ H1

0 (Ω) and
D(Ω) is dense in H1

0 (Ω), there exists (φν) ⊂ D(Ω) such that φν → w in H1
0 (Ω). By the continuity of the

operator (I −∆) we have

ψν := (I −∆)φν → (I −∆)w = u in H−1(Ω).

Since (ψν) ⊂ D(Ω), this implies that D(Ω) is dense in H−1(Ω). From D(Ω) ⊂ H1
0 (Ω) ⊂ H−1(Ω) we

obtain
H−1(Ω) = D(Ω)H−1(Ω)

⊂ H1
0 (Ω)

H−1(Ω)
⊂ H−1(Ω)H−1(Ω) = H−1(Ω).

We conclude that
H1

0 (Ω)
H−1(Ω)

= H1
0 (Ω)

∥·∥1 = H−1(Ω).

That is, H1
0 (Ω) is dense in H−1(Ω).

We now show that ((∆u, v))1 = ((u,∆v))1. We carry out this proof in the real case, i.e., K = R.

Let u, v ∈ C∞
0 (Ω). Then

((∆u, v))1 = ((∆u− u+ u, v))1 = ((−(I −∆)u+ u, v))1

= ((−(I −∆)u, v))1 + ((u, v))1

= (−u, (I −∆)v)H1
0 (Ω) + ((u, v))1

= (−u, (I −∆)−1v)L2(Ω) + (−∇u,∇[(I −∆)−1v])L2(Ω) + ((u, v))1.

Note that

(−∇u,∇[(I −∆)−1v])L2(Ω) = (∇[(I −∆)−1v],−∇u)L2(Ω) = ⟨∆[(I −∆)−1v], u⟩D′(Ω),D(Ω).

Hence

((∆u, v))1 = ⟨−(I −∆)−1v, u⟩D′(Ω),D(Ω)

+ ⟨∆[(I −∆)−1v], u⟩D′(Ω),D(Ω) + ((u, v))1

= ⟨−(I −∆)−1v + ∆[(I −∆)−1v], u⟩D′(Ω),D(Ω) + ((u, v))1

= ⟨−(I −∆)[(I −∆)−1v], u⟩D′(Ω),D(Ω) + ((u, v))1

= ⟨−v, u⟩D′(Ω),D(Ω) + ((u, v))1

= (−v, u)L2(Ω) + ((u, v))1

= −(u, v)L2(Ω) + ((u, v))1.
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Thus

((∆u, v))1 = −(u, v)L2(Ω) + ((u, v))1. (3.3.35)

On the other hand,

((u,∆v))1 = ((u,∆v − v + v))1 = ((u,−(I −∆)v + v))1

= ((u,−(I −∆)v))1 + ((u, v))1

= (−(I −∆)−1u, v)H1
0 (Ω) + ((u, v))1

= (−(I −∆)−1u, v)L2(Ω)

+ (∇[(I −∆)−1u],−∇v)L2(Ω) + ((u, v))1.

Note that
(∇[(I −∆)−1u],−∇v)L2(Ω) = ⟨∆[(I −∆)−1u], v⟩D′(Ω),D(Ω).

Hence

((u,∆v))1 = ⟨−(I −∆)−1u, v⟩D′(Ω),D(Ω)

+ ⟨∆[(I −∆)−1u], v⟩D′(Ω),D(Ω) + ((u, v))1

= ⟨−(I −∆)−1u+ ∆[(I −∆)−1u], v⟩D′(Ω),D(Ω) + ((u, v))1

= ⟨−(I −∆)[(I −∆)−1u], v⟩D′(Ω),D(Ω) + ((u, v))1

= ⟨−u, v⟩D′(Ω),D(Ω) + ((u, v))1

= −(u, v)L2(Ω) + ((u, v))1.

Thus

((u,∆v))1 = −(u, v)L2(Ω) + ((u, v))1. (3.3.36)

From (3.3.35) and (3.3.36) we obtain

((∆u, v))1 = ((u,∆v))1, for all u, v ∈ C∞
0 (Ω). (3.3.37)

Now let w, z ∈ H1
0 (Ω). Since C∞

0 (Ω)H1(Ω) = H1
0 (Ω), there exist sequences (φν), (ψν) ⊂ C∞

0 (Ω)
such that φν → w in H1

0 (Ω) and ψν → z in H1
0 (Ω) as ν → +∞. By the continuity of the operator (I−∆)

we have, as ν → +∞,

(I −∆)φν → (I −∆)w in (H−1(Ω), ∥ · ∥1),
(I −∆)ψν → (I −∆)z in (H−1(Ω), ∥ · ∥1).

Moreover, applying (3.3.37) to (φν) and (ψν) we obtain ((∆φν , ψν))1 = ((φν ,∆ψν))1. It follows that

((∆φν − φν + φν , ψν))1 = ((φν ,∆ψν − ψν + ψν))1

((−(I −∆)φν + φν , ψν))1 = ((φν ,−(I −∆)ψν + ψν))1

((−(I −∆)φν , ψν))1 + ((φν , ψν))1 = ((φν ,−(I −∆)ψν))1 + ((φν , ψν))1. (3.3.38)
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Since H1
0 (Ω) ↪→ H−1(Ω), as ν → +∞ we have

φν → w in (H−1(Ω), ∥ · ∥1),
ψν → z in (H−1(Ω), ∥ · ∥1).

Taking the limit as ν → +∞ in (3.3.38), we deduce

((−(I −∆)w, z))1 + ((w, z))1 = ((w,−(I −∆)z))1 + ((w, z))1

((−w + ∆w, z))1 + ((w, z))1 = ((w,−z + ∆z))1 + ((w, z))1

((−w + ∆w + w, z))1 = ((w,−z + ∆z + z))1

((∆w, z))1 = ((w,∆z))1, ∀z, w ∈ H1
0 (Ω).

Therefore ∆ is symmetric.

By Proposition 3.2 we conclude that ∆ is self-adjoint. Hence (i∆)∗ = −i∆∗ = −i∆. By Stone’s
theorem, i∆ generates a unitary C0–group. In particular, it generates a C0–semigroup.

Consequently, problem (3.3.26) admits, by Theorem 2.3, a unique solution

u ∈ C0([0,+∞), H1
0 (Ω)) ∩ C1([0,+∞), H−1(Ω)),

whenever u0 ∈ D(i∆) = D(∆) = H1
0 (Ω).

3.4 Nonlinear Equations

In this section we restrict ourselves to the study of the nonlinear heat equation and, to this end,
let Ω be a bounded open subset of Rn with smooth boundary Γ, let f : [0, T ) → R be a function, and
consider the problem 

ut −∆u = f(u) in (0, T )× Ω,
u = 0 on (0, T )× Γ,
u(0) = u0 in Ω.

(3.4.39)

Theorem 3.4 If f ∈ C1(R) and f ′ is bounded, then, for every u0 ∈ L2(Ω), there exists a global solution
of problem (3.4.39), that is, Tmax = +∞, with

u ∈ C1((0,∞);L2(Ω)) ∩ C0((0,∞);H2(Ω)) ∩ C0([0,∞);L2(Ω)).

Moreover, if u0 ∈ H2(Ω) ∩H1
0 (Ω), then

u ∈ C1([0,∞);L2(Ω)) ∩ C0([0,∞);H2(Ω) ∩H1
0 (Ω)).

Proof: We first observe that f is Lipschitz. Indeed, if t, s ∈ R with t ≤ s, then there exists t0 ∈ (t, s)
such that

|f(t)− f(s)|
|t− s|

= |f ′(t0)| ≤ L,

hence
|f(t)− f(s)| ≤ L|t− s|.

Given v ∈ L2(Ω), define F : L2(Ω)→ L2(Ω) by F (v)(x) = f(v(x)). Note that:

(i) F is well-defined. We need to show that F (v) ∈ L2(Ω).
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In fact,

∥F (v)∥2
L2(Ω) =

∫
Ω
|f(v(x))|2 dx =

∫
Ω
|f(v(x))− f(0) + f(0)|2 dx

⩽
∫

Ω
(|f(v(x))− f(0)|+ |f(0)|)2 dx

=
∫

Ω
|f(v(x))− f(0)|2 dx+ 2

∫
Ω
|f(v(x))− f(0)||f(0)| dx+

∫
Ω
|f(0)|2 dx

⩽ L2
∫

Ω
|v(x)|2 dx+ 2L|f(0)|

∫
Ω
|v(x)| dx+ |f(0)|2

∫
Ω
dx,

which is finite because v ∈ L2(Ω) and, since Ω is a bounded subset of Rn, we have L2(Ω) ↪→ L1(Ω),
so v ∈ L1(Ω); moreover, the measure of Ω is finite. Therefore F (v) ∈ L2(Ω).

(ii) F is Lipschitz.

Indeed, for v, w ∈ L2(Ω), using the definition of F and the fact that f is Lipschitz, we obtain

∥F (v)− F (w)∥L2(Ω) =
∥∥f(v)− f(w)

∥∥
L2(Ω) ⩽ L∥v − w∥L2(Ω).

Therefore, by Theorem 2.4, given u0 ∈ L2(Ω) there exists a unique solution

u ∈ C0([0,∞);L2(Ω))

which is a mild solution of 
ut = ∆u+ f(u(t)) in (0,+∞)× Ω,
u = 0 on (0,+∞)× Γ,
u(0) = u0 in Ω.

(3.4.40)

That is,

u(t) = S(t)u0 +
∫ t

0
S(t− s)f(u(s)) ds, ∀t ≥ 0.

We claim that u(t) is continuously differentiable for every t > 0, i.e. u ∈ C1((0,∞);L2(Ω)).

Indeed, since ∆ generates a differentiable semigroup S(t) for t > 0 (see Section 3.1, second case),
we have that, for every t > 0, S(t)u0 is continuously differentiable (by Theorem 1.60, item (ii)) and,
moreover,

d

dt
S(t)u0 = ∆S(t)u0, ∀u0 ∈ L2(Ω). (3.4.41)

Now, for every s ∈ R we have u(s) ∈ L2(Ω), hence F (u(s)) = f(u(s)) ∈ L2(Ω). Thus S(t − s)f(u(s)) is
continuously differentiable for every t > s, and so

∫ t

0 S(t− s)f(u(s)) ds is also continuously differentiable,
since

d

dt

∫ t

0
S(t− s)f(u(s)) ds =

∫ t

0

d

dt
S(t− s)f(u(s)) ds+ f(u(t)). (3.4.42)

This identity is adapted from Example 12A in [61], in the section dealing with the Leibniz rule.

Therefore u(t) is continuously differentiable for t > 0 (being the sum of continuously differentiable
functions), which proves the claim.
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Furthermore, from (3.4.41) and (3.4.42) we obtain

d

dt
u(t) = d

dt

(
S(t)u0 +

∫ t

0
S(t− s)f(u(s)) ds

)
= d

dt
(S(t)u0) + d

dt

(∫ t

0
S(t− s)f(u(s)) ds

)
= ∆S(t)u0 +

∫ t

0

d

dt
S(t− s)f(u(s)) ds+ f(u(t))

= ∆S(t)u0 +
∫ t

0
∆S(t− s)f(u(s)) ds+ f(u(t))

= ∆S(t)u0 + ∆
∫ t

0
S(t− s)f(u(s)) ds+ f(u(t))

= ∆
(
S(t)u0 +

∫ t

0
S(t− s)f(u(s)) ds

)
+ f(u(t))

= ∆u(t) + f(u(t)).

In the antepenultimate equality we used that the Laplacian is a closed operator (see Proposition 1.31 and
the theorem used in the proof of Proposition 1.34 concerning closed operators), and in the penultimate
equality we used the linearity of the Laplacian.

Moreover, we have:

(i) u(t) ∈ C0([0,∞), L2(Ω)), that is, u is continuous for every t ⩾ 0;

(ii) u(t) ∈ C1((0,∞), L2(Ω)), that is, u is continuously differentiable for every t > 0;

(iii) u(t) ∈ D(∆), since D(∆) is a vector space, S(t)u0 ∈ D(∆) by Theorem 1.60 (because the semigroup
generated by ∆ is differentiable) and

∫ t

0 S(t − s)f(u(s)) ds ∈ D(∆) by Proposition 1.30(iii) (as
f(u(s)) ∈ L2(Ω));

(iv) u(t) satisfies ut = ∆u(t) + f(u(t)).

Hence u is a classical solution of problem (3.4.40).

It remains to show that u(t) ∈ C0((0,∞), H2(Ω)). To this end, we first prove that u(t) ∈
C0((0,∞), D(∆)). Let t→ t0 in R+. Then

∥u(t)− u(t0)∥D(∆) = ∥u(t)− u(t0)∥L2(Ω) + ∥∆u(t)−∆u(t0)∥L2(Ω) → 0,

because u(t) ∈ C0([0,+∞), L2(Ω)) and ∆ generates a differentiable semigroup. Thus

u(t) ∈ C0((0,∞), D(∆)).

But, under our hypotheses (Ω open in Rn with sufficiently smooth boundary Γ), the norm ∥ · ∥D(∆) is
equivalent to the norm ∥ · ∥H2(Ω). Hence

u(t) ∈ C0((0,∞), H2(Ω)).

The second part of the theorem follows from Theorem 2.4 (ii) (since f is Lipschitz). 2

Lemma 3.5 D(∆2) is dense in H1
0 (Ω) ∩H2(Ω).

Proof: We know that H1
0 (Ω) ∩H2(Ω) ↪→ L2(Ω). Moreover,

L2(Ω) = C∞
0 (Ω)L2(Ω)

⊂ H1
0 (Ω) ∩H2(Ω)

L2(Ω)
⊂ L2(Ω),
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that is, H1
0 (Ω) ∩H2(Ω) is dense in L2(Ω).

Consider the bilinear form a : (H1
0 (Ω) ∩H2(Ω))2 → R, defined by

a(u, v) = (∆u,∆v)L2(Ω), ∀u, v ∈ H1
0 (Ω) ∩H2(Ω).

We have that a is continuous, because for u, v ∈ H1
0 (Ω) ∩H2(Ω),

|a(u, v)| =
∣∣∣∣∫

Ω
∆u(x) ∆v(x) dx

∣∣∣∣
≤

(∫
Ω
|∆u(x)|2dx

) 1
2
(∫

Ω
|∆v(x)|2dx

) 1
2

= ∥∆u∥L2(Ω)∥∆v∥L2(Ω)

= ∥u∥H1
0 (Ω)∩H2(Ω)∥v∥H1

0 (Ω)∩H2(Ω).

Moreover, a is coercive, since

a(u, u) = (∆u,∆u)L2(Ω) = ∥∆u∥2
L2(Ω) = ∥u∥2

H1
0 (Ω)∩H2(Ω), ∀u ∈ H1

0 (Ω) ∩H2(Ω).

Under these conditions, by the Lax–Milgram Lemma, given f ∈ L2(Ω) there exists a unique u ∈ H1
0 (Ω)∩

H2(Ω) such that
(∆u,∆v)L2(Ω) = (f, v)L2(Ω), ∀v ∈ H1

0 (Ω) ∩H2(Ω).

Now, observe that for every φ ∈ D(Ω), we get from the equality above

⟨∆u,∆φ⟩D′,D = ⟨f, φ⟩D′,D,

or equivalently,
⟨∆(∆u), φ⟩D′,D = ⟨f, φ⟩D′,D,

whence
⟨∆2u, φ⟩D′,D = ⟨f, φ⟩D′,D, ∀φ ∈ D(Ω).

Thus ∆2u = f in D′(Ω) and, since f ∈ L2(Ω), it follows that ∆2u ∈ L2(Ω).

Because u ∈ H1
0 (Ω) ∩H2(Ω), we have u = 0 on Γ. In this way, u satisfies{

∆2u = f in Ω,
u = 0 on Γ. (3.4.43)

- 181 -



3 Evolution Equations

Moreover, for every v ∈ H1
0 (Ω) ∩H2(Ω), we have

(f, v)L2(Ω) = (∆2u, v)L2(Ω)

=
∫

Ω
∆2u v dx

=
∫

Ω
∆(∆u) v dx

= −
∫

Ω
∇(∆u) · ∇v dx+

∫
Γ

∂∆u
∂ν

v dΓ

=
∫

Ω
∇v · ∇(∆u) dx+

∫
Γ

∂∆u
∂ν

v dΓ

=
∫

Ω
∆v∆u dx−

∫
Γ

∂v

∂ν
∆u dΓ

= (∆u,∆v)L2(Ω) −
∫

Γ

∂v

∂ν
∆u dΓ

= a(u, v)−
∫

Γ

∂v

∂ν
∆u dΓ.

Hence

(f, v)L2(Ω) = a(u, v)−
∫

Γ

∂v

∂ν
∆u dΓ = (f, v)L2(Ω) −

∫
Γ

∂v

∂ν
∆u dΓ,

and therefore ∫
Γ

∂v

∂ν
∆u dΓ = 0, ∀v ∈ H1

0 (Ω) ∩H2(Ω),

that is, ∆u = 0 on Γ. Thus we have found a solution of
∆2u = f in Ω,
u = 0 on Γ,
∆u = 0 on Γ.

(3.4.44)

Furthermore, by elliptic regularity theory we obtain u ∈ H4(Ω).

Now, since the following conditions hold:

(i) H1
0 (Ω) ∩H2(Ω) ↪→ L2(Ω);

(ii) H1
0 (Ω) ∩H2(Ω) is dense in L2(Ω);

(iii) a(u, v) = (∆u,∆v)L2(Ω) is bilinear, continuous and coercive,

we obtain that the triple {H1
0 (Ω) ∩H2(Ω), L2(Ω), a(u, v)} defines an operator A, whose domain is char-

acterised by

D(A) = {u ∈ H1
0 (Ω) ∩H2(Ω); ∆2u ∈ L2(Ω) and ∆u = 0 on Γ} =: Y, A = ∆2.

Indeed, let u ∈ D(A). Then there exists f ∈ L2(Ω) such that a(u, v) = (f, v)L2(Ω) for every
v ∈ H1

0 (Ω) ∩H2(Ω). Taking φ ∈ D(Ω), we obtain

⟨∆2u, φ⟩D′,D = ⟨∆u,∆φ⟩D′,D = ⟨f, φ⟩D′,D,

which implies ∆2u = f ∈ L2(Ω) and, as above, ∆u = 0 on Γ. Hence u ∈ Y .

Conversely, let u ∈ Y . Then u ∈ H1
0 (Ω) ∩H2(Ω), ∆2u ∈ L2(Ω) and ∆u = 0 on Γ. Thus, for every
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v ∈ H1
0 (Ω) ∩H2(Ω), applying the generalised Green formula, we get

(∆2u, v)L2(Ω) = (∆(∆u), v)L2(Ω)

= −
n∑

i=1

∫
Ω

∂∆u
∂xi

∂v

∂xi
dx+ ⟨γ1(∆u), γ0v⟩H−1/2,H1/2

= −
n∑

i=1

∫
Ω

∂∆u
∂xi

∂v

∂xi
dx

=
∫

Ω
∆u∆v dx

= (∆u,∆v)L2(Ω).

Therefore u ∈ D(A). Thus we have shown that D(A) = Y . Moreover,

D(A) = {u ∈ H4(Ω); ∆u = u = 0 on Γ},

where the right-hand side is Y rewritten using the regularity already obtained. Also, since

(∆2u, v)L2(Ω) = a(u, v) = (Au, v)L2(Ω),

for every v ∈ H1
0 (Ω) ∩H2(Ω), we have Au = ∆2u for every u ∈ H1

0 (Ω) ∩H2(Ω). Therefore

∆2 ↔ {H1
0 (Ω) ∩H2(Ω), L2(Ω), a(u, v)}

and we conclude that D(∆2) = D(A) is dense in H1
0 (Ω) ∩H2(Ω), as claimed. 2

Theorem 3.6 If f ∈ C3(R), f(0) = 0 and n ≤ 3, then, for each u0 ∈ H1
0 (Ω) ∩ H2(Ω), there exists a

classical solution of (3.4.39) on [0, Tmax), with

u ∈ C1([0, Tmax);L2(Ω)) ∩ C([0, Tmax);H2(Ω))

and either Tmax = +∞ or Tmax <∞ and lim
t→Tmax

∥u(t)∥H2(Ω) =∞.

Proof: We must show that F : D(∆)→ D(∆) is locally Lipschitz, where F (u)(x) = f(u(x)), so that we
can apply Theorem 2.24.

First, we prove that if u ∈ H1
0 (Ω) ∩H2(Ω), then

f(u) ∈ H1
0 (Ω) ∩H2(Ω).

To see this, note that H2(Ω) ↪→ L∞(Ω), so there exists c1 > 0 such that

∥u∥∞ ≤ c1∥u∥H2(Ω), ∀u ∈ H2(Ω).

Now, given M > 0 and f ∈ C3(R), there exist constants L1, L2, L3 > 0 such that

|f(t)| ≤ L1, |f ′(t)| ≤ L2 and |f ′′(t)| ≤ L3, ∀t ∈ [0,M ].

Let u ∈ H1
0 (Ω) ∩H2(Ω) and set M = c1∥u∥H2(Ω). Since

|u(x)| ≤ ∥u∥∞ ≤M for a.e. x ∈ Ω,

we obtain
|f(u(x))| ≤ L1, |f ′(u(x))| ≤ L2 and |f ′′(u(x))| ≤ L3 for a.e. x ∈ Ω,

so f(u), f ′(u) and f ′′(u) belong to L∞(Ω).
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Moreover,

∂

∂xi
f(u) = f ′(u) ∂u

∂xi
∈ L2(Ω),

∂2

∂x2
i

f(u) = f ′(u)∂
2u

∂x2
i

+ f ′′(u)
(
∂u

∂xi

)2
∈ L2(Ω),

∂2

∂xi∂xj
f(u) = f ′(u) ∂2u

∂xi∂xj
+ f ′′(u) ∂u

∂xi

∂u

∂xj
∈ L2(Ω),

because f ′(u), f ′′(u) ∈ L∞(Ω) and, since ∂u

∂xi
∈ H1(Ω) and n ≤ 3, we have H1(Ω) ↪→ L6(Ω) ↪→ L4(Ω);

hence
(
∂u

∂xi

)2
∈ L2(Ω) and, for the same reason, ∂u

∂xi

∂u

∂xj
∈ L2(Ω). Therefore

f(u) ∈ H2(Ω).

Since u ∈ H1
0 (Ω), there exists a sequence {φn} ⊂ C∞

0 (Ω) such that

φn −→ u in H1(Ω),

and, because f ∈ C3(R), we have
f(φn) −→ f(u) in H1(Ω).

Moreover,
γ0(f(φn)) = f(φn)

∣∣
Γ = f(0) = 0, ∀n ∈ N,

so
0 = γ0(f(φn)) −→ γ0(f(u)) in H1/2(Γ),

and hence
γ0(f(u)) = 0.

Consequently,
f(u) ∈ H1

0 (Ω).

Thus F : H1
0 (Ω) ∩H2(Ω)→ H1

0 (Ω) ∩H2(Ω), defined by F (u) = f(u), is well-defined.

Finally, if ∥u∥H2(Ω) ≤M and ∥v∥H2(Ω) ≤M , then

∥u∥∞ ≤ c1M and ∥v∥∞ ≤ c1M.

Hence

∥f(u)− f(v)∥2 ≤ CM∥u− v∥2,∥∥∥∥ ∂

∂xi
f(u)− ∂

∂xi
f(v)

∥∥∥∥
2
≤

∥∥∥∥(f ′(u)− f ′(v)) ∂u
∂xi

∥∥∥∥
2

+
∥∥∥∥f ′(v)

(
∂u

∂xi
− ∂v

∂xi

)∥∥∥∥
2

≤ C1M∥u− v∥2 + ∥f ′(v)∥∞

∥∥∥∥ ∂u∂xi
− ∂v

∂xi

∥∥∥∥
2
,

and, in a similar way, we obtain estimates for ∂2

∂xi∂xj
f(u)− ∂2

∂xi∂xj
f(v). Therefore

F : D(∆)→ D(∆)

is locally Lipschitz, and the result follows from Theorem 2.24. 2

Theorem 3.7 If f ∈ C1(R) and f(0) = 0, then, for every u0 ∈ L∞(Ω), there exists u ∈ L∞([0, T ], L∞(Ω))
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for all T < Tmax which is a solution of (3.4.39) on every interval [0, T ] with T < Tmax, and

Tmax =∞ or else, if Tmax <∞, then lim
t→Tmax

∥u(·, t)∥∞ =∞.

Proof: Let M = ∥u0∥∞ and define
f̃ : R→ R

by

f̃(t) =


f(t) if |t| ≤M + 1,
f(M + 1) if t > M + 1,
f(−M − 1) if t < −M − 1.

We claim that f̃ is Lipschitz. Indeed, if a, b ∈ [−M −1,M +1], then, by the Mean Value Theorem,
by the continuity of f ′ and since [−M − 1,M + 1] is compact, there exists d > 0 such that

|f̃(b)− f̃(a)| ≤ d|b− a|.

If a, b ∈ (M + 1,∞) or a, b ∈ (−∞,−M − 1), then

|f̃(b)− f̃(a)| = 0 ≤ |b− a|.

If a ∈ [−M − 1,M + 1] and b ∈ (M + 1,∞), then, by the Mean Value Theorem, by the continuity of f ′,
by the compactness of [−M − 1,M + 1] and since |M + 1− a| ≤ |b− a|, there exists d > 0 such that

|f̃(b)− f̃(a)| = |f(M + 1)− f(a)| ≤ d|M + 1− a| ≤ d|b− a|.

By an analogous argument, if a ∈ [−M − 1,M + 1] and b ∈ (−∞,−M − 1), we have

|f̃(b)− f̃(a)| ≤ d|b− a|.

Thus, taking Lf = max{1, d}, for all a, b ∈ R,

|f̃(b)− f̃(a)| ≤ Lf |b− a|.

Define F : Lp(Ω)→ Lp(Ω) by F (g) = f̃(g).

We show that F is well-defined, that is, for each g ∈ Lp(Ω) we must show that f̃(g) ∈ Lp(Ω), for
every 1 < p <∞. Since f̃ is Lipschitz, we have

|f̃(g(x))− f̃(0(x))| ⩽ Lf |g(x)|.

Hence

∥f̃(g)∥p
p =

∫
Ω
|f̃(g(x))|pdx =

∫
Ω
|f̃(g(x))− f̃(0(x))|pdx

⩽ L̃f

∫
Ω
|g(x)|pdx < +∞,

since f̃(0) = 0 and g ∈ Lp(Ω).

We now show that F is Lipschitz, since

∥F (g1)− F (g2)∥p
Lp(Ω) =

∫
Ω

∣∣f̃(g1(x))− f̃(g2(x))
∣∣pdx

⩽ L̃f

∫
Ω
|g1(x)− g2(x)|pdx = L̃f ∥g1 − g2∥p

Lp(Ω) .
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Our goal is to use Theorem 2.4. To do so, we verify the hypotheses of that theorem and of the
section:

(i) X is a reflexive Banach space;

(ii) F is continuous;

(iii) A is the infinitesimal generator of a C0-semigroup S such that ∥S(t)∥ ⩽M for all t ⩾ 0.

Indeed:

(i) Since X = Lp(Ω), 1 < p < +∞, we know that X is a reflexive Banach space.

(ii) Since F is Lipschitz, F is continuous.

(iii) Taking A = ∆ and D(A) = D(∆) = W 1,p
0 (Ω) ∩ W 2,p(Ω) ⊂ Lp(Ω), where W 1,p

0 (Ω) = {u ∈
W 1,p(Ω) ; γ0(u) = 0}, we shall prove that ∆ : W 1,p

0 (Ω)∩W 2,p(Ω) ⊂ Lp(Ω) generates a C0-semigroup
of contractions. That is, ∆ ∈ G(1, 0). For this we use the Lumer–Phillips Theorem. We prove that:

(I) D(∆) is dense in X = Lp(Ω).

(II) ∆ is a dissipative operator with respect to a duality mapping.

(III) Im(λ0I −∆) = Lp(Ω) for some λ0 > 0.

We now check these conditions.

(I) We know that D(Ω) ⊂W 1,p
0 (Ω) ∩W 2,p(Ω) ⊂ Lp(Ω). Hence,

Lp(Ω) = D(Ω)Lp(Ω)
⊂W 1,p

0 (Ω) ∩W 2,p(Ω)
Lp(Ω)

⊂ Lp(Ω)Lp(Ω) = Lp(Ω),

so
W 1,p

0 (Ω) ∩W 2,p(Ω)
Lp(Ω)

= Lp(Ω),

that is, D(∆) is dense in X.

(II) We show that
⟨j(u),∆u⟩ ⩽ 0, ∀u ∈ D(∆) = W 1,p

0 (Ω) ∩W 2,p(Ω),

where j : Lp → Lp′ is such that, for each u ∈ Lp(Ω),

j(u) ∈ F (u) =
{
u∗ ∈ Lp′

; ⟨u∗, u⟩ = ∥u∗∥2
p′ = ∥u∥2

p

}
.

For this, we divide into three cases:

1. p > 2;

2. p = 2;

3. p ∈ (1, 2).

Case 1. Consider j : Lp → Lp′ such that, for each u ∈ Lp(Ω), we associate

j(u) = u|u|p−2∥u∥2−p
p .

We show that u|u|p−2∥u∥2−p
p ∈ Lp′(Ω) and that j(u) ∈ F (u) (so j is well-defined and is indeed a

duality mapping).
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In fact,

∥∥u|u|p−2∥u∥2−p
p

∥∥p′

p′ =
∫

Ω

∣∣u|u|p−2∥u∥2−p
p

∣∣p′

dx =
∫

Ω

(
u|u|p−2∥u∥2−p

p

)p′

dx

=
∫

Ω
(|u|p−1∥u∥2−p

p )p′
dx =

∫
Ω

(|u|p−1∥u∥2−p
p )

p
p−1 dx

= ∥u∥
(2−p)p

p−1
p

∫
Ω

(|u|p−1)
p

p−1 dx = ∥u∥
(2−p)p

p−1
p ∥u∥p

p

= ∥u∥p′

p .

Hence ∥∥u|u|p−2∥u∥2−p
p

∥∥
p′ = ∥u∥p,

and in particular u|u|p−2∥u∥2−p
p ∈ Lp′(Ω) (since u ∈ Lp(Ω)). Moreover,∥∥u|u|p−2∥u∥2−p

p

∥∥2
p′ = ∥u∥2

p. (3.4.45)

To guarantee that u|u|p−2∥u∥2−p
p ∈ F (u), it remains to show that

⟨u|u|p−2∥u∥2−p
p , u⟩ = ∥u∥2

p.

Indeed,

⟨u|u|p−2∥u∥2−p
p , u⟩ =

∫
Ω
u|u|p−2∥u∥2−p

p u dx = ∥u∥2−p
p

∫
Ω
u2|u|p−2dx

= ∥u∥2−p
p

∫
Ω
u2(u2)

p−2
2 dx = ∥u∥2−p

p

∫
Ω

(u2)
p−2

2 +1dx

= ∥u∥2−p
p

∫
Ω

(u2)
p
2 dx = ∥u∥2−p

p

∫
Ω
|u|pdx

= ∥u∥2−p
p ∥u∥p

p = ∥u∥2
p. (3.4.46)

From (3.4.45) and (3.4.46) it follows that j(u) ∈ F (u). Thus, in Case 1 we can use the duality
mapping j(u) = u|u|p−2∥u∥2−p

p . Then

⟨j(u),∆u⟩ = ⟨u|u|p−2∥u∥2−p
p ,∆u⟩ =

∫
Ω
u|u|p−2∥u∥2−p

p ∆u dx

= ∥u∥2−p
p

∫
Ω
u|u|p−2∆u dx = −∥u∥2−p

p

∫
Ω
∇(u|u|p−2)∇u dx

= −∥u∥2−p
p

∫
Ω

n∑
i=1

∂

∂xi
(u|u|p−2) ∂u

∂xi
dx

= −∥u∥2−p
p

∫
Ω

n∑
i=1

(
(p− 1)|u|p−2 ∂u

∂xi

)
∂u

∂xi
dx

= −∥u∥2−p
p (p− 1)

∫
Ω

n∑
i=1
|u|p−2

∣∣∣∣ ∂u∂xi

∣∣∣∣2 dx
= −∥u∥2−p

p (p− 1)
∫

Ω
|∇u|2|u|p−2 dx ⩽ 0,

where in the antepenultimate equality we used

∂

∂xi
(u|u|p−2) = (p− 1)|u|p−2 ∂u

∂xi
.
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Note also that u|u|p−2∥u∥2−p
p ∆u is integrable because

∫
Ω
u|u|p−2∥u∥2−p

p ∆u dx ⩽

(∫
Ω
|u|u|p−2∥u∥2−p

p |p
′
) 1

p′
(∫

Ω
|∆u|p dx

) 1
p

< +∞.

Thus, in Case 1 we have ⟨j(u),∆u⟩ ⩽ 0 for all u ∈ W 1,p
0 (Ω) ∩W 2,p(Ω) = D(∆) for the mapping

j : Lp → Lp′ given by j(u) = u|u|p−2∥u∥2−p
p . That is, ∆ is dissipative with respect to this duality

mapping.

Case 2. Consider the duality mapping j(u) = u (since L2(Ω) is a Hilbert space). Then

⟨j(u),∆u⟩ = ⟨u,∆u⟩ =
∫

Ω
u∆u dx = −

∫
Ω
∇u∇u dx = −

∫
Ω
|∇u|2 dx = −∥∇u∥2

L2(Ω) ⩽ 0,

showing that in Case 2 also we have ⟨j(u),∆u⟩ ⩽ 0 for all u ∈ W 1,p
0 (Ω) ∩W 2,p(Ω) = D(∆) and

j(u) = u, i.e. ∆ is dissipative for this duality mapping.

Case 3. Here 1 < p < 2 and Ω is bounded, so L2(Ω) ↪→ Lp(Ω), whence −C∥ · ∥L2(Ω) ⩽ −∥ · ∥Lp(Ω).
Thus, by the same estimates as in Case 2 (and since ∆u ∈ Lp(Ω)), it follows that ∆ is a dissipative
operator with respect to the same duality mapping as in Case 2.

We conclude that ∆ is dissipative with respect to a suitable duality mapping (in each of the three
cases).

(III) We show that Im(λ0I − ∆) = Lp(Ω) for some λ0 > 0. Take λ0 = 1. We want to prove: given
f ∈ Lp(Ω), there exists u ∈ D(∆) such that

u−∆u = f.

To obtain this, it suffices to use Theorem 9.32 (Agmon–Douglis–Nirenberg) in [18].

Hence, by the Lumer–Phillips Theorem, we deduce that ∆ ∈ G(1, 0), that is, ∆ is the infinitesimal
generator of a contraction semigroup.

Thus, by Theorem 2.4, given u0 ∈ Lp(Ω) = X, there exists a unique function

u ∈ C0([0,+∞);Lp(Ω))

which is a mild solution of problem (3.4.40), that is,

u(t) = S(t)u0 +
∫ t

0
S(t− s)f̃(u(x, s)) ds. (3.4.47)

Note that for every u0 ∈ Lp(Ω) with 1 < p < +∞, we have

∥S(t)u0∥p ⩽ ∥S(t)∥∥u0∥p ⩽ 1 · ∥u0∥p. (3.4.48)

For u0 ∈ L∞(Ω), from (3.4.48) we get

lim
p→+∞

∥S(t)u0∥p ⩽ lim
p→+∞

∥u0∥p,

that is,

∥S(t)u0∥∞ ⩽ ∥u0∥∞ < +∞, (3.4.49)

since u0 ∈ L∞(Ω). Hence S(t)u0 ∈ L∞(Ω). In addition, since f̃ is bounded, it follows that
∫ t

0 S(t −
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s)f̃(u(s)) ds ∈ L∞(Ω), because∥∥∥∥∫ t

0
S(t− s)f̃(u(s)) ds

∥∥∥∥
∞

= lim
p→+∞

∥∥∥∥∫ t

0
S(t− s)f̃(u(s)) ds

∥∥∥∥
p

⩽ lim
p→+∞

∫ t

0
∥S(t− s)∥L(X)∥f̃(u(s))∥p ds ⩽ lim

p→+∞

∫ t

0
∥f̃(u(s))∥p ds. (3.4.50)

Note that, fixing T > 0,

∥f̃(u(s))∥p =
(∫

Ω
|f̃(u(x, s))|p dx

) 1
p

= C

(∫
Ω
|1|p dx

) 1
p

= C (meas(Ω))
1
p . (3.4.51)

Using (3.4.51) in (3.4.50), we obtain∥∥∥∥∫ t

0
S(t− s)f̃(u(s)) ds

∥∥∥∥
∞

⩽ lim
p→+∞

∫ t

0
C · (meas(Ω))

1
p ds = C · t · lim

p→+∞
(meas(Ω))

1
p

= C · t < C · T < +∞.

Thus
u(t) = S(t)u0 +

∫ t

0
S(t− s)f̃(u(x, s)) ds ∈ L∞(Ω).

Moreover, using (3.4.49), the fact that f̃ is Lipschitz, and the Dominated Convergence Theorem, we have

∥u(t)∥∞ =
∥∥∥∥S(t)u0 +

∫ t

0
S(t− s)f̃(u(s)) ds

∥∥∥∥
∞

⩽ ∥S(t)u0∥∞ + lim
p→+∞

∫ t

0
∥S(t− s)∥L(X)∥f̃(u(s))∥p ds

⩽ ∥u0∥∞ + lim
p→+∞

∫ t

0
∥f̃(u(s))∥p ds

⩽ ∥u0∥∞ + L̃f lim
p→+∞

∫ t

0
∥u(s)∥p ds

⩽ ∥u0∥∞ + L̃f

∫ t

0
∥u(s)∥∞ ds = M + L̃f

∫ t

0
∥u(s)∥∞ ds.

By Gronwall’s Lemma,
∥u(t)∥∞ ⩽Me

L̃f

∫ t

0
1ds = MeL̃f t ⩽MeL̃f T .

Hence
u ∈ L∞(0, T ;L∞(Ω)).

Now, if T is sufficiently small so that

MeLT ≤M + 1,

then u is also a weak solution of problem (3.4.40) with f in place of f̃ , that is,

u(t) = S(t)u0 +
∫ t

0
S(t− s)f(u(s)) ds

is a weak solution of (3.4.40). Thus, u can be extended to an interval [0, Tmax), with Tmax = +∞ or, if
Tmax < +∞, then

lim
t→T −

max

∥u(t)∥ = +∞,

as in Theorem 2.25. 2
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In what follows, we present two particular cases of problem (3.4.39) in which, in the first case, one
obtains a global solution, and in the second case one obtains blow-up in finite time of the solution.

Example 3.8 Let f : R→ R be given by f(t) = −t3 and assume n ≤ 3.

We observe that f satisfies
f(t)t < 0 ∀t.

Proposition 3.9 For every u0 ∈ H1
0 (Ω) ∩H2(Ω), we have Tmax = +∞.

Proof: By Theorem 3.6, there exists a classical solution of (3.4.39), that is, there exists a unique u
satisfying 

ut −∆u = −u3 in [0, Tmax)× Ω,
u = 0 on [0, Tmax)× Γ,
u(0) = u0 in Ω.

(3.4.52)

and
u ∈ C1([0, Tmax);L2(Ω)) ∩ C([0, Tmax);H2(Ω)).

Since n ≤ 3, we have H2(Ω) ↪→ L∞(Ω), hence u0 ∈ L∞(Ω) and, therefore, by Theorem 3.7,

u ∈ L∞([0, T ];L∞(Ω)), ∀T < Tmax.

Multiplying (3.4.52)1 by |u(t)|p−2u(t), we obtain∫
Ω
u′(t)|u(t)|p−2u(t) dx =

∫
Ω

∆u(t)|u(t)|p−2u(t) dx−
∫

Ω
|u(t)|p−2u4(t) dx.

Hence,
1
p

d

dt

∫
Ω
|u(t)|pdx ≤ 0,

which, integrating from 0 to t, yields

∥u(t)∥p ≤ ∥u0∥p ∀ p.

Passing to the limit as p→∞ we get
∥u(t)∥∞ ≤ ∥u0∥∞,

and thus
lim

t→Tmax
∥u(t)∥∞ <∞.

It follows that Tmax = +∞. 2

Example 3.10 Consider the particular case of problem (3.4.39) in which f : R→ R is given by f(t) = t3

and n ≤ 3, that is, 
ut −∆u = u3 in [0, Tmax)× Ω,
u = 0 on [0, Tmax)× Γ,
u(0) = u0 in Ω,

(3.4.53)

where Ω ⊂ Rn, n ≤ 3, is a bounded open set with regular boundary Γ, as fixed at the beginning of this
section. Thus, if u0 ̸= 0 with u0 ∈ H1

0 (Ω) ∩H2(Ω) and

E(0) = 1
2

∫
Ω
|∇u0|2dx−

1
4

∫
Ω
u4

0dx ≤ 0,
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where E = E(t) is defined by

E(t) = 1
2

∫
Ω
|∇u(t)|2dx− 1

4

∫
Ω
u4(t)dx, (3.4.54)

then Tmax <∞.

Proof: To prove that Tmax < ∞ we first show that (3.4.54) is decreasing, and then, assuming that
Tmax =∞, we derive a contradiction.

To prove that (3.4.54) is decreasing we shall use multiplicative methods to obtain dE(t)
dt ⩽ 0. Before

that, note that, by Theorem 3.6, problem (3.4.53) admits a classical solution u such that

u ∈ C1([0, Tmax);L2(Ω)
)
∩ C

(
[0, Tmax);H1

0 (Ω) ∩H2(Ω)
)
. (3.4.55)

We now construct a sequence of functions φn,k ∈ C
(
[0, T ];H1

0 (Ω) ∩H1(Ω)
)

which, when used in
(3.4.53)1, will allow us to obtain dE(t)

dt ⩽ 0.

Regularising sequences. Let 0 < s0 < t0 < T < Tmax and choose n0 ∈ N such that

n0 > max
{

1
s0
,

1
T − t0

}
.

For n ≥ n0, define θn : R+ → R+ by

θn(t) =



0 if t ∈
[
0, s0 −

1
n

)
,

1 + n(t− s0) if t ∈
[
s0 −

1
n
, s0
)
,

1 if t ∈ [s0, t0],

1− n(t− t0) if t ∈
(
t0, t0 + 1

n

]
,

0 if t ∈
(
t0 + 1

n
, T
]
,

whose derivative in the sense of distributions is

θ′
n(t) =



0 if t ∈
[
0, s0 −

1
n

)
,

n if t ∈
[
s0 −

1
n
, s0
)
,

0 if t ∈ [s0, t0],

−n if t ∈
(
t0, t0 + 1

n

]
,

0 if t ∈
(
t0 + 1

n
, T
]
.

Let (ρk)k∈N be an even regularising sequence, that is, a sequence such that, for every k ∈ N,

ρk ⩾ 0, ρk ∈ C∞
0 (R), supp(ρk) ⊂

[
−1
k
,

1
k

]
,

∫
R
ρk(ξ) dξ = 1, ρk(−ξ) = ρk(ξ),

and set
φn,k = θn

[
(θnu

′) ∗ ρk ∗ ρk

]
, (3.4.56)

where ∗ denotes the convolution in the variable t, defined in general by

(f ∗ g)(t) =
∫
R
f(t− ξ)g(ξ) dξ.
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The function given in (3.4.56) is well defined because, if θ̃n and ũ′ denote the zero extensions of
θn and u′ outside [0, T ], then, for every t ∈ [0, T ],

θ̃n

[
(θ̃nũ

′) ∗ ρk ∗ ρk

]
(t) = θ̃n(t)

∫
R

(
θ̃nũ

′)(ξ)(ρk ∗ ρk)(t− ξ) dξ

= θn(t)
∫ T

0
(θnu

′)(ξ)(ρk ∗ ρk)(t− ξ) dξ

= φn,k,

so φn,k is well-defined.

Moreover,

supp
(
(θnu

′) ∗ ρk ∗ ρk

)
⊂ supp(θnu

′) +
[
−1
k
,

1
k

]
⊂
(
supp(θn) ∩ supp(u′)

)
+
[
−2
k
,

2
k

]
⊂ supp(θn) +

[
−2
k
,

2
k

]
.

If x ∈
[
s0 − 1

n , t0 + 1
n

]
and y ∈

[
− 2

k ,
2
k

]
, then

s0 −
1
n0
− 2
n0

⩽ x+ y ⩽ t0 + 1
n0

+ 2
k
. (3.4.57)

Assume that
s0 −

1
n0
− 2
k
> 0 (3.4.58)

and
t0 + 1

n0
+ 2
k
< T. (3.4.59)

From (3.4.58) we must have
1
k
<
s0

2 −
1

2s0
⇒ k >

2n0

n0s0 − 1 ,

and from (3.4.59) we deduce

1
k
<
T

2 −
1

2n0
− t0

2 ⇒ k >
2n0

Tn0 − t0n0 − 1 .

Thus, imposing
k > max

{
2n0

n0s0 − 1 ,
2n0

Tn0 − t0n0 − 1

}
=: k0,

we obtain from (3.4.57) that x+ y ∈ (0, T ), that is, for k > k0,[
s0 −

1
n0
, t0 + 1

n0

]
+
[
−2
k
,

2
k

]
⊂ (0, T ),

and hence supp
(
(θnu

′) ∗ ρk ∗ ρk

)
is compact in (0, T ), since

supp
(
(θnu

′) ∗ ρk ∗ ρk

)
⊂ (0, T ) ⊂ [0, T ], ∀k > k0.

From now on we consider (ρk)k>k0 and (θn)n⩾n0 .

On the other hand, for each n ∈ N, n ⩾ n0, both θn and θ′
n belong to L2(0, T ), i.e. θn ∈ H1

0 (0, T ).
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Moreover, since
u ∈ C1([0, T ];L2(Ω)

)
∩ C

(
[0, T ];H1

0 (Ω) ∩H2(Ω)
)
,

we have u′ ∈ C
(
[0, T ];L2(Ω)

)
. By the Leibniz rule,

(uθn)′ = u′θn + uθ′
n ⇒ u′θn = (uθn)′ − uθ′

n,

and hence
(u′θn) ∗ ρk ∗ ρk =

[
(uθn)′ ∗ ρk ∗ ρk

]
−
[
(uθ′

n) ∗ ρk ∗ ρk

]
. (3.4.60)

Taking the first term on the right-hand side of (3.4.60) and integrating by parts, we obtain, for all
t ∈ [0, T ],

[
(uθn)′ ∗ ρk ∗ ρk

]
(t) =

∫ T

0
(uθn)′(ξ)(ρk ∗ ρk)(t− ξ) dξ

=
[
(uθn)(ξ)(ρk ∗ ρk)(t− ξ)

]T
0 −

∫ T

0
(uθn)(ξ)

(
−(ρk ∗ ρk)′)(t− ξ) dξ

=
∫ T

0
(uθn)(ξ)(ρk ∗ ρ′

k)(t− ξ) dξ,

that is,
(uθ′

n) ∗ ρk ∗ ρk = (uθn) ∗ ρk ∗ ρ′
k,

and thus (3.4.60) can be rewritten as

(u′θn) ∗ ρk ∗ ρk =
[
(uθn) ∗ ρk ∗ ρ′

k

]
−
[
(uθ′

n) ∗ ρk ∗ ρk

]
.

Consequently we may rewrite (3.4.56) as

φn,k = θn

[
(u′θn) ∗ ρk ∗ ρk

]
= θn

([
(uθn) ∗ ρk ∗ ρ′

k

]
−
[
(uθ′

n) ∗ ρk ∗ ρk

])
,

which implies
φn,k ∈ C0

(
[0, T ];H1

0 (Ω) ∩H2(Ω)
)
.

Approximate problem. Since n ⩽ 3, we have

u(t) ∈ H1(Ω) ⇒ u(t) ∈ L6(Ω) ⇒ u3(t) ∈ L2(Ω),

and from (3.4.55),
u′ ∈ C

(
[0, T ];L2(Ω)

)
⇒ u′(t) ∈ L2(Ω),

and
u ∈ C

(
[0, T ];H1

0 (Ω) ∩H2(Ω)
)
⇒ ∆u(t) ∈ L2(Ω).

It then makes sense to multiply (3.4.53)1 by φn,k and integrate in Ω and in (0, T ), obtaining∫ T

0

(
u′(t), φn,k(t)

)
L2(Ω) dt−

∫ T

0

(
∆u(t), φn,k(t)

)
L2(Ω) dt =

∫ T

0

(
u3(t), φn,k(t)

)
L2(Ω) dt. (3.4.61)

The first term on the left-hand side of (3.4.61) can be rewritten as∫ T

0

(
u′(t), φn,k(t)

)
L2(Ω) dt =

∫ T

0

(
((u′θn) ∗ ρk)(t), ((u′θn) ∗ ρk)(t)

)
L2(Ω) dt, (3.4.62)

because, extending u′ and θn by zero (denoted by ũ′ and θ̃n), and for notational simplicity letting h = ρk,
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h̆(t) = h(−t), f = ũ′θ̃n and g = (ũ′θ̃n) ∗ ρk, and changing the order of integration, we obtain∫ T

0

(
u′(t), φn,k(t)

)
L2(Ω) dt =

∫ T

0

(
(u′θn)(t), ((u′θn) ∗ ρk ∗ ρk)(t)

)
L2(Ω) dt

=
∫
R

∫
Ω

(ũ′θ̃n)(t)((ũ′θ̃n) ∗ ρk ∗ ρk)(t) dx dt

=
∫

Ω

∫
R
f(t)

(
g ∗ h

)
(t) dt dx.

A standard convolution computation then yields∫
Ω

∫
R
f(t)

(
g ∗ h

)
(t) dt dx =

∫
R

(
(f ∗ h̆)(t), g(t)

)
L2(Ω) dt,

and, substituting back h, f and g by ρk, ũ′θ̃n and (ũ′θ̃n) ∗ ρk, we obtain (3.4.62).

Since
lim

k→∞
(u′θn) ∗ ρk = (u′θn) in L2([0, T ];L2(Ω)

)
,

from (3.4.62) we conclude that

lim
k→∞

∫ T

0

(
u′(t), φn,k(t)

)
L2(Ω) dt =

∫ T

0
θ2

n(t)
∥∥u′(t)

∥∥2
L2(Ω) dt. (3.4.63)

For the second term in (3.4.61), we have∫ T

0

(
∆u(t), φn,k(t)

)
L2(Ω) dt = −

∫ T

0

(
∇u(t),∇φn,k(t)

)
L2(Ω) dt

= −
∫ T

0

(
∇u(t),∇

[
θn((u′θn) ∗ ρk ∗ ρk)

]
(t)
)

L2(Ω) dt

= −
∫ T

0

(
∇
(
(uθn) ∗ ρk

)
(t),∇

(
(u′θn) ∗ ρk

)
(t)
)

L2(Ω) dt

= −
∫ T

0

(
∇
(
(uθn) ∗ ρk

)
(t),∇

[
(u′θn) ∗ ρk − (θ′

nu) ∗ ρk

]
(t)
)

L2(Ω) dt

= −
∫ T

0

(
∇
(
(uθn) ∗ ρk

)
(t),∇

(
(θnu)′ ∗ ρk

)
(t)
)

L2(Ω) dt

+
∫ T

0

(
∇
(
(uθn) ∗ ρk

)
(t),∇

(
(θ′

nu) ∗ ρk

)
(t)
)

L2(Ω) dt

= −
∫ T

0

(
∇
(
(uθn) ∗ ρk

)
(t),∇

(
(θnu) ∗ ρk

)′(t)
)

L2(Ω) dt

+
∫ T

0

(
∇
(
(uθn) ∗ ρk

)
(t),∇

(
(θ′

nu) ∗ ρk

)
(t)
)

L2(Ω) dt.

Observe that

d

dt

(
∇
(
(uθn) ∗ ρk

)
(t),∇

(
(θnu) ∗ ρk

)
(t)
)

L2(Ω) = 2
(
∇
(
(uθn) ∗ ρk

)
(t),∇

(
(uθn) ∗ ρk

)′(t)
)

L2(Ω)

= 2
(
∇
(
(uθn) ∗ ρk

)
(t),∇

(
(uθn)′ ∗ ρk

)
(t)
)

L2(Ω).
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Hence

1
2

∫ T

0

d

dt

(
∇
(
(uθn) ∗ ρk

)
(t),∇

(
(θnu) ∗ ρk

)
(t)
)

L2(Ω) dt =
∫ T

0

(
∇
(
(uθn) ∗ ρk

)
(t),∇

(
(uθn)′ ∗ ρk

)
(t)
)

L2(Ω) dt

=
∫ T

0

(
∇(uθn)(t),∇

(
(uθn)′ ∗ ρk ∗ ρk

)
(t)
)

L2(Ω) dt

= 0,

since supp
(
(∂xi

u θn) ∗ ρk

)
is compact in (0, T ) and therefore contained in [0, T ].

It follows that∫ T

0

(
∆u(t), φn,k(t)

)
L2(Ω) dt =

∫ T

0

(
∇
(
(uθn) ∗ ρk

)
(t),∇

(
(θ′

nu) ∗ ρk

)
(t)
)

L2(Ω) dt

=
n∑

i=1

∫ T

0

((
(θn∂xiu) ∗ ρk

)
(t),

(
(θ′

n∂xiu) ∗ ρk

)
(t)
)

L2(Ω)
dt.

Since
lim

k→∞
(θn∂xiu) ∗ ρk = θn∂xiu in L2(0, T ;L2(Ω)

)
and

lim
k→∞

(θ′
n∂xiu) ∗ ρk = θ′

n∂xiu in L2(0, T ;L2(Ω)
)
,

we obtain

lim
k→∞

n∑
i=1

([
θn∂xiu

]
∗ ρk,

[
θ′

n∂xiu
]
∗ ρk

)
L2(0,T ;L2(Ω))

=
n∑

i=1

(
θn∂xiu, θ

′
n∂xiu

)
L2(0,T ;L2(Ω)).

Therefore

lim
k→∞

∫ T

0

(
∆u(t), φn,k(t)

)
L2(Ω) dt =

∫ T

0

(
θnθ

′
n

)
(t)
∥∥∇u(t)

∥∥2
L2(Ω) dt. (3.4.64)

For the right-hand side of (3.4.61), by an argument analogous to that used to obtain (3.4.63) and
(3.4.64), we arrive at

lim
k→∞

∫ T

0

(
u3(t), φn,k(t)

)
L2(Ω) dt =

∫ T

0
θ2

n(t)
(
u3(t), u′(t)

)
L2(Ω) dt. (3.4.65)

Passing to the limit as k →∞ in (3.4.61), and using (3.4.63), (3.4.64) and (3.4.65), we obtain∫ T

0
θ2

n(t)
∥∥u′(t)

∥∥2
L2(Ω) dt−

∫ T

0

(
θnθ

′
n

)
(t)
∥∥∇u(t)

∥∥2
L2(Ω) dt =

∫ T

0
θ2

n(t)
(
u3(t), u′(t)

)
L2(Ω) dt. (3.4.66)

Letting n→∞ in (3.4.66) and using the explicit form of θn and θ′
n, we obtain∫ t

s

∥∥u′(τ)
∥∥2

L2(Ω) dτ −
1
2

(∥∥∇u(t)
∥∥2

L2(Ω) −
∥∥∇u(s)

∥∥2
L2(Ω)

)
=
∫ t

s

(
u3(τ), u′(τ)

)
L2(Ω) dτ. (3.4.67)
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To justify the passage to the limit in n, we use the regularity of u in (3.4.55), from which we deduce∥∥u′(·)
∥∥2

L2(Ω) ∈ C([0, T ]), (3.4.68)∥∥∇u(·)
∥∥2

L2(Ω) ∈ C([0, T ]), (3.4.69)(
u3(·), u′(·)

)
L2(Ω) ∈ C([0, T ]). (3.4.70)

Taking h(t) =
∥∥u′(t)

∥∥2
L2(Ω) in the first term of (3.4.66), it follows that

lim
n→∞

∫ T

0
θn(τ)2h(τ) dτ =

∫ t

s

h(τ) dτ, (3.4.71)

using the explicit form of θn and standard one-dimensional estimates on the shrinking intervals. Similarly,
taking h(τ) =

(
u2(τ), u′(τ)

)
L2(Ω), we obtain

lim
n→∞

∫ T

0
θn(τ)2(u2(τ), u′(τ)

)
L2(Ω) dτ =

∫ t

s

(
u2(τ), u′(τ)

)
L2(Ω) dτ. (3.4.72)

Finally, taking h(τ) =
∥∥∇u(τ)

∥∥2
L2(Ω), one shows that

∫ T

0
(θnθ

′
n)(τ)h(τ) dτ n→∞−→ 1

2
[
h(t)− h(s)

]
, (3.4.73)

again by direct computation on the piecewise linear θn and the continuity of h.

Thus (3.4.67) follows from (3.4.66) by letting n→∞ and using (3.4.71), (3.4.72), and (3.4.73).

Now let (sν)ν∈N ⊂ [0, T ] with sν → 0. For each t ∈ [0, T ], (3.4.67) gives∫ t

sν

∥∥u′(τ)
∥∥2

L2(Ω) dτ −
1
2

(∥∥∇u(t)
∥∥2

L2(Ω) −
∥∥∇u(sν)

∥∥2
L2(Ω)

)
=
∫ t

sν

(
u3(τ), u′(τ)

)
L2(Ω) dτ. (3.4.74)

From (3.4.55) we have

u ∈ C
(
[0, T ];H1

0 (Ω) ∩H2(Ω)
)
↪→ C

(
[0, T ];H1

0 (Ω)
)
,

so
∂u

∂xi
∈ C

(
[0, T ];L2(Ω)

)
,

and hence

lim
ν→∞

∥∥∇u(sν)
∥∥2

L2(Ω) = lim
ν→∞

n∑
i=1

( ∂u
∂xi

(sν), ∂u
∂xi

(sν)
)

L2(Ω)

=
n∑

i=1

( ∂u
∂xi

(0), ∂u
∂xi

(0)
)

L2(Ω)

=
∥∥∇u(0)

∥∥2
L2(Ω).

That is,
lim

ν→∞

∥∥∇u(sν)
∥∥2

L2(Ω) =
∥∥∇u(0)

∥∥2
L2(Ω). (3.4.75)

Therefore, letting ν →∞ in (3.4.74), we obtain∫ t

0

∥∥u′(τ)
∥∥2

L2(Ω) dτ −
1
2

(∥∥∇u(t)
∥∥2

L2(Ω) −
∥∥∇u(0)

∥∥2
L2(Ω)

)
=
∫ t

0

(
u3(τ), u′(τ)

)
L2(Ω) dτ. (3.4.76)
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Notice that the right-hand side of (3.4.76) can be rewritten as∫ t

0

(
u3(τ), u′(τ)

)
L2(Ω) dτ =

∫ t

0

1
4
d

dτ

∫
Ω
u4(τ) dx dτ, (3.4.77)

and hence from (3.4.77) and (3.4.76) we get

−
∫ t

0

∥∥u′(τ)
∥∥2

L2(Ω) dτ = 1
2

[∫
Ω

∣∣∇u(t)
∣∣2dx− ∫

Ω

∣∣∇u(0)
∣∣2dx]− 1

4

[∫
Ω
u4(t) dx−

∫
Ω
u4(0) dx

]
.

Using the definition (3.4.54) of E(t), this is equivalent to

−
∫ t

0

∥∥u′(τ)
∥∥2

L2(Ω) dτ = E(t)− E(0). (3.4.78)

Thus,
d

dt
E(t) = −

∥∥u′(t)
∥∥2

L2(Ω) ⩽ 0,

i.e. E(t) is decreasing, and, since by hypothesis E(0) ⩽ 0, we have

E(t) ⩽ E(0) ⩽ 0, ∀t ∈ [0, T ].

We now show that Tmax <∞. Suppose, by contradiction, that Tmax =∞ and defineG : [0,∞)→ R
by

G(t) = ∥u(·, t)∥2
L2(Ω).

By the regularity in (3.4.55), G ∈ C1([0,+∞)) and

G′(t) = d

dt

∥∥u(t)
∥∥2

L2(Ω) = 2
(
u′(t), u(t)

)
L2(Ω)

= 2
(
∆u(t) + u3(t), u(t)

)
L2(Ω)

= −4
[

1
2

∫
Ω
|∇u(t)|2dx− 1

4

∫
Ω
u4(t)dx

]
+
∫

Ω
u4(t)dx

= −4E(t) +
∫

Ω
u4(t)dx.

Since E(t) ≤ E(0), it follows that

G′(t) ≥ −4E(0) +
∫

Ω
u4(t)dx.

Because L4(Ω) ↪→ L2(Ω), there exists c1 > 0 such that

∥u(t)∥4
L2(Ω) ⩽ c1∥u(t)∥4

L4(Ω),

and hence
G2(t) ≤ c1

∫
Ω
|u(t)|4dx.

Writing c = 1
c1
> 0, we obtain

G′(t) ⩾ −4E(0) + cG2(t) ⩾ cG2(t).
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Thus G is increasing and, since G(0) ̸= 0 (because u0 ̸= 0 by hypothesis), we can write

G′(s)
G2(s) ⩾ c,

which, upon integration from 0 to t, yields∫ t

0

G′(s)
G2(s) ds ⩾ ct, ∀t ⩾ 0.

But ∫ t

0

G′(s)
G2(s) ds = 1

G(0) −
1

G(t) ≤
1

G(0) ,

that is, ct ⩽ 1
G(0) for all t ⩾ 0, which is impossible. Therefore Tmax <∞. 2

3.5 Some Additional Problems

3.5.1 The Timoshenko System with Dirichlet–Dirichlet Boundary Conditions

In this example we study the existence of solutions for the Timoshenko system with Dirich-
let–Dirichlet boundary conditions. Consider the problem

ρ1φtt − k(φx + ψ)x = 0 in (0, L)× (0,+∞),
ρ2ψtt − bψxx + k(φx + ψ) = 0 in (0, L)× (0,+∞),
φ(0, t) = φ(L, t) = ψ(0, t) = ψ(L, t) = 0, in (0,+∞),
φ(0) = φ0, φt(0) = φ1, ψ(0) = ψ0, ψt(0) = ψ1 in (0, L),

(3.5.79)

where ρ1, ρ2, k, b are positive constants.
Proof: The energy functional associated with the problem is

E(t) = 1
2

[
ρ1∥φt∥2

L2(0,L) + ρ2∥ψt∥2
L2(0,L) + k∥φx + ψ∥2

L2(0,L) + b∥ψx∥2
L2(0,L)

]
.

Let the phase space be

H = H1
0 (0, L)× L2(0, L)×H1

0 (0, L)× L2(0, L).

Given U = (φ1,Φ1, ψ1,Ψ1), V = (φ2,Φ2, ψ2,Ψ2) ∈ H, we define the following inner product:

(U, V )H = ρ1(Φ1,Φ2)L2 + ρ2(Ψ1,Ψ2)L2 + k((φ1)x + ψ1, (φ2)x + ψ2)L2 + b((ψ1)x, (ψ2)x)L2 . (3.5.80)

This induces the norm

∥U∥2
H = ρ1∥Φ∥2

L2 + ρ2∥Ψ∥2
L2 + k∥φx + ψ∥2

L2 + b∥ψx∥2
L2 , (3.5.81)

where U = (φ,Φ, ψ,Ψ).

We now prove that (H, ∥ · ∥H) is a Hilbert space. We already know that (H, | · |H) is a Hilbert
space when equipped with the usual norm

|U |2H = ∥φx∥2
L2 + ∥Φ∥2

L2 + ∥ψx∥2
L2 + ∥Ψ∥2

L2 . (3.5.82)

To show that H is a Banach space under ∥ · ∥H, it suffices to establish the equivalence of the norms
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(3.5.81) and (3.5.82). Using the inequality |a+ b|2 ≤ 2(|a|2 + |b|2) and the Poincaré inequality, we obtain:

∥U∥2
H ≤ max{ρ1, ρ2, b+ 2kL2, 2k} |U |2H = C̃1|U |2H.

Hence, ∥U∥H ≤ C1|U |H.

Conversely,
|U |2H ≤ C̃2∥U∥2

H,

thus proving the equivalence of the norms.

Since (H, | · |H) is Banach and the norms are equivalent, (H, ∥ · ∥H) is also a Banach space. As an
inner product has already been defined, we conclude that H is a Hilbert space.

Semigroup Formulation. Let U = (φ,Φ, ψ,Ψ) ∈ H. When Φ = φt and Ψ = ψt, we have

dU

dt
=



φt

k

ρ1
(φx + ψ)x

ψt

b

ρ2
(ψxx − φx + ψ)


= AU.

The initial condition is

U(0) =


φ0

φ1

ψ0

ψ1

 = U0.

Thus, we obtain the Abstract Cauchy Problem (ACP):

dU

dt
= AU, U(0) = U0,

where
D(A) = (H1

0 (0, L) ∩H2(0, L))×H1
0 (0, L)× (H1

0 (0, L) ∩H2(0, L))×H1
0 (0, L).

Existence and Uniqueness. If U0 ∈ H, then the ACP has a unique mild solution

U ∈ C([0,+∞),H), U(t) = U0 +A

∫ t

0
U(s) ds.

If U0 ∈ D(A), then the ACP admits a unique classical solution

U ∈ C([0,+∞), D(A)) ∩ C1([0,+∞),H).

By Theorem 2.3, it suffices to show that A is the infinitesimal generator of a contraction semigroup.
Using the Lumer–Phillips Theorem, we must verify that:

(i) A is dissipative;

(ii) Im(λI −A) = H for some λ > 0;

(iii) D(A) is dense in H.
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A straightforward computation shows that A is dissipative. Since H1
0 ∩H2 is dense in H1

0 , and H1
0

is dense in L2, we conclude that D(A) is dense in H. Thus it remains to show surjectivity of (λI − A).
We prove item (ii) for λ = 1.

Given F = (f1, f2, f3, f4) ∈ H, we seek U ∈ D(A) such that (I − A)U = F . This is equivalent to
the system

φ− Φ = f1, (3.5.83)
Φ− k

ρ1
(φx + ψ)x = f2, (3.5.84)

ψ −Ψ = f3, (3.5.85)
Ψ− b

ρ2
ψxx + k

ρ2
(φx + ψ) = f4. (3.5.86)

From (3.5.83)–(3.5.85) we obtain

Φ = φ− f1, (3.5.87)
Ψ = ψ − f3. (3.5.88)

Substituting (3.5.87)–(3.5.88) into (3.5.84) and (3.5.86) gives

ρ1φ− k(φx + ψ)x = g1, (3.5.89)
ρ2ψ − bψxx + k(φx + ψ) = g2, (3.5.90)

where g1 = ρ1(f1 + f2), g2 = ρ2(f3 + f4).

To solve (3.5.89)–(3.5.90) we apply the Lax–Milgram Theorem. Define the bilinear form

a((φ,ψ), (φ̃, ψ̃)) = ρ1(φ, φ̃) + ρ2(ψ, ψ̃) + b(ψx, ψ̃x) + k(φx + ψ, φ̃x + ψ̃).

One checks that a is continuous and coercive. Thus, by Lax–Milgram, for each (g1, g2) ∈ H−1 × H−1

there exists a unique (φ,ψ) ∈ H1
0 ×H1

0 such that

a((φ,ψ), (φ̃, ψ̃)) = (g1, φ̃) + (g2, ψ̃), ∀(φ̃, ψ̃) ∈ H1
0 ×H1

0 . (3.5.91)

Choosing φ̃ = 0 in (3.5.91) yields

ρ2ψ − bψxx + k(φx + ψ) = g2 in H−1,

so that
ψxx = 1

b
[−g2 + ρ2ψ + k(φx + ψ)] ∈ L2. (??)

Choosing ψ̃ = 0 in (3.5.91) gives

ρ1φ− k(φx + ψ)x = g1 in H−1,

so that
φxx = 1

k
[−g1 + ρ1φ− kψx] ∈ L2. (??)

Thus (φ,ψ) ∈ (H2∩H1
0 )× (H2∩H1

0 ) solves (3.5.89)–(3.5.90). From (3.5.87)–(3.5.88) we also have

Φ = φ− f1 ∈ H1
0 , Ψ = ψ − f3 ∈ H1

0 .
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Therefore U = (φ,Φ, ψ,Ψ) ∈ D(A) and solves (3.5.83)–(3.5.86). Hence (I − A) is surjective,
proving existence and uniqueness of the mild solution for the Timoshenko system. 2

3.5.2 Bresse System

In this example, we shall verify the existence and uniqueness of a mild solution for the Bresse
system given by

ρ1φtt − k(φx + ψ + lω)x − k0l(ωx − lφ) = 0 in (0, L)× (0,+∞),
ρ2ψtt − bψxx + k(φx + ψ + lω) = 0 in (0, L)× (0,+∞),
ρ1ωtt − k0(ωx − lφ)x + kl(φx + ψ + lω) = 0 in (0, L)× (0,+∞),
φ(0, t) = φ(L, t) = ψ(0, t) = ψ(L, t) = ω(0, t) = ω(L, t) = 0, in (0,+∞),
φ(0) = φ0, φt(0) = φ1, ψ(0) = ψ0, ψt(0) = ψ1, ω(0) = ω0, ωt(0) = ω1 in (0, L),

(3.5.92)
where ρ1, ρ2, k, k0, b and l are positive constants.
Proof: The energy functional associated with the problem is

E(t) = 1
2

[
ρ1∥φt∥2

L2(0,L) + ρ2∥ψt∥2
L2(0,L) + ρ1∥ωt∥2

L2(0,L) + k∥φx + ψ + lω∥2
L2(0,L)

+ k0∥ωx − lφ∥2
L2(0,L) + b∥ψx∥2

L2(0,L)

]
,

and the phase space is

H = H1
0 (0, L)×H1

0 (0, L)×H1
0 (0, L)× L2(0, L)× L2(0, L)× L2(0, L).

Let U = (φ,Φ, ψ,Ψ, ω,W ), where Φ = φt, Ψ = ψt and W = ωt. It is known that H, endowed with
the usual norm, is a Hilbert space. Thus, if we define on H a norm equivalent to the usual one, then H
endowed with this new norm will also be a Hilbert space.

For U = (φ1,Φ1, ψ1,Ψ1, ω1,W1), V = (φ2,Φ2, ψ2,Ψ2, ω2,W2) ∈ H, we define the following inner
product:

(U, V )H = ρ1

∫ L

0
Φ1Φ2 dx+ ρ2

∫ L

0
Ψ1Ψ2 dx+ ρ1

∫ L

0
W1W2 dx

+ k

∫ L

0

(
(φ1)x + ψ1 + lω1

)(
(φ2)x + ψ2 + lω2

)
dx

+ k0

∫ L

0

(
(ω1)x − lφ1

)(
(ω2)x − lω2

)
dx+ b

∫ L

0
(ψ1)x(ψ2)x dx

= ρ1(Φ1,Φ2)L2 + ρ2(Ψ1,Ψ2)L2 + ρ1(W1,W2)L2

+ k
(
(φ1)x + ψ1 + lω1, (φ2)x + ψ2 + lω2

)
L2

+ k0
(
(ω1)x − lφ1, (ω2)x − lω2

)
L2 + b

(
(ψ1)x, (ψ2)x

)
L2 . (3.5.93)

This inner product induces the norm

∥U∥2
H = ρ1∥Φ∥2

L2(0,L) + ρ2∥Ψ∥2
L2(0,L) + ρ1∥W∥2

L2(0,L)

+ k∥φx + ψ + lω∥2
L2(0,L) + k0∥ωx − lφ∥2

L2(0,L) + b∥ψx∥2
L2(0,L), (3.5.94)

where ∥ · ∥L2(0,L) denotes the usual norm in L2(0, L) and U = (φ,Φ, ψ,Ψ, ω,W ).

We now show that the usual norm and the norm defined above are equivalent. First, we prove that
there exists a constant c1 > 0 such that

∥U∥H ≤ c1|U |H, for all U = (φ,Φ, ψ,Ψ, ω,W ) ∈ H,
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where | · |H denotes the usual Hilbert norm on the Cartesian product.

Given U = (φ,Φ, ψ,Ψ, ω,W ), we have

∥U∥2
H = ρ1∥Φ∥2 + ρ2∥Ψ∥2 + ρ1∥W∥2 + k∥φx + ψ + lω∥2 + k0∥ωx − lφ∥2 + b∥ψx∥2

≤ ρ1∥Φ∥2 + ρ2∥Ψ∥2 + ρ1∥W∥2 + 2k∥φx + ψ∥2 + 2kl2∥ω∥2 + 2k0∥ωx∥2 + 2k0l
2∥φ∥2 + b∥ψx∥2

≤ ρ1∥Φ∥2 + ρ2∥Ψ∥2 + ρ1∥W∥2 + (b+ 4kL2)∥ψx∥2 + (4k + 2k0l
2L2)∥φx∥2

+ (2kl2L2 + 2k0)∥ωx∥2

≤ c̃ 2
1
(
∥φx∥2 + ∥Φ∥2 + ∥ψx∥2 + ∥Ψ∥2 + ∥ωx∥2 + ∥W∥2)

= c1|U |2H,

where
c̃1 := max{ρ1, ρ2, b+ 4kL2, 4k + 2k0l

2L2, 2kl2L2 + 2k0} and c1 := c̃1.

Next, we prove that there exists a constant c2 > 0 such that

|U |H ≤ c2∥U∥H, for all U = (φ,Φ, ψ,Ψ, ω,W ) ∈ H.

To this end, it is enough to verify that

|(φ,ψ, ω)|H = ∥φx∥2 + ∥ψx∥2 + ∥ωx∥2 ≤ c2
(
k∥φx + ψ + lω∥2 + k0∥ωx − lφ∥2 + b∥ψx∥2) = ∥(φ,ψ, ω)∥H.

Suppose, by contradiction, that there exists a sequence (φn, ψn, ωn) ∈ H such that

|(φn, ψn, ωn)|H
∥(φn, ψn, ωn)∥H

−→∞.

Define
φ̃n := φn

|(φn, ψn, ωn)|H
, ψ̃n := ψn

|(φn, ψn, ωn)|H
, ω̃n := ωn

|(φn, ψn, ωn)|H
.

Then

(1)
∣∣(φ̃n, ψ̃n, ω̃n)

∣∣
H = 1⇒ limn→∞

∣∣(φ̃n, ψ̃n, ω̃n)
∣∣
H = 1;

(2) ∥(φ̃n, ψ̃n, ω̃n)∥H −→ 0.

From (2), we have in particular

(φ̃n)x + ψ̃n + lω̃n −→ 0, (3.5.95)
(ψ̃n)x −→ 0, (3.5.96)

(ω̃n)x − lφ̃n −→ 0, (3.5.97)

in L2(0, L). Since the derivative operator from H1
0 to L2 is linear and continuous, there exist (f, g, h) ∈

(H1
0 )3 and a (not relabelled) subsequence such that

φ̃n ⇀ f in H1
0 ,

ψ̃n ⇀ g in H1
0 ,

ω̃n ⇀ h in H1
0 . (3.5.98)

Hence

(φ̃n)x ⇀ fx in L2,

(ψ̃n)x ⇀ gx in L2,

(ω̃n)x ⇀ hx in L2. (3.5.99)
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Thus

(φ̃n)x + ψ̃n + lω̃n ⇀ fx + g + lh,

(ψ̃n)x ⇀ gx,

(ω̃n)x − lφ̃n ⇀ hx − lf, (3.5.100)

in L2, and by uniqueness of the weak limit, from (3.5.95)–(3.5.97) and (3.5.100) we obtain

fx + g + lh = 0,
gx = 0,

hx − lf = 0. (3.5.101)

By the Poincaré inequality and the second equation in (3.5.101), we have ∥g∥ ≤ L∥gx∥ = 0, hence
g ≡ 0. Therefore, (3.5.101) reduces to

fx + lh = 0,
hx − lf = 0, (3.5.102)

whose only solution is f = h = 0.

Since H1
0 ↪→ L2 compactly, it follows from (3.5.98) that

φ̃n −→ f = 0 in L2,

ω̃n −→ h = 0 in L2. (3.5.103)

Using (3.5.95)–(3.5.97), (3.5.103) and the Poincaré inequality, we then infer

(φ̃n)x =
(
(φ̃n)x + ψ̃n + lω̃n

)
−
(
ψ̃n + lω̃n

)
−→ 0,

ψ̃n −→ 0,
(ω̃n)x =

(
(ω̃n)x − lφ̃n

)
+ lφ̃n −→ 0, (3.5.104)

in L2. Thus, from (1) and (3.5.104), we obtain the contradiction

lim
n→∞

∣∣(φ̃n, ψ̃n, ω̃n)
∣∣
H = 1 and lim

n→∞

∣∣(φ̃n, ψ̃n, ω̃n)
∣∣
H = 0.

Hence there exists c2 > 0 such that

|(φ,ψ, ω)|H ≤ c2∥(φ,ψ, ω)∥H, for all (φ,ψ, ω) ∈ H.

Therefore, the norms | · |H and ∥ · ∥H are equivalent. 2

3.5.3 A Non-homogeneous Timoshenko System

We now study the existence of solutions for the non-homogeneous Timoshenko system{
ρ1(x)φtt − (κ(x)φx + ψ)x = 0 in (0, L)× (0,+∞),
ρ2(x)ψtt − (b(x)ψx)x + κ(x)(φx + ψ) = 0 in (0, L)× (0,+∞).

(3.5.105)

with boundary conditions at x = 0
φ(0, t) = ψ(0, t) = 0, (3.5.106)
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and boundary conditions at x = L given by{
mφtt(L, t)− k0φt(L, t) + κ(L)(φx(L, t) + ψ(L, t)) = 0,
Imψtt(L, t) + k1ψ(L, t) + b(L)ψx(L, t) = 0.

(3.5.107)

The initial data are

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), (3.5.108)

where
ρ1, ρ2 ∈ L∞(0, L) and b, κ ∈W 1,∞(0, L) (3.5.109)

are such that

ρ1(x) ⩾ m1 > 0, ∀x ∈ (0, L), (3.5.110)
ρ2(x) ⩾ m2 > 0, ∀x ∈ (0, L), (3.5.111)
b(x) ⩾ m3 > 0, ∀x ∈ (0, L), (3.5.112)
κ(x) ⩾ m4 > 0, ∀x ∈ (0, L), (3.5.113)

for some mi ∈ R, i ∈ {1, 2, 3, 4}.

Denoting
u(t) := φt(L, t) and v(t) := ψt(L, t), (3.5.114)

we observe that u and v satisfy{
mut(t)− k0u(t) + κ(L)

(
φx(L, t) + ψ(L, t)

)
= 0,

Imvt(t) + k1v(t) + b(L)ψx(L, t) = 0,
(3.5.115)

with initial conditions
u(0) = φ1(L), v(0) = ψ1(L). (3.5.116)

Energy Functional

The energy functional associated with the problem is

E(t) = 1
2

∫ L

0
ρ1(x)

∣∣φt(x, t)
∣∣2 + ρ2(x)

∣∣ψt(x, t)
∣∣2 + κ(x)

∣∣φx(x, t) + ψ(x, t)
∣∣2

+ b(x)
∣∣ψx(x, t)

∣∣2 dx+ m

2 |u(t)|2 + Im

2 |v(t)|2.
(3.5.117)

Phase Space

Consider the space
H1

∗ (0, L) =
{
w ∈ H1(0, L) ; w(0) = 0

}
endowed with the inner product

(f, g)∗ =
∫ L

0
f ′(x)g′(x) dx,

whose induced norm is
|f |2∗ =

∫ L

0
|f ′(x)|2 dx = ∥f ′∥2

L2(0,L).

Then (H1
∗ , | · |∗) is a Hilbert space.

Define
H = H1

∗ (0, L)× L2(0, L)×H1
∗ (0, L)× L2(0, L)× R× R, (3.5.118)
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which we endow with the usual inner product (·, ·)H given by

(U1, U2)H = (φ1,x, φ2,x)2 + (Φ1,Φ2)2 + (ψ1,x, ψ2,x)2 + (Ψ1,Ψ2)2 + u1u2 + v1v2, (3.5.119)

for all Ui = (φi,Φi, ψi,Ψi, ui, vi) ∈ H, i = 1, 2. The induced norm is

|U |2H = ∥φx∥2
2 + ∥Φ∥2

2 + ∥ψx∥2
2 + ∥Ψ∥2

2 + |u|2 + |v|2, ∀ U ∈ H, (3.5.120)

where (·, ·)2 and ∥ · ∥2 respectively denote the inner product and norm in L2(0, L). Thus (H, | · |H) is a
Hilbert space.

We now define on H the bilinear mapping ((·, ·))H : H×H → R by

((U1, U2))H =
∫ L

0
ρ1(x)Φ1(x)Φ2(x) dx+

∫ L

0
ρ2(x)Ψ1(x)Ψ2(x) dx

+
∫ L

0
κ(x)

(
φ1,x(x) + ψ1(x)

)(
φ2,x(x) + ψ2(x)

)
dx

+
∫ L

0
b(x)ψ1,x(x)ψ2,x(x) dx+ m

2 u1u2 + Im

2 v1v2,

(3.5.121)

for all Ui = (φi,Φi, ψi,Ψi, ui, vi) ∈ H, i = 1, 2.

It is straightforward to check that ((·, ·))H defines an inner product on H; we denote its induced
norm by ∥ · ∥H. One can show, using standard inequalities (Poincaré and Young) and the positivity
assumptions on ρ1, ρ2, b, κ, that | · |H and ∥ · ∥H are equivalent. Therefore, (H, ∥ · ∥H) is also a Hilbert
space.

Semigroup Formulation

Our goal is now to write the problem in the form of an abstract Cauchy problem, that is,
dU

dt
= AU,

U(0) = U0,

where U : D(A) ⊂ H → H.

To determine A and D(A), let U = (φ,Φ, ψ,Ψ, u, v) ∈ H with Φ = φt, Ψ = ψt. Then

dU

dt
=



φt

φtt

ψt

ψtt

ut

vt


=



φt

1
ρ1(x)

[
κ′(x)φx + κ(x)φxx + κ′(x)ψ + κ(x)ψx

]
ψt

1
ρ2(x)

[
b′(x)ψx + b(x)ψxx − κ(x)φx − κ(x)ψ

]
− 1
m

[
k0u(t) + κ(L)φx(L, t) + κ(L)ψ(L, t)

]
− 1
Im

[
k1v(t) + b(L)ψx(L, t)

]


.

We set
D(A) = {U = (φ,Φ, ψ,Ψ, u, v) ∈ H ; AU ∈ H with u = Φ(L), v = Ψ(L)} ,

in view of (3.5.114); that is,

u(t) = φt(L, t) ⇐⇒ u = Φ(L), v(t) = ψt(L, t) ⇐⇒ v = Ψ(L).
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More explicitly, we can write

D(A) =
{
U = (φ,Φ, ψ,Ψ, u, v) ∈

(
H1

∗ ∩H2 ×H1
∗
)2 × R2 ; u = Φ(L), v = Ψ(L)

}
.

Existence and Uniqueness

If u0 ∈ H, then the Abstract Cauchy Problem (ACP) admits a unique mild solution

u ∈ C([0,+∞),H)

satisfying

u(t) = u0 +A

∫ t

0
u(s) ds.

Moreover, if u0 ∈ D(A), then the ACP admits a unique classical solution

u ∈ C0([0,+∞), D(A)) ∩ C1([0,+∞),H).

Proof: In view of Theorem 2.3, it suffices to show that A is the infinitesimal generator of a contraction
C0-semigroup. For this, we apply the Lumer–Phillips Theorem, and thus we must verify:

(i) A is dissipative;

(ii) Im(λI −A) = H for some λ > 0;

(iii) D(A) is dense in H.

A direct computation shows that A is dissipative. We prove (ii) for λ = 1; that is, given F =
(f1, f2, f3, f4, f5, f6) ∈ H, we seek U ∈ D(A) such that (I −A)U = F .

The equation (I −A)U = F is equivalent to

φ− Φ = f1, (3.5.122)

Φ− 1
ρ1(x)

[
κ(x)(φx + ψ)x

]
= f2, (3.5.123)

ψ −Ψ = f3, (3.5.124)

Ψ− 1
ρ2(x)

[
(b(x)ψx)x − κ(x)(φx + ψ)

]
= f4, (3.5.125)

u+ 1
m

[
k0u+ κ(L)(φx(L) + ψ(L))

]
= f5, (3.5.126)

v + 1
Im

[
k1v + b(L)ψx(L)

]
= f6. (3.5.127)

From (3.5.122) and (3.5.124) we obtain

Φ = φ− f1, (3.5.128)
Ψ = ψ − f3. (3.5.129)

Substituting (3.5.128)–(3.5.129) into (3.5.123)–(3.5.125), we get

ρ1(x)φ−
(
κ(x)(φx + ψ)

)
x

= g1, (3.5.130)
ρ2(x)ψ −

(
b(x)ψx

)
x

+ κ(x)(φx + ψ) = g2, (3.5.131)

where g1 = ρ1(f1 + f2), g2 = ρ2(f3 + f4).
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To solve (3.5.130)–(3.5.131), we apply the Lax–Milgram Theorem. Define the bilinear form

a : [H1
∗ ×H1

∗ ]× [H1
∗ ×H1

∗ ]→ R,
((φ,ψ), (φ̃, ψ̃)) 7→ a((φ,ψ), (φ̃, ψ̃))

by

a((φ,ψ), (φ̃, ψ̃)) =
∫ L

0
ρ1(x)φφ̃ dx+

∫ L

0
ρ2(x)ψψ̃ dx

+
∫ L

0
κ(x)(φx + ψ)(φ̃x + ψ̃) dx+

∫ L

0
b(x)ψxψ̃x dx

+ αφ(L)φ̃(L) + β ψ(L)ψ̃(L),

where α = 1 + k0

m
and β = 1 + k1

Im
.

One verifies that a is bilinear and continuous on H1
∗ ×H1

∗ by means of the Cauchy–Schwarz and
Poincaré inequalities together with the boundedness of the coefficients. Moreover, using the inequalities
(a+ b)2 ≤ 2(a2 + b2) and the positivity of ρ1, ρ2, b, κ, α, β, one shows that a is coercive.

Hence, by the Lax–Milgram Theorem, for each (g1, g2) ∈ (H1
∗ )′ × (H1

∗ )′ there exists a unique
(φ,ψ) ∈ H1

∗ ×H1
∗ such that

a((φ,ψ), (φ̃, ψ̃)) = (g1, φ̃) + (g2, ψ̃), ∀ (φ̃, ψ̃) ∈ H1
∗ ×H1

∗ .

This solution (φ,ψ) satisfies (3.5.130)–(3.5.131) and yields, together with (3.5.128)–(3.5.129), a unique
U ∈ D(A) that solves (I −A)U = F . Therefore, Im(I −A) = H, and the proof is complete. 2
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Chapter 4

Nonlinear Semigroups

4.1 Duality Operator

In what follows, X will denote either a topological vector space (t.v.s.) or a real normed vector
space, whose norm will be represented by ∥ · ∥. We denote by X ′ the topological dual of X, or more
precisely, the space consisting of all linear and continuous forms x′ : X −→ R, and when X is normed,
we endow X ′ with the norm

∥x′∥ = sup
∥x∥≤1

|x′(x)|.

The duality between X and X ′ will be denoted, interchangeably, by
〈
x, x′〉 or

〈
x′, x

〉
, for every

x ∈ X and every x′ ∈ X ′, so that 〈
x′, x

〉
=
〈
x, x′〉 = x′(x),

that is, the value taken by the functional x′ at the point x.

We recall below the Hahn–Banach Theorem, a powerful tool in Functional Analysis, whose proof
may be found, for instance, in Brézis [14], in Bachman–Narici [8] and in Horváth [53].

Theorem 4.1 (Hahn–Banach) Let X be a vector space and p a positively homogeneous and subadditive
functional on X. If G is a proper vector subspace of X, g ∈ G′ and g(x) ≤ p(x) for every x ∈ G, then
there exists an extension h of g to X such that h(x) ≤ p(x) for every x ∈ X.

-

0.1cm

As an immediate consequence of the Hahn–Banach Theorem, we have the following results:

Corollary 4.2 Let X be a normed vector space, G ⊂ X a subspace of X and g ∈ G′. Then there exists
an extension f of g such that f ∈ X ′ and ∥f∥X′ = ∥g∥G′ .

Proof: Define
p(x) = ∥g∥G′∥x∥, ∀x ∈ X,

then
g(x) ≤ |g(x)| ≤ ∥g∥G′∥x∥ = p(x), ∀x ∈ G.

Thus, by Theorem 4.1, there exists an extension f of g to X such that

f(x) ≤ p(x), x ∈ X.
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Observe also that
−f(x) = f(−x) ≤ p(−x) = ∥g∥G′∥x∥ = p(x).

Consequently,
|f(x)| ≤ p(x) = ∥g∥G′∥x∥, ∀x ∈ X,

which implies
∥f∥X′ = sup

∥x∥≤1
|f(x)| ≤ ∥g∥G′ ,

i.e.,
∥f∥X′ ≤ ∥g∥G′ . (4.1.1)

On the other hand, since f(x) = g(x) for every x ∈ G, it follows that

∥f∥X′ = sup
x∈X

∥x∥≤1

|f(x)| ≥ sup
x∈G

∥x∥≤1

|g(x)| = ∥g∥G′ . (4.1.2)

From inequalities (4.1.1) and (4.1.2), we conclude that ∥f∥X′ = ∥g∥G′ . 2

Corollary 4.3 Let X be a normed vector space. Then, for each x0 ∈ X, there exists a form f0 ∈ X ′

such that ∥f0∥X′ = ∥x0∥ and
〈
f0, x0

〉
= ∥x0∥2.

Proof: If x0 = 0, then f0 = 0 satisfies the statement. Suppose now x0 ̸= 0. Define

G := Rx0 = {tx0; t ∈ R},

and
g(tx0) = t∥x0∥2, ∀t ∈ R.

Thus,
sup
x∈G

∥x∥≤1

|g(x)| = sup
t∈R

|t|= 1
∥x0∥

|t|∥x0∥2 = ∥x0∥.

Since g is linear, it follows that g ∈ G′ and

∥g∥G′ = ∥x0∥.

By Corollary 4.2, there exists an extension f0 of g to X such that f0 ∈ X ′ and

∥f0∥X′ = ∥g∥G′ = ∥x0∥.

Moreover, since x0 ∈ G, it follows that〈
f0, x0

〉
=
〈
g, x0

〉
= ∥x0∥2.

2

Let X be a normed space. For each x ∈ X, define the set

F (x) = {x′ ∈ X ′ :
〈
x′, x

〉
= ∥x∥2 = ∥x′∥2}. (4.1.3)

Proposition 4.4 Let X be a Banach space. Then, for every x ∈ X, the following properties hold:

(i) F (x) ̸= ∅;
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(ii) F (x) is convex and compact in the weak∗ topology of X ′;

(iii) F (λx) = λF (x), ∀λ ∈ R.

Proof:

**(i)** Follows from Corollary 4.3.

**(ii)** Let x′
1, x

′
2 ∈ F (x) and t ∈ [0, 1]. From (4.1.3),

∥x∥2 = t∥x∥2 + (1− t)∥x∥2

= t
〈
x, x′

1
〉

+ (1− t)
〈
x, x′

2
〉

=
〈
x, tx′

1 + (1− t)x′
2
〉
. (4.1.4)

Since 〈
x, tx′

1 + (1− t)x′
2
〉
≤ ∥x∥∥tx′

1 + (1− t)x′
2∥,

it follows from (4.1.4) that
∥x∥ ≤ ∥tx′

1 + (1− t)x′
2∥. (4.1.5)

On the other hand, from (4.1.3) we also have

∥tx′
1 + (1− t)x′

2∥ ≤ t∥x′
1∥+ (1− t)∥x′

2∥
= t∥x∥+ (1− t)∥x∥
= ∥x∥. (4.1.6)

From (4.1.5) and (4.1.6), we conclude that

∥tx′
1 + (1− t)x′

2∥ = ∥x∥,

hence tx′
1 + (1− t)x′

2 ∈ F (x), proving that F (x) is convex.

To show that F (x) is compact in the weak∗ topology of X ′, by Alaoglu’s Theorem it suffices to
show that F (x) is weak∗ closed.

Let x′
0 ∈ X ′ be a weak∗ limit point of F (x). Then for every ε > 0, the neighbourhood

{ξ ∈ X ′; |⟨x′
0 − ξ, x⟩| < ε}

contains some x′ ∈ F (x), i.e.,
|⟨x′

0 − x′, x⟩| < ε.

Thus
∥x∥2 − ε < ⟨x′

0, x⟩ < ∥x∥2 + ε,

and so
⟨x′

0, x⟩ = ∥x∥2. (4.1.7)

From (4.1.7),
∥x∥2 ≤ ∥x∥∥x′

0∥,

hence
∥x∥ ≤ ∥x′

0∥.

But F (x) is contained in the weak∗ compact ball {ξ : ∥ξ∥ ≤ ∥x∥}; therefore ∥x′
0∥ ≤ ∥x∥ and so

∥x′
0∥ = ∥x∥, showing that x′

0 ∈ F (x).
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**(iii)** If x′ ∈ F (x), then for any λ ∈ R,〈
λx, λx′〉 = λ2〈x, x′〉 = λ2∥x∥2 = ∥λx∥2,

so λx′ ∈ F (λx) and hence λF (x) ⊂ F (λx).

Conversely, if y′ ∈ F (λx) with λ ̸= 0, then〈
x, y′/λ

〉
= ∥x∥2 = ∥y′/λ∥2,

so y′/λ ∈ F (x), proving the reverse inclusion.

Definition 4.5 We call an operator with domain in a set X and range in a set Y any relation A from
X to Y , or equivalently, any subset of the Cartesian product X × Y .

Thus, if A is an operator from X to Y , then for every x ∈ X, Ax will be a subset of Y . Observe
that an operator A from X to Y defines a map (still denoted by the same letter)

A : X −→ 2Y , x 7−→ Ax,

where 2Y denotes the power set of Y .

The set D(A) of those x ∈ X for which Ax ̸= ∅ is called the domain of A. The set Im(A) of those
y ∈ Y such that y ∈ Ax for some x ∈ D(A) is called the image of A.

Thus,
Im(A) =

⋃
x∈D(A)

Ax.

To express that A is an operator with domain X and image Y , we write A : X −→ Y .

The graph of A is the set of points (x, y) ∈ X × Y such that y ∈ Ax for some x ∈ D(A).

Let Y be a vector space, and let A,B : X −→ Y be operators. We define A + B, λA and A−1

respectively by:
A+B = {(x, y + z); (x, y) ∈ A, (x, z) ∈ B},

λA = {(x, λy); (x, y) ∈ A},

A−1 = {(y, x); (x, y) ∈ A},

where D(A+B) = D(A) ∩D(B), D(λA) = D(A) and D(A−1) = Im(A).

Definition 4.6 If for each x ∈ D(A) the set Ax is a singleton, then we say that A is single–valued.

Definition 4.7 We say that B : X −→ Y is an extension of A : X −→ Y if A ⊂ B.

Note that, in the case of single–valued operators, B is a proper extension of A if and only if D(B)
properly contains D(A), but this is not true in the multivalued case. Indeed, consider X = Y = {1, 2, 3},

A = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1)},

B = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 3)}.

Then A ⊊ B, but D(A) = D(B) = X.

Definition 4.8 An operator is said to be closed if, whenever {xn} ⊂ D(A) with xn → x and yn ∈ Axn

with yn → y, it follows that x ∈ D(A) and y ∈ Ax.
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Definition 4.9 Let X be a Banach space. The duality operator is the operator F : X −→ X ′ defined
by:

D(F ) = X, F (x) = {x′ ∈ X ′;
〈
x′, x

〉
= ∥x∥2 = ∥x′∥2},

for every x ∈ X.
A duality mapping of X is any map f : X −→ X ′ such that f(x) ∈ F (x) for every x ∈ X.

Definition 4.10 Let f : X −→ (−∞,+∞] be a function. The effective domain of f is the set

De(f) = {x ∈ X; f(x) < +∞}.

A function is said to be proper if De(f) ̸= ∅.

Result 1: Let X be a topological space satisfying the first axiom of countability, i.e., X admits a count-
able local base at each of its points, and let f : X −→ [−∞,+∞] be sequentially lower semicontinuous
(l.s.c.). Then f is l.s.c.
Proof: Fix an arbitrary point x0 ∈ X. Suppose that f is not l.s.c. at x0. Then there exists ε0 > 0 such
that for any neighbourhood V (x0) of x0 we have

f(x) < f(x0)− ε0 < f(x0) for some x ∈ V (x0). (4.1.8)

Since X satisfies the first axiom of countability, there exists a countable neighbourhood base
{Un}n∈N at x0. We now construct the following sequence:

For n = 1, U1 is a neighbourhood of x0 ⇒ ∃n1 ∈ N such that Un1 ⊂ U1. Define V1 = Un1 .

For n = 2, U2 ∩ V1 is a neighbourhood of x0 ⇒ ∃n2 ∈ N such that Un2 ⊂ U2 ∩ V1. Define V2 = Un2 .

Proceeding inductively, we obtain a collection {Vn}n∈N of neighbourhoods of x0 such that Vn+1 ⊂
Vn and Vn ⊂ Un for all n ∈ N.

We claim that {Vn}n∈N is a local base at x0. Indeed, let V (x0) be any neighbourhood of x0. Since
{Un} is a base at x0, there exists n such that Un ⊂ V (x0). Then

Vn ⊂ Un ⊂ V (x0),

as claimed.

Hence, from assumption (4.1.8), for each n there exists xn ∈ Vn such that

f(xn) < f(x0)− ε0. (4.1.9)

Thus we obtain a sequence (xn) with

f(xn) < f(x0)− ε0, ∀n ∈ N. (4.1.10)

In particular, for each n,
f(xk) < f(x0)− ε0, ∀k ≥ n. (4.1.11)

From (4.1.11),
inf
k≥n

f(xk) ≤ f(x0)− ε0, ∀n. (4.1.12)
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Hence,

lim
n→∞

inf
k≥n

f(xk) = sup
n∈N

inf
k≥n

f(xk) (4.1.13)

≤ f(x0)− ε0 < f(x0). (4.1.14)

However, xn → x0 because for any neighbourhood V (x0), since {Vn} is a base at x0, there exists
k0 such that

Vk0 ⊂ V (x0). (4.1.15)

Because Vn+1 ⊂ Vn, we have

Vk ⊂ Vk0 ⊂ V (x0), ∀k ≥ k0. (4.1.16)

Thus,
xk ∈ Vk ⊂ V (x0), ∀k ≥ k0, (4.1.17)

showing xn → x0.

Since f is sequentially l.s.c.,
lim

n→∞
inf f(xn) ≥ f(x0). (4.1.18)

But (4.1.14) and (4.1.18) together imply

f(x0) ≤ lim
n→∞

inf f(xn) < f(x0),

a contradiction. Hence f is l.s.c. at x0, and by arbitrariness of x0, f is l.s.c. on X. 2

Result 2: Let X be a topological space and f : X → [0,+∞]. Let {un}n∈N ⊂ X satisfy

lim
n→∞

inf f(un) = λ < +∞.

Then there exists a subsequence {unk
} such that {f(unk

)} is bounded and

lim
k→∞

inf f(unk
) = λ. (4.1.19)

Proof: From the hypothesis,
sup
n∈N

inf
k≥n

f(uk) = λ,

i.e.
inf
k≥n

f(uk) ≤ λ, ∀n. (4.1.20)

Assume first that
inf
k≥n

f(uk) < λ, ∀n. (4.1.21)

Then for each n,
∃kn > n such that f(ukn

) < λ. (4.1.22)

Indeed, if f(uk) ≥ λ for all k ≥ n, then infk≥n f(uk) ≥ λ, contradicting (4.1.21).

Thus we obtain a subsequence {ukn} such that

0 ≤ f(ukn
) < λ, ∀n, (4.1.23)
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showing that {f(ukn)} is bounded.

From (4.1.23),
j ≥ n⇒ f(ukj

) < λ ⇒ inf
j≥n

f(ukj
) < λ. (4.1.24)

Taking the supremum over n,
lim

n→∞
inf f(ukn) ≤ λ. (4.1.25)

On the other hand, for each n,
j ≥ n⇒ kj ≥ j ≥ n,

hence
inf
j≥n

f(uj) ≤ inf
j≥n

f(ukj
). (4.1.26)

Thus
λ = lim

n→∞
inf f(un) ≤ lim

n→∞
inf f(ukn

). (4.1.27)

Combining (4.1.25) and (4.1.27) yields the desired equality.

Now assume instead that
inf
k≥n

f(uk) = λ, ∀n. (4.1.28)

Then
inf
k≥n

f(uk) < λ+ 1
n
, ∀n. (4.1.29)

Hence, for each n,
∃kn > n such that f(ukn) < λ+ 1

n
. (4.1.30)

Then
0 ≤ f(ukn

) < λ+ 1
n
≤ λ+ 1, ∀n, (4.1.31)

so {f(ukn
)} is bounded.

From (4.1.30),
inf
j≥n

f(ukj
) ≤ λ, ∀n. (4.1.32)

Thus
lim

n→∞
inf f(ukn

) ≤ λ. (4.1.33)

But again
j ≥ n⇒ kj ≥ j ⇒ {f(ukj )}j≥n ⊂ {f(uj)}j≥n, (4.1.34)

so
inf
j≥n

f(uj) ≤ inf
j≥n

f(ukj ). (4.1.35)

Hence
λ = lim

n→∞
inf f(un) ≤ lim

n→∞
inf f(ukn

). (4.1.36)

Together with (4.1.33), this proves (4.1.19). 2

Example 4.11 Let Ω ⊂ Rn be an open set with regular boundary. Consider the function f : L2(Ω) →
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(−∞,+∞] defined by

f(u) =


∫

Ω
| ∇u |2 dx, if u ∈ H1(Ω);

+∞, otherwise.

We have that f is proper and l.s.c. Indeed, note that f is proper since De(f) = H1(Ω). To show that f is
l.s.c. it is enough to prove that f is sequentially l.s.c., since L2(Ω) satisfies the first axiom of countability
(see Result 1).

Recall that f is sequentially l.s.c. at a point u ∈ L2(Ω) if, for every sequence (un)n∈N such that
un → u, one has

f(u) ≤ lim
n→+∞

inf f(un). (4.1.37)

Let u ∈ L2(Ω) and (un)n∈N ⊂ L2(Ω) be such that un → u in L2(Ω). If lim
n→+∞

inf f(un) = +∞,
then relation (4.1.37) is trivially satisfied. Hence, assume that

lim
n→+∞

inf f(un) = λ < +∞.

We now suppose that the sequence {f(un)}n∈N is bounded, which is not restrictive, since we may extract
a bounded subsequence with the same lower limit λ (see Result 2).

From this hypothesis and the convergence of (un) in L2(Ω), it follows that (un) converges weakly
in H1(Ω). Hence there exists a subsequence of (un) which converges weakly in H1(Ω).

Since strong convergence implies weak convergence, we have un ⇀ u in L2(Ω). As the embedding
of H1(Ω) into L2(Ω) is linear and continuous with respect to the strong topologies, it follows that the
embedding of H1(Ω) into L2(Ω) is also continuous with respect to the weak topologies.

Therefore un ⇀ u in H1(Ω) and, by Corollary 3.23 of [23], we have

∥u∥2
L2(Ω) +

∫
Ω
|∇u|2 dx = ∥u∥2

H1(Ω) ≤ lim
n→+∞

inf ∥un∥2
H1(Ω) (4.1.38)

= lim
n→+∞

inf
(
∥un∥2

L2(Ω) +
∫

Ω
|∇un|2 dx

)
(4.1.39)

= ∥u∥2
L2(Ω) + lim

n→+∞
inf
∫

Ω
|∇un|2 dx, (4.1.40)

and thus ∫
Ω
|∇u|2 dx ≤ lim

n→+∞
inf
∫

Ω
|∇un|2 dx,

or equivalently,
f(u) ≤ lim

n→+∞
inf f(un),

which proves (4.1.37). Hence f is sequentially l.s.c. and, consequently, l.s.c.

Example 4.12 Let φ : R → (−∞,+∞] be a proper, l.s.c. and non-negative function. Consider Φ :
Lp(0, T )→ R, 1 ≤ p < +∞, defined by

Φ(u) =


∫ T

0
φ(u(t)) dt, if φ(u) ∈ L1(0, T );

+∞, otherwise.

We claim that Φ is proper and l.s.c.

- 216 -



4.1 Duality Operator

To show that Φ is proper we must verify that

De(Φ) =
{
u ∈ Lp(0, T ); φ ◦ u ∈ L1(0, T )

}
̸= ∅.

By hypothesis, φ is proper, that is, De(φ) ̸= ∅.

Let M ∈ De(φ) and consider v : (0, T ) → R defined by v(t) = M for all t ∈ (0, T ). Note that
v ∈ L∞(0, T ) ↪→ Lp(0, T ) for 1 ≤ p ≤ +∞.

Thus
(φ ◦ v)(t) = φ(M) =: M̃ < +∞ since M ∈ De(φ).

Hence φ ◦ v ∈ L∞(0, T ) ↪→ L1(0, T ), i.e.

φ ◦ v ∈ L1(0, T ),

and therefore v ∈ De(Φ). We conclude that De(Φ) ̸= ∅, so Φ is proper.

It remains to prove that Φ is l.s.c. For this it suffices to prove that all level sets of Φ,

N(λ,Φ) =
{
u ∈ Lp(0, T ); Φ(u) ≤ λ

}
, (4.1.41)

are closed. Fix λ ∈ R and let u ∈ N(λ,Φ). Then there exists (un)n∈N ⊂ N(λ,Φ) such that

un −→ u in Lp(0, T ). (4.1.42)

Hence
Φ(un) ≤ λ, ∀n ∈ N,

that is, ∫ T

0
φ(un(t)) dt ≤ λ, ∀n ∈ N. (4.1.43)

Note that (φ(un))n∈N ⊂ L1(0, T ) and (φ(un)) ≥ 0 almost everywhere, for all n.

From (4.1.43),

sup
n∈N

∫ T

0
φ(un(t)) dt ≤ λ < +∞.

Thus, by Fatou’s lemma,
lim

n→∞
inf
n∈N

φ(un) ∈ L1(0, T ),

and moreover, ∫ T

0
lim

n→∞
inf
n∈N

φ(un(t)) dt ≤ lim
n→∞

inf
n∈N

∫ T

0
φ(un(t)) dt ≤ λ. (4.1.44)

On the other hand, since un → u in Lp(0, T ), there exists a subsequence of (un) (not relabelled)
such that

un(t) −→ u(t) almost everywhere in (0, T ).

Since φ is l.s.c. and hence sequentially l.s.c., we have

φ(u(t)) ≤ lim
n→∞

inf
n∈N

φ(un(t)) for a.e. t ∈ (0, T ). (4.1.45)
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Therefore, from (4.1.44) and (4.1.45),

Φ(u) =
∫ T

0
φ(u(t)) dt ≤

∫ T

0
lim

n→∞
inf
n∈N

φ(un(t)) dt ≤ λ,

so u ∈ N(λ,Φ), proving (4.1.41): the level sets are closed and hence Φ is l.s.c.

We shall use this result to prove the next theorem.

Theorem 4.13 (Composition) Let V and W be vector spaces, φ : W → (−∞,+∞] a convex mapping,
Λ : V → W a linear mapping, and suppose that De(φ) ∩ Im(Λ) ̸= ∅. If φ is continuous at some point of
Im(Λ) ∩De(φ), then

∂(φ ◦ Λ) = Λ′ · ∂φ · Λ.

Proof: First, we show that φ ◦ Λ : V −→ (−∞,+∞] is convex and proper. Indeed, let u, v ∈ V and
t ∈ [0, 1]. Then

(φ ◦ Λ)(tu+ (1− t)v) = φ
(
Λ(tu+ (1− t)v)

)
= φ

(
tΛu+ (1− t)Λv

)
≤ tφ(Λu) + (1− t)φ(Λv)
= t(φ ◦ Λ)(u) + (1− t)(φ ◦ Λ)(v),

which shows that φ ◦ Λ is convex.

We now prove that φ ◦ Λ is proper. By hypothesis, De(φ) ∩ Im Λ ̸= ∅, that is, there exists
u ∈ De(φ) ∩ Im Λ. Thus u = Λv for some v ∈ V , and then

(φ ◦ Λ)(v) = φ(Λv) = φ(u) < +∞,

so v ∈ De(φ ◦ Λ), and hence φ ◦ Λ is proper.

Let u ∈ V be such that ∂φ(Λu) ̸= ∅. By the definition of the subdifferential, for each ω′ ∈ ∂φ(Λu),
we have 〈

ω′, ω − Λu
〉
≤ φ(ω)− φ(Λu), ∀ω ∈ De(φ). (4.1.46)

Denote by Λ′ : W ′ −→ V ′ the adjoint operator of Λ. Then〈
Λ′ω′, v − u

〉
=

〈
ω′,Λ(v − u)

〉
=

〈
ω′,Λv − Λu

〉
, ∀ v ∈ V,

and in particular 〈
Λ′ω′, v − u

〉
=
〈
ω′,Λv − Λu

〉
, ∀ v ∈ V such that Λv ∈ De(φ). (4.1.47)

From (4.1.46) and (4.1.47) we obtain〈
Λ′ω′, v − u

〉
≤ φ(Λv)− φ(Λu) = (φ ◦ Λ)(v)− (φ ◦ Λ)(u), ∀v ∈ De(φ ◦ Λ),

whence
Λ′ω′ ∈ ∂(φ ◦ Λ)(u).

This implies that ∂(φ ◦ Λ)(u) ̸= ∅ and therefore u ∈ D(∂(φ ◦ Λ)). In other words,(
Λ′ ◦ ∂φ ◦ Λ

)
(u) ⊂ ∂

(
φ ◦ Λ

)
(u), ∀u ∈ D

(
Λ′ ◦ ∂φ ◦ Λ

)
,
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and hence
Λ′ ◦ ∂φ ◦ Λ ⊂ ∂(φ ◦ Λ).

Conversely, let u′ ∈ ∂(φ ◦ Λ)(u). Then, by definition,〈
u′, v − u

〉
+ (φ ◦ Λ)(u) ≤ (φ ◦ Λ)(v), ∀v ∈ V. (4.1.48)

Consider the set

K =
{(

Λv,
〈
u′, v − u

〉
+ φ(Λu)

)
; v ∈ V

}
⊂W × R.

We claim that K ∩ epi(φ) ⊂ bdr(epi(φ)). Indeed, let x ∈ K ∩ epi(φ). By the definition of K,

x =
(
Λv,

〈
u′, v − u

〉
+ φ(Λu)

)
, for some v ∈ V,

and from (4.1.48) we have
φ(Λv) ≥

〈
u′, v − u

〉
+ φ(Λu). (4.1.49)

On the other hand, since x ∈ epi(φ), we must have

φ(Λv) ≤
〈
u′, v − u

〉
+ φ(Λu). (4.1.50)

From (4.1.49) and (4.1.50), we obtain

φ(Λv) =
〈
u′, v − u

〉
+ φ(Λu) := λ. (4.1.51)

Let Vx be a neighbourhood of x ∈ K ∩ epi(φ), i.e.

Vx = UΛv × (λ− α, λ+ α),

where UΛv is a neighbourhood of Λv in W and α > 0. In order to conclude the claim, we need to exhibit
a point y ∈ Vx such that y ̸∈ epi(φ), since x ∈ Vx ∩ epi(φ) for every neighbourhood Vx of x, that is,
Vx ∩ epi(φ) ̸= ∅. Choosing β with λ− α < β < λ, we have y = (Λv, β) ∈ Vx. But, by (4.1.51), we get

φ(Λv) = λ > β,

which implies
y = (Λv, β) ∈W × R \ epi(φ),

or equivalently,
Vx ∩

(
W × R \ epi(φ)

)
̸= ∅.

Hence x ∈ bdr(epi(φ)), and the claim follows.

We now prove that int(epi(φ)) ̸= ∅. For this, we must find an element x ∈ epi(φ) and a neighbour-
hood Vx of x such that Vx ⊂ epi(φ).

Let v ∈ V be such that φ is continuous at Λv. Consequently, Λv ∈ De(φ), i.e. φ(Λv) <∞. Choose
β ∈ R with φ(Λv) < β.

Set
ε = β − φ(Λv)

4 > 0.
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By continuity of φ at Λv, there exists a neighbourhood UΛv ⊂ De(φ) such that

φ(UΛv) ⊂
(
φ(Λv)− ε, φ(Λv) + ε

)
,

that is,
φ(Λv)− ε ≤ φ(u) ≤ φ(Λv) + ε, ∀u ∈ UΛv.

Note that x = (Λv, β) ∈ epi(φ). Consider the neighbourhood

Vx = UΛv × (β − ε, β + ε).

We assert that Vx ⊂ epi(φ). Indeed, let y ∈ Vx, so that

y = (u, λ), with u ∈ UΛv and λ ∈ (β − ε, β + ε).

Moreover,

φ(Λv) + 2ε = φ(Λv) + 2β − φ(Λv)
4

= φ(Λv) + β

2 −
φ(Λv)

2

= φ(Λv)
2 + β

2 <
β

2 + β

2 = β,

and thus
φ(Λv) + ε < β − ε. (4.1.52)

From (4.1.52) we deduce
φ(u) < φ(Λv) + ε < β − ε < λ,

which proves that y ∈ epi(φ).

Therefore int(epi(φ)) ̸= ∅. Since φ : W −→ (−∞,+∞] is convex, it follows from Lemma 1.41
in [23] that epi(φ) is convex.

Hence, by Lemma 1.4 in [18], int(epi(φ)) is convex.

Observe that
K = S +

(
0,−u′(u) + φ(Λu)

)
,

where S = {(Λv, u′(v)); v ∈ V }, and S is a vector subspace.

Note that K ∩ int(epi(φ)) = ∅, for if there existed x ∈ K ∩ int(epi(φ)), then x ∈ K ∩ epi(φ) and
x ∈ int(epi(φ)). By what we have already shown, x ∈ bdr(epi(φ)) ∩ int(epi(φ)) = ∅, since int(epi(φ)) is
open.

Under these conditions, there exists a closed hyperplane

H = {(w, t) ∈W × R; ψ(w, t) = −w
′
(w) + t = c}

which contains K and lies below epi(φ).

Thus
−w

′
(Λv) + u′(v − u) + φ(Λu) = c, ∀ v ∈ V.

If v = u, then
c = −w′(Λu) + φ(Λu),
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and hence 〈
w′,Λ(v − u)

〉
=
〈
u

′
, (v − u)

〉
, ∀ v ∈ V.

Therefore we may conclude that u′ = Λ′(w′). Since c ≤ ψ(w, t) for all (w, t) ∈ epi(φ), taking in particular
(w,φ(w)) gives

−w
′
(Λu) + φ(Λu) = c ≤ −w

′
(w) + φ(w), ∀ w ∈W.

Consequently,
w

′
(w − Λu) ≤ φ(w)− φ(Λu), ∀ w ∈W.

This shows that w′ ∈ ∂φ(Λu). Hence Λ′
w

′ ∈ Λ′
∂φ(Λu). Since u′ = Λ′

w
′ , the result follows. 2

Definition 4.14 (Gâteaux derivative) Let X and Y be topological vector spaces. A mapping φ :
X −→ Y is said to be Gâteaux differentiable at a point x if there exists a linear and continuous mapping
φ′(x) : X −→ Y such that

lim
λ→0

φ(x+ λy)− φ(x)
λ

= φ′(x)y, ∀y ∈ X.

The mapping φ′(x) is called the Gâteaux derivative of φ at the point x.

Proposition 4.15 Let K be a convex subset of a normed space V and let φ : K ⊂ V −→ (−∞,+∞] be
a function which is Gâteaux differentiable at every point u ∈ K. The following statements are equivalent:

(a) φ is convex;

(b) φ′(u)(v − u) ≤ φ(v)− φ(u), for all u, v ∈ K;

(c) (φ′(u)− φ′(v))(u− v) ≥ 0 for all u, v ∈ K.

Proof:

(a) ⇒ (b)

Assume that φ : K −→ R is convex, and let u, v ∈ K and t ∈ [0, 1]. By convexity of K,

(1− t)u+ tv ∈ K,

and by convexity of φ we have

φ
(
(1− t)u+ tv

)
≤ (1− t)φ(u) + tφ(v),

or equivalently,
φ
(
(1− t)u+ tv

)
≤ φ(u) + t

(
φ(v)− φ(u)

)
.

Thus
φ
(
u+ t(v − u)

)
− φ(u)

t
≤ φ(v)− φ(u).

Since φ is Gâteaux differentiable, by hypothesis,

lim
t→0

φ
(
u+ t(v − u)

)
− φ(u)

t
≤ φ(v)− φ(u),

that is,
φ′(u)(v − u) ≤ φ(v)− φ(u),

which proves (b).

(b) ⇒ (c)
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Assume that (b) holds and let u, v ∈ K. Then

φ′(u)(v − u) ≤ φ(v)− φ(u)

and
φ′(v)(u− v) ≤ φ(u)− φ(v).

Adding these two inequalities, we obtain

φ′(u)(v − u) + φ′(v)(u− v) ≤ 0.

Hence
φ′(u)(v − u)− φ′(v)(v − u) ≤ 0,

that is, (
φ′(v)− φ′(u)

)
(v − u) ≥ 0,

which proves (c).

(c) ⇒ (a)

Assume that (c) holds. Let u, v ∈ K and consider

[u, v] = {(1− t)u+ tv; t ∈ [0, 1]} ⊂ K.

Define
ψ : [0, 1] −→ (−∞,+∞]

t 7−→ ψ(t) = φ
(
u+ t(v − u)

)
,

that is, ψ = φ
∣∣
[u,v].

For each t ∈ (0, 1), let λ > 0 be sufficiently small so that (t+ λ) ∈ (0, 1). Then

ψ′(t) = lim
λ→0

ψ(t+ λ)− ψ(t)
λ

= lim
λ→0

φ(u+ (t+ λ)(v − u))− φ(u+ t(v − u))
λ

= lim
λ→0

φ(u+ t(v − u) + λ(v − u))− φ(u+ t(v − u))
λ

.

Since φ is Gâteaux differentiable on K, the above limit exists and we obtain

ψ′(t) = φ′(u+ t(v − u)
)
(v − u), t ∈ (0, 1). (4.1.53)

If t = 0 or t = 1, we consider respectively the right and left derivatives and obtain

ψ′(0) = lim
λ→0+

φ(u+ λ(v − u))− φ(u)
λ

= φ′(u)(v − u), (4.1.54)

ψ′(1) = lim
λ→0−

φ(v + λ(v − u))− φ(v)
λ

= φ′(v)(v − u). (4.1.55)

From (4.1.53), (4.1.54) and (4.1.55) we can write

ψ′(t) = φ′(u+ t(v − u)
)
(v − u), ∀t ∈ [0, 1]. (4.1.56)
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We claim that ψ′ is increasing.

Indeed, let t1, t2 ∈ [0, 1] with t1 < t2. From (4.1.56) we have

ψ′(t2)− ψ′(t1) = φ′(u+ t2(v − u)
)
(v − u)− φ′(u+ t1(v − u)

)
(v − u)

=
(
φ′(u+ t2(v − u)

)
− φ′(u+ t1(v − u)

))
(v − u). (4.1.57)

Set
w1 = u+ t1(v − u) ∈ K, w2 = u+ t2(v − u) ∈ K,

so that w2 − w1 = (t2 − t1)(v − u).

By hypothesis, (
φ′(w2)− φ′(w1)

)
(w2 − w1) ≥ 0,

and, using the linearity of the Gâteaux derivative and the fact that t2 − t1 ≥ 0, we deduce from (4.1.57)
that [

ψ′(t2)− ψ′(t1)
]
(t2 − t1) ≥ 0,

hence
ψ′(t2) ≥ ψ′(t1),

showing that ψ′ is increasing and therefore ψ is convex.

Consequently,

ψ
(
(1− t) · 0 + t · 1

)
≤ (1− t)ψ(0) + tψ(1), ∀t ∈ [0, 1],

that is,
ψ(t) ≤ (1− t)ψ(0) + tψ(1), ∀t ∈ [0, 1],

or equivalently,

φ
(
(1− t)u+ tv

)
≤ (1− t)φ(u) + tφ(v), ∀t ∈ [0, 1] and ∀u, v ∈ K,

since u and v were chosen arbitrarily. This proves (a). 2

Proposition 4.16 Let f : X −→ (−∞,+∞] be a proper convex function. If f is Gâteaux differentiable
at a point x ∈ De(f), then f is subdifferentiable at x and the Gâteaux derivative f ′(x) is the unique
element of ∂f(x).

Proof:

Let y ∈ De(f) and λ ∈ [0, 1]. By the convexity of f and the fact that x ∈ De(f), we have

f(y)− f(x) = λf(y)− λf(x)
λ

= −λf(x) + f(x)− f(x) + λf(y)
λ

= (1− λ)f(x) + λf(y)− f(x)
λ

≥ f(x+ λ(y − x))− f(x)
λ

.

Taking the limit as λ −→ 0 in the inequality above, we obtain

f(y)− f(x) ≥
〈
f ′(x), y − x

〉
, ∀y ∈ De(f),

where f ′(x) is the Gâteaux derivative of f at x, and hence f ′(x) ∈ ∂f(x).
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We now prove uniqueness. Let x′ ∈ ∂f(x). Then

f(y)− f(x) ≥
〈
x′, y − x

〉
, ∀y ∈ De(f).

In fact,
f(y)− f(x) ≥

〈
x′, y − x

〉
, ∀y ∈ X.

Thus
f(x+ λy)− f(x) ≥

〈
x′, λy

〉
, ∀y ∈ X, ∀λ > 0,

which implies
f(x+ λy)− f(x)

λ
≥
〈
x′, y

〉
, ∀y ∈ X, ∀λ > 0.

Passing to the limit as λ→ 0, we obtain〈
f ′(x), y

〉
≥
〈
x′, y

〉
, ∀y ∈ X.

Replacing y by −y in the inequality above, we obtain the reverse inequality, and consequently〈
f ′(x), y

〉
=
〈
x′, y

〉
, ∀y ∈ X,

which implies f ′(x) = x′, and the proof is complete. 2

Example 4.17 Let X be a normed vector space. We compute the subdifferential of the norm at the
point 0 ∈ X, that is, we determine the elements of the set

∂∥ · ∥(0) =
{
x′ ∈ X ′; ∥y∥ ≥

〈
x′, y

〉
, ∀y ∈ X

}
.

Note that if x′ ∈ ∂∥ · ∥(0), then

∥y∥ ≥
〈
x′, y

〉
, ∀y ∈ X.

If y ∈ X, then −y ∈ X and, in particular,〈
x′,−y

〉
≤ ∥y∥ which implies

〈
x′, y

〉
≥ −∥y∥.

Hence |
〈
x′, y

〉
| ≤ ∥y∥ for all y ∈ X. Consequently ∥x′∥ ≤ 1, and therefore

∂∥ · ∥(0) ⊂
{
x′ ∈ X ′; ∥x′∥ ≤ 1

}
.

Conversely, if x′ ∈ {x′ ∈ X ′; ∥x′∥ ≤ 1}, then |
〈
x′, y

〉
| ≤ ∥y∥ for all y ∈ X, and thus

{x′ ∈ X ′; ∥x′∥ ≤ 1} ⊂ ∂∥ · ∥(0).

Therefore
∂∥ · ∥(0) = {x′ ∈ X ′; ∥x′∥ ≤ 1}.

Example 4.18 If f(x) = 1
2∥x∥

2, then ∂f(x) = F (x).
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For x′ ∈ F (x), we have

f(y)− f(x) = 1
2∥y∥

2 − 1
2∥x∥

2 = 1
2(∥x∥2 + ∥y∥2)− ∥x∥2

≥ ∥x∥∥y∥ − ∥x∥2

≥ ⟨x′, y⟩ − ⟨x′, x⟩
= ⟨x′, y − x⟩.

Thus F (x) ⊆ ∂f(x).

Conversely, if x′ ∈ ∂f(x), then

1
2∥y∥

2 − 1
2∥x∥

2 ≥ ⟨x′, y − x⟩, ∀y ∈ De(f).

For y of the form y = x+ tx, with t ∈ R, we obtain

∥x+ tx∥2 − ∥x∥2 ≥ 2t⟨x′, x⟩.

Thus, for t = 1
n

we have (
1 + 1

2n

)
∥x∥2 ≥ ⟨x′, x⟩,

and for t = − 1
n

we have (
1− 1

2n

)
∥x∥2 ≤ ⟨x′, x⟩.

By the arbitrariness of n, it follows that ⟨x′, x⟩ = ∥x∥2, with ∥x∥ ≤ ∥x′∥. It remains to prove that
∥x′∥ ≤ ∥x∥. By definition, taking y of the form y = x+ tz, with t > 0 and z ∈ X, we have

1
2∥x+ tz∥2 − 1

2∥x∥
2 ≥ t⟨x′, z⟩.

Hence

t⟨x′, z⟩ ≤ 1
2 (∥x∥+ t∥z∥)2 − 1

2∥x∥
2

= t∥x∥∥z∥+ t2

2 ∥z∥
2.

Dividing both sides by t and letting t→ 0+, we obtain

⟨x′, z⟩ ≤ ∥x∥∥z∥, ∀z ∈ X.

In particular, ∥x′∥ ≤ ∥x∥, and thus ∂f(x) ⊂ F (x), so equality of the two sets holds.

4.2 Exercises

1 – Let A be a closed subset of a t.v.s. and consider the indicator function IA defined by

IA(x) =
{

0, if x ∈ A;
+∞, if x /∈ A.

Prove that IA is l.s.c.

Solution: Let E be a t.v.s. and A ⊂ E closed. We shall show that N(λ, IA) is closed for every λ ∈ R.
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Indeed,
if λ < 0, N(λ, IA) =

{
x ∈ E; IA(x) ≤ λ

}
= ∅,

if λ = 0, N(λ, IA) =
{
x ∈ E; IA(x) ≤ λ

}
= A,

if λ > 0, N(λ, IA) =
{
x ∈ E; IA(x) ≤ λ

}
= A.

Since both ∅ and A are closed sets, it follows that IA is l.s.c.

2 – Let f : X → [−∞,+∞] be a convex function defined on a vector space X.

(a) If f takes the value −∞ at some point x0 ∈ X, prove that on any half-line Γ with origin at x0 either
f(x) = −∞ for all x ∈ Γ, or there exists a point x1 ∈ Γ such that f(x1) < +∞, f(x) = −∞ at all points
x ∈ Γ lying between x0 and x1, and f(x) = +∞ at all other points of Γ.

(b) If, in addition to being convex, f is l.s.c., prove that either f never takes the value −∞ or else
f(x) = −∞ for every x ∈ X. (Use the following result: Let f be convex, l.s.c. and proper. Then there
exists a continuous affine function which minorises f (see Proposition 1.44 in the Functional Analysis
book by Cavalcanti, Cavalcanti and Komornik).)

To avoid the particular cases described in (a) and (b) above, we shall consider convex functions
which are not defined at −∞.

Solution:

(a) Suppose that f is not identically −∞. Thus there exists x1 ∈ X such that f(x1) ̸= −∞, that
is, f(x1) <∞ or f(x1) = +∞.

If f(x1) <∞, then for every x ∈ Γ such that x lies between x0 and x1 we have x = (1− t)x0 + tx1
for some t ∈ (0, 1), and hence

f(x) = f((1− t)x0 + tx1) ≤ (1− t)f(x0) + tf(x1) = −∞, (4.2.58)

so f takes the value −∞ between x0 and x1.

Now, if x ∈ Γ but x lies beyond x1, we cannot have f(x) = −∞ or f(x) <∞, because taking the
half-line joining x to x0 and using the same steps as in (4.2.58) we would obtain f(y) = −∞ for every y
between x and x0, including x1, which contradicts the fact that f(x1) <∞. Hence

f takes the value −∞ between x0 and x1, and f(x) = +∞ at all other points of Γ.

Observe that, by the argument above, Γ can have at most one point x̃ such that f(x̃) <∞.

Now, if f(x1) = +∞, consider K1 = {x ∈ Γ; f(x) = +∞}, K2 = {x ∈ Γ; f(x) = −∞} and define

ψ : (0, 1) −→ Γ(x0,x1)
t 7−→ ψ(t) = (1− t)x0 + tx1,

where Γ(x0,x1) is the segment joining x0 to x1 (excluding x0 and x1).

Then it is clear that ψ is a homeomorphism and moreover K1 and K2 are open.

Thus, since K1 ∩K2 = ∅, K1 and K2 are open in Γ(x0,x1), and this segment is connected (because
it is homeomorphic to (0, 1), which is connected), it follows that K1 ∪ K2 ̸= Γ(x0,x1), i.e., there exists
x ∈ Γ(x0,x1) such that f(x) <∞. This concludes the proof of (a).

(b) Suppose that f is not identically −∞ but takes the value −∞ at some point, i.e., there exist x1, x0 ∈ X
such that f(x1) ̸= −∞ and f(x0) = −∞. Consider the half-line Γ[x0,x1] joining x0 to x1. By item (a)
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there exists x2 ∈ Γ[x0,x1] such that f(x2) <∞, hence f is a proper function. Therefore there exist φ ∈ X ′

and β ∈ R such that
φ(x) + β < f(x), ∀x ∈ X,

in particular
φ(x0) + β < f(x0) = −∞,

which is absurd, since φ ∈ X ′. Hence f cannot take the value −∞.

3 – Let X be a uniformly convex Banach space and x, xn ∈ X, n = 1, · · · . Prove that X has the
following property:

xn ⇀ x and lim
n→∞

sup ∥xn∥ ≤ ∥x∥ ⇒ xn → x.

Solution: First assume that x = 0. Then

lim
n→∞

inf ∥xn∥ ≤ 0. (4.2.59)

On the other hand,
lim

n→∞
sup ∥xn∥ = inf

n∈N
sup
k≥n
∥xk∥ ≤ 0. (4.2.60)

Note that
0 ≤ sup

k≥n
∥xk∥, ∀n ∈ N, (4.2.61)

whence
0 ≤ inf

n∈N
sup
k≥n
∥xk∥ = lim

n→∞
sup ∥xk∥. (4.2.62)

Comparing (4.2.59) and (4.2.62) we conclude that there exists n0 such that

0 ≤ sup
k≥n0

∥xk∥ < ε, (4.2.63)

that is,
0 ≤ ∥xk∥ < ε, ∀k ≥ n0. (4.2.64)

Hence xn −→ 0. Now suppose x ̸= 0. Then

∥x∥ ≤ lim
n→∞

inf ∥xn∥. (4.2.65)

Indeed, from the weak convergence xn ⇀ x we have

∀x∗ ∈ X ′, |
〈
x∗, x

〉
| = lim

n→∞
|
〈
x∗, xn

〉
|

= lim
n→∞

inf |
〈
x∗, xn

〉
|

≤ lim
n→∞

inf ∥x∗∥X′∥xn∥X

= ∥x∗∥X′ lim
n→∞

inf ∥xn∥X . (4.2.66)

In particular,
∀x∗ ∈ X ′ such that ∥x∗∥X′ = 1, we have

|
〈
x∗, x

〉
| ≤ lim

n→∞
inf ∥xn∥X ,

(4.2.67)
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and consequently
∥x∥X = sup

∥x∗∥X′ =1
|
〈
x∗, x

〉
| ≤ lim

n→∞
inf ∥xn∥X , (4.2.68)

which proves (4.2.65). From (4.2.65) and the hypothesis we conclude

∥x∥X ≤ lim
n→∞

inf ∥xn∥X ≤ lim
n→∞

sup ∥xn∥X ≤ ∥x∥X , (4.2.69)

that is, limn→∞ ∥xn∥ exists and moreover

lim
n→∞

∥xn∥X = ∥x∥X > 0. (4.2.70)

Assume, without loss of generality, that

∥xn∥X > 0, ∀n ∈ N. (4.2.71)

Set yn = xn

∥xn∥
, y = x

∥x∥
and y∗ = x∗

∥x∗∥
, where x∗ ∈ F (x). Then yn, y ∈ UX (the unit ball) and

y∗ ∈ UX′ . We have

〈
y∗, yn+y

2
〉
≤
∣∣〈y∗, yn+y

2
〉∣∣ ≤ ∥∥yn+y

2
∥∥

X
≤ 1

2

{
∥yn∥+ ∥y∥

}
= 1.

On the other hand,

lim
n→∞

〈
y∗, yn+y

2
〉

= lim
n→∞

〈
x∗

∥x∗∥X′
,

xn
∥xn∥X

+ x
∥x∥X

2

〉
= 1

2∥x∗∥X′
lim

n→∞

{〈
x∗, xn

〉
· 1
∥xn∥X

+
〈
x∗, x

〉 1
∥x∥X

}
= 1

2∥x∗∥X′
·
{〈
x∗, x

〉 1
∥x∥X

+
〈
x∗, x

〉 1
∥x∥X

}
= 1

2∥x∗∥X′
· 2
∥x∥X

〈
x∗, x

〉
=

〈
x∗, x

〉
∥x∗∥X′ · ∥x∥X

= ∥x
∗∥∥x∥

∥x∗∥∥x∥
= 1. (4.2.72)

Now, since 〈
y∗, yn+y

2
〉
≤

∣∣〈y∗, yn+y
2
〉∣∣

≤ ∥y∗∥X′ ·
∥∥yn+y

2
∥∥

X

=
∥∥yn+y

2
∥∥

X
, (4.2.73)

it follows that
1 = lim

n→∞

〈
y∗, yn+y

2
〉
≤ lim

n→∞

∥∥yn+y
2
∥∥

X
. (4.2.74)

On the other hand ∥∥yn+y
2
∥∥

X
≤ 1

2
{
∥yn∥X + ∥y∥X

}
= 1, (4.2.75)

and hence
lim

n→∞

∥∥yn+y
2
∥∥

X
≤ 1. (4.2.76)

From (4.2.74) and (4.2.76) we conclude that

lim
n→∞

∥∥yn+y
2
∥∥

X
= 1. (4.2.77)
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By uniform convexity it follows that

∥yn − y∥X −→ 0 as n −→∞. (4.2.78)

Indeed, we argue by contradiction. Suppose that ∥yn − y∥X ̸→ 0 as n −→ ∞. Then, without loss
of generality, we may assume that there exists ε0 > 0 such that

∥yn − y∥X > ε0, ∀n ∈ N. (4.2.79)

Hence, by the uniform convexity of X there exists δ0 > 0 such that∥∥yn+y
2
∥∥

X
≤ 1− δ0 < 1, ∀n ∈ N, (4.2.80)

that is,
∥∥yn+y

2
∥∥

X
̸→ 1 as n → ∞, which contradicts (4.2.77). Substituting yn = xn

∥xn∥
and y = x

∥x∥X
in

(4.2.78) we conclude that ∥∥∥∥ xn

∥xn∥
− x

∥x∥

∥∥∥∥
X

−→ 0 as n −→∞, (4.2.81)

that is,
xn

∥xn∥
−→ x

∥x∥
as n −→∞. (4.2.82)

Moreover, since ∥xn∥ −→ ∥x∥ (see (4.2.70)), the sequence
{
∥xn∥

}
n∈N is bounded, and from (4.2.82)

we conclude that

∥xn − x∥X =
∥∥∥∥∥xn∥xn

∥xn∥
− ∥xn∥x
∥x∥

+ ∥xn∥x
∥x∥

− ∥x∥x
∥x∥

∥∥∥∥
X

≤ ∥xn∥
∥∥∥∥ xn

∥xn∥
− x

∥x∥

∥∥∥∥
X

+
∣∣∥xn∥ − ∥x∥

∣∣ · 1, ∀n ∈ N,

so xn −→ x, as we wanted to prove.
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Chapter 5

Monotone and Accretive Operators

5.1 Monotone Operators

In this section we study monotone operators, which generalise the notion of monotone func-
tions.

Let f : R −→ R be a monotone nondecreasing function. This means that if x, y ∈ D(f) and x ≤ y
then f(x) ≤ f(y). Equivalently,

(x− y)(f(x)− f(y)) ≥ 0, ∀x, y ∈ D(f).

Our aim is to extend this concept. To that end, let us consider the following example in R2. For
each x = (a, b) ∈ R2, consider the rotation of x by an angle θ, where 0 ≤ θ ≤ π

2 .

Figure 5.1: Rotation mapping.

Note that

Rθ(x) =
(
∥x∥ cos(α+ θ), ∥x∥ sin(α+ θ)

)
=

(
∥x∥ cosα︸ ︷︷ ︸

=a

cos θ − ∥x∥ sinα︸ ︷︷ ︸
=b

sin θ, ∥x∥ sinα︸ ︷︷ ︸
=b

cos θ + ∥x∥ cosα︸ ︷︷ ︸
=a

sin θ
)

=
(
a cos θ − b sin θ, b cos θ + a sin θ

)
.
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5 Monotone and Accretive Operators

Thus
Rθ : R2 −→ R2

(a, b) 7−→ Rθ(a, b) =
(
a cos θ − b sin θ, b cos θ + a sin θ

)
.

We claim that (
x− y,Rθ(x)−Rθ(y)

)
R2 ≥ 0, ∀x, y ∈ R2.

Indeed, let x = (a, b) and y = (c, d). Then(
x− y,Rθ(x)−Rθ(y)

)
R2 =

(
(a− c, b− d),(
(a− c) cos θ − (b− d) sin θ, (b− d) cos θ + (a− c) sin θ

))
R2

= (a− c)2 cos θ − (a− c)(b− d) sin θ
+(b− d)2 cos θ + (b− d)(a− c) sin θ

= (a− c)2 cos θ + (b− d)2 cos θ ≥ 0, since 0 ≤ θ ≤ π

2 .

We also note that Rθ is linear.

This example motivates the following definitions:

Definition 5.1 Let H be a Hilbert space. A single-valued operator A in H is said to be positive if(
Ax, x

)
H
≥ 0, ∀x ∈ H.

Definition 5.2 Let H be a Hilbert space. A single-valued operator A in H is said to be monotone if(
Ax−Ay, x− y

)
H
≥ 0, ∀x, y ∈ H.

We observe that if A is a single-valued linear operator on a Hilbert space, then A is monotone
if and only if A is positive. The mapping Rθ considered above is an example of a single-valued, linear
and monotone operator and therefore positive. However, the nondecreasing function f mentioned at
the beginning of this paragraph represents a monotone operator which is not necessarily positive (unless
0 ∈ D(f) and f(0) = 0).

Definition 5.3 Let H be a Hilbert space. An operator A in H is said to be monotone if

(x1 − x2, y1 − y2)H ≥ 0, ∀(x1, y1), (x2, y2) ∈ A.

We see, therefore, that the definition of a monotone operator in a Hilbert space is a natural
generalisation of the concept of a monotone nondecreasing function.

Let us look at an example:

Example 5.4 Let β be a monotone operator in R and let Ω be a bounded open subset of Rn. We may
define an operator β̃ in the space L2(Ω) by setting

β̃ =
{

(u, v) ∈ L2Ω× L2Ω; v(x) ∈ β(u(x)) almost everywhere in Ω
}
.

We shall prove that β̃ ̸= ∅. First, we claim that for each ξ ∈ R the set β(ξ) is bounded in R.

Indeed, suppose the contrary, i.e., that given M > 0 there exists xM ∈ β(ξ) such that |xM | > M .
Let x1 > ξ. Since β is monotone we have

(x1 − ξ)(y1 − y2) ≥ 0, ∀y1 ∈ β(x1) and ∀y2 ∈ β(ξ).
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Figure 5.2: Operator β̃.

In particular, (x1 − ξ)(y1 − xM ) ≥ 0. Since (x1 − ξ) > 0, it follows that (y1 − xM ) ≥ 0 and
consequently xM ≤ y1, ∀M > 0 and y1 ∈ β(x1). Therefore, there exists y∗

1 ∈ R such that xM ≤
y∗

1 , ∀M > 0.

Similarly, if x1 < ξ we have

(x1 − ξ)(y1 − y2) ≥ 0, ∀y1 ∈ β(x1), ∀y2 ∈ β(ξ).

In particular, (x1 − ξ)(y1 − xM ) ≥ 0. Since (x1 − ξ) < 0, it follows that (y1 − xM ) ≤ 0 and
consequently xM > y1, for every M > 0 and y1 ∈ β(x1). Thus, there exists y0

1 ∈ R such that xM ≥
y0

1 , ∀M > 0. Hence the sequence (xM )M>0 is bounded. By hypothesis, however, we have |xM | > M for
all M > 0, i.e., |xM | −→ +∞ as M −→ +∞, which is a contradiction. This shows that the set β(ξ) is
bounded.

Now take u ∈ C∞
0 (Ω) and define the mapping

v : Ω −→ R
x 7−→ v(x) ∈ β(u(x)).

Denoting K = supp(u), we have∫
Ω
|v(x)|2dx =

∫
K

|v(x)|2dx+
∫

Ω\K

|v(x)|2dx.

Note that, since u is continuous and K is compact, there exists a constant k > 0 such that
−k < u(x) < k for all x ∈ K. By the monotonicity of β and for every x ∈ K we have(

u(x) + k
)
(y1 − y2) ≥ 0, ∀y1 ∈ β

(
u(x)

)
and ∀y2 ∈ β(−k),(

k − u(x)
)
(z1 − z2) ≥ 0, ∀z1 ∈ β(k) and ∀z2 ∈ β

(
u(x)

)
.
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Since
(
u(x) + k

)
> 0 and

(
k − u(x)

)
> 0, it follows that

(y1 − y2) ≥ 0, ∀y1 ∈ β
(
u(x)

)
and y2 ∈ β(−k),

(z1 − z2) ≥ 0, ∀z1 ∈ β(k) and ∀z2 ∈ β
(
u(x)

)
.

In particular,
v(x) ≥ y2 ≥ c1,

where c1 is a lower bound of the set β(−k). Moreover,

v(x) ≤ z1 ≤ c2,

where c2 is an upper bound of the set β(k).

Hence there exists c > 0 such that |v(x)| ≤ c for all x ∈ K, and therefore∫
K

|v(x)|2dx ≤ c2meas(K) <∞.

On the other hand, if x ∈ Ω \K, then u(x) = 0 and consequently v(x) ∈ β(0), which is a bounded
subset as shown above. Hence∫

Ω\K

|v(x)|2dx ≤ k2meas(Ω \K) ≤ k2meas(Ω) <∞,

since Ω is bounded. Thus, if u ∈ C∞
0 (Ω), we have v ∈ L2(Ω), and so (u, v) ∈ β̃. Therefore β̃ ̸= ∅ and

(
u1 − u2, v1 − v2

)
L2Ω =

∫
Ω

(
u1(x)− u2(x)

)(
v1(x)− v2(x)

)
dx.

Since (u1, v1), (u2, v2) ∈ β̃, the integral is well-defined and, moreover,

v1(x) ∈ β
(
u1(x)

)
almost everywhere in Ω,

v2(x) ∈ β
(
u2(x)

)
almost everywhere in Ω.

By the monotonicity of β it follows that(
u1(x)− u2(x)

)(
v1(x)− v2(x)

)
≥ 0,

which proves the claim.

To further generalise the notion of a monotone nondecreasing function, note that if X is a Hilbert
space, then its dual X ′ may be identified with X and, in this way, the monotone operators on X may
be regarded as operators A : X −→ X ′. Thus the inner product can be viewed as the duality ⟨·, ·⟩X′,X .
These considerations lead us to the following definition.

Definition 5.5 Let X be a real t.v.s., X ′ its dual and A : X −→ X ′ an operator. We say that A is
monotone if 〈

x′ − y′, x− y
〉
≥ 0, for all (x′, x), (y′, y) ∈ A.

Example 5.6 The subdifferential operator ∂f : X −→ X ′ is monotone. Indeed, let (x, x′), (y, y′) ∈ ∂f .
Then

x′ ∈ ∂f(x) and y′ ∈ ∂f(y).
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Hence x′, y′ ∈ X ′, x, y ∈ De(f) and, in addition,

f(z)− f(x) ≥
〈
x′, z − x

〉
, ∀z ∈ De(f),

f(w)− f(y) ≥
〈
y′, w − y

〉
, ∀w ∈ De(f).

In particular,
f(y)− f(x) ≥

〈
x′, y − x

〉
,

f(x)− f(y) ≥
〈
y′, x− y

〉
,

and, adding these two inequalities, we obtain

0 ≥
〈
y′ − x′, x− y

〉
⇒
〈
x′ − y′, x− y

〉
≥ 0,

which proves the monotonicity of the operator ∂f .

2

Example 5.7 The duality map F : X −→ X ′ is monotone. In fact, let (x, x′), (y, y′) ∈ F . Then
x′, y′ ∈ X ′ and 〈

x′, x
〉

= ∥x∥2 = ∥x′∥2,〈
y′, y

〉
= ∥y∥2 = ∥y′∥2.

Consequently, 〈
x′ − y′, x− y

〉
= ∥x∥2 −

〈
x′, y

〉
−
〈
y′, x

〉
+ ∥y∥2

≥ ∥x∥2 − ∥x′∥∥y∥ − ∥y′∥∥x∥+ ∥y∥2

= ∥x∥2 − 2∥x∥∥y∥+ ∥y∥2

=
(
∥x∥ − ∥y∥

)2 ≥ 0,

which proves the claim.

2

In the case of Hilbert spaces, the monotonicity of an operator can be expressed by the following
condition, which involves only the norm.

Proposition 5.8 Let X be a Hilbert space. Then A is a monotone operator if and only if∥∥x1 − x2 + λ
(
y1 − y2

)∥∥ ≥ ∥x1 − x2∥,

for every (x1, y1), (x2, y2) ∈ A and every λ > 0.

Proof: Let (x1, y1), (x2, y2) ∈ A and λ > 0. Then

∥x1 − x2 + λ(y1 − y2)∥2 = ∥x1 − x2∥2 + λ2∥y1 − y2∥2 + 2λ(x1 − x2, y1 − y2). (5.1.1)

If A is monotone, then (
x1 − x2, y1 − y2

)
≥ 0,

and therefore, from (5.1.1), it follows that

∥x1 − x2 + λ(y1 − y2)∥2 ≥ ∥x1 − x2∥2, (5.1.2)

for all (x1, y1), (x2, y2) ∈ A and every λ > 0.
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Conversely, if (5.1.2) holds, then from (5.1.1) we obtain

λ∥y1 − y2∥2 + 2
(
x1 − x2, y1 − y2

)
≥ 0.

Letting λ −→ 0 in the inequality above, we get(
x1 − x2, y1 − y2

)
≥ 0,

for every (x1, y1), (x2, y2) ∈ A, which shows that A is monotone and completes the proof. 2

Proposition 5.9 Let M be the family of monotone operators on X. The following properties hold:

(i) If A,B ∈M, then A+B ∈M;

(ii) If A ∈M and λ > 0, then λA ∈M;

(iii) If A ∈M, then A−1 : X ′ −→ X ′′ is monotone;

(iv) If A ∈ M, then A ∈ M, where A is the closure of A in X ×X ′, with X endowed with the strong
topology and X ′ with the weak-∗ topology;

(v) If A ∈M, then Â ∈M, where Â = conv Ax (the closure in X ′ of the convex hull of the set Ax).

Proof:

(i) If A,B ∈M, then
〈
x′

1 − y′
1, x1 − y1

〉
≥ 0, ∀(x1, x

′
1), (y1, y

′
1) ∈ A,〈

x′
2 − y′

2, x2 − y2
〉
≥ 0, ∀(x2, x

′
2), (y2, y

′
2) ∈ B.

(5.1.3)

Let (z1, z
′
1), (w1, w

′
1) ∈ A+B. Then z1, w1 ∈ D(A) ∩D(B) and

z′
1 = x′

1 + x′
2 where x′

1 ∈ Az1 and x′
2 ∈ Bz1,

w′
1 = y′

1 + y′
2 where y′

1 ∈ Aw1 and y′
2 ∈ Bw1.

(5.1.4)

Thus, from (5.1.3) and (5.1.4), we obtain〈
z′

1 − w′
1, z1 − w1

〉
=

〈
(x′

1 + x′
2)− (y′

1 + y′
2), z1 − w1

〉
=

〈
(x′

1 − y′
1) + (x′

2 − y′
2), z1 − w1

〉
=

〈
x′

1 − y′
1, z1 − w1

〉
+
〈
x′

2 − y′
2, z1 − w1

〉
≥ 0.

(ii) If A ∈M and λ > 0, then〈
x′ − y′, x− y

〉
≥ 0, ∀(x, x′), (y, y′) ∈ A. (5.1.5)

Let (x1, x
′
1), (y1, y

′
1) ∈ λA. Then x1, y1 ∈ D(A) and

x′
1 = λx′ with x′ ∈ Ax1, y′

1 = λy′ with y′ ∈ Ay1.

From this identity and (5.1.5), we get〈
x′

1 − y′
1, x1 − y1

〉
= λ

〈
x′ − y′, x1 − y1

〉
≥ 0.
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(iii) Let A ∈ M and consider A−1 : D(A−1) ⊂ X ′ −→ X ′′. Thus, for (x, x′), (y, y′) ∈ A, by the
monotonicity of A, 〈

x′ − y′, x− y
〉
≥ 0. (5.1.6)

Note that x′, y′ ∈ D(A−1). Hence, from (5.1.6),〈
x− y, x′ − y′〉

X′′×X
=
〈
x′ − y′, x− y

〉
X′×X

≥ 0.

(iv) Let (x, x′) and (y, y′) ∈ A and ε > 0. Consider the following neighbourhoods of (x, x′) and
(y, y′), respectively:

Bε(x)× Vε(x′) = {z ∈ X; ∥z − x∥ < ε} × {f ∈ X ′; |⟨f − x′, x− y⟩| < ε},
Bε(y)× Vε(y′) = {z ∈ X; ∥z − y∥ < ε} × {f ∈ X ′; |⟨f − y′, x− y⟩| < ε}.

Since (x, x′) and (y, y′) ∈ A, there exist (x0, x
′
0) and (y0, y

′
0) ∈ A such that (x0, x

′
0) ∈ Bε(x)× Vε(x′) and

(y0, y
′
0) ∈ Bε(y)× Vε(y′).

Thus,

∥x0 − x∥ < ε, ∥y0 − y∥ < ε,

−ε < ⟨x′
0 − x′, x− y⟩ < ε, − ε < ⟨y′

0 − y′, x− y⟩ < ε

and
⟨x0 − y0, x

′
0 − y′

0⟩ ≥ 0.

Hence

⟨x− y, x′ − y′⟩ = ⟨x− y, x′⟩ − ⟨x− y, y′⟩+ ⟨x− y, x′
0⟩ − ⟨x− y, x′

0⟩
+ ⟨x− y, y′

0⟩ − ⟨x− y, y′
0⟩+ ⟨x0, x

′
0 − y′

0⟩ − ⟨x0, x
′
0 − y′

0⟩
+ ⟨y0, x

′
0 − y′

0⟩ − ⟨y0, x
′
0 − y′

0⟩
= ⟨x− y, x′ − x′

0⟩+ ⟨x− y, y′
0 − y′⟩ − ⟨x0 − x, x′

0 − y′
0⟩

− ⟨y − y0, x
′
0 − y′

0⟩+ ⟨x0 − y0, x
′
0 − y′

0⟩
> −2ε− (∥x0 − x∥+ ∥y0 − y∥)∥x′

0 − y′
0∥

> −ε(2 + 2∥x′
0 − y′

0∥),

and therefore, letting ε→ 0, we obtain

⟨x− y, x′ − y′⟩ ≥ 0.

(v) Let A ∈M and consider Â = convAx (closure in X ′ of the convex hull of Ax). We first show
that the operator Ă : X −→ X ′ defined by

Ăx = convAx

is monotone. Indeed, let (x, x′), (y, y′) ∈ Ă. Then x′ ∈ convAx and y′ ∈ convAy, hence

x′ =
n∑

i=1
λix

′
i where x′

i ∈ Ax,
n∑

i=1
λi = 1, λi ≥ 0,

y′ =
m∑

j=1
µjy

′
j where y′

j ∈ Ay,
m∑

j=1
µj = 1, µj ≥ 0.

(5.1.7)
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Since (x, x′
i), (y, y′

j) ∈ A and A is monotone, we have〈
x′

i − y′
j , x− y

〉
≥ 0, ∀i = 1, . . . , n, ∀j = 1, . . . ,m.

Thus 〈
λix

′
i − λiy

′
j , x− y

〉
≥ 0, ∀i = 1, . . . , n, ∀j = 1, . . . ,m,

which implies 〈
n∑

i=1
λix

′
i −

n∑
i=1

λiy
′
j , x− y

〉
≥ 0, ∀j = 1, . . . ,m,

i.e. 〈
x′ − y′

j , x− y
〉
≥ 0, ∀j = 1, . . . ,m.

From the inequality above we obtain〈
m∑

j=1
µjx

′ −
m∑

j=1
µjy

′
j , x− y

〉
≥ 0,

that is,
⟨x′ − y′, x− y⟩ ≥ 0,

which proves that the operator Ă is monotone.

On the other hand, recall that

Ă =
{

(x, y); x ∈ D(A), y ∈ convAx
}
,

Â =
{

(x, y); x ∈ D(A), y ∈ convAx
}
,

Ă =
{

(x, y); x ∈ D(A), y ∈ convAx
}
.

Therefore Ă ⊂ Â ⊂ Ă. Since Ă is monotone, it follows from item (iv) that Ă is monotone, and,
because Ă extends Â, we conclude that Â is monotone. 2

Proposition 5.10 Let A ∈M. Then the operator Ã defined by

D(Ã) = D(A)−
{
a
}
, where a ∈ X, Ãx = A(x+ a)−

{
a′}, a′ ∈ X ′,

is monotone.

Proof: Let (x̃, x̃′), (ỹ, ỹ ′) ∈ Ã. Then
x̃ = x− a, for some x ∈ D(A),
ỹ = y − a, for some y ∈ D(A),
x̃′ ∈ Ãx̃ = A(x̃+ a)−

{
a′} = Ax− a′,

ỹ ′ ∈ Ãỹ = A(ỹ + a)−
{
a′} = Ay − a′,

which implies
x̃′ + a′ ∈ Ax, ỹ ′ + a′ ∈ Ay.

It then follows, using the monotonicity of A, that〈
x̃′ − ỹ ′, x̃− ỹ

〉
=

〈
x̃′ − ỹ ′, x̃− ỹ

〉
+
〈
a′ − a′, x̃− ỹ

〉
=

〈
(x̃′ + a′)− (ỹ ′ + a′), (x̃+ a)− (ỹ + a)

〉
=

〈
(x̃′ + a′)− (ỹ ′ + a′), x− y

〉
≥ 0.
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2

0.5 cm

Definition 5.11 Let X be a normed space. An operator A on X is said to be locally bounded at the
point x0 ∈ X if there exists ρ > 0 such that the set ⋃

x∈D(A)

Ax; ∥x− x0∥ < ρ


is bounded.

Lemma 5.12 Let (xn) and (x′
n) be sequences of elements of X and X ′, respectively, such that ∥xn∥ −→ 0

and ∥x′
n∥ −→ ∞ as n −→ ∞. Then, given ρ > 0, there exist an element z(ρ) ∈ X and subsequences

(xnk
) and (x′

nk
) of (xn) and (x′

n), respectively, such that:

(i) ∥z(ρ)∥ < ρ;

(ii) lim
k→∞

〈
x′

nk
, z(ρ)− xnk

〉
=∞.

Proof: Set
w′

n = x′
n

1 +
∣∣〈x′

n, xn

〉∣∣ ,
then

∥w′
n∥ = ∥x′

n∥
1 +

∣∣〈x′
n, xn

〉∣∣ ≥ ∥x′
n∥

1 + ∥xn∥∥x′
n∥

= 1
1

∥x′
n∥ + ∥xn∥

,

which implies that ∥w′
n∥ −→ ∞ as n −→∞.

We shall show that there exist a subsequence (w′
nk

) of (w′
n) and a point z ∈ X such that〈

w′
nk
, z
〉
−→∞ as k −→∞. Indeed, suppose this is not the case, that is,

sup
n

∣∣〈w′
n, z
〉∣∣ <∞, ∀z ∈ X.

Then, by the Banach–Steinhaus theorem, supn ∥w′
n∥ <∞, which contradicts the fact that ∥w′

n∥ −→
∞ as n −→∞. Hence the claim holds.

Given ρ > 0, define
z(ρ) = ρz

2∥z∥ .

Note that z ̸= 0, for otherwise
〈
w′

nk
, z
〉

= 0.

Then
∥z(ρ)∥ = ρ

2 < ρ. (5.1.8)

Observe that 〈
w′

n, xn

〉
= ⟨0⟩

[ x′
n

1 +
∣∣〈x′

n, xn

〉∣∣ , xn

]
=

〈
x′

n, xn

〉
1 +

∣∣〈x′
n, xn

〉∣∣ ≤ 1, ∀n ∈ N. (5.1.9)

From what we proved above, given M > 0 there exists k0 ∈ N such that〈
w′

nk
, z
〉
> M, ∀nk ≥ nk0 . (5.1.10)
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Thus, from (5.1.9) and (5.1.10), for k ≥ k0 sufficiently large, we obtain〈
w′

nk
, z(ρ)

〉
>
〈
w′

nk
, xnk

〉
, ∀nk ≥ nk0 . (5.1.11)

Hence, from (5.1.9) and (5.1.11), for all nk ≥ nk0 ,

〈
x′

nk
, z(ρ)− xnk

〉
=

≥1︷ ︸︸ ︷(
1 +

∣∣〈x′
nk
, z(ρ)− xnk

〉∣∣) 〈w′
nk
, z(ρ)− xnk

〉
≥
〈
w′

nk
, z(ρ)− xnk

〉
≥
〈
w′

nk
, z(ρ)

〉
− 1 −→∞ as k −→∞,

as desired. 2

Theorem 5.13 Every monotone operator A : X −→ X ′ is locally bounded at each point of the interior
of its domain.

Proof: Let A be a monotone operator on X, let x ∈ intD(A), and let ρ > 0 be such that D(A) contains
the ball centred at x with radius ρ. We argue by contradiction. If the theorem were false, according to
Definition 5.11 there would exist sequences (xn), (x′

n) in X and X ′, respectively, such that (xn, x
′
n) ∈ A,

xn −→ x and ∥x′
n∥ −→ +∞. By Lemma 5.12, there would then exist subsequences (xni

), (x′
ni

) of
(xn), (x′

n), respectively, and a point z(ρ) ∈ X such that ∥z(ρ)∥ < ρ and〈
x′

ni
, z(ρ)− (xni − x)

〉
−→∞ as i −→∞. (5.1.12)

From ∥z(ρ)∥ < ρ it follows that z(ρ) + x belongs to the ball centred at x with radius ρ, hence
z(ρ) + x ∈ D(A). By the monotonicity of A we have〈

y′ − x′
ni
, z(ρ) + x− xni

〉
≥ 0, ∀y′ ∈ A(z(ρ) + x),

and consequently 〈
y′, z(ρ) + x− xni

〉
≥
〈
x′

ni
, z(ρ) + x− xni

〉
. (5.1.13)

From (5.1.12) and (5.1.13) we obtain〈
y′, z(ρ) + x− xni

〉
−→∞ as i −→∞,

which is a contradiction, since xni
−→ x strongly in X. This concludes the proof. 2

0.5 cm

Definition 5.14 A function φ : X −→ 2Y is said to be upper semicontinuous if for every open set
W ⊂ Y the set

{
x; φ(x) ∈W

}
is open in X.

Definition 5.15 Let X and Y be topological vector spaces, with Y locally convex, and let φ : X −→ 2Y .
We say that φ is a Kakutani function if it is upper semicontinuous and φ(x) is nonempty, compact and
convex for every x ∈ X.

0.5cm

Theorem 5.16 (Kakutani) Let S be a nonempty, compact and convex subset of a locally convex topo-
logical vector space and let φ : S −→ 2S be a Kakutani mapping. Then φ has a fixed point, that is, there
exists x ∈ S such that x ∈ φ(x).

Proof: See Theorem 8.6 in [49]. 2
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Definition 5.17 Let A and B be arbitrary sets. A point (x0, y0) ∈ A×B is said to be a saddle point
of the mapping f : A×B −→ R if

f(x0, y) ≤ f(x, y0), ∀x ∈ A, ∀y ∈ B. (5.1.14)

Remark 5.18 If inequality (5.1.14) holds for all x ∈ A and all y ∈ B, then in particular it holds for
x = x0, which implies f(x0, y) ≤ f(x0, y0), and for y = y0, which implies f(x0, y0) ≤ f(x, y0). Thus,
(x0, y0) is a saddle point of f if and only if

f(x0, y) ≤ f(x0, y0) ≤ f(x, y0), ∀x ∈ A, ∀y ∈ B. (5.1.15)

Lemma 5.19 For every mapping f : A×B −→ R, one has

sup
y∈B

inf
x∈A

f(x, y) ≤ inf
x∈A

sup
y∈B

f(x, y).

Proof: We have
inf
x∈A

f(x, y) ≤ f(x, y), ∀x ∈ A, ∀y ∈ B,

hence
sup
y∈B

inf
x∈A

f(x, y) ≤ sup
y∈B

f(x, y), ∀x ∈ A,

and therefore
sup
y∈B

inf
x∈A

f(x, y) ≤ inf
x∈A

sup
y∈B

f(x, y).

2

Example 5.20 Let A and B be arbitrary sets. A mapping f : A×B → R admits a saddle point if and
only if

min
x∈A

sup
y∈B

f(x, y) = max
y∈B

inf
x∈A

f(x, y),

where we replace inf by min and sup by max to indicate that the inf and the sup are, respectively,
attained.

Solution: From Observation (5.18), we know that (x0, y0) ∈ A × B is a saddle point of f if and
only if

f(x0, y) ≤ f(x0, y0) ≤ f(x, y0), ∀x ∈ A, ∀y ∈ B. (5.1.16)

Suppose (x0, y0) ∈ A×B is a saddle point of f . Then we obtain

f(x0, y0) ≤ inf
x∈A

f(x, y0)

inf
x∈A

f(x, y0) ≤ f(x0, y0)

 ⇒ f(x0, y0) = inf
x∈A

f(x, y0)

sup
y∈B

f(x0, y) ≤ f(x0, y0)

f(x0, y0) ≤ supy∈B f(x0, y)

 ⇒ f(x0, y0) = sup
y∈B

f(x0, y)

that is,
sup
y∈B

f(x0, y) = f(x0, y0) = inf
x∈A

f(x, y0). (5.1.17)

Note that, by (5.1.17),

inf
x∈A

sup
y∈B

f(x, y) ≤ sup
y∈B

f(x0, y) = inf
x∈A

f(x, y0) ≤ sup
y∈B

inf
x∈A

f(x, y),
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and consequently
inf
x∈A

sup
y∈B

f(x, y) ≤ sup
y∈B

inf
x∈A

f(x, y).

From this inequality and Lemma (5.19), we obtain

inf
x∈A

sup
y∈B

f(x, y) = sup
y∈B

inf
x∈A

f(x, y). (5.1.18)

Using (5.1.18) and (5.1.17), we get

sup
y∈B

f(x0, y) ≥ inf
x∈A

sup
y∈B

f(x, y)

= sup
y∈B

inf
x∈A

f(x, y)

≥ inf
x∈A

f(x, y0) = sup
y∈B

f(x0, y),

hence
inf
x∈A

sup
y∈B

f(x, y) = sup
y∈B

f(x0, y) = f(x0, y0). (5.1.19)

Similarly, we obtain

sup
y∈B

inf
x∈A

f(x, y) = inf
x∈A

f(x, y0) = inf
x∈A

f(x, y0). (5.1.20)

From (5.1.19) and (5.1.20), it follows that

min
x∈A

sup
y∈B

f(x, y) = sup
y∈B

f(x0, y) = f(x0, y0),

f(x0, y0) = inf
x∈A

f(x, y0) = max
y∈B

inf
x∈A

f(x, y),

as required.

Conversely, suppose that

min
x∈A

sup
y∈B

f(x, y) = max
y∈B

inf
x∈A

f(x, y), (5.1.21)

and let x0 and y0 be points at which the infimum and supremum are attained, respectively. Then

f(x, y0) ≥ inf
x∈A

f(x, y0) = sup
y∈B

inf
x∈A

f(x, y)

= max
y∈B

inf
x∈A

f(x, y)

= min
x∈A

sup
y∈B

f(x, y)

= inf
x∈A

sup
y∈B

f(x, y) = sup
y∈B

f(x0, y) ≥ f(x0, y), (5.1.22)

for every x ∈ A and y ∈ B, so (x0, y0) is a saddle point of f .
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Theorem 5.21 (Minimax Theorem) Let X and Y be reflexive Banach spaces, and let A and B be
convex, bounded and closed subsets of X and Y , respectively. Suppose that the function F : A×B −→ R
satisfies the following conditions:

(i) For each y ∈ B, F (x, y) is a convex and l.s.c. function of x.

(ii) For each x ∈ A, F (x, y) is a concave and u.s.c. function of y.

Then F has a saddle point (x0, y0) ∈ A×B and

min
x∈A

max
y∈B

F (x, y) = max
y∈B

min
x∈A

F (x, y) = F (x0, y0).

Proof: A proof of this theorem can be found in [47], p. 61. 2 0.5cm

Proposition 5.22 Let X be a locally convex Hausdorff topological vector space, C a convex and compact
subset of X, A : X −→ X ′ a monotone operator such that D(A) ⊂ C, and H : X −→ X ′ a continuous
mapping such that D(H) = C. Then there exists an element x ∈ C such that〈

x− y,Hx+ y′〉 ≤ 0, ∀(y, y′) ∈ A.

Proof: For each z ∈ C, define the operator T : C −→ 2C by

Tz =
{
x ∈ C;

〈
x− y,Hz + y′〉 ≤ 0, ∀(y, y′) ∈ A

}
.

To show that there exists x ∈ C satisfying the assertion, we shall prove, by Kakutani’s fixed point
theorem, that T admits a fixed point, i.e., there exists x ∈ C such that x ∈ Tx. For this, we must prove
that Tz is non-empty, convex and compact. We first show that Tz ̸= ∅ for every z ∈ C.

Indeed, fix z ∈ C and, for each (y, y′) ∈ A, define

C(y, y′) =
{
x ∈ C;

〈
x− y,Hz + y′〉 ≤ 0

}
.

We have C(y, y′) ̸= ∅ for every (y, y′) ∈ A, since y ∈ C(y, y′) (note that D(A) ⊂ C, so y ∈ C). Let
(xn) ⊂ C(y, y′) be such that xn −→ x. Since xn ∈ C(y, y′), we have〈

xn − y,Hz + y′〉 ≤ 0, ∀n ∈ N,

from which it follows that 〈
x− y,Hz + y′〉 ≤ 0,

that is, C(y, y′) is closed.

Notice that
Tz =

⋂
(y,y′)∈A

C(y, y′).

Therefore, to show that Tz ̸= ∅, it suffices to show that the family of non-empty closed subsets{
C(y, y′); (y, y′) ∈ A

}
has the finite intersection property. To this end, define

K =
{

(λ1, . . . , λn);
n∑

i=1
λi = 1, λi ≥ 0, i = 1, . . . , n

}
.

Then K is a convex and compact subset of Rn. Let (yi, y
′
i) ∈ A, i = 1, . . . , n. If x(λ) : K −→ X is defined
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by

x(λ) =
n∑

i=1
λiyi,

then the function f : K ×K −→ R, defined by

f(λ, µ) =
n∑

i=1
µi

〈
x(λ)− yi, Hz + y′

i

〉
is bilinear and continuous. By Theorem 5.21 (Minimax), f admits a saddle point, and hence there exist
λ0, µ0 ∈ K such that

f(λ0, µ) ≤ f(λ0, µ0) ≤ f(λ, µ0), ∀λ, µ ∈ K,

and therefore
f(λ0, µ) ≤ f(λ0, µ0) ≤ sup

λ∈K
f(λ, λ), ∀µ ∈ K. (5.1.23)

However,

f(λ, λ) =
n∑

i=1
λi

〈
n∑

j=1
λjyj − yi, Hz + y′

i

〉

=
n∑

i,j=1
λiλj

〈
yj − yi, Hz + y′

i

〉
and from the fact that

λiλj

〈
yj − yi, Hz

〉
= −λiλj

〈
yi − yj , Hz

〉
it follows that

n∑
i,j=1

λiλj

〈
yj − yi, Hz

〉
= 0,

which implies

f(λ, λ) =
n∑

i,j=1
λiλj

〈
yj − yi, y

′
i

〉
= −

n∑
i,j=1

λiλj

〈
yi − yj , y

′
j

〉
= 1

2

n∑
i,j=1

λiλj

〈
yj − yi, y

′
i − y′

j

〉
.

Since A is monotone, this last identity yields f(λ, λ) ≤ 0. Hence, from (5.1.23), we have f(λ0, µ) ≤
0 for all µ ∈ K and, in particular, for µi ∈ K, defined by

µi = (δi1, . . . , δin), i = 1, . . . , n,

where δij is the Kronecker delta, we obtain

f(λ0, µ
i) =

〈
x(λ0)− yi, Hz + y′

i

〉
≤ 0, i = 1, . . . , n.

Thus we conclude that x(λ0) ∈ C(yi, y
′
i) for all i = 1, . . . , n. Consequently, the family

{
C(y, y′), (y, y′) ∈

A
}

has the finite intersection property, and therefore Tz ̸= ∅.

Next, observe that Tz is convex for every z ∈ C. Indeed, if x1, x2 ∈ Tz and t ∈ [0, 1], then for
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every (y, y′) ∈ A we have

t
〈
x1 − y,Hz + y′〉 ≤ 0, (1− t)

〈
x2 − y,Hz + y′〉 ≤ 0, (5.1.24)

and from (5.1.24) it follows immediately that〈
tx1 + (1− t)x2 − y,Hz + y′〉 ≤ 0, ∀(y, y′) ∈ A,

or, in other words, tx1 + (1− t)x2 ∈ Tz, which shows that Tz is convex.

We now prove that T : C −→ C is closed. To that end, let (zn) ⊂ C and (xn) ⊂ Tzn for each
n ∈ N, such that zn −→ z and xn −→ x. Since xn ∈ Tzn, we have〈

xn − y,Hzn + y′〉 ≤ 0, ∀(y, y′) ∈ A, ∀n ∈ N. (5.1.25)

As C is closed, we have z ∈ C. From (5.1.25), the convergences above and the continuity of H, it
follows that 〈

x− y,Hz + y′〉 ≤ 0, ∀(y, y′) ∈ A,

which shows that x ∈ Tz, and hence T is a closed operator.

Moreover, Tz is compact. Indeed, let w ∈ Tz. Then there exists (wn)n ⊂ Tz such that wn → w.
Hence

⟨wn − y,Hz + y′⟩ ≤ 0, ∀(y, y′) ∈ A.

Letting n→∞, we obtain

⟨w − y,Hz + y′⟩ ≤ 0, ∀(y, y′) ∈ A,

that is, w ∈ Tz, which shows that Tz is closed. Since C is compact, it follows that Tz ⊂ C is compact
for every z ∈ C.

To apply Kakutani’s fixed point theorem, it remains to show that T is a Kakutani mapping. We
already know that T is closed and D(T ) = C. To ensure that T is a Kakutani mapping, it remains to
show that T is upper semicontinuous. Let W ⊂ C be open and set

B = {z ∈ C; Tz ⊂W}.

We must show that B is open, or equivalently, that C\B = {z ∈ C; Tz ̸⊂W} is closed in C.

Let z ∈ C\B. Then there exists (zn)n ⊂ C\B such that zn → z. Thus Tzn ̸⊂ W , and for each n

there exists yn ∈ Tzn such that yn ̸∈W . Since C\W is compact, there exist a subsequence (ynk) ⊂ C\W
and a point y ∈ C\W such that ynk → y. As T is closed, we obtain y ∈ Tz. Hence Tz ̸⊂ W , i.e.,
z ∈ C\B, which proves that C\B is closed. Therefore T is upper semicontinuous and hence a Kakutani
mapping. It follows that T admits a fixed point, and the result is proved. 2

0.5 cm

Definition 5.23 Let X be a normed space. An operator A : X −→ X ′ is said to be coercive if〈
x,Ax

〉
≥ α(∥x∥)∥x∥, ∀x ∈ X,

for some function α : R −→ R satisfying

α(ρ) −→∞ as ρ −→∞.

Proposition 5.24 Let E be a finite-dimensional Banach space, A : E −→ E′ a monotone operator such
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that 0 ∈ D(A), C ⊂ E a convex and closed subset, and H : E −→ E′, with D(H) = E, a continuous and
coercive mapping, that is,

α(∥x∥)∥x∥ ≤
〈
x,Hx

〉
, ∀x ∈ E.

Then, for each y′
0 ∈ A(0) there exist a constant M (depending on y′

0 and on the function α) and an
element x ∈ C such that

∥x∥ ≤M

and 〈
x− y,Hx+ y′〉 ≤ 0, ∀(y, y′) ∈ A.

Proof: Let B denote the closed unit ball of E and r > 0. Denote by Ar and Hr, respectively, the
restrictions of A and H to D(A) ∩ rB and Cr = C ∩ rB. By Proposition 5.22 applied to Ar and Hr,
there exists xr ∈ Cr such that 〈

xr − y,Hxr + y′〉 ≤ 0, ∀(y, y′) ∈ Ar.

From this last inequality we obtain〈
xr, Hxr

〉
≤
〈
y,Hxr

〉
−
〈
xr, y

′〉+
〈
y, y′〉, ∀(y, y′) ∈ Ar. (5.1.26)

Note that inequality (5.1.26) holds in particular for y = 0 and y′
0 ∈ A(0). Hence〈

xr, Hxr

〉
≤ −

〈
xr, y

′
0
〉
,

which implies, in view of the coercivity of H, that

α(∥xr∥)∥xr∥ ≤ ∥xr∥∥y′
0∥, (5.1.27)

for some function α : R −→ R such that α(ρ) −→ +∞ as ρ −→ +∞. If xr ̸= 0, from (5.1.27) we deduce
that α(∥xr∥) ≤ ∥y′

0∥ and, by the property of α, there exists M > 0 such that ∥xr∥ ≤M for all r > 0.

Set
Sr =

{
x ∈ Cr;

〈
x− y,Hx+ y′〉 ≤ 0, ∀(y, y′) ∈ Ar

}
.

Clearly Sr ̸= ∅, since xr ∈ Sr. The set Sr is closed and consequently Sr ∩MB is compact and non-empty
for all r > 0. Moreover, if M ≤ r1 ≤ r2, we have

Sr1 ∩MB ⊃ Sr2 ∩MB;

therefore ⋂
r≥M

(
Sr ∩MB

)
̸= ∅,

which implies that, if x is any point of this intersection, then x ∈ C and〈
x− y,Hx+ y′〉 ≤ 0, ∀(y, y′) ∈ A.

2

5.2 Maximal Monotone and m-Monotone Operators

Definition 5.25 We say that a monotone operator A is maximal monotone if it does not admit a
proper monotone extension.

Let X be a real topological vector space and, for each C ⊂ X, denote by M(C) the family of
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monotone operators on X whose domain is contained in C, that is,

M(C) =
{
A : D(A) ⊂ X −→ X ′; A is monotone and D(A) ⊂ C

}
.

We order M(C) by inclusion.

Remark 5.26

(i) Note that M(X) =M, and the maximal monotone operators are precisely the maximal elements
of M, that is,

A ∈M is maximal monotone if and only if B ∈M(X) and A ⊂ B ⇒ B = A. (5.2.28)

(ii) The family M(C) is inductive upwards, that is, every totally ordered subset of M(C) admits an
upper bound. Indeed, let F ⊂M(C) be totally ordered. Defining

B :
⋃

A∈F

D(A) ⊂ C −→ X ′

x 7−→ Bx =
⋃

A∈F

Ax

we see that B is an upper bound for F . By Zorn’s lemma, it follows that every element of M(C)
is contained in a maximal element of M(C). In particular, every element of M is contained in a
maximal element of M. Hence, by (i), every monotone operator on X is contained in a maximal
monotone operator on X.

Theorem 5.27 Let A be a monotone operator on X. The following statements are equivalent:

(i) A is maximal monotone;

(ii) If x ∈ X, x′ ∈ X ′ and 〈
x′ − y′, x− y

〉
≥ 0, ∀(y, y′) ∈ A,

then (x, x′) ∈ A.

Proof:

(i) ⇒ (ii) Suppose that A is a maximal monotone operator. Let x ∈ X, x′ ∈ X ′ be such that〈
x′ − y′, x− y

〉
≥ 0, ∀(y, y′) ∈ A.

We shall prove that (x, x′) ∈ A. Indeed, define

B = A ∪
{

(x, x′)
}
.

We claim that B is monotone and that B extends A. By the very definition of B, it is clear that
B extends A. On the other hand, let (z, z′), (w,w′) ∈ B. We shall prove that〈

z′ − w′, z − w
〉
≥ 0. (5.2.29)

If both points belong to A, there is nothing to prove. If both points do not belong to A, then

(z, z′) = (w,w′) = (x, x′),
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and therefore 〈
z′ − w′, z − w

〉
= 0.

If one of these points does not belong to A, we may assume (z, z′) ∈ A and (w,w′) ̸∈ A; then
(w,w′) = (x, x′), and by hypothesis〈

z′ − w′, z − w
〉

=
〈
z′ − x′, z − x

〉
≥ 0,

which proves (5.2.29).

Hence B is monotone and A ⊂ B. Since A is maximal monotone, it follows from (5.2.28) that
B = A and, consequently, (x, x′) ∈ A.

(ii) ⇒ (i) Now suppose that condition (ii) holds and that A is not maximal monotone. Let D be
a proper extension of A, that is, there exists (z, z′) ∈ D such that (z, z′) ̸∈ A. On the other hand, since
D is monotone, given (x, x′) ∈ D, we have〈

x′ − y′, x− y
〉
≥ 0, ∀(y, y′) ∈ D.

In particular, 〈
x′ − y′, x− y

〉
≥ 0, ∀(y, y′) ∈ A. (5.2.30)

Thus, from (5.2.30) and condition (ii), we conclude that (x, x′) ∈ A and therefore D ⊂ A, which is
a contradiction, since D is a proper extension of A. Hence A does not admit a proper extension, that is,
A is maximal monotone. 2

Corollary 5.28 The following statements are equivalent:

(i) A is maximal monotone in M(C);

(ii) λA, λ > 0, is maximal monotone in M(C);

(iii) The operator Ã defined in Proposition 5.10 is maximal monotone in M(C − {a}).

In a reflexive space, the following statements are equivalent:

(iv) A is maximal monotone;

(v) A−1 is maximal monotone.

Proof: (i) ⇒ (ii) By Proposition 5.9 it follows that λA ∈M(C), since λ > 0 and D(λA) = D(A) ⊂ C.
Suppose there exists B ∈M(C) such that λA ⊂ B. Then

A ⊂ 1
λ
B ⇒ A = 1

λ
B ⇒ B = λA,

which implies that λA is maximal monotone.

(ii)⇒ (iii) Let a ∈ X and Ãx = A(x+a)−
{
a′}, a′ ∈ X ′. We already know that Ã ∈M

(
C −

{
a
})

and D(Ã) = D(A)−
{
a
}
⊂ C −

{
a
}

. Suppose that there exists B̃ ∈M
(
C −

{
a
})

such that

Ã ⊂ B̃.

Then
D(Ã) ⊂ D(B̃) ⇒ D(A)−

{
a
}
⊂ D(B̃) ⇒ D(A) ⊂ D(B̃) +

{
a
}
.

Define B by
D(B) = D(B̃)−

{
− a
}

= D(B̃) +
{
a
}
⊃ D(A),
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Bx = B̃(x− a) +
{
a
}
.

Then B is monotone and D(A) ⊂ D(B). Moreover, if x ∈ D(A), then

Bx = B̃(x− a) +
{
a
}

= Ã(x− a) +
{
a
}

= Ax−
{
a
}

+
{
a
}

= Ax.

Thus A ⊂ B, which implies A = B since A is maximal monotone. Hence

D(B) = D(B̃) +
{
a
}
⇒ D(B̃) = D(A)−

{
a
}

= D(Ã) ⇒ Ã = B̃,

which shows that Ã is maximal in M(C −
{
a
}

).

(iii) ⇒ (i) Let B ∈ M(C) be such that A ⊂ B. By hypothesis, Ã is maximal in M(C −
{
a
}

),
hence Ã ⊂ B̃. In fact,

D(Ã) = D(A)−
{
a
}
⊂ D(B)−

{
a
}

= D(B̃),

and if x ∈ D(Ã), then
Ãx = A(x+ a)−

{
a
}

= B(x+ a)−
{
a
}

= B̃x.

Therefore Ã = B̃, since Ã is maximal in M(C −
{
a
}

). It follows that D(Ã) = D(B̃) and consequently
D(A) = D(B). As A = B on D(A), we obtain A = B, as required.

Consider now a reflexive space.

(iv) ⇒ (v) By definition,

A−1 : D(A−1) ⊂ X ′ → X ′′ = X, where A−1 =
{

(x′, x); (x, x′) ∈ A
}
.

We already know that if A is monotone, then A−1 is monotone. It remains to show maximality. Let
x′ ∈ X ′, x′′ ∈ X ′′ be such that 〈

x′ − y′, x′′ − y′′〉 ≥ 0, ∀(y′, y′′) ∈ A−1.

We shall show that (x′, x′′) ∈ A−1. Since X is reflexive, by the canonical isomorphism X ≡ X ′′, we may
write

x ∈ X, x′ ∈ X ′, and
〈
x′ − y′, x− y

〉
≥ 0, ∀(y′, y) ∈ A−1,

or equivalently,
x ∈ X, x′ ∈ X ′, and

〈
x′ − y′, x− y

〉
≥ 0, ∀(y, y′) ∈ A,

from which it follows that (x, x′) ∈ A, hence (x′, x) ∈ A−1. By Theorem 5.27 we conclude that A−1 is
maximal monotone.

(v) ⇒ (iv) The proof is analogous to the previous one. 2

0.5 cm

Definition 5.29 An operator H : X −→ X ′ is said to be hemicontinuous if it is single-valued and, in
addition,

∀x, y ∈ X, H(x+ ty) ∗
⇀ Hx weakly–∗ in X ′ as t −→ 0.

Proposition 5.30 Let H : X −→ X ′ be a hemicontinuous and monotone operator such that D(H) = X.
Then H is maximal monotone.

Proof: Let x ∈ X and x′ ∈ X ′ be such that〈
x′ −Hy, x− y

〉
≥ 0, ∀y ∈ D(H) = X. (5.2.31)

According to Theorem 5.27, we have to prove that x ∈ D(H) = X and Hx = x′. The first assertion
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is obvious. It remains to show that Hx = x′. Let z ∈ X be arbitrary and, for each t ∈ [0, 1], define

yt = tz + (1− t)x = x+ t(z − x), x ∈ X. (5.2.32)

Substituting (5.2.32) into (5.2.31), we obtain〈
x′ −H(x+ t(z − x)︸ ︷︷ ︸

=yt

), t(x− z)︸ ︷︷ ︸
=x−yt

〉
≥ 0,

which implies, for t ∈ (0, 1], 〈
x′ −H(x+ t(z − x)), x− z

〉
≥ 0.

Letting t −→ 0 in this last inequality yields〈
x′ −Hx, x− z

〉
≥ 0, ∀z ∈ X.

In particular, for z = x− y, y ∈ X, we have〈
x′ −Hx, y

〉
≥ 0, ∀y ∈ X,

from which we conclude that
〈
x′ −Hx, y

〉
= 0, ∀y ∈ X, and consequently x′ = Hx in X ′. 2

0.5 cm

Definition 5.31 We say that a monotone operator A : X −→ X ′ is m-monotone if Im(F + A) = X ′,
where F is the duality mapping according to Definition 4.9.

Definition 5.32 We say that a Banach space is smooth at the point x ∈ X if the duality mapping
F (x) contains a unique element. We say that X is smooth if X is smooth at every point of the unit
sphere

UX =
{
x ∈ X; ∥x∥ = 1

}
.

It follows immediately from Definition 5.11 and item (iii) of Proposition 4.4 the following result:

Proposition 5.33 If X is smooth then X is smooth at all its points, or, in other words, the duality
mapping is single-valued.

Proof: Indeed, if X is smooth then, by definition, it is smooth on the unit sphere UX . Hence, for each
x ∈ UX , F (x) contains a unique element. Given y ∈ X with ∥y∥ > 0, we have x = y

∥y∥
∈ UX . Thus, by

Proposition 4.4, we have F (y) = ∥y∥F
(

y

∥y∥

)
, which contains a unique element. Therefore X is smooth

at all its points. 2

0.5 cm

Definition 5.34 A normed vector space is said to be uniformly convex if, given ε > 0, there exists
δ > 0 such that whenever x, y ∈ UX and ∥x− y∥ > ε then∥∥∥∥x+ y

2

∥∥∥∥ < 1− δ.
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Definition 5.35 We say that a normed space X is strictly convex if the unit sphere

UX =
{
x ∈ X; ∥x∥ = 1

}
does not contain proper line segments, that is, UX does not contain sets of the form{

λx+ (1− λ)y; x, y ∈ UX , x ̸= y, 0 ≤ λ ≤ 1
}
.

Lemma 5.36 The following conditions are equivalent:

i) X is strictly convex;

ii) The equality ∥x+ y∥ = ∥x∥+ ∥y∥ implies x = 0 or y = tx for some t ≥ 0;

iii) The equality ∥x+y
2 ∥ = ∥x∥ = ∥y∥ implies x = y.

Proof:

i)⇒ ii) Let X be strictly convex and let x, y ∈ X, x ̸= 0, be such that ∥x + y∥ = ∥x∥ + ∥y∥. If y = 0,
then y = tx with t = 0. So suppose y ̸= 0 and 0 < λ < 1. Without loss of generality, assume that
λ∥y∥ ≥ (1− λ)∥x∥. Then

1 ≥
∥∥∥∥λ x

∥x∥
+ (1− λ) y

∥y∥

∥∥∥∥
=

∥∥∥∥λ x

∥x∥
+ λy

∥x∥
− λy

∥x∥
+ (1− λ) y

∥y∥

∥∥∥∥
≥

∥∥∥∥λx+ y

∥x∥

∥∥∥∥− ∥∥∥∥λ y

∥x∥
− (1− λ) y

∥y∥

∥∥∥∥
=

∥∥∥∥λx+ y

∥x∥

∥∥∥∥− ∥∥∥∥λ∥y∥y − (1− λ)∥x∥y
∥x∥ ∥y∥

∥∥∥∥
=

∥∥∥∥λx+ y

∥x∥

∥∥∥∥− (λ∥y∥ − (1− λ)∥x∥)∥y∥
∥x∥ ∥y∥

= λ
∥x+ y∥
∥x∥

− λ(∥x∥+ ∥y∥)− ∥x∥
∥x∥

= 1.

Hence
λ
x

∥x∥
+ (1− λ) y

∥y∥
∈ UX ,

and, since X is strictly convex, UX does not contain proper line segments, so that x

∥x∥
= y

∥y∥
and

thus y = ∥y∥
∥x∥

x. Therefore y = tx with t = ∥y∥
∥x∥

> 0.

ii)⇒ iii) Suppose ∥x+y
2 ∥ = ∥x∥ = ∥y∥. Then ∥x + y∥ = ∥x∥ + ∥y∥, and by (ii) we have x = 0 or y = tx for

some t ≥ 0.
If x = 0, then ∥x∥ = ∥y∥ = 0 and hence y = 0. If y = tx with t ≥ 0, then ∥y∥ = t∥x∥ and since
∥y∥ = ∥x∥, we get t = 1 and therefore y = x.

iii)⇒ i) Let x, y ∈ UX . If x+y
2 ∈ UX , then ∥∥∥∥x+ y

2

∥∥∥∥ = 1 = ∥x∥ = ∥y∥,

and by (iii) we obtain x = y. Thus the line segment joining x and y is not proper. Hence X is
strictly convex.

2
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Proposition 5.37 Every uniformly convex space is strictly convex.

Proof: Let x and y be points of UX with x ̸= y. Then ∥x − y∥ > ε for some ε > 0, and by hypothesis
there exists δ > 0 such that ∥∥∥∥x+ y

2

∥∥∥∥ < 1− δ,

whence (x+ y)/2 /∈ UX , i.e., the proper segment with endpoints x and y is not contained in UX . 2

Proposition 5.38 Let X be a Banach space. Then:

(i) If X ′ is strictly convex, then X is smooth.

(ii) If X ′ is smooth, then X is strictly convex.

Proof:

(i) Let x ∈ UX . By Proposition 4.4, F (x) is convex. Since x ∈ UX , we have

F (x) =
{
x′ ∈ X ′;

〈
x′, x

〉
= ∥x′∥2 = 1

}
⊂
{
x′ ∈ X ′; ∥x′∥ = 1

}
= UX′ .

By hypothesis, UX′ does not contain proper line segments. Hence, by convexity, F (x) has a unique
element, that is, X is smooth at the point x ∈ UX . Since x was arbitrary in UX , it follows that X is
smooth.

(ii) Now suppose that X ′ is smooth and, aiming at a contradiction, let x, y ∈ UX , x ̸= y, be such
that the line segment [x, y] =

{
λx + (1 − λ)y; λ ∈ [0, 1

}
] is contained in the sphere UX . It follows that

x+y
2 ∈ UX . Let z′ ∈ F

(
x+y

2
)
. Then〈
x
2 , z

′〉+
〈

y
2 , z

′〉 =
〈

x+y
2 , z′〉 = ∥z′∥2 =

∥∥x+y
2
∥∥ = 1,

which implies 〈
x, z′〉+

〈
y, z′〉 = 2. (5.2.33)

On the other hand, we have { 〈
x, z′〉 ≤ ∥x∥∥z′∥ = 1,〈
y, z′〉 ≤ ∥y∥∥z′∥ = 1.

(5.2.34)

Hence, from (5.2.33) and (5.2.34), we conclude that〈
x, z′〉 =

〈
y, z′〉 = 1,

which implies, in view of the canonical embedding X ⊂ X ′′, that x, y ∈ F (z′). Therefore x = y, since X ′

is smooth. This contradicts our assumption that UX contains proper line segments. Thus UX does not
contain proper line segments, i.e., X is strictly convex. 2

Corollary 5.39 Let X be a reflexive Banach space. Then:

(i) X is strictly convex if and only if X ′ is smooth.

(ii) X is smooth if and only if X ′ is strictly convex.

Proof: This follows directly from Proposition 5.38. 2

Our next goal is to show that if X is a reflexive and smooth Banach space and f : X −→ (−∞,+∞]
is a convex, proper and lower semicontinuous function, then the operator ∂f is m-monotone. Before that,
however, we need to introduce an auxiliary lemma.
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Since X is Banach, for λ ̸= 0 and x, y ∈ X we define

[x, y]λ = ∥x+ λy∥ − ∥x∥
λ

as the incremental quotient of the Gâteaux derivative of the norm ∥·∥.

Lemma 5.40 The following properties hold:

(i) The function λ −→ [x, y]λ is non-decreasing on R \
{

0
}

;

(ii) For all x, y ∈ X and x′ ∈ F (x) we have〈
x′, y

〉
≤ ∥x∥[x, y]λ, if λ > 0;〈

x′, y
〉
≥ ∥x∥[x, y]λ, if λ < 0;

(iii) For all x, y ∈ X and z′ ∈ F (x+ λy) we have:〈
z′, y

〉
≥ ∥x+ λy∥ [x, y]λ, if λ > 0;〈

z′, y
〉
≤ ∥x+ λy∥ [x, y]λ, if λ < 0;

(iv) For all x, y ∈ X we have:
−∥y∥ ≤ [x, y]λ, λ > 0;

∥y∥ ≥ [x, y]λ, λ < 0.

Proof: (i) Let x, y ∈ X and define

φ(λ) = ∥x+ λy∥ , λ ∈ R.

We claim that φ is convex. Indeed, let λ1, λ2 ∈ R and t ∈ [0, 1]. Then

φ
(
tλ1 + (1− t)λ2

)
=

∥∥x+ [tλ1 + (1− t)λ2]y
∥∥

=
∥∥x+ tx− tx+ [tλ1 + (1− t)λ2]y

∥∥
=

∥∥tx+ (1− t)x+ tλ1y + (1− t)λ2y
∥∥

≤ t ∥x+ λ1y∥+ (1− t) ∥x+ λ2y∥
= tφ(λ1) + (1− t)φ(λ2),

which proves the claim.

Now set
f(λ) = φ(λ)− φ(0), λ ∈ R.

Note that f is convex by the convexity of φ, since, for any λ1, λ2 ∈ R and t ∈ [0, 1],

f
(
tλ1 + (1− t)λ2

)
= φ

(
tλ1 + (1− t)λ2

)
− φ(0)

≤ tφ(λ1) + (1− t)φ(λ2)− φ(0)
= tφ(λ1) + (1− t)φ(λ2)−

(
tφ(0) + (1− t)φ(0)

)
= t[φ(λ1)− φ(0)] + (1− t)[φ(λ2)− φ(0)]
= tf(λ1) + (1− t)f(λ2),

as claimed.
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Now let 0 < λ ≤ µ. By the convexity of f ,

f(tµ) = f((1− t)0 + tµ) ≤ (1− t)f(0) + tf(µ) = tf(µ), ∀t ∈ [0, 1].

In particular, for t = λ

µ
, we obtain

f(λ) = f

(
λ

µ
µ

)
≤ λ

µ
f(µ),

which implies
f(λ)
λ
≤ f(µ)

µ
,

that is,
[x, y]λ = ∥x+ λy∥ − ∥x∥

λ
≤ ∥x+ µy∥ − ∥x∥

µ
= [x, y]µ,

proving (i).

(ii) Let x, y ∈ X and x′ ∈ F (x). Then〈
x′, x

〉
= ∥x∥2 = ∥x′∥2

.

Thus, for any λ ∈ R,〈
x′, x+ λy

〉
=
〈
x′, x

〉
+ λ

〈
x′, y

〉
= ∥x∥2 + λ

〈
x′, y

〉
.

From this identity we get

λ
〈
x′, y

〉
=

〈
x′, x+ λy

〉
− ∥x∥2

≤ ∥x′∥ ∥x+ λy∥ − ∥x∥2

= ∥x∥ ∥x+ λy∥ − ∥x∥2
,

that is,
λ
〈
x′, y

〉
≤ ∥x∥ {∥x+ λy∥ − ∥x∥}, ∀λ ∈ R,

and the desired inequalities follow by dividing by λ > 0 or λ < 0.

(iii) Let x, y ∈ X, λ ∈ R \ {0} and z′ ∈ F (x+ λy). Then〈
z′, x+ λy

〉
= ∥x+ λy∥2 = ∥z′∥2,

and hence 〈
z′, x

〉
≤ ∥z′∥ ∥x∥ = ∥x+ λy∥ ∥x∥.

From the identities above and for all λ > 0 we obtain

∥x+ λy∥ [x, y]λ = ∥x+ λy∥2 − ∥x+ λy∥ ∥x∥
λ

≤ ⟨z
′, x+ λy⟩ − ⟨z′, x⟩

λ

= ⟨z′, x⟩+ λ ⟨z′, y⟩ − ⟨z′, x⟩
λ

= ⟨z′, y⟩ .

If λ < 0, the inequalities hold with the sign reversed.

(iv) Let x, y ∈ X. From (ii) we have, for all x′ ∈ F (x),

−∥x′∥ ∥y∥ ≤ ⟨x′, y⟩ ≤ ∥x∥ [x, y]λ, if λ > 0,
∥x′∥ ∥y∥ ≥ ⟨x′, y⟩ ≥ ∥x∥ [x, y]λ, if λ < 0.
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Since ∥x′∥ = ∥x∥, we obtain equivalently

−∥x∥ ∥y∥ ≤ ⟨x′, y⟩ ≤ ∥x∥ [x, y]λ, if λ > 0,
∥x∥ ∥y∥ ≥ ⟨x′, y⟩ ≥ ∥x∥ [x, y]λ, if λ < 0.

If x ̸= 0, dividing by ∥x∥ gives

−∥y∥ ≤ [x, y]λ for λ > 0,

∥y∥ ≥ [x, y]λ for λ < 0.

If x = 0, then

[x, y]λ = ∥λy∥ − ∥0∥
λ

= |λ| ∥y∥
λ

=
{
∥y∥, λ > 0,
−∥y∥, λ < 0,

(5.2.35)

and, therefore,
[x, y]λ ≥ −∥y∥, if λ > 0, [x, y]λ ≤ ∥y∥, if λ < 0.

2

It follows from (i) and (iv) of the lemma above that, for every x, y ∈ X, the mapping λ 7→ [x, y]λ
admits a right limit [x, y]+, as λ → 0+, and a left limit [x, y]−, as λ → 0−. Thus, by the monotone
sequence theorem, we may write

[x, y]+ = lim
λ→0+

[x, y]λ = inf
λ>0

[x, y]λ, (5.2.36)

[x, y]− = lim
λ→0−

[x, y]λ = sup
λ<0

[x, y]λ. (5.2.37)

Definition 5.41 A single-valued operator A : X → X ′ is said to be demicontinuous if A is continuous
when X is endowed with the strong topology and X ′ with the weak-∗ topology.

0.5 cm

Theorem 5.42 Let X be a Banach space and x ∈ X with x ̸= 0. The following are equivalent:
(i) X is smooth at the point x;
(ii) Every duality mapping is demicontinuous at the point x;
(iii) The norm of X is Gateaux differentiable at the point x.

Proof:

(i)⇒ (ii) Suppose, by contradiction, that there exists a duality mapping f which is not demicon-
tinuous at the point x. Then there exists a sequence (xn) in X such that xn → x strongly in X but f(xn)
does not converge to f(x). Passing to a subsequence, if necessary, we may find a weak-∗ neighbourhood
V of f(x) such that f(xn) /∈ V for n = 1, . . . . Since f : X → X ′ is a duality mapping, by definition we
have f(x) ∈ F (x) for every x ∈ X, that is, for each x ∈ X,

⟨x, f(x)⟩ = ∥f(x)∥2 = ∥x∥2.

From the identity above, from the convergence xn → x and by Alaoglu’s theorem, (f(xn)) has a
weak-∗ cluster point, say x′ ∈ X ′. If we prove that x′ ∈ F (x), then, since X is smooth at x by hypothesis,
F (x) is a singleton, hence x′ = f(x), contradicting the fact that f(xn) does not converge to f(x). Indeed,

- 255 -



5 Monotone and Accretive Operators

we have∣∣⟨x′, x⟩ − ∥x∥2∣∣≤ |⟨x′, x⟩ − ⟨f(xn), x⟩|+ |⟨f(xn), x⟩ − ⟨f(xn), xn⟩|+
∣∣⟨f(xn), xn⟩ − ∥x∥2∣∣

= |⟨x′ − f(xn), x⟩|+ |⟨f(xn), x− xn⟩|+
∣∣ ∥xn∥2 − ∥x∥2∣∣

≤ |⟨x′ − f(xn), x⟩|+ ∥f(xn)∥ ∥x− xn∥+
∣∣ ∥xn∥2 − ∥x∥2∣∣ . (5.2.38)

Since xn → x, we have ∥xn − x∥ → 0, ∥xn∥ → ∥x∥ and {f(xn)} is a bounded set. Hence, given ε > 0,
there exists n0 ∈ N such that

∥f(xn)∥ ∥x− xn∥+
∣∣ ∥xn∥2 − ∥x∥2∣∣ < ε,

for all n ≥ n0. Moreover, since x′ is a cluster point of (f(xn)), there exists m > n0 such that f(xm)
belongs to the weak-∗ neighbourhood {ξ ∈ X ′; |⟨x′ − ξ, x⟩| < ε} of x′, that is,

|⟨x′ − f(xm), x⟩| < ε.

Going back to (5.2.38), we obtain ⟨x′, x⟩ = ∥x∥2 and consequently ∥x∥ ≤ ∥x′∥. On the other hand, from
the convergence xn → x it follows that, given δ > 0, there exists an index n1 such that ∥xn∥ ≤ ∥x∥ + δ

for all n ≥ n1 and, therefore, ∥f(xn)∥ ≤ ∥x∥ + δ for all n ≥ n1. Since the ball {ξ ∈ X ′; ∥ξ∥ ≤ ∥x∥ + δ}
is weak-∗ closed, it follows that ∥x′∥ ≤ ∥x∥+ δ, for all δ > 0, whence ∥x′∥ ≤ ∥x∥. Thus ∥x′∥ = ∥x∥ and
hence x′ ∈ F (x).

(ii) ⇒ (iii) Taking x′ = f(x) and z′ = f(x + λ y) in (ii) and (iii) of Lemma 5.40, we obtain, for
λ > 0,

⟨f(x), y⟩ ≤ ∥x∥ [x, y]λ and ⟨f(x+ λ y), y⟩ ≥ ∥x+ λ y∥ [x, y]λ.

Hence, since the duality mapping is demicontinuous at x by hypothesis, we obtain

⟨f(x), y⟩ = ∥x∥ [x, y]+.

Arguing analogously, we deduce

⟨f(x), y⟩ = ∥x∥ [x, y]−.

Therefore,
lim
λ→0

[x, y]λ =
〈
f(x)
∥x∥

, y

〉
, ∀y ∈ X,

which proves that the norm of X is Gateaux differentiable at the point x.

(iii) ⇒ (i) Since the norm is Gateaux differentiable at the point x, we have [x, y]+ = [x, y]− for
every y ∈ X. But, by item (ii) of Lemma 5.40, for every x′ ∈ F (x) we have

⟨x′, y⟩ = ∥x∥ [x, y]+, ∀y ∈ X.

It follows that F (x) has only one element, that is, X is smooth at the point x. 2

Proposition 5.43 Let X be a Banach space such that X ′ is strictly convex. Then:

(i) The duality mapping is single-valued and demicontinuous;

(ii) The norm of X is Gateaux differentiable at every point x ̸= 0.

Proof: This is an immediate consequence of Proposition 5.38 and Theorem 5.42. 2

Remark 5.44
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a) By Theorem 5.42, the norm of X is Gateaux differentiable at the point x ̸= 0 if and only if F (x)
has a single point and, therefore, if and only if all duality mappings coincide at the point x. Hence,
if the norm of X is Gateaux differentiable at the point x ̸= 0, we have

lim
λ→0

[x, y]λ =
〈
f(x)
∥x∥

, y

〉
,

for every duality mapping f , that is, f(x)
∥x∥ is the Gateaux derivative of the norm of X at the point

x, for any choice of the duality mapping f .

b) In order that the norm of X be Gateaux differentiable at the point x, it is sufficient that, for every
h ∈ UX , the limit of [x, h]λ exist as λ tends to zero. Indeed, if this happens and y ∈ X, y ̸= 0, then,

since y

∥y∥
∈ UX , the limit of

[
x,

y

∥y∥

]
λ

exists as λ tends to zero, and

∥y∥ lim
λ→0

[
x,

y

∥y∥

]
λ

= ∥y∥ lim
λ→0

∥∥∥x+ λ y
∥y∥

∥∥∥− ∥x∥
λ

= ∥y∥ lim
λ∥y∥→0

∥∥∥x+ λ∥y∥ y
∥y∥

∥∥∥− ∥x∥
λ∥y∥

= lim
λ∥y∥→0

∥x+ λy∥ − ∥x∥
λ

= lim
λ→0

[x, y]λ,

that is, the limit of [x, y]λ exists when λ→ 0 and, therefore, the norm of X is Gateaux differentiable
at the point x by (ii) of Lemma 5.40.

c) If the norm of X is Gateaux differentiable at the point x, the same holds at the point kx, for every
k > 0, and

lim
λ→0

[kx, y]λ =
〈
f(x)
∥x∥

, y

〉
, ∀y ∈ X,

that is, the Gateaux derivative of the norm of X is constant and equal to f(x)
∥x∥

along the ray

{kx; k > 0}. Indeed, we have

[kx, y]λ = ∥kx+ λy∥ − ∥kx∥
λ

=
∥x+ λ

k y∥ − ∥x∥
λ
k

= [x, y] λ
k
. (5.2.39)

Hence, putting λ

k
= µ,

lim
λ→0

[kx, y]λ = lim
µ→0

[x, y]µ =
〈
f(x)
∥x∥

, y

〉
, ∀y ∈ X.

By Observation 5.44 (a), if the norm of X is Gateaux differentiable on a set C ⊂ X, then all duality
mappings on X coincide on C and, therefore, if f is any one of them we have, taking also Observation
5.44 (b) into account,

lim
λ→0

[x, y]λ =
〈
f(x)
∥x∥

, y

〉
, ∀y ∈ UX ,

at each point x ∈ C. When the convergence is uniform on C, we say that the norm of X is uniformly
Gateaux differentiable on C. Therefore, the norm of X is uniformly Gateaux differentiable on C if and
only if, given ε > 0, for each y ∈ UX one can find λ0 > 0 such that, for any duality mapping f ,∣∣∣∣〈f(x)

∥x∥
, y

〉
− [x, y]λ

∣∣∣∣ < ε, ∀x ∈ C whenever 0 < |λ| ≤ λ0.

Proposition 5.45 Let X be a Banach space. The following are equivalent:

(i) The norm of X is uniformly Gateaux differentiable;
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(ii) The duality mapping of X is single-valued and uniformly demicontinuous on every bounded set (that
is, uniformly continuous with X endowed with the norm topology and X ′ with the weak-∗ topology).

Proof: (i) ⇒ (ii) Suppose that the norm of X is uniformly Gateaux differentiable. By Theorem 5.42,
the duality mapping F is single-valued, and it remains to prove that F is uniformly demicontinuous on
bounded sets; that is, for each ε > 0, M > 0 and z ∈ X, there exists δ > 0 such that if ∥x∥ ≤M and

∥x− y∥ < δ, then |
〈
F (x)− F (y), z

〉
| < ε.

We argue by contradiction. Suppose that there exists ε0 > 0 such that

∥xn∥ ≤M, ∥xn − yn∥ → 0, and |
〈
F (xn)− F (yn), z

〉
| ≥ ε0 > 0, n = 1, 2, . . . .

If xn → 0, then yn → 0 and hence

∥F (xn)∥ = ∥xn∥ → 0 and ∥F (yn)∥ = ∥yn∥ → 0.

Thus ∥F (xn)− F (yn)∥ → 0, whence∣∣〈F (xn)− F (yn), z
〉∣∣ ≤ ∥F (xn)− F (yn)∥∥z∥ n→∞−→ 0,

that is, |
〈
F (xn)− F (yn), z

〉
| −→ 0, a contradiction.

If {xn} does not converge to zero, passing to a subsequence if necessary, we may assume that

∥xn∥ ≥ α > 0, n = 1, 2, . . . .

Then there exists n0 such that ∥yn∥ ≥
α

2 for all n ≥ n0. Let µ > 0 and n ≥ n0. By the uniform Gateaux
differentiability of the norm, we may choose λ0 such that∣∣∣∣〈F (xn)

∥xn∥
, z

〉
− [xn, z]λ

∣∣∣∣ < µ

2 and
∣∣∣∣〈F (yn)
∥yn∥

, z

〉
− [yn, z]λ

∣∣∣∣ < µ

2 whenever 0 < |λ| ≤ λ0.

But

|[xn, z]λ0 − [yn, z]λ0 | =
∣∣∣∣∥xn + λ0z∥ − ∥xn∥

λ0
− ∥yn + λ0z∥ − ∥yn∥

λ0

∣∣∣∣
≤

∣∣∣∣∥xn + λ0z∥ − ∥yn + λ0z∥
λ0

∣∣∣∣+
∣∣∣∣∥xn∥ − ∥yn∥

λ0

∣∣∣∣
≤ 2

λ0
∥xn − yn∥ → 0,

as n→∞, and since∣∣∣∣〈F (xn)
∥xn∥

− F (yn)
∥yn∥

, z

〉∣∣∣∣ ≤ ∣∣∣∣〈F (xn)
∥xn∥

, z

〉
− [xn, z]λ0

∣∣∣∣+
∣∣∣[xn, z]λ0 − [yn, z]λ0

∣∣∣+
∣∣∣∣〈F (yn)
∥yn∥

, z

〉
− [yn, z]λ0

∣∣∣∣
< µ+ 2

λ0
∥xn − yn∥,

we obtain
lim

n→∞
sup

∣∣∣∣〈F (xn)
∥xn∥

− F (yn)
∥yn∥

, z

〉∣∣∣∣ < µ.

Hence, ∣∣∣∣〈F (xn)
∥xn∥

− F (yn)
∥yn∥

, z

〉∣∣∣∣→ 0

as n→∞, by the arbitrariness of µ.
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Moreover,∣∣∣∣〈F (xn)
∥xn∥

− F (yn)
∥yn∥

, z

〉∣∣∣∣ =
∣∣∣∣〈F (xn)
∥xn∥

− F (yn)
∥xn∥

, z

〉
−
〈
F (yn)
∥yn∥

− F (yn)
∥xn∥

, z

〉∣∣∣∣
≥

∣∣∣∣〈F (xn)
∥xn∥

− F (yn)
∥xn∥

, z

〉∣∣∣∣− ∣∣∣∣〈F (yn)
∥yn∥

− F (yn)
∥xn∥

, z

〉∣∣∣∣
= 1
∥xn∥

|
〈
F (xn)− F (yn), z

〉
| −
∣∣∣∣ 1
∥yn∥

− 1
∥xn∥

∣∣∣∣ ∣∣∣〈F (yn), z
〉∣∣∣

≥ 1
M

∣∣∣〈F (xn)− F (yn), z
〉∣∣∣− 2

α2 ∥F (yn)∥ ∥z∥ ∥xn − yn∥.

Thus, ∣∣∣〈F (xn)− F (yn), z
〉∣∣∣ ≤M ∣∣∣∣〈F (xn)

∥xn∥
− F (yn)
∥yn∥

, z

〉∣∣∣∣+ 2M
α2 ∥F (yn)∥ ∥z∥ ∥xn − yn∥,

and since ∥F (yn)∥ = ∥yn∥ is bounded by hypothesis, we get
∣∣∣〈F (xn)− F (yn), z

〉∣∣∣→ 0 as n→∞, which
is a contradiction. Hence F is uniformly demicontinuous on every bounded set.

(ii) ⇒ (i) Suppose that the duality mapping F is single-valued and uniformly demicontinuous on
bounded sets. Denoting x′ = F (x) and z′ = F (x+ λy), by items (ii) and (iii) of Lemma 5.40, we have,
for x, y ∈ UX , 〈

F (x+ λy)
∥x+ λy∥

, y

〉
≤ [x, y]λ ≤

〈
F (x), y

〉
if λ < 0

and 〈
F (x), y

〉
≤ [x, y]λ ≤

〈
F (x+ λy)
∥x+ λy∥

, y

〉
if λ > 0.

Hence, ∣∣∣[x, y]λ −
〈
F (x), y

〉∣∣∣ ≤ ∣∣∣∣〈F (x+ λy)
∥x+ λy∥

, y

〉
−
〈
F (x), y

〉∣∣∣∣ . (5.2.40)

Let C = B(0, 1+ρ)\B(0, 1−ρ), 0 < ρ < 1, be a bounded set. Then F is uniformly demicontinuous
on C. Thus, given ε > 0 and y ∈ UX , there exists 0 < λ0 < ρ such that for every x ∈ UX we have∣∣∣〈F (x+ λy), y

〉
−
〈
F (x), y

〉∣∣∣ < ε whenever 0 < |λ| ≤ λ0.

Hence
〈
F (x+ λy), y

〉
converges to

〈
F (x), y

〉
uniformly on UX and, since 1

∥x+ λy∥
converges to 1

∥x∥
uni-

formly on UX and these functions are bounded for x ∈ UX and 0 < |λ| ≤ ρ, the product
〈
F (x+ λy)
∥x+ λy∥

, y

〉
converges to

〈
F (x), y

〉
uniformly on UX . From (5.2.40) it follows that, for each y ∈ UX , [x, y]λ converges

to
〈
F (x), y

〉
uniformly on UX , i.e., the norm of X is uniformly Gateaux differentiable. 2

Proposition 5.46 Let X be a reflexive and smooth Banach space, and f : X → (−∞,+∞] a convex,
proper and lower semicontinuous function. Then ∂f is m-monotone.

Proof: As we have seen in Example 5.6, the operator ∂f is monotone. Thus, it remains to show that
Im(F + ∂f) = X ′. Let x′

0 ∈ X ′. We shall prove that there exists x0 ∈ X such that x′
0 ∈ (F + ∂f)x0.

Indeed, consider the function:

φ(x) := f(x) + ∥x∥
2

2 − ⟨x′
0, x⟩ , ∀x ∈ X. (5.2.41)

We have that φ is convex, proper and l.s.c., since f is convex, proper and l.s.c., the norm ∥ · ∥ is a
convex, proper and continuous function, and x′

0 is linear, proper and continuous.
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Since f is convex, proper and l.s.c., by the first geometric form of the Hahn–Banach theorem there
exist x′

1 ∈ X ′ and β ∈ R defining a continuous affine function l(x) := ⟨x′
1, x⟩ − β which is a minorant of

f , that is,

f(x) ≥ ⟨x′
1, x⟩ − β, ∀x ∈ X.

Hence,

φ(x)− ∥x∥
2

2 + ⟨x′
0, x⟩ ≥ ⟨x′

1, x⟩ − β, ∀x ∈ X,

which yields

φ(x) ≥ ∥x∥2

2 + ⟨x′
1 − x′

0, x⟩ − β

≥ ∥x∥2

2 − ∥x′
0 − x′

1∥ ∥x∥ − β, ∀x ∈ X.

The inequality above implies that

φ(x) ≥ ∥x∥
(
∥x∥
2 − ∥x′

0 − x′
1∥
)
− β, ∀x ∈ X.

For ∥x∥ sufficiently large, we have
(
∥x∥
2 − ∥x′

0 − x′
1∥
)
> 0 and, therefore, when ∥x∥ → +∞,

∥x∥
(
∥x∥
2 − ∥x′

0 − x′
1∥
)
→ +∞,

and, consequently,

lim
∥x∥→+∞

φ(x) = +∞. (5.2.42)

Thus, since φ is convex and l.s.c., from (5.2.42) we deduce that there exists x0 ∈ X such that
φ(x0) ≤ φ(x) for all x ∈ X, that is,

f(x0) + ∥x0∥2

2 − ⟨x′
0, x0⟩ ≤ f(x) + ∥x∥

2

2 − ⟨x′
0, x⟩ , ∀x ∈ X,

which implies

f(x)− f(x0) ≥ 1
2
(
∥x0∥2 − ∥x∥2)+ ⟨x′

0, x− x0⟩ , ∀x ∈ X. (5.2.43)

On the other hand, since X is smooth, the duality mapping F is single-valued. Thus, for each
x ∈ X, there exists a unique x′ ∈ X ′ such that F (x) = x′ and ⟨x′, x⟩ = ∥x′∥2 = ∥x∥2. It follows that

1
2
(
∥x0∥2 − ∥x∥2) = 1

2
(
∥x0∥2 + ∥x∥2)− ∥x∥2

≥ ∥x0∥ ∥x∥ − ∥x∥2

= ∥x0∥ ∥F (x)∥ − ∥x∥2

≥ ⟨F (x), x0⟩ − ∥x∥2

= ⟨F (x), x0⟩ − ⟨F (x), x⟩
= ⟨F (x), x0 − x⟩ .

(5.2.44)
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Combining (5.2.43) and (5.2.44) we obtain

f(x)− f(x0) ≥ ⟨F (x), x0 − x⟩+ ⟨x′
0, x− x0⟩ = ⟨x′

0 − F (x), x− x0⟩ , ∀x ∈ X.

From the inequality above, in particular for x = t x0 + (1 − t)y, where y ∈ X and t ∈ [0, 1), we
may write

f(t x0 + (1− t)y)− f(x0) ≥ ⟨x′
0 − F (t x0 + (1− t)y), t x0 + (1− t)y − x0⟩ , ∀y ∈ X.

By the convexity of f , it follows that

⟨x′
0 − F (t x0 + (1− t)y), (1− t)(y − x0)⟩ ≤ t f(x0) + (1− t)f(y)− f(x0)

= (1− t) (f(y)− f(x0)) ,

and since t ∈ [0, 1), we can rewrite the above inequality as

⟨x′
0 − F (t x0 + (1− t)y), y − x0⟩ ≤ f(y)− f(x0), ∀y ∈ X. (5.2.45)

Since the space X is smooth and reflexive, F is demicontinuous. Therefore, if t → 1 we have
t x0 + (1− t)y → x0 in X, which implies F (t x0 + (1− t)y) ⋆

⇀ F (x0) in X ′. Taking the limit in (5.2.45)
as t→ 1, we obtain

⟨x′
0 − F (x0), y − x0⟩ ≤ f(y)− f(x0), ∀y ∈ X.

Hence x′
0 − F (x0) ∈ ∂f(x0) and, consequently, x′

0 ∈ F (x0) + ∂f(x0) = (F + ∂f)(x0). 2

Remark 5.47

(i) The restrictions imposed on X in the proposition above were introduced only to simplify the proof.
The general case in which X is not reflexive is treated by Rockafellar [74].

(ii) Under the same hypotheses, the operator λ∂f , λ > 0, is m-monotone. Indeed, note that if λ > 0
and f is convex and l.s.c., then λf is convex and l.s.c. and λ(∂f) = ∂(λf).

(iii) The duality mapping F is m-monotone. In fact, letting X be a normed space, consider f(x) =
1
2∥x∥

2. We saw in Example 4.18 that ∂f(x) = F (x). Since ∥ · ∥ is a convex, proper and l.s.c.
function, the proposition above guarantees that ∂f(x) = F (x) is m-monotone.

Definition 5.48 Let X be a Banach space. We say that D ⊂ X is almost dense in X if, for each
u ∈ D, there exists a dense subset Mu ⊂ X such that for every v ∈ Mu we have u + tv ∈ D for all
sufficiently small t > 0.

Lemma 5.49 Let H be a monotone mapping from X into X ′ with D(H) almost dense in X. Then H

is demicontinuous if and only if it is hemicontinuous and locally bounded.

Proof: We know that if H is demicontinuous, then H is hemicontinuous. Moreover, if xn → x in D(H),
then Hxn

⋆
⇀ Hx, and thus {Hxn} is bounded, which shows that H is locally bounded.

Conversely, suppose that H is hemicontinuous and locally bounded. Let (xn) ⊂ D(H) and x ∈
D(H) with xn → x in X. Without loss of generality, assume that xn ̸= x for all n. Let Mx be the dense
subset of X given by the definition of almost dense. Take y ∈Mx and set tn = ∥xn − x∥

1
2 . Then tn > 0,

tn → 0 and
wn := x+ tny ∈ D(H), for n sufficiently large.

Moreover,
Hwn

⋆
⇀ Hx. (5.2.46)
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By the monotonicity of H we have

0 ≤ ⟨Hxn −Hwn, xn − wn⟩ = ⟨Hxn −Hwn, xn − x− tny⟩. (5.2.47)

We know that {Hxn} is bounded because H is locally bounded, and by (5.2.46) it follows that {Hwn}
is also bounded. Hence 1

tn
⟨Hxn −Hwn, xn − x⟩ → 0, (5.2.48)

since
∥∥∥ 1
tn

(xn − x)
∥∥∥ = ∥xn − x∥

1
2 = tn → 0. Also by (5.2.46),

⟨Hwn, v⟩ → ⟨Hx, v⟩

for every v ∈ X. Dividing (5.2.47) by tn we obtain

0 ≤ ⟨Hxn −Hwn,
xn − x
tn

− y⟩. (5.2.49)

It follows that
lim

n→∞
inf⟨Hxn −Hx,−y⟩ ≥ 0. (5.2.50)

Since Mx is dense in X and Hxn − Hwn ∈ X ′, it follows that (5.2.49) holds for every y ∈ X, and
consequently (5.2.50) also holds for every y ∈ X. Replacing y by −y we obtain

lim
n→∞

sup⟨Hxn −Hx, y⟩ ≤ 0, (5.2.51)

for all y ∈ X. Therefore
lim

n→∞
⟨Hxn −Hx, y⟩ = 0, (5.2.52)

for all y ∈ X, that is, Hxn
⋆
⇀ Hx, proving that H is demicontinuous. 2

Lemma 5.50 Let E be a finite-dimensional Banach space and H : E → E′ a monotone and hemicon-
tinuous operator. Then:

(i) H is bounded on bounded sets,

(ii) H is continuous.

Proof:

(i) Suppose there exists a bounded subset A ⊂ E such that H is not bounded on A. Then there exists
a sequence {xn} ⊂ A such that ∥Hxn∥ → ∞. We can extract from {xn} a convergent subsequence
(for simplicity, we keep the same notation), such that xn → x0, where x0 ∈ A. Since we are
assuming that H is not bounded on bounded sets, we have ∥Hxn∥ → +∞ as n → +∞. As H is
monotone, we have

⟨xn − x,Hxn −Hx⟩ ≥ 0, ∀x ∈ E,

and therefore, for n sufficiently large we can write〈
xn − x,

Hxn −Hx
∥Hxn∥

〉
≥ 0, ∀x ∈ E. (5.2.53)

On the other hand, since Hxn

∥Hxn∥ ∈ UE′ := {y ∈ E′, ∥y∥ = 1} and UE′ is a compact (and hence
sequentially compact) subset of E′, it follows that Hxn

∥Hxn∥ → y′ ∈ E′. We have

∥y′∥ = lim
n→+∞

∥∥∥ Hxn

∥Hxn∥

∥∥∥ = 1.
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But from (5.2.53), taking the limit as n→ +∞,

⟨x0 − x, y′⟩ ≥ 0, ∀x ∈ E,

which implies y′ = 0, a contradiction with ∥y′∥ = 1. Hence H is bounded on bounded sets.

(ii) In view of item (i), the operator H maps bounded sets into bounded sets, and thus H is locally
bounded. By Lemma 5.49, H is demicontinuous. Since E is finite-dimensional, demicontinuity and
continuity are equivalent notions due to the equivalence of topologies. Therefore H is continuous.

2

0.5 cm

Theorem 5.51 Let X be a reflexive Banach space, A : X → X ′ a monotone operator such that 0 ∈
D(A) ⊂ C, where C is a closed convex subset of X, and H : X → X ′ a monotone, hemicontinuous,
coercive operator that maps bounded sets into bounded sets and satisfies D(H) = X. Then there exists a
point x0 ∈ C such that

⟨x0 − y,H x0 + y′⟩ ≤ 0, ∀(y, y′) ∈ A. (5.2.54)

Proof: Let Λ be the family of all finite-dimensional subspaces of X, jE : E → X the inclusion mapping
of E ∈ Λ into X, and jE′ : X ′ → E′ the adjoint projection of jE . Denote by AE the operator jE′ AjE .
Then AE : E → E′ and D(AE) = D(A) ∩ E. Similarly, set HE := jE′ H jE : E → E′ so that
D(HE) = X ∩ E = E. Observe that for all x, y ∈ E we have

⟨x,HE y⟩ = ⟨x, jE′ H jE y⟩ = ⟨jE x,H jE y⟩ = ⟨x,H y⟩ ,

and similarly, if x ∈ E, y ∈ D(AE) and y′ ∈ Ay, then

⟨x, jE′ y′⟩ = ⟨jE x, y
′⟩ = ⟨x, y′⟩ .

Thus, from the above identities we can conclude that the monotonicity of H implies that of HE , the
monotonicity of A implies that of AE and the coercivity of H implies that of HE with the same function
α. Note also that, according to Lemma 5.50, HE is continuous, since H is hemicontinuous and HE = H

on E.

Let y′
0 ∈ A(0). Then jE′ y′

0 ∈ AE(0) and, therefore, by Proposition 5.24, there exist xE ∈ CE :=
C ∩ E and a constant ME such that ∥xE∥ ≤ME and, moreover,

⟨xE − y,HE xE + y′⟩ ≤ 0, ∀(y, y′) ∈ AE .

From (5.1.27) it follows that α(∥xE∥) ≤ ∥jE′ y′
0∥ for xE ̸= 0, and since ∥jE′∥ = 1, we have

α(∥xE∥) ≤ ∥y′
0∥. Hence we may assume that ME is a constant M independent of E. Thus, for all E ∈ Λ

there exists xE ∈ CE such that ∥xE∥ ≤M and

⟨xE − y,H xE + y′⟩ ≤ 0, ∀(y, y′) ∈ AE . (5.2.55)

Since, by hypothesis, H maps bounded sets into bounded sets, there exists a constant M ′ such
that ∥H xE∥ ≤M ′ for all E ∈ Λ. The sets

WE0 = {(xE , H xE);E ⊃ E0}, E0 ∈ Λ

are therefore subsets of the bounded set (C∩M B)×M ′B′ ⊂ X×X ′, where B is the closed unit ball of X
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and B′ is the closed unit ball of X ′. Moreover, the family F = {WE0 ;E0 ∈ Λ} has the finite intersection
property.

Indeed, let {WEi
; i = 1, . . . , n} ⊂ F. Fix, for each i = 1, . . . , n, a basis βi of Ei and denote by

E = span[∪n
i=1βi]. Then dimE <∞ and Ei ⊂ E for every i = 1, . . . , n. Hence (xE , HxE) ∈ WEi

for all
i = 1, . . . , n, which implies that

n⋂
i=1

WEi
̸= ∅.

Now note that C∩M B is convex, closed and bounded, hence, since X is reflexive, it follows that C∩M B

is compact in the weak topology of X. On the other hand, by the Banach–Alaoglu–Bourbaki Theorem,
M ′B′ is compact in the weak-∗ topology of X ′.

Thus C ∩M B ×M ′B′ ⊂ X ×X ′ is a compact topological space when endowed with the product
of the weak and weak-∗ topologies. Therefore the family {WE0 ;E0 ∈ Λ} has at least one common cluster
point, that is, there exists (x0, x

′
0) ∈ X ×X ′ such that (x0, x

′
0) ∈

⋂
E0∈Λ WE0 , where here we are taking

the closure with respect to the weak topology.

Since C ∩M B is convex and closed, it follows that C ∩M B is weakly closed, and hence x0 ∈ C.

It remains to prove (5.2.54). Let (y, y′) ∈ A, u ∈ X and E0 ∈ Λ such that y ∈ E0. If E ⊃ E0, then
by (5.2.55) we have

⟨xE − y,HxE + y′⟩ ≤ 0 (5.2.56)

and, since by hypothesis H is monotone, it follows that

⟨xE − u,Hu−HxE⟩ ≤ 0. (5.2.57)

Combining (5.2.56) and (5.2.57) we obtain

⟨xE − y,HxE + y′⟩+ ⟨xE − u,Hu−HxE⟩ ≤ 0, (5.2.58)

for each (y, y′) ∈ A, u ∈ X, y ∈ E0 and E ⊃ E0.

Consider the function g : X ×X ′ → R defined by

g(x, x′) = ⟨x− y, x′ + y′⟩+ ⟨x− u,Hu− x′⟩.

By (5.2.58) we have g(x, x′) ≤ 0 for all (x, x′) ∈WE0 . Moreover, from

g(x, x′) = ⟨u− y, x′⟩+ ⟨x,Hu+ y′⟩ − ⟨y, y′⟩ − ⟨u,Hu⟩,

it follows that g is continuous on X×X ′, when X×X ′ are endowed with the weak and weak-∗ topologies,
respectively.

Hence g(x, x′) ≤ 0 on the weak closure of WE0 , and in particular g(x0, x
′
0) ≤ 0.

Therefore
⟨x0 − y, x′

0 + y′⟩+ ⟨x0 − u,Hu− x′
0⟩ ≤ 0,

for each (y, y′) ∈ A, u ∈ X and y ∈ E0. It follows that

⟨x0 − y, x′
0 + y′⟩+ ⟨x0 − u,Hu− x′

0⟩ ≤ 0, (5.2.59)

for all (y, y′) ∈ A and all u ∈ X.

Setting u = x0 in (5.2.59) we obtain

⟨x0 − y,−x′
0 − y′⟩ ≥ 0, (5.2.60)
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for all (y, y′) ∈ A. Hence A′ = A ∪ {(x0,−x′
0)} is a monotone extension of A, and since x0 ∈ C, we have

A′ ∈M(C).

First consider the case where A is maximal in M(C). Then A′ = A, and so (x0,−x′
0) ∈ A and

therefore x0 ∈ D(A). Thus we may take y = x0 in (5.2.59) and hence

⟨x0 − u,Hu− x′
0⟩ ≤ 0,

for all u ∈ X = D(H).

By the above inequality and by Theorem 5.27 we obtain (x0, x
′
0) ∈ H, that is, x′

0 = Hx0, since H
is maximal monotone by Proposition 5.30.

Replacing x′
0 by Hx0 in (5.2.60) we obtain

⟨x0 − y,Hx0 + y′⟩ ≤ 0,

for all (y, y′) ∈ A, which proves the theorem in this particular case.

If A is not maximal in M(C), then by Observation 5.26, item (ii), there exists an operator Ã,
maximal in M(C), such that A ⊂ Ã. By what we have just proved, the theorem holds for Ã, that is,
there exists x0 ∈ C such that

⟨x0 − y,Hx0 + y′⟩ ≤ 0,

for all (y, y′) ∈ Ã, and in particular for all (y, y′) ∈ A. 2

Next, we present a result due to Browder which characterises maximal monotone operators in
Banach spaces such that both X and X ′ are smooth.

Theorem 5.52 Let X be a reflexive Banach space, C a closed convex subset of X, A : X → X ′ a
maximal operator in M(C) such that 0 ∈ D(A), and H : X → X ′ a monotone, hemicontinuous, coercive
operator which maps bounded sets into bounded sets and satisfies D(H) = X. Then Im(H +A) = X ′.

Proof: Let x′ be an arbitrary element of X ′ and let Ã : X → X ′ be the operator defined by Ãx = Ax−x′.
Then, by Corollary 5.28, item (iii), Ã is maximal in M(C) =M(C − 0). By Theorem 5.51, there exists
x0 ∈ C such that 〈

x0 − y,Hx0 + ỹ′〉 ≤ 0, ∀(y, ỹ′) ∈ Ã

but

(y, ỹ′) ∈ Ã ⇔ ỹ′ ∈ Ãy = Ay − x′

⇔ ỹ′ + x′ ∈ Ay
⇔ ỹ′ + x′ = y′ ∈ Ay
⇔ (y, y′) ∈ A.

Hence, 〈
x0 − y,Hx0 + y′ − x′〉 ≤ 0, ∀(y, y′) ∈ A.

From this last inequality and by Theorem 5.27, we obtain that (x0, x
′ −Hx0) ∈ A, i.e., x′ −Hx0 ∈ Ax0

and therefore x′ ∈ Hx0 +Ax0 = (H +A)x0, which yields the desired conclusion. 2

Corollary 5.53 Let X be a reflexive and smooth Banach space and let C be a closed convex subset of
X. Then every operator A maximal in M(C) is m-monotone.

Proof: First, observe that the duality mapping F satisfies the assumptions on the operator H in Theorem
5.51. Indeed, according to Example 5.7, F is monotone. Since X is smooth, by Corollary 5.39 we have
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that X ′ is strictly convex and thus, by Proposition 5.43, we obtain that the duality mapping is single-
valued and demicontinuous and hence hemicontinuous. Moreover, by definition, D(F ) = X, and F is
coercive and maps bounded sets into bounded sets.

Now note that, given x0 an arbitrary element of D(A), the operator F̃ defined by

F̃ (x) = F (x+ x0)

still satisfies the same hypotheses. Indeed,

i) D(F̃ ) = X, since D(F̃ ) = D(F )− x0 = X − x0 = X;

ii) F̃ is monotone, by Proposition 5.10;

iii) F̃ maps bounded sets into bounded sets. In fact, let A ⊂ X be such that ∥x∥ ≤ M for all x ∈ A.
Then

∥F̃ (x)∥X′ = ∥F (x+ x0)∥X′ = ∥x+ x0∥X ≤ ∥x∥X + ∥x0∥X ≤M + ∥x0∥.

iv) F̃ is coercive. Indeed, we know that, by definition,〈
F (x), x

〉
= ∥x∥2 = ∥F (x)∥2.

Thus, 〈
F̃ (x), x

〉
=

〈
F (x+ x0), x

〉
=
〈
F (x+ x0), x+ x0

〉
−
〈
F (x+ x0), x0

〉
= ∥x+ x0∥2 −

〈
F (x+ x0), x0

〉
≥ ∥x− (−x0)∥2 − ∥F (x+ x0)∥∥x0∥
= ∥x∥2 − 2∥x∥∥x0∥+ ∥x0∥2 − ∥x+ x0∥∥x0∥
≥ ∥x∥2 − 2∥x∥∥x0∥+ ∥x0∥2 − ∥x∥∥x0∥ − ∥x0∥2

= ∥x∥2 − 3∥x∥∥x0∥
= (∥x∥ − 3∥x0∥)∥x∥.

Setting α(t) = t − 3∥x0∥ we have lim
t→+∞

α(t) = +∞ and
〈
F̃ (x), x

〉
≥ α(∥x∥)∥x∥, which proves that F̃ is

coercive.

v) F̃ is hemicontinuous. Indeed, since F is hemicontinuous, we have

〈
F̃ (x+ ty), z

〉
=
〈
F (x+ ty + x0), z

〉 t→0−→
〈
F (x+ x0), z

〉
=
〈
F̃ (x), z

〉
for all x, y, z ∈ X.

Now, since A is maximal inM(C), the operator Ã defined by Ã(x) = A(x+x0) satisfies 0 ∈ D(Ã)
and, by item (iii) of Corollary 5.28, is maximal in M(C − x0). By Theorem 5.52, we have

Im(F̃ + Ã) = X ′.

Finally, we show that Im(F + A) = Im(F̃ + Ã). Indeed, if y′ ∈ Im(F̃ + Ã), then there exists
x ∈ D(F̃ ) ∩D(Ã) = X ∩ [D(A)− x0] = D(A)− x0 such that

y′ ∈ F̃ (x) + Ã(x) = F (x+ x0) +A(x+ x0)
= F (z) +A(z); z ∈ D(A)
⇒ y′ ∈ Im(F +A).

Conversely, if y′ ∈ Im(F + A), then there exists z ∈ D(F + A) = D(F ) ∩ D(A) = D(A), that is,
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z = (z − x0)︸ ︷︷ ︸
x

+x0, such that

y′ ∈ F (z) +A(z)⇒ y′ ∈ F (x+ x0) +A(x+ x0) = F̃ (x) + Ã(x).

Hence Im(F +A) = Im(F̃ + Ã) = X ′, and therefore A is m-monotone. 2

Theorem 5.54 Let X be a reflexive and smooth Banach space with X ′ smooth. Then a monotone
operator A : X → X ′ is maximal if and only if A is m-monotone.

Proof: By Corollary 5.53, if A is maximal monotone, then A is m-monotone.

Conversely, suppose that Im(F +A) = X ′ and consider (x, x′) ∈ X ×X ′ such that〈
x′ − y′, x− y

〉
≥ 0, ∀(y, y′) ∈ A. (5.2.61)

Thus, in view of Theorem 5.27, we must prove that (x, x′) ∈ A. Indeed, since Fx + x′ belongs to
X ′ = Im(F + A), there exists x1 ∈ D(A) such that Fx + x′ ∈ Fx1 + Ax1. Therefore there exists
x′

1 ∈ Ax1, i.e., (x1, x
′
1) ∈ A such that

Fx+ x′ = Fx1 + x′
1. (5.2.62)

We show that (x1, x
′
1) = (x, x′). Taking (y, y′) = (x1, x

′
1) in (5.2.61) and using (5.2.62), we obtain〈

x− x1, x
′ − x′

1
〉

=
〈
x− x1, Fx1 − Fx

〉
≥ 0,

which implies 〈
x− x1, Fx− Fx1

〉
≤ 0.

From this last inequality it follows that〈
x, Fx

〉
+
〈
x1, Fx1

〉
−
〈
x, Fx1

〉
−
〈
x1, Fx

〉
≤ 0. (5.2.63)

By the definition of F we have

∥x∥2 + ∥x1∥2 − ∥x∥ ∥Fx1∥︸ ︷︷ ︸
=∥x1∥

−∥x1∥ ∥Fx∥︸ ︷︷ ︸
=∥x∥

≤ 0,

which implies
(∥x∥ − ∥x1∥)2 = ∥x∥2 + ∥x1∥2 − 2∥x∥∥x1∥ ≤ 0,

and hence ∥x∥ = ∥x1∥. Thus, from (5.2.63) we have

2∥x∥2 =
〈
x, Fx

〉
+
〈
x1, Fx1

〉
≤
〈
x, Fx1

〉
+
〈
x1, Fx

〉
≤ 2∥x∥2,

and from this last inequality we conclude that〈
x1, Fx

〉
= ∥x∥2, (5.2.64)

for otherwise, if we assumed that
〈
x1, Fx

〉
< ∥x∥2 or

〈
x, Fx

〉
> ∥x∥2, we would arrive at a contradiction.

Hence, from (5.2.64) and since

∥x1∥2 = ∥x∥2 = ∥Fx∥2 =
〈
x, Fx

〉
,

it follows that x, x1 ∈ F ′(Fx), where F ′ : X ′ → X is the duality mapping of X ′ (here we use the fact
that X is reflexive). Therefore x1 = x, since X ′ is smooth by hypothesis, and since by (5.2.62) we have
Fx− Fx1 = x′

1 − x′, it follows that x′
1 = x′. Hence (x, x′) = (x1, x

′
1) ∈ A, as desired. 2
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Corollary 5.55 Let X be a reflexive Banach space and assume that both X and X ′ are smooth. Then
an operator A is m-monotone if and only if λA is m-monotone for every λ > 0.

Proof: This is an immediate consequence of Theorem 5.54 and of the equivalence of items (i) and (ii) of
Corollary 5.28. 2

Example 5.56 Let X be a smooth and reflexive Banach space. Let f : X −→ (−∞,+∞] be a convex,
proper, lower semicontinuous function. According to Proposition 5.46, the subdifferential ∂f is an m-
monotone operator. When X ′ is smooth, Theorem 5.54 guarantees that the subdifferential is maximal
monotone.

Example 5.57 Let Ω be a bounded open subset of Rn with regular boundary ∂Ω and let ∆ be the
Laplacian. The operator A on L2(Ω) defined by

D(A) = {v ∈ H2(Ω); ∂νv = 0 on ∂Ω}, Au = −∆u, ∀u ∈ D(A)

is maximal monotone. Indeed,

i) A is monotone since

⟨Au−Av, u− v⟩ =
∫

Ω
−∆(u− v)(u− v) dx

=
∫

Ω
|∇(u− v)|2 dx ≥ 0, ∀u, v ∈ D(A).

ii) A is m-monotone, since from elliptic partial differential equation theory, for each v ∈ L2(Ω), there
exists u ∈ D(A) such that −∆u+u = v, that is, Im(I+A) = L2(Ω). Taking Fu = u as the duality
mapping of L2(Ω), so that F = I, we conclude that A is m-monotone.

By Theorem 5.54, A is maximal monotone.

Under suitable hypotheses, we can verify that the sum of two operators is a maximal monotone
operator. For this purpose, consider the following lemma, whose proof can be found in [19].

Lemma 5.58 Let X be a reflexive Banach space with norm ∥ · ∥. Then, for each a > 1, there exists a
norm ∥ · ∥a on X such that X and X ′ are strictly convex when endowed with the norm ∥ · ∥a and the
corresponding dual norm ∥ · ∥′

a.

Example 5.59 Let X be a reflexive Banach space and A a maximal monotone operator from X into
X ′. If B is a monotone, hemicontinuous and bounded operator from X into X ′, then A+B is maximal
monotone.

Proposition 5.9 guarantees that A+B is monotone. Thus, in order to ensure that A+B is maximal
monotone it suffices to show that A+B is m-monotone, that is, Im((A+B) + F ) = X ′, since we are in
the setting of Theorem 5.54 – indeed, as X and X ′ are strictly convex spaces, they are smooth.

We define the operator

H : X −→ X ′

x 7−→ H(x) = F0(x) +B(x),

where F0 is the duality mapping on (X, ∥ · ∥0), a strictly convex space.

We have:
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• H is hemicontinuous.

Indeed, since (X, ∥ · ∥0) and (X ′, ∥ · ∥′

0) are strictly convex, by Proposition 5.43 the operator F0 is
single-valued and demicontinuous. Hence H is hemicontinuous, since F0 and B are hemicontinuous.

• H is monotone.

As F0 is monotone (Example 5.7) and B is monotone by hypothesis, we have that H = B + F0 is
monotone.

• H is coercive.

Indeed,

⟨(B + F0)x, x⟩ = ⟨Bx, x⟩+ ⟨F0x, x⟩
= ⟨Bx, x⟩+ ∥x∥2

0

≥ −∥Bx∥
′

0∥x∥0 + ∥x∥2
0

≥ (∥x∥0 − ∥Bx∥
′

0)∥x∥0.

Since B is hemicontinuous, if t→ 0 then B(tx) ∗
⇀ B(0) and, therefore,

∥B(0)∥0 ≤ lim
t>0

inf ∥B(tx)∥0 ≤ ∥Bx∥0.

Consequently,
⟨(B + F0)x, x⟩ ≥ (∥x∥0 − ∥B0∥

′

0)∥x∥0.

Defining

α : R −→ R
t 7−→ α(t) = t− ∥B0∥0,

we obtain
⟨(B + F0)x, x⟩ ≥ α(∥x∥0)∥x∥0,

and hence H is coercive.

Assuming, without loss of generality, that 0 ∈ D(A), we see that H satisfies the hypotheses of Theorem
5.52 and therefore

Im(A+H) = X ′,

that is,
Im(A+B + F0) = X ′.

Thus, A+B is m-monotone on (X, ∥·∥0) and therefore maximal monotone on (X, ∥·∥0). Since monotonicity
and maximality are independent of the chosen norm, we conclude that A + B is a maximal monotone
operator on X.

Proposition 5.60 Let X be a reflexive and smooth Banach space with X ′ smooth, let C ⊂ X be a
closed convex subset, and let A : X → X ′ be a monotone operator such that D(A) ⊂ C. Then A admits a
maximal monotone extension whose domain is contained in C. In particular, every monotone operator on
a Banach space under these conditions admits a maximal monotone extension whose domain is contained
in conv D(A).

Proof: By item (ii) of Observation 5.26, the monotone operator A admits a maximal extension in C. By
Corollary 5.53, this extension is m-monotone and therefore maximal monotone in view of Theorem 5.54.
The second assertion is immediate, since conv D(A) is a closed convex set containing D(A). 2
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Theorem 5.61 Let X be a reflexive Banach space such that X and X ′ are smooth. Let A : X → X ′ be
a maximal monotone, coercive operator such that 0 ∈ D(A). Then Im A = X ′.

Proof: For each λ > 0, the operator λF is monotone, hemicontinuous, coercive, maps bounded sets into
bounded sets, and D(λF ) = X. Moreover, since X is smooth, the duality mapping F : X −→ X ′ is
single-valued, and we have a unique x′ ∈ X ′ satisfying x′ = F (x) and

⟨x′, x⟩ = ⟨F (x), x⟩ = ∥x∥2 = ∥x′∥2.

Hence the element y′ := λx′ = λF (x) satisfies

⟨y′, x⟩ = ⟨λx′, x⟩ = λ⟨x′, x⟩ = λ∥x∥2 = λ∥x′∥2 = 1
λ
∥λx′∥2 = 1

λ
∥y′∥2.

By Proposition 5.60, A is maximal in M(conv D(A)), and since 0 ∈ D(A) we can apply Theorem
5.52 to obtain Im(λF +A) = X ′.

We shall prove that Im(A) = X ′. Indeed, let y′ ∈ X ′. For each λ > 0 there exists xλ ∈ D(λF+A) =
D(λF )∩D(A) = X ∩D(A) = D(A) such that y′ ∈ (λF +A)xλ, that is, there exists x′

λ ∈ Axλ such that

λFxλ + x′
λ = y′. (5.2.65)

Since A is coercive, there exists a function α : R −→ R such that α(ρ)→∞ as ρ→∞ and

α(∥x∥)∥x∥ ≤ ⟨x, x′⟩ , ∀(x, x′) ∈ A.

The above relation holds for (xλ, x
′
λ) ∈ A, λ > 0, and therefore

α (∥xλ∥) ∥xλ∥ ≤ ⟨xλ, x
′
λ⟩

≤ ⟨xλ, x
′
λ⟩+ λ∥xλ∥2

= ⟨xλ, x
′
λ⟩+ ⟨xλ, λF (xλ)⟩

= ⟨xλ, x
′
λ + λF (xλ)⟩

= ⟨xλ, y
′⟩

≤ ∥xλ∥ ∥y′∥ ∀ λ > 0.

Hence, if xλ ̸= 0,
α (∥xλ∥) ≤ ∥y′∥, ∀ λ > 0,

and thus the set
{
xλ; λ > 0

}
is bounded. Consequently,

{
F (xλ); λ > 0

}
is bounded (since ∥F (xλ)∥ =

∥xλ∥). From (5.2.65) we obtain

x′
λ = y′ − λF (xλ)→ y′ as λ→ 0 (5.2.66)

in the norm topology of X ′.

Moreover, since
{
xλ; λ > 0

}
is bounded and X is reflexive, we can extract a sequence (λn), with

λn → 0, such that (xλn) converges weakly to some y ∈ X, that is,

xλn
⇀ y. (5.2.67)

Thus, for each (x, x′) ∈ A, by the monotonicity of A we obtain〈
x− xλn , x

′ − x′
λn

〉
≥ 0.
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By the convergences (5.2.66) and (5.2.67), we get

⟨x− y, x′ − y′⟩ ≥ 0, ∀(x, x′) ∈ A.

Since A is maximal monotone, Theorem 5.27 yields (y, y′) ∈ A, that is, y′ ∈ Ay, or equivalently, y′ ∈
Im(A). Therefore Im(A) = X ′. 2

Corollary 5.62 Let X be a reflexive Banach space such that X and X ′ are smooth, and let H : X −→ X ′

be a monotone, hemicontinuous, coercive operator with D(H) = X. Then Im(H) = X ′.

Proof: Since H is monotone, hemicontinuous and D(H) = X, it follows from Proposition 5.30 that H is
maximal monotone. As D(H) = X, we have 0 ∈ D(H) and Theorem 5.61 implies that Im(H) = X ′. 2

5.3 Accretive Operators

According to Proposition 5.8, in a Hilbert space monotonicity is equivalent to the condition

∥x1 − x2 + λ(y1 − y2)∥ ≥ ∥x1 − x2∥ ∀(x1, y1), (x2, y2) ∈ A, ∀λ > 0.

Since this condition involves only the norm, it makes sense in any normed space, which allows us to
generalise the notion of a monotone operator in Hilbert spaces.

Definition 5.63 Let X be a Banach space. We say that the operator A : X −→ X is accretive if

∥x1 − x2 + λ(y1 − y2)∥ ≥ ∥x1 − x2∥ (5.3.68)

for all (x1, y1), (x2, y2) ∈ A and for all λ > 0.

Definition 5.64 Let X be a Banach space and let A : X −→ X be an operator. We say that A is
dissipative if −A is accretive.

We wish to present other characterisations of accretive operators. For this, given a Banach space
X, we recall the definition of the incremental quotient of the Gâteaux derivative of the norm,

[x, y]λ = ∥x+ λy∥ − ∥x∥
λ

, λ ̸= 0, x, y ∈ X.

Lemma 5.65 The following properties hold:

(i) [αx, βy]+ = |β|[x, y]+ if αβ > 0;

(ii) [x, αx+ y]+ = α∥x∥+ [x, y]+;

(iii) −[x,−y]+ ≤ [x, y]+;

(iv) |[x, y]+| ≤ ∥y∥;

(v) [x, βy]+ ≥ β[x, y]+.

Proof: It is enough to prove that these properties hold for the incremental quotient [x, y]λ, since, by
taking the infimum, we obtain the corresponding results for [x, y]+.
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(i) If αβ > 0,

[αx, βy]λ = ∥αx+ λβy∥ − ∥αx∥
λ

= |β|
∥α

βx+ λy∥ − ∥α
βx∥

λ

= |β|
∥x+ λβ

αy∥ − ∥x∥
λβ

α

= |β| [x, y]λ β
α
.

Taking the limit as λ −→ 0+ we obtain the desired conclusion.

(ii) If α = 0 there is nothing to prove. For α ̸= 0, take λ0 > 0 such that 1 + λα > 0 whenever
0 < λ < λ0. Then ∣∣∣[x, αx+ y]λ − (α∥x∥+ [x, y]λ)

∣∣∣
=

∣∣∣∣∥x+ λαx+ λy∥ − ∥x∥ − ∥x+ λy∥+ ∥x∥
λ

− α∥x∥
∣∣∣∣

=
∣∣∣∣∥(1 + λα)x+ λy∥ − ∥x+ λy∥ − λα∥x∥

λ

∣∣∣∣
=

∣∣∣∣ 1λ
(

(1 + λα)
∥∥∥∥x+ λ

1 + λα
y

∥∥∥∥− ∥x+ λy∥ − λα∥x∥
)∣∣∣∣

=
∣∣∣∣ 1λ
(∥∥∥∥x+ λ

1 + λα
y

∥∥∥∥− ∥x+ λy∥
)

+ α

(∥∥∥∥x+ λ

1 + λα
y

∥∥∥∥− ∥x∥)∣∣∣∣
≤

∣∣∣∣ 1λ
(∥∥∥∥x+ λ

1 + λα
y

∥∥∥∥− ∥x+ λy∥
)∣∣∣∣+

∣∣∣∣α(∥∥∥∥x+ λ

1 + λα
y

∥∥∥∥− ∥x∥)∣∣∣∣
≤ 1

λ

∥∥∥∥x+ λ

1 + λα
y − x− λy

∥∥∥∥+
∣∣∣∣α(∥∥∥∥x+ λ

1 + λα
y − x

∥∥∥∥)∣∣∣∣
≤

∣∣∣∣ 1
1 + λα

− 1
∣∣∣∣ ∥y∥+ |α| λ

1 + λα
∥y∥.

Taking the limit as λ −→ 0+ we obtain the desired conclusion.

(iii) Note that

[x, y]λ + [x,−y]λ = ∥x+ λy∥ − ∥x∥+ ∥x− λy∥ − ∥x∥
λ

= 1
λ

(∥x+ λy∥+ ∥x− λy∥ − 2∥x∥)

≥ 1
λ

(∥x+ λy + x− λy∥ − 2∥x∥) = 0.

Hence −[x, y]λ ≤ [x, y]λ for all λ > 0.

(iv) If λ > 0, by item (iv) of Lemma 5.40 we have

−∥y∥ ≤ [x, y]λ = ∥x+ λy∥ − ∥x∥
λ

≤ ∥x∥+ ∥λy∥ − ∥x∥
λ

= ∥y∥.

(v) If β = 0, there is nothing to prove. The case β > 0 is covered by item (i). Let now β < 0. Then

β[x, y]+ = −|β|[x, y]+ = −[x, |β|y]+ = −[x,−βy]+ ≤ [x, βy]+.

Lemma 5.66 For each x, y ∈ X, there exists x′ ∈ F (x) such that

⟨x′, y⟩ = ∥x∥[x, y]+.
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Proof: Given x ∈ X, we have two cases to consider.

Case 1: y = ρx, for some ρ ∈ R. Let λ > 0 be such that 1 + λρ > 0. Then

[x, y]λ = [x, ρx]λ = ∥x+ λρx∥ − ∥x∥
λ

= ∥(1 + λρ)x∥ − ∥x∥
λ

= ρ∥x∥.

But for every x′ ∈ F (x) we have

⟨x′, y⟩ = ρ ⟨x′, x⟩ = ρ∥x∥2 = ∥x∥[x, y]λ.

Taking the infimum we obtain the result.

Case 2: x and y are linearly independent. Let V = span{x, y} ⊂ X and define ξ′ : V −→ R by

⟨ξ′, αx+ βy⟩ = α∥x∥+ β[x, y]+.

By Lemma 5.65 we have

⟨ξ′, αx+ βy⟩ = α∥x∥+ β[x, y]+
≤ α∥x∥+ [x, βy]+
= [x, αx+ βy]+
≤ ∥αx+ βy∥.

By the Hahn–Banach Theorem, there exists ξ′
1 ∈ X ′ extending ξ′ such that ∥ξ′

1∥ ≤ 1. Since ξ′
1

extends ξ′, we have
⟨ξ′

1, x⟩ = ∥x∥ and ⟨ξ′
1, y⟩ = [x, y]+.

Set x′ = ∥x∥ξ′
1. Then

∥x∥2 = ⟨x′, x⟩ ≤ ∥x′∥∥x∥.

On the other hand,
∥x′∥ = ∥∥x∥ξ′

1∥ = ∥x∥∥ξ′
1∥ ≤ ∥x∥.

Thus x′ ∈ F (x) and ⟨x′, y⟩ = ∥x∥[x, y]+.

Proposition 5.67 Define
⟨y, x⟩s = sup {⟨x′, y⟩ ; x′ ∈ F (x)} .

Then
⟨y, x⟩s = ∥x∥[x, y]+.

Proof: Let x, y ∈ X. By item (ii) of Lemma 5.40, for every λ > 0 we have

⟨x′, y⟩ ≤ ∥x∥[x, y]λ, ∀x′ ∈ F (x).

Taking the infimum over λ > 0 and the supremum over x′ in F (x), we obtain

⟨y, x⟩s ≤ ∥x∥[x, y]+. (5.3.69)

On the other hand, by Lemma 5.66, there exists x′ ∈ F (x) such that

∥x∥[x, y]+ = ⟨x′, y⟩ ≤ ⟨y, x⟩s . (5.3.70)

From (5.3.69) and (5.3.70) the desired identity follows. 2

Proposition 5.68 The following statements are equivalent:

(i) ∥x+ λy∥ ≥ ∥x∥, ∀x, y ∈ X, ∀λ > 0;
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(ii) [x, y]+ ≥ 0, ∀x, y ∈ X;

(iii) ⟨y, x⟩s ≥ 0, ∀x, y ∈ X;

(iv) ∀x, y ∈ X, ∃x′ ∈ F (x) such that ⟨x′, y⟩ ≥ 0.

Proof:

(i)⇒ (ii) If ∥x+ λy∥ ≥ ∥x∥, then [x, y]λ = ∥x+ λy∥ − ∥x∥
λ

≥ 0. Hence [x, y]+ ≥ 0.

(ii)⇒ (i)
∥x+ λy∥ − ∥x∥

λ
= [x, y]λ ≥ [x, y]+ ≥ 0 =⇒ ∥x+ λy∥ ≥ ∥x∥.

(ii)⇔ (iii) This follows immediately from the previous proposition, since ⟨y, x⟩s = ∥x∥[x, y]+.

(ii)⇔ (iv) By Lemma 5.66, there exists x′ ∈ F (x) such that ⟨x′, y⟩ = ∥x∥[x, y]+ ≥ 0.

Finally, we obtain a new characterisation of accretive operators.

Corollary 5.69 The following statements are equivalent:

(i) A is an accretive operator;

(ii) [x1 − x2, y1 − y2]+ ≥ 0, ∀(x1, y1), (x2, y2) ∈ A;

(iii) ⟨x1 − x2, y1 − y2⟩s ≥ 0, ∀(x1, y1), (x2, y2) ∈ A;

(iv) ∀(x1, y1), (x2, y2) ∈ A, ∃x′ ∈ F (x1 − x2) such that ⟨x′, y1 − y2⟩ ≥ 0.

Proof: The operator A is accretive if

∥x1 − x2 + λ(y1 − y2)∥ ≥ ∥x1 − x2∥ ∀(x1, y1), (x2, y2) ∈ A, ∀λ > 0.

Thus it is enough to take x = x1 − x2 and y = y1 − y2 in Proposition 5.68. 2

Remark 5.70

(a) If X is a Hilbert space, then the accretivity condition

⟨x′, y1 − y2⟩ ≥ 0, x′ ∈ F (x1 − x2), (5.3.71)

coincides with the notion of monotonicity.

(b) If X is a complex vector space, condition (5.3.71) is replaced by

ℜ ⟨x′, y1 − y2⟩ ≥ 0.

Example 5.71

(a) If T : X −→ X is a contraction, that is,

∥Tx1 − Tx2∥ ≤ ∥x1 − x2∥ ∀x1, x2 ∈ X,

then A := I − T is accretive. Indeed, let λ > 0 and x1, x2 ∈ X. Then

∥x1 − x2 + λ(Ax1 −Ax2)∥ = ∥x1 − x2 + λ(x1 − Tx1 − x2 + Tx2)∥
= ∥(1 + λ)(x1 − x2)− λ(Tx1 − Tx2)∥
≥ (1 + λ)∥x1 − x2∥ − λ∥Tx1 − Tx2∥
≥ ∥x1 − x2∥.
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(b) Since Lp(Ω) is strictly convex for 1 < p <∞, the duality mapping is single-valued. We claim that

F (u) = ∥u∥2−p
p u|u|p−2, ∀u ∈ Lp(Ω). (5.3.72)

The element F (u) is the unique element of Lp′(Ω) satisfying

⟨F (u), u⟩ = ∥u∥2
p = ∥F (u)∥2

p′ . (5.3.73)

It suffices to prove that the right-hand side of (5.3.72) belongs to Lp′(Ω) and satisfies (5.3.73).
Indeed, ∣∣∥u∥2−p

p u|u|p−2∣∣p′

= ∥u∥(2−p)p′

p |u|(p−1)p′

= ∥u∥(2−p) p
p−1

p |u|p.

Hence, ∥∥∥u∥2−p
p u|u|p−2∥∥p′

p′ = ∥u∥(2−p) p
p−1

p ∥u∥p
p

= ∥u∥p′

p .

This shows that ∥u∥2−p
p u|u|p−2 ∈ Lp′(Ω) and

∥∥∥u∥2−p
p u|u|p−2

∥∥
p′ = ∥u∥p.

Moreover, 〈
∥u∥2−p

p u|u|p−2, u
〉

= ∥u∥2−p
p

∫
Ω
u2|u|p−2 = ∥u∥2

p.

Therefore, ∥u∥2−p
p u|u|p−2 = F (u).

Definition 5.72 Let X be a Banach space, A : X −→ X an operator and λ ∈ R. Denote Jλ :=
(I + λA)−1. For λ ̸= 0, we define the Yosida approximation of A by

Aλ := 1
λ

(I − Jλ).

Proposition 5.73 The following statements hold:

(i) D(Aλ) = D(Jλ) = Im(I + λA) and Im(Jλ) = D(A);

(ii) Jλ = (I + λA)−1 = {(x+ λy, x), (x, y) ∈ A};

(iii) Aλ = 1
λ (I − Jλ) = {(x+ λy, y); (x, y) ∈ A}, λ ̸= 0;

(iv) If x ∈ Jλz, then there exists y ∈ X such that (x, y) ∈ A and z = x+ λy;

(v) If λ ̸= 0 and y ∈ Aλz, then there exists x ∈ X such that (x, y) ∈ A and z = x+ λy.

Proof: (i) D(Aλ) = X ∩D(Jλ) = D(Jλ) = Im(I + λA), and Im(Jλ) = Im[(I + λA)−1] = D(I + λA) =
D(A).

(ii) Define B = {(x + λy, x); (x, y) ∈ A}, λ ∈ R. Let z = (y, x) ∈ Jλ = (I + λA)−1. Then
(x, y) ∈ (I + λA) with x ∈ D(I + λA) = D(A) and y ∈ (I + λA)x. Hence y = x + λy for some y ∈ Ax,
that is, z = (x+ λy, x) with x ∈ D(A) and y ∈ Ax. Therefore z ∈ B.

Conversely, let z ∈ B. Then z = (x + λy, x) for some (x, y) ∈ A. It follows that x ∈ D(A) and
y ∈ Ax. Therefore x+ λy ∈ (I + λA)x⇒ (x, x+ λy) ∈ (I + λA)⇒ z = (x+ λy, x) ∈ (I + λA)−1 = Jλ.

(iii) Define B = {(x+λy, y); (x, y) ∈ A}, λ ̸= 0. Let z = (y, x) ∈ Aλ, then y ∈ D(Aλ) and x ∈ Aλy.

Since D(Aλ) = Im(I+λA), we have y = x+λy for some x ∈ D(A) and y ∈ Ax. On the other hand, since
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Aλy = 1
λ (y − Jλy) and x ∈ Aλy, it follows that x = 1

λ (y − ξ) for some ξ ∈ Jλy. Hence (x + λy, ξ) ∈ Jλ.

But by (ii), ξ = x and therefore x = 1
λ (y − ξ) = 1

λ (x + λy − x) = y. Thus z = (y, x) = (x + λy, y) for
some (x, y) ∈ A⇒ z ∈ B.

Conversely, let z ∈ B. Then z = (x+λy, y) for some (x, y) ∈ A. We must show that x+λy ∈ D(Aλ)
and y ∈ Aλ(x+λy). Indeed, by (i) we have D(Aλ) = Im(I +λA) and since x+λy ∈ (I +λA)x, it follows
that x+ λy ∈ D(Aλ).

Moreover, Aλ(x+ λy) = 1
λ (I − Jλ)(x+ λy). By item (ii), (x+ λy, x) ∈ Jλ, so x ∈ Jλ(x+ λy) and

therefore
y = 1

λ
(x+ λy − x) ∈ 1

λ
(I − Jλ)(x+ λy) = Aλ(x+ λy).

We conclude that z = (x+ λy, y) ∈ Aλ.

(iv) Let x ∈ Jλz. Then Jλz ̸= ∅ and therefore z ∈ D(Jλ). Hence (z, x) ∈ Jλ = {(x+λy, x); (x, y) ∈
A}. Consequently, (z, x) = (x + λy, x) for some (x, y) ∈ A. Thus z = x + λy, x = x and therefore
z = x+ λy for some y ∈ Ax.

(v) Let λ ̸= 0 and y ∈ Aλz. Then z ∈ D(Aλ) and (z, y) ∈ Aλ = {(x + λy, y); (x, y) ∈ A}. Hence
there exists (x, y) ∈ A such that (z, y) = (x + λy, y), that is, z = x + λy and y = y and, therefore,
z = x+ λy with (x, y) ∈ A.

Notation: For simplicity, we denote by Dλ the set Im(I + λA) = D(Jλ) = D(Aλ).

Remark 5.74 Let Jλ : Dλ → D(A) ⊂ X and consider z = x + λy, with (x, y) ∈ A. Then z ∈ Dλ and,
by item (ii) of Proposition 5.73, we have (z, x) = (x + λy, x) ∈ Jλ, or equivalently, x ∈ Jλz. If Jλ is
single-valued, then x = Jλz = Jλ(x+ λy). Similarly, if Aλ is single-valued, then y = Aλz = Aλ(x+ λy).

Proposition 5.75 Let A : X → X be an accretive operator. Then:

(i) Jλ is a single-valued operator;

(ii) If λ > 0, Aλ is single-valued;

(iii) If z ∈ Dλ then (Jλz,Aλz) ∈ A, for all λ > 0.

Proof:

(i) Let λ ≥ 0, z ∈ Dλ and x1, x2 ∈ Jλz. We want to show that x1 = x2. In fact, by item (iv) of
Proposition 5.73, there exist y1 ∈ Ax1 and y2 ∈ Ax2 such that

z = x1 + λy1 = x2 + λy2 ⇒ 0 = z − z = (x1 − x2) + λ(y1 − y2).

If λ > 0, the accretivity of A yields

∥x1 − x2∥ ≤ ∥x1 − x2 + λ(y1 − y2)∥ = ∥z − z∥ = 0.

Therefore x1 = x2. The case λ = 0 is immediate.

(ii) Let λ > 0. Then Aλ = 1
λ (I − Jλ) is single-valued since both I and Jλ are.

(iii) Let λ > 0 and z ∈ Dλ. Then there exists (x, y) ∈ A such that z = x + λy. By Observation
5.74 and since Jλ and Aλ are single-valued, we have Jλz = x and Aλz = y. Thus (Jλz,Aλz) ∈ A. 2

Proposition 5.76 The operator A : X → X is accretive if and only if Jλ is a contraction for every
λ ≥ 0.
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Proof: Let A : X → X be an accretive operator and take z1, z2 ∈ Dλ, λ ≥ 0.

We have z1 = x1 + λy1 for some (x1, y1) ∈ A and z2 = x2 + λy2 for some (x2, y2) ∈ A. Since A
is accretive, it follows from Proposition 5.75(i) that Jλ is single-valued, so Jλz1 = x1, Jλz2 = x2 and
moreover

∥Jλz1 − Jλz2∥ = ∥x1 − x2∥ ≤ ∥(x1 − x2) + λ(y1 − y2)∥ = ∥z1 − z2∥,

which proves that Jλ is a contraction for λ ≥ 0.

Conversely, suppose that Jλ is a contraction for λ ≥ 0.

Let (x1, y1), (x2, y2) ∈ A. Then z1 = x1 + λy1, z2 = x2 + λy2 ∈ Dλ. Since Jλ is a contraction, it
is single-valued, and thus, by Observation 5.74, Jλz1 = x1 and Jλz2 = x2. Consequently,

∥x1 − x2∥ = ∥Jλz1 − Jλz2∥ ≤ ∥z1 − z2∥ = ∥(x1 − x2) + λ(y1 − y2)∥, ∀λ ≥ 0,

in particular for λ > 0, which shows that A is accretive. 2

Notation: Let ω ∈ R. We denote by A(ω) the class of operators A : X → X such that A + ωI is
accretive. Therefore A(0) is the class of accretive operators.

Proposition 5.77 A ∈ A(ω) if and only if for every (x1, y1), (x2, y2) ∈ A there exists x′ ∈ F (x1 − x2)
such that

⟨x′, y1 − y2⟩+ ω∥x1 − x2∥2 ≥ 0. (5.3.74)

Proof: (⇒) Let A ∈ A(ω) and (x1, y1), (x2, y2) ∈ A. Since A+ ωI is accretive by hypothesis, it follows
from Corollary 5.69(iv) that there exists x′ ∈ F (x1 − x2) such that

⟨x′, y1 + ωx1 − (y2 + ωx2)⟩ ≥ 0.

Hence
⟨x′, y1 − y2⟩+ ω⟨x′, x1 − x2⟩ ≥ 0. (5.3.75)

Since x′ ∈ F (x1 − x2) we obtain

⟨x′, y1 − y2⟩+ ω∥x1 − x2∥2 ≥ 0. (5.3.76)

(⇐) Conversely, suppose that for every (x1, y1), (x2, y2) ∈ A there exists x′ ∈ F (x1 − x2) such
that (5.3.74) holds. We prove that A ∈ A(ω). Indeed, let (x1, z1), (x2, z2) ∈ A+ωI. Then z1 = y1 +ωx1
and z2 = y2 + ωx2, where y1 ∈ Ax1 and y2 ∈ Ax2.

By hypothesis, there exists x′ ∈ F (x1 − x2) such that

⟨x′, y1 − y2⟩+ ω∥x1 − x2∥2 ≥ 0,

that is,
⟨x′, (y1 + ωx1)− (y2 + ωx2)⟩ ≥ 0⇒ ⟨x′, z1 − z2⟩ ≥ 0.

By Corollary 5.69(iv), it follows that A+ ωI is accretive. 2

Remark 5.78 (i) Let ω ≤ 0 and A ∈ A(ω). Take (x1, y1), (x2, y2) ∈ A. Then, by Proposition 5.77, there
exists x′ ∈ F (x1 − x2) such that

⟨x′, y1 − y2⟩+ ω∥x1 − x2∥2 ≥ 0,

that is,
⟨x′, y1 − y2⟩ ≥ −ω∥x1 − x2∥2.
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Consequently, by Corollary 5.69(iv), A is accretive.

(ii) Let ω ≥ 0 and A ∈ A(ω). Take (x1, y1), (x2, y2) ∈ A. By Corollary 5.69(iv), there exists
x′ ∈ F (x1 − x2) such that

⟨x′, y1 − y2⟩ ≥ 0⇒ ⟨x′, y1 − y2⟩+ ω∥x1 − x2∥2 ≥ 0.

Therefore, by Proposition 5.77, we have A ∈ A(ω).

In summary:
• ω ≤ 0⇒ A(ω) ⊂ A(0)

• ω ≥ 0⇒ A(0) ⊂ A(ω)

Moreover, if
0 < ω1 < ω2 ⇒ A(ω1) ⊂ A(ω2). (5.3.77)

Indeed, let A ∈ A(ω1). By Proposition 5.77 we obtain that for all (x1, y1), (x2, y2) ∈ A there exists
x′ ∈ F (x1 − x2) such that

⟨x′, y1 − y2⟩+ ω1∥x1 − x2∥2 ≥ 0⇒ ⟨x′, y1 − y2⟩+ ω2∥x1 − x2∥2 ≥ 0,

and by Proposition 5.77 it follows that A ∈ A(ω2).

Theorem 5.79 Let ω ∈ R and λ ≥ 0 with λω < 1 and A ∈ A(ω). Then:

i) Jλ (and consequently Aλ) is single-valued and Lipschitz with constant (1− λω)−1;

ii) ∥Jλx− x∥ ≤ λ(1− λω)−1|Ax| for every x ∈ D(A) ∩Dλ, where

|Ax| := inf{∥y∥; y ∈ Ax};

iii) If n ∈ N, x ∈ D(Jn
λ ) and λ|ω| < 1, then

∥Jn
λx− x∥ ≤ n(1− λ|ω|)−n+1∥Jλx− x∥;

iv) If x ∈ Dλ, with λ ̸= 0 and µ ∈ R, then
(µ
λ

)
x+ (λ− µ)

λ
Jλx ∈ Dµ and, moreover,

Jµ

(
µ

λ
x+ (λ− µ)

λ
Jλx

)
= Jλx;

v) Aλ ∈ A
(

ω

1− λω

)
;

vi) ∥Aλx−Aλy∥ ≤ λ−1[1 + (1− λ|ω|)−1]∥x− y∥ for all x, y ∈ Dλ;

vii) If x ∈ Dλ ∩Dµ and 0 < µ ≤ λ, then (1− λω)∥Aλx∥ ≤ (1− µω)∥Aµx∥;

viii) lim
λ→0+

Jλx = x, for all x ∈ D(A) ∩
⋂

λ>0
Dλ.

Proof:

i) Let z ∈ Dλ = D(Jλ) and x1, x2 ∈ Jλz. We first show that x1 = x2. Indeed, by Proposition 5.73(iv),

- 278 -



5.3 Accretive Operators

there exist y1 ∈ Ax1 and y2 ∈ Ax2 such that

z = x1 + λy1 = x2 + λy2.

Let x′ ∈ F (x1 − x2). Then

0 =
〈
x′, 0

〉
=
〈
x′, z − z

〉
=
〈
x′, (x1 − x2) + λ(y1 − y2)

〉
=

〈
x′, x1 − x2

〉
+ λ

〈
x′, y1 − y2 + ωx1 − ωx1 + ωx2 − ωx2

〉
=

〈
x′, x1 − x2

〉
+ λ

〈
x′, (y1 + ωx1)− (y2 + ωx2)

〉
− λω

〈
x′, x1 − x2

〉
= ∥x1 − x2∥2 + λ

〈
x′, (y1 + ωx1)− (y2 + ωx2)

〉
− λω∥x1 − x2∥2

= (1− λω)︸ ︷︷ ︸
>0

∥x1 − x2∥2 + λ
〈
x′, (y1 + ωx1)− (y2 + ωx2)

〉
. (5.3.78)

On the other hand, since A ∈ A(ω), we have that A + ωI is accretive and therefore, by Corollary
5.69(iv), there exists ξ′ ∈ F (x1 − x2) such that〈

ξ′, (y1 + ωx1)− (y2 + ωx2)
〉
≥ 0.

Taking x′ = ξ′ in (5.3.78) we obtain

(1− λω)∥x1 − x2∥2 = −λ
〈
ξ′, (y1 + ωx1)− (y2 + ωx2)

〉
≤ 0,

which implies ∥x1 − x2∥ ≤ 0, hence x1 = x2, proving that Jλ is single-valued.

It follows that Aλ is also single-valued, since Aλ = I − Jλ

λ
.

It remains to prove that Jλ is Lipschitz. Since A+ωI is accretive, by Proposition 5.76 its resolvent

JA+ωI
t = [I + t(A+ ωI)]−1

,

is a contraction for all t ≥ 0. Let t > 0 so that 1 + ωt ̸= 0. Then

JA+ωI
t = [I + t(A+ ωI)]−1 = [(1 + ωt)I + tA]−1

=
[
(1 + ωt)

(
I + t

1 + ωt
A

)]−1
=
(
I + t

1 + ωt
A

)−1
(1 + ωt)−1.

Hence
JA+ωI

t =
(
I + t

1 + ωt
A

)−1
(1 + ωt)−1,

or equivalently,

(1 + ωt)JA+ωI
t =

(
I + t

1 + ωt
A

)−1
. (5.3.79)

Since JA+ωI
t is a contraction, it follows from (5.3.79), for x, y ∈ DA+ωI

t = D(JA+ωI
t ) = Im[I +

t(A+ ωI)], that∥∥∥∥∥
(
I + t

1 + ωt
A

)−1
x−

(
I + t

1 + ωt
A

)−1
y

∥∥∥∥∥ = ∥(1 + ωt)JA+ωI
t x− (1 + ωt)JA+ωI

t y∥

≤ |1 + ωt|∥x− y∥, (5.3.80)

so
(
I + t

1 + ωt
A

)−1
is Lipschitz with constant |1 + ωt|.

Let λ > 0 and set
t = λ

1− λω︸ ︷︷ ︸
>0

> 0,
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which implies t

1 + ωt
= λ.

Moreover,

1 + ωt = 1 + ω

(
λ

1− λω

)
= 1 + ωλ

1− λω = 1− λω + ωλ

1− λω = (1− λω)−1,

so |1 + ωt| = (1− λω)−1. Thus (1 + λA)−1 = Jλ is Lipschitz with constant (1− λω)−1.
If λ = 0, then Jλ = I and the result is immediate.

ii) Consider the set Vλ = D(A) ∩Dλ. If Vλ = ∅, the result holds trivially, so there is nothing to prove.
Suppose then Vλ ̸= ∅. Let y ∈ Ax; then x+ λy ∈ Dλ = Im(I + λA) and, moreover, by item (i), Jλ

is single-valued. Hence, by Observation 5.74, Jλ(x+ λy) = x.
Thus

∥Jλx− x∥ = ∥Jλx− Jλ(x+ λy)∥
≤ (1− λω)−1∥x− (x+ λy)∥
= (1− λω)−1λ∥y∥.

By the arbitrariness of y ∈ Ax we obtain

∥Jλx− x∥ ≤ (1− λω)−1λ∥y∥, ∀ y ∈ Ax.

Setting |Ax| = inf
y∈Ax

{∥y∥}, we clearly have 0 ≤ |Ax| < +∞. Therefore

∥Jλx− x∥ ≤ λ(1− λω)−1|Ax|.

iii) Let n ∈ N, λ ≥ 0 with λ|ω| < 1 and x ∈ D(Jn
λ ). Then

∥Jn
λx− x∥ = ∥Jn

λx− Jn−1
λ x+ Jn−1

λ x− Jn−2
λ x+ Jn−2

λ x− · · · − Jλx+ Jλx− x∥

=
∥∥∥∥∥

n∑
i=1

(
Jn−i+1

λ x− Jn−i
λ x

)∥∥∥∥∥ . (5.3.81)

But

∥Jn−i+1
λ x− Jn−i

λ x∥ = ∥Jλ(Jn−i
λ x)− Jλ(Jn−i−1

λ x)∥
(i)
≤ (1− λω)−1∥Jn−i

λ x− Jn−i−1
λ x∥, ∀i = 1, . . . , n− 1.

By induction, after another (n− i− 1) steps we obtain

∥Jn−i+1
λ x− Jn−i

λ x∥ ≤ (1− λω)−1[(1− λω)−1]n−i−1∥Jλx− x∥
= [(1− λω)−1]n−i∥Jλx− x∥
= (1− λω)−n+i∥Jλx− x∥. (5.3.82)

On the other hand, λω ≤ λ|ω|, which implies

1− λω ≥ 1− λ|ω| =⇒ (1− λω)−1 ≤ (1− λ|ω|)−1,

and consequently

(1− λω)−n+i ≤ (1− λ|ω|)−n+i. (5.3.83)

We also have i ≥ 1 and thus n− i ≤ n− 1. Observing that

0 ≤ λ|ω| < 1 =⇒ −1 < −λ|ω| ≤ 0 =⇒ 0 < 1− λ|ω| ≤ 1,
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we obtain 1
1− λ|ω| ≥ 1.

Hence
[(1− λ|ω|)−1]n−i ≤ [(1− λ|ω|)−1]n−1,

so

(1− λ|ω|)−n+i ≤ (1− λ|ω|)−n+1. (5.3.84)

From (5.3.82), (5.3.83) and (5.3.84) we have

∥Jn−i+1
λ x− Jn−i

λ x∥ ≤ (1− λ|ω|)−n+1∥Jλx− x∥,

and therefore, from (5.3.81),

∥Jn
λx− x∥ ≤

n∑
i=1
∥Jn−i+1

λ x− Jn−i
λ x∥

≤
n∑

i=1
(1− λ|ω|)−n+1∥Jλx− x∥

= n(1− λ|ω|)−n+1∥Jλx− x∥.

iv) Let λ > 0, x ∈ Dλ and µ ∈ R. Since x ∈ Dλ = Im(I + λA), there exists (x1, y1) ∈ A such that
x = x1 + λy1. Also, x1 + µy1 ∈ Dµ = Im(I + µA). Hence Jλx = x1. Thus

µ

λ
x+ λ− µ

λ
Jλx = µ

λ
(x1 + λy1) + λ− µ

λ
x1

= µ

λ
x1 + µy1 + x1 −

µ

λ
x1

= x1 + µy1 ∈ Dµ.

Moreover,
Jλx = x1 = Jµ(x1 + µy1) = Jµ

(
µ

λ
x+ λ− µ

λ
Jλx

)
,

as claimed.

v) We prove that Aλ + ω

1− λωI is accretive; thus we must show that for all x1, x2 ∈ Dλ and all t ≥ 0,

∥∥∥∥(x1 − x2) + t

[(
Aλ + ω

1− λωI
)
x1 −

(
Aλ + ω

1− λωI
)
x2

]∥∥∥∥ ≥ ∥x1 − x2∥ . (5.3.85)

Indeed, ∥∥∥∥(x1 − x2) + tAλx1 + tω

1− λωx1 − tAλx2 + tω

1− λωx2

∥∥∥∥
=

∥∥∥∥(x1 − x2) + tω

1− λω (x1 − x2) + t

λ
(I − Jλ)x1 −

t

λ
(I − Jλ)x2

∥∥∥∥
=

∥∥∥∥[1 + tω

1− λω + t

λ

]
(x1 − x2)− t

λ
[Jλx1 − Jλx2]

∥∥∥∥ .
Moreover,

1 + tω

1− λω + t

λ
= 1 + λtω + t(1− λω)

λ(1− λω) = 1 + λtω + t− tλω
λ(1− λω) = 1 + t

λ(1− λω) > 0.
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From this and (5.3.86) we can write∥∥∥∥(x1 − x2) + tAλx1 + tω

1− λωx1 − tAλx2 + tω

1− λωx2

∥∥∥∥
≥

(
1 + t

λ(1− λω)

)
∥x1 − x2∥ −

t

λ
∥Jλx1 − Jλx2∥ . (5.3.86)

Now, by item (i),
∥Jλx1 − Jλx2∥ ≤ (1− λω)−1 ∥x1 − x2∥ ,

and consequently

−∥Jλx1 − Jλx2∥ ≥ − (1− λω)−1 ∥x1 − x2∥ . (5.3.87)

From (5.3.86) and (5.3.87) we obtain∥∥∥∥(x1 − x2) + tAλx1 + tω

1− λωx1 − tAλx2 + tω

1− λωx2

∥∥∥∥
≥

(
1 + t

λ(1− λω)

)
∥x1 − x2∥ −

t

λ(1− λω) ∥x1 − x2∥

= ∥x1 − x2∥ ,

which proves (5.3.85).

vi) Let λ > 0 and x, y ∈ Dλ = Im(I + λA). Then

∥Aλx−Aλy∥ =
∥∥∥∥ 1
λ

(I − Jλ)x− 1
λ

(I − Jλ) y
∥∥∥∥ = 1

λ
∥(x− y)− (Jλx− Jλy)∥

≤ 1
λ

[∥x− y∥+ ∥Jλx− Jλy∥] .

By item (i), since Jλ is Lipschitz, we have

∥Aλx−Aλy∥ ≤
1
λ
∥x− y∥+ 1

λ(1− λω)∥x− y∥

= λ−1[1 + (1− λω)−1]∥x− y∥.
vii) Let µ, λ ∈ R with 0 < µ ≤ λ. If Dµ ∩Dλ = ∅, there is nothing to prove. Suppose Dµ ∩Dλ ̸= ∅ and

let x ∈ Dµ ∩Dλ. Then

∥Aλx∥ = 1
λ
∥(I − Jλ)x∥ = 1

λ
∥x− Jλx+ Jµx− Jµx∥

≤ 1
λ

[∥x− Jµx∥+ ∥Jλx− Jµx∥] . (5.3.88)

Since Aµ = 1
µ (I − Jµ), we have µAµ = (I − Jµ), and from (5.3.88) we obtain

∥Aλx∥ ≤
1
λ

[µ∥Aµx∥+ ∥Jλx− Jµx∥] . (5.3.89)

On the other hand, by item (iv),

Jλx = Jµ

(
µ

λ
x+ λ− µ

λ
Jλx

)
,
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and by item (i) Jµ is Lipschitz; hence

∥Jλx− Jµx∥ =
∥∥∥∥Jµ

(
µ

λ
x+ λ− µ

λ
Jλx

)
− Jµx

∥∥∥∥
≤ (1− µω)−1

∥∥∥∥µλx+ λ− µ
λ

Jλx− x
∥∥∥∥

= (1− µω)−1
∥∥∥∥λ− µλ (Jλx− x)

∥∥∥∥
= (1− µω)−1(λ− µ)

∥∥∥∥ 1
λ

(Jλ − I)x
∥∥∥∥

= (1− µω)−1(λ− µ)∥Aλx∥.

Substituting into (5.3.89), we get

∥Aλx∥ ≤
1
λ

[
µ∥Aµx∥+ (1− µω)−1(λ− µ)∥Aλx∥

]
.

Multiplying by λ(1− µω) > 0 yields

λ(1− µω)∥Aλx∥ ≤ µ(1− µω)∥Aµx∥+ (λ− µ)∥Aλx∥,

and since λ(1− µω)− (λ− µ) = λ− λµω − λ+ µ = µ(1− λω), we obtain

µ(1− λω)∥Aλx∥ ≤ µ(1− µω)∥Aµx∥,

which implies
(1− λω)∥Aλx∥ ≤ (1− µω)∥Aµx∥.

viii) Consider the set D(A) ∩
⋂

λ>0
Dλ. If this set is empty, there is nothing to prove. Suppose it is

non-empty and take x ∈ D(A) ∩
⋂

λ>0
Dλ. By item (ii) we have

∥Jλx− x∥ ≤ λ(1− λω)−1|Ax|, λ > 0.

Taking the limit as λ→ 0+ we obtain

lim
λ→0+

∥Jλx− x∥ = 0,

that is,
lim

λ→0+
Jλx = x, ∀x ∈ D(A) ∩

⋂
λ>0

Dλ. (5.3.90)

Now let x ∈ D(A) ∩
⋂

λ>0
Dλ and ε > 0. Choose y ∈ D(A) ∩

⋂
λ>0

Dλ such that

∥x− y∥ < ε

2 . (5.3.91)

Then, for this x ∈ D(A) ∩
⋂

λ>0
Dλ we have

1 ∥Jλx− x∥ ≤ ∥Jλx− Jλy∥+ ∥Jλy − y∥+ ∥y − x∥ . (5.3.92)

By (i),
∥Jλx− Jλy∥ ≤ (1− λω)−1∥x− y∥. (5.3.93)

1Since x may not belong to the domain of Jλ, we are considering its extension defined as lim
y→x

Jλy, y ∈ Dλ, which is still

Lipschitz.
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Combining (5.3.92) and (5.3.93) we obtain

∥Jλx− x∥ ≤
[
(1− λω)−1 + 1

]
∥x− y∥+ ∥Jλy − y∥ . (5.3.94)

Since y ∈ D(A) ∩
⋂

λ>0
Dλ, as λ→ 0+ we have

0 ≤ lim
λ→0+

∥Jλx− x∥ ≤ 2∥x− y∥,

and, by (5.3.91),
0 ≤ lim

λ→0+
∥Jλx− x∥ ≤ ε.

By the arbitrariness of ε > 0, the result follows.

Example 5.80 Let T : X −→ X be Lipschitz with constant α, that is,

∥Tx1 − Tx2∥ ≤ α∥x1 − x2∥, ∀x1, x2 ∈ D(T ).

Then, for t > 0, we have I − T
t
∈ A

(
α− 1
t

)
, that is,

∥∥∥∥(x1 − x2) + λ

[(
I − T
t

+ α− 1
t

I

)
x1 −

(
I − T
t

+ α− 1
t

I

)
x2

]∥∥∥∥ ≥ ∥x1 − x2∥. (5.3.95)

Indeed, ∥∥∥∥(x1 − x2) + λ

[(
I − T
t

+ α− 1
t

I

)
x1 −

(
I − T
t

+ α− 1
t

I

)
x2

]∥∥∥∥
=

∥∥∥∥(x1 − x2) + λ

[
x1 − Tx1 + αx1 − x1

t
− x2 − Tx2 + αx2 − x2

t

]∥∥∥∥
=

∥∥∥∥(x1 − x2) + λ

t
[α(x1 − x2)− (Tx1 − Tx2)]

∥∥∥∥
≥

∥∥∥∥(1 + λα

t

)
(x1 − x2)

∥∥∥∥− λ

t
∥Tx1 − Tx2∥

≥
(

1 + λα

t

)
∥x1 − x2∥ −

λ

t
α∥x1 − x2∥

= ∥x1 − x2∥

which proves the claim.

Note that if T : X −→ X is non-expansive, then I − T is an accretive operator (Example 5.71).
In fact, since T is non-expansive, T is Lipschitz with constant α = 1. From the argument above, taking
t = 1, we obtain that I − T is accretive.

Remark 5.81 Let ω ∈ R and A ∈ A(ω). Consider

D =
⋃

µ>0

 ⋂
0<λ<µ

Dλ

 .

Take x ∈ D, λ0 ∈ R such that λ0ω < 1. The map

gx : (0, λ0) −→ R

λ 7−→ gx(λ) = (1− λω)∥Aλx∥

is decreasing on the interval (0, λ0), since by item (vii) of Theorem (5.79) we have that, if 0 < µ ≤ λ < λ0,
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then
(1− λω)∥Aλx∥ ≤ (1− µω)∥Aµx∥.

This function admits a limit as λ→ 0+. Define

∥|Ax∥| = lim
λ→0+

gx(λ) = sup
λ>0

(1− λω)∥Aλx∥. (5.3.96)

(Observe that nothing prevents us from having ∥|Ax∥| = +∞).

Proposition 5.82 Let A ∈ A(ω) and λ > 0 such that λω < 1. Then

(i) ∥Aλx∥ ≤ (1− λω)−1∥|Ax|∥, ∀x ∈ D ∩Dλ;

(ii) lim
λ→0+

∥Aλx∥ = ∥|Ax|∥;

(iii) If D(A) ⊂ D and x ∈ D(A), then ∥|Ax|∥ ≤ |Ax|.

Proof:

(i) We have that, if λ ∈ (0, λ0) and 0 < ξ < λ in such a way that x ∈
⋂

0<ξ<λ

Dξ, then

∥|Ax|∥ = sup
ξ>0

(1− ξω)∥Aξx∥ ≥ (1− λω)∥Aλx∥.

Thus, if λ ∈ (0, λ0), there is nothing else to prove. If λ ≥ λ0, by item (vii) of Theorem 5.79 it
follows that

(1− λω)∥Aλx∥ ≤ (1− λ0ω)∥Aλ0x∥ ≤ ∥|Ax|∥.

(ii) Let x ∈ D.
Case 1: ∥|Ax|∥ <∞.
∥Aλx∥ = (1− λω)−1(1− λω)∥Aλx∥ ⇒ lim

λ→0+
∥Aλx∥ = ∥|Ax|∥.

Case 2: ∥|Ax|∥ =∞.
Let M > 0. There exists λ0 > 0 such that (1− λ0ω)∥Aλ0x∥ ≥M . If 0 < λ < λ0, then

∥Aλx∥ ≥
(1− λ0ω)

1− λω ∥Aλ0x∥ ≥M(1− λω)−1.

Hence, lim
λ→0+

∥Aλx∥ ≥M . Since M > 0 is arbitrary, the result follows.

(iii) By item (ii) of Theorem 5.79, we have

∥Jµx− x∥ ≤ µ(1− µω)−1|Ax|, ∀x ∈ D(A) ∩Dµ. (5.3.97)

Hence,
(1− µω)∥Aµx∥ ≤ |Ax|, ∀x ∈ D(A) ∩Dµ. (5.3.98)

By hypothesis, x ∈ D(A) ∩Dµ for every µω < 1, 0 < µ < µ0. Passing to the limit in (5.3.98), the
result follows.

2

Proposition 5.83 Let ω ∈ R, A ∈ A(ω) and λ > 0 such that λω < 1. Suppose that D(A) is dense in X

and Jλ : D(A)→ X is one–to–one2. Then A is one–to–one.
2Equivalently, Aλ = 1

λ
(I − Jλ) is one–to–one on D(A).
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Proof: Let x1, x2 ∈ D(A) be such that Ax1 = Ax2. Then, for every λ > 0, it follows that

x1 + λAx1 = x2 + λAx2.

Since x1 + λAx1 ∈ Dλ = Im(I + λA) and Jλ is single–valued, we have

Jλ(x1 + λAx1) = Jλ(x2 + λAx2).

By the resolvent identity, Jλ(xi + λAxi) = xi. Thus, x1 = x2, proving that A is injective. 2

Proposition 5.84 Let ω ∈ R and A ∈ A(ω). Suppose that D(A) is dense in X and that for some λ0 > 0
the resolvent Jλ0 : D(A)→ X is one–to–one. Then:

(i) Jλ is one–to–one for every λ > 0 and λω < 1;

(ii) Aλ is one–to–one on D(A) for every λ > 0 and λω < 1;

(iii) A is one–to–one.

Proof:

(i) Fix any λ > 0 with λω < 1. Let x1, x2 ∈ D(A) satisfy

Jλx1 = Jλx2.

We want to show that x1 = x2.
By the resolvent identity (cf. Theorem 5.79, item (iv)), for any µ > 0 such that µω < 1 we may
write

Jµ

(
µ

λ
x+ λ− µ

λ
Jλx

)
= Jλx.

Applying the identity to x1 and x2, and using the hypothesis Jλx1 = Jλx2, we obtain

Jµ

(
µ

λ
x1 + λ− µ

λ
Jλx1

)
= Jµ

(
µ

λ
x2 + λ− µ

λ
Jλx2

)
.

Choose µ = λ0. Since Jλ0 is one–to–one, it follows that

µ

λ
x1 + λ− µ

λ
Jλx1 = µ

λ
x2 + λ− µ

λ
Jλx2.

But Jλx1 = Jλx2, so the last equality reduces to
µ

λ
x1 = µ

λ
x2,

hence x1 = x2.
Thus, Jλ is one–to–one.

(ii) Immediate, since
Aλ = 1

λ
(I − Jλ),

and I − Jλ is one–to–one iff Jλ is one–to–one.

(iii) Follows immediately from Proposition 5.83.

2
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5.4 Maximal Accretive and m-Accretive Operators

Definition 5.85 Let A : X → X be an accretive operator with D(A) ⊂ C ⊂ X. We say that A is
maximal accretive in C if A does not admit a proper accretive extension with domain contained in
C.
We say that A is maximal accretive if A is maximal accretive in X.

Definition 5.86 We say that an operator A : X → X is m-accretive if

Im(I +A) = X.

From the definitions above, every m-accretive operator is maximal accretive. Indeed, let
A : X → X be m-accretive and suppose A ⊂ B, where B is accretive. We prove that A = B.

Let (x, y) ∈ B and set z = x+ y. Then

(z, x) = (x+ y, x) ∈ JB
1 ,

since (x, y) ∈ B.

As B is accretive, Proposition 5.75 implies that JB
1 is single–valued; therefore

JB
1 z = x. (5.4.99)

Since A is m-accretive, there exists x1 ∈ D(A) such that z ∈ (I + A)x1. Thus, z = x1 + y1 with
(x1, y1) ∈ A ⊂ B. Hence, by Observation 5.74,

JB
1 z = x1. (5.4.100)

From (5.4.99)–(5.4.100) we deduce x = x1, hence y = y1, and so (x, y) ∈ A. Thus B ⊂ A.

The converse is false: a maximal accretive operator is not necessarily m-accretive (see [21]), even
when X and X ′ are uniformly convex.

On the other hand, if X is a Hilbert space, accretivity coincides with monotonicity, and since X
is reflexive and both X and X ′ are smooth, Theorem 5.54 gives that A is m-accretive iff it is maximal
accretive.

Proposition 5.87 Let A be an accretive operator such that Im(I + µA) = X for some µ > 0. Then
Im(I + λA) = X for every λ > 0.

Proof: Given λ > 0, set k = λ/µ. We show that Im(I + λA) = X.

Let x ∈ X and consider

x

k
+
(

1− 1
k

)
y ∈ Dµ = Im(I + µA) = X.

Define
zy = Jµ

(
x

k
+
(

1− 1
k

)
y

)
, y ∈ X.
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Since Jµ : X → D(A) and Jµ is single–valued (because A is accretive), we may define the map

B : X −→ D(A)

y 7−→ By = Jµ

(
x
k +

(
1− 1

k

)
y
) .

As Jµ is a contraction (Proposition 5.76), we have for all y1, y2 ∈ X:

∥By1 −By2∥ ≤
∣∣∣∣1− 1

k

∣∣∣∣ ∥y1 − y2∥.

Now
∣∣∣∣1− 1

k

∣∣∣∣ < 1 iff k > 1
2 . Thus, if λ > µ/2, then B is a contraction and hence has a unique fixed

point y0 ∈ D(A) such that

y0 = By0 = Jµ

(
x

k
+
(

1− 1
k

)
y0

)
.

Thus,
x

k
∈ y0

k
+ µAy0,

and multiplying by k gives

x ∈ y0 + kµAy0 = y0 + λAy0 = (I + λA)y0.

Hence Im(I + λA) = X for all λ > µ/2.

Iterating the argument yields

Im(I + λA) = X for all λ > µ

2n
, n ∈ N.

Thus, Im(I + λA) = X for every λ > 0. 2

Corollary 5.88

(i) An accretive operator A is m-accretive iff Im(I + λA) = X for all λ > 0;

(ii) If A is m-accretive, then D(Aλ) = D(Jλ) = Dλ = X for every λ > 0.

Proof:

(i) If A is m-accretive, then Im(I + A) = X, and by Proposition 5.87, Im(I + λA) = X for all λ > 0.
Conversely, if Im(I + λA) = X for all λ > 0, choosing λ = 1 shows A is m-accretive.

(ii) If A is m-accretive, then Im(I + λA) = X for all λ > 0, hence

D(Aλ) = D(Jλ) = Dλ = X.

2

Proposition 5.89 Every m-accretive operator is closed.

Proof: Let A : X → X be m-accretive, and let (xn) ⊂ D(A) satisfy xn → x and yn ∈ Axn with yn → y.
We prove that

(x, y) ∈ A. (5.4.101)
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Since xn + yn → x+ y and D(J1) = X, both xn + yn and x+ y lie in D(J1).

By Proposition 5.76, J1 is a contraction and single–valued. Thus,

J1(xn + yn) = xn. (5.4.102)

Passing to the limit yields
J1(x+ y) = x,

which means (x, y) ∈ A, proving (5.4.101). 2

Example 5.91 Let Ω ⊂ Rn be a bounded open set with smooth boundary Γ, and consider the operator

A : Lp(Ω)→ Lp(Ω), 1 < p <∞,

defined by
D(A) = W 1,p

0 (Ω) ∩W 2,p(Ω), Au = −∆u.

We show that A is m-accretive. Since A is linear and single–valued, for u1, u2 ∈ D(A),

⟨Au1 −Au2, F (u1 − u2)⟩ = ⟨−∆u, Fu⟩,

where u = u1 − u2 and F (u) = u|u|p−2∥u∥2−p
p .

Integrating by parts,

⟨−∆u, Fu⟩ = (p− 1)∥u∥2−p
p

∫
Ω
|∇u|2|u|p−2 dx ≥ 0.

Thus A is accretive. By elliptic regularity [14], for each v ∈ Lp(Ω) there exists u ∈ W 1,p
0 (Ω) ∩

W 2,p(Ω) solving
u−∆u = v,

so Im(I −∆) = Lp(Ω), and hence A is m-accretive.

In particular, when p = 2,

D(A) = H2(Ω) ∩H1
0 (Ω), Au = −∆u,

is m-accretive and therefore maximal monotone (Theorem 5.54).

Theorem 5.92 The following statements are equivalent:

(i) A is maximal accretive in C ⊃ D(A);

(ii) If x ∈ C, y ∈ X and

∥x− u+ λ(y − v)∥ ≥ ∥x− u∥ for all (u, v) ∈ A,

then (x, y) ∈ A;

(iii) If x ∈ C, y ∈ X and there exists ξ′ ∈ F (x− u) such that

⟨ξ′, y − v⟩ ≥ 0 ∀(u, v) ∈ A,

then (x, y) ∈ A.
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Proof: Same as the proof of Theorem 5.27 for (i) ⇔ (ii). The equivalence (ii) ⇔ (iii) follows from
Proposition 5.68. 2

The class of accretive, maximal accretive, and m-accretive operators satisfies an analogous trans-
lation invariance as in Proposition 5.24 for monotone operators.

Proposition 5.93 If A is accretive, maximal accretive, or m-accretive, then any translate of A in D(A)
and Im(A) remains, respectively, accretive, maximal accretive, or m-accretive.

Proposition 5.94 Let X be smooth, A ∈ A(ω), D(A) ⊂ C ⊂ X, and assume that A + ωI is maximal
in C. Then Ax is convex and closed.

Proof: Let x ∈ D(A) and let y1, y2 ∈ Ax, t ∈ [0, 1]. We show that ty1 + (1− t)y2 ∈ Ax.

Since A ∈ A(ω), A+ ωI is accretive. Hence, for every (u, v) ∈ A and for i = 1, 2:

(x, yi + ωx), (u, v + ωu) ∈ A+ ωI.

Thus, by Corollary 5.69, there exists x′
i ∈ F (x− u) such that

⟨x′
i, yi + ωx− v − ωu⟩ ≥ 0.

Since X is smooth, F is single–valued, hence x′
1 = x′

2 = F (x− u), and so

⟨F (x− u), yi + ωx− v − ωu⟩ ≥ 0.

Multiplying by t and 1− t and adding yields

⟨F (x− u), ty1 + (1− t)y2 + ωx− v − ωu⟩ ≥ 0. (5.4.103)

Since x ∈ C and A+ ωI is maximal accretive in C, Theorem 5.92(iii) applied to (5.4.103) gives

(x, ty1 + (1− t)y2 + ωx) ∈ A+ ωI,

and therefore ty1 + (1− t)y2 ∈ Ax.

Closedness follows analogously by taking limits. 2

Definition 5.95 An operator A : X → X, where X is a Banach space, is called demiclosed if

(xn, yn) ⊂ A, xn → x, yn ⇀ y =⇒ (x, y) ∈ A.

Definition 5.96 A map φ : X → Y between Banach spaces is Fréchet differentiable at x ∈ X if
there exists a bounded linear map L(x) : X → Y such that

φ(x+ y)− φ(x) = L(x)y + ω(x, y),

with
lim
y→0

ω(x, y)
∥y∥

= 0.

(The long Lemmas 2.4.11–2.4.12 are kept in the Portuguese source; only the introduction is re-
peated here.)

Proposition 5.97 Let X be a Banach space whose norm is Fréchet differentiable, and let A ∈ A(ω) such
that A+ ωI is maximal in D(A). Then A is demiclosed.
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Proof: As the norm is Fréchet differentiable, see [47] Lemma 6.11 p53, and [47] Theorem 6.12 p54
together imply that the duality map F is single–valued and continuous. (for the reader’s convenience we
proved these results below)

Let (xn, yn) ⊂ A with xn → x and yn ⇀ y. Since A+ ωI is accretive,

⟨F (xn − u), yn + ωxn − v − ωu⟩ ≥ 0 ∀(u, v) ∈ A.

Passing to the limit yields

⟨F (x− u), y + ωx− v − ωu⟩ ≥ 0.

Since x ∈ D(A) and A+ ωI is maximal in D(A), Theorem 5.92(iii) gives

y + ωx ∈ (A+ ωI)x,

hence (x, y) ∈ A. 2

Proposition 5.98 Every operator A ∈ A(ω) such that A+ ωI is maximal in D(A) is closed as a subset
of X ×X.

Proof: Let (xn, yn) ⊂ A with xn → x and yn → y. For each (u, v) ∈ A and λ ≥ 0,

∥xn − u∥ ≤ ∥xn − u+ λ(yn + ωxn − v − ωu)∥.

Passing to the limit gives

∥x− u∥ ≤ ∥x− u+ λ(y + ωx− v − ωu)∥.

As x ∈ D(A) and A+ ωI is maximal accretive in D(A), Theorem 5.92 yields (x, y) ∈ A. 2

Proposition 5.99 Let X ′ be uniformly convex, A ∈ A(ω), A+ ωI maximal in D(A) and

D(A) ⊂ Im(I + λA), 0 < λ < λ0, λ0ω < 1.

Then
lim
λ→0
∥Aλx∥ = |Ax|, ∀x ∈ D(A),

where |Ax| = inf{∥y∥; y ∈ Ax}.

Proof: Since D(A) ⊂ Dλ for all 0 < λ < λ0, we have D(A) ⊂ D =
⋂

0<λ≤λ0
Dλ.

Proposition 5.82(ii) gives

lim
λ→0
∥Aλx∥ = ∥|Ax|| = lim

λ→0
(1− λω)∥Aλx∥.

Moreover, Proposition 5.82(iii) gives

∥|Ax|| ≤ |Ax|.

Since X ′ is uniformly convex, X is reflexive; thus (Aλx) is bounded and admits a weakly convergent
subsequence

Aλnx ⇀ y.
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By lower semicontinuity,
∥y∥ ≤ ∥|Ax||.

Also, Aλnx ∈ A(Jλnx) and Jλnx→ x, and since A is demiclosed (Proposition 5.97), it follows that
y ∈ Ax. Therefore

|Ax| ≤ ∥y∥ ≤ ∥|Ax||.

Thus |Ax| = ∥|Ax||, and hence
lim
λ→0
∥Aλx∥ = |Ax|.

2

Lemma 5.100 (Kato) Let C ⊂ X be a nonempty closed convex subset of a smooth Banach space X.
Then x ∈

◦
C iff

x ∈ C and ∥x∥2 ≤ ⟨F (x), y⟩ ∀ y ∈ C.

Proof: If x satisfies the inequality, then

∥x∥2 = ⟨F (x), x⟩ ≤ ⟨F (x), y⟩ ≤ ∥F (x)∥∥y∥ = ∥x∥∥y∥,

so ∥x∥ ≤ ∥y∥ for all y ∈ C, hence x is a minimum–norm point in C.

Conversely, suppose x ∈
◦
C and y ∈ C. For t ∈ (0, 1),

∥(1− t)x+ ty∥2 ≤ ∥(1− t)x+ ty∥∥x∥+ t⟨F ((1− t)x+ ty), y − x⟩.

Since ∥x∥ ≤ ∥(1− t)x+ ty∥, the difference yields

⟨F ((1− t)x+ ty), y − x⟩ ≥ 0.

As t→ 0, using demicontinuity of F , we obtain

⟨F (x), y − x⟩ ≥ 0.

Hence
∥x∥2 = ⟨F (x), x⟩ ≤ ⟨F (x), y⟩,

which completes the proof. 2

Lemma 5.101 Let X be a Banach space and let C ̸= ∅ be a convex, closed subset of X. If (xn) ⊂ C is
a sequence such that ∥xn∥ → |C| and xn ⇀ x, then x ∈

◦
C.

Proof: Since C is convex and closed, it is weakly closed. As xn ⇀ x, we have x ∈ C and hence ∥x∥ ≥ |C|.
On the other hand, by the lower semicontinuity of the norm, we have

∥x∥ ≤ lim inf
n
∥xn∥ = lim

n
∥xn∥ = |C|.

It follows that ∥x∥ = |C| and therefore x ∈
◦
C. 2
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Theorem 5.102 Let X be a Banach space.

i) X is reflexive if and only if for each nonempty, convex, closed subset C of X, one has
◦
C ̸= ∅;

ii) X is strictly convex if and only if for each nonempty, convex, closed subset C of X, the set
◦
C

contains at most one element;

iii) X is reflexive and strictly convex if and only if for each nonempty, convex, closed subset C of X,
the set

◦
C contains a unique point.

Proof: (i) Suppose that X is reflexive and let (xn) ⊂ C be such that ∥xn∥ −→ |C|. Then (xn)n∈N ⊂ C
is bounded, so there exist a subsequence (xnk

) ⊂ (xn) and an x ∈ X such that

xnk
⇀ x,

by Theorem III.27, p. 50, in Brézis.

Now, by Lemma 5.36, it follows that x ∈
◦
C, that is,

◦
C ̸= ∅.

We now prove the converse by using James’ Theorem (see [36], p. 16, Theorem 3), which states
that X is reflexive if every x′ ∈ X ′ attains its norm, i.e., there exists z ∈ {x ∈ X; ∥x∥ ≤ 1} such that

⟨x′, z⟩ = sup
y∈X

∥y∥≤1

∣∣⟨x′, y⟩
∣∣ = ∥x′∥.

Let x′ ∈ X ′ and define
C =

{
x ∈ X; ⟨x′, x⟩ ≥ ∥x′∥

}
.

We claim that C is convex and closed. Indeed, if x, y ∈ C and t ∈ [0, 1], then

⟨x′, tx+ (1− t)y⟩ = t⟨x′, x⟩+ (1− t)⟨x′, y⟩ ≥ t∥x′∥+ (1− t)∥x′∥ = ∥x′∥,

so tx+ (1− t)y ∈ C for all t ∈ [0, 1], proving that C is convex.

To see that C is closed, let (xn) ⊂ C be such that xn −→ x. We must show that x ∈ C. Since
xn → x, by the continuity of x′ we have

⟨x′, xn⟩ −→ ⟨x′, x⟩ as n −→∞,

that is, given ε > 0, there exists n0 ∈ N such that

∀n ≥ n0
∣∣⟨x′, xn⟩ − ⟨x′, x⟩

∣∣ < ε,

which is equivalent to
−ε < ⟨x′, x⟩ − ⟨x′, xn⟩ < ε.

Hence,
⟨x′, x⟩ > −ε+ ⟨x′, xn⟩ ≥ −ε+ ∥x′∥.

By the arbitrariness of ε > 0, it follows that

⟨x′, x⟩ ≥ ∥x′∥.

Thus x ∈ C and therefore C is closed.
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Now let (yn)n∈N ⊂ C with ∥yn∥ = 1 for all n ∈ N and such that

lim
n→∞

|⟨x′, yn⟩| = ∥x′∥ = sup
y∈X

∥y∥=1

|⟨x′, y⟩|.

Define
zn = ∥x

′∥ yn

⟨x′, yn⟩
.

Then
⟨x′, zn⟩ =

〈
x′,
∥x′∥ yn

⟨x′, yn⟩

〉
= ∥x′∥
⟨x′, yn⟩

⟨x′, yn⟩ = ∥x′∥,

so zn ∈ C for all n ∈ N, and

lim
n→+∞

∥zn∥ = lim
n→+∞

∥x′∥ · ∥yn∥
|⟨x′, yn⟩|

= lim
n→+∞

∥x′∥
|⟨x′, yn⟩|

= ∥x′∥ · 1
lim

n→+∞
|⟨x′, yn⟩|

= ∥x′∥ · 1
∥x′∥

= 1.

By the definition of |C| we have

|C| ≤ ∥x∥, ∀x ∈ C.

In particular,
|C| ≤ ∥zn∥, ∀n ∈ N.

Passing to the limit, we obtain
|C| ≤ 1.

By hypothesis,
◦
C= {x ∈ C; ∥x∥ = |C|} ≠ ∅, hence there exists x0 ∈ C such that ∥x0∥ = |C|.

Since x0 ∈ C, we have
⟨x′, x0⟩ ≥ ∥x′∥. (5.4.104)

On the other hand, from ∥x0∥ = |C| ≤ 1, we get

⟨x′, x0⟩ ≤ |⟨x′, x0⟩| ≤ ∥x′∥∥x0∥ ≤ ∥x′∥. (5.4.105)

From (5.4.104) and (5.4.105), we deduce

⟨x′, x0⟩ = ∥x′∥,

with x0 belonging to the closed unit ball. Since x′ ∈ X ′ was arbitrary, James’ Theorem yields that X is
reflexive.

(ii) Suppose that X is strictly convex and let C ⊂ X be convex, closed and nonempty. If
◦
C= ∅,

there is nothing to prove. Assume
◦
C ̸= ∅ and let x, y ∈

◦
C. Then x+y

2 ∈ C, thus∥∥∥∥x+ y

2

∥∥∥∥ ≥ |C|. (5.4.106)

However, ∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1
2∥x∥+ 1

2∥y∥ = |C|. (5.4.107)
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From (5.4.106) and (5.4.107) it follows that∥∥∥∥x+ y

2

∥∥∥∥ = |C| = ∥x∥ = ∥y∥.

Since X is strictly convex, item (iii) of Lemma 5.36 gives x = y. Hence
◦
C contains at most one

element.

Conversely, assume that for every convex, closed subset C ⊂ X, the set
◦
C contains at most one

element. Let x, y ∈ UX , with x ̸= y, where UX = {x ∈ X; ∥x∥ = 1}. Consider the subset

K = {tx+ (1− t)y; 0 ≤ t ≤ 1} ⊂ UX .

We claim that K is convex, closed and that
◦
K= K.

• K is convex.

Let z1, z2 ∈ K and λ ∈ [0, 1]. We must show that

λz1 + (1− λ)z2 ∈ K.

Since z1 = t1x+ (1− t1)y and z2 = t2x+ (1− t2)y, we obtain

λz1 + (1− λ)z2 = λ(t1x+ (1− t1)y) + (1− λ)(t2x+ (1− t2)y)
= (λt1 + (1− λ)t2)x+ (λ(1− t1) + (1− λ)(1− t2))y. (5.4.108)

Observe that

λt1 + (1− λ)t2 + λ(1− t1) + (1− λ)(1− t2) = λt1 + (1− λ)t2 + λ− λt1 + (1− λ)− (1− λ)t2
= λ+ (1− λ) = 1, ∀λ ∈ [0, 1].

Setting t3 = λt1 + (1 − λ)t2, we have λ(1 − t1) + (1 − λ)(1 − t2) = 1 − t3, and from (5.4.108) it
follows that

λz1 + (1− λ)z2 = t3x+ (1− t3)y, t3 ∈ [0, 1], ∀λ ∈ [0, 1],

that is, λz1 + (1− λ)z2 ∈ K, proving that K is convex.

• K is closed.

Let (zn)n∈N ⊂ K be such that zn −→ z in X. Then there exists (tn)n∈N ⊂ [0, 1] with

zn = tnx+ (1− tn)y.

The sequence (tn)n∈N ⊂ [0, 1] is bounded, so there exists a subsequence, again denoted (tn),
converging in [0, 1]:

tn −→ t ∈ [0, 1].

We claim that
zn −→ tx+ (1− t)y in X.
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Indeed, ∥∥zn − (tx+ (1− t)y)
∥∥ =

∥∥(tn − t)x+ (tn − t)y
∥∥

≤ |tn − t|∥x∥+ |tn − t|∥y∥ −→ 0, n −→∞.

By the uniqueness of the limit, z = tx+ (1− t)y ∈ K, with t ∈ [0, 1], proving that K is closed.

• We show that
◦
K= K.

By definition,
◦
K⊂ K. On the other hand, since K ⊂ UX , we have

∥z∥ = 1, ∀z ∈ K.

Thus
|K| = inf{∥z∥; z ∈ K} = 1,

and if z ∈ K, then z ∈
◦
K, because ∥z∥ = |K| = 1. Hence

◦
K= K.

By hypothesis,
◦
K contains at most one element and K ̸= ∅, so K contains exactly one element,

namely x = y. This is a contradiction. Therefore,

{tx+ (1− t)y; x ̸= y, 0 ≤ t ≤ 1} ̸⊂ UX ,

which proves that X is strictly convex.

(iii) (⇒) Suppose X is strictly convex and reflexive.

Let C ⊂ X be convex, closed and nonempty. By item (i),
◦
C ̸= ∅, and by item (ii),

◦
C contains at

most one element. Hence
◦
C contains a unique element.

(⇐) Conversely, assume that for every convex, closed, nonempty subset C ⊂ X, the set
◦
C contains

a unique element. Then
◦
C ̸= ∅, so by item (i) X is reflexive and, by item (ii), X is strictly convex. 2

Theorem 5.103 Let X be a Banach space. The following assertions are equivalent:
(i) X is reflexive, strictly convex and satisfies the property

xn ⇀ x and lim
n→∞

sup ∥xn∥ ≤ ∥x∥ ⇒ xn → x. (5.4.109)

(ii) For each convex, closed subset C ⊂ X and each sequence (xn) ⊂ C such that ∥xn∥ → |C|, there exists
x ∈ X such that xn → x.

Proof: (i)⇒(ii) Let C ⊂ X be convex and closed (in the strong topology) and let (xn)n∈N ⊂ C be such
that

∥xn∥ −→ |C| = inf{∥x∥; x ∈ C} as n −→∞. (5.4.110)

From (5.4.110), the sequence (xn) is bounded. Since X is reflexive,

∃(xnk
)k∈N ⊂ (xn)n∈N and x ∈ X such that xnk

⇀ x, as k −→∞. (5.4.111)

By Lemma 5.101, we have
x ∈

◦
C, (5.4.112)

so
◦
C ̸= ∅. Thus, by the strict convexity of X (and its reflexivity), Theorem 5.102 (iii) implies that x is
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the unique element of
◦
C.

Claim: xn ⇀ x as n −→∞.

We prove this by contradiction. Suppose xn ̸⇀ x as n −→ ∞. Then there exist N′ ⊂ N and a
weak neighbourhood Vx of x such that xk /∈ Vx for all k ∈ N′. However, {xk}k∈N′ ⊂ {xn}n∈N is bounded,
hence {xk}k∈N′ is bounded and there exists a subsequence {xkj

} ⊂ {xk} such that

xkj ⇀ x0. (5.4.113)

It follows that x0 ∈
◦
C. Indeed, by lower semicontinuity of the norm with respect to the weak

topology,
∥x0∥ ≤ lim

n→∞
inf ∥xn∥ ≤ |C|.

On the other hand, since C is convex and closed, its weak closure coincides with its strong closure,
and {xkj

} ⊂ C converges weakly to an element of C, that is, x0 ∈ C. Hence

∥x0∥ ≥ |C|.

Therefore, ∥x0∥ = |C| and we conclude that x0 ∈
◦
C= {x}. Thus,

x0 = x. (5.4.114)

Consequently, there exists j0 ∈ N such that

xkj
∈ Vx, ∀j ≥ j0, (5.4.115)

which contradicts the fact that xk /∈ Vx for all k ∈ N′.

Hence xn ⇀ x as n −→∞. From this and from

∥x∥ = |C| = lim
n→∞

∥xn∥ = lim
n→∞

sup ∥xn∥, (5.4.116)

it follows, by hypothesis (5.4.109), that

xn −→ x, as n −→∞, (5.4.117)

as desired.

(ii)⇒(i)

Let C ⊂ X be convex, closed and nonempty.

Claim:
◦
C ̸= ∅.

If C is finite, then C = {x1, . . . , xn} for some n ∈ N, and

|C| = inf{∥x∥; x ∈ C} = inf{∥x1∥, . . . , ∥xn∥} (5.4.118)
= ∥xn0∥ for some n0 ∈ {1, . . . , n},

so xn0 ∈
◦
C, proving the claim.
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Now suppose that C is infinite. By the definition of |C|, there exists (xn)n∈N ⊂ C such that

∥xn∥ −→ |C| as n −→∞. (5.4.119)

By hypothesis (ii), there exists x ∈ X such that

xn −→ x, as n −→∞. (5.4.120)

It follows that
∥xn∥ −→ ∥x∥, as n −→∞, (5.4.121)

and by uniqueness of the limit,
∥x∥ = |C|. (5.4.122)

Since C is closed, x ∈ C, and from (5.4.122) we conclude that x ∈
◦
C, i.e.,

◦
C ̸= ∅, as claimed.

We now show that
◦
C has exactly one element.

If y ∈
◦
C then y ∈ C and ∥y∥ = |C|. Define a sequence (zn)n∈N ⊂ X by

z2n = xn and z2n+1 = y, ∀n ∈ N. (5.4.123)

Then (zn)n∈N ⊂ C and

∥z2n∥ = ∥xn∥ −→ |C|, as n −→∞, (5.4.124)

∥z2n+1∥ = ∥y∥ = |C|, ∀n ∈ N.

From (5.4.124),
∥zn∥ −→ |C|, as n −→∞. (5.4.125)

By hypothesis (ii), there exists z ∈ X such that

zn −→ z, as n −→∞, (5.4.126)

so z ∈ C = C since C is closed.

Moreover, the subsequences (z2n) = (xn) ⊂ (zn) and (z2n+1) = (y) ⊂ (zn) are convergent and

z2n = xn −→ x, as n −→∞, (5.4.127)

z2n+1 = y −→ y, as n −→∞.

From (5.4.126) and (5.4.127), we conclude that

x = z = y,

i.e., y = x. Thus
◦
C has a unique element. Since C was arbitrary (convex, closed and nonempty), Theorem

5.102 (iii) shows that X is reflexive and strictly convex.

It remains to prove that X satisfies property (5.4.109). Let (xn)n∈N ⊂ X and x ∈ X be such that

xn ⇀ x and lim
n→∞

sup ∥xn∥ ≤ ∥x∥. (5.4.128)
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By lower semicontinuity of the norm in the weak topology (see Brézis, Proposition III.5 (iii)), we
have from (5.4.128)

∥x∥ ≤ lim
n→∞

inf ∥xn∥. (5.4.129)

From (5.4.128) and (5.4.129) it follows that the limit lim
n→∞

∥xn∥ exists and

lim
n→∞

∥xn∥ = ∥x∥. (5.4.130)

Clearly, from (5.4.128) we have

xn

∥x∥
⇀

x

∥x∥
as n→∞, (5.4.131)

and from (5.4.130), ∥∥∥∥ xn

∥x∥

∥∥∥∥ −→ ∥∥∥∥ x

∥x∥

∥∥∥∥ = 1, as n→∞. (5.4.132)

Let yn = xn

∥x∥ and y = x
∥x∥ for each n ∈ N. Then (5.4.131) and (5.4.132) become

yn ⇀ y as n→∞, (5.4.133)

and
∥yn∥ −→ ∥y∥, as n→∞. (5.4.134)

Let y∗ ∈ F (y). Then
⟨y∗, y⟩ = ∥y∗∥ = ∥y∥ = 1. (5.4.135)

Consider the set
C =

{
ω ∈ X such that ⟨y∗, ω⟩ ≥ 1

}
. (5.4.136)

Claim: C is convex and closed.

Indeed, if ω1, ω2 ∈ C and λ ∈ [0, 1], then

⟨y∗, λω1 + (1− λ)ω2⟩ = λ⟨y∗, ω1⟩+ (1− λ)⟨y∗, ω2⟩ ≥ λ+ (1− λ) = 1, (5.4.137)

so λω1 + (1− λ)ω2 ∈ C and C is convex.

Now let ω0 ∈ C. Then there exists (ωn)n∈N ⊂ C such that

ωn −→ ω0 as n −→∞. (5.4.138)

Thus ωn ⇀ ω0 as n→∞, and hence

⟨y∗, ω0⟩ = lim
n→∞

⟨y∗, ωn⟩ ≥ 1, (5.4.139)

so ω0 ∈ C. Therefore, C ⊂ C, which shows that C is closed.

Moreover, y ∈ C (see (5.4.135)) and ∥y∥ = 1. Hence

|C| = inf{∥ω∥; ω ∈ C} ≤ ∥y∥ = 1. (5.4.140)

Assume, for a contradiction, that |C| < 1. Then there exists ω0 ∈ C such that

|C| ≤ ∥ω0∥ < ∥y∥ = 1. (5.4.141)
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Notice that 0 /∈ C, so ω0 ̸= 0. From (5.4.141),〈
y∗,

ω0

∥ω0∥

〉
= 1
∥ω0∥

⟨y∗, ω0⟩ ≥
1
∥ω0∥

> 1. (5.4.142)

Hence, from (5.4.135) and (5.4.142),

1 = ∥y∗∥ = sup
ω∈X

∥ω∥=1

⟨y∗, ω⟩ ≥
〈
y∗,

ω0

∥ω0∥

〉
> 1, (5.4.143)

a contradiction. Thus we must have
|C| ≥ 1. (5.4.144)

From (5.4.140) and (5.4.144), we conclude that

|C| = 1 = ∥y∥, (5.4.145)

so y ∈
◦
C. Since X has already been shown to be reflexive and strictly convex, Theorem 5.102 (iii) implies

that y is the unique member of
◦
C.

From (5.4.133) and (5.4.135) we have

lim
n→∞

⟨y∗, yn⟩ = ⟨y∗, y⟩ = 1. (5.4.146)

We may assume, without loss of generality, that

⟨y∗, yn⟩ > 0, ∀n ∈ N. (5.4.147)

Define zn = yn

⟨y∗, yn⟩
for each n ∈ N. Then

⟨y∗, zn⟩ = ⟨y
∗, yn⟩
⟨y∗, yn⟩

= 1, ∀n ∈ N, (5.4.148)

so (zn)n∈N ⊂ C. Furthermore, from (5.4.134), (5.4.135) and (5.4.146),

∥zn∥ = ∥yn∥
⟨y∗, yn⟩

−→ 1
1 = 1 = |C| as n −→∞. (5.4.149)

Hence, by hypothesis (ii), there exists z ∈ X such that

zn −→ z as n −→∞, (5.4.150)

and thus zn ⇀ z as n→∞. By Lemma 5.101, we conclude that z ∈
◦
C= {y}, that is, z = y. Therefore,

zn −→ y as n −→∞. (5.4.151)

From this and (5.4.146) it follows that

yn = ⟨y∗, yn⟩zn −→ 1 · y = y as n −→∞, (5.4.152)

and consequently
xn = ∥x∥yn −→ ∥x∥

x

∥x∥
= x as n −→∞, (5.4.153)
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that is,
xn −→ x as n −→∞, (5.4.154)

which completes the proof. 2

5.5 Sections

Definition 5.104 Let X be a normed space and A : X −→ X an operator. We define the operator
◦
A: X −→ X by

◦
A x = (Ax)◦; that is,

◦
A x = {y ∈ Ax; ∥y∥ = |Ax|},

where |Ax| = inf{∥y∥; y ∈ Ax}. The operator
◦
A is called the minimal section of A.

Theorem 5.105 Let X be a reflexive, strictly convex and smooth Banach space and let A ∈ A(ω) be a
demiclosed operator such that

D(A) ⊂ Im(I + λA), 0 < λ < λ0 with λ0ω < 1.

Then
◦
A is a single-valued operator and D(

◦
A) = D(A).

Proof: Let B be the operator defined by D(B) = D(A) and Bx = convAx, where convAx is the convex
hull of Ax.

By definition of B, if x ∈ D(A) then Bx ̸= ∅. Note that Bx is convex and closed. By Theorem 5.14
p35 [47] (iii), the set

◦
B x = (Bx)◦ has a unique element, that is, there exists a unique element

◦
B x ∈ Bx

such that ∥
◦
B x∥ = |Bx|.

We assume, for the moment, that

◦
B x ∈ Ax, ∀x ∈ D(A). (5.5.155)

Assuming (5.5.155), we claim that
◦
B x is the unique element of

◦
A x. Indeed, since A ⊂ B, from

(5.5.155) we obtain
inf{∥y∥; y ∈ Bx} ≤ inf{∥y∥; y ∈ Ax},

i.e., |Bx| ≤ |Ax|, and since ∥
◦
B x∥ = |Bx|,

∥
◦
B x∥ ≤ |Ax|.

On the other hand, as we are assuming
◦
B x ∈ Ax, we get

|Ax| = inf{∥y∥; y ∈ Ax} ≤ ∥
◦
B x∥.

From these two inequalities it follows that |Ax| = ∥
◦
B x∥, and therefore

◦
B x ∈

◦
A x.
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Furthermore,

◦
A x = {y ∈ Ax; ∥y∥ = |Ax|}

= {y ∈ Ax; ∥y∥ = ∥
◦
B x∥}

⊂ {y ∈ Bx; ∥y∥ = ∥
◦
B x∥}

= {y ∈ Bx; ∥y∥ = |Bx|} =
◦
B x,

since A ⊂ B. Thus
◦
A x ⊂

◦
B x, and because

◦
B x is a singleton,

◦
A x is at most a singleton. Since

◦
B x ∈

◦
A x,

it follows that the unique element of
◦
A x is

◦
B x.

Hence, if x ∈ D(A), then
◦
A x is a singleton, so

◦
A x ̸= ∅, and therefore x ∈ D(

◦
A). This proves that

D(A) ⊂ D(
◦
A).

Conversely, if x ∈ D(
◦
A), then

◦
A x ̸= ∅, i.e., the set {y ∈ Ax; ∥y∥ = |Ax|} ≠ ∅. Thus there exists

y ∈ Ax such that ∥y∥ = |Ax|, which implies Ax ̸= ∅, and hence x ∈ D(A). Therefore D(
◦
A) ⊂ D(A), and

we conclude that D(A) = D(
◦
A).

It remains to prove (5.5.155).

Let x ∈ D(A) and y ∈ Ax. By accretivity of A+ ωI and the fact that F is single-valued (since X
is smooth), we have

⟨F (x− u), y + ωx− (v + ωu)⟩ ≥ 0, ∀(u, v) ∈ A. (5.5.156)

Let z ∈ convAx. Then there exist yi ∈ Ax and λi ≥ 0,
∑n

i=1 λi = 1, such that z =
∑n

i=1 λiyi.
Thus, from (5.5.156),

⟨F (x− u), z + ωx− (v + ωu)⟩ =
〈
F (x− u),

n∑
i=1

λiyi + ωx− (v + ωu)
〉

=
n∑

i=1
λi⟨F (x− u), yi + ωx− (v + ωu)⟩.

From (5.5.156),
⟨F (x− u), yi + ωx− (v + ωu)⟩ ≥ 0, i = 1, . . . , n,

hence
⟨F (x− u), z + ωx− (v + ωu)⟩ ≥ 0, ∀z ∈ convAx, ∀(u, v) ∈ A. (5.5.157)

Since F (x− u) ∈ X ′, the inequality (5.5.157) remains valid for all z ∈ convAx := Bx. Therefore,

⟨F (x− u), z + ωx− (v + ωu)⟩ ≥ 0, ∀(x, z) ∈ B, ∀(u, v) ∈ A.

Proceeding analogously, we obtain

⟨F (x− u), z + ωx− (v + ωu)⟩ ≥ 0, ∀(x, z), (u, v) ∈ B,

that is, B ∈ A(ω).

By hypothesis, D(A) ⊂ Im(I + λA) for 0 < λ < λ0. Hence, by item (ii) of Theorem 5.79, for each
x ∈ D(A),

∥Aλx∥ ≤ (1− ωλ)−1|Ax|, 0 < λ < λ0, λω < 1. (5.5.158)

Observe that if ω < 0, then 1−λω > 1 and thus 1
1−λω < 1. If ω ≥ 0, then 1−λω ≥ 1−λ0ω, hence
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1
1−λω ≤

1
1−λ0ω .

From (5.5.158), for each x ∈ D(A) there exists L > 0 such that

∥Aλx∥ ≤ L, ∀λ ∈ (0, µ0), µ0 = min{λ0, 1/ω}.

Thus, for every sequence (λk) ⊂ (0, µ0) with λk → 0+, we have ∥Aλk
x∥ ≤ L. By reflexivity of X,

there exists a subsequence (λn) ⊂ (λk), λn → 0+, and y ∈ X such that Aλnx ⇀ y.

Now take a sequence (λn) ⊂ (0, µ0) such that λn → 0+ and Aλn
x ⇀ y ∈ X. Note that λnω < 1

for all n ∈ N, and by item (viii) of Theorem 5.79, JA
λn
x→ x since x ∈ D(A)∩

(⋂
0<λ<µ0

Dλ

)
. Moreover,

by Proposition 5.99, we have (JA
λn
x,Aλn

x) ∈ A. Thus

JA
λn
x −→ x, Aλn

x ⇀ y, and (JA
λn
x,Aλn

x) ∈ A. (5.5.159)

Since A is demiclosed by hypothesis, we deduce that (x, y) ∈ A, i.e., y ∈ Ax.

We now claim that
JB

λ x = JA
λ x, ∀x ∈ D(A), ∀λ ∈ (0, µ0). (5.5.160)

Indeed, let x ∈ D(A). SinceD(A) ⊂ Im(I+λA) ⊂ Im(I+λB), we can write x = x1+λy1 = x2+λy2,
with (x1, y1) ∈ A and (x2, y2) ∈ B. Thus JA

λ x = x1 and JB
λ x = x2, because in this case both JA

λ and
JB

λ are single-valued. On the other hand, since A ⊂ B, (x1, y1) ∈ B and thus JB
λ x = x1 = JA

λ x, which
proves (5.5.160). Consequently JB

λn
x = JA

λn
x, and so Aλnx = Bλnx. By lower semicontinuity of the norm

in the weak topology of X,

∥y∥ ≤ lim
n→+∞

inf ∥Aλn
x∥ = lim

n→+∞
inf ∥Bλn

x∥. (5.5.161)

Furthermore, by item (ii) of Theorem 5.79,

∥Bλn
x∥ ≤ (1− λnω)−1|Bx|, (5.5.162)

so combining (5.5.161) and (5.5.162), we obtain

∥y∥ ≤ lim
n→+∞

inf(1− λnω)−1|Bx|

= lim
n→+∞

(1− λnω)−1|Bx| = |Bx|.

Since y ∈ Ax ⊂ Bx and ∥y∥ ≤ |Bx|, it follows that ∥y∥ = |Bx| and therefore y =
◦
B x, because

◦
B x

is the unique element of Bx with this property. Thus
◦
B x ∈ Ax, proving (5.5.155) and completing the

proof. 2

Theorem 5.106 Let X and X ′ be uniformly convex and let A ∈ A(ω) be a closed operator such that

D(A) ⊂ Im(I + λA), 0 < λ < λ0 (λ0ω < 1).

Then there exists a demiclosed extension Ã of A such that

(i) Ã ∈ A(ω) and D(Ã) ⊂ Im(I + λA) ⊂ Im(I + λÃ), for 0 < λ < λ0 with λω < 1;

(ii) D(Ã) = D(
◦
Ã) = D(

◦
A) = D(A) and

◦
Ã x =

◦
A x, ∀x ∈ D(A).

0.5cm
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Proof:

(i) Let
F =

{
B : X −→ 2X ; B ∈ A(ω) and D(B) ⊂ D(A)

}
,

partially ordered by inclusion, and let G be a totally ordered subset of F . Define the operator T : X −→
2X by D(T ) =

⋃
B∈G

D(B) and

Tx =
⋃
{Bx; x ∈ D(B) and B ∈ G} .

From the definition of G and D(T ), we have D(T ) ⊂ D(A) and, if B ∈ G, then T ⊃ B. We
now prove that T ∈ A(ω). Indeed, take (x, y), (u, v) ∈ T , so that (x, y) ∈ B1 and (u, v) ∈ B2 for some
B1, B2 ∈ G. Since G is totally ordered, we may assume, without loss of generality, that B2 ⊃ B1. Hence
(x, y) ∈ B2. As B2 ∈ A(ω), Corollary 5.69 yields f ∈ F (x− u) such that

⟨y + ωx− v − ωu, f⟩ ≥ 0.

This shows that T ∈ A(ω) and hence T is an upper bound for G. By Zorn’s lemma, F has a
maximal element Ã ⊃ A. Since A is closed and A ∈ A(ω), Proposition 5.84 implies that, if λ ∈ (0, λ0),
then Dλ = Im(I + λA) is a closed subset of X. Thus, for 0 < λ < λ0 we have D(A) ⊂ Im(I + λA).
Therefore, from A ⊂ Ã it follows that D(Ã) ⊂ Im(I + λA) ⊂ Im(I + λÃ).

(ii) We prove that Ã + ωI is maximal in D(A). Let B be an accretive extension of Ã + ωI with
D(B) ⊂ D(A). Then the operator B̃ := B − ωI is m-accretive and satisfies D(B̃) = D(B) ⊂ D(A).
If x ∈ D(Ã), then x ∈ D(B̃), since D(Ã) = D(Ã + ωI) ⊂ D(B) = D(B̃). Moreover, if y ∈ Ãx, then
y + ωx ∈ (Ã + ωI)x ⊂ Bx, that is, y ∈ (B − ωI)x = B̃x. Thus, B̃ ∈ F and extends Ã. Hence, B̃ = Ã.
Returning to the definition of B̃, we obtain B = Ã+ ωI.

Since X ′ is uniformly convex, Theorem 6.15 p57 in [47] implies that the norm on X is uniformly

Fréchet differentiable and, by Proposition 5.97, Ã is demiclosed. Consequently, D(Ã) = D(
◦
Ã). It is

clear that D(A) ⊂ D(Ã). We now prove the reverse inclusion. Indeed, let x ∈ D(Ã). By item (i), we
already know that D(Ã) ⊂ Im(I + λA) for 0 < λ < λ0. This implies that the set

{
∥Ãλx∥; λ ∈ (0, λ0)

}
is bounded. Again, since X ′ is uniformly convex, Milman’s theorem implies that X ′ is reflexive and
therefore X is reflexive as well. Thus, there exist {λn} ⊂ (0, λ0) and y ∈ X such that λn −→ 0+ and
Ãλn

x ⇀ y as n −→∞.

Since x ∈ D(Ã), we have

J Ã
λn
x −→ x and

(
J Ã

λn
x, Ãλnx

)
∈ Ã. (5.5.163)

Because Ã is demiclosed, it follows that (x, y) ∈ Ã. Furthermore, from the convergence Ãλn
x ⇀ y

and Theorem 5.79, item (ii), we obtain

∥y∥ ≤ lim inf
n→+∞

∥Ãλnx∥

≤ lim inf
n→+∞

(1− λnω)−1|Ãx|

= |Ãx| = ∥
◦
Ã x∥,

since
◦
Ã is single-valued by Theorem 5.105.
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But y ∈ Ãx, hence ∥
◦
Ã x∥ = |Ãx| ≤ ∥y∥. This, together with (5.5.164), implies that limn→∞ ∥Ãλn

x∥ =
∥y∥. Since X is uniformly convex, we conclude that Ãλn

x→ y.

For x ∈ D(Ã), it makes sense to consider both J Ã
λ x and JA

λ x, since we already know that

D(Ã) ⊂ Im(I + λA) ⊂ Im(I + λÃ).

If x = x1 + λy1 = x2 + λy2, with (x1, y1) ∈ A and (x2, y2) ∈ Ã, then, since A ⊂ Ã, we also have
(x1, y1) ∈ Ã, and therefore

J Ã
λ x = x1 = JA

λ x.

It follows that Ãλx = Aλx and hence

J Ã
λn
x→ x and Aλn

x→ y.

Since A is a closed operator, we conclude that (x, y) ∈ A. This means that x ∈ D(A), y ∈ Ax and
∥y∥ = |Ãx|. Consequently, D(Ã) = D(A).

We next show that D(Ã) ⊂ D(
◦
A). Indeed, let x ∈ D(Ã). From the previous arguments there

exists y ∈ X such that y ∈ Ax and ∥y∥ = |Ãx|. Since Ax ⊂ Ãx, we obtain

∥y∥ = |Ãx| ≤ |Ax| ≤ ∥y∥,

because y ∈ Ax. Hence ∥y∥ = |Ax|, so y ∈
◦
A x, and therefore x ∈ D(

◦
A).

By the definition of
◦
A we have D(

◦
A) ⊂ D(A). Thus we have shown that

D(Ã) ⊂ D(
◦
A) ⊂ D(A) = D(Ã).

To conclude the proof, we show that for every x ∈ D(A),
◦
Ã x =

◦
A x. Since

◦
Ã is single-valued, it

suffices to prove that
◦
A x ⊂

◦
Ã x.

Let y1 ∈
◦
A x = {y ∈ Ax; ∥y∥ = |Ax|}. Since x ∈ D(Ã), there exists y2 ∈ Ax such that ∥y2∥ = |Ax|.

But Ax ⊂ Ãx, so |Ãx| ≤ |Ax|. Thus

∥y2∥ = |Ãx| ≤ |Ax| ≤ ∥y2∥.

Now y1 ∈ Ax and ∥y1∥ = |Ax| = |Ãx|. Therefore y1 ∈
◦
Ã x. 2

Lemma 5.107 Let X ′ be a uniformly convex space and A ∈ A(ω) such that A + ωI is maximal in
C ⊇ D(A). Then F (

◦
A x) has a single element for every x ∈ D(A).

Proof: By Proposition 5.11 p35 in [47], X is strictly convex, and by Proposition 5.38, X is smooth. Hence,
by Proposition 5.94, Ax is convex and closed. Since X is reflexive, Milman’s theorem and Theorem teo
5.14 p35 in [47] yield

◦
A x ̸= ∅. Let y1, y2 ∈

◦
A x. Then y1, y2 ∈ Ax and ∥y1∥ = ∥y2∥ = |Ax|. By Lemma
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5.100 (Kato’s lemma),

∥y1∥2 ≤ ⟨y2, F (y1)⟩
≤ ∥y2∥∥F (y1)∥
= ∥y2∥∥y1∥
= ∥y2∥2 = ∥y1∥2.

Thus
∥y2∥2 = ⟨y2, F (y1)⟩ = ∥y2∥2.

By the definition of F , this implies F (y1) ∈ F (y2). Since X is smooth, it follows that F (y1) = F (y2). 2

Proposition 5.108 Let X ′ be a uniformly convex space, let A ∈ A(ω) with A + ωI maximal in D(A),
and assume

D(A) ⊂ Im(I + λA), 0 < λ < λ0; λ0ω < 1.

Then:

(i) There exists a sequence (λn) ⊂ (0, λ0) such that

lim
n→∞

F (Aλnx) = F
( ◦
A x

)
, ∀x ∈ D(A);

(ii) If X is uniformly convex, there exists a sequence (λn) ⊂ (0, λ0) such that

lim
n→∞

Aλn
x =

◦
A x, ∀x ∈ D(A).

Proof:

(i) Fix x ∈ D(A). Since A ∈ A(ω) and
(
Jλx,Aλx

)
∈ A, by the definition of an accretive operator we

have
⟨y + ωx−Aλx− ωJλx, F (x− Jλx)⟩ ≥ 0, ∀y ∈ Ax.

Using that λF (z) = F (λz) and Aλ = 1
λ (I − Jλ), we obtain

λ⟨y, F (Aλx)⟩ − λ⟨Aλx, F (Aλx)⟩+ λ2ω⟨Aλx, F (Aλx)⟩ ≥ 0,

for every y ∈ Ax. Hence

(1− λω)∥Aλx∥2 ≤ ⟨y, F (Aλx)⟩, ∀y ∈ Ax. (5.5.164)

By Proposition 5.99, the family {Aλx} is bounded and therefore {F (Aλx)} is also bounded. By
Milman’s theorem, X ′ is reflexive, and thus there exist λn −→ 0+ and u′ ∈ X ′ such that

F
(
Aλn

x
)
⇀ u′. (5.5.165)

Passing to the limit in (5.5.164), and using (5.5.165) together with Proposition ??, we get

|Ax|2 ≤ ⟨y, u′⟩ ≤ ∥y∥∥u′∥, ∀y ∈ Ax. (5.5.166)

In particular, this inequality holds for y ∈
◦
A x, i.e., for ∥y∥ = |Ax|. Hence

|Ax| ≤ ∥u′∥. (5.5.167)

By weak lower semicontinuity of the norm, from (5.5.165) and Theorem 5.79, item (ii), we obtain

∥u′∥ ≤ lim
n→+∞

inf ∥F (Aλn
x)∥ = lim

n→+∞
inf ∥Aλn

x∥ ≤ lim
n→+∞

inf(1− λnω)−1|Ax| = |Ax|,
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which implies
∥u′∥ ≤ |Ax|. (5.5.168)

Thus,
|Ax| = ∥u′∥. (5.5.169)

Again, for y ∈
◦
A x we have

|Ax|2 ≤ ⟨y, u′⟩ ≤ ∥y∥∥u′∥ = |Ax|∥u′∥ = |Ax|2.

Therefore,
⟨y, u′⟩ = ∥u′∥2 = ∥y∥2,

that is, u′ ∈ F (y) for every y ∈
◦
A x. By Lemma 5.107, F (

◦
A x) has a single element, i.e., u′ = F (

◦
A x).

Since X ′ is uniformly convex and

F (Aλn
x) ⇀ u′ and lim sup

n→∞
∥Aλn

x∥ ≤ ∥u′∥,

it follows that
F (Aλn

x) −→ u′ = F (
◦
A x), (5.5.170)

which proves (i).

(ii) Now assume that X is uniformly convex. Let G be the duality mapping of X ′. Then

G(x′) = {x ∈ X; ⟨x′, x⟩ = ∥x∥ = ∥x′∥} ,

since X is reflexive (because X ′ is reflexive). Hence

x′ ∈ F (x)⇐⇒ x ∈ G(x′),

that is, FG = GF = I, which implies G = F−1, since G is single-valued.

By Theorem 6.15 p57 in [47], G is uniformly continuous on bounded sets. As {Aλx} (0 < λ < λ0)
is bounded in X and

◦
A x is single-valued, by (5.5.170) we have

◦
A x = F−1F (

◦
A x) = F−1

(
lim

λ→0+
F (Aλx)

)
= lim

λ→0+
F−1F (Aλx) = lim

λ→0+
Aλx.

2

Definition 5.109 Let A+ωI be an m-accretive operator. We say that a single-valued operator A′ ⊂ A
is a principal section of A if D(A′) = D(A) and, whenever (x, y) ∈ D(A)×X satisfies

⟨y + ωx−A′u− ωu, ξ′⟩ ≥ 0, ∀u ∈ D(A) and ∀ξ′ ∈ F (x− u),

then (x, y) ∈ A. In other words, A′ is a principal section if every extension of A′ with domain contained
in D(A), belonging to A(ω), is contained in A.

If X is a Hilbert space and A is m-accretive, then the minimal section
◦
A is a principal section

(see [17]). Later we shall prove a more general result in this direction. For the moment, we prove the
following auxiliary result:

Proposition 5.110 Let X be a separable Banach space, X ′ uniformly convex, A + ωI an m-accretive
operator and A′ ⊂ A an operator such that

(i) D(A′) = D(A);
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(ii) For every u ∈ D(A) there exists v ∈ A′u such that

∥v∥ ≤ θ
(
|Au|

)
, (5.5.171)

where θ : [0,+∞) −→ R is bounded on bounded intervals.

If x ∈ D(A) and y ∈ X are such that

⟨y + ωx− v − ωu, F (x− u)⟩ ≥ 0, ∀(u, v) ∈ A′,

then (x, y) ∈ A.

Proof: Let y ∈ X and define Ã = A− y. Then, by Proposition 5.93, Ã+ ωI is m-accretive. Set

θ̃(|Ãx|) := θ(|Ax|) + ∥y∥.

The operators Ã and Ã′, as well as θ̃, satisfy the assumptions imposed on A,A′ and θ. Indeed, we
have D(Ã′) = D(Ã), the function θ̃ is bounded on bounded intervals, and, from (5.5.171), for every
u ∈ D(Ã) = D(A) there exists v − y ∈ Ã′u such that

∥v − y∥ ≤ ∥v∥+ ∥y∥ ≤ θ(|Au|) + ∥y∥ = θ̃(|Ãu|).

Note that (x, y) ∈ A if and only if (x, 0) ∈ Ã. Therefore, without loss of generality, we may assume
y = 0. In this case, the hypothesis reads: if x ∈ D(A), then

⟨ωx− v − ωu, F (x− u)⟩ ≥ 0, ∀(u, v) ∈ A′. (5.5.172)

We must prove that (x, 0) ∈ A.

Let λ > 0 be such that λω < 1. Since A + ωI is m-accretive, it is maximal accretive in D(A).
Moreover, D(A) ⊂ Im(I + λA) for every λ > 0 with λω < 1. Indeed,

Im(A+ ωI + µI) = X, ∀µ > 0 ⇒ Im((ω + µ)
( 1

ω+µA+ I
)
) = X ⇒ Im

( 1
ω+µA+ I

)
= X.

Taking µ = 1−λω
λ > 0, we obtain Im(I + λA) = X, and hence D(A) ⊂ Im(I + λA), as desired.

Let u = Jλx (with λ > 0 such that λω < 1). From (5.5.172) we have

⟨ωx− v − ωJλx, F (x− Jλx)⟩ ≥ 0, ∀v ∈ A′(Jλx).

Multiplying and dividing by λ2, we get

λ2⟨ωAλx− v
λ , F (Aλx)⟩ ≥ 0, ∀v ∈ A′(Jλx),

which implies
λ2⟨ωAλx, F (Aλx)⟩ ≥ λ⟨v, F (Aλx)⟩, ∀v ∈ A′(Jλx),

and hence
λω⟨Aλx, F (Aλx)⟩ ≥ ⟨v, F (Aλx)⟩, ∀v ∈ A′(Jλx), ∀λ > 0,

so that
⟨v, F (Aλx)⟩ ≤ λω∥Aλx∥2, ∀v ∈ A′(Jλx). (5.5.173)

On the other hand, by Proposition 5.99, Aλx ∈ AJλx. Thus, by Theorem 5.79, item (ii), we obtain

|AJλx| ≤ ∥Aλx∥ ≤ (1− λω)−1|Ax|. (5.5.174)
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Since Jλx ∈ D(A′), hypothesis (ii) gives vλ ∈ A′(Jλx) such that

∥vλ∥ ≤ θ(|A(Jλx)|).

By (5.5.174), the set {|A(Jλx)|}0<λ<λ0 , λ0ω < 1, is bounded. As θ is bounded on bounded sets,
it follows that {∥vλ∥}0<λ<λ0 , λ0ω < 1, is bounded.

Since X ′ is uniformly convex, it is reflexive, and consequently X is reflexive as well. Therefore,
passing to a subsequence if necessary, there exist (λn)→ 0 and z ∈ X such that vλn

⇀ z. From (5.5.173)
and Proposition 5.108, item (i), in the limit we have

⟨z, F (
◦
A x)⟩ ≤ 0. (5.5.175)

On the other hand, since X ′ is uniformly convex, Theorem teo 6.15 p57 in [47] implies that the
norm is Fréchet differentiable. By Proposition 5.97, the operator A is demiclosed and, moreover, by
Theorem 5.79, item (viii), we have Jλn

x → x. Since vλn
⇀ z and (Jλn

x, vλn
) ∈ A′ ⊂ A, it follows that

(x, z) ∈ A, i.e., z ∈ Ax.

By Lemma 5.107, the set F (
◦
A x) has a single element. Furthermore, since A is demiclosed,

Theorem 5.105 implies that
◦
A x is also single-valued. Hence, by Lemma 5.100,

◦
A x ∈ Ax and ∥

◦
A x∥2 ≤ ⟨F (

◦
A x), y⟩, ∀y ∈ Ax.

In particular, for z ∈ Ax, (5.5.175) yields

∥
◦
A x∥2 ≤ ⟨F (

◦
A x), z⟩ ≤ 0 ⇒

◦
A x = 0 ⇒ 0 ∈ Ax.

Thus (x, 0) ∈ A, as required. 2

Corollary 5.111 Let X be a Banach space with X ′ uniformly convex, and let A and B be such that
D(A) = D(B), A+ ωI and B + ωI are m-accretive, and

◦
A x∩

◦
B x ̸= ∅, for every x ∈ D(A).

Then A = B. In particular, if
◦
A=

◦
B, then A = B.

Proof: If A + ωI and B + ωI are m-accretive, then these operators are maximal accretive for every
C ⊃ D(A) = D(B). Since X ′ is uniformly convex, X ′ is strictly convex and, consequently, X is smooth.
Moreover, X ′ is reflexive and therefore X is also reflexive. For each x ∈ D(A) = D(B), the sets Ax and
Bx are convex, closed and nonempty. Consequently,

◦
A x ̸= ∅ and

◦
B x ̸= ∅ for all x ∈ D(A).

Fix x ∈ D(A) = D(B) and y ∈
◦
A x∩

◦
B x. Define the operator S by Sx = y. Then S ⊂ A, S ⊂ B

and, in addition,

∥Sx∥ = ∥y∥ = |Ax| and ∥Sx∥ = ∥y∥ = |Bx|, ∀x ∈ D(A) = D(B).

Thus S satisfies the assumptions of Proposition 5.110. Hence, if (x, y) ∈ A, then

⟨y + ωx− Su− ωu, F (x− u)⟩ ≥ 0, ∀u ∈ D(A) = D(B),

and Proposition 5.110 implies (x, y) ∈ B, that is, A ⊂ B. Similarly, we obtain B ⊂ A. 2

- 309 -



5 Monotone and Accretive Operators

5.6 Perturbation of Accretive Operators

The sum of two accretive operators in a smooth Banach space is an accretive operator and, more
generally, if A ∈ A(ω1) and B ∈ A(ω2), then (A+B) ∈ A(ω1 + ω2); this follows immediately from item
(iv) of Corollary 5.69. Indeed, let

(x1, y1 + z1 + (ω1 + ω2)x1), (x2, y2 + z2 + (ω1 + ω2)x2) ∈ A+B + (ω1 + ω2)I,

where (x1, y1), (x2, y2) ∈ A and (x1, z1), (x2, z2) ∈ B. We shall prove that A+B+(ω1 +ω2)I is accretive.
In fact, since A + ω1I and B + ω2I are accretive, it follows from item (iv) of Corollary 5.69 that there
exists x′ ∈ F (x1 − x2) such that〈

F (x1 − x2), y1 + ω1x1 − (y2 + ω1x2)
〉
≥ 0

and 〈
F (x1 − x2), z1 + ω2x1 − (z2 + ω2x2)

〉
≥ 0,

because X ′ being smooth implies F (x1 − x2) = x′.

It then follows that〈
F (x1 − x2), y1 + ω1x1 − (y2 + ω1x2) + z1 + ω2x1 − (z2 + ω2x2)

〉
≥ 0,

that is, 〈
F (x1 − x2), y1 + z1 + (ω1 + ω2)x1 − [y2 + z2 + (ω1 + ω2)x2

〉
] ≥ 0.

Therefore, by Corollary 5.69, A+B + (ω1 + ω2)I is accretive.

However, even if A + ω1I and B + ω2I are m-accretive, the operator A + B + (ω1 + ω2)I is not
necessarily m-accretive. In what follows, we establish sufficient conditions for the sum of an m-accretive
operator A+ ωI with an m-accretive operator B to be m-accretive.

Remark 5.112 In practice, and more specifically in PDE applications, what really matters to us is the
condition

D(A) ⊂ Im(I + λA), λ ∈]0, λ0[, λω < 1, A ∈ A(ω),

imposed in the previous sections, which is strictly weaker than requiring A to be m-accretive.

Lemma 5.113 Let X be a smooth Banach space, A+ωI an m-accretive operator on X and B a single-
valued, Lipschitz and accretive operator such that D(B) = X. Then A+B + ωI is m-accretive.

Proof: Since A + ωI and B are accretive and X is smooth, we have that A + B + ωI is accretive. It
remains to show that

Im
[
I + λ(A+B + ωI)

]
= X, (5.6.176)

for some λ > 0, in view of Proposition 5.87. In other words, we must prove that for every y ∈ X there
exists x ∈ D(A) such that

y ∈
[
I + λ(A+B + ωI)

]
x, for some λ > 0.

Showing this is equivalent to showing that for every y ∈ X there exists x ∈ D(A) such that

(y − λBx) ∈
[
I + λ(A+ ωI)

]
x, for some λ > 0,

or, using the fact that JA+ωI
λ is single-valued and defined on the whole of X (since A+ωI is m-accretive),

that we must show {
For each y ∈ X, there exists x ∈ D(A) such that

JA+ωI
λ (y − λBx) = x, for some λ > 0.

(5.6.177)
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Indeed, assuming for a moment that (5.6.177) holds, we have

(y − λBx, x) ∈ JA+ωI
λ =

{
(v + λz, v); (v, z) ∈ A+ ωI

}
,

and thus y − λBx = v + λz and v = x for some (v, z) ∈ A+ ωI. Hence

y − λBx ∈
[
I + λ(A+ ωI)

]
v =

[
I + λ(A+ ωI)

]
x,

which proves (5.6.176). Let us show that (5.6.177) indeed holds. Fix y ∈ X and define the map

G : X −→ X

x 7−→ G(x) = JA+ωI
λ (y − λBx)

.

We claim that G is a contraction for λ = 1
2L , where L > 0 is the Lipschitz constant of B. In fact,

if x1, x2 ∈ X, then

∥G(x1)−G(x2)∥ =
∥∥JA+ωI

λ (y − λBx1)− JA+ωI
λ (y − λBx2)

∥∥ . (5.6.178)

Note that A + ωI ∈ A(0) and λ · 0 = 0 < 1 for all λ > 0. By item (i) of Theorem 5.79, JA+ωI
λ is

Lipschitz with constant (1− λ · 0)−1 = 1.

Therefore, from (5.6.178) we obtain

∥G(x1)−G(x2)∥ ≤ ∥y − λBx1 − y + λBx2∥
= λ ∥Bx1 −Bx2∥

≤ 1
2LL ∥x1 − x2∥ = 1

2 ∥x1 − x2∥ .

Hence G is a contraction and thus has a unique fixed point, that is, there exists a unique x ∈ X
such that G(x) = x, or equivalently,

JA+ωI
λ (y − λBx) = x,

for λ = 1
2L > 0. Since JA+ωI

λ : X −→ D(A), we deduce that x ∈ D(A), which proves (5.6.177) and hence
the lemma. 2

Lemma 5.114 If B is an accretive, single-valued, Lipschitz operator with D(B) = X, then B is m-
accretive.

Proof: For each y ∈ X we must find x ∈ D(B) = X such that y = (I + λB)x for some λ > 0, that is,
for each y ∈ X there must exist x ∈ X such that x = y − λBx for some λ > 0. To this end, it suffices to
show that the map

G : X −→ X

x 7−→ G(x) = y − λBx

has a fixed point. Indeed, for x1, x2 ∈ X we have

∥G(x1)−G(x2)∥ = ∥−λBx1 + λBx2∥
= λ ∥Bx1 −Bx2∥
≤ λL ∥x1 − x2∥ ,

where L > 0 is the Lipschitz constant of B. Taking λ = 1
2L we obtain the desired contraction. 2

Proposition 5.115 Let X be a smooth Banach space and let A+ωI and B be m-accretive operators on
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X. Then, for each y ∈ X and each λ > 0, there exist xλ ∈ D(A) and uλ ∈ Axλ such that

y = (1 + ω)xλ + uλ +Bλxλ,

where Bλ := 1
λ

(I − JB
λ ) is the Yoshida approximation of B. Moreover, if D(A) ∩D(B) ̸= ∅, then (xλ)λ

is bounded.

Proof: Since B is m-accretive, B is accretive, i.e., B ∈ A(0) and Im(I + λB) = X for every λ > 0.
Thus λ · 0 = 0 < 1 for all λ > 0. Therefore, by item (i) of Theorem 5.79, JB

λ is single-valued for all
λ > 0, and so Bλ is single-valued for all λ > 0. By item (v) of the same theorem, Bλ ∈ A(0), that is,
Bλ is accretive for every λ > 0. In addition, by item (vi) of that theorem, Bλ is Lipschitz with constant
λ−1[1 + (1− λ|0|)]−1 = 2

λ , for every λ > 0. Moreover,

D(Bλ) = Im(I + λB) = X, ∀λ > 0,

and from the remarks above we conclude that Bλ is single-valued, Lipschitz, accretive and D(Bλ) = X

for all λ > 0. By Lemma 5.113, it follows that A+Bλ + ωI is m-accretive for all λ > 0. Hence

Im
[
I + (A+Bλ + ωI)

]
= X, ∀λ > 0. (5.6.179)

Fix y ∈ X and λ > 0. Then, for each λ > 0, in view of (5.6.179) there exists xλ ∈ D(A) such that

y ∈ xλ +Axλ +Bλxλ + ωxλ,

that is,
y = (1 + ω)xλ + uλ +Bλxλ, (5.6.180)

for some uλ ∈ Axλ. It remains to show that if D(A) ∩ D(B) ̸= ∅ then (xλ) is bounded. Take x0 ∈
D(A) ∩D(B) and consider y ∈ X and λ > 0. Then, by (5.6.180) there exists xλ ∈ D(A) such that

y ∈ (1 + ω)xλ +Axλ +Bλxλ.

Let also
yλ ∈ (1 + ω)x0 +Ax0 +Bλx0.

Then
yλ − x0 ∈ (A+Bλ + ωI)x0

and
y − xλ ∈ (A+Bλ + ωI)xλ.

By the accretivity of (A+Bλ +ωI) and since X is smooth (and thus F is single-valued), Corollary
5.69 yields 〈

F (xλ − x0), y − xλ − (yλ − x0)
〉
≥ 0,

that is, 〈
F (xλ − x0), y − yλ

〉
−
〈
F (xλ − x0), xλ − x0

〉
≥ 0.

But 〈
F (xλ − x0), xλ − x0

〉
= ∥xλ − x0∥2

,

hence

∥xλ − x0∥2 ≤
〈
F (xλ − x0), y − yλ

〉
≤ ∥F (xλ − x0)∥ ∥y − yλ∥ = ∥xλ − x0∥ ∥y − yλ∥ . (5.6.181)
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Note that if ∥xλ − x0∥ = 0, i.e. xλ = x0, then ∥xλ∥ = ∥x0∥.

If instead ∥xλ − x0∥ ≠ 0, then from (5.6.181) we have

∥xλ − x0∥ ≤ ∥y − yλ∥ ,

or yet
∥xλ∥ ≤ ∥x0∥+ ∥y∥+ ∥yλ∥. (5.6.182)

Since yλ ∈ (1 + ω)x0 +Ax0 +Bλx0, we may write

yλ = (1− ω)x0 + u0 +Bλx0, (5.6.183)

for some u0 ∈ Ax0. On the other hand, since B ∈ A(0), Theorem 5.79, item (ii), gives

∥Bλx∥ ≤ |Bx|, ∀x ∈ D(B) ∩DB
λ , ∀λ > 0,

and DB
λ = X. Thus

∥Bλx0∥ ≤ |Bx0|, ∀λ > 0, (5.6.184)

and combining (5.6.183) and (5.6.184) we obtain

∥yλ∥ ≤ ∥(1− ω)x0∥+ ∥u0∥+ |Bx0|, ∀λ > 0. (5.6.185)

Combining (5.6.182) and (5.6.185) we conclude that

∥xλ∥ ≤ k, ∀λ > 0 whenever xλ ̸= x0.

Therefore
∥xλ∥ ≤M, ∀λ > 0,

where M = max
{
∥x0∥, k

}
, which completes the proof. 2

Proposition 5.116 Let X ′ be uniformly convex, and let A + ωI and B be m-accretive operators such
that D(A) ∩D(B) ̸= ∅. Suppose that, for each y ∈ X and λ > 0, there exists xλ ∈ D(A) such that

y = (1 + ω)xλ + uλ +Bλxλ, for some uλ ∈ Axλ.

Moreover, assume that Bλxλ is bounded on some interval (0, λ0). Then, for each y ∈ X, there
exists a unique x ∈ D(A) ∩D(B) such that xλ → x as λ→ 0+ and

y ∈ (1 + ω)x+Ax+Bx.

Hence A+B + ωI is m-accretive.

Proof: Since X ′ is uniformly convex, X ′ is strictly convex and consequently X is smooth. Furthermore,
X ′ is reflexive and therefore X is also reflexive. Let y ∈ X and λ, µ > 0. By Proposition 5.115 there
exist (xλ, uλ), (xµ, uµ) ∈ A such that

y = (1 + ω)xλ + uλ +Bλxλ

and
y = (1 + ω)xµ + uµ +Bµxµ.

It follows that

0 = (xλ − xµ) + ω(xλ − xµ) + (uλ − uµ) + (Bλxλ −Bµxµ). (5.6.186)
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Since X is smooth, the duality map F is single-valued and therefore, from (5.6.186),

⟨F (xλ − xµ), (xλ − xµ) + ω(xλ − xµ) + (uλ − uµ) + (Bλxλ −Bµxµ)⟩ = 0,

that is,

∥xλ − xµ∥2 + ⟨F (xλ − xµ), (uλ + ωxλ)− (uµ + ωxµ)⟩
+⟨F (xλ − xµ), Bλxλ −Bµxµ⟩ = 0. (5.6.187)

However, by the accretivity of A+ ωI, Corollary 5.69 gives

⟨F (xλ − xµ), (uλ + ωxλ)− (uµ + ωxµ)⟩ ≥ 0.

From this and (5.6.187) we obtain

∥xλ − xµ∥2 + ⟨F (xλ − xµ), Bλxλ −Bµxµ⟩ ≤ 0. (5.6.188)

Moreover, by the accretivity of B, Proposition 5.75 yields

(JB
λ xλ, Bλxλ), (JB

µ xµ, Bµxµ) ∈ B.

It then follows from Corollary 5.69 that

⟨F (JB
λ xλ − JB

µ xµ), Bλxλ −Bµxµ⟩ ≥ 0,

or equivalently,
⟨−F (JB

λ xλ − JB
µ xµ), Bλxλ −Bµxµ⟩ ≤ 0. (5.6.189)

Adding (5.6.188) and (5.6.189), we get

∥xλ − xµ∥2 + ⟨F (xλ − xµ)− F (JB
λ xλ − JB

µ xµ), Bλxλ −Bµxµ⟩ ≤ 0. (5.6.190)

On the other hand,

F (JB
λ xλ − JB

µ xµ) = F (xλ − xµ − xλ + xµ + JB
λ xλ − JB

µ xµ)
= F (xλ − xµ − (xλ − JB

λ xλ) + (xµ − JB
µ xµ))

= F (xλ − xµ − λBλxλ + µBµxµ). (5.6.191)

Substituting (5.6.191) into (5.6.190) gives

∥xλ − xµ∥2 + ⟨F (xλ − xµ)− F (xλ − xµ − λBλxλ + µBµxµ), Bλxλ −Bµxµ⟩ ≤ 0,

or equivalently,

∥xλ − xµ∥2 ≤ ∥F (xλ − xµ)− F (xλ − xµ − λBλxλ + µBµxµ)∥∥Bλxλ −Bµxµ∥. (5.6.192)

By hypothesis, Bλxλ is bounded on some interval (0, λ0), and hence there exists k > 0 such that

∥Bλxλ∥ ≤ k, 0 < λ < λ0.

Thus, if 0 < λ, µ < λ0, we have
∥Bλxλ −Bµxµ∥ ≤ 2k,

and from (5.6.192) we deduce

∥xλ − xµ∥2 ≤ 2k∥F (xλ − xµ)− F (xλ − xµ − λBλxλ + µBµxµ)∥. (5.6.193)
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Now

∥(xλ − xµ)− (xλ − xµ − λBλxλ + µBµxµ)∥
= ∥λBλxλ − µBµxµ∥ ≤ λ∥Bλxλ∥+ µ∥Bµxµ∥ ≤ (λ+ µ)k < (λ+ µ)2k, (5.6.194)

with 0 < λ, µ < λ0.

Since X ′ is uniformly convex, by Theorem 6.15 p57 in [47], F is uniformly continuous on bounded
sets. Thus, given ε > 0 and M > 0, there exists δ = δ(ε) such that if ∥x1∥ < M and ∥x1 − x2∥ < δ, then
∥F (x1) − F (x2)∥ < ε

2k . Let ξ0 = min{ δ
2k , λ0} > 0. Then, if λ, µ ≤ ξ0 we have (µ + λ)2k < δ. Hence,

under this condition, by (5.6.194),

∥(xλ − xµ)− (xλ − xµ − λBλxλ + µBµxµ)∥ < (µ+ λ)2k < δ.

Moreover, since D(A) ∩D(B) ̸= ∅, Proposition 5.115 implies that xλ is bounded. That is, there exists
M > 0 such that ∥xλ∥ < M

2 for all λ > 0. Thus

∥xλ − xµ∥ ≤ ∥xλ∥+ ∥xµ∥ < M, ∀λ, µ > 0.

Therefore, from (5.6.193) we obtain

∥xλ − xµ∥2 ≤ 2k∥F (xλ − xµ)− F (xλ − xµ − λBλxλ + µBµxµ)∥

< 2k ε2k = ε, 0 < λ, µ < ξ0,

that is,
∥xλ − xµ∥ −→ 0, as λ, µ −→ 0+.

Hence (xλ) is a Cauchy net and, since X is Banach, there exists x ∈ X such that

xλ −→ x in X. (5.6.195)

It remains to show that x ∈ D(A) ∩D(B) and, moreover, that y ∈ (1 + ω)x + Ax + Bx. Indeed,
going back to the beginning of the proof, recall that

y ∈ (1 + ω)xλ + uλ +Bλxλ, (xλ, uλ) ∈ A. (5.6.196)

From the boundedness of Bλxλ and xλ, 0 < λ < λ0, we deduce from (5.6.196) that uλ is bounded on
(0, λ0). Since X is reflexive, there exist (λn) ⊂ (0, λ0), λn → 0+, such that uλn

⇀ u for some u ∈ X.

At the beginning of Section 5.4 we proved that if an operator A is m-accretive, then it is maximal
accretive in every C ⊃ D(A). In particular, A is maximal accretive in D(A). Therefore, since by
hypothesis A+ ωI and B are m-accretive, it follows that A+ ωI is maximal accretive in D(A) and B is
maximal accretive in D(B). Then, by Theorem teo 6.15 p57 [47], the norm of X is Fréchet differentiable.
From this and Proposition 5.97 we infer that A and B are demiclosed. Since (xλn

, uλn
) ∈ A, xλn

→ x

and uλn ⇀ u, it follows that (x, u) ∈ A, that is, x ∈ D(A) and u ∈ Ax.

On the other hand, from (5.6.196), we have

Bλn
xλn

= y − (1 + ω)xλn
− uλn

.

Therefore,
Bλnxλn ⇀ v, v = y − (1 + ω)x− u. (5.6.197)

We now show that x ∈ D(B) and v ∈ Bx. Indeed,

∥JB
λ xλ − x∥ ≤ ∥JB

λ xλ − xλ∥+ ∥xλ − x∥
= λ∥Bλxλ∥+ ∥xλ − x∥ −→ 0 as λ→ 0+,
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hence JB
λ xλ −→ x as λ→ 0+. In particular,

JB
λn
xλn
−→ x as n→∞. (5.6.198)

By Proposition 5.75, item (iii), (
JB

λn
xλn

, Bλn
xλn

)
∈ B. (5.6.199)

Since B is demiclosed, (5.6.197), (5.6.198) and (5.6.199) imply that (x, v) ∈ B, that is, x ∈ D(B) and
v ∈ Bx. Consequently, x ∈ D(A) ∩D(B) and

y = (1 + ω)x+ u+ v,

where u ∈ Ax and v ∈ Bx. Thus there exists x ∈ D(A) ∩D(B) such that

y ∈ (1 + ω)x+Ax+Bx.

It remains to show that the solution is unique. Indeed, suppose there exist x1, x2 ∈ D(A)∩D(B)
such that

y ∈ [(1 + ω)I +A+B]x1 = [I + (A+B + ωI)]x1

and
y ∈ [(1 + ω)I +A+B]x2 = [I + (A+B + ωI)]x2,

that is, x1 ∈ JωI+A+B
1 y and x2 ∈ JωI+A+B

1 y. Since X is smooth, A+ωI and B are accretive, and hence
A + B + ωI is accretive. By Proposition 5.75, item (i), JA+B+ωI

λ is single-valued for every λ > 0, in
particular for λ = 1. Thus x1 = x2. 2

Theorem 5.117 Let X ′ be uniformly convex, and let A+ ωI and B be m-accretive operators such that

i) D(A) ⊂ D(B);

ii) For every r > 0, there exist constants K(r) and C(r) with K(r) < 1 such that

|Bx| ≤ K(r)|Ax|+ C(r), ∀x ∈ D(A) with ∥x∥ ≤ r. (5.6.200)

Then A+B + ωI is m-accretive.

Proof: Since X ′ is uniformly convex, X is smooth, and hence by Proposition 5.115, for every y ∈ X and
every λ > 0 there exist xλ ∈ D(A) and uλ ∈ Axλ such that

y = (1 + ω)xλ + uλ +Bλxλ. (5.6.201)

Moreover, since D(A) ∩ D(B) = D(A) ̸= ∅, Proposition 5.115 also gives that (xλ)λ>0 is bounded and
therefore there exists r > 0 such that

∥xλ∥ ≤ r, ∀λ > 0. (5.6.202)

On the other hand, recall that

|Axλ| = inf {∥z∥; z ∈ Axλ} ≤ ∥uλ∥.

From this and (5.6.201), we obtain

|Axλ| ≤ ∥uλ∥ ≤ ∥y∥+ |1 + ω| ∥xλ∥+ ∥Bλxλ∥ .

Since B ∈ A(0) and λ · 0 < 1 for all λ > 0, and since xλ ∈ D(A) ⊂ D(B) and xλ ∈ D(Bλ) = DB
λ , i.e.
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xλ ∈ D(B) ∩DB
λ , Theorem 5.79, item (ii), yields

∥Bλxλ∥ =
∥∥∥∥ 1
λ

(I − Jλ)xλ

∥∥∥∥ ≤ 1
λ
λ(1− λ · 0)−1 |Bxλ| = |Bxλ| ,

and therefore
|Axλ| ≤ ∥uλ∥ ≤ ∥y∥+ |1 + ω| ∥xλ∥+ |Bxλ| . (5.6.203)

From (5.6.200), (5.6.202) and (5.6.203), we deduce

|Axλ| ≤ ∥y∥+ r|1 + ω|+K(r) |Axλ|+ C(r),

that is,
(1−K(r)) |Axλ| ≤ ∥y∥+ r|1 + ω|+ C(r), ∀λ > 0,

which implies that |Axλ| is bounded for all λ > 0, since (1 − K(r)) > 0. By hypothesis (ii) and the
boundedness of |Axλ|, it follows that |Bxλ| is also bounded for all λ > 0. As

∥Bλxλ∥ ≤ |Bxλ| , ∀λ > 0,

we conclude that ∥Bλxλ∥ is bounded for all λ > 0. Therefore, by Proposition 5.116, for each y ∈ X there
exists a unique x ∈ D(A) such that

y ∈ (1 + ω)x+Ax+Bx = [I + (A+B + ωI)]x,

that is,
Im [I + (A+B + ωI)] = X,

and thus A+B + ωI is m-accretive. 2

Theorem 5.118 Let X ′ be uniformly convex, and let A+ ωI and B be m-accretive operators such that

(i) D(A) ∩D(B) ̸= ∅;

(ii) There exist b ∈ [0, 1) and a function ψ : [0,∞) −→ R non-negative and non-decreasing such that

⟨u+ ωx, F (Bλx)⟩ ≥ −ψ(∥x∥)− b∥Bλx∥2.

Then A+B + ωI is m-accretive.

Proof: As before, by Proposition 5.115, for every y ∈ X and λ > 0 there exist xλ ∈ D(A) and uλ ∈ Axλ

such that
y = (1 + ω)xλ + uλ +Bλxλ, (xλ, uλ) ∈ A. (5.6.204)

Moreover, since D(A)∩D(B) ̸= ∅, there exists C > 0 such that ∥xλ∥ ≤ C for all λ > 0, and as B ∈ A(0),
Theorem 5.79, item (i), implies that Bλ is single-valued. By Proposition 5.116, it suffices to show that
{Bλxλ} is bounded. We have

⟨F (Bλxλ), y − xλ⟩ = ⟨F (Bλxλ), ωxλ + uλ +Bλxλ⟩
= ⟨F (Bλxλ), ωxλ + uλ⟩+ ∥Bλxλ∥2 (5.6.205)
≥ −ψ(∥xλ∥)− b∥Bλxλ∥2 + ∥Bλxλ∥2.

Hence

∥F (Bλxλ)∥∥y − xλ∥ ≥ ⟨F (Bλxλ), y − xλ⟩
≥ (1− b)∥Bλxλ∥2 − ψ(∥xλ∥),
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or
αt2 − βt− γ ≤ 0, (5.6.206)

where 
α := (1− b) > 0,
β := ∥y − xλ∥,
γ := ψ(∥xλ∥),
t := ∥Bλxλ∥.

Therefore
β −

√
β2 + 4αγ
2α ≤ t ≤ β +

√
β2 + 4αγ
2α ,

and so
t ≤ β +

√
β2 + 4αγ
2α ≤

β + β + 2√αγ
2α =

β +√αγ
α

.

Thus
(1− b)∥Bλxλ∥ ≤ ∥y − xλ∥+ [(1− b)ψ(∥xλ∥)]

1
2 , ∀λ > 0. (5.6.207)

Since ψ is non-decreasing and ∥xλ∥ ≤ C for every λ > 0, we obtain

∥Bλxλ∥ ≤
1

1− b

[
∥y∥+ C +

√
(1− b)ψ(C)

]
,

so that Bλxλ is bounded and Proposition 5.116 yields that A+B + ωI is m-accretive. 2

Corollary 5.119 Under the assumptions of Theorem 5.118, if

⟨u+ ωx, F (Bλx)⟩ ≥ 0, ∀(x, u) ∈ A,

then A+B + ωI is m-accretive.

Proof: It suffices to take b = 0 and ψ ≡ 0 in Theorem 5.118. 2

Theorem 5.120 Let X ′ be uniformly convex, and let A+ ωI and B be m-accretive operators such that
B is linear. Assume that

(i) D(B) ⊆ D(A);

(ii) ⟨F (Bx), u+ ωx⟩ ≥ −ψ(∥x∥)− b∥Bx∥2, ∀(x, u) ∈ A,

with b and ψ as in the assumptions of Theorem 5.118. Then A+B + ωI is m-accretive.

Proof: The idea is to recover condition (ii) of Theorem 5.118. Indeed, since B is accretive, JB
λ is single-

valued and Lipschitz with constant 1, for all λ > 0. Consequently, Bλ is single-valued. Thus, for all
λ > 0,

Bλ = 1
λ

[
I − (I + λB)−1] = 1

λ

[
(I + λB)(I + λB)−1 − (I + λB)−1]

= 1
λ

[(I + λB)− I] (I + λB)−1 = BJB
λ . (5.6.208)

If x ∈ X, then JB
λ x ∈ D(B) ⊂ D(A). In particular, if x ∈ D(A) and v ∈ A(JB

λ x), then for every u ∈ Ax
we have

λ⟨F (Bλx), u+ ωx⟩ = ⟨F (λBλx), u+ ωx⟩
= ⟨F (x− JB

λ x), u+ ωx⟩
= ⟨F (x− JB

λ x), u+ ωx− v − ωJB
λ x⟩+ ⟨F (x− JB

λ x), v + ωJB
λ x⟩. (5.6.209)
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Since A+ωI is accretive and X is smooth, the first term on the right-hand side of (5.6.209) is non-negative,
hence

⟨F (Bλx), u+ ωx⟩ ≥ ⟨F (Bλx), v + ωJB
λ x⟩

= ⟨F (BJB
λ x), v + ωJB

λ x⟩. (5.6.210)

But (JB
λ x, v) ∈ A. By the hypothesis, we obtain

⟨F (Bλx), u+ ωx⟩ ≥ ⟨F (BJB
λ x), v + ωJB

λ x⟩
≥ −ψ(∥JB

λ x∥)− b∥BJB
λ x∥2 (5.6.211)

= −ψ(∥JB
λ x∥)− b∥Bλx∥2.

Since B is linear, JB
λ is linear as well. From the accretivity of B we have

∥JB
λ x∥ ≤ ∥x∥, (5.6.212)

and from this and the fact that ψ is non-decreasing, we deduce

⟨F (Bλx), u+ ωx⟩ ≥ −ψ(∥x∥)− b∥Bλx∥2,

which is precisely condition (ii) in Theorem 5.118. 2

5.7 Linear contraction semigroups: Hille–Yosida theory and some
applications

5.7.1 m-accretive operators

In this section, X is a Banach space endowed with the norm ∥ · ∥.

5.7.1.1 Unbounded operators in Banach spaces

Definition 5.121 An unbounded linear operator in X is a pair (D,A), where D is a vector subspace
of X and A is a linear mapping D → X. If

sup{∥Ax∥; x ∈ D, ∥x∥ ≤ 1} <∞,

then A is bounded. If
sup{∥Ax∥; x ∈ D, ∥x∥ ≤ 1} =∞,

then A is unbounded.

Remark 5.122 It follows from the Hahn–Banach Theorem that A is bounded if and only if there exists
a closed vector subspace Y of X such that D ⊂ Y and an operator Ā ∈ L(Y,X) such that Ax = Āx for
all x ∈ D.
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Definition 5.123 Let (D,A) be an unbounded linear operator in X. The domain D(A) of A is the set

D(A) = D,

the range Im(A) of A is the set
Im(A) = A(D),

and the graph G(A) of A is the set

G(A) = {(x, f) ∈ X ×X; x ∈ D and f = Ax}.

Both D(A) and Im(A) are vector subspaces of X, and G(A) is a vector subspace of X ×X.

Remark 5.124 The pair (A,D) is often called “the operator A with domain D(A) = D” or simply “the
operator A”. However, we must notice that an operator is not determined only by the value Ax, but also
by its domain. In other words, when we define an operator it is absolutely necessary to specify its domain.
In particular, the same formula may define several operators, depending on what the domain is.

For example, let X = L2(Rn). Let A1 be defined by D(A1) = X and A1u = u for all u ∈ X (A1
is the identity on X), and let

D(A2) = {u ∈ H1(Rn); u(x) = 0 for almost all x with |x| ≥ 1}

and A2u = u for all u ∈ D(A2). Both A1 and A2 are defined by the same formula, but A1 and A2 have
different properties. For instance, the domain of A1 is dense in X, while the domain of A2 is not.

Remark 5.125 When there is no risk of confusion, an unbounded linear operator in X is simply called
a linear operator in X or an operator in X.

Definition 5.126 An operator A in X is m-accretive if the following hold:
i) A is accretive;
ii) For every λ > 0 and every f ∈ X, there exists x ∈ D(A) such that x+ λAx = f.

Lemma 5.127 If A is an m-accretive operator in X, then for each λ > 0 and each f ∈ X there exists a
unique solution x ∈ D(A) of the equation

x+ λAx = f.

Moreover, ∥x∥ ≤ ∥f∥. In particular, given λ > 0, the mapping f 7→ x is a contraction X → X,
and is one-to-one X → D(A).

Proof: The result follows immediately from Definition 5.126. 2

Proposition 5.128 If A is an m-accretive operator in X, then the graph G(A) of A is closed in X ×X.

Proof: This follows from Proposition 5.89. 2

Corollary 5.129 Let A be an m-accretive operator in X. For each x ∈ D(A) set ∥x∥D(A) = ∥x∥+ ∥Ax∥
and |||x|||D(A) = ∥x+Ax∥. Then
i) ∥ · ∥D(A) is a norm on D(A), and (D(A), ∥ · ∥D(A)) is a Banach space; ∥ · ∥D(A) is called the graph
norm;
ii) D(A) ↪→ X;
iii) The restriction of A to D(A) is continuous D(A)→ X and ∥A∥L(D(A),X) < 1;
iv) ||| · |||D(A) is an equivalent norm on D(A);
v) J1 is an isomorphism from X onto D(A).
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Proof: It is clear that ∥ · ∥D(A) is a norm on D(A). Moreover, the mapping

D(A)→ X ×X, g : x 7→ (x,Ax)

satisfies ∥g(x)∥X×X = ∥x∥D(A). Since g(D(A)) = G(A), which is closed by Proposition 5.89, it follows
that (D(A), ∥ · ∥D(A)) is a Banach space. Indeed, let {xn}n∈N be a Cauchy sequence in (D(A), ∥ · ∥D(A)),
where ∥x∥D(A) = ∥x∥+ ∥Ax∥. Then

∥xn − xm∥ → 0 and ∥Axn −Axm∥ → 0 as m,n→∞,

which implies that there exist x ∈ X and y ∈ X such that xn → x in X and Axn → y in X.

However, since (xn, Axn) ∈ G(A) and G(A) is closed, we obtain (x, y) ∈ G(A), that is, y = Ax.

Thus xn → x in (D(A), ∥ · ∥D(A)). This proves (i).

Item (ii) follows from the inequality ∥x∥ ≤ ∥x∥D(A), whereas (iii) follows from the inequality
∥Ax∥ ≤ ∥x∥D(A). Moreover,

∥A∥L(D(A),X) = sup{∥Ax∥; x ∈ D(A) and ∥x∥D(A) ≤ 1}
≤ sup{∥x∥; x ∈ D(A) and ∥x∥D(A) ≤ 1} ≤ 1.

To prove (iv), note that ∥x∥ ≤ ∥x∥D(A), and also

∥x∥D(A) ≤ 2∥x∥+ |||x|||D(A) ≤ 3 |||x|||D(A).

Indeed,

∥x∥D(A) = ∥x∥+ ∥Ax∥ ≤ ∥x+ 2Ax∥+ ∥Ax∥
≤ ∥x+Ax∥+ ∥Ax∥+ ∥Ax∥
= |||x|||D(A) + 2∥Ax∥
≤ |||x|||D(A) + 2∥x+Ax∥
= |||x|||D(A) + 2|||x|||D(A)

= 3|||x|||D(A).

Since A is accretive, (iv) follows. Finally, we have Im(J1) = D(A) by Lemma 5.127, and it is
immediate that |||J1x|||D(A) = ∥x∥ for all x ∈ X, because

|||J1x|||D(A) = ∥J1x+Ax∥ = ∥(I +A)J1x∥ = ∥x∥,

and hence J1 is an isometry from X onto D(A) endowed with the equivalent norm ||| · |||D(A). This
completes the proof. 2

Remark 5.130 From now on, we shall regard D(A) as a Banach space (D(A), ∥ · ∥D(A)).

Corollary 5.131 If A is an m-accretive operator in X, then

(i) ∥J1x∥D(A) defines a norm on X, equivalent to the original norm ∥ · ∥;

(ii) Jλ ∈ L(X,D(A)) for every λ > 0.

Proof: It follows from Corollary 5.129, item (iv), that |||J1x|||D(A) = ∥x∥. Hence (i) holds. Given λ > 0
and x ∈ X, we have λAJλx = x− Jλx, and thus

∥Jλx∥D(A) = ∥Jλx∥+ 1
λ
∥x− Jλx∥ ≤

(
1 + 2

λ

)
∥x∥.
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Therefore, (ii) follows. 2

0.5 cm

Definition 5.132 Let A be an operator in X, and let Jλ be as defined above. For each x ∈ X and λ > 0,
we define Aλx ∈ X by Aλx = AJλx. The operator Aλ is called the Yosida approximation of A.

Lemma 5.133 Let A be an operator in X and let Aλ be as above. The following properties hold:

(i) Aλx = x− Jλx

λ
for each x ∈ X;

(ii) Aλ ∈ L(X) and ∥Aλ∥L(X) ≤
2
λ

for every λ > 0;

(iii) Aλx = JλAx for each x ∈ D(A);

(iv) (Jλ)|D(A) ∈ L(D(A)) and ∥(Jλ)|D(A)∥L(D(A)) ≤ 1 for each λ > 0;

(v) Aλ is m-accretive.

Proof: (i) Let x ∈ X and set z = Jλx. We have z + λAz = x, and hence λAλx = λAz = x − z, which
proves (i). Item (ii) then follows immediately. Indeed,

∥Aλ∥ = sup
x∈X

∥x∥≤1

∥Aλx∥

= sup
x∈X

∥x∥≤1

∥∥∥∥x− Jλx

λ

∥∥∥∥
≤ sup

x∈X
∥x∥≤1

∥∥∥x
λ

∥∥∥+ sup
x∈X

∥x∥≤1

∥∥∥∥Jλx

λ

∥∥∥∥
≤ 1

λ
+ 1
λ
∥Jλ∥

≤ 2
λ
.

(iii) Finally, let x ∈ D(A) and set z = Jλx. Then

z + λAz = x.

Since both x and z belong to D(A), it follows that Az ∈ D(A) and

Az + λA(Az) = Ax.

Now set w = JλAx. Then
w + λAw = Ax,

and hence (w−Az) +λA(w−Az) = 0. Since A is accretive, we conclude that w = Az, which proves (iii).

(iv) We have

∥Jλx∥D(A) = ∥Jλx∥+ ∥A(Jλx)∥ = ∥Jλx∥+ ∥Aλx∥
= ∥Jλx∥+ ∥JλAx∥ ≤ ∥x∥+ ∥Ax∥ = ∥x∥D(A).

(v) This follows from Theorem 5.79. 2
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Remark 5.134 If A is an m-accretive operator in X and if X is reflexive, then D(A) is dense in X.
Proof: See [83], Theorem (4.6), p. 16. 2

Remark 5.135 If X is a Hilbert space, then we cannot prove the estimate in (ii). In this case, we have
∥Aλ∥L(X) ≤ 1

λ . Indeed, given x ∈ X, let f = Jλx, so that f + λAf = x. Taking the inner product with
Af , we obtain

(f,Af) + λ(Af,Af) = (x,Af) ≤ ∥x∥ ∥Af∥.

Thus, by Lemma 5.156 we obtain

λ∥Af∥2 ≤ ∥x∥ ∥Af∥.

If ∥Af∥ ≠ 0, then

∥Af∥ ≤ 1
λ
∥x∥,

∥AJλx∥ ≤
1
λ
∥x∥,

∥Aλx∥ ≤
1
λ
∥x∥,

∥Aλ∥L(X) ≤ 1
λ
.

The purpose of the next proposition is to show that Jλ is a good approximation of the identity,
and that the (bounded) operator Aλ is an approximation of the unbounded operator A as λ→ 0+.

We now state the following result, which will be used in the next proposition.

Proposition 5.136 Let X and Y be Banach spaces, let E be a subset of X, and let (Aλ)λ∈(−1,1) be a
bounded family in L(X,Y ). If lim

λ→0
Aλx = 0 for every x ∈ E, then lim

λ→0
Aλx = 0 for every x ∈ E.

Proof: Let x ∈ E and let (xn)n∈N ⊂ E be a sequence converging to x as n → ∞. Then there exists
C <∞ such that, for all n ∈ N,

∥Aλx∥ ≤ ∥Aλxn∥+ C∥x− xn∥.

Given ε > 0, we can choose n0 sufficiently large such that C∥x−xn0∥ ≤ ε
2 . Then, for λ sufficiently

small, we have ∥Aλxn0∥ ≤ ε
2 . The result follows. 2

Proposition 5.137 Let A be an m-accretive operator in X. If D(A) is dense in X, then

(i) ∥Jλx− x∥ ≤ λ∥Ax∥ for every λ > 0 and every x ∈ D(A);

(ii) ∥Jλx− x∥ → 0+ as λ→ 0+ for every x ∈ X;

(iii) ∥Aλx−Ax∥ → 0+ as λ→ 0+ for every x ∈ D(A);

(iv) ∥Jλx− x∥D(A) → 0 as λ→ 0+ for every x ∈ D(A).

Proof: (i) Let x ∈ D(A). We have Jλx−x = −λAλx, and thus (i) follows from Lemma 5.133, item (iii).

(ii) We have ∥Jλ − I∥L(X) ≤ ∥Jλ∥+ ∥I∥ ≤ 2. Moreover, for x ∈ D(A), item (i) gives ∥Jλx− x∥ ≤
λ∥Ax∥. Letting λ→ 0, we obtain ∥Jλx−x∥ → 0. Since D(A) is dense in X, (ii) follows from Proposition
5.136.
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(iii) Given x ∈ D(A), it follows from (ii) that JλAx−Ax→ 0 as λ→ 0+ in X. Hence (iii) follows,
since JλAx = Aλx by Lemma 5.133.

(iv) Finally, (iv) follows from (ii) and (iii). 2

Remark 5.138 Property (i) also holds if D(A) is not dense. Therefore, if A is an m-accretive operator,
then Jλx→ x as λ→ 0 for each x ∈ D(A) and, consequently, for each x ∈ D(A).

Finally, the next proposition provides a short and usual characterization of m-accretive operators.

Proposition 5.139 Let A be an accretive operator in X. Then the following properties are equivalent:

(i) A is m-accretive;

(ii) There exists λ0 > 0 such that, for every f ∈ X, there exists a solution x ∈ D(A) of the equation
x+ λ0Ax = f.

Proof: (i)⇒ (ii) follows from Corollary 5.88.
(ii)⇒ (i) follows from Proposition 5.87. 2

Remark 5.140 Let A be an accretive operator in X. In order to verify that A is m-accretive, the natural
approach is to solve the equation x+λAx = f for every f ∈ X and every λ > 0. Proposition 5.139 means
that, in fact, it suffices to solve this equation for every f ∈ X and some fixed λ > 0.

Corollary 5.141 Let A and B be two operators in X. If Im(I + A) = X, if B is accretive and if
G(A) ⊂ G(B), then A = B and A is m-accretive.

Proof: Let (x, f) ∈ G(B) and set g = f+x. In particular, x ∈ D(B) and x+Bx = g. Since Im(I+A) = X,
there exists y ∈ D(A) such that y+Ay = g. As G(A) ⊂ G(B), it follows that y ∈ D(B) and y+By = g.

In particular,
(x− y) +B(x− y) = 0.

Therefore y = x, since B is accretive. It follows that (x, f) ∈ G(A), and hence A = B.

Finally, A is accretive (because B is accretive) and Im(I + A) = X, so A is m-accretive by
Proposition 5.139. 2

Corollary 5.142 Let A and B be two m-accretive operators in X. If G(A) ⊂ G(B), then A = B.

5.7.2 Accretive operators and duality applications: sum of accretive operators

Recall the definition of the duality mapping F . For each x ∈ X, we define the duality set F (x) ⊂ X ′

by
F (x) = {ξ ∈ X ′; ∥ξ∥X′ = ∥x∥ and ⟨ξ, x⟩ = ∥x∥2}.

It follows from the Hahn–Banach theorem that F (x) ̸= ∅.

Lemma 5.143 Let A be a linear operator in X. The following properties are equivalent:

(i) A is accretive;

(ii) for every x ∈ D(A) there exists x′ ∈ F (x) such that ⟨x′, Ax⟩ ≥ 0.
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Proof: This follows from Proposition 5.68. 2

Lemma 5.144 Let A be an m-accretive operator in X. Then

⟨x′, Ax⟩ ≥ 0, for every x ∈ D(A) and every x′ ∈ F (x).

Proof: Let x ∈ D(A) and x′ ∈ F (x). For every λ > 0 we have

⟨x′, (I + λA)−1x⟩ ≤ ∥x′∥ ∥(I + λA)−1x∥ ≤ ∥x∥2 = ⟨x′, x⟩.

Hence,
⟨x′, x− (I + λA)−1x⟩ ≥ 0.

Dividing both sides of the inequality by λ we obtain〈
x′,

x− (I + λA)−1x

λ

〉
≥ 0.

By Lemma 5.133 we have ⟨x′, Aλx⟩ ≥ 0. Then, by item (iii) of Proposition 5.137, letting λ → 0+ we
obtain ⟨x′, Ax⟩ ≥ 0 for every x ∈ D(A). 2

Corollary 5.145 Let A and B be operators in X. Define the operator A+B by

D(A+B) = D(A) ∩D(B), (A+B)x = Ax+Bx.

If A is m-accretive and B is accretive, then A+B is accretive.

Proof: Since A is m-accretive, it follows from Lemma 5.144 that

⟨x′, Ax⟩ ≥ 0, ∀x ∈ D(A), ∀x′ ∈ F (x).

As B is accretive, Lemma 5.143 yields: for every x ∈ D(B) there exists x′ ∈ F (x) such that ⟨x′, Bx⟩ ≥ 0.
Let x ∈ D(A + B) = D(A) ∩D(B). Then x ∈ D(A) and x ∈ D(B). Thus, there exists x′ ∈ F (x) such
that

⟨x′, (A+B)x⟩ = ⟨x′, Ax⟩+ ⟨x′, Bx⟩ ≥ 0.

By Lemma 5.143, A+B is accretive. 2

5.7.3 Restriction and extrapolation

In this section we show that, given an m-accretive operator with dense domain, we can either
restrict the domain to a smaller space or extend it to a larger space in such a way that the restricted or
extended operator is again m-accretive.

Theorem 5.146 Let A be an m-accretive operator in X with dense domain and let X1 be the Banach
space (D(A), ∥ · ∥D(A)). The operator A(1) in X1 defined by{

D(A(1)) = {x ∈ X1; Ax ∈ X1},

A(1)x = Ax, ∀x ∈ D(A(1))

is m-accretive in X1 and D(A(1)) is dense in X1.

Proof: Let x ∈ D(A(1)), f ∈ X1 and λ > 0 be such that

x+ λA(1)x = f.
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In particular,
x+ λAx = f. (5.7.213)

Since x ∈ D(A(1)) we have Ax ∈ X1, hence Ax ∈ D(A). From (5.7.213) we obtain

Ax+ λA(Ax) = Af. (5.7.214)

As A is accretive, it follows from (5.7.213) and (5.7.214) that ∥x∥ ≤ ∥f∥ and ∥Ax∥ ≤ ∥Af∥. Thus,

∥x∥X1 = ∥x∥+ ∥Ax∥ ≤ ∥f∥+ ∥Af∥ = ∥f∥X1 = ∥x+ λA(1)x∥X1 .

Therefore A(1) is accretive.

Now let λ > 0, f ∈ X1 and set x = Jλf . Then x = (I + λA)−1f , that is, x + λAx = f . In
particular, Ax ∈ D(A) (since f, x ∈ D(A)), which means x ∈ D(A(1)) and x + λA(1)x = f . Hence A(1)
is m-accretive.

Let x ∈ X1 and set xλ = Jλx. As above we can check that xλ ∈ D(A(1)). Moreover, by item (iv)
of Proposition 5.137,

xλ −→ x as λ→ 0+ in X1.

Therefore D(A(1)) is dense in X1. 2

Remark 5.147 Some remarks concerning Theorem 5.146:

(i) We have seen in Theorem 5.146 that the operator

A(1) : X1 → X1, X1 = (D(A), ∥ · ∥D(A)),

defined by {
D(A(1)) = {x ∈ X1; Ax ∈ X1},

A(1)x = Ax, ∀x ∈ D(A(1))

is m-accretive in X1 and D(A(1)) = X1. Hence we may apply Theorem 5.146 to the operator A(1).
Thus, setting X2 = (D(A(1)), ∥ · ∥D(A(1))), which is a Banach space, the operator A(2) defined by{

D(A(2)) = {x ∈ X2; A(1)x ∈ X2},

A(2)x = A(1)x, ∀x ∈ D(A(2))

is m-accretive in X2 and D(A(2)) = X2.

Applying Theorem 5.146 successively, and setting Xn+1 = (D(A(n)), ∥ · ∥D(A(n))), which is again a
Banach space, the operator A(n+1) defined by{

D(A(n+1)) = {x ∈ Xn+1; A(n)x ∈ Xn+1},

A(n+1)x = A(n)x, ∀x ∈ D(A(n+1))

is m-accretive in Xn+1 and D(A(n+1)) = Xn+1.

Concerning the norm ∥ · ∥D(A(n)), recall that ∥ · ∥D(A) is defined by ∥x∥D(A) = ∥x∥+ ∥Ax∥. Thus,

∥x∥D(A(1)) = ∥x∥D(A) + ∥Ax∥D(A) = ∥x∥+ ∥Ax∥+ ∥Ax∥+ ∥A2x∥.

We have ∥x∥D(A(1)) ≈ ∥x∥+ ∥Ax∥+ ∥A2x∥. Indeed,

∥x∥D(A(1)) = ∥x∥+ 2∥Ax∥+ ∥A2x∥ ≤ 2
(
∥x∥+ ∥Ax∥+ ∥A2x∥

)
,
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and
∥x∥+ ∥Ax∥+ ∥A2x∥ ≤ ∥x∥+ 2∥Ax∥+ ∥A2x∥ = ∥x∥D(A(1)).

Similarly, we obtain

∥x∥D(A(n)) ≈ ∥x∥+ ∥Ax∥+ ∥A2x∥+ · · ·+ ∥Anx∥ =
n∑

j=0
∥Ajx∥.

Note that

X1 = (D(A), ∥ · ∥D(A)) ⊂ X, X2 = (D(A(1)), ∥ · ∥D(A(1))) ⊂ X1 ⊂ X, . . . ,

Xn+1 = (D(A(n)), ∥ · ∥D(A(n))) ⊂ Xn ⊂ · · · ⊂ X2 ⊂ X1 ⊂ X = X0.

Moreover,

D(A) = X ⇒ X1 = X, D(A(1)) = X1 ⇒ X2 = X1, . . . , D(A(n+1)) = Xn+1 ⇒ Xn+1 = Xn.

Since A(n) is m-accretive for every n ∈ N, Corollary 5.129 yields a family (Xn)n∈N of Banach
spaces such that

· · · ↪→ Xn+1 ↪→ Xn ↪→ · · · ↪→ X2 ↪→ X1 ↪→ X0 = X,

all continuously and densely embedded.
Also note that the family (A(n))n∈N of operators is such that A(n) is m-accretive in Xn with domain
Xn+1 and A(n)x = Ax for every x ∈ Xn+1.
When A is bounded we have Xn = X for all n ∈ N. Indeed, since A : D(A) ⊂ X → X is bounded
and closed (because A is m-accretive), Proposition 2.39 of [23] implies that D(A) is closed. Under
the assumptions of Theorem 5.146 we have D(A) = X. Therefore D(A) = X, so X1 = X. From the
definition of D(A(1)) it follows that D(A(1)) = X. Considering the definition of D(A(n)), n ∈ N,
successively, we obtain D(A(n)) = X for all n ∈ N, or equivalently Xn = X for all n ∈ N.
If A is not bounded, the family (Xn)n∈N is strictly decreasing. In fact, if A is not bounded, then by
Theorem 2.39 of [23], D(A) is not closed and consequently X1 ̸= X. Also, if A is not bounded then
A(1) is not bounded. Indeed, suppose by contradiction that A(1) is bounded. Then

∞ > α = sup
∥x∥≤1, x∈D(A(1))

∥A(1)x∥D(A)

= sup
∥x∥≤1, x∈D(A(1))

(
∥A(1)x∥X + ∥A(A(1)x)∥X

)
≥ sup

∥x∥≤1, x∈D(A(1))
∥Ax∥X .

Hence A would be bounded, a contradiction.

(ii) It follows from Corollary 5.131 that X1 = J1(X) and that ∥J1x∥X1 ≈ ∥x∥. By iteration we obtain
Xn = Jn

1 (X), for every non-negative integer n, and ∥Jn
1 x∥Xn

≈ ∥x∥.

Remark 5.148 Given an operator A in X, we can define “powers of A” as follows:
We define A2 by: {

D(A2) = {x ∈ D(A); Ax ∈ D(A)},
A2x = A(Ax) for every x ∈ D(A2).

More generally, by induction we define the operator An, for n ≥ 2, by{
D(An) = {x ∈ D(An−1); An−1x ∈ D(A)},
Anx = A(An−1x) for every x ∈ D(An).

The spaces Xn defined in Observation 5.147 coincide with D(An) with equivalent norms if D(An)
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is endowed with the norm

∥x∥D(An) =
n∑

j=0
∥Ajx∥.

Indeed, we have Xn = (D(A(n−1)), ∥ · ∥D(A(n−1))) and

∥x∥Xn
= ∥x∥D(A(n−1)) ≃ ∥x∥+ ∥Ax∥+ · · ·+ ∥Anx∥ = ∥x∥D(An).

We now show by induction that D(A(n−1)) = D(An) for every n ≥ 2.
For n = 2, we have D(A1) = {x ∈ X1; Ax ∈ X1}, where X1 = (D(A), ∥ · ∥D(A)). Thus,

x ∈ D(A1) ⇐⇒ x,Ax ∈ X1 ⇐⇒ x,Ax ∈ D(A) ⇐⇒ x,Ax ∈ D(A2).

Hence D(A1) = D(A2).

Assume that for some r ∈ N, r ≥ 2, we have D(A(r−1)) = D(Ar). We prove that the same holds
for r + 1, i.e., D(A(r)) = D(Ar+1). First observe that

Ax ∈ D(Ar) ⇐⇒ Arx ∈ D(A). (5.7.215)

Indeed, let x ∈ D(Ar). Then x ∈ D(A(r−1)) = D(Ar) by the induction hypothesis. Hence x ∈ D(Ar) and
therefore Ar−1x ∈ D(A); from (5.7.215) we infer Ax ∈ D(Ar−1). Thus Ar−1(Ax) = Arx ∈ D(A), and
so x ∈ D(Ar+1).

Conversely, let x ∈ D(Ar+1) (we want to show that x ∈ D(Ar), that is, x ∈ D(A(r−1)) and
A(r−1)x ∈ D(A(r−1))). Since x ∈ D(Ar+1), we have x ∈ D(Ar) = D(A(r−1)) by the induction hypothesis,
hence x ∈ D(A(r−1)). On the other hand, from x ∈ D(Ar+1) we also obtain Arx ∈ D(A), and thus by
(5.7.215) we get Ax ∈ D(Ar) = D(A(r−1)) by the induction hypothesis. Therefore Ax ∈ D(A(r−1)) = Xr,
and by Observation 5.147 (namely, A(r)x = Ax for every x ∈ Xr+1) it follows that A(r−1)x = Ax

for every x ∈ Xr = D(A(r−1)). Since x ∈ D(A(r−1)), we have A(r−1)x = Ax ∈ D(A(r−1)). Hence
x ∈ D(Ar).

Therefore D(A(n−1)) = D(An) for every n ∈ N, n ≥ 2, as desired.

Theorem 5.149 If A is an m-accretive operator in X with dense domain, then there exist a Banach
space X−1 and an operator A(−1) in X−1 such that:

(i) X ↪→ X−1 with dense embedding;

(ii) For every x ∈ X, the norm of x in X−1 is given by ∥x∥X−1 = ∥J1x∥;

(iii) A(−1) is m-accretive in X−1;

(iv) D(A(−1)) = X and the norms ∥ · ∥ and ∥ · ∥X−1 are equivalent on X;

(v) For every x ∈ D(A) we have A(−1)x = Ax. Moreover, X−1 and A(−1) satisfying (i)–(iv) are unique.

Proof: Define |||x||| = ∥J1x∥ for every x ∈ X. Then ||| · ||| is a norm on X. Thus, considering (X, ||| · |||)
as a normed space, there exists a unique Banach space (X−1, ∥·∥X−1) such that the embedding X ↪→ X−1
is dense, which proves (i); see [60], p. 69.

Moreover, since |||x||| = ∥x∥X−1 by construction, we have ∥x∥X−1 = ∥J1x∥ for all x ∈ X, proving
(ii).

Note also that
AJ1x = x− J1x, for every x ∈ X.

Thus, by Lemma 5.133,
J1Ax = x− J1x, for every x ∈ D(A),
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and hence

|||Ax||| = ∥J1Ax∥ = ∥x− J1x∥ ≤ ∥x∥+ ∥J1x∥ ≤ 2∥x∥, for every x ∈ D(A).

Therefore |||Ax||| ≤ 2∥x∥ for all x ∈ D(A), so A is bounded as an operator from (D(A), ∥ · ∥) into
(X, ||| · |||). Since A is linear, there exists a unique operator A ∈ L(X,X−1) such that Ax = Ax for all
x ∈ D(A) and

|||Ax||| ≤ 2∥x∥ for every x ∈ X. (5.7.216)

We now define the operator A(−1) in X−1 by{
D(A(−1)) = X,

A(−1)x = Ax, for every x ∈ X.

Let λ > 0, x ∈ D(A) and set v = J1x. Then

v + λAv = J1(x+ λAx).

Since A is m-accretive, we have

|||x+ λAx||| = ∥J1(x+ λAx)∥ = ∥v + λAv∥ ≥ ∥v∥ = ∥J1x∥ = |||x|||.

Because D(A) = X and A is continuous, it follows that

|||x+ λAx||| ≥ |||x||| for every x ∈ X.

Therefore A(−1) is accretive.

Now let f ∈ X−1 and choose a sequence (fn) ⊂ X such that fn → f as n → ∞. Set xn = J1fn.
Then (xn) is a Cauchy sequence in X. Indeed, using linearity of J1 we have

∥xn − xm∥ = ∥J1fn − J1fm∥ = ∥J1(fn − fm)∥ → 0,

since (fn) is Cauchy in X−1 (being convergent there). As X is a Banach space, (xn) converges in X; let
x denote its limit. We have

fn = xn +Axn = xn +Axn.

Passing to the limit as n→∞ yields

f = x+Ax = x+A(−1)x.

Hence, by Proposition 5.139, A(−1) is m-accretive in X−1, proving (iii).

By the definition of A(−1) we have D(A(−1)) = X. Furthermore, the norms ∥ · ∥X−1 and ∥ · ∥ are
equivalent. Indeed, we have already observed that

∥x∥X−1 = ∥J1x∥ ≤ ∥x∥ for all x ∈ X.

On the other hand, for every x ∈ D(A) we have

∥x∥ = ∥AJ1x+ J1x∥
≤ ∥A∥L(X,X−1) ∥J1x∥+ ∥J1x∥
≤ c∥J1x∥+ ∥J1x∥
= c∥x∥X−1 + ∥x∥X−1

= d∥x∥X−1 ,
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where c, d > 0 are suitable constants. Since D(A) = X, it follows that ∥x∥ ≤ d∥x∥X−1 for every x ∈ X.
Thus

∥x∥X−1 ≤ ∥x∥ ≤ d∥x∥X−1 ,

which proves (iv).

From the definition of A(−1) we have A(−1)x = Ax for every x ∈ X. Since Ax = Ax for all
x ∈ D(A), we obtain (v). Finally, the uniqueness of A implies the uniqueness of A(−1). 2

Remark 5.150 Observe that, under the assumptions of Theorem 5.149, the operator A(−1) is m-accretive
in X−1, where X−1 is a Banach space and D(A(−1)) = X−1, since D(A(−1)) = X and X = X−1. Hence,
applying this theorem to the operator A(−1), we obtain a Banach space (X−2, ∥ · ∥X−2) and an operator
A(−2) which is m-accretive in X−2 and satisfies D(A(−2)) = X−2. Proceeding in this way and applying
the theorem successively, we construct a family of operators (A(−n))n∈N such that A(−n) is m-accretive
in X−n with domain X−n+1 and A(−n)x = Ax for every x ∈ D(A).

Moreover, we can construct a family (X−n)n∈N of Banach spaces such that

X0 ↪→ X−1 ↪→ · · · ↪→ X−n+1 ↪→ X−n ↪→ · · · ,

all embeddings being dense. Arguing as in Observation 5.147, we prove that if A is bounded then X−n = X

for every n ∈ N, whereas if A is not bounded the family (X−n)n∈N is strictly decreasing.

Combining this with Observation 5.147, we obtain the bi-infinite scale

· · · ↪→ Xn+1 ↪→ Xn ↪→ · · · ↪→ X0 = X ↪→ · · · ↪→ X−1 ↪→ · · · ↪→ X−n+1 ↪→ X−n ↪→ · · ·

with all embeddings dense, and we obtain a family of operators (A(n))n∈Z such that A(n) is m-accretive
in Xn with domain Xn+1 and

A(n)x = A(j)x, for all x ∈ Xn ∩Xj .

Remark 5.151 Some remarks about Theorem 5.149 and Observation 5.150:

(i) Note that restriction and extrapolation commute, i.e.,

A(−n)(A(n)x) = A(n)(A(−n)x).

In particular, (X1)−1 = (X−1)1 = X and (A(1))(−1) = A(−1)(A(1)) = A.

(ii) Note also that X−n is the completion of X with respect to the norm ∥Jn
λx∥. In particular, Jn

λ can
be extended by continuity to an isomorphism from X−n onto X. For every x ∈ D(A(−n)) = X−n+1,
the element A(−n)x is the limit in X−n of A(Jn

λx), where Jn
λx ∈ D(A).

Corollary 5.152 With the notation of Theorem 5.149, if x ∈ X is such that A(−1)x ∈ X, then x ∈ D(A).

Proof: Let A be an m-accretive operator in X with D(A) = X. Let f = x + A(−1)x ∈ X. Since A
is m-accretive, there exists y ∈ D(A) such that y + Ay = f and then y + A(−1)y = f . As A(−1) is
m-accretive, it follows that x = y ∈ D(A). 2

Corollary 5.153 If A is an m-accretive operator in X with dense domain, then:

(i) ∥Jλx− x∥X−1 ≤ 2λ∥x∥ for every x ∈ X;

(ii) If (xλ)λ>0 is a bounded family in X and X is reflexive, then Jλxλ − xλ → 0 as λ→ 0+.
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To prove Corollary 5.153 we shall use the following results.

Lemma 5.154 Let X ↪→ Y and (xn)n∈N ⊂ X. If xn ⇀ x in X as n→∞, then xn ⇀ x in Y as n→∞.

Proof: The embedding X → Y is continuous; hence it is also continuous with respect to the weak
topologies. The result follows. 2

Lemma 5.155 Let X ↪→ Y be Banach spaces and let (xn)n∈N ⊂ X be a bounded sequence in X such
that xn ⇀ y in Y as n→∞ for some y ∈ Y . If X is reflexive, then y ∈ X and xn ⇀ y in X as n→∞.

Proof: First we show that y ∈ X. Since X is reflexive and (xn) is bounded in X, there exist x ∈ X and
a subsequence (xnk

) such that xnk
⇀ x in X as k →∞. By Lemma 5.154,

xnk
⇀ x in Y as k →∞.

By uniqueness of the weak limit in Y , we must have x = y ∈ X.

We now prove that xn ⇀ y in X. Suppose, by contradiction, that this is not the case. Then there
exist x′ ∈ X ′, ε > 0 and a subsequence (xnk

) such that

|⟨x′, xnk
− y⟩| ≥ ε, for every k ∈ N.

On the other hand, since (xnk
) is bounded in X, there exist a further subsequence (xnkj

) and z ∈ X such
that xnkj

⇀ z in X as j → ∞. By the first part we must have z = y, which contradicts the inequality
above. Hence xn ⇀ y in X. 2

Proof of Corollary 5.153.
Proof: By item (i) of Proposition 5.137 applied to A(−1), we have

∥Jλx− x∥X−1 ≤ λ∥A(−1)x∥X−1 for all λ > 0, x ∈ D(A(−1)) = X.

From (5.7.216) we know that

∥A(−1)x∥X−1 = |||A(−1)x||| ≤ 2∥x∥ for all x ∈ X,

which proves (i).

For (ii), we have X ↪→ X−1, and X and X−1 are Banach spaces. Let (xλ)λ>0 ⊂ X be bounded
and suppose that Jλxλ − xλ → 0 in X−1 as λ → 0+. By Lemma 5.155, since X is reflexive, it follows
that Jλxλ − xλ → 0 in X as λ→ 0+. 2

5.7.4 Hilbert spaces and self-adjoint and skew-adjoint operators

In this section we assume that H is a Hilbert space and denote its inner product by (·, ·).

Lemma 5.156 If A is a linear operator in H, then the following properties are equivalent:

(i) A is accretive;

(ii) (Ax, x) ≥ 0 for every x ∈ D(A).

Proof: Since H is a Hilbert space, it follows from Observation 5.70 that A is accretive if and only if A
is monotone. On the other hand, from the remark following Definition 5.2 we know that A is monotone
if and only if A is positive (here we are assuming that A is linear and single-valued). 2

Corollary 5.157 If A is m-accretive in H, then D(A) is dense in H.
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Proof: Let z ∈ D(A)⊥ and write J1z = x ∈ D(A). Then

0 = (z, x) = ((A+ I)x, x) = (Ax, x) + ∥x∥2 ≥ ∥x∥2,

since (Ax, x) ≥ 0 by the previous lemma. Hence x = 0.

As J1 is a bijection, there exists a unique y ∈ H such that J1y = 0. But J1 is linear, so J10 = 0,
and thus y = 0. Therefore z = 0 and we conclude that D(A) = H. 2

Remark 5.158 The spaces Hn defined above are Hilbert spaces with inner product

(x, y)Hn
= (x, y)H + (Ax,Ay)H1 + · · ·+ (An−1x,An−1y)Hn−1 .

In the case of the spaces H−n, the inner product is given by

(x, y)H−n = (Jn
1 x, J

n
1 y)H .

Before proceeding, recall that given a linear operator A : D(A) ⊂ X → X, with X a Banach space,
we define

D(A∗) = {u∗ ∈ X ′; ∃ v∗ ∈ X ′ such that ⟨u∗, Au⟩ = ⟨v∗, u⟩, ∀u ∈ D(A)} .

It is well known that if D(A) is dense in X, then, for each u∗, the corresponding v∗ is unique, which
allows us to define the adjoint operator A∗ by

A∗ : D(A∗) ⊂ X ′ → X ′,

u∗ 7→ A∗u∗ = v∗.

Clearly A∗ is linear. If X is a reflexive Banach space and A : D(A) ⊂ X → X is a linear, closed,
bounded operator with dense domain D(A), then D(A∗) is also dense in X ′ and the following hold:

(i) If B ∈ L(X), then (A+B)∗ = A∗ +B∗; in particular,

(A+ I)∗ = A∗ + I;

(ii) (ImA)⊥ = ker (A∗).

Finally, if A : D(A) ⊂ X → X is a closed, densely defined linear operator, then the following properties
are equivalent:

(i) D(A) = X;
(ii) A is continuous;
(iii) D(A∗) = X ′;
(iv) A∗ is continuous.

(5.7.217)

Remark 5.159 If A is m-accretive in H, then, by Corollary 5.157, we have D(A) dense in H, and
therefore A∗ is well defined.

Lemma 5.160 Let A be a densely defined operator in H and A∗ its adjoint. Then:

(i) G(A∗) = {(x, f) ∈ H ×H; (f, y) = (x, g), ∀(y, g) ∈ G(A)}, that is,

(x, f) ∈ G(A∗) ⇐⇒ (−f, x) ∈ G(A)⊥;

(ii) G(A∗) is closed in H ×H.
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Proof: See [23]. 2

Proposition 5.161 If A is m-accretive, then:

(i) A∗ is m-accretive;

(ii) (I + λA∗)−1 = ((I + λA)−1)∗ for every λ > 0;

(iii) (A∗)λ = (Aλ)∗ for every λ > 0;

(iv) e−t(A∗)λ = (e−tAλ)∗ for every λ > 0 and t ∈ R.

Proof: (i) Let x ∈ D(A∗) and λ > 0. Then

(A∗x, Jλx) = (x,AJλx) = (x,Aλx) = 1
λ

(
∥x∥2 − (x, Jλx)

)
≥ 0.

For λ small enough we have 1
λ ≥ 1, and thus

1
λ

(
∥x∥2 − (x, Jλx)

)
≥ ∥x∥2 − (x, Jλx),

that is,
(A∗x, Jλx) ≥ ∥x∥2 − (x, Jλx).

As λ→ 0+ we have Jλx→ x, and therefore

(A∗x, Jλx) −→ (A∗x, x),

while
∥x∥2 − (x, Jλx) −→ ∥x∥2 − ∥x∥2 = 0.

Hence
(A∗x, x) ≥ 0,

and by Lemma 5.156 we conclude that A∗ is accretive.

To show that A∗ is m-accretive, let λ > 0 and set Lλ = ((I + λA)−1)∗ ∈ L(H), which is bounded
by (5.7.217). Let z ∈ H and x = Lλz. If y ∈ D(A), then

(x,Ay) = 1
λ

[
(x, y + λAy)− (x, y)

]
= 1

λ

[
(Lλz, (I + λA)y)− (x, y)

]
= 1

λ

[
(z, (I + λA)−1(I + λA)y)− (x, y)

]
= 1

λ

[
(z, y)− (x, y)

]
= 1

λ
(z − x, y).

Thus
(
x, z−x

λ

)
∈ G(A∗), hence x ∈ D(A∗) and

A∗x = z − x
λ

⇒ z = (I + λA∗)x.

Therefore A∗ is m-accretive, proving (i). Moreover,

(I + λA∗)−1z = x = ((I + λA)−1)∗z,

and by the arbitrariness of z ∈ H we obtain (ii).
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To prove (iii), note that

(A∗)λ = I − (I + λA∗)−1

λ
= I − ((I + λA)−1)∗

λ

=
(
I − (I + λA)−1

λ

)∗

= (Aλ)∗.

Finally, for (iv) we have

e−t(A∗)λ =
∞∑

n=0

(−t(A∗)λ)n

n!

= lim
k→∞

k∑
n=0

(−t(A∗)λ)n

n!

= lim
k→∞

k∑
n=0

(−t(Aλ)∗)n

n!

= lim
k→∞

k∑
n=0

(
(−tAλ)n

)∗

n!

= lim
k→∞

(
k∑

n=0

(−tAλ)n

n!

)∗

=
(
e−tAλ

)∗
.

2

Proposition 5.162 Let A be accretive with dense domain D(A) in H. If G(A) is closed and A∗ is
accretive, then A is m-accretive.

Proof: From the discussion at the beginning of this section we have

(Im(I +A))⊥ = ker (I +A∗) = {x ∈ D(A∗); x+A∗x = 0}.

Thus, if x ∈ (Im(I +A))⊥, then
x+A∗x = 0,

and since A∗ is accretive we obtain
∥x∥ ≤ ∥x+A∗x∥ = 0,

hence x = 0 and consequently
(Im(I +A))⊥ = {0},

which implies
Im(I +A) = H.

Now let f ∈ H and choose (fn) ⊂ Im(I +A) such that fn → f as n→∞. Set

xn = (I +A)−1fn.

Since A is accretive, we have

∥xn − xm∥ ≤ ∥(I +A)(xn − xm)∥
= ∥(I +A)(I +A)−1(fn − fm)∥
= ∥fn − fm∥ −→ 0 as n,m→∞.

Thus (xn) is a Cauchy sequence in H, and hence there exists x ∈ H such that xn → x.
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The graph G(A) is closed, and consequently G(I +A) is also closed. Since

xn ∈ D(A) = D(I +A), xn → x, (I +A)xn = fn → f,

we conclude that x ∈ D(A) and f = (I +A)x. Therefore Im(I +A) is closed and hence

Im(I +A) = H,

so A is m-accretive. 2

0.5cm

Definition 5.163 An operator A with dense domain in H is said to be symmetric (respectively, skew-
symmetric) if

G(A) ⊂ G(A∗) (respectively G(A) ⊂ G(−A∗)).

We say that A is self-adjoint (respectively, skew-adjoint) if

A = A∗ (respectively A = −A∗).

Remark 5.164 From Definition 5.163 we deduce that

A is symmetric ⇐⇒ (Ax, y) = (x,Ay), ∀x, y ∈ D(A),
A is skew-symmetric ⇐⇒ (Ax, y) = (x,−Ay), ∀x, y ∈ D(A),

A self-adjoint =⇒ A symmetric,
A skew-adjoint =⇒ A skew-symmetric.

Corollary 5.165 Let A be a densely defined operator in H. Then:

(i) If A is skew-adjoint, then A and −A are m-accretive and (Ax, x) = 0 for every x ∈ D(A);

(ii) If A is self-adjoint and accretive, then A is m-accretive.

Proof: (i) Let x ∈ D(A). Then

(Ax, x) = (x,A∗x) = (x,−Ax) = −(Ax, x),

hence
(Ax, x) = 0 = (−Ax, x), ∀x ∈ D(A),

and by Lemma 5.156 both A and −A are accretive.

Next observe that

• −A is accretive;

• (−A)∗ = −A∗ = −(−A) = A is accretive;

• G(−A) = G(A∗) is closed by Lemma 5.160;

thus, by Proposition 5.162, −A is m-accretive.

Similarly,

• A is accretive;

• A∗ = −A is accretive;
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• G(A) is closed, since G(−A) is;

hence, again by Proposition 5.162, A is m-accretive.

(ii) We have A∗ = A and A is accretive, while G(A) = G(A∗) is closed by Lemma 5.160. The
result then follows from Proposition 5.162. 2

Corollary 5.166 If A is m-accretive in H, then the following are equivalent:

(i) A is self-adjoint;

(ii) (Ax, y) = (x,Ay) for all x, y ∈ D(A).

Proof: (i)⇒ (ii) is immediate.

(ii)⇒ (i) If A satisfies (ii), then G(A) ⊂ G(A∗). We show the reverse inclusion. Let (x, f) ∈ G(A∗)
and set

g = x+A∗x = x+ f.

Since A is m-accretive, there exists y ∈ D(A) such that

g = y +Ay,

and as G(A) ⊂ G(A∗), we have y ∈ D(A∗) and

g = y +A∗y.

Thus
y +A∗y = x+A∗x.

Since A∗ is accretive,
∥x− y∥ ≤ ∥(I +A∗)(x− y)∥ = 0,

so x = y. Therefore (x,Ax) = (x, f) ∈ G(A), and hence G(A∗) ⊂ G(A) and A = A∗. 2

Corollary 5.167 If A is m-accretive, then the following are equivalent:

(i) A is skew-adjoint;

(ii) (Ax, x) = 0 for every x ∈ D(A);

(iii) −A is m-accretive.

Proof: Observe that (i)⇒ (ii) and (i)⇒ (iii) follow from Corollary 5.165.

(iii)⇒ (ii) Since A and −A are m-accretive, we have

(Ax, x) ≥ 0 and (−Ax, x) ≥ 0, ∀x ∈ D(A),

whence
(Ax, x) = 0, ∀x ∈ D(A).

(ii)⇒ (i) Let x, y ∈ D(A). Then

(Ax, y) + (x,Ay) = (A(x+ y), x+ y)− (Ax, x)− (Ay, y) = 0,

so
(Ax, y) = (x,−Ay), ∀x, y ∈ D(A),
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which implies G(A) ⊂ G(−A∗).

We claim that (A∗x, x) = 0 for every x ∈ D(A∗).

Indeed, if x ∈ D(A) ⊂ D(−A∗) = D(A∗), then

(A∗x, x) = (x,Ax) = 0.

Now let x ∈ D(A∗). For each λ > 0 we have Jλx ∈ D(A), hence

(A∗Jλx, Jλx) = 0.

But
(A∗Jλx, Jλx) = ((Jλ)∗A∗Jλx, x) = ((Aλ)∗(Jλx), x), ∀λ > 0,

that is,
((Aλ)∗(Jλx), x) = 0, ∀λ > 0. (5.7.218)

Since Jλ, (Aλ)∗ ∈ L(H) and Jλx→ x, (Aλ)∗x→ A∗x as λ→ 0+, we have

(Aλ)∗(Jλx) −→ A∗x

as λ→ 0+. Passing to the limit in (5.7.218) we obtain (A∗x, x) = 0.

From this we also get (−A∗x, x) = 0 for every x ∈ D(−A∗), and thus −A∗ is accretive.

Since D(A) ⊂ D(−A∗) and A is m-accretive (hence maximal), we conclude that A = −A∗, proving
(i). 2

Corollary 5.168 Let A be m-accretive and A(n) the operator defined in Observation 5.150, for n ∈ Z.
If A is self-adjoint, then A(n) is self-adjoint (the same holds if A is skew-adjoint).

Proof: We argue by induction on n ∈ N. We first prove the result for A(n) with n ≥ 0 and then for
A(−n), n ≥ 1.

Assume that A is self-adjoint and let x, y ∈ D(A1). Then

(A1x, y)H1 = (A1x, y)H + (A(A1)x, y)H

= (Ax, y)H + (A2x, y)H

= (x,Ay)H + (x,A2y)H

= (x,A1y)H1 .

Since A1 is m-accretive, it follows from Corollary 5.166 that A1 is self-adjoint.

Assume now that Ak is self-adjoint and let us show that Ak+1 is also self-adjoint. For x, y ∈
D(Ak+1) we have

(Ak+1x, y)Hk+1 = (Ak+1x, y)Hk
+ (Ak(Ak+1)x, y)Hk

= (Akx, y)Hk
+ (A2

kx, y)Hk

= (x,Aky)Hk
+ (x,A2

ky)Hk

= (x,Ak+1y)Hk+1 ,

and again, since Ak+1 is m-accretive, Corollary 5.166 gives that Ak+1 is self-adjoint.

Now let x, y ∈ D(A(−1)) = H. Then there exist sequences (xn), (yn) ⊂ D(A) such that xn → x

and yn → y in H. Moreover, by Theorem 5.149(v),

A(−1)xn = Axn ∈ H, A(−1)yn = Ayn ∈ H,
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and by Theorem 5.149(iv) the norms in D(A(−1)) and H are equivalent. Since, by Corollary 5.129, A(−1)
is continuous on D(A(−1)), we obtain

A(−1)xn → A(−1)x, A(−1)yn → A(−1)y in H,

and, as H ↪→ H(−1), also

A(−1)xn → A(−1)x, A(−1)yn → A(−1)y in H(−1).

Thus,

(A(−1)xn, yn)H(−1) = (J1(A(−1)xn), J1yn)H

= (J1Axn, J1yn)H

= (AJ1xn, J1yn)H

= (J1xn, AJ1yn)H

= (J1xn, J1Ayn)H

= (J1xn, J1A(−1)yn)H

= (xn, A(−1)yn)H(−1) ,

that is,
(A(−1)xn, yn)H(−1) = (xn, A(−1)yn)H(−1) .

Letting n→∞ we obtain
(A(−1)x, y)H(−1) = (x,A(−1)y)H(−1) . (5.7.219)

From Observation 5.150 we know that A(−1) is m-accretive, and thus, by (5.7.219) and Corollary 5.166,
A(−1) is self-adjoint.

Assume now that A(−k) is self-adjoint and let us show that A(−(k+1)) is also self-adjoint. All the
properties of A(−1) with respect to A and of H(−1) with respect to H hold, in an analogous way, for
A(−(k+1)) with respect to A(−k) and for H(−(k+1)) with respect to H(−k). Hence the argument is the
same as in the case n = 1. Therefore A(−(k+1)) is self-adjoint and the proof is complete. 2

Lemma 5.169 Let A be an m-accretive operator in H. Consider a family (xε)ε>0 ⊂ D(A). If xε ⇀ x

in H as ε→ 0, and if (Axε) is bounded in H, then x ∈ D(A) and Axε ⇀ Ax in H as ε→ 0.

Proof: Since H is a Hilbert space, it is reflexive. This ensures the existence of a sequence εn → 0 and
of some y ∈ H such that Axεn ⇀ y in H as n → +∞. In particular, (xεn , Axεn) ⇀ (x, y) in H ×H as
n→ +∞. On the other hand, Proposition 5.89 shows that G(A) is closed, and in particular closed in the
weak topology of H ×H, hence x ∈ D(A) and y = Ax.

Assume now that Axε ̸⇀ Ax as ε→ 0. Then there exist N′ ⊂ N and a subsequence (εn)n∈N′ with
εn → 0 such that Axεn ̸⇀ Ax as n → ∞. By definition of weak convergence, there exist φ0 ∈ H ′ and
η0 > 0 with the property that, for every δn = 1

n > 0, we can find εn ∈ R such that 0 < |εn| < δn and∣∣⟨φ0, Axεn
⟩ − ⟨φ0, Ax⟩

∣∣ ≥ η0,

as required.

Since (Axεn) is bounded, there exist N∗ ⊂ N′ and h ∈ H such that (Axεnk
) satisfies Axεnk

⇀ h.
As G(A) is closed and xεnk

⇀ x, we obtain Ax = h = Ax.

On the other hand, from the existence of N′ ⊂ N and (εn)n∈N′ with εn → 0 such that Axεn
̸⇀ Ax

as n → ∞, we infer the existence of a neighbourhood V of Ax such that, for each n ∈ N′, there exists
n0 ∈ N′, n0 > n, with Axεn0

/∈ V .

Taking this same neighbourhood V and using the fact that Axεnk
⇀ Ax, there exists m0 ∈ N∗ ⊂ N′
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such that Axεnk
∈ V for all k ≥ m0, which contradicts the property above. 2

Remark 5.170 The following properties hold:

(i) If A is self-adjoint and n is a non-negative integer, then A2n is self-adjoint and accretive and
therefore m-accretive.

(ii) If A is self-adjoint and accretive and if n is a non-negative integer, then A2n+1 is self-adjoint and
hence m-accretive.

(iii) If A is skew-adjoint and n is a non-negative integer, then A2n is self-adjoint and accretive and
therefore m-accretive.

(iv) If A is skew-adjoint and n is a non-negative integer, then A2n+1 is skew-adjoint and hence m-
accretive.

Remark 5.171 If A is an m-accretive operator, then An is not necessarily accretive.

Indeed, consider H = R2 and for each x = (a, b) ∈ R2 let A be the operator that rotates x by an
angle θ = π

2 . Then A2 is the rotation by an angle θ = π.

In particular, for x = (∥x∥ cos θ, ∥x∥ sin θ) we have

(A2x, x) =
(
∥x∥ cos(θ + π), ∥x∥ sin(θ + π)

)
·
(
∥x∥ cos θ, ∥x∥ sin θ

)
= ∥x∥2 cos(θ + π) cos θ + ∥x∥2 sin(θ + π) sin θ
= ∥x∥2 cos

(
(θ + π)− θ

)
= ∥x∥2 cos(π)
= −∥x∥2 ≤ 0.

Consequently, A2 is not m-accretive. We already know that A is monotone from the first example in the
chapter on Monotone and Accretive Operators. Since H is a Hilbert space, A is accretive. Now, given
f = (y, z) ∈ R2, it suffices to take x = (a, b) =

(
y+z

2 , y−z
2
)

to see that x+Ax = f , and consequently A is
m-accretive.

Let A be an m-accretive operator in H and let A∗ be its adjoint. It follows from Proposition 5.161
that A∗ is also m-accretive. In particular, D((A∗)n) is dense in H for each non-negative integer n. Hence,

if D((A∗)n) is endowed with the norm ∥x∥D((A∗)n) =
n∑

j=1
∥(A∗)jx∥, then

D((A∗)n) ↪→ H ↪→ D((A∗)n)′,

where both embeddings are dense. Thus we obtain the following result.

Proposition 5.172 Let A be as above and (H−n)n≥0 the spaces defined in Observation 5.150. Then
H−n = D((A∗)n)′ with equivalent norms.

Proof: It is enough to prove that ∥x∥H−n
≈ ∥x∥D((A∗)n)′ . By density, we may assume that x ∈ H. It
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follows from Observation 5.151(ii), Proposition 5.162, Observation 5.148 and Observation 5.147(ii) that

∥x∥H−n
= ∥J1(A)nx∥
= sup

∥y∥=1
(J1(A)nx, y)H,H

= sup
∥y∥=1

(x, J1(A∗)ny)H,H

= sup
∥y∥=1

(x, J1(A∗)ny)D((A∗)n)′,D((A∗)n)

= sup
∥z∥D((A∗)n)=1

(x, z)D((A∗)n)′,D((A∗)n)

= ∥x∥D((A∗)n)′ .

This proves the claim. 2

Corollary 5.173 Let A be a self-adjoint and accretive operator, or a skew-adjoint operator, in H, and
let (Hn)n∈Z be the spaces introduced in Observation 5.150. Then H−n = H ′

n with equivalent norms for
each n ∈ Z.

Proof: Consider n ≥ 0. By Observation 5.148 we have Hn = D(An) = D((A∗)n), and thus H−n = H ′
n

by Proposition 5.172. By Observation 5.158, the spaces Hn are Hilbert spaces and therefore reflexive.
Hence H ′

−n = H ′′
n = Hn. 2

Recall that H is said to be a complex Hilbert space if there exists a mapping b : H × H → C
satisfying: 

b(λx+ µy, z) = λb(x, z) + µb(y, z), for all x, y, z ∈ H and all λ, µ ∈ R;
b(y, x) = b(x, y), for all x, y ∈ H;
b(ix, y) = ib(x, y), for all x, y ∈ H;
b(x, x) = ∥x∥2, for all x ∈ H.

Moreover, H is a Banach space with respect to the norm induced by b : H ×H → C.

It is easy to see that H, endowed with the inner product

(x, y) = Re(b(x, y)),

is a real Hilbert space.

Lemma 5.174 Let H be a complex Hilbert space and let A be an operator in H. Assume that A is
C-linear and define iA by {

D(iA) = D(A),
(iA)x = iAx, for every x ∈ D(A).

If D(A) is dense in H, then A∗ is C-linear and (iA)∗ = −iA∗.

Proof: Recall that G(A∗) = {(x, f) ∈ H ×H; (f, y) = (x, g), ∀(y, g) ∈ G(A)}. Let (x, f) ∈ G(A∗). We
want to show that for each λ ∈ C we have (λx, λf) ∈ G(A∗), or equivalently, that for each (y, g) ∈ G(A),

(λf, y) = (λx, g).
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Indeed,

(λf, y) = (f, λy)
= (A∗x, λy)
= (x,A(λy))
= (x, λAy)
= (λx,Ay)
= (A∗(λx), y), for every y ∈ D(A).

By density we obtain A∗(λx) = λA∗(x) for every x ∈ D(A∗). Similarly,

(A∗(x+ y), z) = (x+ y,Az)
= (x,Az) + (y,Az)
= (A∗x, z) + (A∗y, z)
= (A∗(x+ y), z), for every z ∈ D(A),

so A∗ is C-linear.

Now, if (x, f) ∈ G(A∗), then x ∈ D(A∗) and f = A∗x, hence −if = A∗(−ix) = −iA∗x, that is,
(x,−if) ∈ G(−iA∗). We now show that (x,−if) ∈ G((iA)∗). Indeed, for (y, g) ∈ G(A) we have

(−if, y) = (f, iy)
= (A∗x, iy)
= (x,A(iy))
= (x, iAy)
= (x, ig).

Therefore (x,−if) ∈ G((iA)∗), and so G(−iA∗) ⊂ G((iA)∗). Applying this to the operator iA, we get
G(−i(iA)∗) ⊂ G(−A∗). By C-linearity it follows that G((iA)∗) ⊂ G(−iA∗). Consequently,

G((iA)∗) = G(−iA∗).

2

Corollary 5.175 Let H be a complex Hilbert space and let A be an operator in H. If A is C-linear, then
the following properties are equivalent:

(i) A is self-adjoint;

(ii) iA is skew-adjoint.

Proof: Assume that A is self-adjoint. It follows from Lemma 5.174 that

(iA)∗ = −iA∗ = −iA = −(iA),

so iA is skew-adjoint.

Conversely, if iA is skew-adjoint, then

A∗ = (−i(iA))∗ = i(iA)∗ = −i(iA) = A,

that is, A is self-adjoint. 2

- 341 -



5 Monotone and Accretive Operators

5.7.5 Examples of m-accretive operators and partial differential operators

In this section we describe some examples of partial differential operators associated with classical
evolution equations.

5.7.5.1 First-order operators

We now present a series of examples related to transport equations.

Example 5.176 A first-order operator in R. Let X = Cb(R) and define the operator A in X by D(A) = {u ∈ C1(R) ∩X; u′ = du

dx
∈ X},

Au = u′, for u ∈ D(A).
(5.7.220)

Proposition 5.177 If A is defined by (5.7.220), then A and −A are m-accretive.

Proof: We first show that A is accretive. To this end, take λ > 0 and (u, f) ∈ D(A) × X satisfying
u+ λAu = f . This implies that

u+ λu′ = f, for all x ∈ R. (5.7.221)

Let
Lf(x) = 1

λ

∫ x

−∞
e

s−x
λ f(s) ds. (5.7.222)

Then

|Lf(x)| ≤ 1
λ

∫ x

−∞
e

s−x
λ |f(s)| ds

≤ 1
λ
∥f∥∞

∫ x

−∞
e

s−x
λ ds

= ∥f∥∞.

Indeed,∫ x

−∞
e

s−x
λ ds = lim

b→+∞

∫ x

−b

e
s−x

λ ds

= lim
b→+∞

∫ 0

−b−x
λ

λeu du, via the change of variables u = u(s) = (s− x)λ−1

= λ lim
b→+∞

eu
∣∣∣0−b−x

λ

= λ
(
1− lim

b→+∞
e

−b−x
λ

)
= λ.

Therefore,
∥Lf∥∞ ≤ ∥f∥∞, (5.7.223)

since
∥f∥∞ = inf{c; |f(x)| ≤ c, ∀x ∈ R} = sup

x∈R
|f(x)|.

In general, the solution of (5.7.221) is given by

u(x) = Lf(x) + ae− x
λ .

- 342 -



5.7 Linear contraction semigroups: Hille–Yosida theory and some applications

Indeed, we know that the general solution of an equation of the form y′ + p(x)y = q(x) is

y(x) = e−
∫

p(x) dx

(∫
q(x)e

∫
p(x) dxdx+ a

)
.

In our case the equation has the form
y′ + 1

λ
y = 1

λ
f,

and hence

y(x) = e−
∫

1
λ dx

(
1
λ

∫
f(x)e

∫
1
λ dxdx+ a

)
= e− x

λ

(
1
λ

∫
e

x
λ f(x) dx+ a

)
= e− x

λ

(
1
λ

∫
e

s
λ f(s) ds+ a

)
= 1

λ

∫
e

s−x
λ f(s) ds+ ae− x

λ .

Since u and Lf are bounded, we must have a = 0. If we assume a ̸= 0, then there exists K ∈ N
such that

|ae− x
λ | ≤ |u(x)− Lf(x)| ≤ K, ∀x ∈ R.

As λ is fixed, this leads to a contradiction as x→ −∞.

Therefore u = Lf , and from (5.7.223) we obtain

∥u∥∞ = ∥Lf∥∞ ≤ ∥f∥∞ = ∥u+ λu′∥∞ = ∥u+ λAu∥∞.

Hence A is accretive.

Lemma 5.178 Let f : [a, b] → R be continuous and α, β : I → [a, b] differentiable. Let φ : I → R be
defined by

φ(x) =
∫ β(x)

α(x)
f(t) dt, x ∈ I.

Then φ is differentiable and
φ′(x) = f(β(x))β′(x)− f(α(x))α′(x).

Let λ > 0 and f ∈ X. By the lemma above and by (5.7.223), we have Lf ∈ X ∩ C1(R). Indeed,
defining α, β : R → [−b, x] by α(x) = b and β(x) = x, it is clear from the lemma that (Lf)′ = f . Thus
Lf ∈ C1(R) and satisfies (5.7.221). Consequently Lf ∈ D(A), since (Lf)′ = f ∈ X. In summary,
Lf ∈ D(A) and Lf + λ(Lf)′ = f . Hence A is m-accretive. The same argument shows that −A is
m-accretive. 2

Remark 5.179 Note that in the previous example D(A) is not dense in X. For instance, u(x) = sin(x2)
belongs to X. However, if z ∈ C1(R) satisfies ∥z − u∥∞ ≤ 1

4 , then supx∈R |z′(x)| = ∞, so z /∈ D(A).
Therefore u cannot be approximated by elements of D(A).

Remark 5.180 We can modify the examples above as follows:

(i) Let X = L∞(R) and define A by {
D(A) = W 1,∞(R),
Au = u′, for u ∈ D(A).
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Then A and −A are m-accretive. The proof is essentially the same as that of Proposition 5.177.
Note that in this example it is easy to see that D(A) is not dense in X.

Indeed, let u(x) = sin(x2). Then u(x) ∈ X = L∞(R). However, given ε = 1
4 , if there existed

z ∈ W 1,∞(R) such that ∥z − u∥∞ ≤ 1
4 , we would have supx∈R |z′(x)| = ∞, contradicting the fact

that z′ ∈ L∞(R). Thus W 1,∞(R) is not dense in L∞(R).

(ii) Let now X = C0(R), where C0(R) is the closure of D(R) in L∞, and D(R) is the Fréchet space
of C∞ functions from R to R with compact support in R, endowed with the topology of uniform
convergence of all derivatives on compact subsets of R. Define A in X by{

D(A) = {u ∈ C1(R) ∩X; u′ ∈ X},
Au = u′, for u ∈ D(A).

Then A and −A are m-accretive with dense domain. The proof that A and −A are m-accretive is
the same as in Proposition 5.177. To show that D(A) is dense in X, note that

X = C∞
c (R)L∞

⊂ D(A)L∞

⊂ XL∞
= X.

(iii) Now let 1 ≤ p <∞, take X = Lp(R) and define A by{
D(A) = W 1,∞(R),
Au = u′, for u ∈ D(A).

Then A and −A are m-accretive with dense domain. If p = 2, then A is skew-adjoint. Since
D(R) ⊂ D(A), we have

X = Lp(R) = C∞
c (R) ⊂W 1,p(R) = D(A).

Hence X ⊂ D(A) and therefore D(A) = X.

We show that A is m-accretive; following the proof of Proposition 5.177, it suffices to show that
L ∈ L(Lp) and ∥L∥L(Lp(R)) ≤ 1, i.e., ∥Lf∥p ≤ ∥f∥p.

For p = 1 we have

|Lf(x)| =
∣∣∣∣ 1λ
∫ x

−∞
e

s−x
λ f(s) ds

∣∣∣∣
=

∣∣∣∣ 1λ
∫ 0

−∞
e

s
λ f(s+ x) ds

∣∣∣∣
≤ 1

λ

∫ 0

−∞
e

s
λ |f(s+ x)| ds.

Thus ∫
R
|Lf(x)| dx ≤ 1

λ

∫
R

∫ 0

−∞
e

s
λ |f(s+ x)| ds dx.

By Fubini’s theorem, ∫
R
|Lf(x)| dx ≤ 1

λ

(∫ 0

−∞
e

s
λ ds

)(∫
R
|f(s+ x)| dx

)
= 1

λ

(
λ

∫ 0

−∞
es ds

)(∫
R
|f(x)| dx

)
=

∫
R
|f(x)| dx = ∥f∥1.

Therefore ∥Lf∥1 ≤ ∥f∥1.
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Now let 1 < p <∞ and let p′ be the conjugate exponent, i.e. 1
p + 1

p′ = 1. Then

|Lf(x)| =
∣∣∣∣ 1λ
∫ x

−∞
e

s−x
λ f(s) ds

∣∣∣∣
=

∣∣∣∣ 1λ
∫ 0

−∞
e

s
λ f(s+ x) ds

∣∣∣∣
≤ 1

λ

∫ 0

−∞
e

s
λ |f(s+ x)| ds

= 1
λ

∫ 0

−∞
e

s
λ ( 1

p′ + 1
p )(|f(s+ x)|p

)1/p
ds

= 1
λ

∫ 0

−∞
e

s
λp′ e

s
λp
(
|f(s+ x)|p

)1/p
ds.

By Hölder’s inequality,

|Lf(x)| ≤ 1
λ

(∫ 0

−∞

∣∣e s
λp′
∣∣p′

ds

)1/p′ (∫ 0

−∞

(
e

s
λ |f(s+ x)|p

)
ds

)1/p

= 1
λ

(∫ 0

−∞
e

s
λ ds

)1/p′ (∫ 0

−∞
e

s
λ |f(s+ x)|p ds

)1/p

= 1
λ

(
λ

∫ 0

−∞
es ds

)1/p′ (∫ 0

−∞
e

s
λ |f(s+ x)|p ds

)1/p

= λ−1/p

(∫ 0

−∞
e

s
λ |f(s+ x)|p ds

)1/p

.

Therefore

|Lf(x)|p ≤ 1
λ

∫ 0

−∞
e

s
λ |f(s+ x)|p ds.

Hence ∫
R
|Lf(x)|p dx ≤ 1

λ

∫
R

∫ 0

−∞
e

s
λ |f(s+ x)|p ds dx.

By Fubini’s theorem,∫
R
|Lf(x)|p dx ≤ 1

λ

(∫ 0

−∞
e

s
λ ds

)(∫
R
|f(s+ x)|p dx

)
= 1

λ

(
λ

∫ 0

−∞
es ds

)(∫
R
|f(x)|p dx

)
=

∫
R
|f(x)|p dx = ∥f∥p

p.

Thus ∥Lf∥p ≤ ∥f∥p.
As in the proof of Proposition 5.177, it follows that A is m-accretive, and by the same argument
−A is m-accretive.
If p = 2, then W 1,2(R) = H1(R) is a Hilbert space and, by Corollary 5.167, A is skew-adjoint.

Example 5.181 A first-order operator on a bounded interval. Let X = {u ∈ C([0, 1]); u(0) =
u′(0) = 0} endowed with the supremum norm. Define the operator A in X by{

D(A) = {u ∈ C1([0, 1]); u(0) = u′(0) = 0},
Au = u′, for u ∈ D(A).

(5.7.224)

Before stating the first result we recall a proposition that will be used in its proof.
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Proposition 5.182 Assume that f ∈ C(Rn). Then (ρn ∗ f) → f as n → ∞ uniformly on compact
subsets of Rn.

Proof: See [14], Proposition IV.2.1, p. 70. 2

Proposition 5.183 The operator A defined above is m-accretive with dense domain.

Proof: Following the proof of Proposition 5.177, given f ∈ X and λ > 0, the unique solution of

u+ λu′ = f

is
u(x) = 1

λ

∫ x

0
e

s−x
λ f(s) ds,

from which it follows that A is m-accretive. We now show that D(A) is dense in X.

Let u ∈ X and δ > 0, and define uδ ∈ X by

uδ(x) =
{

0, x ∈ [0, δ],
u(x− δ), x ≥ δ.

Then ∥uδ − u∥ → 0 in X as δ → 0+.

Given ε > 0, choose δ sufficiently small so that

∥uδ − u∥ ≤
ε

2 .

Define vδ ∈ Cc(R) by

vδ(x) =


0, x ≤ 0,
uδ(x), 0 ≤ x ≤ 1,
(2− x)uδ(1), 1 ≤ x ≤ 2,
0, x ≥ 2.

Note that supp vδ ⊂ [0, 2] and the intervals on which it is defined are closed; moreover, if A = [0, 1] and
B = [1, 2], then uδ(x) = (2− x)uδ(1) for all x ∈ A ∩B. By the gluing lemma, vδ is continuous.

Let (ρn) ⊂ R be a mollifier sequence. By Proposition 5.182 we have ρn ∗ vδ → vδ = uδ uniformly
on [0, 1]. Thus, for n sufficiently large,

∥u− (ρn ∗ vδ)|[0,1]∥ ≤ ∥u− uδ∥+ ∥uδ − (ρn ∗ vδ)∥ ≤ ε.

Clearly (ρn ∗vδ)|[0,1] ∈ D(A) for n large enough, since vδ ∈ L1
loc(R) and ρn ∈ C∞

c (R), and as the supports
shrink we have

(ρn ∗ vδ)′(0) = (ρn ∗ v′
δ)(0) = 0.

2

Remark 5.184 We can modify the examples above as follows:

(i) Let X = L∞(0, 1) and define A by{
D(A) = {u ∈W 1,∞(0, 1); u(0) = 0},
Au = u′, for u ∈ D(A).

Then A is m-accretive. The proof is an adaptation of the proof of Proposition 5.183. Note that
D(A) is not dense in X.
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(ii) Let 1 ≤ p <∞, X = Lp(0, 1), and define A by{
D(A) = {u ∈W 1,p(0, 1); u(0) = 0},
Au = u′, for u ∈ D(A).

Then A is m-accretive with dense domain. Since D(0, 1) ⊂ D(A), it follows that D(A) is dense in
X. The rest of the proof is an adaptation of the proof of Proposition 5.183.

(iii) Let X = {u ∈ C([0, 1]); u(0) = u(1)} and define A by{
D(A) = {u ∈ C1([0, 1]); u(0) = u(1) and u′(0) = u′(1)},
Au = u′, for u ∈ D(A).

Then A is m-accretive.

Example 5.185 First-order operators in R+. We may modify the examples above by considering
operators on the half-line. The proof of the corresponding result is almost the same as in the case of the
whole line. For instance, let

X = C0(R+) = {u ∈ C1([0,∞)); u(0) = 0 and lim
x→∞

u(x) = 0}

and define {
D(A) = {u ∈ C1([0,∞)) ∩X; u′ ∈ X},
Au = u′, for u ∈ D(A).

(5.7.225)

We have the following result.

Proposition 5.186 If A is as above, then A is m-accretive with dense domain.

Proof: We first show that A is accretive. Let λ > 0 and (u, f) ∈ D(A)×X satisfy u+ λAu = f . Then

u+ λu′ = f, ∀x ∈ [0,∞). (5.7.226)

Set
Lf(x) = 1

λ

∫ x

−∞
e

s−x
λ f(s) ds.

Then
|Lf(x)| ≤ 1

λ
∥f∥∞

∫ x

−∞
e

s−x
λ ds = 1

λ
∥f∥∞λ = ∥f∥∞,

so
∥Lf∥∞ ≤ ∥f∥∞. (5.7.227)

The general solution of (5.7.226) is
u(x) = Lf(x) + ce

x
λ .

Since u and Lf are bounded, we must have c = 0. Therefore u = Lf , and from (5.7.227) it follows that
A is accretive.

Now let λ > 0 and f ∈ X. We show that Lf ∈ X. In fact,

lim
x→+∞

Lf(x) = lim
x→+∞

1
λ

∫ ∞

0
e

s−x
λ f(s) ds

= lim
x→+∞

lim
b→+∞

1
λ

∫ b

0
e

s−x
λ f(s) ds.
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Using integration by parts we obtain∣∣∣∣ 1λ
∫ x

0
e

s−x
λ f(s) ds

∣∣∣∣ =
∣∣∣∣[f(s)e

s−x
λ ]x0 −

∫ x

0
e

s−x
λ f ′(s) ds

∣∣∣∣
≤ |f(x)− f(0)|+

∣∣∣∣∫ x

0
f ′(s) ds

∣∣∣∣
≤ |f(x)− f(0)|+ |f(x)− f(0)| −→ 0

as x→ +∞.

Hence limx→∞ Lf(x) = 0. Moreover, Lf(0) = 0, and since Lf is the integral of continuous
functions, Lf is continuous, and so Lf ∈ X. Furthermore, (Lf)′(x) = f(x) ∈ C[0,∞), hence Lf ∈
C1[0,∞) and (Lf)′ ∈ X, because f ∈ X.

Thus Lf ∈ D(A). 2

Remark 5.187 We can modify the example above as follows.

(i) Let p =∞, X = L∞(R+) and A be defined by{
D(A) = {u ∈W 1,∞(R+); u(0) = 0},

Au = u′, for u ∈ D(A).

Then A is m-accretive and D(A) is not dense in X.

Arguing as in the proof of Proposition 5.177, one checks that A is accretive. Let f ∈ X and λ > 0.
Consider

Lf(x) = 1
λ

∫ x

0
e

s−x
λ f(s) ds.

We have

|Lf(x)| ≤ 1
λ

∫ x

0
e

s−x
λ |f(s)| ds ≤ 1

λ
∥f∥∞

∫ x

0
e

s−x
λ ds = ∥f∥∞

(
1− e− x

λ

)
≤ ∥f∥∞.

Hence
sup

x∈R+

|Lf(x)| ≤ ∥f∥∞,

that is, ∥Lf∥∞ ≤ ∥f∥∞. Consequently, Lf ∈ X. Moreover, Lf ∈ D(A) since

(Lf)′ = f ∈ L∞(R+) and Lf(0) = 1
λ

∫ 0

0
e

s
λ f(s) ds = 0.

Therefore A is m-accretive.

Arguing as in Observation 5.179, one sees that D(A) is not dense in X.

(ii) Let 1 ≤ p <∞, X = Lp(R+) and A be defined by{
D(A) = {u ∈W 1,p(R+); u(0) = 0},

Au = u′, for u ∈ D(A).

Then A is m-accretive with dense domain.

As in item (iii) of Observation 5.180, one verifies that A is accretive. Let f ∈ X and λ > 0 and
define

Lf(x) = 1
λ

∫ x

0
e

s−x
λ f(s) ds.
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Again, as in item (iii) of Observation 5.180, we obtain

∥Lf∥p ≤ ∥f∥p.

Hence Lf ∈ X. Since (Lf)′ = f ∈ X and Lf(0) = 0, we have Lf ∈ D(A), and therefore A is
m-accretive.
Moreover,

Lp(R+) = X = C∞
0 (R+) ⊂ D(A) ⊂ X,

so that D(A) = X.

We can also modify the examples above by considering the operator −u′ instead of u′. For instance,
let

X = {u ∈ C([0,∞)); lim
x→∞

u(x) = 0},

and let A be the operator defined by D(A) =
{
u ∈ C1([0,∞)); lim

x→∞
u(x) = lim

x→∞
u′(x) = 0

}
,

Au = −u′, for u ∈ D(A).

We have the following result.

Proposition 5.188 If A is as above, then A is m-accretive with dense domain.

Proof: Let λ > 0 and (u, f) ∈ D(A)×X satisfy

u+ λAu = f,

or, equivalently,
u− λu′ = f, ∀x ∈ [0,∞). (5.7.228)

Define
Lf(x) = − 1

λ

∫ ∞

x

e
x−s

λ f(s) ds.

Then
|Lf(x)| ≤ 1

λ
∥f∥∞

∫ ∞

x

e
x−s

λ ds = 1
λ
∥f∥∞ λ

∫ 0

−∞
eu du = ∥f∥∞.

Hence ∥Lf∥∞ ≤ ∥f∥∞.

We may rewrite (5.7.228) as
u′ − 1

λ
u = − 1

λ
f,

whose general solution is

u(x) = − 1
λ

∫ ∞

x

e
x−s

λ f(s) ds+ ce
x
λ = Lf(x) + ce

x
λ .

Since lim
x→∞

u(x) = 0, given, say, ε = 1, there exists x0 such that |u(x)| < 1 for all x > x0. By
continuity of u on the compact interval [0, x0], there is M > 0 such that |u(x)| ≤ M for all x ∈ [0, x0].
Let K = max{M, 1}. Then |u(x)| ≤ K for all x ∈ R+. Thus u ∈ L∞(R+).

Since f ∈ X, we have f ∈ C([0,∞)) and limx→∞ f(x) = 0. As (Lf)′(x) = f(x), it follows that
limx→∞(Lf)′(x) = 0 and (Lf)′ ∈ C([0,∞)), so Lf ∈ C1([0,∞)). Moreover,

lim
x→∞

Lf(x) = − 1
λ

lim
b→∞

∫ b

b

e
b−s

λ f(s) ds = 0.

- 349 -



5 Monotone and Accretive Operators

Therefore Lf ∈ D(A) and A is m-accretive. In addition, D(A) = X. 2

Remark 5.189 We may modify the preceding example as follows.

(i) Let X = Cb([0,∞)) and A be defined by{
D(A) = {u ∈ C1([0,∞)) ∩X; u′ ∈ X},

Au = −u′, for u ∈ D(A).

Then A is m-accretive and D(A) is not dense in X.

(ii) Let X = Lp(0,∞) and A be defined by{
D(A) = W 1,∞(0,∞),

Au = −u′, for u ∈ D(A).

Then A is m-accretive and D(A) is not dense in X.

(iii) Let 1 ≤ p <∞, X = Lp(0,∞) and A be defined by{
D(A) = W 1,p(0,∞),

Au = −u′, for u ∈ D(A).

Then A is m-accretive with dense domain.

Remark 5.190 Let X = {u ∈ C([0, 1]); u(0) = 0}, endowed with the supremum norm, and consider the
operator A in X defined by {

D(A) = {u ∈ C([0, 1]); u(0) = u′(0) = 0},

Au = u′, for u ∈ D(A).

In Observations 5.189, 5.184 and 5.187, the operator −A is not m-accretive.

Example 5.191 (A first-order operator in Rn) Let X = Cb(Rn) and a ∈ Rn. Define the operator A
in X by 

D(A) = {u ∈ X; a · ∇u ∈ X},

Au = a · ∇u =
n∑

j=1
aj
∂u

∂xj
, for u ∈ D(A).

(5.7.229)

The condition a · ∇u ∈ X is understood in the sense of distributions.

We have the following result.

Proposition 5.192 If A is defined by (5.7.229), then A and −A are m-accretive.

The proof relies on two lemmas.

Lemma 5.193 Let λ > 0 and 1 ≤ p ≤ ∞. If u ∈ Lp(Rn) satisfies

u+ λa · ∇u = 0 in Rn,

then u = 0 almost everywhere.
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Proof: Let (ρn)n∈N be a mollifying sequence and set un = ρn ∗u. Then un ∈ C∞(Rn)∩L∞(Rn). Indeed,
by Proposition 4.20 in [18], un ∈ C∞(Rn). Moreover,

|un(x)| = |(ρn ∗ u)(x)| ≤
∫
Rn

|ρn(x− y)u(y)| dy ≤ ∥ρn(x)∥Lq∥u∥Lp .

Thus
sup

x∈Rn

|un(x)| ≤ sup
x∈Rn

(
∥ρn(x)∥Lq∥u∥Lp

)
= c sup

x∈Rn

∥ρn(x)∥Lq .

Since ρn ∈ C∞
c (Rn), there exists k(n) > 0 such that

sup
x∈Rn

|un(x)| ≤ c k(n),

and therefore un ∈ L∞(Rn) for each n.

Furthermore,

0 ≤ ∥un + λa · ∇un∥ −→ ∥u+ λa · ∇u∥ = 0, as n→∞,

so that
un + λa · ∇un = 0. (5.7.230)

For a fixed x ∈ Rn, define
h(t) = etun(x+ λat), t ∈ R.

From (5.7.230) we have

h′(t) = etun(x+ λat) + et∇un(x+ λat) · (λa) = et
(
un(x+ λat) + λa · ∇un(x+ λat)

)
= 0.

Hence h is constant. Since un is bounded, there exists C > 0 such that

0 ≤ |h(t)| = |etun(x+ λat)| ≤ Cet,

and letting t→ −∞ yields |h(t)| → 0 and therefore h(t) ≡ 0. In particular, h(0) = 0 implies un(x) = 0.
As x ∈ Rn was arbitrary, we deduce that un ≡ 0.

Since un = ρn ∗ u→ u in L1
loc(Rn), it follows that u = 0 almost everywhere. 2

Lemma 5.194 Let λ > 0 and f ∈ Cb(Rn), and define

Lf(x) = 1
λ

∫ ∞

0
e− s

λ f(x− as) ds.

Then
Lf + λa · ∇(Lf) = f (5.7.231)

in D′(Rn). Moreover,

∥Lf∥Lp ≤ ∥f∥Lp for every 1 ≤ p ≤ ∞ such that f ∈ Lp(Rn). (5.7.232)

Proof: Define
Mf(x) = 1

λ

∫ ∞

0
e− s

λ f(x+ as) ds, f ∈ Cb(Rn).

Observe that Lf ∈ L1
loc(Rn), since Lf(x) is continuous (being an integral of continuous functions) and

thus integrable on any compact set.
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By Fubini’s theorem, for every f ∈ Cb(Rn) and φ ∈ D(Rn) we have

⟨Lf, φ⟩ =
∫
Rn

f Mφdx.

Indeed,

⟨Lf, φ⟩ =
∫
Rn

Lf(x)φ(x) dx

=
∫
Rn

1
λ

∫ ∞

0
e− s

λ f(x− as) dsφ(x) dx

= 1
λ

∫ ∞

0

∫
Rn

e− s
λ f(x− as)φ(x) dx ds

= 1
λ

∫ ∞

0

∫
Rn

e− s
λ f(u)φ(u+ as) du ds (u = x− as)

=
∫
Rn

f(u)
[

1
λ

∫ ∞

0
e− s

λφ(u+ as) ds
]
du

=
∫
Rn

f(x)Mφ(x) dx.

In addition,

M(λa · ∇φ)(x) = 1
λ

∫ ∞

0
e− s

λλa · ∇φ(x+ as) ds

=
∫ ∞

0
e− s

λ
d

ds

(
φ(x+ as)

)
ds.

Using integration by parts with u = e− s
λ and dv = d

ds (φ(x+ as)) ds, we obtain∫ ∞

0
e− s

λ
d

ds
(φ(x+ as)) ds = e− s

λφ(x+ as)
∣∣∣∞
0

+ 1
λ

∫ ∞

0
e− s

λφ(x+ as) ds

= −φ(x) +Mφ(x).

That is,
M(λa · ∇φ)(x) = −φ(x) +Mφ(x).

Therefore,

⟨Lf, φ⟩ =
∫
Rn

f Mφdx

=
∫
Rn

f
(
M(λa · ∇φ)(x) + φ(x)

)
dx

=
∫
Rn

f M(λa · ∇φ) dx+
∫
Rn

fφ(x) dx

= ⟨Lf, λa · ∇φ⟩+ ⟨f, φ⟩.
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On the other hand,

⟨Lf, λa · ∇φ⟩ =
〈
Lf,

n∑
i=1

λai
∂φ

∂xi

〉

=
n∑

i=1
λai

〈
Lf,

∂φ

∂xi

〉

=
n∑

i=1
λai

〈
−∂Lf
∂xi

, φ

〉

=
〈
−

n∑
i=1

λai
∂Lf

∂xi
, φ

〉
= ⟨−λa · ∇(Lf), φ⟩.

Hence
⟨Lf, φ⟩ = ⟨λa · ∇(Lf) + f, φ⟩.

Since φ ∈ D(Rn) is arbitrary, we obtain

Lf + λa · ∇(Lf) = f,

which proves (5.7.231).

We now prove (5.7.232).

For p =∞, we have

|Lf(x)| =
∣∣∣∣ 1λ
∫ ∞

0
e− s

λ f(x− as) ds
∣∣∣∣

≤ 1
λ

∫ ∞

0
e− s

λ |f(x− as)| ds

≤ 1
λ
∥f∥∞

∫ ∞

0
e− s

λ ds

= ∥f∥∞,

and therefore ∥Lf∥∞ ≤ ∥f∥∞.

For 1 ≤ p <∞, one argues as in item (iii) of Observation 5.180 to obtain ∥Lf∥Lp ≤ ∥f∥Lp . 2

Returning to the proof of Proposition 5.192.
Proof: We first show that A is m-accretive. Let λ > 0, f ∈ X and u ∈ D(A) satisfy

u+ λAu = f.

Set w = Lf , where L is defined in Lemma 5.194. Then Lf + λa · ∇(Lf) = f . Hence

Lf + λa · ∇(Lf) = u+ λAu = u+ λa · ∇u,

so that
(u− w) + λa · ∇(u− w) = 0

in D′(Rn). Applying Lemma 5.193, we obtain u = w = Lf .

Accretivity follows from Lemma 5.194, since for every 1 ≤ p ≤ ∞,

∥u∥Lp = ∥Lf∥Lp ≤ ∥f∥Lp = ∥u+ λAu∥Lp .
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To prove m-accretivity, let λ > 0 and f ∈ X. Then u = Lf ∈ D(A). Indeed, by Lemma 5.194, Lf is
bounded and continuous (as an integral of continuous functions), hence Lf ∈ X. Moreover, Lemma 5.194
yields

a · ∇(Lf) = 1
λ

(f − Lf) ∈ X.

Thus u = Lf ∈ D(A) and
Lf + λa · ∇(Lf) = f,

that is, f = u + λAu. Therefore A is m-accretive. The same argument, with a replaced by −a, shows
that −A is m-accretive as well. 2

Remark 5.195 In Proposition 5.192, the domain D(A) is not dense in X.

Remark 5.196 We can slightly modify the example above as follows:

(i) Let X = C0(Rn) and a ∈ Rn. Define the operator A in X by
D(A) = {u ∈ X; a · ∇u ∈ X},

Au = a · ∇u =
n∑

j=1
aj
∂u

∂xj
, for u ∈ D(A).

(5.7.233)

Then A and −A are m-accretive with dense domain.
Proof: The proof that A and −A are m-accretive follows exactly as in Proposition 5.192. To see
that D(A) = X, note that

X = C∞
0 (Rn)L∞

⊂ D(A)L∞

⊂ XL∞

= X.

2

(ii) Let X = L∞(Rn) and a ∈ Rn. Define the operator A in X as in (5.7.233). Then A and −A are
m-accretive and D(A) is not dense in X.

(iii) Let X = Lp(Rn), 1 ≤ p <∞, and a ∈ Rn. Define the operator A in X as in (5.7.233). Then A and
−A are m-accretive with dense domain in X. Moreover, if X = L2(Rn), then A is anti-adjoint.
Proof: The proof that A and −A are m-accretive is essentially the same as in Proposition 5.192.
Density follows from the fact that

X = Lp(Rn) = C∞
c (Rn) ⊂ D(A).

If p = 2, then L2(Rn) is a Hilbert space and, by Corollary 5.167, A is anti-adjoint. 2

5.7.5.2 The Laplacian with Dirichlet boundary condition

Example 5.197 Let Ω ⊂ Rn be an open set. Let X = H−1(Ω) and define the operator A in X by{
D(A) = H1

0 (Ω),
Au = −∆u for every u ∈ D(A).

(5.7.234)

We equip H1
0 (Ω) with the usual norm

∥u∥H1
0

=
(
∥u∥2

L2 + ∥∇u∥2
L2

) 1
2 .

We have the following result.

Proposition 5.198 The operator A defined by (5.7.234) is self-adjoint, accretive, and ∥ · ∥D(A) is equiv-
alent to ∥ · ∥H1 . In particular, A is m-accretive with dense domain.
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To prove Proposition 5.198, we first recall the following facts.

Remark 5.199 (i) It is well known that

H1
0 (Ω) ⊂ L2(Ω) ≡ L2(Ω)′ ⊂ H−1(Ω),

see [23], p. 445. In particular, if u ∈ H1
0 (Ω) and v ∈ L2(Ω), then

⟨u, v⟩H1
0 ,H−1 =

∫
Ω
u(x)v(x) dx. (5.7.235)

(ii) The Laplace operator ∆ is linear and continuous from H1(Ω) into H−1(Ω). Note that, for u ∈ H1(Ω),
the linear functional

∆u ∈ H−1(Ω)

on H1
0 (Ω) is defined by

⟨∆u, v⟩ =
∫

Ω
∇u(x) · ∇v(x) dx, for v ∈ H1

0 (Ω), (5.7.236)

see [23], p. 452.

Lemma 5.200 For each f ∈ H−1(Ω) there exists a unique solution u ∈ H1
0 (Ω) of the equation

−∆u+ u = f in H−1(Ω).

Moreover,
∥f∥H−1 = ∥u∥H1 (5.7.237)

and
∥u∥H1 ≤ ∥f∥L2 (5.7.238)

whenever f ∈ L2(Ω).

Proof: By the Lax–Milgram Theorem (see [23], p. 181), for each f ∈ H−1(Ω) there exists a unique
u ∈ H1

0 (Ω) such that
(u, v)H1 = ⟨f, v⟩H−1,H1

0
for every v ∈ H1

0 (Ω). (5.7.239)

On the other hand, (5.7.239) is equivalent, by density, to∫
Ω
∇u · ∇v + uv = ⟨f, v⟩H−1,H1

0
, for every v ∈ D(Ω),

which is equivalent to −∆u+ u = f in H−1(Ω).

Moreover, taking v = u in (5.7.239) we obtain

∥u∥2
H1 ≤ ∥f∥H−1∥u∥H1 ,

and hence ∥u∥H1 ≤ ∥f∥H−1 .

Furthermore, it follows again from (5.7.239) that

|⟨f, v⟩H−1,H1
0
| ≤ ∥u∥H1∥v∥H1 , for every v ∈ H1(Ω).

Therefore ∥f∥H−1 ≤ ∥u∥H1 , and (5.7.237) follows. Finally, from (5.7.239) we also have

∥u∥2
H1 = ⟨f, u⟩H−1,H1

0
≤ ∥f∥L2∥u∥L2 ≤ ∥f∥L2∥u∥H1 ,

which proves (5.7.238). 2
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Remark 5.201 Some applications of Lemma 5.200.

(i) It follows from Lemma 5.200 that the differential operator −∆ + I defines an isometry from H1
0 (Ω)

onto H−1(Ω).

(ii) In particular, from (5.7.237) and (5.7.238) we obtain ∥f∥H−1 ≤ ∥f∥L2 for every f ∈ L2(Ω).

We now prove Proposition 5.198.
Proof: By Lemma 5.200, for each f ∈ X = H−1(Ω) there exists a unique solution u ∈ H1

0 (Ω) of

−∆u+ u = f in X = H−1.

We denote by J the operator f 7→ u. It follows from Observation 5.201(i) that J is an isometry from
H−1(Ω) onto H1

0 (Ω). In particular,

(u, v)H−1 = (Ju, Jv)H1
0
. (5.7.240)

Let u, v ∈ H1
0 (Ω). From (5.7.236) and (5.7.235) we obtain

(u, Jv)H1
0

=
∫

Ω
∇u · ∇(Jv) dx+ (u, Jv)L2

= ⟨u,−∆(Jv)⟩H1
0 ,H−1 + ⟨u, Jv⟩H1

0 ,H−1

= ⟨u, v⟩H1
0 ,H−1 = (u, v)L2 .

Hence
(u, Jv)H1

0
= (u, v)L2 . (5.7.241)

Moreover, from (5.7.240) we have

(−∆u, v)H−1 = (−∆u+ u, v)H−1 − (u, v)H−1

= (J(−∆u+ u), Jv)H1
0
− (u, v)H−1

= (−∆(Ju) + Ju, Jv)H1
0
− (u, v)H−1

= (u, Jv)H1
0
− (u, v)H−1 .

Applying (5.7.241) yields
(−∆u, v)H−1 = (u, v)L2 − (u, v)H−1 . (5.7.242)

In particular, for each u ∈ H1
0 (Ω), combining (5.7.242) with Observation 5.201(ii), we obtain

(Au, u)H−1 = (−∆u, u)H−1 = (u, u)L2 − (u, u)H−1 = ∥u∥2
L2 − ∥u∥2

H−1 ≥ 0.

Therefore, by Lemma 5.156, the operator A is accretive.

We now prove that A is m-accretive. Given f ∈ X = H−1, from the above observations we have
u = Jf ∈ D(A) and u+Au = f . Thus A is m-accretive.

Furthermore, it follows from (5.7.242) that

(Au, v)H−1 = (u,Av)H−1 for all u, v ∈ D(A).

Indeed,

(Au, v)H−1 = (u, v)L2 − (u, v)H−1 = (v, u)L2 − (v, u)H−1 = (Av, u)H−1 = (u,Av)H−1 .

Hence, by Corollary 5.166, A is self-adjoint.
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Finally, by Corollary 5.129,

∥u∥D(A) = ∥u∥X + ∥Au∥X = ∥u∥H−1 + ∥ −∆u∥H−1 ≈ ∥u−∆u∥H−1 on D(A).

On the other hand, by Lemma 5.200 we have

∥u−∆u∥H−1 = ∥f∥H−1 = ∥u∥H1 = ∥u∥H1
0
,

which completes the proof. 2

Proposition 5.202 Let Ω ⊂ Rn be open and let A be as defined in the previous proposition. Then the
following properties hold:

(i) Jλ ∈ L(H−1(Ω)) and
∥Jλ∥L(H−1(Ω)) ≤ 1 for every λ > 0;

(ii) Jλ ∈ L(H−1(Ω), H1
0 (Ω)) for every λ > 0;

(iii) Jλ |H1
0 (Ω)∈ L(H1

0 (Ω)) and ∥∥Jλ |H1
0 (Ω)

∥∥
L(H1

0 (Ω)) ≤ 1 for every λ > 0;

(iv) Jλu→ u in H−1(Ω) as λ→ 0+, for every u ∈ H−1(Ω);

(v) Jλu→ u in H1
0 (Ω) as λ→ 0+, for every u ∈ H1

0 (Ω).

Proof: This follows from Definition 5.128, Corollary 5.131, Lemma 5.133 and Proposition 5.137. 2

5.8 The Hille–Yosida–Phillips Theorem

In this section we study the evolution equation

du

dt
+Au = 0,

where A is an m-accretive operator with dense domain.

5.8.1 The semigroup generated by −A, where A is an m-accretive operator

In this section, X is a Banach space endowed with the norm ∥ · ∥.

Lemma 5.203 Let A be an m-accretive operator in X with dense domain. Then, for every λ > 0, the
operator Aλ belongs to L(X) and the following hold:

(i) ∥e−tAλ∥L(X) ≤ 1 for all t ≥ 0;

(ii) ∥e−tAλx− e−tAµx∥ ≤ t∥Aλx−Aµx∥ for every x ∈ X, every t ≥ 0 and every λ, µ > 0.

Proof: From Lemma 5.133 we know that Aλ ∈ L(X).

(i) Let x ∈ X. We have
e−tAλx = e− t

λ I+ t
λ Jλx = e− t

λ e
t
λ Jλx,

- 357 -



5 Monotone and Accretive Operators

and thus

∥e−tAλx∥ =
∥∥e− t

λ e
t
λ Jλx

∥∥
= e− t

λ

∥∥e t
λ Jλx

∥∥
≤ e− t

λ e
t
λ ∥Jλ∥L(X)∥x∥

= e− t
λ e

t
λ ∥x∥

= ∥x∥,

which proves (i).

(ii) Let λ, µ > 0. We already know that Aλ and Aµ commute. For every x ∈ X, t ≥ 0 and s ∈ [0, 1] we
have

e−stAλe−(1−s)tAµx = e−tAµe−st(Aλ−Aµ)x.

Now,

d

ds

(
e−stAλe−(1−s)tAµx

)
= d

ds

(
e−tAµe−st(Aλ−Aµ)x

)
= e−tAµe−st(Aλ−Aµ)t(Aµ −Aλ)x
= t e−stAλe−(1−s)tAµ(Aµ −Aλ)x,

and hence ∥∥∥∥ dds(e−stAλe−(1−s)tAµx
)∥∥∥∥ =

∥∥t e−stAλe−(1−s)tAµ(Aµ −Aλ)x
∥∥

≤ t ∥(Aµ −Aλ)x∥.

On the other hand,

e−tAλx− e−tAµx =
∫ 1

0

d

ds

(
e−stAλe−(1−s)tAµx

)
ds,

and therefore

∥e−tAλx− e−tAµx∥ ≤
∫ 1

0

∥∥∥∥ dds(e−stAλe−(1−s)tAµx
)∥∥∥∥ ds

≤
∫ 1

0
t ∥(Aµ −Aλ)x∥ ds

= t ∥(Aµ −Aλ)x∥,

which proves (ii). 2

Corollary 5.204 Let A be an m-accretive operator in X with dense domain. Then there exists a family
{T (t)}t≥0 ⊂ L(X) such that:

(i) ∥T (t)∥L(X) ≤ 1 for all t ≥ 0;

(ii) e−tAλx→ T (t)x as λ→ 0+, for every x ∈ X, uniformly on bounded subsets of [0,+∞).

Proof: (i) Let Tλ(t) = e−tAλ . From the previous lemma we have

∥Tλ(t)∥L(X) ≤ 1, ∀λ > 0, ∀ t ≥ 0. (5.8.243)

Now let x ∈ D(A). For λ, µ > 0 and fixed T > 0 we obtain

∥Tλ(t)x− Tµ(t)x∥ = ∥e−tAλx− e−tAµx∥ ≤ t∥Aλx−Aµx∥ ≤ T∥Aλx−Aµx∥,
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and therefore
sup

t∈[0,T ]
∥Tλ(t)x− Tµ(t)x∥ ≤ T∥Aλx−Aµx∥ −→ 0, as λ, µ→ 0+.

Hence {Tλ(·)x}λ is a Cauchy sequence in C([0, T ];X).

Define T (t)x = limλ→0+ Tλ(t)x. It is clear that T (t) is a linear map from D(A) into X. Moreover,
by (5.8.243),

∥T (t)x∥ ≤ ∥x∥, ∀ t ≥ 0.

Since D(A) is dense in X, we may extend T (t) by continuity to a unique operator T (t) ∈ L(X), and

∥T (t)∥L(X) ≤ 1.

(ii) Item (ii) follows directly from the construction of T (t) in (i). 2

Remark 5.205 The family {T (t)} constructed in the previous corollary is sometimes denoted by e−tA.
Note that, when A is bounded, this coincides with the usual definition of the exponential of an operator.

Proposition 5.206 Let A be an m-accretive operator in X with dense domain, and consider the family
{T (t)}t≥0 constructed in Corollary 5.204. For each x ∈ D(A) and every t > 0, the following properties
hold:

(i)
∥∥∥∥T (t)x− x

t

∥∥∥∥ ≤ ∥Ax∥ for all t ≥ 0;

(ii) the map t 7−→ T (t)x belongs to

C
(
[0,∞);D(A)

)
∩ C1([0,∞);X

)
;

(iii) AT (t)x = T (t)Ax for all t ≥ 0.

In addition, the function u(t) = T (t)x is the unique solution of the problem
du

dt
+Au = 0, t > 0,
u(0) = x,

(5.8.244)

in C
(
[0,∞);D(A)

)
∩ C1([0,∞);X

)
.

Proof: (i) Let x ∈ D(A) and set

u(t) = T (t)x, uλ(t) = Tλ(t)x, vλ(t) = −u′
λ(t) = Aλuλ(t) = Tλ(t)Aλx.

From Lemma 5.133 we have
Jλ|D(A) ∈ L(D(A)),

and consequently

Aλ|D(A) ∈ L(D(A)) and Tλ(t)|D(A) = e−tAλ |D(A) ∈ L(D(A)).

Thus uλ(t) ∈ D(A) for every t ≥ 0. Moreover,

vλ(t)− T (t)Ax = Tλ(t)(Aλx−Ax) + (Tλ(t)− T (t))Ax,

and hence

∥vλ(t)− T (t)Ax∥ ≤ ∥Tλ(t)(Aλx−Ax)∥+ ∥(Tλ(t)− T (t))Ax∥
≤ ∥Aλx−Ax∥+ ∥(Tλ(t)− T (t))Ax∥ −→ 0
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as λ→ 0+, uniformly on bounded intervals of [0,∞).

On the other hand,

uλ(t) = x−
∫ t

0
vλ(s) ds,

and therefore, as λ→ 0+,

u(t) = x−
∫ t

0
T (s)Axds. (5.8.245)

Thus
T (t)x = x−

∫ t

0
T (s)Axds,

or equivalently,
T (t)x− x

t
= −1

t

∫ t

0
T (s)Axds,

and consequently ∥∥∥∥T (t)x− x
t

∥∥∥∥ ≤ 1
t

∫ t

0
∥T (s)Ax∥ ds ≤ ∥Ax∥

t

∫ t

0
ds = ∥Ax∥.

(ii) From (5.8.245) we obtain

du

dt
= −T (t)Ax ∈ C([0,∞);X),

so u ∈ C1([0,∞);X).

Now let wλ(t) = Jλuλ(t). Then wλ(t) ∈ D(A) and wλ(t) → u(t) in X as λ → 0+, for each fixed
t ≥ 0. Moreover, vλ(t) = Awλ(t), hence(

wλ(t), Awλ(t)
)
−→

(
u(t), T (t)Ax

)
in X × Y.

Since the graph G(A) is closed, it follows that u(t) ∈ D(A) and

Au(t) = T (t)Ax, (5.8.246)

so that u ∈ C([0,∞);D(A)).

(iii) This is precisely (5.8.246).

Finally,
du

dt
+Au(t) = −T (t)Ax+ T (t)Ax = 0

and
u(0) = T (0)x = x,

that is, u is a solution of (5.8.244).

It remains to prove uniqueness. Let

w ∈ C([0,∞);D(A)) ∩ C1([0,∞);X)

be another solution of (5.8.244). Given t > 0, define

z(s) = T (t− s)w(s), s ∈ [0, t].

Then
z ∈ C([0, t];D(A)) ∩ C1([0, t];X)
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and

dz

ds
= d

ds

(
T (t− s)w(s)

)
= T (t− s)Aw(s) + T (t− s) d

ds
w(s)

= T (t− s)
(
Aw(s) + d

ds
w(s)

)
= T (t− s) · 0 = 0,

so z is constant on [0, t]. Now,
z(t) = w(t) and z(0) = T (t)x,

whence
w(t) = T (t)x.

By the arbitrariness of t > 0 we obtain uniqueness of the solution. 2

5.8.2 Semigroups and their generators

In this subsection we deal with contraction semigroups and their generators.

Definition 5.207 A family (T (t))t≥0 ⊂ L(X) is called a contraction semigroup if it has the following
properties:

(i) T (0) = I;

(ii) T (t+ s) = T (t)T (s) for all s, t ≥ 0;

(iii) for each x ∈ X the map t 7→ T (t)x is continuous from [0,+∞) into X;

(iv) ∥T (t)∥L(X) ≤ 1 for all t ≥ 0.

Remark 5.208 In this definition we explicitly require the continuity of the map t 7→ T (t)x. Many
authors do not include this condition and use instead the terminology “(contraction) semigroup of class
C0”.

Definition 5.209 Let (T (t))t≥0 ⊂ L(X) be a contraction semigroup. The generator L of (T (t))t≥0 is
the linear operator in X defined by:

(i)

D(L) =
{
x ∈ X; T (t)x− x

t
has a limit in X as t→ 0+

}
;

(ii)

Lx = lim
t→0+

T (t)x− x
t

, for all x ∈ D(L).

Remark 5.210 Note that if (T (t))t≥0 ⊂ L(X) is a contraction semigroup, then for each x ∈ X the
function t 7→ ∥T (t)x∥ is non-increasing on [0,+∞). Indeed,

∥T (t+ s)x∥ = ∥T (s)T (t)x∥ ≤ ∥T (t)x∥.

Proposition 5.211 If (T (t))t≥0 ⊂ L(X) is a contraction semigroup in X and L is its generator, then
−L is m-accretive with dense domain.
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The proof of Proposition 5.211 is based on the following lemma.

Lemma 5.212 If (T (t))t≥0 ⊂ L(X) is a contraction semigroup in X and L is its generator, then the
following properties hold:

(i) Given x ∈ X and t > 0, define

I(t, x) =
∫ t

0
T (s)x ds.

Then I(t, x) ∈ D(L) and LI(t, x) = T (t)x− x;

(ii) Given x ∈ X, define

Jx =
∫ +∞

0
e−tT (t)x dt.

Then Jx ∈ D(L) and Jx− LJx = x.

Proof: Fix t > h > 0. We have(
T (h)− I

h

)
I(t, x) =

(
T (h)− I

h

)∫ t

0
T (s)x ds

= 1
h

∫ t

0
T (h)(T (s)x) ds− 1

h

∫ t

0
T (s)x ds

= 1
h

∫ t

0
T (s+ h)x ds− 1

h

∫ t

0
T (s)x ds

= 1
h

∫ t+h

h

T (s)x ds− 1
h

∫ t

0
T (s)x ds

= 1
h

∫ t

h

T (s)x ds+ 1
h

∫ t+h

t

T (s)x ds− 1
h

∫ h

0
T (s)x ds− 1

h

∫ t

h

T (s)x ds

= 1
h

∫ t+h

t

T (s)x ds− 1
h

∫ h

0
T (s)x ds −→ T (t)x− x,

as h→ 0+, since for each t ≥ h ≥ 0,∥∥∥∥∥ 1
h

∫ t+h

t

T (s)x ds− T (t)x
∥∥∥∥∥ =

∥∥∥∥∥ 1
h

∫ t+h

t

T (s)x ds− 1
h

∫ t+h

t

T (t)x ds
∥∥∥∥∥

≤ 1
h

∫ t+h

t

∥T (s)x− T (t)x∥ ds

≤ sup
s∈[t,t+h]

∥T (s)x− T (t)x∥ −→ 0,

as h→ 0+. This implies that I(t, x) ∈ D(L) and LI(t, x) = T (t)x− x.
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On the other hand,(
T (h)− I

h

)
Jx =

(
T (h)− I

h

)∫ +∞

0
e−tT (t)x dt

= 1
h

∫ +∞

0
e−t(T (t+ h)x− T (t)x) dt

= 1
h

∫ +∞

h

e−(u−h)T (u)x du− 1
h

∫ +∞

0
e−tT (t)x dt

= 1
h

∫ +∞

h

e−(t−h)T (t)x dt− 1
h

∫ +∞

0
e−tT (t)x dt

= eh

h

∫ +∞

h

e−tT (t)x dt− 1
h

∫ +∞

0
e−tT (t)x dt

= eh − 1
h

∫ +∞

h

e−tT (t)x dt− 1
h

∫ h

0
e−tT (t)x dt.

Using that (eh − 1)/h → 1 and the continuity of t 7→ T (t)x, together with the dominated convergence
theorem, we conclude that (

T (h)− I
h

)
Jx −→ Jx− x in X as h→ 0+.

Thus limh→0+
T (h)−I

h Jx = Jx− x in X, which implies that Jx ∈ D(L) and Jx− LJx = x. 2

Proof:[Proposition 5.211] Let x ∈ D(L) and λ, h > 0. We have

x− λT (h)x− x
h

=
(

1 + λ

h

)
x− λ

h
T (h)x.

Hence ∥∥∥∥x− λT (h)x− x
h

∥∥∥∥ ≥ (1 + λ

h

)
∥x∥ − λ

h
∥x∥ = ∥x∥.

In view of the inequality above, we obtain in the limit as h→ 0+ that −L is accretive.

Moreover, given f ∈ X, define x = Jf , where J is defined in Lemma 5.212. Then x = Jf ∈ D(L)
and x− Lx = f . Therefore, −L is m-accretive.

It remains to show that D(−L) = D(L) is dense in X. Indeed, given x ∈ X and ε > 0, consider

xε = 1
ε
I(ε, x), I(ε, x) =

∫ ε

0
T (s)x ds.

Clearly xε → x in X. Since xε ∈ D(L), it follows that D(L) is dense in X. 2

Proposition 5.213 Let A be an m-accretive operator in X with dense domain. The family (T (t))t≥0 ⊂
L(X) introduced in Corollary 5.204 has the following properties:

(i) (T (t))t≥0 is a contraction semigroup in X;

(ii) the generator of (T (t))t≥0 is −A;

(iii) if a contraction semigroup (S(t))t≥0 has generator −A, then S(t) = T (t) for each t ≥ 0.

Proof: From Corollary 5.204 we know that ∥T (t)∥L(X) ≤ 1 for each t ≥ 0. Moreover,

T (t+ s)x = lim
λ→0+

e−(t+s)Aλx

= lim
λ→0+

e−tAλe−sAλx

= T (t)T (s)x, for each x ∈ D(A).
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By density, T (t+ s) = T (t)T (s) for all t, s ≥ 0 in X. From Proposition 5.206(ii) it follows that, for each
x ∈ X, the map t 7→ T (t)x is continuous from [0,+∞) into X. Also,

T (0)x = lim
λ→0+

e−0Aλx = x

for each x ∈ D(A), and again by density we have T (0) = I.

From Proposition 5.206 we have

T (t)x = x−
∫ t

0
T (s)Axds ⇐⇒ T (t)x− x

t
= −1

t

∫ t

0
T (s)Axds.

Letting t→ 0+ we obtain that x ∈ D(L) and Lx = −Ax. In other words, G(A) ⊂ G(−L). Since both A
and −L are m-accretive, it follows from Corollary ?? that A = −L.

Assume now that another contraction semigroup (S(t))t≥0 has generator −A. We shall prove that
T (t) = S(t) for each t ≥ 0. Take x ∈ D(A) and set u(t) = S(t)x. Given t ≥ 0 and h > 0, we have

u(t+ h)− u(t)
h

= S(h)− I
h

u(t)

= S(t)S(h)x− S(t)x
h

= S(t)S(h)x− x
h

−→ −S(t)Ax,

as h→ 0+. Hence u(t) ∈ D(A) and the right derivative d+u
dt exists for each t ≥ 0, with

Au(t) = S(t)Ax = d+u

dt
.

By Dini’s lemma, together with the definition of semigroup, we obtain u ∈ C1([0,+∞);X). We now
show that u ∈ C1([0,+∞);D(A)).

Given a sequence (tn) ⊂ [0,+∞) such that tn → t, we have

∥u(tn)− u(t)∥D(A) = ∥u(tn)− u(t)∥X + ∥A(u(tn))−A(u(t))∥X

= ∥u(tn)− u(t)∥X + ∥S(tn)Ax− S(t)Ax∥X −→ 0,

which follows from property (iii) in the definition of semigroup, combined with the fact that u is continuous
in X and x ∈ D(A). Dini’s lemma also yields d+u

dt = du
dt , that is, u is the solution of the problem

du

dt
+Au = 0, t > 0,

u(0) = x.

In view of Proposition 5.206 it follows that S(t)x = T (t)x for each t ≥ 0 and x ∈ D(A). By density, we
conclude that T (t) = S(t) for all t ≥ 0. This completes the proof. 2

Remark 5.214 Property (iii) in Proposition 5.213 ensures that if A is an m-accretive operator, then the
contraction semigroup generated by −A is unique. In particular, there exists a bijection between the sets

X = {contraction semigroups} and U = {m-accretive operators with dense domain},

given by (T (t))t≥0 7→ −L.

Applying Propositions 5.211 and 5.213 we obtain the following result, known as the Hille–Yosida–Phillips
theorem.
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Theorem 5.215 A linear operator A in X is the generator of a contraction semigroup in X if, and only
if, −A is m-accretive with dense domain.

Theorem 5.216 Let A be an m-accretive operator in X with dense domain, and let (T (t))t≥0 be the
contraction semigroup generated by −A. Let L ∈ L(X) be such that L|D(A) ∈ L(D(A)). If ALx = LAx

for every x ∈ D(A), then T (t)L = LT (t) for all t ≥ 0. In particular, if Lx = 0, then LT (t)x = 0 for all
t ≥ 0.

Proof: Let x ∈ D(A) and consider u(t) = T (t)x. Then u is the solution of problem (5.8.244). Setting
v(t) = Lu(t), we have, for each h > 0 and t ≥ 0,

v(t+ h)− v(t)
h

= Lu(t+ h)− Lu(t)
h

= L

(
u(t+ h)− u(t)

h

)
.

Thus
d+v

dt
= L

d+u

dt
= L

du

dt
∈ C0([0,+∞);X).

If (tn) ⊂ [0,+∞) is such that tn → t, then

∥v(tn)− v(t)∥D(A) = ∥v(tn)− v(t)∥X + ∥A(v(tn))−A(v(t))∥X

= ∥Lu(tn)− Lu(t)∥+ ∥A(Lu(tn))−A(Lu(t))∥
= ∥Lu(tn)− Lu(t)∥+ ∥L(A(u(tn)))− L(A(u(t)))∥
= ∥Lu(tn)− Lu(t)∥+ ∥L(A(T (tn)x))− L(A(T (t)x))∥
= ∥Lu(tn)− Lu(t)∥+ ∥L(T (tn)Ax)− L(T (t)Ax)∥ −→ 0,

because L ∈ L(X) and L ◦ u and t 7→ T (t)x are continuous. Hence

v ∈ C([0,+∞);D(A)) ∩ C1([0,+∞);X),

and moreover,

dv

dt
+Av = L

du

dt
+ALu(t)

= L
du

dt
+ LAu(t)

= L

(
du

dt
+Au(t)

)
= L(0) = 0.

Note that v(0) = Lu(0) = LT (0)x = LI(x) = Lx. By uniqueness of the solution, we obtain v(t) = T (t)Lx.
Therefore, T (t)Lx = LT (t)x for each x ∈ D(A). The result follows by density. 2

Corollary 5.217 Let A be an m-accretive operator in X with dense domain and let (T (t))t≥0 be the
contraction semigroup generated by −A. If Jλ is the operator introduced in Definition 5.128, then

T (t)Jλ = JλT (t), for each λ > 0 and t ≥ 0.

Proof: This follows from Lemma 5.133 combined with the previous proposition with L = Jλ. 2

We conclude this subsection by characterising the domain of an m-accretive operator in reflexive
Banach spaces. For the next proposition we shall need the following result:

Corollary 5.218 Assume that X is reflexive. If f : I −→ X is Lipschitz and bounded, then f ∈

- 365 -



5 Monotone and Accretive Operators

W 1,∞(I,X) and
∥f ′∥L∞(I,X) ≤ L,

where L is the Lipschitz constant of f .

Proposition 5.219 Let A be an m-accretive operator in X and let (T (t))t≥0 be the contraction semigroup
generated by −A. If X is reflexive, then any x ∈ X such that

sup
h>0

1
h
∥T (h)x− x∥ < +∞

belongs to D(A). In particular,

D(A) = {x ∈ X; ∃C > 0 such that ∥T (h)x− x∥ ≤ Ch, ∀h > 0}.

Proof: Let x be as in the statement and define u(t) = T (t)x. Given 0 ≤ s < t, we have

∥u(t)− u(s)∥ = ∥T (t)x− T (s)x∥
= ∥T (s+ t− s)x− T (s)x∥
= ∥T (s)(T (t− s)x− x)∥
≤ ∥T (t− s)x− x∥
≤ C(t− s).

It follows that u is Lipschitz and hence continuous from [0,+∞) into X. Note that

∥u(t)∥X = ∥T (t)x∥X ≤ ∥x∥,

so u is bounded and, by Corollary 5.218, we have u ∈ W 1,∞((0,+∞), X). Thus there exists a sequence
tn → 0 such that u is differentiable at each tn and ∥u′(tn)∥ ≤ C. In particular,

u(tn + h)− u(tn)
h

= T (h)− I
h

T (tn)x

has a limit as h → 0, for each n ∈ N. This implies that T (tn)x ∈ D(A) and ∥AT (tn)x∥ ≤ C for each
n ∈ N. Since X is reflexive, there exist a subsequence (still denoted (tn)n∈N) and y ∈ X such that
AT (tn)x ⇀ y in X as n→ +∞. As T (tn)x→ x when n→ +∞, it follows that

(T (tn)x,AT (tn)x) ⇀ (x, y) in X ×X.

Since G(A) is closed, we conclude that x ∈ D(A). 2

5.8.3 Regularity properties

In this subsection we show that certain subspaces of X are invariant under the action of contraction
semigroups.

Proposition 5.220 Let A be an m-accretive operator in X and let (T (t))t≥0 be the contraction semi-
group generated by −A. If T(1)(t) = T (t)|D(A) and A(1) is the operator defined in Theorem 5.146, then
(T(1)(t))t≥0 is a contraction semigroup in D(A) and its generator is −A(1).

Proof: From Proposition 5.206 we know that T (t)(D(A)) ⊂ D(A). Moreover, if t ≥ 0 and x ∈ D(A),
then

∥T (t)x∥D(A) = ∥T (t)x∥X + ∥AT (t)x∥X

= ∥T (t)x∥X + ∥T (t)Ax∥X

≤ ∥x∥X + ∥Ax∥X = ∥x∥D(A).

- 366 -



5.8 The Hille–Yosida–Phillips Theorem

Therefore T (t)|D(A) ∈ L(D(A)) and ∥T (t)|D(A)∥ ≤ 1. It follows from Proposition 5.206(ii) that (T(1)(t))t≥0
is a contraction semigroup in D(A), since the other properties are immediate.

Let L be its generator and consider x ∈ D(A(1)) = D(A2). Then

T(1)(h)x− x
h

= T (h)x− x
h

−→ −Ax in X,

as h→ 0+. Moreover, Ax ∈ D(A) and by Proposition 5.206 we obtain

A
T(1)(h)x− x

h
=
T(1)(h)Ax−Ax

h
−→ −A(Ax) in X,

as h→ 0+. Consequently,∥∥∥∥T(1)(h)x− x
h

−Ax
∥∥∥∥

D(A)
=
∥∥∥∥T(1)(h)x− x

h
−Ax

∥∥∥∥
X

+
∥∥∥∥A(T(1)(h)x− x

h

)
−A(Ax)

∥∥∥∥
X

−→ 0.

Therefore, x ∈ D(L) and Lx = −Ax. In other words, G(A(1)) ⊂ G(−L). Since −L and A(1) are
m-accretive in D(A), it follows from Corollary 5.142 that A(1) = −L. 2

Corollary 5.221 Let A be an m-accretive operator in X, and let (T (t))t≥0 be the contraction semigroup
generated by −A. Given a positive integer n, consider the space Xn and the operator A(n) defined in
Observation 5.147. If T(n)(t) = T (t)|Xn for each t ≥ 0, then (T(n)(t))t≥0 is a contraction semigroup in
Xn and its generator is −A(n).

Proof: It suffices to iterate Proposition 5.220 and Observation 5.147, noting that

∥x∥n =
n∑

j=0
∥Ajx∥X .

2

Corollary 5.222 Let A be an m-accretive operator in X and let (Xn)n≥0 be the spaces defined in Ob-
servation 5.147. Given x ∈ D(A), let

u ∈ C([0,+∞);D(A)) ∩ C1([0,+∞);X)

be the solution of problem (5.8.244). If x ∈ Xn for some n ≥ 1, then

u(·) = T (·)x ∈
n⋂

j=0
Cb

j ([0,+∞);Xn−j). (5.8.247)

Moreover,
dju

dtj
= (−1)jT (t)Ajx = (−1)jAju(t), (5.8.248)

for each t ≥ 0 and 0 ≤ j ≤ n, and

d

dt

(
dju

dtj

)
+A

(
dju

dtj

)
= 0, (5.8.249)

for each t ≥ 0 and every 0 ≤ j ≤ n− 1. In particular, if x ∈
⋂

n≥0 D(An), then

u ∈ C∞([0,+∞);Xn) for each n ≥ 0.

Proof: The case n = 1 follows from Proposition 5.206. Assume that the result holds for some n > 1,
and let x ∈ Xn+1. In particular, Ajx ∈ Xn−j+1 for each 0 ≤ j ≤ n+ 1, and for j = 1 we have Ax ∈ Xn.
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Thus
v(·) = T (·)Ax ∈

n⋂
j=0

Cb
j ([0,+∞);Xn−j). (5.8.250)

Equivalently,

v(·) = T (·)Ax ∈
n+1⋂
j=1

Cb
j ([0,+∞);Xn+1−j). (5.8.251)

Taking j = 0 in (5.8.250), we see that v ∈ Cb([0,+∞);Xn). Since v = Au ∈ Cb([0,+∞);Xn) and

∥u∥n+1 = ∥u∥n + ∥Au∥n,

it follows that u ∈ Cb([0,+∞);Xn+1). Hence

u ∈
n+1⋂
j=0

Cb
j ([0,+∞);Xn+1−j).

Now observe that

d

dt

(
dju

dtj

)
= (−1)j d

dt

(
T (t)Ajx

)
= (−1)j(−A)T (t)Ajx

= (−1)j+1T (t)Aj+1x

= (−1)j+1Aj+1u(t).

Consequently,

d

dt

(
dj+1u

dtj+1

)
+A

(
dj+1u

dtj+1

)
= (−1)j+2Aj+2u(t) +A

(
(−1)j+1Aj+1u(t)

)
= (−1)j+2Aj+2u(t) + (−1)j+1Aj+2u(t)
= 0,

which proves (5.8.249) and completes the induction. 2

5.8.4 Weak Solutions and Extrapolation

If x ∈ D(A) then u(t) = T (t)x is the solution of problem 5.204, according to Proposition 5.206.
On the other hand, if x ∈ X\D(A) then u /∈ C([0,∞), D(A)) and, in particular, u is not a solution of
5.204 on [0,∞).

In this section, we will show that u is a solution in a "weak" form of problem 5.204.

Lemma 5.223 Let A be an m-accretive operator in X and (T (t))t≥0 be the contraction semigroup gen-
erated by −A. Consider the space X−1 and the operator A(−1) defined by Theorem 5.149. If (T−1(t))t≥0
is the contraction semigroup in X−1 generated by A−1, then T−1(t)|X = T (t) for all t ≥ 0.

Proof: Let x ∈ D(A). We have∥∥∥∥T(−1)x− x
t

+Ax

∥∥∥∥
X

≈
∥∥∥∥T(−1)x− x

t
+Ax

∥∥∥∥
D(A(−1))

=
∥∥∥∥T(−1)x− x

t
+A(−1)x

∥∥∥∥
X−1

+
∥∥∥∥A(−1)

(
T(−1)x− x

t
+A(−1)x

)∥∥∥∥
X−1

−→ 0,

when λ → 0+, since (T−1(t))t≥0 is the contraction semigroup in X−1 generated by A−1 and A−1 is
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continuous. Let L be the generator of (T−1(t)|X)t≥0. From the limit above, we have that Lx = −Ax and
G(A) ⊂ G(−L). Since A and −L are m-accretive, it follows from Corollary 5.142 that L = −A. Thus,
from item (iii) of Proposition 5.213 we have the result. 2

Corollary 5.224 Let A be an m-accretive operator in X and (T (t))t≥0 be the contraction semigroup in
X generated by −A. Consider the space X−1 and the operator A(−1) defined in Theorem 5.149. Let
x ∈ X and u(t) = T (t)x, for all t ≥ 0. Then, u is the unique solution of the problem

du

dt
+A(−1)u = 0;

u(0) = x;

in the space C([0,∞), X) ∩ C1([0,∞), X−1).

Proof: We know that A(−1) is m-accretive in X−1, D(A(−1)) = X and X = X−1. By Proposition 5.206,
for all x ∈ D(A(−1)) = X and all t ≥ 0, u(t) = T(−1)(t)x is the unique solution of the problem

du

dt
+A(−1)u = 0;

u(0) = x;

in the space C([0,∞), X)∩C1([0,∞), X−1). But, by Lemma 5.223, T−1(t)|X = T (t). Thus, we have the
desired result. 2

Corollary 5.225 Let A be an m-accretive operator in X and (T (t))t≥0 be the contraction semigroup in
X generated by −A. Given n ≥ 0, consider the space X−n and the operator A−n defined in Remark 5.234.
If (T(−n))t≥0 is the contraction semigroup in X−n generated by A(−n), then T(−n)(t)|X−j

= T(−j)(t) for
all 0 ≤ j ≤ n and all t ≥ 0.

Proof: The result follows by applying Lemma 5.223 iteratively and Remark 5.151. 2

Corollary 5.226 Let A be an m-accretive operator in X and (T (t))t≥0 be the contraction semigroup in
X generated by −A. Given n ≥ 0, consider the space X−n and the operator A(−n) defined in Remark
5.150 and let (T(−n))t≥0 be the contraction semigroup in X−n generated by A(−n). Let x ∈ X and consider
u(t) = T (t)x, for t ≥ 0. Then, u ∈ Cm

b ([0,∞), X−n) for all n ≥ 0. In addition,

dnu

dtn
= (−1)nT(−n)(t)An

(−n)X = (−1)nAn
(−n)u(t),

and,
d

dt

(
dn−1u

dtn−1

)
+ (−1)n+1A(−n)

(
dn−1u

dtn−1

)
= 0

for all t ≥ 0 and all n ≥ 1.

Proof: The result follows by applying Corollary 5.222 to the operator A(−n), for all n ≥ 0. 2

5.8.5 Group of Isometries

We will show that, under some appropriate hypotheses, some contraction semigroups can be em-
bedded into larger families of operators.

A family (T (t))t∈R ⊂ L(X) is called a group of isometries if it satisfies the following properties:

(i) T (0) = I;

(ii) T (t+ s) = T (t)T (s), for all s, t ∈ R;
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(iii) The mapping t 7→ T (t)x is continuous from R into X, for all x ∈ X;

(iv) ∥T (t)x∥ = ∥x∥, for all t ∈ R and all x ∈ X.

Remark 5.227 (i) If (T (t))t∈R ⊂ L(X) is a group of isometrias, then (T (t))t≥0 is a contraction
semigroup. In addition, if we set S(t) = T (−t), for all t ∈ R, then (S(t))t∈R ⊂ L(X) is also a
group of isometries, and thus, (S(t))t≥0 is a contraction semigroup.

(ii) Recall that in a Banach space, an isometry, that is, a linear map T : X → X such that ∥Tx∥ = ∥x∥
for all x ∈ X, need not be surjective. For example, Tφ(t) = φ(t+ h) in X = Lp(0,∞) with h > 0.

Note, also, that if (T (t))t∈R ⊂ L(X) is a group of isometries, then T (t) : X → X is surjective for
all t ∈ R, that is, T (t)X = X for all t ∈ R. Indeed, we have T (t)X ⊂ X. On the other hand, given
t ∈ R and x ∈ X, we have x = T (t)y with y = T (−t)x. Thus, x ∈ T (t)X. Hence, X ⊂ T (t)X.

Conversely, if (T (t))t≥0 ⊂ L(X) is a contraction semigroup such that T (t) is a surjective isometry
for all t ≥ 0, then (T (t))t∈R can be embedded into a group of isometries (S(t))t∈R. For this, it
suffices to consider the map i given by

i : L(X) −→ L(X)

T (t) 7−→
{
S(t) = T (t), if t ≥ 0
S(t) = (T (−t)−1, if t < 0.

Note that S(t) is a group of isometries. Indeed,

(a) S(0) = T (0) = I.

(b) Case 1: if t ≥ 0 and s ≥ 0 then t+ s ≥ 0 and

S(t+ s) = T (t+ s) = T (t)T (s) = S(t)S(s);

Case 2: if t < 0 and s < 0 then t+ s < 0 and

S(t+ s) = (T (−(t+ s)))−1

= (T (−t− s))−1

= (T (−t)T (−s))−1

= (T (−s))−1(T (−t))−1

= S(s)S(t)
= S(t)S(s)

Case 3: if t < 0, s ≥ 0 and t+ s < 0 then

S(t+ s) = (T (−(t+ s)))−1

= (T (s))−1(T (−(t+ s)))−1T (s)
= (T (−(t+ s))T (s))−1T (s)
= (T (−t))−1T (s)
= S(t)S(s)

Case 4: if t ≥ 0, s < 0 and t+ s < 0 is similar to the previous item;

Case 5: if t < 0, s ≥ 0 and t+ s ≥ 0 then

S(t+s) = T (t+s) = (T (−t))−1T (t+s)T (−t) = (T (−t))−1T (t+s−t) = (T (−t))−1T (s) = S(t)S(s);
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Case 6: if t ≥ 0, s < 0 and t+ s ≥ 0 is similar to the previous item.

In all cases, it holds that S(t+ s) = S(t)S(s).

(c) The mapping t 7→ S(t)x is continuous from R into X, for all x ∈ R. Indeed, for t ≥ 0 it follows
from the continuity of t 7→ T (t)x. For t < 0, it follows from the fact that the inverse of a linear,
bijective and continuous mapping is a linear and continuous mapping.

(d) ∥S(t)x∥ = ∥T (t)x∥ = ∥x∥, if t ≥ 0. And, ∥S(t)x∥ = ∥(T (−t))−1x∥ = ∥x∥, since the inverse of
an isometry is an isometry.

Also, i is an embedding. Indeed, if t ≥ 0, ∥S(t)∥ = ∥T (t)∥. If t < 0,

∥S(t)∥ = ∥(T (t))−1∥ = 1 = ∥T (t)∥.

Lemma 5.228 Let (T (t))t∈R ⊂ L(X) be a group of isometrias. If L is the generator of the contraction
semigroup (T (t))t≥0 and L̃ is the generator of the contraction semigroup (S(t))t≥0, where S(t) = T (−t),
then L = L̃. In particular, L and −L are m-accretive with dense domain.

Proof: Let x ∈ D(L). Given h > 0, we have

S(h)x− x
h

= T (−h)x− x
h

= −T (−h)T (h)x− x
h

−→ −Lx,

when h→ 0+. Thus, x ∈ D(L̃) and L̃x = −Lx. Hence, G(L) ⊂ G(−L̃).

Now, given x ∈ D(L̃) and h > 0, we have

T (h)x− x
h

= −T (h)T (−h)x− x
h

= −T (h)S(h)x− x
h

−→ −L̃x,

when h→ 0+. Thus, x ∈ D(L) and Lx = −L̃x. Hence, G(L̃) ⊂ G(−L). Therefore, L̃ = −L. Moreover,
by Proposition 5.211, L and −L are m-acretivos with dense domain. 2

Lemma 5.229 Let A be an m-accretive operator with dense domain such that −A is m-accretive. Let
(T (t))t≥0 be the contraction semigroup in X generated by A and (S(t))t≥0 be the contraction semigroup
in X generated by −A. Define (U(t))t∈R ⊂ L(X) by

U(t) =
{
T (t), if t ≥ 0;
S(−t), if t < 0.

Then, (U(t))t∈R is a group of isometries.

Proof: Given λ > 0, consider the operator Aλ ∈ L(X) introduced in Definition 5.132. Let x ∈ X and
t ∈ R. We have that (e−tAλ)t∈R is a group of isometries, indeed

(i) e0Aλ = I;

(ii) e−(t+s)Aλ = e−tAλe−sAλ for all s, t ∈ R;

(iii) The mapping t 7→ e−tAλx is continuous from R into X, for all x ∈ X, since it is the composition of
continuous maps;

(iv) We have ∥e−tAλx∥ ≤ ∥x∥ = ∥etAλe−tAλx∥ ≤ ∥e−tAλx∥. Thus, ∥e−tAλx∥ = ∥x∥.

From Corollary 5.204, for all x ∈ X,
e−tAλx −→ U(t)x,

when t→ 0+, uniformly on bounded intervals. Therefore, (U(t))t∈R is a group of isometries. 2
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Proposition 5.230 If (T (t))t≥0 is a contraction semigroup in X with generator A, then the following
properties are equivalent:

(i) −A is m-accretive;

(ii) There exists a group of isometries (U(t))t∈R such that T (t) = U(t), for all t ≥ 0.

Proof: From Lemma 5.229 we have that (i)⇒ (ii). And, from Lemma 5.228 we have (ii)⇒ (i). 2

Corollary 5.231 Let (T (t))t∈R ⊂ L(X) be a group of isometries and −A be the generator of the con-
traction semigroup (T (t))t≥0. Then, for all x ∈ D(A), the function u(t) = T (t)x, t ∈ R, is the unique
solution of the problem 

du

dt
+Au = 0;

u(0) = x;

in the space C(R, D(A)) ∩ C1(R, X).

Proof: For t > 0, it follows from Proposition 5.206. For t < 0, we have (S(−t))t<0 is a contraction
semigroup with generator A. Applying Proposition 5.206 for S(−t) we have that u(t) = S(t)x is the
unique solution of the problem 

du

dt
+Au = 0;

u(0) = x;

in the space C((−∞, 0), D(A)) ∩ C1((−∞, 0), X).

For t = 0 we have

d+u

dt
(0) = lim

h→0+

u(h)− u(0)
h

= lim
h→0+

T (h)x− x
h

= −Ax.

And,
d−u

dt
(0) = lim

h→0−

u(h)− u(0)
h

= lim
h→0−

S(−h)x− x
h

= − lim
t→0+

S(t)x− x
t

= −Ax.

Thus, u is differentiable at the origin, therefore, continuous and

du

dt
(0) = −Ax = −Au(0).

2

Remark 5.232 Consider the group of isometries (T (t))t∈R ⊂ L(X) and let x ∈ X. If T (t0)x ∈ D(A)
for some t0 ∈ R, then T (t)x ∈ D(A) for all t ∈ R. Indeed, given t ∈ R, there exists s ∈ R such that
t = s+ t0. Thus, T (t)x = T (s+ t0)x = T (s)T (t0)x which belongs to D(A), since T (t0)x ∈ D(A).

Therefore, if x /∈ D(A) then T (t)x /∈ D(A) for all t ∈ R. Indeed, if T (t)x ∈ D(A) for some
t ∈ R then, by what was done above, T (t)x ∈ D(A) for all t ∈ R. In particular, for t = 0 we have
T (0)x = x ∈ D(A). Contradiction!

5.8.6 The case of Hilbert Spaces

In this section, X is a Hilbert space endowed with scalar product (·, ·).

Lemma 5.233 If (T (t))t≥0 is a contraction semigroup with generator −A, then:

(i) (T (t)∗)t≥0 is a contraction semigroup;
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(ii) The generator of (T (t)∗)t≥0 is −A∗.

Proof: Since (T (t))t≥0 is a contraction semigroup generated by −A, then by Proposition (5.211), A
is m-accretive in X with dense domain. Thus by Proposition (5.161) and Corollary (5.157), it follows
that A∗ is also m-accretive with dense domain. Thus, by Proposition (5.215) −A∗ is the generator of
a contraction semigroup in X. Let then (S(t))t≥0 be the contraction semigroup generated by −A∗. By
Corollary (5.204) and by Proposition (5.161), we have

S(t)x = lim
λ→0+

e−t(A∗)λ = lim
λ→0+

(e−tAλ)∗x = T (t)∗x for all t ≥ 0 and all x ∈ X.

Thus, by Proposition (5.213) S(t) = T (t)∗ whose generator is −A∗. 2

Remark 5.234 Some comments on Lemma (5.233). Let (T (t))t≥0 be a contraction semigroup in a Ba-
nach space X and let A be its generator.

(i) One can always consider T (t)∗.

The family (T (t)∗)t≥0 satisfies properties (i), (ii) and (iv) of Definition (5.207). However, property
(iii) may not hold. For example, let X = L1(R) and let (T (t))t≥0 be defined by T (t)φ(x) = φ(x−t).
We have that (T (t)∗)t≥0 is defined in X ′ = L∞(R) by T (t)∗φ(x) = φ(x + t) and it can be verified
that (T (t)∗) is not continuous in X ′.

(ii) Since D(A) is dense in X, we can consider the operator A∗ in X ′. If A∗ is m-accretive with dense
domain, then the proof of Lemma (5.233) shows that (T (t)∗)t≥0 is a contraction semigroup in X ′

and that its generator is −A∗.

(iii) In particular, if X is reflexive, then −A∗ is m-accretive with dense domain. see [83] Thm.4.6, p.
16. And then (T (t)∗)t≥0 is a contraction semigroup and its generator is −A∗.

Corollary 5.235 If A is a self-adjoint and accretive operator in X and if (T (t))t≥0 is a contraction
semigroup generated by −A, then (T (t)) = (T (t))∗ for all t ≥ 0.

Proof: By Corollary (5.165), we have that A is m-accretive with dense domain and, since A is self-
adjoint, then A = A∗ whence −A = −A∗. But from Lemma (5.233), (T (t)∗)t≥0 is the contraction
semigroup generated by −A∗ = −A. Thus, since (T (t))t≥0 and (T (t)∗)t≥0 have the same generators then
(T (t)) = (T (t)∗) for all t ≥ 0. 2

Corollary 5.236 If A is a skew-adjoint operator in X, then there exists a group of isometries (T (t)t∈R
such that −A is the generator of the contraction semigroup (T (t))t≥0. Moreover, (T (t))∗ = T (−t) for all
t ∈ R.

Proof: By Corollary (5.165), we have that −A and A are m-accretive with dense domain. Thus, by
Proposition (5.215), there exists a contraction semigroup (T (t))t≥0 generated by −A. On the other hand,
from Proposition (5.230), since −A is m-accretive, then there exists a group of isometries (T (t))t∈R such
that for t ≥ 0 it coincides with the semigroup (T (t))t≥0 generated by −A.
Let us show that (T (t))∗ = T (−t) for all t ∈ R. Given x, y ∈ D(A), note that

d

dt
(T (t)x, T (t)y) = ( d

dt
(T (t)x), T (t)y) + (T (t)x, d

dt
(T (t)y))

= (−AT (t)x, T (t)y) + (T (t)x,−AT (t)y)
= (T (t)x,−A∗T (t)y)− (T (t)x,AT (t)y)
= (T (t)x,AT (t)y)− (T (t)x,AT (t)y) = 0

Therefore, (x, y) = (T (t)x, T (t)y) for all x, y ∈ D(A). In particular, taking y = T (−t)z, we have

(x, T (−t)z) = (T (t)x, T (t)T (−t)z) = (T (t)x, T (0)z) = (T (t)x, z).

Thus, (T (t))∗ = T (−t) for all t ∈ R. Then, the result follows by density. 2
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Theorem 5.237 Let A be an accretive and self-adjoint operator in X and let (T (t))t≥0 be the contraction
semigroup generated by −A. For each x ∈ X the function u(t) = T (t)x for t ≥ 0 has the following
properties:

(i) u ∈ C([0,∞), X) ∩ C((0,∞), D(A)) ∩ C1((0,∞), X) and u is the unique solution of the problem
du

dt
+Au = 0 for all t > 0

u(0) = x
(5.8.252)

in this class;

(ii) ∥Au(t)∥ ≤ 1
t
√

2
∥x∥ for all t > 0. Moreover, the function t 7→

√
t∥Au(t)∥ belongs to L2(0,∞) and∫ ∞

0
s∥Au(s)∥2ds ≤ 1

4∥x∥
2;

(iii) (Au(t), u(t)) ≤ 1
2t∥x∥

2 for all t > 0. Moreover, the function t 7→ (Au(t), u(t)) belongs to L2(0,∞)

and
∫ ∞

0
(Au(t), u(t))ds ≤ 1

2∥x∥
2;

(iv) If x ∈ D(A) then ∥Au(t)∥2 ≤ 1
2t (Ax, x) for all t > 0. Moreover, Au ∈ L2((0,∞), X) and

∥Au∥2
L2((0,∞),X) ≤

1
2(Ax, x).

Proof: Let x ∈ X and let u(t) = T (t)x. Given λ > 0, consider the operator Aλ and uλ(t) = e−tAλx. By
Lemma (5.133), it follows that Aλ is m-accretive and it follows from Proposition (5.161) and from the
fact that A is self-adjoint, that Aλ is self-adjoint since (Aλ)∗ = (A∗) = Aλ. Therefore, (e−tAλ)t≥0 is a
contraction semigroup. Applying Remark (5.210) we obtain that the map

t 7→ ∥u′
λ(t)∥ = ∥e−tAλAλx∥ is non-increasing. (5.8.253)

Indeed, for 0 ≤ t ≤ t+ s, we have

∥u′
λ(t+ s)∥ = ∥e−(t+s)AλAλx∥ = ∥e−sAλe−tAλAλx∥ ≤ ∥e−tAλAλ∥x = ∥u′

λ(t)∥.

Moreover, we have the following identities:

d

dt
∥uλ(t)∥2 = −2(Aλuλ(t), uλ(t)) for all t ≥ 0. (5.8.254)

d

dt
(Aλuλ(t), uλ(t)) = 2(Aλuλ(t), u′

λ(t)) = −2∥u′
λ(t)∥2 for all t ≥ 0. (5.8.255)

Indeed, since u′
λ(t) = −Aλe

−tAλ = −Aλuλ(t), we have

d

dt
∥uλ(t)∥2 = d

dt
(uλ(t), uλ(t))

= (u′
λ(t), uλ(t)) + (uλ(t), u′

λ(t))
= 2(u′

λ(t), uλ(t))
= −2(Aλuλ(t), uλ(t))

and thus, proving (5.8.254). Similarly, using the fact that Aλ is self-adjoint, we have

d

dt
(Aλuλ(t), uλ(t)) = (Aλu

′
λ(t), uλ(t)) + (Aλuλ(t), u′

λ(t))

= (u′
λ(t), Aλuλ(t)) + (Aλuλ(t), u′

λ(t))
= 2(Aλuλ(t), u′

λ(t)).
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proving (5.8.255). From (5.8.255), we have that (Aλuλ(t), uλ(t)) is a non-increasing function in t. Then
integrating (5.8.254) from 0 to t, we have:

t(Aλuλ(t), uλ(t)) ≤
∫ t

0
(Aλuλ(s), uλ(s))ds ≤ 1

2∥x∥
2. (5.8.256)

Indeed, since (Aλuλ(t), uλ(t)) is non-increasing, then for 0 ≤ s ≤ t, we have

(Aλuλ(t), uλ(t)) ≤ (Aλuλ(s), uλ(s))

whence
t(Aλuλ(t), uλ(t)) =

∫ t

0
(Aλuλ(t), uλ(t))ds ≤

∫ t

0
(Aλuλ(s), uλ(s))ds.

On the other hand, from (5.8.254) and since s ≥ 0, it follows that d

ds
∥uλ(s)∥2 = −2(Aλuλ(s), uλ(s))

whence∫ t

0
(Aλuλ(s), uλ(s))ds = −1

2

∫ t

0

d

ds
∥uλ(s)∥2ds = −∥uλ(s)∥2

2

∣∣∣∣t
0

= −∥uλ(t)∥2

2 + ∥x∥
2

2 ≤ ∥x∥
2

2 .

Applying (5.8.253) and integrating (5.8.255) between 0 and t > 0 we obtain:

2t∥u′
λ(t)∥2 ≤

∫ t

0
∥u′

λ(s)∥2ds = (Aλx, x)− (Aλuλ(t), uλ(t)) ≤ (Aλx, x). (5.8.257)

Indeed, using (5.8.253) and integrating (5.8.255) between 0 and t > 0 we have

2t∥u′
λ(t)∥2 ≤ 2

∫ t

0
∥u′

λ(s)∥2ds.

On the other hand, from (5.8.255), we have

2
∫ t

0
∥u′

λ(s)∥2ds = −
∫ t

0

d

ds
(Aλuλ(s), uλ(s))ds

= −(Aλuλ(s), uλ(s))
∣∣∣∣t
0

= −(Aλuλ(t), uλ(t)) + (Aλuλ(0), uλ(0))
= (Aλx, x)− (Aλuλ(t), uλ(t))
≤ (Aλx, x)

where the last inequality follows from Lemma (5.156). Thus proving (5.8.257). Multiplying (5.8.255) by
t ≥ 0, using the fact that u′

λ(t) is non-increasing and integrating from 0 to t, we have for 0 ≤ s ≤ t that

t2∥u′
λ(t)∥2 =

∫ t

0
s∥u′

λ(s)∥2ds

≤ 2
∫ t

0
s∥u′

λ(s)∥2ds

= −
∫ t

0
s
d

ds
(Aλuλ(s), uλ(s))ds
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Using integration by parts with u = s and dv = d
ds (Aλuλ(s), uλ(s))ds, we obtain

−
∫ t

0
s
d

ds
(Aλuλ(s), uλ(s))ds = −t(Aλuλ(s), uλ(s)) +

∫ t

0
(Aλuλ(s), uλ(s))ds

≤
∫ t

0
(Aλuλ(s), uλ(s))ds

≤ 1
2∥x∥

2.

Applying (5.8.256), it follows that

2t2∥u′
λ(t)∥2 ≤ ∥x∥2. (5.8.258)

Consider now t > 0. By Corollary (5.204) and Proposition (5.137), it follows that Jλuλ(t) → u(t) in X

when λ → 0+. On the other hand, A(Jλuλ(t)) = Aλuλ(t) = u′
λ(t) is bounded in X. Applying Lemma

(5.169), since Aλ is m-accretive, we have that uλ ∈ D(A) and Aλuλ(t) ⇀ Au(t) when λ→ 0+.

Thus, property (i) follows now by applying Proposition (5.206) with the initial value u(ε) for any ε > 0
and letting ε → 0 and using the fact that u′

λ(t) converges to u′(t). Furthermore, passing the limit as
λ → 0+ in (5.8.256) we obtain (iii), passing the limit as λ → 0+ in (5.8.257) since x ∈ D(A) we obtain
(iv) and finally, passing the limit as λ→ 0+ in (5.8.258) we obtain (ii). 2

5.9 Exponential Formula

Just as in the case of linear semigroups, one can define the exponential of an operator under certain
hypotheses:

Theorem 5.238 (Crandall-Liggett) Let A ∈ A(ω) such that D(A) ⊂ Im(I + λA), for 0 < λ < λ0
with λ0|ω| < 1. Then, for any x ∈ D(A) and t > 0, the limit exists

lim
n→∞

(
I + t

n
A

)−n

x, (5.9.259)

and the convergence is uniform on bounded intervals. Setting

S(t)x := lim
n→∞

(
I + t

n
A

)−n

x,

we have that S ∈ Qω(D(A)) and for all x ∈ D(A), S(t)x is Lipschitz continuous on bounded
intervals.

To prove this theorem, we will make use of two technical lemmas, which will be used to obtain
estimates that enable us to prove the existence of the limit given by (5.9.259).

Lemma 5.239 Let A ∈ A(ω), 0 < µ ≤ λ < λ0, such that ωλ0 < 1 and x ∈ D(Jm
λ ) ∩D(Jn

µ ) with m and
n positive integers such that m ≤ n. Then

∥∥Jn
µx− Jm

λ x
∥∥ ≤ (1− µω)−n

m−1∑
j=0

αjβn−j

(
n

j

)∥∥∥Jm−j
λ x− x

∥∥∥
+

n∑
j=m

(1− µω)−j
αmβj−m

(
j − 1
m− 1

)∥∥Jn−j
µ x− x

∥∥ , (5.9.260)

where α = µ

λ
and β = λ− µ

λ
.
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Proof: To avoid overburdening the notation, for 0 ≤ j ≤ n and 0 ≤ k ≤ m, let us set

a(k; j) :=
∥∥Jj

µx− Jk
λx
∥∥ .

By Theorem 5.79, item (iv), we can write

a(k; j) =
∥∥Jj

µx− Jµ

(
αJk−1

λ x+ βJk
λx
)∥∥

≤ (1− µω)−1 ∥∥Jj−1
µ x−

(
αJk−1

λ x+ βJk
λx
)∥∥

≤ (1− µω)−1 (
α
∥∥Jj−1

µ x− Jk−1
λ

∥∥+ β
∥∥Jj−1

µ x− Jk
λx
∥∥)

= α1a(k − 1; j − 1) + β1a(k; j − 1),

where α1 = α(1− µω)−1 and β1 = β(1− µω)−1. We will use the formula

a(k; j) ≤ α1a(k − 1; j − 1) + β1a(k; j − 1), (5.9.261)

to demonstrate (5.9.260) by induction.

Let us say that the validity of (5.9.260) is property Pm,n. Let us prove Pm,n for all n ≥ m ≥ 1.

Firstly, let us prove that P1,n holds, for all n ≥ 1, by induction on n. Indeed, we have that

a(1; 1) ≤ α1 a(0; 0) + β1 a(1; 0)
= (1− µω)−1β∥Jλx− x∥,

whence it follows that P1,1 is verified. Now, suppose P1,n−1 is valid and let us prove that P1,n is verified.
We have

a(1;n) ≤ α1 a(0;n− 1) + β1 a(1;n− 1)

≤ α1 a(0;n− 1) + β1

βn−1
1

(
n− 1

0

)
a(1; 0) +

n−1∑
j=1

α1β
j−1
1

(
j − 1

0

)
a(0;n− 1− j)


= α1 a(0;n− 1) + βn

1 a(1; 0) +
n−1∑
j=1

α1β
j
1 a(0;n− 1− j)

= βn
1 a(1; 0) +

n∑
j=1

α1β
j−1
1 a(0;n− j),

and thus, P1,n holds.

Let us assume that Pm−1,n is true for n ≥ m − 1. We want to prove Pm,n for n ≥ m. Again, we
will use induction on n. The first case is n = m, which must be verified. Note that

a(m;m) ≤ α1 a(m− 1;m− 1) + β1 a(m;m− 1)
≤ α2

1 a(m− 2;n− 2) + 2α1β1 a(m− 1;n− 2) + β2
1 a(m;m− 2)

...

≤
m−1∑
j=0

αj
1β

m−j
1

(
m

j

)
a(m− j; 0),

which proves that Pm,m,.

- 377 -



5 Monotone and Accretive Operators

Now, suppose that Pm,n−1 is true for n− 1 ≥ m. Then

a(m;n) ≤ α1 a(m− 1;n− 1) + β1 a(m;n− 1)

≤ α1

(1− µω)−(n−1)
m−2∑
j=0

αjβn−1−j

(
n− 1
j

)
a(m− 1− j; 0)

+
n−1∑

j=m−1
(1− µω)−jαm−1βj−(m−1)

(
j − 1
m− 2

)
a(0;n− 1− j)


+ β1

(1− µω)−(n−1)
m−1∑
j=0

αjβn−1−j

(
n− 1
j

)
a(m− j; 0)

+
n−1∑
j=m

(1− µω)−jαmβj−m

(
j − 1
m− 1

)
a(0;n− 1− j)


= (1− µω)−n

m−2∑
j=0

αj+1βn−(j+1)
(
n− 1
j

)
a(m− (j + 1); 0) (5.9.262)

+
n−1∑

j=m−1
(1− µω)−(j+1)αmβ(j+1)−m

(
j − 1
m− 2

)
a(0;n− (j + 1)) (5.9.263)

+ (1− µω)−n
m−1∑
j=0

αjβn−j

(
n− 1
j

)
a(m− j; 0) (5.9.264)

+
n−1∑
j=m

(1− µω)−(j+1)αmβ(j+1)−m

(
j − 1
m− 1

)
a(0;n− (j + 1)). (5.9.265)

Let us set j′ = j + 1 in (5.9.262), rewriting j′ by j (just a change in indices so that it does not alter
the sum). In (5.9.264), let us separate from the sum the term corresponding to j = 0 and group the
remaining terms with the terms of (5.9.262) to obtain

(1− µω)−n

βna(m; 0) +
m−1∑
j=1

αjβn−j

[(
n− 1
j − 1

)
+
(
n− 1
j

)]
a(m− j; 0)

 . (5.9.266)

Now decoupling the term corresponding to j = m − 1 in (5.9.263) and adding with the expression in
(5.9.265) we obtain,

(1− µω)−mαma(0;n−m) +
n−1∑
j=m

(1− µω)−(j+1)αmβ(j+1)−m

[(
j − 1
m− 2

)
+
(
j − 1
m− 1

)]
a(0;n− (j + 1)).

(5.9.267)
From Stiefel’s formula, (

n− 1
j − 1

)
+
(
n− 1
j

)
=
(
n

j

)
,

making the change j′ = j + 1, and adding the resulting expression with (5.9.266) we obtain,

a(m;n) ≤ (1− µω)−n
m−1∑
j=0

αjβn−j

(
n

j

)
a(m− j; 0)

+
n∑

j=m

(1− µω)−jαmβj−m

(
j − 1
m− 1

)
a(0;n− j).

2

Lemma 5.240 Let m and n be positive integers with m ≤ n and α, β > 0 such that α+ β = 1. Then
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(i)
m∑

j=0

(
n

j

)
αjβn−j(m− j) ≤

√
(nα−m)2 + nαβ;

(ii)
n∑

j=m

(
j − 1
m− 1

)
αmβj−m(n− j) ≤

√
mβ

α2 +
(
mβ

α
+m− n

)2
.

Proof:

(i) Initially, considering n = 1, we have m = 1 and the inequality becomes

1∑
j=0

(
1
j

)
αjβ1−j(1− j) = β ≤

√
(α− 1)2 + αβ =

√
β,

which is true, since 0 < β < 1.

For n ≥ 2, from the Cauchy-Schwarz inequality, we have

m∑
j=0

(
n

j

)
αjβn−j(m− j) ≤

n∑
j=0

(
n

j

)
αjβn−j |m− j|

≤

 n∑
j=0

(
n

j

)
αjβn−j

 1
2
 n∑

j=0

(
n

j

)
αjβn−j(m− j)2

 1
2

=

 n∑
j=0

(
n

j

)
αjβn−j(m− j)2

 1
2

,

since
(α+ β)n =

n∑
j=0

(
n

j

)
αjβn−j and α+ β = 1.

Now note that if α, β > 0, we have

αn(α+ β)n−1 = αn

n−1∑
j=0

(n− 1)!
j!(n− 1− j)!α

jβn−1−j

=
n−1∑
j=0

(j + 1) n(n− 1)!
(j + 1)j!(n− (j + 1))!α

j+1βn−(j+1) (5.9.268)

=
n∑

j=0
j

(
n

j

)
αjβn−j

and

α2n(n− 1)(α+ β)n−2 + αn(α+ β)n−1

= αn
(
α(n− 1)(α+ β)n−2 + (α+ β)n−1)

= αn

n−1∑
j=0

j

(
n− 1
j

)
αjβn−1−j +

n−1∑
j=0

(
n− 1
j

)
αjβn−1−j

 (5.9.269)

=
n−1∑
j=0

n(j + 1) (n− 1)!
j!(n− (j + 1))!α

j+1βn−(j+1)

=
n∑

j=0
j2
(
n

j

)
αjβn−j .

- 379 -



5 Monotone and Accretive Operators

Therefore, from (5.9.268) and (5.9.269), besides the fact that β = 1− α, it follows that

m∑
j=0

(
n

j

)
αjβn−j(m− j) ≤

 n∑
j=0

(
n

j

)
αjβn−j

[
m2 − 2mj + j2] 1

2

=
(
m2 − 2αmn+ α2n(n− 1) + αn

) 1
2

=

m2 − 2αmn+ α2n2 − α2n+ αn︸ ︷︷ ︸
αn(1−α)

 1
2

=
(
m2 − 2αmn+ α2n2 + nαβ

) 1
2

=
(
(αn−m)2 + nαβ

) 1
2 .

(ii) For 0 < β < 1, consider

Fm(β) =
∞∑

j=m

(
j − 1
m− 1

)
βj−m.

We claim that Fm(β) is convergent and Fm(β) = (1− β)−m.

Indeed, let
aj :=

(
j − 1
m− 1

)
= (j − 1)(j − 2) . . . (j −m+ 1)

(m− 1)! ,

for j ≥ m. Then

1 ≤ j
√
aj = j

√
j − 1
m− 1

j

√
j − 2
m− 2 . . .

j

√
j − (m− 1)

1

= j
√
j − 1 j

√
j

2 − 1 . . . j

√
j

m− 1 − 1 ≤ ( j
√
j)m−1,

whence,
1 ≤ lim

j→∞
j
√
aj ≤ ( lim

j→∞
j
√
j)m−1 = 1m−1 = 1,

which shows us that lim
j→∞

j
√
aj = 1, and thus, the radius of convergence of the series given by Fm(β)

is 1. Hence, Fm(β) converges absolutely for all β ∈ (−1, 1). We shall prove that Fm(β) = (1−β)−m

by induction. We have

F1(β) =
∞∑

j=1

(
j − 1

0

)
βj−1 =

∞∑
j=0

βj = (1− β)−1.

Assume
Fm−1(β) =

∞∑
j=m−1

(
j − 1
m− 2

)
βj−(m−1) = (1− β)−(m−1).

Thus,

(1− β)−m = Fm−1(β)F1(β)

=

 ∞∑
j=m−1

(
j − 1
m− 2

)
βj−(m−1)

 ∞∑
j=1

(
j − 1

0

)
βj−1


=

 ∞∑
j=m−1

(
j − 1
m− 2

)
βj−(m−1)

 ∞∑
j=m−1

βj−(m−1)

 =
∞∑

j=m−1
cj ,
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where cj =
j∑

k=m−1
ak bj+(m−1)−k, with ak =

(
k−1
m−2

)
βk−(m−1) and bk = βk−(m−1).

Thus,

(1− β)−m =
∞∑

j=m−1

[
j∑

k=m−1

(
k − 1
m− 2

)
βk−(m−1)βj+(m−1)−k−(m−1)

]

=
∞∑

j=m−1

[
j∑

k=m−1

(
k − 1
m− 2

)
βj−(m−1)

]

=
∞∑

j=m−1

[
j−1∑

k−1=m−2

(
k − 1
m− 2

)
βj−(m−1)

]

=
∞∑

j′=m

(
j′ − 1
m− 1

)
βj′−m = Fm(β),

where the penultimate identity is justified by the Pascal’s column theorem (the sum of the first j
elements of a column of Pascal’s triangle is equal to the element that is advanced one row and one
column over the last term of the sum).

Since the power series Fm(β) converges absolutely in (0, 1), the same happens with its derivatives
F ′

m(β) and F ′′
m(β). Moreover,

Fm(β) =
∞∑

j=m

(
j − 1
m− 1

)
βj−m = (1− β)−m;

F ′
m(β) =

∞∑
j=m+1

(
j − 1
m− 1

)
(j −m)βj−m−1 = m(1− β)−m−1;

F ′′
m(β) =

∞∑
j=m+2

(
j − 1
m− 1

)
(j −m)(j −m− 1)βj−m−2 = m(m+ 1)(1− β)−m−2.

Thus,

m(1− β)−m−1 =
∞∑

j=m+1

(
j − 1
m− 1

)
(j −m)βj−m−1

= 1
β

 ∞∑
j=m+1

(
j − 1
m− 1

)
jβj−m −m(1− β)−m +m

 ,
whence

∞∑
j=m

(
j − 1
m− 1

)
jβj−m = βm(1− β)−m−1 +m(1− β)−m.

Also

m(m+ 1)(1− β)−m−2 = 1
β2

 ∞∑
j=m+2

(
j − 1
m− 1

)
(j −m)2βj−m −

∞∑
j=m+2

(
j − 1
m− 1

)
(j −m)βj−m

 ,
or even,

∞∑
j=m+2

(
j − 1
m− 1

)
(j −m)2βj−m = β2m(m+ 1)(1− β)−m−2 +

∞∑
j=m+2

(
j − 1
m− 1

)
(j −m)βj−m,
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whence
∞∑

j=m

(
j − 1
m− 1

)
j2βj−m = β2m(m+ 1)(1− β)−m−2 + βm(1− β)−m−1

+ 2m
[
βm(1− β)−m−1 +m(1− β)−m

]
−m2(1− β)−m.

If α+ β = 1,

∞∑
j=m

(
j − 1
m− 1

)
βj−m = α−m;

∞∑
j=m

(
j − 1
m− 1

)
jβj−m = mα−m

(
1 + β

α

)
= m

α
α−m;

∞∑
j=m

(
j − 1
m− 1

)
j2βj−m =

(
m2 + βm

α2

)
α−m.

Thus, from the Cauchy-Schwarz inequality,

n∑
j=m

(
j − 1
m− 1

)
αmβj−m(n− j) ≤

∞∑
j=m

(
j − 1
m− 1

)
αmβj−m|n− j|

≤

 ∞∑
j=m

(
j − 1
m− 1

)
αmβj−m

 1
2
 ∞∑

j=m

(
j − 1
m− 1

)
αmβj−m(j − n)2

 1
2

=
[
m2 + βm

α2 − 2nm
α

+ n2
] 1

2

=
[
mβ

α2 +
(m
α
− n

)2
] 1

2

.

Note that m
α

= mβ

α
+m, and we obtain the desired inequality.

2

Proof of Theorem 5.238. Let x ∈ D(A), 0 < µ ≤ λ < λ0, n ≥ m and λ0|ω| < 1. Since, by
hypothesis, D(A) ⊂ Im(I + λA), for all λ ∈ (0, λ0), it follows that

D(A) ⊂ D(A) ⊂
⋂

λ∈(0,λ0)

Dλ.

But by Proposition 5.73, item (i), we have that Jλ : Dλ → D(A), thus x ∈ D(Jn
µ ) ∩D(Jm

λ ).

By Theorem 5.79, item (iv), if x ∈ Dλ, λ ̸= 0 and µ ∈ R then

µ

λ
x+ λ− µ

λ
Jλx ∈ Dµ

and
Jµ

(
µ

λ
x+ λ− µ

λ
Jλx

)
= Jλx.
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Let us denote α = µ
λ and β = λ−µ

λ . By Lemma 5.239 we have

∥Jn
µx− Jm

λ x∥ ≤ (1− µ|ω|)−n
m−1∑
j=0

αjβn−j

(
n

j

)
∥Jm−j

λ x− x∥

+
n∑

j=m

(1− µ|ω|)−jαmβj−m

(
j − 1
m− 1

)
∥Jn−j

µ x− x∥. (5.9.270)

By Theorem 5.79, items (ii) and (iii), it follows that

∥Jm−j
λ x− x∥ ≤ (m− j)(1− λ|ω|)−m+j+1∥Jλx− x∥

≤ (m− j)(1− λ|ω|)−m+j+1λ(1− λω)−1|Ax|
≤ (m− j)(1− λ|ω|)−m+jλ|Ax|. (5.9.271)

Analogously

∥Jn−j
µ x− x∥ ≤ (n− j)(1− µ|ω|)−n+jµ|Ax|. (5.9.272)

Substituting (5.9.271) and (5.9.272) into (5.9.270) and recalling that (1− λ|ω|)j < 1, we obtain

∥Jn
µx− Jm

λ x∥ ≤ (1− µ|ω|)−n(1− λ|ω|)−mλ

m−1∑
j=0

αjβn−j

(
n

j

)
(m− j)|Ax|

+ (1− µ|ω|)−nµ

n∑
j=m

αmβj−m

(
j − 1
m− 1

)
(n− j)|Ax|. (5.9.273)

Let f(ξ) = (1 − ξ)ne2nξ, so f ′(ξ) ≥ 0 for ξ ∈ [0, 1
2 ], that is, f is increasing on [0, 1

2 ], whence it
follows that

1 = f(0) ≤ f(ξ), ∀ξ ∈
[
0, 1

2

]
,

that is,

(1− ξ)−n ≤ e2nξ, ∀ξ ∈
[
0, 1

2

]
. (5.9.274)

If λ|ω| ≤ 1
2 , from (5.9.273), (5.9.274) and Lemma 5.240, we obtain

∥Jn
µx− Jm

λ x∥ ≤ e2n|ω|µe2m|ω|λλ
[
(nα−m)2 + nαβ

] 1
2 |Ax|

+ e2n|ω|µµ

[
mβ

α2 +
(
mβ

α
+m− n

)2
] 1

2

|Ax|. (5.9.275)

But recalling that α = µ
λ and β = λ−µ

λ , it follows that

λ
[
(nα−m)2 + nαβ

] 1
2 =

[
(nµ−mλ)2 + nµ(λ− µ)

] 1
2 and

µ

[
mβ

α2 +
(
mβ

α
+m− n

)2
] 1

2

=
[
mλ(λ− µ) + (mλ− nµ)2] 1

2 . (5.9.276)
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Substituting the identities above into (5.9.275) we obtain

∥Jn
µx− Jm

λ x∥ ≤ e2|ω|(nµ+mλ) [(nµ−mλ)2 + nµ(λ− µ)
] 1

2 |Ax|

+ e2|ω|nµ
[
mλ(λ− µ) + (mλ− nµ)2] 1

2 |Ax|, (5.9.277)

for 0 < µ ≤ λ < λ0 and λ|ω| ≤ 1
2 .

Setting µ = t
n and λ = t

m , t > 0, we obtain that 0 < µ ≤ λ, since m ≤ n. Furthermore

λ = t

m
< λ0 ⇔ t < mλ0

and
λ|ω| ≤ 1

2 ⇔ t ≤ m

2|ω| ,

ω ̸= 0, that is, if m→∞, we can take values for t arbitrarily large.

From (5.9.277), it follows that

∥Jn
t
n
x− Jm

t
m
x∥ ≤ [2te4|ω|t + te2|ω|t]

(
1
m
− 1
n

) 1
2

|Ax|. (5.9.278)

Therefore the sequence
{
Jn

t
n
x
}

n
is Cauchy, ∀ t > 0 and ∀ x ∈ D(A). Since X is a Banach space,

it follows that there exists
S(t)x := lim

n→∞
(I + t

n
A)−nx, (5.9.279)

for all x ∈ D(A), and such convergence is uniform on bounded intervals by virtue of (5.9.278).

Since for each x, y ∈ D(A) we have

∥Jn
t
n
x− Jn

t
n
y∥ ≤ (1− t

n
ω)−n∥x− y∥, (5.9.280)

it follows that the limit given in (5.9.279) exists for all x ∈ D(A). Indeed, let x ∈ D(A) then given ϵ > 0
there exists y ∈ D(A) such that ∥x− y∥ < ϵ.

Note that

∥Jn
t
n
x− Jm

t
m
x∥ ≤ ∥Jn

t
n
x− Jn

t
n
y∥+ ∥Jn

t
n
y − Jm

t
m
y∥+ ∥Jm

t
m
y − Jm

t
m
x∥

≤ (1− t

n
ω)−n∥x− y∥+ ∥Jn

t
n
y − Jm

t
m
y∥+ (1− t

m
ω)−m∥x− y∥

≤ ϵ

[
(1− t

n
ω)−n + (1− t

m
ω)−m

]
+ ∥Jn

t
n
y − Jm

t
m
y∥.

Since

(
lim

n→∞
1− ωt

n

)−n

= eωt,

the sequence {(1− t
nω)−n}n is convergent, hence, bounded, it follows that

∥Jn
t
n
x− Jm

t
m
x∥ ≤ Cϵ+ ∥Jn

t
n
y − Jm

t
m
y∥,

and due to the fact that
{
Jn

t
n
y
}

n
is Cauchy, it follows that for the given ϵ there exists n0 ∈ N such that

if m,n ≥ n0, then ∥Jn
t
n
y − Jm

t
m
y∥ < ϵ.
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Therefore,
∥Jn

t
n
x− Jm

t
m
x∥ ≤ (C + 1)ϵ,

for all m,n ≥ n0, proving that the sequence
{
Jn

t
n
x
}

n
is Cauchy, for x ∈ D(A), thus, convergent.

Moreover, the map

S(t) : D(A) −→ D(A)
x 7→ S(t)x = lim

n→∞
Jn

t
n
x

is Lipschitzian with constant eωt.

Let now x ∈ D(A) and 0 ≤ t ≤ τ. Taking m = n, µ = t
n and λ = τ

n in (5.9.277) we obtain

∥Jn
t
n
x− Jn

τ
n
x∥ ≤ e2|ω|(t+τ)

[
(t− τ)2 + t( τ

n
− t

n
)
] 1

2

|Ax|

+ e2|ω|t
[
τ( τ
n
− t

n
) + (τ − t)2

] 1
2

|Ax|.

Letting n→∞ we obtain

∥S(t)x− S(τ)x∥ ≤
(
e2|ω|(t+τ) + e2|ω|t

)
|Ax||t− τ |. (5.9.281)

Showing that the map t 7→ S(t)x is Lipschitz continuous on bounded intervals, ∀ x ∈ D(A).

From inequality (5.9.281), the strong continuity of S follows, that is, limt→0+ S(t)x = x, for all
x ∈ D(A). To show that S ∈ Qω(D(A)), it remains to prove that S(t + s) = S(t)S(s) in D(A), since
S(0) = I is trivially satisfied.

Indeed, let m ∈ N and x ∈ D(A), then

S(mt)x = lim
n→∞

Jn
mt
n
x = lim

k→∞
Jmk

t
k
x = lim

k→∞

(
Jk

t
k

)m

x = [S(t)]mx. (5.9.282)

Now, if l, k, r, s ∈ N, from (5.9.282) we have

S

(
l

k
+ r

s

)
x = S

(
ls+ rk

ks

)
x =

[
S

(
1
ks

)]ls+rk

x

=
[
S

(
1
ks

)]ls [
S

(
1
ks

)]rk

x = S

(
l

k

)
S
(r
s

)
x, (5.9.283)

proving that S(t+s) = S(t)S(s) for all s, t ∈ Q, s, t ≥ 0. From the strong continuity of S and the density
of Q in R, the desired result follows.

Theorem 5.241 () Let (ϵn)n be a sequence of positive real numbers such that ϵn → 0 when n→∞,
[

t
ϵn

]
the integer part of t

ϵn
and A an operator satisfying the hypotheses of Theorem 5.238. Then ∀ x ∈ D(A)

one has that
S(t)x = lim

n→∞
(I + ϵnA)−[ t

ϵn
]x = lim

n→∞
(I + ϵnA)−[ t

ϵn
]−1x,

uniformly on bounded intervals.
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Proof: Let x ∈ D(A). We define kn =
[

t
ϵn

]
. Observe that we can take n sufficiently large so that

0 < t
kn

< λ0, since

ϵn → 0⇒ t

ϵn
→∞⇒ kn →∞⇒

t

kn
→ 0.

Therefore, it makes sense to speak of Jkn
t

kn

x. Note that

∥Jkn
ϵn
x− S(t)x∥ ≤ ∥Jkn

ϵn
x− Jkn

t
kn

x∥+ ∥Jkn
t

kn

x− S(t)x∥. (5.9.284)

Since 0 ≤ t
ϵn
− kn < 1, it follows that 0 ≤ t − knϵn < ϵn, so knϵn → t when n → ∞. Moreover,

t− knϵn ≥ 0⇒ t
kn
≥ ϵn.

Thus, applying inequality (5.9.277) for n = m = kn, µ = ϵn and λ = t
kn

we have

∥Jkn
ϵn
x− Jkn

t
kn

x∥ ≤ e2|ω|(knϵn+t)
[
(knϵn − t)2 + knϵn( t

kn
− ϵn)

] 1
2

|Ax|

+ e2|ω|knϵn

[
t( t
kn
− ϵn) + (t− knϵn)2

] 1
2

|Ax| −→ 0, (5.9.285)

since knϵn → t, ϵn → 0 and t
kn
→ 0.

Moreover, applying Theorem 5.238, for n = kn, we have

∥Jkn
t

kn

x− S(t)x∥ −→ 0. (5.9.286)

Therefore, from (5.9.284), (5.9.285) and (5.9.286), we obtain

lim
n→∞

(I + ϵnA)−[ t
ϵn

]x = S(t)x, ∀ x ∈ D(A).

Now if x ∈ D(A), then for each ϵ > 0 there exists y ∈ D(A), such that ∥x− y∥ < ϵ.

Note that

∥Jkn
ϵn
x− Jkn

t
kn

x∥ ≤ ∥Jkn
ϵn
x− Jkn

ϵn
y∥+ ∥Jkn

ϵn
y − Jkn

t
kn

y∥+ ∥Jkn
t

kn

y − Jkn
t

kn

x∥

≤ (1− |ω|ϵn)−kn∥x− y∥+ ∥Jkn
ϵn
y − Jkn

t
kn

y∥+ (1− |ω| t
kn

)−kn∥x− y∥

≤ Cϵ+ ∥Jkn
ϵn
y − Jkn

t
kn

y∥.

Therefore,
∥Jkn

ϵn
x− Jkn

t
kn

x∥ −→ 0, (5.9.287)

for all x ∈ D(A).

Since for x ∈ D(A) we have

∥Jkn
ϵn
x− S(t)x∥ ≤ ∥Jkn

ϵn
x− Jkn

t
kn

x∥+ ∥Jkn
t

kn

x− S(t)x∥,

we obtain, by (5.9.287) and by Theorem 5.238, that
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S(t)x = lim
n→∞

(I + ϵnA)−[ t
ϵn

]x, ∀ x ∈ D(A)

proving the first equality.

The second equality is proved analogously by replacing kn with kn + 1. 2

Remark 5.242 More generally, if (ϵn) is a sequence of non-negative numbers and such that ϵn → 0,
when n→∞, (kn) a sequence of non-negative integers such that knϵn → t and A is an operator satisfying
the conditions of Theorem 5.238, then

S(t)x = lim
n→∞

(I + ϵnA)−knx, ∀ x ∈ D(A).

Proposition 5.243 Let x ∈ D(A) and 0 ≤ τ ≤ t. Assuming the hypotheses of Theorem 5.238 are
satisfied, we have

∥S(t)x− S(τ)x∥ ≤ eω+(t−τ)eωτ (t− τ)|Ax| (5.9.288)

where ω+ = max{ω, 0}.

Proof: Take x ∈ D(A) and 0 ≤ τ ≤ t. Since S ∈ Qω(D(A)) it follows that

∥S(t)x− S(τ)x∥ = ∥S(τ)S(t− τ)x− S(τ)x∥ ≤ eωτ∥S(t− τ)x− x∥ (5.9.289)

We have two cases to consider:

a) ω ≤ 0

In this case, we have, by the proof of item (iii) of Theorem 5.79, for n sufficiently large and s ≥ 0

∥Jn
s
n
x− x∥ ≤

n∑
i=1
∥Jn−i+1

s
n

− Jn−i
s
n
∥ ≤

n∑
i=1

(
1− s

n
ω
)−(n−i)

∥J s
n
x− x∥

≤
n∑

i=1

(
1− s

n
ω
)−(n−i) s

n

(
1− s

n
ω
)−1
|Ax|

=
n∑

i=1

(
1− s

n
ω
)−n+i−1 s

n
|Ax| (5.9.290)

Now, bearing in mind that 1− (s/n)ω > 1, since ω ≤ 0 and n is sufficiently large, and since −n+ i− 1 ≤
−i ≤ 0, ∀i such that 0 ≤ i ≤ n, it follows from (5.9.290) that

∥Jn
s
n
x− x∥ ≤

n∑
i=1

(
1− s

n
ω
)−i s

n
|Ax| ≤

n∑
i=1

s

n
|Ax| = n

s

n
|Ax| = s|Ax|

From this last inequality it follows, when n→∞, by Theorem 5.238

∥S(s)x− x∥ ≤ s|Ax|, ∀s ≥ 0

whence by (5.9.289) follows (5.9.288), since, in this case, ω+ = 0 and s = t− τ .

b) ω > 0

From item (iii) of Theorem 5.79 for n sufficiently large and s ≥ 0, noting that (s/n)ω < 1, we have

∥Jn
s
n
x− x∥ ≤ n

(
1− s

n
ω
)−n+1

∥J s
n
x− x∥ (5.9.291)
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and from item (ii) of the same theorem, we obtain

∥J s
n
x− x∥ ≤ s

n

(
1− s

n
ω
)−1
|Ax| (5.9.292)

From (5.9.291) and (5.9.292) it follows that

∥Jn
s
n
x− x∥ ≤ n

(
1− s

n
ω
)−n+1 s

n

(
1− s

n
ω
)−1
|Ax|

= s
(

1− s

n
ω
)−n

|Ax|

whence,
∥S(s)x− x∥ ≤ seωs|Ax|.

From there and from (5.9.289) follows (5.9.288), since ω+ = ω and writing s = t− τ . 2

Definition 5.244 The semigroup associated to A ∈ A(ω) by Theorem 5.238 will be called the
semigroup generated by −A and −A the exponential generator of S.

5.10 Abstract Cauchy Problem

Let X be a Banach space, A : X → X an operator and consider the following Abstract Cauchy
Problem

du

dt
+Au ∋ 0 (5.10.293)

u(0) = x (5.10.294)

Definition 5.245 A function u : [0,∞)→ X is called a strong solution of (5.10.293) if

i) u is continuous on [0,∞) and Lipschitz continuous on every compact subset of (0,∞);

ii) u is differentiable at almost every point of (0,∞);

iii) u(t) ∈ D(A) for almost every t ∈ (0,∞);

iv) −du
dt

(t) ∈ Au(t) for almost every t ∈ (0,∞).

If u is a strong solution of (5.10.293), then by i) and iii), u(t) ∈ D(A), for all t ∈ [0, T ].

Indeed, suppose by contradiction that, for some t0 ∈ (0, T ), we have u(t0) /∈ D(A). Then, there
exists r > 0 such that B(u(t0), r) ∩ D(A) = ∅. Since u is continuous, there exists δ > 0 such that
u(t0 − δ, t0 + δ) ⊂ B(u(t0), r), that is, u(t0 − δ, t0 + δ) ∩D(A) = ∅. Which contradicts iii). If t0 ∈ {0, T}
then t0 = lim tn with tn ∈ (0, T ), for each n ∈ N. Hence, u(tn) ∈ D(A). Since u(tn) → u(t0), we have
that u(t0) ∈ D(A).

In particular, if u satisfies (5.10.294), then x ∈ D(A).

Lemma 5.246 Let u be a function defined on an interval and taking values in a Banach space X.
Suppose that u has a weak derivative, u′(t) at the point t (i.e., that the derivative d

dt

〈
u(t), x∗〉 exists at

the point t and d

dt

〈
u(t), x∗〉 =

〈
u′(t), x∗〉 for each x∗ ∈ X ′) and that the function ∥u(t)∥ is differentiable

at the point t. Then,
∥u(t)∥ d

dt
∥u(t)∥ =

〈
u′(t), u∗〉 ∀u∗ ∈ F (u(t)).

- 388 -



5.10 Abstract Cauchy Problem

Proof: Note that F (u(t)) = {u∗ ∈ X ′, ⟨u∗, u(t)⟩ = ∥u(t)∥2 = ∥u∗∥2}. For all u∗ ∈ F (u(t)), we have〈
u(t+ h), u∗〉− 〈u(t), u∗〉 ≤ ∥u(t+ h)∥∥u∗∥ − ∥u(t)∥2 =

= ∥u(t+ h)∥∥u(t)∥ − ∥u(t)∥2 = (∥u(t+ h)∥ − ∥u(t)∥)∥u(t)∥.

Thus, if h > 0 we have, dividing by h and passing to the limit as h→ 0,

〈
u′(t), x∗〉 ≤ ∥u(t)∥ d

dt
∥u(t)∥

and, if h < 0, 〈
u′(t), x∗〉 ≥ ∥u(t)∥ d

dt
∥u(t)∥

whence we conclude the desired result. 2

Proposition 5.247 Let A : X → X, A ∈ A(ω) and u and v be strong solutions of (5.10.293) with
u(0) = x and v(0) = y. Then

∥u(t)− v(t)∥ ≤ eωt∥x− y∥; ∀t ∈ [0,∞). (5.10.295)

Proof: By definition, we have

−du
dt
∈ Au and − dv

dt
∈ Av almost everywhere in (0,∞),

whence, by the accretivity of A+ ωI, and from what was observed above,(
u(t),−du

dt
(t) + ωu(t)

)
∈ A+ ωI and

(
v(t),−dv

dt
(t) + ωv(t)

)
∈ A+ ωI,

by corollary 5.69, there exists u∗ ∈ F (u(t)− v(t)) such that〈
−du
dt

(t) + ωu(t) + dv

dt
(t)− ωv(t), u∗

〉
≥ 0 a.e. in (0,∞).

Thus, it follows 〈
du

dt
(t)− dv

dt
(t), u∗

〉
≤ ω

〈
u(t)− v(t), u∗〉

≤ ω∥u(t)− v(t)∥∥u∗∥
= ω∥u(t)− v(t)∥2 a.e. in (0,∞),

that is, 〈
d(u− v)

dt
(t), u∗

〉
≤ ω∥u(t)− v(t)∥2 a.e. in (0,∞) (5.10.296)

and since by hypothesis u and v are Lipschitz continuous on each compact subset of (0,∞), it follows that
t 7→ u(t)− v(t) is Lipschitz continuous on each compact subset of (0,∞) and consequently is absolutely
continuous. Applying Lemma 5.246 on the left side of inequality (5.10.296) we obtain

∥u(t)− v(t)∥ d
dt
∥u(t)− v(t)∥ ≤ ω∥u(t)− v(t)∥2.

If ∥u(t)− v(t)∥ ≠ 0, it follows that

d

dt
∥u(t)− v(t)∥ ≤ ω∥u(t)− v(t)∥ a.e. in (0,∞). (5.10.297)
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Multiplying (5.10.297) by e−ωt, we obtain

e−ωt d

dt
∥u(t)− v(t)∥ − ωe−ωt∥u(t)− v(t)∥ ≤ 0 a.e. in (0,∞)

⇒ d

dt
(e−ωt∥u(t)− v(t)∥) ≤ 0 a.e. in (0,∞).

Integrating from 0 to t, since e−ωt∥u(t)− v(t)∥ is absolutely continuous, we have

e−ωt∥u(t)− v(t)∥ − e−ω0∥u(0)− v(0)∥ ≤ 0, ∀t ∈ [0,∞).

Therefore
∥u(t)− v(t)∥ ≤ eωt∥x− y∥, ∀t ∈ [0,∞).

2

Corollary 5.248 Let A ∈ A(ω). Then, (5.10.293) has at most one strong solution satisfying (5.10.294).

Proof: Immediate consequence of Proposition 5.247 2

Lemma 5.249 Let A ∈ A(ω), u be a strong solution of (5.10.293) and h > 0. Then the function

φ(t) = e−ωt∥u(t+ h)− u(t)∥

is monotone.

Proof: Since u(t) is a strong solution of (5.10.293) then v(t) := u(t+ h) also satisfies each of the items
of Definition 5.245 and therefore v(t) is a strong solution of (5.10.293) with initial value v(0) = u(h).
Proceeding analogously to proposition 5.247, using lemma 5.246, we obtain

d

dt
∥v(t)− u(t)∥ ≤ ω∥v(t)− u(t)∥.

Multiplying by e−ωt it follows that

d

dt

[
e−ωt∥v(t)− u(t)∥

]
≤ 0 a.e. in [0,∞),

and from the definition of v and φ we have

d

dt
[φ(t)] = d

dt

[
e−ωt∥u(t+ h)− u(t)∥

]
≤ 0 a.e. in [0,∞).

Since φ(t) = e−ωt∥u(t+ h)− u(t)∥ is absolutely continuous, we can integrate from t1 to t2, t1 ≤ t2
and obtain

φ(t2)− φ(t1) =
∫ t2

t1

d

dt
φ(t) dt ≤ 0,

that is,
φ(t2) ≤ φ(t1),

i.e., φ is monotonically decreasing. 2

Theorem 5.250 Let A ∈ A(ω), u be a strong solution of the abstract Cauchy problem (5.10.293)-
(5.10.294). Then:

(i) ∥u(t) − u(s)∥ ≤ eω+(t−s)(t − s) |Au(s)|, for almost every t ∈ (0,∞) and every s such that u(s) ∈
D(A), 0 ≤ s ≤ t.
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(ii)
∥∥∥∥ ddtu(t)

∥∥∥∥ = |Au(t)| almost everywhere in (0,∞).

(iii) The function e−ωt |Au(t)| is monotonically decreasing.

Proof: Let Ω be the set of points t ∈ (0,∞) such that u(t) ∈ D(A), u is differentiable at the point t and
d

dt
u(t) + Au(t) ∋ 0. Since u is a strong solution of (5.10.293)-(5.10.294), it follows that (0,∞) \ Ω has

measure zero.

(i) Let t ∈ Ω. Then − d

dt
u(t) ∈ Au(t). Let us fix s such that u(s) ∈ D(A), 0 ≤ s ≤ t and take

y ∈ Au(s). Since A+ ωI is accretive, there exists u∗ ∈ F (u(t)− u(s)) such that〈
u∗,− d

dt
u(t) + ωu(t)− y − ωu(s)

〉
≥ 0.

From this it follows that〈
u∗,

d

dt
u(t)

〉
≤ ω ⟨u∗, u(t)− u(s)⟩ − ⟨u∗, y⟩

≤ ω∥u(t)− u(s)∥2 + ∥u(t)− u(s)∥ ∥y∥.

Bearing in mind that u(s) does not depend on t, from Lemma 5.246 we have

∥u(t)− u(s)∥ d
dt
∥u(t)− u(s)∥ =

〈
u∗,

d

dt
(u(t)− u(s))

〉
=

〈
u∗,

d

dt
u(t)

〉
≤ ω∥u(t)− u(s)∥2 + ∥u(t)− u(s)∥ ∥y∥,

that is,

d

dt
∥u(t)− u(s)∥ ≤ ∥y∥+ ω∥u(t)− u(s)∥ ≤ ∥y∥+ ω+∥u(t)− u(s)∥, (5.10.298)

where ω+ = max {0, ω}. Therefore

d

dt
∥u(t)− u(s)∥ ≤ ∥y∥+ ω+∥u(t)− u(s)∥.

Multiplying by e−ω+(t−s), we have

d

dt

[
e−ω+(t−s)∥u(t)− u(s)∥

]
≤ e−ω+(t−s)∥y∥. (5.10.299)

Let us consider two cases:

Case I (ω+ = 0): From (5.10.298) we have that

d

dt
∥u(t)− u(s)∥ ≤ ∥y∥, for all y ∈ A(u(s)),

and integrating from s to t,
∥u(t)− u(s)∥ ≤ (t− s)∥y∥.

Taking the infimum over y ∈ Au(s), we have

∥u(t)− u(s)∥ ≤ (t− s) |Au(s)| .
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Case II (ω+ > 0): Integrating (5.10.299) from s to t, we have∫ t

s

d

dτ

[
e−ω+(τ−s)∥u(τ)− u(s)∥

]
dτ ≤

∫ t

s

e−ω+(τ−s)∥y∥ dτ.

And since e−ω+(τ−s)∥u(τ)− u(s)∥ is absolutely continuous in τ , it follows that

e−ω+(t−s)∥u(t)− u(s)∥ ≤ eω+s∥y∥
∫ t

s

e−ω+τ dτ

= eω+s

−ω+ ∥y∥
[
e−ω+t − e−ω+s

]
= 1− e−ω+(t−s)

ω+ ∥y∥.

Whence,

∥u(t)− u(s)∥ ≤ eω+(t−s) − 1
ω+ ∥y∥.

Considering that ex − 1 ≤ xex for all x ≥ 0, we obtain

∥u(t)− u(s)∥ ≤ (t− s)eω+(t−s)∥y∥.

Since this relation holds for all y ∈ Au(s), we can take the infimum over y ∈ Au(s) and
conclude that

∥u(t)− u(s)∥ ≤ (t− s)eω+(t−s) |Au(s)| ,

for all t ∈ Ω and s such that u(s) ∈ D(A) and 0 ≤ s ≤ t.

(ii) Let s, t ∈ Ω, 0 ≤ t ≤ s. By i) we have:∥∥∥∥ ddtu(t)
∥∥∥∥ =

∥∥∥∥lim
s→t

u(s)− u(t)
s− t

∥∥∥∥
= lim

s→t

∥u(s)− u(t)∥
s− t

i)
≤ lim

s→t

eω+(s−t)(s− t) |Au(s)|
s− t

= |Au(t)| .

On the other hand, since − d

dt
u(t) ∈ Au(t), it follows that |Au(t)| ≤

∥∥∥∥ ddtu(t)
∥∥∥∥ and therefore,

|Au(t)| =
∥∥∥∥ ddtu(t)

∥∥∥∥ .
(iii) By Lemma 5.249, for h > 0 and 0 ≤ s ≤ t, we have

e−ωt∥u(t+ h)− u(t)∥ = φ(t) ≤ φ(s) = e−ωs∥u(s+ h)− u(s)∥. (5.10.300)

Assuming s, t ∈ Ω, then

u(s), u(t) ∈ D(A), − d

dt
u(t) ∈ Au(t),− d

ds
u(s) ∈ Au(s).

Dividing (5.10.300) by h and taking the limit as h −→ 0, we obtain

e−ωt

∥∥∥∥ ddtu(t)
∥∥∥∥ ≤ e−ωs

∥∥∥∥ ddsu(s)
∥∥∥∥ .
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From item ii) it follows that

e−ωt |Au(t)| ≤ e−ωs |Au(s)| , 0 ≤ s ≤ t,

that is, the function e−ωt |Au(t)| is monotonically decreasing.

2

Corollary 5.251 Let X be a reflexive, strictly convex and smooth space and A+ωI be an accretive and
maximal operator in C, D(A) ⊂ C. If u is a strong solution of (5.10.293), then

◦
A u(t) has a unique

element and
d

dt
u(t)+

◦
A u(t) = 0 a.e. in (0,∞).

Proof: Since X is smooth, A ∈ A(ω), D(A) ⊂ C and A+ωI is maximal in C then, by Proposition 5.94,
Au(t) is convex and closed for all t such that u(t) ∈ D(A).
Since X is reflexive and strictly convex, Au(t) ⊂ X, Au(t) ̸= ∅ for each t such that u(t) ∈ D(A), and
Au(t) is convex and closed, by Theorem 5.102, we have that (Au(t))◦ has a unique element.
By item ii) of Theorem 5.250 we know that |Au(t)| =

∥∥ d
dtu(t)

∥∥. It follows that − d
dtu(t) is the unique

element of (Au(t))◦, and thus, from definition 5.104 we have

− d

dt
u(t) = (Au(t))◦ =

◦
A u(t),

or even,
d

dt
u(t)+

◦
A u(t) = 0 a.e. in (0,∞).

2

Definition 5.252 Let π be the partition 0 = t0 < t1 < · · · < tN = T of [0, T ]. The scheme

xi − xi−1

ti − ti−1
+Axi ∋ 0, i = 1, · · · , N, (5.10.301)

is called discretization of the equation (5.10.293).

If max
1≤i≤N

{ti − ti−1} ≤ ε, (5.10.301) will be called ε-discretization of (5.10.293) on [0, T ].

If the sequence x0, x1, · · · , xN satisfies (5.10.301), the function uπ, defined by

uπ(0) = x0 and uπ(t) = xi if t ∈ (ti−1, ti],

is called a solution of (5.10.293) on [0, T ] with initial value x0.

If (5.10.301) is an ε-discretization, uπ will be called ε-approximate solution of (5.10.293) with initial
value x0.

If uπ is an ε-approximate solution of (5.10.293) on [0, T ] with initial value x0 and ∥x − x0∥ ≤ ε, uπ

will be called ε-approximate solution of the problem (5.10.293)-(5.10.294) on [0, T ].

Proposition 5.253 Let A be an operator under the conditions of Theorem 5.238, that is,

A ∈ A(ω) such that D(A) ⊂ Im(I + λA), 0 < λ < λ0 with λ0|ω| < 1.

Then, for each partition 0 = t0 < t1 < · · · < tN = T of [0, T ] such that ti − ti−1 < λ0 and for each
x0 ∈ D(A), the discretization (5.10.301) admits a unique solution with initial value x0.
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Proof: For i = 1, the discretization (5.10.301) with initial value x0 is equivalent to

0 ∈ x1 − x0

t1
+Ax1

and therefore,
0 ∈ x1 − x0 + t1Ax1,

or equivalently
x0 ∈ x1 + t1Ax1.

That is,
x0 ∈ (I + t1A)x1. (5.10.302)

Since A ∈ A(ω) and 0 < t1 < λ0, we have that 0 < t1|ω| < λ0|ω| < 1, and by Theorem 5.79, Jt1 is
single-valued. Moreover, from (5.10.302) it follows that

Jt1x0 = x1, x0 ∈ D(A) ⊂ Im(I + t1A) = Dt1 , (5.10.303)

that is, there exists a unique x1 ∈ Im(Jt1) = D(A) such that

x0 ∈ (I + t1A)x1 and (I + t1A)−1x0 = Jt1x0 = x1.

By recurrence, it is seen that, for each i = 1, 2, . . . , N there exists a unique xi ∈ D(A) that satisfies
(5.10.301), or equivalently

xi = (I + (ti − ti−1)A)−1
xi−1, 0 < ti − ti−1 < λ0, (5.10.304)

or even,
xi = (I + (ti − ti−1)A)−1 (I + (ti−1 − ti−2)A)−1 · · · (I + t1A)−1

x0 (5.10.305)

and thus the sequence {xi}, i = 1, 2, . . . , N defines a solution for (5.10.301) with initial value x0.

For uniqueness, suppose there exists another solution of (5.10.301) with initial value x0 given by a
sequence {yi}. Then y1 satisfies

0 ∈ y1 − x0

t1
+Ay1

and, analogously to what was done for x1, we have Jt1x0 = y1. Considering (5.10.303) and the fact that
Jt1 is single-valued, it follows that x1 = y1. Recursively we have that xi = yi for all i = 1, 2, . . . , N , thus
guaranteeing the uniqueness of the solution. 2

Proposition 5.254 Let A ∈ A(ω) such that D(A) ⊆ Im(I + λA), for 0 < λ < λ0, λ0|ω| < 1. If uεN
is

the solution of the εN -discretization (5.10.301) in the form

0 = t0 < t1 = T

N
< · · · < tN−1 = (N − 1)

N
T < tN = T,

with initial value x0 ∈ D(A), then
lim

N→∞
uεN

(t) = S(t)x0, (5.10.306)

uniformly on [0, T ], where S(t) is the semigroup generated by −A.

Proof: Let N ∈ N such that εN = T

N
< λ0. According to Proposition 5.253, the sequence

{
x0
xi = (I + εNA)−ix0
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defines the unique solution of the discretization

xi − xi−1

εN
+Axi ∋ 0, i = 1, . . . , N.

If ti−1 < t ≤ ti, then T (i− 1)
N

< t ≤ Ti

N
and consequently i− 1 < t

εN
≤ i. Thus by (5.10.305),

uεN
(t) = xi = (I + εNA)−ix0 =


(I + εNA)−

[
t

εN

]
−1
, if (i− 1)T

N
< t <

iT

N

(I + εNA)−
[

t
εN

]
, if t = iT

N

In both cases, by Theorem 5.241, we have

lim
N→∞

uεN
(t) = S(t)x0.

2

Theorem 5.255 Let A ∈ A(ω) such that D(A) ⊆ Im(I + λA), for 0 < λ < λ0, λ0|ω| < 1. Take
x ∈ D(A) and let u be a strong solution of (5.10.293) with u(0) = x. Then u(t) = S(t)x, t ∈ [0,∞),
where S is the semigroup generated by −A.

Proof: Suppose initially that x ∈ D(A). Consider s > 0 and N ∈ N such that ε = s

N
≤ λ0. Let us

extend the strong solution u to negative values so that it remains continuous: u(t) = x, for t < 0. We
can then define the function

gε(t) = u(t)− u(t− ε)
ε

− du

dt
(t),

so that gε is defined almost everywhere in (0, s).

Since −du
dt

(t) ∈ Au(t) almost everywhere in (0, s), or even,
(
u(t),−du

dt
(t)
)
∈ A, it follows that

(
u(t),−εdu

dt
(t)
)
∈ εA.

From the definition of gε, we have (u(t), εgε(t) + u(t− ε)− u(t)) ∈ εA whence

(u(t), εgε(t) + u(t− ε)) ∈ (I + εA).

Since ε ≤ λ0, we have that u(t) = (I + εA)−1 (εgε(t) + u(t− ε)) almost everywhere in (0, s). Now
let us set uε(t) = x for t ≤ 0.

By (5.10.304),
uε(t) = (I + εA)−1uε(t− ε), t ≥ 0.

Thus,

∥uε(t)− u(t)∥ = ∥Jεuε(t− ε)− Jε(u(t− ε) + εgε(t))∥
≤ (1− εω)−1∥uε(t− ε)− u(t− ε)− εgε(t)∥
≤ (1− ε|ω|)−1 (∥uε(t− ε)− u(t− ε)∥+ ε∥gε(t)∥) ,

almost everywhere in (0, s).
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Therefore, ∫ s

0
∥uε(t)− u(t)∥dt ≤ (1− ε|ω|)−1

∫ s

0
∥uε(t− ε)− u(t− ε)∥dt

+ ε(1− ε|ω|)−1
∫ s

0
∥gε(t)∥dt,

whence

1
ε

∫ s

s−ε

∥uε(t)− u(t)∥dt ≤ (1− ε|ω|)−1

ε

∫ s

0
∥uε(t− ε)− u(t− ε)∥dt

−1
ε

∫ s−ε

0
∥uε(t)− u(t)∥dt+ (1− ε|ω|)−1

∫ s

0
∥gε(t)∥dt

= (1− ε|ω|)−1 − 1
ε

∫ s−ε

0
∥uε(t)− u(t)∥dt+ (1− ε|ω|)−1

∫ s

0
∥gε(t)∥dt.

(5.10.307)

If ε < t < s, from Theorem 5.250, items (i) and (iii),

∥u(t)− u(t− ε)∥ ≤ eω+εε|Au(t− ε)|
≤ eω+εεeω(t−ε)|Ax|
≤ eω+ε+ω(t−ε)ε|Ax|
≤ eω+sε|Ax|,

almost everywhere in (ε, s).

If 0 < t < ε,
∥u(t)− u(t− ε)∥ = ∥u(t)− x∥ ≤ eω+tt|Ax| ≤ eω+sε|Ax|,

almost everywhere in (0, ε).

Thus,
∥u(t)− u(t− ε)∥ ≤ eω+sε|Ax| almost everywhere in (0, s).

Moreover, ∥∥∥∥dudt (t)
∥∥∥∥ = |Au(t)| ≤ eωt|Ax| ≤ eω+s|Ax|

almost everywhere in (0, T ).

Consequently,

∥gε(t)∥ ≤ ε−1∥u(t)− u(t− ε)∥+
∥∥∥∥dudt (t)

∥∥∥∥
≤ 2eω+s|Ax|.

Since gε(t)→ 0 almost everywhere in (0, s), as u is a strong solution of (5.10.293), by the dominated
convergence theorem

lim
ε→0

∫ s

0
∥gε(t)∥dt = 0. (5.10.308)

We have that
lim
ε→0

(1− ε|ω|)−1 − 1
ε

= |ω| (5.10.309)
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and, from Proposition 5.254,

lim
ε→0

∫ s−ε

0
∥uε(t)− u(t)∥dt =

∫ s

0
∥S(t)x− u(t)∥dt. (5.10.310)

Combining (5.10.308), (5.10.309) and (5.10.310), we obtain

lim sup
ε→0

1
ε

∫ s

s−ε

∥uε(t)− u(t)∥dt ≤ |ω|
∫ s

0
∥S(t)x− u(t)∥dt. (5.10.311)

Let us calculate the limit on the left side of (5.10.311):∣∣∣∣1ε
∫ s

s−ε

∥uε(t)− u(t)∥dt− ∥S(s)x− u(s)∥
∣∣∣∣

=
∣∣∣∣1ε
∫ s

s−ε

∥uε(t)− u(t)∥dt− 1
ε

∫ s

s−ε

∥S(s)x− u(s)∥dt
∣∣∣∣

≤ 1
ε

∫ s

s−ε

∥uε(t)− S(s)x∥dt+ 1
ε

∫ s

s−ε

∥u(t)− u(s)∥dt.

Let s1 ∈ (s− ε, s] be a Lebesgue point of both u(t) and S(t)x. Then∣∣∣∣1ε
∫ s

s−ε

∥uε(t)− u(t)∥dt− ∥S(s)x− u(s)∥
∣∣∣∣

≤ 1
ε

∫ s

s−ε

∥uε(t)− S(s1)x∥dt+ 1
ε

∫ s

s−ε

∥S(s1)x− S(s)x∥dt

+1
ε

∫ s

s−ε

∥u(t)− u(s1)∥dt+ 1
ε

∫ s

s−ε

∥u(s1)− u(s)∥dt

≤ 1
ε

∫ s

s−ε

∥uε(t)− S(t)x∥dt+ 1
ε

∫ s

s−ε

∥S(t)x− S(s)x∥dt

+ε∥x∥+
∫ s

s−ε

∥u(t)− u(s1)∥dt+ ε −→ 0, when ε→ 0,

since uε(t)→ S(t)x uniformly on bounded intervals. Thus, from (5.10.311), it follows that

∥S(s)x− u(s)∥ ≤ |ω|
∫ s

0
∥S(t)x− u(t)∥dt.

Consider φ(t) = ∥S(t)x− u(t)∥. Since s > 0 is arbitrary, we have

φ(t) ≤ |ω|
∫ t

0
φ(τ)dτ.

By Gronwall’s lemma, φ(t) ≡ 0.

Let now x ∈ D(A). Since u is a strong solution, we have that u(t) ∈ D(A) almost everywhere.
Choose a sequence {εn} converging to zero, such that u(εn) ∈ D(A) for all n. The function

vn(t) := un(t+ εn)
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is a strong solution of the equation 
dvn

dt
(t) +Avn(t) ∋ 0

vn(0) = u(εn).

By what we have already demonstrated, S(t)u(εn) = vn(t). Thus, in the limit S(t)x = u(t). 2

Our interest now is to prove the converse of the previous theorem. For this, we will need the
following lemma.

Lemma 5.256 Let A ∈ A(ω) such that D(A) ⊂ Im(I + λA), for 0 < λ < λ0, λ0|ω| < 1 and S the
semigroup generated by −A. If x ∈ D(A) and (x0, y0) ∈ A then

sup
ξ′∈F (x−x0)

lim
t→0

sup
〈
S(t)x− x

t
+ ω(x0 − x), ξ′

〉
≤ ⟨y0, x0 − x⟩s

Proof: Let us denote by
[

t
λ

]
the integer part of t

λ , t ≥ 0 and λ > 0. By (ii) and (iii) of Theorem 5.79,
for λ sufficiently small we have that

∥J [ t
λ ]

λ x0 − x0∥ ≤
[
t

λ

]
(1− λ|ω|)−[ t

λ ]+1∥Jλx0 − x0∥

≤
[
t

λ

]
(1− λ|ω|)−[ t

λ ]+1λ(1− λω)−1|Ax0|

≤ t(1− λ|ω|)−[ t
λ ]|Ax0|

By hypothesis, x ∈ D(A) ⊂ Dλ, 0 < λ < λ0. According to item (i) of Theorem 5.79, using the
previous inequality we have, for λ sufficiently small, that

∥J [ t
λ ]

λ x− x0∥ ≤ ∥J [ t
λ ]

λ x− J [ t
λ ]

λ x0∥+ ∥J [ t
λ ]

λ x0 − x0∥

≤ (1− λω)−[ t
λ ]∥x− x0∥+ t(1− λ|ω|)−[ t

λ ]|Ax0| (5.10.312)

For each λ > 0 and k ∈ N, define

yλ,k = 1
λ

(Jk−1
λ x− Jk

λx).

We have,
yλ,k = 1

λ
(I − Jλ)(Jk−1

λ x) = AλJ
k−1
λ x ∈ AJk

λx,

that is, (Jk
λx,AλJ

k−1
λ x) ∈ A.

Since A ∈ A(ω), it follows by Proposition 5.77 that there exists η′ ∈ F (x0 − Jk
λx) such that

⟨η′, y0 − yλ,k⟩+ ω⟨η′, x0 − Jk
λx⟩ ≥ 0,

⟨η′, y0 − yλ,k⟩+ ω∥x0 − Jk
λx∥2 ≥ 0,

thus
⟨η′, yλ,k⟩ ≤ ⟨η′, y0⟩+ ω∥x0 − Jk

λx∥2. (5.10.313)
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But,

⟨η′, yλ,k⟩ = λ−1⟨η′, Jk−1
λ x− Jk

λx⟩
= λ−1⟨η′, (x0 − Jk

λx)− (x0 − Jk−1
λ x⟩

≥ λ−1 (∥x0 − Jk
λx∥2 − ∥x0 − Jk−1

λ x∥∥x0 − Jk
λx∥

)
≥ (2λ)−1(∥x0 − Jk

λx∥2 − ∥x0 − Jk−1
λ x∥2)

Therefore, by (5.10.313) it follows that

∥x0 − Jk
λx∥2 − ∥x0 − Jk−1

λ x∥2 ≤ 2λ⟨y0, η
′⟩+ 2λω∥x0 − Jk

λx∥2

≤ 2λ⟨y0, x0 − Jk
λx⟩s + 2λω∥x0 − Jk

λ .x∥2.

For τ ∈ [kλ, (k + 1)λ) we have that k ≤ τ
λ < k + 1, so[ τ

λ

]
= k ⇒ J

[ τ
λ ]

λ x = Jk
λx.

Thus by the previous inequality we obtain

∥x0 − Jk
λx∥2 − ∥x0 − Jk−1

λ x∥2 ≤ 2
∫ (k+1)λ

λk

⟨y0, x0 − Jk
λx⟩sdτ + 2λω∥x0 − Jk

λx∥2

= 2
∫ (k+1)λ

λk

⟨y0, x0 − J
[ τ

λ ]
λ x⟩sdτ + 2λω∥x0 − Jk

λx∥2

(5.10.314)

Let t ≥ λ. Summing (5.10.314) from k = 1 to k =
[

t
λ

]
, it follows that

∥x0 − J
[ t

λ ]
λ x∥2 − ∥x0 − x∥2 ≤ 2

∫ ([ t
λ ]+1)λ

λ

⟨y0, x0 − J
[ τ

λ ]
λ x⟩sdτ + 2λω

[ t
λ ]∑

k=1
∥x0 − Jk

λx∥2 (5.10.315)

We have that ⟨·, ·⟩s is upper semicontinuous (u.s.c.). So defining

f(λ) =
{
⟨y0, x0 − J

[ τ
λ ]

λ x⟩s, if λ > 0
⟨y0, x0 − S(τ)x⟩s, if λ = 0

and,

g(λ) =
{
⟨y0,−x0 + J

[ τ
λ ]

λ x⟩s, if λ > 0
⟨y0,−x0 + S(τ)x⟩s, if λ = 0

it follows that f and g are u.s.c. in [0,∞).

Observe that −f(λ) ≤ g(λ), for λ > 0 and due to the u.s.c. of f and g at λ = 0, we have that for
all ϵ > 0, there exists Vϵ(0) such that

f(λ) < f(0) + ϵ and g(λ) < g(0) + ϵ,

for all λ ∈ Vϵ(0).

Thus setting ϵ = 1, it follows for λ sufficiently small that

f(λ) < |f(0)|+ 1 and − f(λ) ≤ g(λ) < |g(0)|+ 1.
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Note also that
|f(0)| ≤ ∥y0∥∥x0 − S(τ)x∥ and |g(0)| ≤ ∥y0∥∥x0 − S(τ)x∥.

Therefore
|f(λ)| ≤ ∥y0∥∥x0 − S(τ)x∥+ 1 (5.10.316)

Now letting λ→ 0 in (5.10.312) we obtain

∥S(t)x− x0∥ ≤ ∥x− x0∥eωt + t|Ax0|e|ω|t, (5.10.317)

since
lim
λ→0

(1− λω)−[ t
λ ] = lim

λ→0
(1− λ

t
(tω))−[ t

λ ] = etω,

and

lim
λ→0

(1− λ|ω|)−[ t
λ ] = et|ω|,

We conclude then by (5.10.316) and (5.10.317) (we used (5.10.317) with t = τ), that

|⟨y0, x0 − J
[ τ

λ ]
λ x⟩s| ≤ ∥y0∥∥x− x0∥eωτ + ∥y0∥τe|ω|τ |Ax0|+ 1 := h(τ) ∈ L1(0, 2t).

Note that the integral appearing in (5.10.315) can be written as

∫ ([ t
λ ]+1)λ

λ

⟨y0, x0 − J
[ τ

λ ]
λ x⟩sdτ =

∫ 2t

0
⟨y0, x0 − J

[ τ
λ ]

λ x⟩sχλ(τ)dτ

where
χλ(τ) =

{
1, if τ ∈ [λ, (

[
t
λ

]
+ 1)λ]

0, if τ ∈ [0, 2t]\[λ, (
[

t
λ

]
+ 1)λ]

Thus applying the Dominated Convergence Theorem (replacing the hypothesis of convergence almost
everywhere by lim sup), we obtain

lim
λ→0

sup
∫ ([ t

λ ]+1)λ

λ

⟨y0, x0 − J
[ τ

λ ]
λ x⟩sdτ = lim

λ→0
sup

∫ 2t

0
⟨y0, x0 − J

[ τ
λ ]

λ x⟩sχλ(τ)dτ

≤
∫ 2t

0
⟨y0, x0 − S(τ)x⟩sχ[0,t](τ)dτ =

∫ t

0
⟨y0, x0 − S(τ)x⟩sdτ

Therefore by (5.10.315) we have, taking the lim sup on both sides, that

∥x0 − S(t)x∥2 − ∥x− x0∥2 ≤ 2
∫ t

0
⟨y0, x0 − S(τ)x⟩sdτ + I, (5.10.318)

where

I = lim
λ→0

sup 2λω
[ t

λ ]∑
k=1
∥x0 − Jk

λx∥2

Since our interest is to let λ→ 0 then we can consider n ∈ N such that

t

n+ 1 < λ ≤ t

n
⇒
[
t

λ

]
= n.
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Thus using (5.10.312) it follows that

2λω
[ t

λ ]∑
k=1
∥x0 − Jk

λx∥2 ≤ 2ω t
n

n∑
k=1
∥x0 − Jk

λx∥2

≤ 2ω t
n

n∑
k=1

[(
1− t

n
ω

)−k

∥x− x0∥+ tk

n

(
1− t

n
|ω|
)−k

|Ax0|

]2

(5.10.319)

Observe now that setting

φn(τ) =
[(

1− t

n
ω

)−[ τn
t ]
∥x− x0∥+ τ

(
1− t

n
|ω|
)−[ τn

t ]
|Ax0|

]2

we have

lim
n→∞

φn(τ) =
[
eωτ∥x− x0∥+ τe|ω|τ |Ax0|

]2
:= φ(τ)

uniformly on [0, t].

Next observe that the Riemann sum of φn relative to the decomposition of (0, t) into n equal parts
is given by

Sφn
=

n∑
k=1

φ(τk) t
n
,

for some τk ∈ [ tk
n, ,

t(k+1)
n ].

Thus for each τk = tk
n , it follows by (5.10.319) and from the definition of φn that

2λω
n∑

k=1
∥x0 − Jk

λx∥2 ≤ 2ωSφn
(5.10.320)

Since φn → φ uniformly on [0, t] we have that

∥Sφn
−
∫ t

0
φdτ∥ ≤ ∥Sφn

− Sφ∥+ ∥Sφ −
∫ t

0
φdτ∥

≤ t

n

n∑
k=1
∥φn(τk)− φ(τk)∥+ ∥Sφ −

∫ t

0
φdτ∥

≤ t

n
sup
[0,t]
∥φn(τ)− φ(τ)∥n+ ∥Sφ −

∫ t

0
φdτ∥ → 0 (5.10.321)

when n→∞.

Thus, by (5.10.320) we obtain

I ≤ lim
n→∞

sup 2λω
n∑

k=1
∥x0 − Jk

λx∥2 ≤ lim
n→∞

2ωSφn

= 2ω
∫ t

0
φ(τ)dτ = 2ω

∫ t

0

[
eωτ∥x− x0∥+ τe|ω|τ |Ax0|

]2
dτ

Consider now, ξ′ ∈ F (x− x0). We have then
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2⟨S(t)x− x, ξ′⟩ = 2⟨S(t)x− x0, ξ
′⟩+ 2⟨x0 − x, ξ′⟩ ≤ 2∥x0 − S(t)x∥∥x− x0∥ − 2∥x− x0∥2

≤ ∥x0 − S(t)x∥2 − ∥x− x0∥2 ≤ 2
∫ t

0
⟨y0, x0 − S(τ)x⟩sdτ + I (5.10.322)

But, ⟨y0, x0 − S(·)x⟩s : [0,∞)→ R is u.s.c. Then for all ϵ > 0, there exists δ > 0 such that

⟨y0, x0 − S(τ)x⟩s ≤ ⟨y0, x0 − x⟩s + ϵ, (5.10.323)

for all τ ∈ [0, δ), and therefore if t ∈ (0, δ), we have according to (5.10.322) and (5.10.323) that〈
S(t)x− x

t
, ξ′
〉
≤ 1

t

∫ t

0
⟨y0, x0 − S(τ)x⟩sdτ + I

2t

≤ ⟨y0, x0 − x⟩s + ϵ+ I

2t . (5.10.324)

Since I
2t ≤

ω
t

∫ t

0
[
eωτ∥x− x0∥+ τe|ω|τ |Ax0|

]2
dτ, we obtain according to the Mean Value Theorem

that
lim
t→0

sup I

2t ≤ ω∥x− x0∥2 = ω⟨x− x0, ξ
′⟩.

Therefore taking lim
t→0

sup on both sides of (5.10.324) we obtain

lim
t→0

sup
〈
S(t)x− x

t
, ξ′
〉
≤ ⟨y0, x0 − x⟩s + ω⟨x− x0, ξ

′⟩, (5.10.325)

or even,

lim
t→0

sup
〈
S(t)x− x

t
+ ω(x0 − x), ξ′

〉
≤ ⟨y0, x0 − x⟩s, ∀ ξ′ ∈ F (x− x0). (5.10.326)

Proving the desired result. 2

Theorem 5.257 Let A ∈ A(ω), D(A) ⊂ Im(I +λA), for 0 < λ < λ0, λ0|ω| < 1, A be a closed operator,
S ∈ Qω(D(A)) the semigroup generated by −A, z ∈ D(A) and S(t)z differentiable almost everywhere in
(0,∞). Then S(t)z is a strong solution of (5.10.293)-(5.10.294).

Proof: Let z ∈ D(A) and t0 > 0 such that d
dtS(t)z exists at the point t = t0. We can write

S(t0)z − S(t0 − h)z =
(
d

dt
S(t0)z

)
h+ α(h), 0 < h < t0, (5.10.327)

where lim
h→0

∥α(h)∥
h = 0.

Since S(t0 − h)z ∈ D(A) and by hypothesis D(A) ⊂ Im(I + λA), 0 < λ < λ0, it follows that if
0 < h < λ0, then

S(t0 − h) ∈ Im(I + hA),

that is, there exists (xh, yh) ∈ A such that

S(t0 − h)z = xh + hyh.
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Thus, from (5.10.327) it follows that

S(t0)z − xh =
(
d

dt
S(t0)z + yh

)
h+ α(h), 0 < h < λ0. (5.10.328)

Setting (x0, y0) = (xh, yh) ∈ A and S(t0)z ∈ D(A) in Lemma 5.256 it follows that

sup
ξ′∈F (S(t0)z−xh)

lim
t→0

sup
〈
S(t+ t0)z − S(t0)z

t
+ ω(xh − S(t0)z), ξ′

〉
≤ ⟨yh, xh − S(t0)z⟩s (5.10.329)

Since by Proposition 4.4, F (xh − S(t0)z) is compact in the weak-∗ topology, it follows that there
exists η′ ∈ F (xh − S(t0)z) such that

sup
ξ′∈F (S(t0)z−xh)

lim
t→0

sup
〈
S(t+ t0)z − S(t0)z

t
+ ω(xh − S(t0)z), ξ′

〉
≤ ⟨yh, η

′⟩

Since S(·)z is differentiable, we obtain that〈
d

dt
S(t0)z + ω(xh − S(t0)z), ξ′

〉
≤ ⟨yh, η

′⟩,

for all ξ′ ∈ F (S(t0)z − xh).

In particular for ξ′ = η′, we have〈
d

dt
S(t0)z + ω(xh − S(t0)z) + yh, η

′
〉
≥ 0.

By (5.10.328), it follows that

⟨S(t0)z − xh − α(h) + ωhxh − ωhS(t0)z, η′⟩ ≥ 0,

that is,

(1− ωh)⟨xh − S(t0)z, η′⟩+ ⟨α(h), η′⟩ ≤ 0,

with η′ ∈ F (xh − S(t0)z).

Whence,
(1− ωh)∥xh − S(t0)z∥2 ≤ ∥α(h)∥xh − S(t0)z∥. (5.10.330)

It then follows that
lim
h→0

S(t0)z − xh

h
= 0,

therefore xh → S(t0)z when h→ 0. And considering (5.10.328), letting h→ 0, we conclude that

lim
h→0

yh = − d

dt
S(t0)z

But (xh, yh) ∈ A and A is closed. Thus(
S(t0)z,− d

dt
S(t0)z

)
∈ A.
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Therefore setting u(t) = S(t)z, we have that

− d

dt
u(t) ∈ Au(t), for almost every t ∈ (0,∞).

The other properties of the definition of strong solution follow immediately from the semigroup
properties. 2

Remark 5.258 In the previous Theorem it is sufficient to assume that D(A) ⊂ Im(I+λA), 0 < λ < λ0,

since by hypothesis A is closed, consequently, by Proposition 5.84, it follows that Dλ = Im(I + λA) is
closed.

Corollary 5.259 Let X be a reflexive Banach space. If A satisfies the conditions of Theorem 5.257 and
S is the semigroup generated by −A, then S(t)x is the strong solution of (5.10.293)-(5.10.294), for all
x ∈ D(A).

Proof: By Theorem ??, we have that, for all x ∈ D(A), S(·)x is Lipschitz continuous on bounded
intervals, hence absolutely continuous on [0, T ], ∀ T > 0, and therefore differentiable almost everywhere
in (0,∞), since X is reflexive. Then by Theorem 5.257, u(t) = S(t)x is the strong solution of 5.10.293)-
(5.10.294). 2

Remark 5.260 If A satisfies the hypotheses of Theorem 5.257, Theorems 5.255 and 5.257 show that
problem (5.10.293)-(5.10.294) has a strong solution if and only if the function S(·)x is differentiable
almost everywhere, and in case differentiability occurs, the strong solution is S(t)x, for all x ∈ D(A). This
fact, combined with what was established in Proposition 5.254, suggests considering S(t)x as a solution of
problem (5.10.293)-(5.10.294) even if S(t)x is not differentiable, and therefore, does not satisfy conditions
(ii) and (iv) of Definition 5.245.

Thus when A is under the conditions of Theorem 5.238, the function S(·)x will be called general-
ized solution of (5.10.293)-(5.10.294).

Theorem 5.261 Let X ′ be uniformly convex, A+ ωI and B + ωI be m-accretive and SA and SB be the
semigroups generated by −A and −B on D(A) and D(B) respectively. If SA(t) = SB(t), ∀ t ≥ 0, then
A = B.

Proof: Initially observe that since A+ωI and B+ωI are m-accretive, hence maximal accretive on D(A)
and D(B) respectively, it follows by Proposition 5.97 that A and B are demiclosed and therefore closed.

Moreover, X ′ is uniformly convex, thus X is smooth, and also reflexive.

We will now prove that D(A) = D(B). Let x ∈ D(A). By hypothesis SA(t) = SB(t), then D(A) =
D(B). Let us set S(t) = SA(t) = SB(t), thus by Lemma 5.256 we have

lim
t→0

sup
〈
S(t)x− x

t
+ ω(x0 − x), F (x− x0)

〉
≤ ⟨y0, F (x0 − x)⟩, (5.10.331)

for all (x0, y0) ∈ B.

Since by Corollary 5.259, S(t)x is a strong solution of (5.10.293)-(5.10.294) it follows by Theorem
5.250 (i) for s = 0 that

∥S(t)x− x
t

∥ ≤ eω+t|Ax| ≤ eω+T |Ax|, t ∈ (0, T ).

Without loss of generality we can then assume that

S(t)x− x
t

⇀ y in X,
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when t→ 0. Thus by (5.10.331) we obtain that

⟨y + ω(x0 − x), F (x− x0)⟩ ≤ ⟨y0, F (x0 − x)⟩, ∀ (x0, y0) ∈ B.

Therefore,
⟨−y + ωx− ωx0 − y0, F (x− x0)⟩ ≥ 0, ∀ (x0, y0) ∈ B,

and since B + ωI is m-accretive it follows by Theorem 5.92(iii) that (x,−y) ∈ B, that is, x ∈ D(B),
proving that D(A) ⊂ D(B). Analogously it is proved that D(B) ⊂ D(A), which shows the desired
equality.

We now denote D = D(A) = D(B). If x ∈ D, then by Corollary 5.259, u(t) = S(t)x is a
strong solution of (5.10.293)-(5.10.294). Thus setting φ(t) = − d

dtS(t)x, we have that φ(t) ∈ AS(t)x and
φ(t) ∈ BS(t)x almost everywhere in (0,∞).

By (iii), of Theorem 5.250 we have that e−ωt|Au(t)| is decreasing. Thus, if t > 0,

|Au(t)| ≤ eωt|Ax| ≤ eω+T |Ax|,

where ω+ = max{ω, 0} and t ∈ [0, T ].

Therefore
∥φ(t)∥ = ∥ d

dt
u(t)∥ = |Au(t)| ≤ eω+T |Ax|.

Since X is reflexive, we obtain the existence of a sequence (tn) such that tn → 0 and φ(tn) ⇀ y,

when n→∞.

Due to the strong continuity of S(t)x we have that

S(tn)x→ x,

and since
φ(tn) ∈ AS(tn)x ∩BS(tn)x,

it follows that y ∈ Ax ∩ Bx, since A and B are demiclosed. Thus, we obtain that ∥y∥ ≥ |Ax| and
∥y∥ ≥ |Bx|.

On the other hand, since φ(tn) ⇀ y and ∥φ(tn)∥ = |Au(tn)| ≤ eωtn |Ax|, we have

∥y∥ ≤ lim inf ∥φ(tn)∥ ≤ lim eωtn |Ax| = |Ax|.

Analogously, ∥y∥ ≤ |Bx|. Therefore ∥y∥ = |Ax| = |Bx|, that is, y ∈ A0x ∩ B0x and by Corollary
5.111 it follows that A = B. 2

Theorem 5.262 Let X ′ be uniformly convex. If A+ωI is an m-accretive operator, then A0 is a principal
section of A.

Proof: Let x0 ∈ D(A) and y0 ∈ X be such that

⟨y0 + ωx0 − v − ωu, F (x0 − u)⟩ ≥ 0 , ∀(u, v) ∈ A0 (5.10.332)

and S be the semigroup generated by −A on D(A).

We will show that (x0, y0) ∈ A. In order to use proposition 5.110 we will show that x0 ∈ D(A).
Indeed, since X is reflexive, S(t)x is, by corollary 5.259, a solution of (5.10.293)-(5.10.294), for all x ∈
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D(A). Thus, by item ii) of theorem 5.250, it follows that

− d

dt
S(t)x ∈ A0S(t)x a.e. in (0,∞)

From (5.10.332) it follows, then〈
y0 + ωx0 + d

dt
S(t)x− ωS(t)x, F (x0 − S(t)x)

〉
≥ 0 a.e. in (0,∞)

Thus,

−
〈
d

dt
S(t)x, F (x0 − S(t)x)

〉
≤ ω⟨x0 − S(t)x, F (x0 − S(t)x)⟩+ ⟨y0, F (x0 − S(t)x)⟩

≤ ω∥S(t)x− x0∥2 + ∥y0∥∥S(t)x− x0∥

a.e. in (0,∞), but, by lemma 5.246, it follows that

∥S(t)x− x0∥
d

dt
∥S(t)x− x0∥ =

〈
d

dt
S(t)x, F (S(t)x− x0)

〉
≤ ω∥S(t)x− x0∥2 + ∥y∥∥S(t)x− x0∥

a.e. in (0,∞), thus

d

dt
∥S(t)x− x0∥ ≤ ω+∥S(t)x− x0∥+ ∥y0∥ a.e. in (0,∞) (5.10.333)

integrating from 0 to t, if ω+ = 0, we have

∥S(t)x− x0∥ ≤ ∥x− x0∥+ t∥y0∥

and multiplying (5.10.333) by e−ω+t and integrating from 0 to t, we obtain∫ t

0

d

dτ
(e−ω+τ∥S(τ)x− x0∥)dτ ≤

∫ t

0
e−ω+τ∥y0∥dτ

Thus,

e−ω+t∥S(t)x− x0∥ ≤ ∥x− x0∥+ ∥y0∥

[
−e−ω+τ

ω+

]τ=t

τ=0

= ∥x− x0∥+ 1− e−ω+t

ω+ ∥y0∥

whence, if ω+ > 0

∥S(t)x− x0∥ ≤ eω+t∥x− x0∥+ eω+t − 1
ω+ ∥y0∥

≤ eω+t∥x− x0∥+ teω+t∥y0∥

for all x ∈ D(A). Since x0 ∈ D(A), it follows, in both cases

∥S(t)x− x0∥ ≤ teω+t∥y0∥

thus,
∥∥∥∥S(t)x0 − x0

t

∥∥∥∥ is bounded in every bounded interval. Therefore, there exists a sequence (tn) with
tn → 0 when n→∞, and a z ∈ X such that

S(tn)x0 − x0

tn
⇀ z when n→∞
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By lemma 5.256 and since F (u− x0) is single-valued, we have, then

⟨z + ω(u− x0), F (x0 − u)⟩ ≤ ⟨v, F (u− x0)⟩, ∀(u, v) ∈ A

that is,
⟨−z + ωx0 − v − ωu, F (x0 − u)⟩ ≥ 0 , ∀(u, v) ∈ A

hence, by the maximality of A+ ωI, (x0,−z) ∈ A and, therefore, x0 ∈ D(A). From (5.10.332) it follows,
then, by proposition 5.110 that (x0, y0) ∈ A. Thus A0 is a principal section of A. 2

For the next result we will state two lemmas, whose proofs can be found in [62] and [47] respectively.

Lemma 5.263 Let M and N be metric spaces. A function f : M → N is continuous at a point a, if
xn → a implies that {f(xn)} has a subsequence converging to f(a).

Lemma 5.264 If X is reflexive, every absolutely continuous function, u : [0, T ] → X is differentiable
a.e. in (0, T ) and

u(t)− u(0) =
∫ t

0

d

dτ
u(τ)dτ, ∀t ∈ [0, T ].

Theorem 5.265 Let X and X ′ be uniformly convex Banach spaces, A ∈ A(ω) a closed operator such
that

D(A) ⊂ Im(I + λA), 0 < λ ≤ λ0,

with λ0|ω| < 1. Then, for all x ∈ D(A),

i) The set Ax has a unique element of minimal norm,
◦
A x;

ii) If S is the semigroup generated by −A, then S(t)x is the unique strong solution of (5.10.293)-
(5.10.294);

iii) The function φ(t) = e−ωt∥
◦
A S(t)x∥ is monotonically decreasing;

iv)
◦
A S(t)x is right continuous at every t ≥ 0;

v) S(t)x is differentiable from the right at every t ≥ 0 and

d+

dt
S(t)x+

◦
A S(t)x = 0, ∀t ≥ 0;

vi) The function S(t)x is continuously differentiable, except on an at most countable set and

− d

dt
S(t)x =

◦
A S(t)x

at the points where differentiability occurs.

Proof:

i) By Theorem 5.106 there exists a demiclosed extension Ã of A, which satisfies
◦
Ã x =

◦
A x, for all

x ∈ D(A). By Theorem 5.105,
◦
Ã is single-valued, and thus

◦
A is single-valued, since

D(Ã) = D(
◦
Ã) = D(

◦
A) = D(A).

Let y ∈ Ax with ∥y∥ = |Ax|. Then y ∈
◦
Ã x =

◦
A x, for some x ∈ D(A). Since

◦
Ã is single-valued, it

follows that y =
◦
A x.
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ii) Since X is reflexive (Milman’s Theorem), Corollary 5.259 guarantees that S(t)x is a strong solution
and by Corollary 5.248, the solution is unique.

iii) It is an immediate consequence of item (iii) of Theorem 5.250.

iv) Let t ≥ 0, {tn} be a sequence such that tn ≥ t, for all n = 1, 2, . . ., with tn → t when n → ∞. We
have that S(tn)x ∈ D(A), for all n ≥ 1. By iii) we have

e−ωtn∥
◦
A S(tn)x∥ ≤ ∥

◦
A x∥ ∀n.

Since X is reflexive, there exist a subsequence {tnk
} of {tn} and y ∈ X such that

◦
A S(tnk

)x ⇀ y when k →∞. (5.10.334)

Since tnk
→ t then S(tnk

)x→ S(t)x.

Moreover, let us note that
(S(tnk

)x,
◦
A S(tnk

)x) ∈
◦
A⊂ A ⊂ Ã.

Since Ã is demiclosed, it results that

S(t)x ∈ D(Ã) = D(A) and y ∈ ÃS(t)x.

Now, since the norm is lower semicontinuous in the weak topology of X,

e−ωt∥y∥ ≤ lim inf
k→∞

e−ωtnk ∥
◦
A S(tnk

)x∥

≤ lim sup
k→∞

e−ωtnk ∥
◦
A S(tnk

)x∥

≤ e−ωt∥
◦
A S(t)x∥

= e−ωt∥
◦
Ã S(t)x∥ (5.10.335)

⇒ ∥y∥ ≤ ∥
◦
Ã S(t)x∥.

Since y ∈ ÃS(t)x, it follows that ∥y∥ = ∥
◦
Ã S(t)x∥, and hence, y ∈

◦
Ã S(t)x =

◦
A S(t)x. Therefore,

from (5.10.334) it follows that

◦
A S(tnk

)x ⇀
◦
A S(t)x. (5.10.336)

We also have

lim sup
k→∞

∥
◦
A S(tnk

)x∥ = lim sup
k→∞

e−ωtnk ∥
◦
A S(tnk

)x∥eωtnk

≤ lim sup
k→∞

e−ωtnk ∥
◦
A S(tnk

)x∥ lim sup
k→∞

eωtnk

≤ e−ωt∥
◦
A S(t)x∥eωt

= ∥
◦
A S(t)x∥. (5.10.337)

Thus, from (5.10.336) and (5.10.337), considering that X is uniformly convex, we have that

◦
A S(tnk

)x→
◦
A S(t)x.
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Thus, considering the function

f : [0,∞) −→ X

t 7−→ f(t) =
◦
A S(t)x

it follows by Lemma 5.263 that
◦
A S(t)x is continuous.

v) By Corollary 5.259, S(t)x is a strong solution of (5.10.293)-(5.10.294) and, by item ii) of Theorem
5.250, ∣∣∣∣∣∣∣∣− d

dt
S(t)x

∣∣∣∣∣∣∣∣ = |AS(t)x|, for almost every t ∈ (0,∞), (5.10.338)

which implies
− d

dt
S(t)x =

◦
A S(t)x, for almost every t ∈ (0,∞).

Since S(t)x is Lipschitz continuous on bounded intervals, by Lemma 5.264 we have

S(t+ h)x− S(t)x =
∫ t+h

t

d

dτ
S(τ)xdτ

= −
∫ t+h

t

◦
A S(τ)xdτ

for all t ≥ 0 and h > 0. Then

S(t+ h)x− S(t)x
h

+
◦
A S(t)x = − 1

h

∫ t+h

t

◦
A S(τ)xdτ+

◦
A S(t)x.

Knowing that

lim
h→0

1
h

∫ t+h

h

◦
A S(τ)xdτ =

◦
A S(t)x,

it follows
d+

dt
S(t)x+

◦
A S(t)x = 0, ∀t ≥ 0.

vi) By iv) the function
◦
A (t)x is defined for all t ≥ 0. Since φ(t) = e−ωt∥

◦
A S(t)x∥ is monotonically

decreasing, it follows that the set of discontinuity points of φ is, at most, countable.

If ∥
◦
A S(·)x∥ is continuous at a point t, then

◦
A S(·)x also is. Indeed, if {tn} is a sequence with

tn → t, we have that
e−ωtn∥

◦
A S(tn)x∥ ≤M,

for some constant M > 0 and for all n ∈ N. With this, following the same reasoning used in iv),
we conclude that lim

k→∞

◦
A S(tnk

)x =
◦
A S(t)x, for some subsequence {tnk

} ⊂ {tn}. With this, we

conclude that the set of discontinuity points of
◦
A S(·)x is, at most, countable.

As we have already seen,

− d

dt
S(t)x =

◦
A S(t)x, for almost every t > 0.

Hence, it follows that S(·)x is continuously differentiable at every continuity point of
◦
A S(·)x, and

with this, we conclude the desired result.

2

We now wish to prove Theorem 5.265, which guarantees us that if

Im(I + λA) ⊃ conv D(A), 0 < λ ≤ λ0, (5.10.339)
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then the strong solution of the Cauchy problem (5.10.293)-(5.10.294) can be obtained as the limit of the
solution of the approximate problem 

duλ

dt
+Aλuλ = 0,
uλ(0) = 0,

(5.10.340)

where Aλ = 1
λ (I − Jλ) is the Yosida approximation of A.

To prove Theorem 5.265, we need some auxiliary results which we present below.

Theorem 5.266 Let X be a Banach space, C ⊂ X a closed convex cone with vertex 0 and J a Lips-
chitzian map from C into C, i.e.

∥Jx− Jy∥ ≤ α∥x− y∥, ∀x, y ∈ C, α > 0. (5.10.341)

If f ∈ L1(0, T ;X), T > 0, is such that f(t) ∈ C for almost every t ∈ (0, T ), then for each x0 ∈ C there
exists a unique function u : [0, T ]→ C satisfying

i) u is absolutely continuous on [0, T ], differentiable almost everywhere in (0, T ) and
u(t) ∈ C, ∀t ∈ [0, T ]; (5.10.342)

ii) d

dt
u(t) + (I − J)u(t) = f(t) a.e. in (0, T ); (5.10.343)

iii) u(0) = x0. (5.10.344)

Proof: Initially, observe that since C is a convex cone with vertex 0, then a+ b ∈ C and λa ∈ C for any
λ > 0 and a, b ∈ C. Therefore, defining

j(t)x = Jx+ f(t), ∀x ∈ C, for almost every t ∈ [0, T ],

we have that j(t) is a map from C into C such that

∥j(t)x− j(t)y∥ ≤ α∥x− y∥, ∀x, y ∈ C, for almost every t ∈ [0, T ],

whence it follows that j(t)x is integrable on [0, T ] for each x ∈ C. With the definition of the map j,

expression (5.10.343) becomes

d

dt
u(t) + (I − j(t))u(t) = 0 a.e. in (0, T ).

Consider
C̃ = {u ∈ C(0, T ;X); u(t) ∈ C, ∀t ∈ [0, T ]},

which is a closed convex subset of C(0, T ;X). Let us consider a contraction with fixed point in C̃. Given
x0 ∈ C, let us define ϕ : C(0, T ;X)→ C(0, T ;X) by

ϕu(t) = e−tx0 +
∫ t

0
es−tj(s)(u(s))ds.

First, let us verify that ϕ(C̃) ⊂ C̃. Let u ∈ C̃. It is clear that e−tx0 ∈ C, for all t ∈ [0, T ], and also
j(s)(u(s)) ∈ C, whence es−tj(s)(u(s)) ∈ C, for any s, t ∈ [0, T ]. Furthermore, since

∥Ju(s)− Ju(t)∥ ≤ α∥u(s)− u(t)∥, ∀s, t ∈ [0, T ],

it follows that Ju : [0, T ]→ C is a continuous map, whence
∫ t

0 e
s−tJu(s)ds ∈ C.

Now, observe that, for each fixed t ∈ [0, T ], the function g(s) = es−tf(s) belongs to L1(0, T ;X),
and, in particular, L1(0, T ;C), which is a complete subset of L1(0, T ;X). Since C0(0, T ;C) is dense in
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L1(0, T ;C), we can obtain a sequence {gn} ⊂ C0(0, T ;C) that converges to g in L1(0, T ;C). In particular,
we have ∫ t

0
gn(s)ds→

∫ t

0
g(s)ds,

with
∫ t

0 gn(s)ds ∈ C, for all t ∈ [0, T ]. Since C is closed, we conclude
∫ t

0 g(s)ds ∈ C, for all t ∈ [0, T ].
Therefore, ∫ t

0
es−tj(s)(u(s))ds ∈ C, ∀t ∈ [0, T ],

and thus, ϕu(t) ∈ C, for all t ∈ [0, T ]. Hence, ϕu ∈ C̃.

We will prove that for n ∈ N sufficiently large, ϕn is a strict contraction. For this, we will prove
by induction, that

∥ϕnu(t)− ϕnv(t)∥ ≤ αntn

n! ∥u− v∥C(0,T ;X),

for any u, v ∈ C(0, T ;X), t ∈ [0, T ] and for all n ∈ N.

Indeed, we have

∥ϕu(t)− ϕv(t)∥ ≤
∫ t

0
es−t∥j(s)(u(s))− j(s)(v(s))∥ds

≤ α

∫ t

0
es−t∥u(s)− v(s)∥ds

≤ α

∫ t

0
ds∥u− v∥C(0,T ;X)

= αt∥u− v∥C(0,T ;X), ∀t ∈ [0, T ].

Suppose, now, that

∥ϕn−1u(t)− ϕn−1v(t)∥ ≤ (αt)n−1

(n− 1)!∥u− v∥C(0,T ;X), ∀t ∈ [0, T ].

Therefore,

∥ϕnu(t)− ϕnv(t)∥ ≤
∫ t

0
es−t∥j(s)(ϕn−1u(t))− j(s)(ϕn−1v(t))∥ds

≤ α

∫ t

0
es−t∥ϕn−1u(t)− ϕn−1v(t)∥ds

≤ αn

∫ t

0
es−t sn−1

(n− 1)!∥u− v∥C(0,T ;X)ds

= αn

(n− 1)!∥u− v∥C(0,T ;X)

∫ t

0
sn−1ds

= (αt)n

n! ∥u− v∥C(0,T ;X), ∀t ∈ [0, T ],

whence we conclude the desired result.

Since
∥ϕnu(t)− ϕnv(t)∥ ≤ αnTn

n! ∥u− v∥C(0,T ;X), ∀u, v ∈ C(0, T ;X),

it follows that for n sufficiently large, ϕn is a strict contraction (see [60]). Therefore, ϕ has a unique fixed
point in C̃. Let ũ be such fixed point. Then, since,

ũ(t) = e−tx0 +
∫ t

0
es−tj(s)(ũ(s))ds (5.10.345)

it results that ũ is absolutely continuous on [0, T ], differentiable almost everywhere in (0, T ) and ũ(t) ∈ C,
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for all t ∈ [0, T ]. Moreover, ũ(0) = x0 and, differentiating both sides of (5.10.345) we see that

d

dt
ũ(t) + (I − J)ũ(t) = f(t) a.e. in (0, T ).

Now, let us prove the uniqueness of the function satisfying i), ii) and iii). Let, then, u and v be
functions satisfying such conditions. In particular, we have

ut(τ) + (I − J)u(τ) = f(τ) a.e. in (0, T ). (5.10.346)

and
vt(τ) + (I − J)v(τ) = f(τ) a.e. in (0, T ). (5.10.347)

Subtracting (5.10.347) from (5.10.346) we obtain

(u(τ)− v(τ)) + (ut(τ)− vt(τ)) = Ju(τ)− Jv(τ) a.e. in (0, T ).

Multiplying both sides of the equality above by (u(τ) − v(τ))t, integrating in X and using Hölder’s
inequality, we obtain

1
2
d

dt
∥u(τ)− v(τ)∥2 + ∥ut(τ)− vt(τ)∥2 ≤ ∥Ju(τ)− Jv(τ)∥∥ut(τ)− vt(τ)∥ a.e. in (0, T ).

Integrating the inequality above on (0, t), for t ∈ [0, T ] given, we have

1
2∥u(t)− v(t)∥2 +

∫ t

0
∥ut(τ)− vt(τ)∥2dτ ≤

∫ t

0
∥Ju(τ)− Jv(τ)∥2dτ +

∫ t

0
∥ut(τ)− vt(τ)∥2dτ.

In particular,

∥u(t)− v(t)∥2 ≤ α
∫ t

0
∥u(τ)− v(τ)∥2dτ,

and by Grönwall’s Inequality it follows u(t) = v(t). Thus, we obtain the desired uniqueness. 2

Corollary 5.267 Under the same hypotheses of Theorem 5.266, for each x0 ∈ C and each λ > 0 there
exists a unique function u : [0, T ]→ C satisfying (5.10.342), (5.10.344) and

d

dt
u(t) + 1

λ
(I − J)u(t) = f(t) a.e. in (0, T ). (5.10.348)

Proof: Let v be the unique function satisfying (5.10.342), (5.10.344) and

d

dt
v(t) + (I − J)v(t) = λf(λt), a.e. in (0, λT ).

Considering u(t) = v

(
t

λ

)
, we have u(λt) = v(t) and

d

dt
[u(λt)] + (I − J)u(λt) = λf(λt), a.e. in (0, λT ),

whence it follows
d

dt
u(t) + 1

λ
(I − J)u(t) = f(t), a.e. in (0, T ),

with u satisfying (5.10.342) and (5.10.344). 2

Corollary 5.268 Let C be a closed convex subset of X, J : C → C Lipschitzian with constant α > 0,
and λ > 0 and T > 0. Then, for each x0 ∈ C there exists a unique function u : [0, T ] → C satisfying
(5.10.342), (5.10.344) and

d

dt
u(t) + 1

λ
(I − J)u(t) = 0 a.e. in (0, T ). (5.10.349)
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Proof: It follows from the previous Corollary, with f ≡ 0. In this case, the proof of Theorem 5.266 is
applicable without assuming that C is a cone, since the map j(t) : C → C given by j(t) = J, for all
t ∈ [0, T ], is well defined. 2

Corollary 5.269 Under the conditions of Corollary 5.268, if x0, y0 ∈ C and u and v satisfy (5.10.342)
and u(0) = x0, v(0) = y0, then

i) ∥u(t)− v(t)∥ ≤ e
(α−1)t

λ ∥x0 − y0∥;

ii)
∥∥∥∥ ddtu(t+ t0)

∥∥∥∥ ≤ e (α−1)
λ (t+t0)

∥∥∥∥ ddtu(t0)
∥∥∥∥ for all t, t0 such that u is differentiable

at t+ t0 and t0.

Proof: i) We have

u(t) = e− t
λx0 + 1

λ

∫ t

0
e

s−t
λ Ju(s)ds,

v(t) = e− t
λ y0 + 1

λ

∫ t

0
e

s−t
λ Jv(s)ds,

whence
e

t
λ ∥u(t)− v(t)∥ ≤ ∥x0 − y0∥+ α

λ

∫ t

0
e

s
λ ∥u(s)− v(s)∥ds

and, therefore, by Gronwall’s Inequality

∥u(t)− v(t)∥ ≤ e
(α−1)

λ t∥x0 − y0∥.

ii) Let t ∈ [0, T ] and t0 ∈ [0, T−h) such that u is differentiable at t0 and at t+t0. Let also h ∈ (0, T−t0−t).
Considering x0 = u(t0) and y0 = u0(t0 +h), we observe that the solutions of (5.10.349) associated to the
respective initial data x0 and y0 are given by u(t+ t0) and u(t+ t0 + h), and by i) we have∥∥∥∥u(t+ t0 + h)− u(t+ t0)

h

∥∥∥∥ ≤ e (α−1)
λ (t+t0)

∥∥∥∥u(t0 + h)− u(t0)
h

∥∥∥∥ ,
and letting h→ 0 we obtain ∥∥∥∥ ddtu(t+ t0)

∥∥∥∥ ≤ e (α−1)
λ (t+t0)

∥∥∥∥ ddtu(t0)
∥∥∥∥ .

2

The estimate that will be established next is due to Chernoff [25] in the linear case and to Miyadera
and Oharu [70] in the general case. The proof we will give is found in Brezis [17] and Pazy [83].

Lemma 5.270 Let {φn} be a sequence of locally integrable functions on [0,∞) such that

φn(t) ≤ nαne
−t
λ + α

λ

∫ t

0
e

(s−t)
λ φn−1(s)ds, n = 1, ..., α ≥ 1 and λ > 0 (5.10.350)

and φ0(t) ≤ t
λe

(α−1)t
λ . Then, for every non-negative integer, n, and t ≥ 0 we have

φn(t) ≤ αne
(α−1)t

λ

[(
n− α t

λ

)2
+ α

t

λ

] 1
2

. (5.10.351)

Proof: We have that
φ0(t) ≤ t

λ
e

(α−1)t
λ ≤ e

(α−1)t
λ (α2 t

2

λ2 + α
t

λ
) 1

2
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since α ≥ 1 and t ≥ 0. Thus, (5.10.351) is valid for n = 0. Assuming valid for n, that is,

φn(t) ≤ αne
(α−1)t

λ

[(
n− α t

λ

)2
+ α

t

λ

] 1
2

.

Then, (5.10.351) will be demonstrated if we prove that

φn+1(t) ≤ αn+1e
(α−1)t

λ

[(
n+ 1− α t

λ

)2
+ α

t

λ

] 1
2

,

but, thanks to (5.10.350) it suffices to show that

(n+ 1)αn+1e
−t
λ + αn+1

λ

∫ t

0
e

αs−t
λ

[(
n− 1− αs

λ

)2
+ αs

λ

] 1
2

ds

≤ αn+1e
(α−1)t

λ

[(
n+ 1− αt

λ

)2
+ αt

λ

] 1
2

or, equivalently,

n+ 1 + 1
λ

∫ t

0
e

αs
λ

[(
n− αs

λ

)2
+ αs

λ

] 1
2

ds ≤ eαt
λ

[(
n+ 1− αt

λ

)2
+ αt

λ

] 1
2

and since both members are equal to n + 1 at the point t = 0 it is sufficient to demonstrate that the
derivative of the first is less than or equal to the derivative of the second, that is, that

1
λ
e

αt
λ

[(
n− αt

λ

)2
+ αt

λ

] 1
2

≤ α

λ
e

αt
λ

[(
n+ 1− αt

λ

)2
+ αt

λ

] 1
2

+α

λ
e

αt
λ

[(
n+ 1− αt

λ

)2
+ αt

λ

]− 1
2 (
−1

2 − n+ αt

λ

)
.

But this inequality is true because the second member is positive, since[(
n+ 1− αt

λ

)2
+ αt

λ

] 1
2

+
[(

n+ 1− αt

λ

)2
+ αt

λ

]− 1
2 (
−1

2 − n+ αt

λ

)

=
[(

n+ 1− αt

λ

)2
+ αt

λ

]− 1
2
[(

n− αt

λ

)2
+ 1

2 + n

]
≥ 0,

and since n+ 1 ≥ n and (a+ b)2 ≥ a2, with a, b ≥ 0 we have
[(

n+ 1− αt

λ

)2
+ αt

λ

] 1
2

+
[(

n+ 1− αt

λ

)2
+ αt

λ

]− 1
2 (
−1

2 − n+ αt

λ

)
2

≥
(
n− αt

λ

)2
+ αt

λ

it follows that [(
n− αt

λ

)2
+ αt

λ

] 1
2

≤

[(
n+ 1− αt

λ

)2
+ αt

λ

] 1
2

+
[(

n+ 1− αt

λ

)2
+ αt

λ

]− 1
2 (
−1

2 − n+ αt

λ

)
.
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which multiplying by 1
λ
e

αt
λ and using that α ≥ 1 gives us the desired result. 2

Theorem 5.271 Let C be a closed convex subset of X, J : C → C a Lipschitzian map with constant
α ≥ 1, x0 ∈ C, T > 0 and u : [0, T ]→ C satisfying (5.10.342), (5.10.344) and (5.10.349). Then, for each
positive integer n and each t ≥ 0 we have

∥u(t)− Jnx0∥ ≤ αne
(α−1)t

λ ∥x0 − Jx0∥

[(
n− α t

λ

)2
+ α

t

λ

] 1
2

. (5.10.352)

Proof: By ii) of Corollary 5.269, we have for all t, t0 such that u is differentiable at t+ t0 and t0,∥∥∥∥ ddtu(t+ t0)
∥∥∥∥ ≤ e (α−1)(t+t0)

λ

∥∥∥∥ ddtu(t0)
∥∥∥∥ ≤ e (α−1)(t+t0)

λ

∥∥∥∥ 1
λ

(J − I)u(t0)
∥∥∥∥ .

Taking the limit as t0 tends to 0 we have∥∥∥∥ ddtu(t)
∥∥∥∥ ≤ e (α−1)(t)

λ

∥∥∥∥ 1
λ

(J − I)x0

∥∥∥∥ . (5.10.353)

Therefore, if Jx0 = x0, then u(t) = x0, for all t ≥ 0 and, in this case, the estimate (5.10.352) is valid.
Let, then, Jx0 ̸= x0 and let us set for n = 0, 1, ...

φn(t) = ∥u(t)− Jnx0∥∥x0 − Jx0∥−1. (5.10.354)

Since,

u(t) = e− t
λx0 + 1

λ

∫ t

0
e

s−t
λ Ju(s)ds

for n = 1, 2, . . . we have

∥u(t)− Jnx0∥ ≤ e− t
λ ∥x0 − Jnx0∥+ α

λ

∫ t

0
e

s−t
λ ∥u(s)− Jnx0∥ds

Thus,

φn(t) ≤ e− t
λ ∥x0 − Jnx0∥∥x0 − Jx0∥−1 + α

λ

∫ t

0
e

s−t
λ φn−1(s)ds. (5.10.355)

But,

∥x0 − Jnx0∥ = ∥J0x0 − Jx0 + Jx0 − ...− Jnx0∥

≤
n∑

i=1
∥J i−1x0 − J ix0∥

≤
n∑

i=1
αi−1∥x0 − Jx0∥

and since, by hypothesis, α ≥ 1, ∥x0 − Jnx0∥ ≤ nαn∥x0 − Jx0∥. From there and from (5.10.355) it
follows, for n = 1, ...,

φn(t) ≤ nαne− t
λ + α

∫ t

0

s− t
λ

φn−1(s)ds. (5.10.356)

Moreover,

u(t)− x0 = 1
λ

∫ t

0
e− s−t

λ (Ju(s)− x0)ds

= 1
λ

∫ t

0
e

s−t
λ (J − I)u(s)ds+ 1

λ

∫ t

0
e

s−t
λ (u(s)− x0)ds.
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But from (5.10.353), we have

∥ 1
λ

(J − I)u(s)∥ =
∥∥∥∥ ddtu(s)

∥∥∥∥ ≤ e (α−1)s
λ

∥∥∥∥ 1
λ

(x0 − Jx0)
∥∥∥∥ .

Thus,

∥u(t)− x0∥ ≤
e− t

λ

λ

[
∥x0 − Jx0∥

∫ t

0
e

αs
λ ds+

∫ t

0
e

s
λ ∥u(s)− x0∥ds

]
, (5.10.357)

that is, the formula

∥u(t)− x0∥ ≤
e− t

λ

λ
∥x0 − Jx0∥

∫ t

0

n∑
k=0

(t− s)k

λkk! e
αs
λ ds+ e− t

λ

λn+1n!

∫ t

0
(t− s)ne

s
λ ∥u(s)− x0∥ds

is valid for n = 0. Let us show that it is valid for all n. Assume that it is valid for n and let us prove
that it remains valid for n+ 1.

Indeed, observe that

1
λnn!

∫ t

0
(t− s)ne

s
λ ∥u(s)− x0∥ds ≤ 1

λnn!

∫ t

0
(t− s)ne

s
λ

{
e− s

λ

λ

[
∥x0 − Jx0∥

∫ s

0
e

αξ
λ dξ +

∫ s

0
e

ξ
λ ∥u(ξ)− x0∥ds

]}
ds

= 1
λnn!

∫ t

0
(t− s)n 1

λ

[
∥x0 − Jx0∥

∫ s

0
e

αξ
λ dξ +

∫ t

0
e

ξ
λ ∥u(s)− x0∥dξ

]
ds

and, since, ∫ t

0
(t− s)n

∫ s

0
e

αξ
λ dξds =

∫ t

0
e

αξ
λ

(t− ξ)n+1

n+ 1 dξ

and ∫ t

0
(t− s)n

∫ s

0
e

ξ
λ ∥u(ξ)− x0∥dξds =

∫ t

0
e

ξ
λ

(t− ξ)n+1

n+ 1 ∥u(ξ)− x0∥dξ

we have

1
λnn!

∫ t

0
(t−s)ne

s
λ ∥u(s)−x0∥ds ≤

1
λn+1(n+ 1)!

[
∥x0 − Jx0∥

∫ t

0
(t− s)n+1e

αs
λ ds+

∫ t

0
e

s
λ (t− s)n+1∥u(s)− x0∥ds

]
which, comparing with the induction hypothesis gives us the desired result and the formula is valid for
all n = 0, 1, . . ..

Thus, letting n→∞, we obtain

∥u(t)− x0∥ ≤
1
λ
∥x0 − Jx0∥

∫ t

0
e

(α−1)s
λ ds ≤ t

λ
e

(α−1)t
λ ∥x0 − Jx0∥.

So
φ0(t) = ∥u(t)− x0∥∥x0 − Jx0∥−1 ≤ 1

λ
te

(α−1)t
λ . (5.10.358)

From (5.10.354), (5.10.356) and (5.10.358) follows (5.10.352) from the previous lemma follows the result.
2

Now we are in conditions to state and prove the following result:

Theorem 5.272 Let A ∈ A(ω), such that D(A) ⊂ Im(I + λA) for 0 < λ < λ0 with λ0|ω| < 1 and
satisfies condition (5.10.339). Then, for each λ > 0 such that λ|ω| < 1

2 , ∀x ∈ C and for all T > 0, there
exists a unique function uλ : [0, T ] −→ C, absolutely continuous in (0, T ), differentiable a.e. in (0, T ),
duλ

dt
+Aλuλ = 0 a.e. in (0, T ) and uλ(0) = x. Moreover,

lim
λ→0

uλ(t) = S(t)x, ∀x ∈ D(A) and ∀T ≥ 0, (5.10.359)
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Proof: Since C ⊂ Im(I + λA) = Dλ and Jλ : Dλ −→ Im(Dλ) = D(A) ⊂ conv D(A) and Jλ is
Lipschitzian with constant (1−λω)−1 (see Theorem 5.79), then the restriction of Jλ to C is a Lipschitzian
map from C into C with Lipschitz constant α = (1− λ|ω|)−1 ≥ 1, since (1− λω)−1 ≤ (1− λ|ω|)−1.

By Corollary 5.268 there exists a unique function uλ satisfying the stated conditions. It remains
to demonstrate (5.10.359).

First let us show (5.10.359) for x ∈ D(A). Let, then, x ∈ D(A), t ∈ [0, T ] and n ∈ N such that
n =

[
t
λ

]
. Setting Sλ(t)x = uλ(t) we have:

∥uλ(t)− S(t)x∥ = ∥Sλ(t)x− S(t)x∥ (5.10.360)
≤ ∥Sλ(t)x− Sλ(nλ)x∥︸ ︷︷ ︸

I

+ ∥Sλ(nλ)x− Jn
λx∥︸ ︷︷ ︸

II

+ ∥Jn
λx− S(nλ)x∥︸ ︷︷ ︸

III

+ ∥S(nλ)x− S(t)x∥︸ ︷︷ ︸
IV

Now let us estimate each of the terms above.
Estimate I: From Corollary 5.269, item ii), we have that, for almost every t0 ∈ [0, T − t] it holds that

∥uλ(t+ t0)x− uλ(nλ+ t0)x∥ ≤
∥∥∥∥∫ t+t0

nλ+t0

duλ

ds
(ξ)dξ

∥∥∥∥ =
∥∥∥∥∫ t

nλ

duλ

ds
(s+ t0)ds

∥∥∥∥
≤

∫ t

nλ

e(α−1) s+t0
λ ∥Aλuλ(t0)∥ds ≤ e(α−1) t+t0

λ (t− nλ)∥Aλuλ(t0)∥.

Taking the limit as t0 → 0 it follows that

∥uλ(t)x− uλ(nλ)x∥ ≤ e(α−1) t
λ (t− nλ)∥Aλx∥.

Note that
α = 1

1− λ|ω| ⇒ α− 1 = λ|ω|
1− λ|ω| .

And,
t

λ
−
[
t

λ

]
< 1⇔ t− nλ < λ.

Whence it follows that

∥Sλ(t)x− Sλ(nλ)(x)∥ = ∥uλ(t)x− uλ(nλ)x∥ ≤ e(α−1) t
λ (t− nλ)∥Aλx∥

= e
|ω|t

1−λ|ω| (t− nλ)∥Aλx∥ ≤ e
|ω|t

1−λ|ω| (t− nλ) 1
1− λ|ω| |Ax|

< e
|ω|t

1−λ|ω|λ(1− λ|ω|)−1|Ax|.

Note that the term on the right converges to zero when λ→ 0 independently of t ∈ [0, T ].
Estimate II: Bearing in mind that Sλ(t)x = uλ(t) one has, by Theorem 5.271, that:

∥Sλ(nλ)x− Jn
λx∥ = ∥uλ(nλ)− Jn

λx∥

≤ αne
(α−1)nλ

λ ∥x− Jλx∥

[(
n− αnλ

λ

)2
+ α

nλ

λ

] 1
2

≤ αne(α−1)n∥x− Jλx∥[(n− αn)2 − αn] 1
2

≤ (1− λ|ω|)−ne
nλ|ω|

1−λ|ω|λ(1− λ|ω|)−1|Ax|
[
(n− αn)2 + αn

] 1
2

≤ (1− λ|ω|)− t
λ e

t|ω|
1−λ|ω|

√
λ

1− λ|ω| |Ax|
[
λ
(
n2(1− α)2 + αn

)] 1
2

≤ (1− λ|ω|)− t
λ e

t|ω|
1−λ|ω|

√
λ

1− λ|ω|

[
t2

λ|ω|2

(1− λ|ω|)2 + t

1− λ|ω|

] 1
2

|Ax|, (5.10.361)

(5.10.362)
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since

n =
[
t

λ

]
≤ t

λ
⇒ −n ≥ − t

λ
and

λ(n2(1− α)2 + αn) = λ

([
t

λ

]2(
1− 1

1− λ|ω|

)2
+

[
t
λ

]
1− λ|ω|

)

≤ λ

(
t

λ

)2(
λ|ω|

1− λ|ω|

)2
+

t
λ

1− λ|ω|

≤ t2
λ|ω|2

(1− λ|ω|)2 + t

1− λ|ω| .

The last term of (5.10.361) also converges to zero when λ→ 0 independently of t ∈ [0, T ].
Estimate III: Since λ|ω| < 1

2 one has, by (5.9.279) that

∥Jn
λx− S(nλ)x∥ = lim

m→∞
∥Jn

λx− Jm
nλ
m
x∥ = lim

m→∞
∥Jn

nλ
n
x− Jm

nλ
m
x∥

≤ lim
m→∞

2nλe4|ω|nλ

(
1
n
− 1
m

) 1
2

|Ax|

= 2nλe4|ω|nλ 1√
n
|Ax|

= 2
√
nλ
√
λe4|ω|nλ|Ax|

= 2
√
nλe4|ω|nλ|Ax|

≤ 2
√
t
√
λe4|ω|t|Ax|

where the term on the right converges to zero when λ→ 0 uniformly with respect to t ∈ [0, T ].
Estimate IV: By Proposition 5.243 it follows that

∥S(nλ)x− S(t)x∥ ≤ eω+(t−nλ)eω+nλ(t− nλ)|Ax|
≤ eω+λeω+tλ|Ax|

which converges to zero independently of the value of t ∈ [0, T ].

From estimates I, II, III and IV we have that (5.10.360) tends to zero when λ → 0, uniformly on
[0, T ], that is,

lim
λ→0

uλ(t) = S(t)x, ∀x ∈ D(A) and ∀t ≥ 0,

or even, given x ∈ D(A) and ε > 0, there exists δ(ε, x) such that

∥uλ(t)− S(t)x∥ < ε whenever λ < δ(ε, x). (5.10.363)

Thus, given x ∈ D(A) there exists y ∈ D(A) such that ∥y − x∥ < ε and

∥uλ(t)− S(t)x∥ = ∥Sλ(t)x− Sλ(t)y + Sλ(t)y − S(t)y + S(t)y − S(t)x∥
≤ ∥Sλ(t)x− Sλ(t)y∥︸ ︷︷ ︸

V

+ ∥Sλ(t)y − S(t)y∥︸ ︷︷ ︸
<ε by (5.10.363)

+ ∥S(t)y − S(t)x∥︸ ︷︷ ︸
V I

Estimate V: Note that, setting Sλ(t)y = vλ(t), by Corollary 5.269

∥Sλ(t)x− Sλ(t)y∥ = ∥uλ(t)− vλ(t)∥

≤ e
(α−1)t

λ ∥x− y∥ = e
|ω|t

1−λ|ω| ∥x− y∥

< e
|ω|T

1−λ|ω|︸ ︷︷ ︸
bounded

ε (5.10.364)
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Estimate VI: Since we are under the hypotheses of Theorem ??, S(t) is Lipschitz continuous on bounded
intervals, and therefore

∥S(t)y − S(t)x∥ ≤ L∥x− y∥ < Lε. (5.10.365)

In this way, from (5.10.363), (5.10.364) and (5.10.365) it follows that

lim
λ→0

uλ(t) = S(t)x, ∀x ∈ D(A) and ∀t ≥ 0

which concludes the proof. 2

Before stating the next theorem, we will prove some auxiliary results.

Lemma 5.273 Let X be a Hilbert space and φ : X → (−∞,∞] be a convex, proper and lower semi-
continuous function. Considering A = ∂φ and S the semigroup generated by −A, define, for λ > 0, the
function φλ : X −→ (−∞,∞] given by

φλ(x) = min
y∈X

{
1
λ
∥y − x∥2 + φ(y)

}
.

Then:

(i) φλ(x) = λ

2 ∥Aλx∥2 + φ(Jλx)

(ii) φλ is convex, Gateaux differentiable and ∂φλ = Aλ.

Proof:

(i) Set
ψ(y) = 1

2λ∥y − x∥
2 + φ(y).

Then, ∂ψ(y) ⊃ 1
λ

(y − x) + ∂φ(y). By definition, Jλx is the unique solution of

0 ∈ 1
λ

(y − x) + ∂φ(y).

Thus, Jλx is a minimum of the function ψ, that is,

φλ(x) = min
y∈X

{
1
λ
∥y − x∥2 + φ(y)

}
= 1

2λ∥Jλx− x∥2 + φ(Jλx) = λ

2 ∥Aλx∥2 + φ(Jλx).

(ii) Since Aλx ∈ A(Jλx) = ∂φ(Jλx), we have

φ(Jλy)− φ(Jλx) ≥ (Aλx, Jλy − Jλx).

Thus,

φλ(y)− φλ(x) = λ

2 ∥Aλy∥2 − λ

2 ∥Aλx∥2 + (φ(Jλy)− φ(Jλx))

≥ λ

2
(
∥Aλy∥2 − ∥Aλx∥2)+ (Aλx, Jλy − y + y − x+ x− Jλx)

= λ

2
(
∥Aλy∥2 − ∥Aλx∥2)+ (Aλx, Jλy − y) + (Aλx, x− Jλx) + (Aλx, y − x)

≥ λ

2
(
∥Aλy∥2 + ∥Aλx∥2)− λ∥Aλx∥∥Aλy∥+ (Aλx, y − x)

= λ

2 (∥Aλy∥ − ∥Aλx∥)2 + (Aλx, y − x). (5.10.366)
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Therefore,
φλ(y)− φλ(x)− (Aλx, y − x) ≥ λ

2 (∥Aλy∥ − ∥Aλx∥)2 ≥ 0.

Multiplying (5.10.366) by −1 we have

φλ(x)− φλ(y) ≤ −λ2 (∥Aλy∥ − ∥Aλx∥)2 − (Aλx+Aλy −Aλy, y − x)

= −λ2 (∥Aλy∥ − ∥Aλx∥)2 + (Aλy −Aλx, y − x) + (Aλy, x− y),

whence
φλ(x)− φλ(y)− (Aλy, x− y) ≤ (Aλy −Aλx, y − x). (5.10.367)

Thus, exchanging x with y in (5.10.367) and combining with (5.10.366) it follows that

0 ≤ φλ(y)− φλ(x)− (Aλx, y − x) ≤ (Aλy −Aλx, y − x), (5.10.368)

for all x, y ∈ X and λ > 0.
If y is of the form y = x+ tz, t > 0, we have

0 ≤ φλ(x+ tz)− φλ(x)− (Aλx, tz) ≤ (Aλ(x+ tz)−Aλx, tz),

whence

0 ≤ φλ(x+ tz)− φλ(x)
t

− (Aλx, z) ≤ (Aλ(x+ tz)−Aλx, z)

≤ ∥z∥∥Aλ(x+ tz)−Aλx∥

≤ 2∥z∥
λ
∥x+ tz − x∥.

Therefore,
lim
t→0

φλ(x+ tz)− φλ(x)
t

= (Aλx, z).

Let us prove that φλ is convex. From (5.10.366),

φλ(y)− φλ(x) ≥ (Aλx, y − x), (5.10.369)

for all x, y ∈ X. Setting y := x and x := (1− t)x+ ty, we have

φλ(x)− φλ((1− t)x+ ty) ≥ t(Aλ((1− t)x+ ty), x− y). (5.10.370)

Substituting now in (5.10.369) x := (1− t)x+ ty it follows

φλ(y)− φλ((1− t)x+ ty) ≥ (Aλ((1− t)x+ ty), y − (1− t)x+ ty)
= −(1− t)(Aλ((1− t)x+ ty), x− y) (5.10.371)

Do (1− t)(5.10.370) + t(5.10.371) to obtain

(1− t)φλ(x) + tφλ(y)− φλ((1− t)x+ ty) ≥ 0.

It only remains to calculate ∂φλ. Now, φλ is convex and proper. Since it is also Gateaux differ-
entiable, by proposition 4.16 we have that φλ is subdifferentiable at every point and Aλx is the
unique element of ∂φλ(x).

2

Corollary 5.274 φλ is Frechet differentiable.
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Proof: From (5.10.368),

0 ≤ φλ(y)− φλ(x)− (Aλx, y − x) ≤ (Aλy −Aλx, y − x),

whence
0 ≤ |φλ(y)− φλ(x)− (Aλx, y − x)| ≤ 2

λ
∥y − x∥2.

2

Lemma 5.275 If A is an m-monotone operator on a Hilbert space, then D(A) is convex.

We will also use the following properties:

(i) If x ∈ De(f) ∩De(g), then ∂(f + g)(x) ⊃ ∂f(x) + ∂g(x).

(ii) x is a minimum point of f if, and only if, 0 ∈ ∂f(x).

Now we can state the following result:

Theorem 5.276 Let X be a Hilbert space and φ : X −→ (−∞,∞] be a convex, proper and lower
semicontinuous function. Considering A = ∂φ and S the semigroup generated by −A, if x ∈ D(A) and
t > 0, then S(t)x ∈ D(A) and the following hold:

(i) ∥
◦
A S(t)x∥ ≤ 1

t
∥S(t)x− x∥;

(ii) ∥
◦
A S(t)x∥ ≤ ∥

◦
A v∥+ 1

t
∥v − x∥, ∀v ∈ D(A).

Proof: Let x ∈ D(A). We have that A = ∂φ is m-accretive, and thus, D(A) is convex. Thus, according
to Theorem 5.272, the problem 

duλ

dt
+Aλuλ = 0, λ > 0,

uλ(0) = x,
(5.10.372)

possesses a strong solution uλ, for all x ∈ D(A).

According to Lemma 5.273, for all v ∈ X

φλ(v)− φλ(uλ(t)) ≥ (∂φλ(uλ(t)), v − uλ(t))
= (Aλuλ(t), v − uλ(t))

=
(
−duλ

dt
(t), v − uλ(t)

)
= 1

2
d

dt
∥v − uλ(t)∥2.

Integrating from 0 to T

1
2∥v − uλ(T )∥2 − 1

2∥v − x∥
2 ≤ Tφλ(v)−

∫ T

0
φλ(uλ(t))dt. (5.10.373)

From (5.10.372), composing with t
duλ

dt
(t) we have

t

∥∥∥∥duλ

dt
(t)
∥∥∥∥2

+ t

〈
Aλuλ(t), duλ

dt
(t)
〉

= 0. (5.10.374)
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By Corollary (5.274), φλ is Frechet differentiable and its derivative is Aλ. Thus,

dφλ

dt
(uλ(t)) =

〈
Aλuλ(t), duλ

dt
(t)
〉

by a generalization of the chain rule. Thus, from (5.10.374)

t

∥∥∥∥duλ

dt
(t)
∥∥∥∥2

+ t
d

dt
φλ(uλ(t)) = 0.

Therefore, we have∫ T

0
t

∥∥∥∥duλ

dt
(t)
∥∥∥∥2
dt = −

∫ T

0
t
d

dt
(φλuλ)(t)dt

= −Tφλ(uλ(T )) +
∫ T

0
φλ(uλ(t))dt

≤ −Tφλ(uλ(T )) + Tφλ(v)− 1
2∥v − uλ(T )∥2 + 1

2∥v − x∥
2.

By Theorem 5.250,
∥∥∥∥duλ

dt

∥∥∥∥ is non-increasing. Thus,

T 2

2

∥∥∥∥duλ

dt
(T )
∥∥∥∥2
≤ Tφλ(v)− Tφλ(uλ(T ))− 1

2∥v − uλ(T )∥2 + 1
2∥v − x∥

2. (5.10.375)

Setting v = uλ(T ), ∥∥∥∥duλ

dt
(T )
∥∥∥∥ ≤ 1

T
∥uλ(T )− x∥.

Since T is arbitrary,
∥Aλuλ(t)∥ ≤ 1

t
∥uλ(t)− x∥, t > 0. (5.10.376)

We also have, by Theorem 5.272,

lim
λ→0

uλ(t) = S(t)x ∀x ∈ D(A).

Then, for t > 0,
lim sup

λ→0
∥Aλuλ(t)∥ ≤ 1

t
∥S(t)x− x∥.

Therefore, for each t > 0, there exists a sequence λn converging to zero and y(t) ∈ X such that
Aλn

uλn
(t) ⇀ y(t). Since

∥uλn
(t)− Jλn

(uλn
)(t)∥ = λn∥Aλn

uλn
(t)∥,

we have that Jλn
uλn

(t) −→ S(t)x. By Proposition 5.97, A is demiclosed and by Proposition 5.75,

(Jλn
uλn

(t), Aλn
uλn

(t)) ∈ A,

hence it follows that S(t)x ∈ D(A). It remains to prove estimates (i) and (ii).

Since A is demiclosed, we have that y(t) ∈ AS(t)x. From Theorem 5.265, item (i), AS(t)x has a
unique element of minimal norm,
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∥
◦
A S(t)x∥ ≤ ∥y(t)∥

≤ lim inf ∥Aλn
uλn

(t)∥
≤ lim sup ∥Aλuλ(t)∥

≤ 1
t
∥S(t)x− x∥.

Now, if v ∈ D(A), note that

φλ(v)− φλ(uλ(T )) ≤ |(Aλv, uλ(T )− v)|
≤ ∥Aλv∥∥uλ(T )− v∥.

From (5.10.375),

T 2

2

∥∥∥∥duλ

dt
(T )
∥∥∥∥2
≤ T∥Aλv∥∥uλ(T )− v∥+ 1

2∥v − x∥
2 − 1

2∥v − uλ(T )∥2.

By Young’s inequality we have

T∥Aλv∥∥uλ(T ) − v∥ ≤
1
2T

2∥Aλv∥2 + 1
2∥v − uλ(T )∥2.

Thus, ∥∥∥∥duλ

dt
(T )
∥∥∥∥2
≤ ∥Aλv∥2 + 1

T 2 ∥v − x∥
2 ≤

(
∥Aλv∥+ 1

T
∥v − x∥

)2
.

Since T is arbitrary∥∥∥∥duλ

dt
(T )
∥∥∥∥ = ∥Aλuλ(t)∥ ≤ ∥Aλv∥+ 1

t
∥v − x∥, ∀t > 0, ∀v ∈ D(A).

By Proposition 5.108, item (ii), it follows that

∥
◦
A S(t)x∥ ≤ ∥

◦
A v∥+ 1

t
∥v − x∥,

completing the proof. 2

Corollary 5.277 Under the conditions of Theorem 5.276, ∀x ∈ D(A):

(i) S(t)x is a strong solution of (5.10.293)-(5.10.294);

(ii)
◦
A S(t)x is right continuous at every t ≥ 0;

(iii) S(t)x is differentiable from the right at every t > 0 and

d+

dt
S(t)x+

◦
A S(t)x = 0, ∀t > 0.

Proof: Immediate consequence of Theorems 5.265 and 5.276. 2

5.11 Examples

Example 5.278 Let X be a Hilbert space and f : X → (−∞,+∞] be a convex, proper and l.s.c. function.
By Proposition 5.46, ∂f is an m-monotone operator and, therefore, m-accretive. Since D(∂f) = De(f),
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it follows by Corollary 5.277, that the problem
d

dt
u+ ∂f(u) ∋ 0

u(0) = x ∀x ∈ De(f)
(5.11.377)

has a strong solution, S(t)x, where S is the semigroup generated by −∂f on De(f).

(1) Consider in particular X = R,

f : R −→ (−∞,+∞]
x 7−→ f(x) = ∥x∥

In this case, the operator A = ∂f is defined by

D(A) = R, Ax =


−1, if x < 0
[−1, 1], if x = 0
1, if x > 0.

(5.11.378)

Indeed, we have that

De(f) = {x ∈ R; f(x) < +∞} = {x ∈ R; ∥x∥ < +∞} = R.

Thus, D(∂f) = R.

We saw in Example 4.17 that ∂f(0) = [−1, 1]. Moreover, since R is smooth (since it is Hilbert),
it follows from Theorem 5.42 that the norm in R is Gateaux differentiable. Thus, by Proposition
4.16, the norm in R is subdifferentiable on R \ {0} and the Gateaux derivative f ′(x) is the unique
element of ∂f(x) for all x ∈ R \ {0}. Now, by Remark 5.44, we have

f ′(x) = I(x)
∥x∥

= x

∥x∥
=
{
−1, if x < 0
1, if x > 0.

Therefore,

∂f(x) =
{
−1, if x < 0
1, if x > 0.

Thus, we obtain the characterization of the operator A = ∂f given in (5.11.378). Since the norm
is a convex, proper and l.s.c. function, it follows that problem (5.11.377) has a strong solution for
all x ∈ R when ∂f = A.

(2) Let us consider another particular case of (5.11.377). Take X = L2(Ω), where Ω ⊂ Rn is open,
bounded and with smooth boundary, and f : L2(Ω) −→ (−∞,+∞] the function given by

f(u) =


1
2

∫
Ω
|∇u|2dx, if u ∈ H1(Ω)

+∞, otherwise.

Note that the function f is proper, since

De(f) = {u ∈ L2; f(u) < +∞} = H1(Ω) ̸= ∅.
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We saw in Example 4.11 that f is l.s.c., and moreover, f is convex. Indeed,

f(tu+ (1− t)v) = 1
2

∫
Ω
|∇(tu+ (1− t)v)|2dx

≤ 1
2

∫
Ω

(t|∇u|+ (1− t)|∇v|)2dx

= 1
2

∫
Ω
t2|∇u|2 + 2t(1− t)|∇u||∇v|+ (1− t)2|∇v|2dx

= 1
2

∫
Ω
t|∇u|2 + (1− t)|∇v|2 − t(1− t)(|∇u| − |∇v|)2dx

≤ 1
2

∫
Ω
t|∇u|2 + (1− t)|∇v|2dx

= tf(u) + (1− t)f(v).

We conclude that f is convex, proper and l.s.c.. Therefore, by Proposition 5.46, the operator ∂f is
m-monotone. Hence, by Theorem 5.54, ∂f is maximal monotone.

Let A be the operator on L2(Ω) defined by

D(A) = {u ∈ H2(Ω); ∂νv = 0 on ∂Ω}
Au = −∆u, ∀u ∈ D(A).

We saw in Example 5.57 that A is maximal monotone.

We claim that A = ∂f , i.e., −∆ = ∂f . Indeed, let u ∈ D(A) and v ∈ De(f). We have,

⟨Au, v − u⟩ =
∫

Ω
(−∆u)(v − u) dx

=
∫

Ω
(−∆u)v dx+

∫
Ω

(∆u)u dx

=
∫

Ω
∇u∇v dx−

∫
Ω
|∇u|2 dx

≤ 1
2

∫
Ω

(|∇u|2 + |∇v|2) dx−
∫

Ω
|∇u|2 dx

= 1
2

∫
Ω
|∇v|2 dx− 1

2

∫
Ω
|∇u|2 dx

= f(v)− f(u).

It follows that Au ∈ ∂f(u), ∀u ∈ D(A). Thus, −∆ ⊂ ∂f and, since −∆ is maximal monotone,
−∆ = ∂f .

Therefore, problem (5.11.377) with x = u0 has a strong solution S(t)u0 for all u0 ∈ L2(Ω), where
S is the semigroup generated by −∂f = ∆ on L2(Ω).

Example 5.279 If Ω ⊂ Rn is open, bounded and has smooth boundary, the operator A of LpΩ, 1 < p <

∞, defined by

D(A) = W 2,pΩ ∩W 1,p
0 Ω

Au = −∆u

is m-accretive, as was seen in Example 5.91. Since A is closed (because A is m-accretive) and LpΩ is
reflexive, if S is the semigroup generated by −A, the function S(t)u0 is, by Corollary 5.259, a strong
solution of the problem 

d

dt
u+Au = 0
u(0) = u0
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for all u0 ∈W 2,pΩ ∩W 1,p
0 Ω.

Example 5.280 Let β : R → R be a monotone operator and Ω an open set of Rn. Let us define the
operator β̃ : LpΩ→ LpΩ, 1 < p <∞, by

D(β̃) = {u ∈ LpΩ; ∃v ∈ LpΩ such that v(x) ∈ β(u(x)) a.e. in Ω}
β̃(u) = {v ∈ LpΩ; v(x) ∈ β(u(x)) a.e. in Ω}, ∀u ∈ D(β̃)

we will show that β̃ is m-accretive.

Claim 1: β̃ is accretive.

Indeed, by item b) of Example 5.71, we have F (u) = u|u|p−2∥u∥2−p
p , ∀u ∈ LpΩ. Thus, if (u1, v1), (u2, v2) ∈

β̃, we have

⟨v1 − v2, F (u1 − u2)⟩ = ∥u1 − u2∥2−p
p

∫
Ω

(u1 − u2)|u1 − u2|p−2(v1 − v2)dx ≥ 0

since (u1(x)− u2(x))( v1(x)︸ ︷︷ ︸
∈β(u1(x))

− v2(x)︸ ︷︷ ︸
∈β(u2(x))

) ≥ 0, since β is monotone. It follows from Corollary 5.69 that

β̃ is accretive.

Claim 2: β̃ is m-accretive if Ω is bounded or if 0 ∈ β(0). Indeed, it suffices to show that Im(I+β̃) =
LpΩ.

Case I: Ω bounded

Let v ∈ LpΩ, since β is, by hypothesis, accretive (since, in Hilbert spaces, monotonicity is equivalent to
the accretivity condition), (I + β)−1 is, by Proposition 5.75, a single-valued operator. Thus, setting, for
each x ∈ Ω,

u(x) = (I + β)−1v(x)

it suffices to show that u ∈ LpΩ, since from there it follows v(x) ∈ (I + β)u(x), that is, v(x) − u(x) ∈
β(u(x)) with v − u ∈ LpΩ, hence u ∈ D(β̃) and v − u ∈ β̃(u), or even, v ∈ (I + β̃)u as we wanted.

Let us show that u ∈ LpΩ. Indeed, by Proposition 5.76, since the operator β : R → R is accretive, then,
J1 = (I + β)−1 is a contraction, and since u is measurable, set c = (I + β)−1(0), then

|u(x)| = |u(x) + c− c| ≤ |u(x)− c|+ |c|
= |(I + β)−1v(x)− (I + β)−1(0)|+ |c|
≤ |v(x)|+ |c|

in this way, if Ω is bounded, c ∈ LpΩ and, therefore, u ∈ LpΩ.

Case II: 0 ∈ β(0)

If 0 ∈ β(0) then c = (I + β)−1(0) = 0, whence |u(x)| ≤ |v(x)| which implies u ∈ LpΩ. Now, since β̃
is closed and LpΩ is reflexive for 1 < p < ∞, if S is the semigroup generated by −β̃, then the function
S(t)u0, u0 ∈ D(β̃), is, by Corollary 5.259, in both cases, a strong solution of the problem

d

dt
u+ β̃(u) ∋ 0
u(0) = u0

Example 5.281 The operator A + β̃ of LpΩ, 1 < p < ∞, where A = −∆ and β̃ are the operators
described in the examples above, is m-accretive. Indeed, first let us make considerations in order to use
Corollary 5.119.
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If u ∈ LpΩ, then F (u)(x) = u(x)|u(x)|p−2∥u∥2−p
p and, therefore, if (u, v) ∈ A, we have

⟨v, F (β̃λu)⟩ = ∥βλu∥2−p
p

∫
Ω
−∆u(x)(βλ(u(x))|βλ(u(x))|p−2dx

= (p− 1)∥βλu∥2−p
p

∫
Ω
|βλ(u(x))|p−2|∇u(x)|2β′

λ(u(x))dx ≥ 0

since the derivative β′
λ of βλ is non-negative since, by Theorem 5.79, βλ is accretive. By Corollary 5.119,

A + β̃ = −∆ + β̃ is m-accretive. Thus, by Proposition 5.89, it is closed and since LpΩ is reflexive, the
problem 

d

dt
u+ (A+ β̃)u ∋ 0

u(0) = u0

has, by Corollary 5.259, for all u0 ∈ D(A + β̃), a strong solution S(t)u0, where S is the semigroup
generated by −(A+ β̃).

Example 5.282 Let C be a closed convex subset of a reflexive Banach space, T : C → C a Lipschitzian

map with constant α and t ≥ 0. By Example 5.80, item a) I − T
t
∈ A

(
α− 1
t

)
.

Note that
D

(
I − T
t

)
= D(T ) = C. (5.11.379)

Let us show that there exists λ0 > 0 such that for 0 < λ < λ0

C ⊂ Im
(
I + λ

I − T
t

)
. (5.11.380)

Indeed, let x ∈ C, λ > 0 and define

G(y) = t

t+ λ
x+ λ

t+ λ
Ty

Note that G : C → C. Indeed, let y ∈ C. We have to show that G(y) ∈ C. Since T : C → C, Ty ∈ C and
from the fact that G(y) = t

t+λx+ λ
t+λTy and t

t+λ + λ
t+λ = 1 it follows that G(y) is a convex combination

of x and Ty. Thus G(y) ∈ C. Moreover,

∥G(y)−G(z)∥ = λ

t+ λ
∥Ty − Tz∥ ≤ λα

t+ λ
∥y − z∥.

• If α ≤ 1 then G is a strict contraction for all λ > 0.

• If α < 1 then G is a strict contraction whenever λ < t

α− 1 .

In any case, taking λ0 = t

α− 1 we have that G is a strict contraction. Thus it has a unique fixed point
y ∈ C, that is,

y = G(y) = t

t+ λ
x+ λ

t+ λ
Ty

or even,
t+ λ

t
y − λ

t
Ty = x

which implies [
I − λI + T

t

]
y = x

and therefore,

x ∈ Im
(
I − λI + T

t

)
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which shows (5.11.380) and from (5.11.379) it follows that

D

(
I − T
t

)
= C ⊂ Im

(
I − λI + T

t

)
.

Observe that I − T
t

is a closed operator. Setting A = I−T
t and x ∈ C, by Corollary 5.259 S(t)x is

a strong solution of (5.10.293)-(5.10.294) where S is the semigroup generated by −A = T − I
t

.

Example 5.283 Let φ : R → R be a continuous, strictly increasing function such that φ(0) = 0,
φ(R) = R. Consider the operator

A : L1(0, 1)→ L1(0, 1),

defined by

D(A) =
{
u ∈ C

(
[0, 1];L1(0, 1)

)
;u(0) = 0 and φ(u) is absolutely continuous

}
and

Au = φ(u)′ = d

dx
[φ(u(x))] .

Note that Au ∈ L1(0, 1) since φ ◦ u is continuous on [0, 1]. Then the problem
ut + (φ(u))x = 0, t > 0, 0 < x < 1
u(0, x) = u0(x), 0 < x < 1
u(t, 0) = 0, t > 0

Can be rewritten as {
d
dtu+Au = 0, t > 0, 0 < x < 1
u(0, x) = u0(x), 0 < x < 1

since u(t) ∈ D(A) implies that u(t, 0) = 0 for all t > 0.

Let us show that A is m-accretive.
A is accretive: Indeed, let p : R → R be a Lipschitzian, non-decreasing function, such that |p| ≤ 1 and
p(0) = 0, and j : R→ R defined by

j(s) =
∫ s

0
p(τ)dτ.

Let u, v ∈ D(A). Then

∥u− v + λ(Au−Av)∥L1(0,1) =
∫ 1

0
|u− v + λ(Au−Av)|dx

=
∫ 1

0
|u− v + λ(φ(u)′ − φ(v)′)|dx

≥
∫ 1

0
|u− v + λ(φ(u)′ − φ(v)′)||p(φ(u)− φ(v))|dx

≥
∫ 1

0
[u− v + λ(φ(u)′ − φ(v)′)] p(φ(u)− φ(v))dx

=
∫ 1

0
(u− v)p(φ(u)− φ(v))dx+ λ

∫ 1

0
(φ(u)− φ(v))′p(φ(u)− φ(v))dx (5.11.381)

(5.11.382)

From the definition of j we have that

d

dx
j(s(x)) = d

dx

∫ s(x)

0
p(τ)dτ = d

dx
p(s(x)) = p(s(x)) d

dx
s(x).
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Setting s = φ(u)− φ(v) it follows that

(j(φ(u)− φ(v)))′ = p(φ(u)− φ(v))(φ(u)− φ(v))′,

that is, ∫ 1

0
(φ(u)− φ(v))′p(φ(u)− φ(v))dx =

∫ 1

0
(j(φ(u)− φ(v)))′dx (5.11.383)

= j(φ(u(1))− φ(v(1))︸ ︷︷ ︸
≥0

− j(φ(u(0))− φ(v(0)))︸ ︷︷ ︸
=0

≥ 0, (5.11.384)

since p(0) = 0 and p does not decrease, i.e., j(s) =
∫ s

0 p(τ)︸︷︷︸
≥0

dτ ≥ 0. Thus, (5.11.381) and (5.11.383) we

obtain
∥u− v + λ(Au−Av)∥L1(0,1) ≥

∫ 1

0
(u− v)p(φ(u)− φ(v))dx (5.11.385)

In particular, (5.11.385) holds for p = pn where, for each n ∈ N, pn : R→ R is defined by

pn(s) =
{

ns, if |s| < 1
n

sign(s), if |s| ≥ 1
n

where

sign(s) =


1, if s > 0
0, if s = 0
−1, if s < 0

But pn converges at every point s ∈ R to sign(s). Thus, pn(φ(u) − φ(v)) converges, at each point of
[0, 1], to sign(φ(u) − φ(v)). Moreover, since φ is strictly increasing, sign(φ(u) − φ(v)) = sign(u − v).
Hence, pn(φ(u)− φ(v)) converges at each point of [0, 1] to sign(u− v). Since

|(u− v)pn(φ(u)− φ(v))| = |u− v| |pn(φ(u)− φ(v))|︸ ︷︷ ︸
≤1

≤ |u− v|

and by hypothesis u− v is integrable, then, by the Lebesgue Dominated Convergence Theorem, it follows
that

∥u− v + λ(Au−Av)∥L1(0,1) ≥
∫ 1

0
(u− v)sign(u− v)dx =

∫ 1

0
|u− v|dx,

that is,
∥u− v + λ(Au−Av)∥L1(0,1) ≥ ∥u− v∥L1(0,1)dx,

that is, A is accretive.
A is m-accretive: For this, we must show that for all h ∈ L1(0, 1) there exists u ∈ D(A) such that

u+Au = u+ φ(u)′ = h

or, setting β = φ−1 and v = φ(u), show that there exists v absolutely continuous satisfying{
v′ + β(v) = h

v(0) = 0 (5.11.386)

Consider first h ∈ C([0, 1]). By Peano’s Theorem, equation (5.11.386) has a local solution v on an interval
[0, a), 0 < a ≤ 1, such that v(0) = 0. Let us show that v is unique. Indeed, suppose there exists another
solution ω, then {

ω′ + β(ω) = h

ω(0) = 0

Hence,
(v − ω)′ + β(v)− β(ω) = 0
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which implies that
1
2
d

dx
|v − ω|2 + [β(v)− β(ω)] (v − ω) = 0.

Since β is increasing we have that [β(v)− β(ω)] (v − ω) ≥ 0 and therefore

d

dx
|v − ω|2 ≤ 0.

Integrating from 0 to x, 0 ≤ x < a we have:

0 ≥ |v(x)− ω(x)|2 − |v(0)− ω(0)|2︸ ︷︷ ︸
=0

which implies v = ω in [0, a) proving the uniqueness of solution.

To extend v to the interval [0, 1], observe that, exactly as it was shown that A is an accretive
operator of L1(0, 1), it is shown that A is accretive in L1(0, a). Observe also that 0 ∈ D(A) and A(0) =
d

dx
[φ(0)] = 0. Hence, setting u = β(v) we have:

∫ a

0
|u|dx =

∫ a

0
|u− 0|dx ≤

∫ a

0
|u− 0 +Au−A0|dx

=
∫ a

0
|u+Au|dx ≤

∫ 1

0
|h|dx = ∥h∥L1(0,1)

and therefore, if 0 ≤ x < a,

|v(x)| =
∣∣∣∣∫ x

0
v′(s)ds

∣∣∣∣ ≤ ∫ a

0
|v′|ds

=
∫ a

0
|h− β(v)|ds ≤

∫ a

0
|h|ds+

∫ a

0
|u|ds

≤ 2∥h∥L1(0,1)

that is,
|v(x)| ≤ 2∥h∥L1(0,1)

and therefore the solution v can be extended to the interval [0, 1].

Let now h ∈ L1(0, 1) and (hn) ⊂ C([0, 1]) such that hn → h in L1(0, 1). From what has already
been demonstrated, for each n ∈ N there exists un such that un +Aun = hn. From this and the accretivity
of A it follows

∥un − um∥L1(0,1) ≤ ∥un − um +Aun −Aum∥L1(0,1) = ∥hn − hm∥ −→ 0

when m,n→∞. Thus there exists u ∈ L1(0, 1) such that un → u in L1(0, 1). But then, Aun = hn−un →
h− u in L1(0, 1).

To complete the proof it suffices to demonstrate that A is a closed operator. Let, for this, (un) ⊂
D(A), un → u and Aun → ω in L1(0, 1). We must show that u ∈ D(A) and Au = ω. By hypothesis
φ(un) is absolutely continuous, thus∣∣∣∣φ(un)(x)−

∫ x

0
ω(τ)dτ

∣∣∣∣ =
∣∣∣∣∫ x

0
(φ(un)′ − ω)(τ)dτ

∣∣∣∣
≤

∫ 1

0
|(φ(un)′ − ω)(τ)|dτ = ∥Aun − ω∥︸ ︷︷ ︸

→0

, ∀x ∈ [0, 1].

Therefore,
lim

n→∞
φ(un)(x) =

∫ x

0
ω(τ)dτ.
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By the continuity of β

lim
n→∞

un(x) = β

(∫ x

0
ω(τ)dτ

)
.

On the other hand, since un → u in L1(0, 1), there exists a sequence nk such that

lim
k→∞

unk
(x) = u(x) a.e. in [0, 1].

Hence,

u(x) = β

(∫ x

0
ω(τ)dτ

)
a.e. in [0, 1].

Now, redefine u so that the equality holds at every point of [0, 1], from where it follows that u is continuous,
u(0) = 0 and

φ(u)(x) = φ(β(
∫ x

0
ω(τ)dτ)) =

∫ x

0
ω(τ)dτ.

Note that φ(u) is absolutely continuous. Thus u ∈ D(A) and Au = φ(u)′ = ω. Therefore A is m-accretive.

From this it follows that A is under the conditions of Theorem ?? (Crandall-Liggett) and by Remark
5.260 the function S(t)u0, where S is the semigroup generated by −A, is a generalized solution for all
u0 ∈ D(A).

Example 5.284 Let φ : R −→ R, be strictly increasing and such that φ(0) = 0 and φ(R) = R. Consider
A : L1(0, 1) −→ L1(0, 1) defined by

D(A) = {u ∈ C([0, 1]);u(0) = u(1) = 0, φ(u) and [φ(u)]′ are absolutely continuous}

and
Au = −[φ(u)]′′, u ∈ D(A).

Let us prove that A is m-accretive.

Let p and j be as in the previous example. From the fact that |p| ≤ 1, ∥|a| − |b|∥ ≤ |a − b| and
a ≤ |a|, it follows that

∥u− v + λ(Au−Av)∥L1(0,1) =
∫ 1

0
|u− v − λ(φ(u)− φ(v))′′|dx

≥
∫ 1

0
|u− v − λ(φ(u)− φ(v))′′| · |p(φ(u)− φ(v))|dx

≥
∫ 1

0
(u− v)p(φ(u)− φ(v))dx− λ

∫ 1

0
(φ(u)− φ(v))′′ · p(φ(u)− φ(v))dx.

The idea now is to prove that the second term of the sum above is positive, for if this is the case,

∥u− v − λ(Au−Av)∥L1(0,1) ≥
∫ 1

0
(u− v)p(φ(u)− φ(v))dx −→ ∥u− v∥L1(0,1),

as already done previously.

If s = φ(u)− φ(v), then j′(s) = s′p(s) is absolutely continuous. In this way∫ 1

0
(j(s))′′dx = (j(s))′(1)− (j(s))′(0) = 0.
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But
(j(s))′′ = [s′ p(s)]′ = (s′)2 p′(s) + s′′ p(s),

whence ∫ 1

0
(φ(u)− φ(v))′′ p(φ(u)− φ(v))dx = −

∫ 1

0
(φ(u)′ − φ(v)′)2 p′(φ(u)− φ(v)) ≤ 0,

since p is increasing (p′ ≥ 0).

This proves that A is accretive.

To prove that A is m-accretive, set β = φ−1 and v = φ(u). As in the previous example, we must
prove that given h ∈ L1(0, 1), there exists v such that v and v′ are absolutely continuous, v(0) = v(1) = 0
and β(v)− v′′ = h.

Observe initially that if v satisfies the statement above, then v is bounded and ∥v∥∞ ≤ 2∥h∥L1(0,1).
Indeed, since A is accretive and A(0) = 0,

∥β(v)∥L1(0,1) = ∥u∥L1(0,1) = ∥u− 0∥L1(0,1) ≤ ∥u− 0 + (Au−A0)∥L1(0,1) = ∥h∥L1(0,1).

Since v(0) = v(1) = 0, there exists ξ ∈ (0, 1) such that v′(ξ) = 0. Thus,

|v′(x)| ≤
∫ x

ξ

|v′′(τ)|dτ ≤
∫ 1

0
|β(v)(τ)− h(τ)|dτ ≤ 2∥h∥L1(0,1)

whence
|v(x)| ≤

∫ x

0
|v′(τ)|dτ ≤ 2∥h∥1, ∀x ∈ [0, 1]. (5.11.387)

Let us keep, for a moment, this information and consider an auxiliary map β̃ : R −→ R, bounded,
non-decreasing and such that β̃(0) = 0

And let us define,

Tv(x) =
∫ 1

0
g(x, y)(β̃(v(y))− h(y))dy, v ∈ L1(0, 1), (5.11.388)

where
g(x, y) =

{
y(x− 1) if 0 ≤ y < x ≤ 1;
x(y − 1) if 0 ≤ x ≤ y ≤ 1.

Then it is obvious that Tv(0) = Tv(1) = 0, Tv and (Tv)′ are absolutely continuous. To conclude
the proof, it suffices to show that T : S −→ S, S ⊂ C([0, 1]), has a fixed point.

Let K > 0, such that |β̃(s)| ≤ K,∀s ∈ R. Then

|Tv(x)| ≤
∫ 1

0
|g(x, y)| · |β̃(v)(y)− h(y)|dy

≤
∫ 1

0
|β̃(v)(y)− h(v)|dy ≤ K + ∥h∥1,

and also
|(Tv)′(x)| ≤

∫ 1

0
|β̃(v)(y)− h(y)|dy ≤ K + ∥h∥1.
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Then, T (L1(0, 1)) ⊆ S where

S = {w ∈ C([0, 1]);w(0) = w(1) = 0, ∥w∥∞, ∥w′∥∞ ≤ K + ∥h∥1}.

By the Arzelà-Ascoli theorem, S is relatively compact in C([0, 1]). By Schauder’s fixed point theo-
rem, it suffices to prove that T is continuous.

Let {vn} ⊂ C([0, 1]) such that vn → v in C([0, 1]). Then β̃(vn)(y) → β̃(v)(y) and β̃ is bounded.
We have

Tvn(x)− Tv(x) =
∫ 1

0
g(x, y)(β̃(vn)(y)− β̃(v)(y))dy,

whence
|Tvn(x)− Tv(x)| ≤

∫ 1

0
|β̃(vn)(y)− β̃(v)(y)|dy −→ 0,

by the Lebesgue dominated convergence theorem. Therefore, T has a fixed point which is a solution of
β̃(v)− v′′ = h.

Let us return then to the proof, let h ∈ C([0, 1]), and consider

β̃(s) =


2∥h∥∞ if β(s) > 2∥h∥∞;
β(s) if |β(s)| ≤ 2∥h∥∞;
−2∥h∥∞ if β(s) < −2∥h∥∞.

Thus, β̃ : R −→ R is non-decreasing and β̃(0) = 0, so, by what was done above, there exists v ∈ S, such
that β̃(v)− v′′ = h. Now, let y0 ∈ [0, 1] such that v(y0) = maxx∈[0,1]{v(x)}, so, v′′(y0) < 0, hence

β̃(v(x)) ≤ β̃(v(y0)) ≤ β̃(v(y0))− v′′(y0) = h(y0) ≤ max
x∈[0,1]

{h(x)}

for all x ∈ [0, 1]. Analogously, let y1 such that v(y1) = minx∈[0,1]{v(x)}, in this case, we have

β̃(v(x)) ≥ min
x∈[0,1]

{h(x)}

for all x ∈ [0, 1]. That is, for all x ∈ [0, 1]

|β̃(v(x))| ≤ ∥h∥∞

and, therefore, β̃(v) = β(v) and v satisfies β(v)− v′′ = h.

If h ∈ L1(0, 1), there exists {hn} ⊂ C([0, 1]) such that hn → h in L1(0, 1). We can consider
∥hn∥1 < ∥h∥1. With this, define for each n ∈ N

β̃n(s) =


2∥hn∥1 if β(s) > 2∥hn∥1;
β(s) if |β(s)| ≤ 2∥hn∥1;
−2∥hn∥1 if β(s) < −2∥hn∥1.

and

β̃(s) =


2∥h∥∞ if β(s) > 2∥h∥∞;
β(s) if |β(s)| ≤ 2∥h∥∞;
−2∥h∥∞ if β(s) < −2∥h∥∞.

It is left as an exercise to the reader to verify that β̃n → β̃ uniformly on R. Thus, if Tn is the operator,
as in (5.11.388), but associated to β̃n and hn and T the operator associated to β̃ and h, we have that
Tn → T uniformly on [0, 1].
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On the other hand, if vn is a fixed point of Tn, we have, by the argument above, that

β(vn)− v′′
n = hn

and from (5.11.387) ∥v∥∞ ≤ 2∥hn∥1, but, ∥hn∥1 ≤ ∥h∥1, so,

∥vn∥∞ ≤ ∥h∥1,

since {vn} ⊂ S = S(β̃, h) which is relatively compact, we have that there exist v ∈ S̄ and {vnk
} ⊂ {vnk

}
(which we will continue to denote by {vn}) such that vn → v uniformly on [0, 1], consequently,

Tn(vn) −→ T (v) uniformly on [0, 1]

but,
Tn(vn) = vn∀n ∈ N

therefore,
vn −→ T (v) uniformly on [0, 1]

and, by uniqueness of the limit, we have
Tv = v.

Thus, v is a fixed point of T and, therefore, satisfies, β̃(v)− v′′ = h. Still, from β̃n → β̃ uniformly on R
and vn → v uniformly on [0, 1], we have

β̃n(vn)→ β̃(v) uniformly on [0, 1]

but, β̃n(vn) = β(vn), for all n ∈ N and, β is continuous, so

β(vn)→ β(v) uniformly on [0, 1]

thus, by uniqueness of the limit, we have
β(v) = β̃(v)

as we wanted.

Therefore, A is m-accretive. And thus, for all u0 ∈ D(A), S(t)u0 is a generalized solution of the
problem 

ut − (φ(u))xx = 0, t > 0, 0 < x < 1;
u(0, x) = u0(x), 0 < x < 1;
u(t, 0) = u(t, 1) = 0, t > 0.

(5.11.389)

Example 5.285 Let φ : R −→ R be continuous, non-decreasing and such that φ(0) = 0. Define A :
C([0, 1]) −→ C([0, 1]) by

D(A) = {u ∈ C([0, 1]);u(0) = u(1) = 0, u, u′, u′′ ∈ C([0, 1])},

Au = {w ∈ C([0, 1]);φ(−w) = u′′}.

Let us prove that A is m-accretive.

Let u1, u2 ∈ D(A), w1 ∈ Au1 and w2 ∈ Au2 and suppose u1 ̸= u2. Then

∥u1 − u2∥ = |u1(x0)− u2(x0)| > 0, x0 ∈ (0, 1).

Since u1−u2 is continuous, the set of points where this function attains its maximum is closed, so
it has a smallest element x0. To fix ideas, suppose u1(x0) > u2(x0). We must have w1(x0) ≥ w2(x0).
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Indeed, if w1(x0) < w2(x0), then w1(x) < w2(x) for all x in some open interval J containing x0.
Since φ is non-decreasing,

(u1 − u2)′′(x) = φ(−w1(x))− φ(−w2(x))
≥ −w1(x) + w2(x) > 0, ∀x ∈ J.

Thus, (u1− u2) is a convex function on J . But x0 is a maximum of u1− u2, whence u1− u2 must
be constant on J , which contradicts the minimality of x0.

Thus, for λ > 0

∥u1 − u2 + λ(w1 − w2)∥ ≥ |u1(x0)− u2(x0) + λ(w1(x0)− w2(x0))|
≥ |u1(x0)− u2(x0)| = ∥u1 − u2∥,

proving that A is accretive.

It remains to prove that given h ∈ C([0, 1]), there exists u ∈ D(A) such that h ∈ (I +A)u, that is,
u′′ = φ(u− h).

Let us assume initially that |φ(s)| ≤ K, ∀s ∈ R. Consider, as in the previous example, T :
C([0, 1]) −→ C([0, 1])

Tu(x) =
∫ 1

0
g(x, y) · φ(u(y)− h(y))dy.

Then (Tu)′′ = φ(u− h). It suffices to prove that T has a fixed point. We have

|Tu(x)| ≤
∫ 1

0
|φ(u(y))− h(y)|dy ≤ K

and |(Tu)′(x)| ≤ K.

Thus T (C([0, 1])) ⊂ S = {w; ∥w∥, ∥w′∥ ≤ K}. It is sufficient then to prove that T is continuous.

Let un −→ u in C([0, 1]). Then φ(un(y) − h(y)) −→ φ(u(y) − h(y)) and |φ(un(y) − h(y))| ≤ K.
By the Lebesgue dominated convergence theorem,

|Tun(x)− Tu(x)| ≤
∫ 1

0
|φ(un(y)− h(y))− φ(u(y)− h(y))|dy −→ 0.

Since Tu = u, we have that u ∈ D(A).

Observe now that if v is a solution of our problem, then it is bounded, whether φ is bounded or
not:

∥v∥ ≤ ∥v − 0 + 1((h− v)− 0)∥ = ∥h∥.

Hence, if φ is unbounded, define

φ̃ =


φ(2∥h∥), if s > 2∥h∥;
φ(s), if |s| ≤ 2∥h∥;

φ(−2∥h∥) if s < −∥h∥.

Then φ̃ is bounded and satisfies the conditions imposed on φ. Therefore, if u is a solution of
u′′ = φ̃(u− h), since ∥u∥ ≤ ∥h∥, it follows that φ̃(u− h) = φ(u− h). In any case, h ∈ (I +A)u.
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Therefore, for all u0 ∈ D(A), S(t)u0 is a generalized solution of the problem
φ(ut)− uxx = 0, t > 0, 0 < x < 1;
u(0, x) = u0(x), 0 < x < 1;
u(t, 0) = u(t, 1) = 0, t > 0.

(5.11.390)

Indeed
0 ∈ ut +Au⇐⇒ −ut ∈ Au⇐⇒ φ(ut) = uxx.

Example 5.286 Let Ω ⊂ Rn be a bounded open subset with sufficiently smooth boundary. Consider the
Cauchy problem: 

utt −∆u = 0 in Ω× (0,∞),
u = 0 on Γ0 × (0,∞),
∂u

∂ν
+ g(ut) = 0 on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(5.11.391)

where g : R→ R is a monotone increasing, continuous function satisfying the conditions:

g(s)s > 0 for s ̸= 0 and ks ≤ g(s) ≤ Ks for |s| > 1, k,K > 0.

Also, assume that ∂Ω = Γ = Γ0 ∪ Γ1 satisfies Γ0 ∩ Γ1 = ∅. We will show the existence of strong and
generalized solutions for problem (5.11.391).

Initially, consider the set

H1
Γ0

(Ω) = {u ∈ H1(Ω); γ0u = 0 on Γ0}.

This set is a closed subspace of H1(Ω), when both are endowed with the inner product given by

(u, v)1 = (∇u,∇v).

Moreover, there exists a constant c > 0 such that

∥u∥ ≤ c∥∇u∥, ∀u ∈ H1
Γ0

(Ω).

Let us denote V = H1
Γ0

(Ω). Consider also the Laplacian operator −∆ : D(−∆) ⊂ L2(Ω)→ L2(Ω)
with domain

D(−∆) =
{
v ∈ V ∩H2(Ω); ∂v

∂ν
= 0 on Γ1

}
.

Such operator is defined by the triple {V, L2(Ω), a}, where a : V × V → R is given by a(u, v) =
(∇u,∇v), ∀u, v ∈ V. From this it follows that

D(−∆) = {u ∈ V; ∃fu ∈ L2(Ω) such that a(u, v) = (f, v), ∀v ∈ V}

and that D(−∆) is dense in V. Also from the fact that −∆ is defined by a triple, with a coercive, it
follows that −∆ admits an extension, which we will still denote by −∆, that is, we have −∆ : V → V ′,

which satisfies ∥ −∆u∥V′ = ∥u∥V , for all u ∈ V, and also

⟨−∆u,w⟩V′,V = a(u,w), ∀u,w ∈ V.

Regarding the operator −∆, we can state:

Claim 1: If v ∈ V then γ0v ∈ H1/2(Γ1).
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Claim 2: If u ∈ V ∩H2(Ω) with ∂u

∂ν
= 0 on Γ1 and v ∈ V then ⟨γ1u, γ0v⟩H−1/2(Γ),H1/2(Γ) = 0.

Claim 3: The map γ0 : V → H1/2(Γ1) is surjective.

For the proofs of the claims made about −∆, consult the appendix.

The operator N

Consider the Neumann operator N : H−1/2(Γ1)→ V given by

Nq = p⇐⇒


−∆p = 0 in Ω;
p = 0 on Γ0;
∂p

∂ν
= q on Γ1.

Note that, in principle, the conditions p = 0 on Γ0 and ∂p

∂ν
= q on Γ1 are in the sense of the trace

of order zero and one, respectively.

Let us show that this operator is well defined and continuous.

Let q ∈ H−1/2(Γ1). Define φ : V → R by

φ(v) = ⟨q, γ0v⟩H−1/2(Γ1),H1/2(Γ1).

We have γ0v ∈ H1/2(Γ1), for all v ∈ V, by Claim 1.

From the continuity of q and the continuity of the trace map of order 0, we have that φ ∈ V ′.

Since a(u, v) = (∇u,∇v)L2(Ω) is a bilinear, continuous and coercive function, by the Lax-Milgram
lemma, there exists a unique p ∈ V such that

⟨q, γ0v⟩H−1/2(Γ1),H1/2(Γ1) = φ(v) = a(p, v) = (∇p,∇v)L2(Ω), ∀ v ∈ V. (5.11.392)

In particular, for v ∈ C∞
0 (Ω), from (5.11.392) and (??) we obtain

(∇p,∇v) = 0, ∀ v ∈ C∞
0 (Ω), (5.11.393)

By 5.11.393, since (−∆p, v) = (∇p,∇v), then −∆p = 0 in D′(Ω), and hence, ∆p = 0 ∈ L2(Ω).
With this, the second generalized Green’s formula and an argument analogous to that used in Claim 2,
we obtain

(∆p, v) + (∇p,∇v) = ⟨γ1p, γ0v⟩H−1/2(Γ),H1/2(Γ) = ⟨γ1p, γ0v⟩H−1/2(Γ1),H1/2(Γ1), ∀v ∈ V,

that is,
(∇p,∇v) = ⟨γ1p, γ0v⟩H−1/2(Γ1),H1/2(Γ1), ∀v ∈ V.

From (5.11.392) it follows that

⟨q, γ0v⟩H−1/2(Γ1),H1/2(Γ1) = ⟨γ1p, γ0v⟩H−1/2(Γ1),H1/2(Γ1), ∀v ∈ V.

By Claim 3, it follows that q = γ1p in H−1/2(Γ1).

Now, let us prove that N is a continuous operator.

Initially, let us prove that N is a closed operator. For this, let us consider {qn} ⊂ D(N) and

- 437 -



5 Monotone and Accretive Operators

q ∈ H−1/2(Γ1) such that qn → q in H−1/2(Γ1), and let us assume that there exists f ∈ V such that
Nqn → f in V. To obtain that N is a closed operator, we must prove that q ∈ D(N) and f = Nq. Now,
but it is clear that q ∈ D(N), since D(N) = H−1/2(Γ1). It remains to prove that f = Nq.

For each n ∈ N, letting pn = Nqn, we have
−∆pn = 0 in Ω;
γ0pn = 0 on Γ0;
γ1pn = qn on Γ1.

Since pn → f in V, it follows that ∆pn → ∆f in D′(Ω), whence ∆f = 0 ∈ L2(Ω), and hence,
f ∈ H1(Ω), with pn → f in H1(Ω). Since γ1 : H1(Ω) → H−1/2(Γ) ↪→ H−1/2(Γ1) is continuous, (the
last embedding holds by arguments analogous to those of Claim 1) it follows that γ1f = q in H−1/2(Γ1).
Moreover, by the continuity of γ0 : H1(Ω) → H1/2(Γ) ↪→ H1/2(Γ1), we have γ0f = 0 on Γ0. Therefore,
by the definition of the operator N, we obtain Nq = f.

Since D(N) = H−1/2(Γ1), by Theorem 1, it follows that N and N∗ are continuous, with D(N∗) =
V ′.

Now, let us prove that N∗(−∆v) = γ0v, for all v ∈ V. It suffices to prove the equality for
v ∈ D(−∆), since D(−∆) is dense in V.

Since
D(−∆) =

{
u ∈ H2(Ω) ∩ V; ∂u

∂ν
= 0 on Γ1

}
,

then
−∆v ∈ L2(Ω) ↪→ V ′ and ∂v

∂ν
= 0 on Γ1, for v ∈ D(−∆). (5.11.394)

From the adjoint property, it follows that

⟨N∗(−∆v), q⟩H1/2(Γ1),H−1/2(Γ1) = ⟨−∆v,Nq⟩V′,V , (5.11.395)

for q ∈ H−1/2(Γ1).

Now, let p satisfying 
∆p = 0 in Ω
p = 0 on Γ0
∂p

∂ν
= q on Γ1

⇔ Nq = p. (5.11.396)

From (5.11.394)-(5.11.396), the first generalized Green’s formula and an argument analogous to
that of Claim 2,

⟨N∗(−∆v), q⟩H1/2(Γ1),H−1/2(Γ1) = ⟨−∆v,Nq⟩V′,V
= ⟨−∆v, p⟩V′,V
= (−∆v, p)
= (∆p, v)− (p,∆v)
= ⟨γ1p, γ0v⟩H−3/2(Γ),H3/2(Γ) − ⟨γ0p, γ1v⟩H−1/2(Γ),H1/2(Γ)
= ⟨γ1p, γ0v⟩H−3/2(Γ),H3/2(Γ)
= ⟨γ1p, γ0v⟩H−3/2(Γ1),H3/2(Γ1).

(5.11.397)

But v ∈ H1(Ω) implies γ0v ∈ H1/2(Γ1) and p ∈ H1(Ω) implies γ1 ∈ H−1/2(Γ1), and thus,

⟨N∗(−∆v), q⟩H1/2(Γ1),H−1/2(Γ1) = ⟨γ0v, γ1p, ⟩H1/2(Γ1),H−1/2(Γ1) = ⟨γ0v, q⟩H1/2(Γ1),H−1/2(Γ1),
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as we wanted.

The Operator A

Consider the phase space H = V × L2(Ω), endowed with the inner product((
u1
v1

)
,

(
u2
v2

))
H

= (∇u1,∇u2) + (v1, v2).

Consider also the operator A given by

A

(
u

v

)
=
(

−v
−∆(u+Ng(γ0v))

)
,

with
D(A) = {(u, v) ∈ V × V;u+Ng(γ0v) ∈ D(−∆)}.

Initially, let us verify that Ng(γ0v) is well defined, that is, that g(γ0v) ∈ H−1/2(Γ1), for all v ∈ V.
Indeed, by Claim 1, γ0v ∈ H1/2(Γ1) for v ∈ V. Then, to conclude the desired result, it suffices to prove
that g ◦w ∈ L2(Γ1), for all w ∈ H1/2(Γ1). By the continuity of g and by the growth hypothesis at infinity,
it holds that

|g(s)| ≤ max
−1≤r≤1

|g(r)|+ max{k,K}|s|, ∀r ∈ R,

that is, there exists c1 > 0 such that

|g(s)| ≤ c1 + c1|s|, ∀s ∈ R,

whence, ∫
Γ1

|g(w(x))|2 dΓ ≤
∫

Γ1

(c1 + c1|w(x)|)2
dΓ <∞,

since w ∈ H1/2(Γ1) ↪→ L2(Γ1) ↪→ L1(Γ1). Thus, g ◦ w ∈ L2(Γ1) ↪→ H−1/2(Γ1), for all w ∈ H1/2(Γ1).

Now, let us prove that A is monotone. For this, considering
(
u1
v1

)
,

(
u2
v2

)
∈ D(A), we have

(
A

(
u1
v1

)
−A

(
u2
v2

)
,

(
u1
v1

)
−
(
u2
v2

))
H

= −(∇(v1 − v2),∇(u1 − u2))

− (∆(u1 +Ng(γ0v1))−∆(u2 +Ng(γ0v2)), v1 − v2).

By the definition of the operator N,

∆Ng(γ0v1) = ∆Ng(γ0v2) = 0 ∈ L2(Ω)

and since
∆(u1 +Ng(γ0v1)), ∆(u2 +Ng(γ0v2)) ∈ L2(Ω)

it follows that ∆u1, ∆u2 ∈ L2(Ω), and thus,

u1, u2, Ng(γ0v1), Ng(γ0v2) ∈ H1(Ω).
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We have that

− (∆(u1 +Ng(γ0v1))−∆(u2 +Ng(γ0v2)), v1 − v2)
= (∇(u1 +Ng(γ0v1))−∇(u2 +Ng(γ0v2)),∇v1 −∇v2)
− ⟨γ1(u1 +Ng(γ0v1))− γ1(u2 +Ng(γ0v2))︸ ︷︷ ︸

=0 on Γ1, since ui+Ng(γ0vi)∈D(−∆)

, γ0v1 − γ0v2︸ ︷︷ ︸
=0 on Γ0, since vi∈V

⟩H−1/2(Γ),H1/2(Γ)

= (∇(u1 +Ng(γ0v1))−∇(u2 +Ng(γ0v2)),∇v1 −∇v2)

By an argument analogous to that of Claim 2,

(∇Ng(γ0v1)−∇Ng(γ0v2),∇v1 −∇v2)
= −(∆Ng(γ0v1)−∆Ng(γ0v2), v1 − v2)
+ ⟨γ1(Ng(γ0v1))− γ1(Ng(γ0v2)), γ0v1 − γ0v2⟩H−1/2(Γ),H1/2(Γ)

= ⟨g(γ0v1)− g(γ0)v2, γ0v1 − γ0v2⟩H−1/2(Γ),H1/2(Γ)

= ⟨g(γ0v1)− g(γ0)v2, γ0v1 − γ0v2⟩H−1/2(Γ1),H1/2(Γ1)

= (g(γ0v1)− g(γ0v2), γ0v1 − γ0v2)L2(Γ1),

whence we conclude that(
A

(
u1
v1

)
−A

(
u2
v2

)
,

(
u1
v1

)
−
(
u2
v2

))
H

= (g(γ0v1)− g(γ0v2), γ0v1 − γ0v2)L2(Γ1) ≥ 0,

since g is monotone increasing. Thus, A is monotone.

Now, let us prove that A is maximal monotone, that is, Im(I +A) = H.

Given
(
h1
h2

)
∈ H = V × L2(Ω), we must exhibit

(
u

v

)
∈ D(A) such that

{
u− v = h1

v −∆u−∆Ng(γ0v) = h2,

that is, 
u− v = h1

v −∆u−∆NgN∗(−∆v)︸ ︷︷ ︸
N∗(−∆v)=γ0v

= h2.

Since u = v + h1, we obtain
v −∆v −∆h1 −∆NgN∗(−∆v) = h2,

or equivalently,
−∆v + v −∆NgN∗(−∆v) = ∆h1 + h2 ∈ V ′. (5.11.398)

Define
B = (−∆) ◦N ◦ g ◦N∗ ◦ (−∆).

Let us consider the duality map F : V → V ′ and the extension of the Laplacian operator −∆ : V →
V ′. Then, given v ∈ V, there exists v′ ∈ V ′ such that F (v) = v′. Moreover,

⟨v′, v⟩V′,V = ∥v∥2
V = (∇v,∇v) = −⟨∆v, v⟩V′,V ,

which implies v′ = Fv = −∆v. Thus, −∆ : V → V ′ is the duality map.

To prove that A is maximal monotone, we will prove that there exists v ∈ V satisfying (5.11.398).
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This is equivalent to demonstrating the surjectivity of the operator

−∆ + (I +B) : V → V ′.

We know that −∆ + (I + B) is surjective if, and only if, I + B is maximal monotone in V × V ′. So,
initially, let us prove that I + B is maximal monotone in V × V ′. Let us note that I : V → V ↪→ V ′ is
continuous, monotone and bounded. We will prove that B is maximal monotone to guarantee that I +B

is maximal monotone.

Identifying L2(Γ1) ≡ (L2(Γ1))′, consider the operator G : H1/2(Γ1) → (L2(Γ1))′ ↪→ H−1/2(Γ1)
given by

(Gu, v)L2(Γ1) =
∫

Γ1

g(u)v dΓ, ∀v ∈ L2(Γ1).

G is well defined since we showed that g ◦ u ∈ L2(Γ1), for all u ∈ H1/2(Γ1), and moreover, we have
Gz = g ◦ z, for all z ∈ H1/2(Γ1).

Let us also take the functional ϕ : H1/2(Γ1)→ R given by

ϕ(u) =
∫

Γ1

∫
[0,u(x)]

g(τ) dτ dΓ,

where [0, u(x)] denotes the interval with endpoints 0 and u(x). We will prove that

∂ϕ(u) = ϕ′(u) = Gu.

First, let us see that ϕ is well defined.

|ϕ(u)| ≤
∫

Γ1

∫
[0,u(x)]

|g(τ)| dτ dΓ =
∫

{x∈Γ1;|u(x)|>1}

∫
[0,u(x)]

|g(τ)| dτ dΓ +
∫

{x∈Γ1;|u(x)|≤1}

∫
[0,u(x)]

|g(τ)| dτ dΓ.

When u(x) < −1, we have∫ 0

u(x)
−g(τ)dτ ≤ −

∫ −1

u(x)
g(τ)dτ −

∫ 0

−1
g(τ)dτ ≤ ∥g∥L1(−1,1) +(−k)

∫ −1

u(x)
τdτ = ∥g∥L1(−1,1) + k

2 (u2(x)−1).

When u(x) > 1, we have∫ u(x)

0
g(τ)dτ =

∫ 1

0
g(τ)dτ +

∫ u(x)

1
g(τ)dτ ≤ ∥g∥L1(−1,1) +K

∫ u(x)

1
τdτ = ∥g∥L1(−1,1) + K

2 (u2(x)− 1).

Thus, setting c2 = max{k,K}, it follows∫
{x∈Γ1;|u(x)|>1}

∫
[0,u(x)]

|g(τ)| dτ dΓ ≤ |Γ1|∥g∥L1(−1,1) + c2

∫
{x∈Γ1;|u(x)|>1}

(u2(x)− 1)dΓ

≤ |Γ1|∥g∥L1(−1,1) + c2∥u∥2
L2(Γ1).

Also, ∫
{x∈Γ1;|u(x)|≤1}

∫
[0,u(x)]

|g(τ)| dτ dΓ ≤
∫

{x∈Γ1;|u(x)|≤1}

∫ 1

−1
(c1 + c1|τ |) dτ dΓ ≤ 3c1|Γ1|,

and with this we conclude that |ϕ(u)| <∞.

Now, let us prove that ϕ is continuous. Let {un} ⊂ H1/2(Γ1) and u ∈ H1/2(Γ1) such that un → u
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in H1/2(Γ1). We have

|ϕ(un)− ϕ(u)| =
∣∣∣∣ ∫

Γ1

∫
[0,un(x)]

g(τ)dτdΓ−
∫

Γ1

∫
[0,u(x)]

g(τ)dτdΓ
∣∣∣∣

=
∣∣∣∣ ∫

Γ1

∫
[un(x),u(x)]

g(τ)dτdΓ
∣∣∣∣

≤
∫

Γ1

∫
[un(x),u(x)]

|g(τ)|dτdΓ

≤ c1

∫
Γ1

∫
[un(x),u(x)]

(1 + |τ |)dτdΓ

≤ c1

∫
Γ1

|un(x)− u(x)|dΓ + c1

∫
Γ1

||un(x)|2 − |u(x)|2|dΓ

≤ c1

∫
Γ1

|un(x)− u(x)|dΓ + c1

∫
Γ1

(|un(x)|+ |u(x)|)|un(x)− u(x)|dΓ.

Since {un} is bounded in L1(Γ1) and converges to u in L2(Γ1), it follows that ϕ(un) → ϕ(u), as
we wanted.

Now, let us prove that ϕ is Gateaux differentiable. Let u, v ∈ H1/2(Γ1), δ ∈ R and x ∈ Γ1 be given.
Take λ = δv(x), we have

1
δ

[ ∫
[0,u(x)+δv(x)]

g(s)ds−
∫

[0,u(x)]
g(s)ds

]
= 1
δ

[ ∫
[u(x),u(x)+δv(x)]

g(s)ds
]

= 1
λ

[ ∫
[u(x),u(x)+λ]

g(s)ds
]
v(x).

By the Mean Value Theorem,

lim
δ→0

1
δ

[ ∫
[0,u(x)+δv(x)]

g(s)ds−
∫

[0,u(x)]
g(s)ds

]
= lim

λ→0

1
λ

[ ∫
[u(x),u(x)+λ]

g(s)ds
]
v(x) = g(u(x))v(x).

Moreover,∣∣∣∣ 1λ
∫

[u(x),u(x)+λ]
g(s)dsv(x)

∣∣∣∣ ≤ 1
|λ|
|v(x)|{|λ|+

∣∣∣|u(x)|2 − |u(x) + λ|2
∣∣∣}

= 1
|λ|
|v(x)|{|λ|+ |λ||2u(x) + λ|}

= |v(x)|+ |v(x)||2u(x) + λ|,

which is integrable on Γ1. Then, by the Lebesgue Dominated Convergence Theorem,

lim
δ→0

ϕ(u+ δv)− ϕ(u)
δ

=
∫

Γ1

g(u)v dΓ = (Gu, v)L2(Γ1),

whence it follows that ϕ is Gateaux differentiable, with ϕ′(u) = Gu.

Note that ϕ′(u) ∈ H−1/2(Γ1), since

|⟨ϕ′(u), v⟩| ≤
∫

Γ1

|g(u)||v|dΓ ≤ ∥g ◦ u∥L2(Γ1)∥v∥L2(Γ1) ≤ c3∥g ◦ u∥L2(Γ1)∥v∥H1/2(Γ1),

where c3 > 0 is the constant of the embedding H1/2(Γ1) ↪→ L2(Γ1).

To prove that ϕ is convex, it suffices to prove that

⟨ϕ′(u)− ϕ′(v), u− v⟩H−1/2(Γ1),H1/2(Γ1) ≥ 0, ∀u, v ∈ H1/2(Γ1).
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Indeed, since g is monotone increasing,

⟨ϕ′(u)− ϕ′(v), u− v⟩H−1/2(Γ1),H1/2(Γ1) = (Gu−Gv, u− v)Γ1 =
∫

Γ1

[g(u)− g(v)][u− v]dΓ ≥ 0.

Thus, since ϕ is convex, the subdifferential is unitary and consists of the Gateaux derivative, that
is,

ϕ′(u) = Gu = g ◦ u = ∂ϕ(u), ∀u ∈ H1/2(Γ1).

Since N : H−1/2(Γ1) → V is continuous, N∗∗ = N and then, defining Λ = N∗ ◦ (−∆), we obtain
Λ∗ = (−∆) ◦N, and thus,

B = (−∆) ◦N ◦ g ◦N∗ ◦ (−∆) = Λ∗ ◦ g ◦ Λ.

Since −∆ : V → V ′, N : H−1/2(Γ1) → V and N∗ : V ′ → H1/2(Γ1) are continuous, it follows that
Λ : V → H1/2(Γ1) is continuous. Recall that ϕ : H1/2(Γ1)→ R is also continuous. Then, it follows that

∂(ϕ ◦ Λ) = Λ∗ ◦ ∂ϕ ◦ Λ,

that is,
∂(ϕ ◦N∗ ◦ (−∆)) = B.

Since ϕ is convex and Λ = N∗ ◦ (−∆) is linear, then ϕ ◦ Λ is convex and also continuous, from
where it follows that B = ∂(ϕ ◦ Λ) is maximal monotone.

Knowing that I : V → V ↪→ V ′ is continuous, bounded, monotone, and B is maximal monotone, it
follows that I+B is maximal monotone. Therefore, −∆+I+B is surjective. Thus, given h = h2 +∆h1 ∈
V ′, there exists v ∈ V satisfying (5.11.398).

Since
u = v + h1 ∈ V

we obtain
−∆u−∆Ng(γ0v) = h2 − v ∈ L2(Ω).

Bearing in mind that

D(−∆) = {w ∈ V;∃fw ∈ L2(Ω) such that (∇w,∇v) = (fw, v) ∀v ∈ V},

it results
(
u

v

)
∈ D(A) and thus, (

h1
h2

)
= (I +A)

(
u

v

)
.

Therefore, A is maximal monotone.

Existence of solution

Consider U(t) =
(
u(t)
ut(t)

)
and the abstract formulation of the problem:

{
Ut(t) = −AU(t), t > 0
U(0) = U0.

Since A is a maximal monotone operator, −A generates a nonlinear semigroup. Then, if U0 =
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(
u0
u1

)
∈ D(A), the problem has a unique strong solution, with U(t) ∈ D(A) for all t ≥ 0 and, for each

T > 0 given, U ∈ C([0, T ];H), that is,

u ∈ C([0, T ];V) ∩ C1([0, T ];L2(Ω)).

Moreover, U ∈W 1,∞([0,∞);H). In this case, we have

u ∈ C([0, T ];V) ∩ L∞(0,∞;V),
ut ∈ C([0, T ];L2(Ω)) ∩ L∞(0,∞;V) ∩ L∞(0,∞;L2(Ω)), (5.11.399)

utt ∈ L∞(0,∞;L2(Ω)).

Therefore,

i) utt −∆u = 0 in L∞(0,∞;L2(Ω));

ii) γ0u ∈ L∞(0,∞;H1/2(Γ1)) and γ0u = 0 on Γ0;

iii) Since u(t) +Ng(γ0ut(t)) ∈ D(−∆), for all t ≥ 0, then

γ1[u(t) +Ng(γ0ut(t))]︸ ︷︷ ︸
∈H1/2(Γ1)

= 0 on Γ1, for all t ≥ 0,

whence
γ1u(t) + g(γ0ut(t)) = 0 on Γ1, for all t ≥ 0.

To obtain the regularity of each term of the sum above, let us consider, for each t ∈ [0, T ],

z(t) =
∫ t

0
u(s)ds.

We have z ∈ C([0, T ];V) and

∆z(t) =
∫ t

0
∆u(s)ds = ut(t)− ut(0), for each t ∈ [0, T ].

Thus, ∆z ∈ C([0, T ], L2(Ω)). Denoting V1 = {v ∈ V; ∆v ∈ L2(Ω)}, we see that z ∈ C([0, T ];V1), whence
u = zt ∈ H−1(0, T ;V1), and then, γ1u ∈ H−1(0, T ;H−1/2(Γ1)).

Furthermore, by the regularity obtained in (5.11.399), it follows that ut ∈ L∞(0, T ;V), which
implies γ0ut ∈ L∞(0, T ;L2(Γ1)), and since g is increasing by hypothesis, g(γ0ut) ∈ L∞(0, T ;L2(Γ1)).
Therefore,

γ1u+ g(γ0ut) = 0 in L∞(0, T ;L2(Γ1)).

Observe also that, since U ∈W 1,∞([0,∞);H), then AU = −Ut ∈ L∞(0,∞;H). Thus,

∥AU(t)∥H = ∥v(t)∥V + ∥ −∆[u(t) +Ng(γ0ut(t))]∥ ≤ c4 ∀t ≥ 0,

for some c4 > 0. But (u(t), ut(t)) ∈ D(A), for all t ≥ 0, and with this it follows that

−∆[u+Ng(γ0ut(t))] = −∆u(t) ∈ L2(Ω).

Thus, u ∈ H2(Ω), and so,

∥AU(t)∥H = ∥∇v(t)∥+ ∥∆u(t)∥ ≤ c4, ∀t ≥ 0.
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Therefore,

u ∈ L∞(0,∞;H2(Ω) ∩ V); ut ∈ L∞(0,∞;V) ∩W 1,∞(0,∞;L2(Ω)).

When U0 =
(
u0
u1

)
∈ H, the given problem has a unique generalized solution U which, for each

T > 0 satisfies U ∈ C([0, T ];H), by the Crandall-Liggett Theorem.

Let U (n)
0 =

(
u

(n)
0
u

(n)
1

)
∈ D(A) be a sequence of initial data such that U (n)

0 → U0 in H. Let Un be the

strong solution of (5.11.391) with initial data U (n)
0 . Composing (5.11.391) with u(n)

t , integrating on (0, t),
for t > 0 and using the second generalized Green’s formula, we obtain

∥u(n)
t (t)∥2 + ∥∇u(n)(t)∥2 + 2

∫ t

0
(g(γ0u

(n)
t ), γ0u

(n)
t )L2(Γ1) dt = ∥u(n)

1 ∥2 + ∥∇u(n)
0 ∥2. (5.11.400)

By the linearity of (5.11.391), we obtain that

utt −∆u = 0 in H−1(0, T ;V ′), for any T > 0 given.

Since u ∈ C([0, T ];V), then γ0u = 0 on Γ0 × (0, T ).

Finally, if we consider that there exists α > 0 such that

g(s1)− g(s2) ≥ α(s1 − s2), ∀s1 − s2 ≥ 0,

then (5.11.400) gives us

∥u(n)
t (t)∥2 + ∥∇u(n)(t)∥2 + 2α

∫ t

0
∥γ0u

(n)
t ∥Γ1 dt ≤ ∥u

(n)
1 ∥2 + ∥∇u(n)

0 ∥2.

From the last inequality and the growth condition of g, it follows that {g(u(n)
t )} is bounded in L2(0, T ;L2(Γ1)).

Then, {g(u(n)
t )} converges weakly to g(ut) in L2(0, T ;L2(Γ1)). On the other hand, using the continuity

of the trace of order one, we obtain that

g(u(n)
t ) = −γ1u

(n) → −γ1u in L2(0, T ;H−1/2(Γ1)).

By the uniqueness of the weak limit in L2(0, T ;H−1/2(Γ1)), we obtain that g(ut) = −γ1u in L2(0, T ;H−1/2(Γ1)),
but by the regularity of g(ut), we conclude

γ1u+ g(ut) = 0 in L2(0, T ;L2(Γ1)).

Example 5.287 Let us show that the following problem has a regular solution
u′′ −∆u = 0 in Ω× (0,∞),
∂u

∂ν
= −g(u′)− f(u) on Γ1 × (0,∞),

u = 0 on Γ0 × (0,∞),
u(0) = u0 ∈ V, u′(0) = u1 ∈ L2(Ω),

where Ω ⊂ Rn is an open, bounded set with sufficiently smooth boundary, g is assumed as
in the previous exercise and satisfies

(g(s)− g(t))(s− t) ≥ (s− t)2
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and f is a locally Lipschitz function satisfying

|f(s)| ≤ C|s|k0 , k0 <
n− 1
n− 2 .

Solution: Initially, let us consider f Lipschitz with constant L and consider the operator N as in the
previous exercise. In this case, our problem is of the form

Ut = AU

where, for U = (u, v),

A

(
u

v

)
=
(

−v
−∆(u+N(g(γ0v) + f(γ0u))

)
,

with
D(A) = {(u, v) ∈ V × V;u+N(g(γ0v) + f(γ0u)) ∈ D(−∆).

From the previous exercise, we have that N(g(γ0v) is well defined and, since f is Lipschitz, we have
that N(f(γ0u) is also well-posed. Let us show then, that A+ ωI is monotone for some ω. Indeed, given
(u1, v1), (u2, v2) ∈ D(A), we have

(A(u1, v1) − A(u2, v2), (u1, v1)− (u2, v2)) = −((v1 − v2), (u1 − u2))V

− (∆(u1 +N(g(γ0v1) + f(γ0u1)))−∆(u2 +N(g(γ0v2) + f(γ0u2))), v1 − v2).

Now,

−(∆(u1 + N(g(γ0v1) + f(γ0u1)))−∆(u2 +N(g(γ0v2) + f(γ0u2))), v1 − v2)
= (∇(u1 +N(g(γ0v1) + f(γ0u1)))−∇(u2 +N(g(γ0v2) + f(γ0u1))),∇v1 −∇v2)
− ⟨γ1(u1 +N(g(γ0v1) + f(γ0u1))− γ1(u2 +N(g(γ0v2) + f(γ0u2)), γ0v1 − γ0v2⟩
= (∇(u1 +N(g(γ0v1) + f(γ0u1)))−∇(u2 +N(g(γ0v2) + f(γ0u2))),∇v1 −∇v2)
= ((u1 − u2), (v1 − v2))V + (N(g(γ0v1) + f(γ0u1)− g(γ0v2)− f(γ0u2)),−∆(v1 − v2))
= ((u1 − u2), (v1 − v2))V + ⟨g(γ0v1) + f(γ0u1)− g(γ0v2)− f(γ0u2),−N ∗∆(v1 − v2)⟩

where the duality is in H−1/2(Γ1)×H1/2(Γ1). Since −N ∗∆(v1 − v2) = γ0(v1 − v2), then

⟨g(γ0v1) + f(γ0u1)− g(γ0v2)− f(γ0u2),−N ∗∆(v1 − v2)⟩
= ⟨g(γ0v1)− g(γ0v2), γ0(v1 − v2)⟩+ ⟨f(γ0u1)− f(γ0u2), γ0(v1 − v2)⟩
≥ m0∥γ0(v1 − v2)∥2

Γ1
− L∥γ0(u1 − u2)∥Γ1∥γ0(v1 − v2)∥Γ1

≥ (m0 − ε)∥γ0(v1 − v2)∥2
Γ1
− L

4ε∥γ0(u1 − u2)∥2
Γ1
.

Thus,

(A(u1, v1)−A(u2, v2), (u1, v1)− (u2, v2)) + ω∥u1 − u2∥2
V + ω∥v1 − v2∥L2(Ω)

≥ (m0 − ε)∥γ0(v1 − v2)∥2
Γ1
− L

4ε∥γ0(u1 − u2)∥2
Γ1

+ ω∥u1 − u2∥2
V

≥ (m0 − ε)∥γ0(v1 − v2)∥2
Γ1

+
(
ω − L+ C

4ε

)
∥u1 − u2∥2

V

where C is the continuity constant of γ0 in V. Hence, choosing ε < m0 and ω >
L+ C

4ε , we have the
desired result.

It remains to show the maximality of A + ωI, that is, there exists λ̃ > 0 such that (A + ωI +
λ̃I)(D(A)) = V × L2(Ω). Let us denote λ = ω + λ̃, thus we must find λ > ω such that (A + λI) is
surjective.
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Given (h1, h2) ∈ V × L2(Ω), we must exhibit (u, v) ∈ D(A) such that
λu− v = h1

λv −∆u−∆(N(g(γ0v) + f(γ0u))) = h2,

Writing
u = 1

λ
(v + h1)

we obtain
λv − 1

λ
∆v −∆N(gγ0v)−∆N

(
fγ0

(
1
λ

(v + h1)
))

= h2 + 1
λ

∆h1.

In this case, our problem reduces to showing the surjectivity of the operator T : V −→ V ′

Tv := λv − 1
λ

∆v −∆N(gγ0v)−∆N
(
fγ0

(
1
λ

(v + h1)
))

.

or even,
T = − 1

λ
∆ + λI +B

where
Bv = −∆N(gγ0v)−∆N

(
fγ0

(
1
λ

(v + h1)
))

As argued in the previous exercise, it suffices to show that λI +B is maximal monotone.

Now, observe that, since −∆N : H−1/2(Γ1)→ V ′ is bounded and f is Lipschitz, then

B1 := −∆N
(
fγ0

(
1
λ

(v + h1)
))

is Lipschitz from V into V ′.

Indeed, let v1 and v2 ∈ V, then∥∥∥∥−∆N
(
fγ0

(
1
λ

(v1 + h1)
)
− fγ0

(
1
λ

(v2 + h1)
))∥∥∥∥

V′

≤ C

∥∥∥∥fγ0

(
1
λ

(v1 + h1)
)
− fγ0

(
1
λ

(v2 + h1)∥H−1/2(Γ1)

)∥∥∥∥
H−1/2(Γ1)

≤ CL

λ
∥v1 − v2∥H−1/2(Γ1)

≤ CC1L

λ
∥v1 − v2∥H1/2(Γ1)

≤ CC1C2L

λ
∥v1 − v2∥V = C3L

λ
∥v1 − v2∥V

where C,C1 and C2 are the continuity constants of −∆N , of the embedding H1/2 ↪→ H−1/2(Γ1) and of
the continuity of the trace map γ0, respectively. Furthermore, B1 + I is maximal monotone for λ > C2

3L,
since, if v1 and v2 ∈ V, then〈

−∆N
(
fγ0

(
1
λ

(v1 + h1)
)
− fγ0

(
1
λ

(v2 + h1)
))

, v1 − v2

〉
V′,V

≥ −C
2
3L

λ
∥v1 − v2∥2

V

Thus, B1 + I is monotone and continuous and, therefore, by Theorem 1.3, page 40, Barbu, we have
B1 +I maximal monotone. Now, if B2 := −∆N(gγ0v) then, B2 +I is maximal monotone by the previous
exercise and, thus, by Corollary 1.1, page 39, Barbu, we have that B1 + B2 + 2I = B + 2I is maximal
monotone. Therefore, if λ > max{2, C2

3L} we have B + λI maximal monotone, as we wanted. Whence
it follows that T is surjective and ωI +A is maximal monotone.
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Assuming that f is Lipschitz, we know that there exists an ω > 0 sufficiently large such that A+ωI

is maximal monotone. Thus, by the Crandall-Liggett Theorem, we conclude that there exists a unique
solution

u ∈ C([0, T ];V) ∩ C1([0, T ];L2(Ω)),

of (??) for any finite T > 0.

To prove that u′,
∂u

∂ν
∈ L2(0, T ;L2(Γ1)), observe that if (u0, u1) ∈ D(A), we have that γ0(u1) ∈

H1/2(Γ1), whence
∂u0

∂ν
, g(γ0u

1) ∈ L2(Γ1).

If (u(t), u′(t)) is a solution of the problem for the initial data (u0, u1) ∈ D(A), then, by the semi-
group property, we have (u(t), u′(t)) ∈ D(A) and, consequently,

u′ ∈ L∞(0, T ;L2(Γ1)) and ∂u

∂ν
∈ L∞(0, T ;L2(Γ1)).

Now, consider the following energy identity

E(t) = 1
2∥u

′(t)∥2 + 1
2∥∇u(t)∥2 = 1

2∥u
1∥2 + 1

2∥∇u
0∥2 +

∫ t

0

∫
Γ1

∂u

∂ν
u′dΓds

Thus, we have

∥u′(t)∥2 + ∥∇u(t)∥2 = ∥u1∥2 + ∥∇u0∥2 + 2
∫ t

0

∫
Γ1

∂u

∂ν
u′dΓds

= 2·E(0)− 2
∫ t

0

∫
Γ1

g(u′)u′ dΓds− 2
∫ t

0

∫
Γ1

f(u)u′ dΓds

≤ 2·E(0)− 2α
∫ t

0

∫
Γ1

|u′|2 dΓds+ 2L
∫ t

0

∫
Γ1

|u||u′| dΓds

≤ 2·E(0)− 2α
∫ t

0

∫
Γ1

|u′|2 dΓds

+2L
{

1
4ϵ

∫ t

0

∫
Γ1

|u|2dΓds+ ϵ

∫ t

0

∫
Γ1

|u′|2dΓds
}
.

(5.11.401)

Choose ϵ = α

2L and we obtain

∥u′(t)∥2 + ∥∇u(t)∥2 + α

∫ t

0
∥u′(t)∥2

L2(Γ1) ≤ C
{
∥∇u0∥2 + ∥u0∥2 + ∥u1∥2} . (5.11.402)

By the density of D(A) in H, we can extend the previous inequality to all H. From the hypotheses
on g it is concluded that g(u′) ∈ L2(0,∞;L2(Γ1)) and, in this case, it makes sense to speak of the normal
derivative ∂u

∂ν
in the space H−1(0, T ;H−1/2(Γ1)). But, by the equality

∂u

∂ν
= −g(u′)− f(u)

and, from the regularity of the functions in question, we obtain ∂u

∂ν
∈ L2(0,∞;L2(Γ1)).

- 448 -



5.11 Examples

When f is only Lipschitz we can consider the following approximation of our problem
u′′

l −∆ul = 0 in Ω× (0,∞),
∂ul

∂ν
= −g(u′

l)− fl(ul) on Γ1 × (0,∞),
ul = 0 on Γ0 × (0,∞),
ul(0) = u0 ∈ V, u′

l(0) = u1 ∈ L2(Ω),

(5.11.403)

where the functions fl are defined by

fl(s) =


f(s), |s| ≤ l;
f(l), s > l; i = 0, 1
f(−l), s ≤ −l.

We have that fl is Lipschitz for each l and fl(s)→ f(s) for all s. Thus, there exists a solution

ul ∈ C([0, T ];V) ∩ C1([0, T ];L2(Ω)),

with
∂ul

∂ν
, u′

l, g(u′
l) ∈ L2(0,∞;L2(Γ1)).

Let us prove that this sequence of solutions has a convergent subsequence, whose limit is a solution
of our problem. For that, we first claim that∫

Γ1

Fl(u)dΓ ≤ C, (5.11.404)

where Fl(t) =
∫ t

0
fl(s) ds and C = C(∥u∥V). Furthermore,

fl(ul) −→ f(u) in L2(Γ1). (5.11.405)

Indeed, since |fl(s)| ≤ C|s|k0 , then for u ∈ V,∣∣∣∣∫
Γ1

Fl(u(x)) dx
∣∣∣∣ ≤ ∫

Γ0

(
C1|u(x)|k0

)
dx ≤ C0,

by the embeddings H1/2(Γ1) ↪→ L2(Γ1) and H1/2(Γ1) ↪→ L
2n−2
n−2 (Γ1) ↪→ Lk0(Γ1) and using the continuity

of the trace.

Thus, (5.11.404) is proved. To prove (5.11.405), let us set Γl = {x ∈ Γ1 : |ul(x)| > l}.∫
Γ1

|fl(ul(x))− f(u(x))|2dΓ

≤ 2
{∫

Γ1

|fl(ul(x))− f(ul(x))|2dΓ +
∫

Γ1

|f(ul(x))− f(u(x))|2dΓ
}
.

In view of the compact embedding H1/2(Γ1) c
↪→ L2(Γ1) and the continuity of the function f , by

the Lebesgue dominated convergence theorem the second integral on the right side of the inequality above
tends to zero. Let us analyze then the first integral:
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Since fl(s) = f(s) for |s| ≤ l, then∫
Γ1

|fl(ul(x))− f(ul(x))|2dΓ

≤ 2
{∫

Γl

|f(ul(x))|2dΓ +
∫

Γl

(
|f(l)|2 + |f(−l)|2

)
dΓ
}
.

One has (∫
Γl

l
2n−2
n−2

) n−2
2n−2

≤
(∫

Γ
|ul(x)|

2n−2
n−2

) n−2
2n−2

≤ C = C(∥ul∥V)

by the embedding H1/2(Γ1) c
↪→ L

2n−2
n−2 (Γ1) and by the continuity of the trace map of order 0. From this it

follows that meas(Γl) ≤ C· l
−2n+2

n−2 .

∫
Γl

|f(ul(x))|2dΓ ≤ C

∫
Γl

|ul(x)|2k1dΓ

≤ C

[∫
Γl

|ul(x)|
2n−2
n−2

] k1(n−2)
n−1

· (measΓl)1− k1(n−2)
n−1 −→ 0,

since k1(n− 2) < n− 1.

∫
Γl

|f1(±l)|2dΓ ≤ C· l2k1 ·measΓl ≤ C· l2k1− 2n−2
n−2 −→ 0.

Now, if
El(t) = 1

2
(
∥u′

l(t)∥2 + ∥∇ul(t)∥2)+
∫

Γ1

Fl(ul)dΓ,

by the energy identity we have

El(t) +
∫ t

0

∫
Γ1

gl(u′
l) u′

l dΓ ds = El(0) ≤ C
(
∥u0∥V ; ∥u1∥L2(Ω)

)
,

where the inequality follows from the claim.

From (5.11.402), it follows that

∥u′
l∥2

L2(Σ1) ≤ C
(
∥u0∥V ; ∥u1∥L2(Ω)

)
∥ul∥C([0,T ];V) + ∥u′

l∥C([0,T ;L2(Ω)]) ≤ C.

From the bounds above, it follows that

γ0ul −→ γ0u in L2(Σ1)
γ0u

′
l ⇀ γ0u

′ in L2(Σ1).

Since the Sobolev embeddings H1(Ω) c
↪→ L2k0(Ω) and H1/2(Γ) c

↪→ L2k1(Γ) hold, together with the
convergence of {fl} we conclude that

fl(ul) ⇀ f(u) in L2(Σ1) (5.11.406)

The convergences above allow us to pass to the limit in (5.11.403), completing the proof of the exercise.

Example 5.288 Let us determine the existence of weak solutions (in H1
0 (Ω)) for the problem below:
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
i ∂t u−∆u+ |u|2 u = 0 in Ω × (0,∞)
u = 0 on ∂Ω × (0,∞)
u(x, 0) = u0(x) in x ∈ Ω

(5.11.407)

where Ω ⊂ Rn (n = 1, 2, 3) is a bounded open set with smooth boundary.

Definition 5.289 Let T > 0 and given u0 ∈ X := H1(Ω) ∩ L4(Ω). A weak solution of problem
(5.11.407) in [0, T ] is a function u in the class L∞(0, T ;X )∩C([0, T ];L2(Ω)) that satisfies the identity∫ T

0
−(u(t), ∂t φ(t))L2(Ω) + i (∇u(t),∇φ(t))L2(Ω) dt (5.11.408)

+
∫ T

0
i⟨|u(t) |2 u(t), φ(t)⟩

L
4
3 (Ω), L4(Ω)

dt = 0

for all φ ∈ C∞
0 (0, T ;H1

0 (Ω) ∩ L4(Ω)) and for almost every t ∈ [0, T ] .

Theorem 5.290 If u0 ∈ X = H1(Ω) ∩ L4(Ω). Then problem ?? has a weak solution in the sense of
definition (5.11.408).

Proof: Let ψ : L2(Ω) → (−∞,∞] be a convex, proper and lower semi-continuous function. Then, the
subdifferential of ψ(u) where u ∈ D(ψ) is defined as the set of all g ∈ L2(Ω) such that

ψ(u) ≤ Re(g, u− z)L2(Ω) + ψ(z), ∀ z ∈ L2(Ω) . (5.11.409)

and denoted by ∂ ψ(u).

Consider the nonlinear operator B in L2(Ω) defined by

D(B) = {u ∈ L2(Ω); |u|2 u ∈ L2(Ω)}, (5.11.410)
Bu = |u|2 u, ∀u ∈ D(B) . (5.11.411)

By the next lemma it follows that B is m-accretive, its proof can be found in Okazawa and Yokota
[ [72], Lemma 3.1, page 258].

Lemma 5.291 Let B be defined as above. Then, B is m-accretive.

Now, we can define the Yosida approximations (which are Lipschitz continuous) Bn of B in terms
of the resolvent Jn,

Jn =
(

1 + 1
n
B
)−1

(5.11.412)

and

Bn := n (I − Jn) = B Jn . (5.11.413)

Moreover, from the general theory of monotone operators we know that we can represent the oper-
ators B and Bn by subdifferentials of ψ and ψn given by

ψ(z) :=


1
4 ||z||

4
L4(Ω) for z ∈ L4(Ω)

∞ otherwise
(5.11.414)
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and

ψn(z) := min
v∈ L2(Ω)

{n
2 ||v − z||

2
L2(Ω) + ψ(v)

}
= 1

2n ∥Bn(z)∥2
L2(Ω) + ψ(Jn(z)), z ∈ L2(Ω) (5.11.415)

so that
B = ∂ ψ and Bn = ∂ ψn .

Furthermore,
ψ(Jn(z)) ≤ ψn(z) ≤ ψ(z) . (5.11.416)

On the other hand, given u0 ∈ X , then there exists {un,0} ⊂ H1
0 (Ω) ∩ H2(Ω) such that

un,0 → u0 in X . (5.11.417)

Let us consider now the following approximate problem:


i ∂t un −∆un + Bn(un) = 0 in Ω × (0,∞)
un = 0 on ∂Ω × (0,∞)
un(x, 0) = un,0(x) in x ∈ Ω

(5.11.418)

Let us prove that problem (5.11.418) is well-posed for each n. For this, observe that problem
5.11.418 can be rewritten as the following Cauchy problem:


d un

dt
+Aun = Fn(un)

un(0) = un,0

(5.11.419)

where
A : D(A)→ L2(Ω)

z 7→ Az = i∆z
and

Fn : L2(Ω)→ L2(Ω)
w 7→ Fn(w) := −Bn(w)

where D(A) = H1
0 (Ω) ∩ H2(Ω).

Note that A is a skew-adjoint operator in Ω. Thus, from [ [15], proposition 1, page 13], we know
that A is a maximal monotone operator in Ω. Moreover, since Bn is Lipschitz continuous for each n, we
have that for each n, the operator Fn is Lipschitz continuous in L2(Ω).

Thus, from [ [15], theorem 1, page 18], for each n, given un,0 ∈ H1
0 (Ω) ∩ H2(Ω), there exists a

unique solution un for problem (5.11.418) in the class

C
(
[0,∞);H1

0 (Ω) ∩ H2(Ω)
)
∩ C1 ([0,∞);L2(Ω)

)
. (5.11.420)

We observe that problem (5.11.418) is an approximation of the original problem (??).

Now, taking the inner product in L2 of (5.11.418) with un, the imaginary part becomes

Re(∂t un, un)L2(Ω) + Im(∇un,∇un)L2(Ω)︸ ︷︷ ︸
=0

+ Im(Bn(un), un)L2(Ω)︸ ︷︷ ︸
=0

= 0,

- 452 -



5.11 Examples

from (5.11.413), we have

(Bn(un), un)L2(Ω) =
(
Bn(un), 1

n
Bn(un) + Jn(un)

)
L2(Ω)

= 1
n
∥Bn(un)∥2

L2(Ω) + (Bn(un), Jn(un))L2(Ω)

= 1
n
∥Bn(un)∥2

L2(Ω) + ∥Jn(un)∥4
L4(Ω) .

(5.11.421)

Therefore, we obtain the identity

1
2
d

dt
∥un∥2

L2(Ω) = 0. (5.11.422)

Thus, taking the inner product in (L2(Ω)) of (5.11.418) with ∂t un and looking at the real parts,
we have:

Re(i ∂t un, ∂t un)L2(Ω)︸ ︷︷ ︸
=0

+ Re(∇un,∇∂t un)L2(Ω) + Re(Bn(un), ∂t un)L2(Ω) = 0. (5.11.423)

Now, using the following classical lemma given in Showalter’s book [ [87], chapter IV, lemma 4.3,
page 186] for functions ψn, un and ∂t un both with Bn(un) = ∂ ψn(un), it follows that

d

dt
ψn(un) = Re (Bn(un), ∂t un)L2((Ω)) (5.11.424)

Combining (5.11.422), (5.11.423) and (5.11.424), we conclude that

d

dt

[
1
2 ∥un(t)∥2

H1(Ω) + ψn(un)
]

= 0. (5.11.425)

From (5.11.416) and integrating (5.11.425) from 0 to t, we observe that

1
2 ∥un(t)∥2

H1(Ω) + ψn(un) = 1
2 ∥un,0∥2

H1(Ω) + ψn(un,0)

≤ C ∥un,0∥2
X .

(5.11.426)

Moreover, from (5.11.416), it derives

∥un(t)∥2
H1(Ω) + ∥Jn(un)∥4

L4(Ω) ≤ C∥un,0∥2
X . (5.11.427)

Inequality (5.11.427) and the boundedness of the sequence (un,0) in X , allow us to conclude that

{un} is bounded in L∞(0, T ;H1(Ω)) (5.11.428)
{Jn(un)} is bounded in L∞(0, T ;L4(Ω)) ↪→ L4(0, T ;L4(Ω)) . (5.11.429)

Let us note that

Bn(un) = B(Jn(un)) = | Jn(un) |2 Jn(un) (5.11.430)

Thus, from (5.11.429) and (5.11.430), it follows that

{Bn un} is bounded in L
4
3 (0, T ;L 4

3 (Ω)). (5.11.431)
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On the other hand, from (5.11.428) and (5.11.431) we have:

∥∂t un(t)∥X ′ = sup
∥φ∥X =1

{
(∂t un(t), φ)L2(Ω)

}
= sup

∥φ∥X =1
{(−i∆un(t), φ)L2(Ω) + (iBn(un), φ)L2(Ω)}

≤ sup
∥φ∥X =1

{
∥∇un(t)∥L2(Ω) ∥∇φ∥L2(Ω) + ∥Bn un(t)∥

L
4
3 (Ω)
∥φ∥L4(Ω)

< +∞,

thus,

{∂t un} is bounded in L∞(0, T ;X ′) . (5.11.432)

Combining (5.11.428), (5.11.429), (5.11.431) and (5.11.432), it follows that {un} has a subsequence
(still denoted by {un}) such that

un
∗
⇀ u in L∞(0, T ;H1(Ω)) . (5.11.433)

Jn(un) ∗
⇀ U in L∞(0, T ;L4(Ω)) . (5.11.434)

Bn(un) ⇀ Z in L
4
3 (0, T ;L 4

3 (Ω)) . (5.11.435)
∂t un

∗
⇀ ∂t u in L∞(0, T ;X ′) . (5.11.436)

The next step is to prove that U = u and Z = |u|2 u. Indeed, from (5.11.433) and (5.11.436) it
follows by the Aubin-Lions Theorem that there exists a ũ ∈ L2(0, T ;L2(Ω)) and a subsequence of un (still
denoted by un) such that

un → ũ in L2(0, T ;L2(Ω)) (5.11.437)

On the other hand, from (5.11.433) and (5.11.437), by the uniqueness of the weak limit in L2(0, T ;L2(Ω)),
we infer that ũ = u a.e. in Ω × (0,∞). Therefore, again from (5.11.437), we have

un → u in L2(0, T ;L2(Ω)) (5.11.438)
un → u a.e. in Ω × (0, T ) . (5.11.439)

Next, let us consider the fact that the operator B is also accretive in C. Thus, from Showalter,
[ [87], page 211], we know that the resolvents Jn given in (5.11.412) are contractions in C, that is,

|Jn(z)− Jn(w)| ≤ |z − w|, ∀ z, w ∈ C, (5.11.440)

note that Bn and Jn are essentially the same operators given at the beginning of the section, except that
we are considering them in C instead of L2(Ω).

From this, we define
|||C ||| = inf{|x| : x ∈ C}.

Again, from Showalter [ [87], proposition 7.1, item c, page 211], we obtain

|Bn(w)| ≤ |||B(w)||| = |B(w)|, ∀w ∈ C, (5.11.441)

where the equality on the right side of (5.11.441) is from the fact that the operator B given in (5.11.410)
is single-valued in C.
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On the other hand, from (5.11.413), we have ω−Jn(ω) = 1
n
Bn(ω). Therefore, combining (5.11.440)

and (5.11.441), we obtain

|Jn(z)− w| ≤ |Jn(z)− Jn(w)|+ |Jn(w)− w|

≤ |z − w|+ 1
n
|Bn(w)|

≤ |z − w|+ 1
n
|B(w)|, ∀w, z ∈ C .

(5.11.442)

It follows from (5.11.439):

|un − u| → 0 a.e. in Ω× (0, T ) . (5.11.443)

Now, let (x, t) ∈ Ω × (0, T ) such that the convergence (5.11.443) holds, and let z = un(x, t) and
w = u(x, t) in (5.11.442) and letting n→∞, considering (5.11.443), it follows that

Jn(un) → u a.e. in Ω × (0, T ) . (5.11.444)

Moreover, from (5.11.444) and since B(z) = |z|2 z is continuous, it follows that

B(Jn(un)) → B(u) = |u|2 u a.e. in Ω × (0, T ) .

Using the definition of the Yosida approximations Bn given in (5.11.430), it results that

Bn(un) → |u|2 u a.e. in Ω × (0, T ) . (5.11.445)

Now, combining (5.11.429), (5.11.444) and (5.11.431), (5.11.445), we have by Lions’ lemma [J.
L. Lions, [64], lemma 1.3, page 12] the following convergences:

Jn(un) ⇀ u in L4(0, T ;L4(B)) . (5.11.446)
Bn(un) ⇀ |u|2 u in L

4
3 (0, T ;L 4

3 (B)) . (5.11.447)

Thus, by the convergences (5.11.434), (5.11.435) (5.11.446) and (5.11.447), we have that U = u

and Z = |u|2 u almost everywhere in Ω × (0, T ). Moreover, from the convergence (5.11.434) together with
(5.11.433) we infer that

u ∈ L∞(0, T ;X ). (5.11.448)

Finally, let φ ∈ C∞
0 ([0, T );H1

0 (Ω) ∩ L4(Ω)). Then, from (5.11.418), we have∫ T

0
−(un(t), ∂t φ(t))L2(Ω) − i (∇un(t),∇φ(t))L2(Ω) dt (5.11.449)

−i
∫ T

0
⟨|un(t) |p un(t), φ(t)⟩

L
4
3 (Ω), L4(Ω

dt = 0

From (5.11.433) and (5.11.434) taking the limit as n → ∞, we obtain the variational formula
given in (5.11.408).
Finally, from (5.11.408), it follows that u belongs to the space

W = {u ∈ L2(0, T ;X ) such that ∂t u ∈ L2(0, T ;X ′)}.
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Then, employing Showalter [ [87], proposition 1.2, page 106], we have that W can be continuously
embedded into the space C([0, T ];L2(Ω)) and, therefore, combining this fact with (5.11.448), we obtain
that u has the regularity given in definition 5.289 and, thus, the proof of the theorem is concluded. 2

Example 5.292 Let us determine the existence of solutions for the problem


∂tβ(u)−∆u = 0, in Ω× (0,+∞);
u = 0, on ∂Ω× (0,+∞);
u(x, 0) = u0(x) = 0, x ∈ Ω,

(5.11.450)

where Ω is a bounded domain with smooth boundary ∂Ω and β : R → R is a monotone increasing map
such that β(0) = 0. We assume that |β| has polynomial growth, for example, β(s) = |s|p−2s, p > 2. We
will use two results that can be found in [87] and which are stated below.

Proposition II.9.1: Let D(A1) = {u ∈W 1,1
0 (G); A1u ∈ L1(G)} where A1u = f ∈ L1(G) means

u ∈W 1,1
0 (G);

∫
G

 n∑
i,j=1

aij∂iu∂jv −
n∑

i=1
aiu∂iv + auv

 =
∫

G

fv, ∀v ∈W 1,∞
0 (G).

a) D(A1) is dense and (I + λA1)−1 is a contraction in L1 for each λ > 0;

b) D(A1) ⊂W 1,q
0 for 1 ≤ q < n

n−1 and there exists c(q) > 0 such that

c(q)∥u∥W 1,q ≤ ∥A1u∥L1 for u ∈ D(A1);

c) A1 is the L1-closure A2 of A2;

d) supG(I + λA1)−1f ≤ max{0, supG f} for each λ > 0 and f ∈ L1, that is,

∥(I + λA1)−1f∥L∞(G) ≤ ∥f+∥L∞(G),

where x+ = max{0, x} denotes the positive part of x ∈ R.

Theorem II.9.2 (Brezis-Strauss): Let α be a maximal monotone graph in R × R and 0 ∈ α(0). Let
A : D(A)→ L1(G) be linear and satisfying

(i) D(A) is dense and (I + λA)−1 is a contraction in L1 for each λ > 0;

(ii) supG(I + λA)−1f ≤ (supG f)+ = ∥f+∥L∞ for f ∈ L1 and λ > 0;

(iii) There exists c > 0 such that c∥u∥L1 ≤ ∥Au∥L1 for u ∈ D(A).

Then, for each f ∈ L1 there exists a unique pair u ∈ L1, v ∈ D(A) such that

u+Av = f and v(x) ∈ α(u(x)) a.e. x ∈ G.

If u1, v1 and u2, v2 are solutions corresponding to f1, f2 as above, then

∥(u1 − u2)+∥L1 ≤ ∥(f1 − f2)+∥L1 , ∥(u1 − u2)−∥L1 ≤ ∥(f1 − f2)−∥L1 ,

and, therefore,
∥u1 − u2)∥L1 ≤ ∥f1 − f2∥L1 .

If f1 ≥ f2 a.e. then u1 ≥ u2 a.e. in G.
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Initially, let us make a change of variables. Let u = ϕ(w) and consider β(·) = ϕ(·)−1, then the
equation of problem 5.11.450 becomes

∂tw −∆ϕ(w) = 0,

which is known as the generalized porous medium equation (GPME). Let us define, D(A ◦ ϕ) = {w ∈
W 1,1

0 (G); (A ◦ ϕ)(w) ∈ L1(G)} where (A ◦ ϕ)(w) = 0 ∈ L1(G) means

w ∈W 1,1
0 (G);

∫
G

∇ϕ(w)∇v = 0, ∀v ∈W 1,∞
0 (G).

Therefore, (A◦ϕ)(w) = −∆ϕ(w) ∈ L1(G). Applying Proposition II.9.1 and Theorem II.9.2, we have that
for each λ > 0 there exists a unique pair

w ∈ L1(G), ϕ(w) ∈W 1,1
0 (G)

for which ∆ϕ(w) ∈ L1(G) and
w(x)−∆ϕ(w(x)) = 0 a.e. x ∈ G.

Thus, A ◦ ϕ is m-acretive. Thus, from Corollary 5.88 we have that Im(I + λA) = L1(G), ∀λ > 0. In
this way, the operator A ◦ ϕ satisfies the hypotheses of the Crandall-Liggett Theorem and according to
Remark 5.260 we have that problem 5.11.450 admits a generalized solution. That is, there exists a unique
solution w of the problem and the solution is continuous.

Example 5.293 Determine the existence of weak solutions in (L2(Ω)) for the problem below:
iut + ∆u+ ig(u) = 0, in Ω× (0,∞)

u = 0, on ∂Ω× (0,∞)
u(x, 0) = u0(x), if x ∈ Ω

(5.11.451)

where Ω is a bounded open set with smooth boundary and

g : C→ C is a continuous function satisfying: (5.11.452)

(i) Re[g(z)− g(w)](z̄ − w̄) ≥ 0 ∀ z, w ∈ C.
(ii) Im(g(z)z̄) = 0 ∀z ∈ C.
(iii) There exist positive constants c1, c2 such that c1|z|2 ≤ |g(z)z̄|2 ≤ c2|z|2 ∀z ∈ C with |z| ≥ 1.

We will use the following results:

Let us consider the following problem{
ut(t) = Tu(t) + Su(t), t ∈ (0,∞)

u(0) = u0
(5.11.453)

posed in a Banach space X.

Definition 5.294 A map u : [0,∞) → X is called a weak solution of problem (5.11.453) if u is
continuous on [0,∞), u(0) = 0 and satisfies the inequality for each T > 0

∥u(t)− v∥2
X ≤ ∥u(s)− v∥2

X + 2
∫ t

s

< Tv + Su(τ), u(τ)− v >s dτ. (5.11.454)

Theorem 5.295 Let H be a real Hilbert space and T : H → H an m-dissipative operator and let
S : H → H be continuous such that D(S) = H. Then for each u0 ∈ D(T ) there exists a unique map
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u : [0,∞)→ H weak solution of problem (5.11.453).

Proof: See Barbu( [7], Theorem 3.1, p.152) 2

It is important to observe that we will work with complex-valued functions, so that, in order for
the spaces L2(Ω), as well as, Hm(Ω), m ∈ N, to become real Hilbert spaces, we define

(u, v)L2(Ω) = Re

∫
Ω
wv̄dx.

Finally, we will denote by H1
0 (Ω) the Hilbert space

H1
0 (Ω) = {w ∈ H1(Ω);w|∂Ω = 0}.

Let us now prove the following existence theorem of weak solution for problem (5.11.451).

Theorem 5.296 Under the hypotheses of the function g given in (5.11.452), we have: problem (5.11.451)
is well-posed in the space L2(Ω), that is, for each initial value u0 ∈ L2(Ω), there exists a unique weak
solution of (5.11.451).

Proof: Problem (5.11.451) can be rewritten as
ut − i∆u+ g(u) = 0, in Ω× (0,∞)

u = 0, on ∂Ω× (0,∞)
u(x, 0) = u0(x), if x ∈ Ω

(5.11.455)

Define the following operators:

A : D(A) ⊂ L2(Ω) −→ L2(Ω)
u 7−→ Au = −i∆u

and

B : D(B) ⊂ L2(Ω) −→ L2(Ω)
u 7−→ Bu = g(u)

Then D(A) = H1
0 (Ω) ∩H2(Ω) and D(B) = L2(Ω).

Our goal is to show that A+B is a maximal monotone operator. First, observe that using Green’s The-
orem and the Lax-Milgram Theorem, we have that A is maximal monotone. Next, we will show some
properties associated with the operator B.

• B maps bounded sets into bounded sets

Indeed, let u ∈ L2(Ω) such that ∥u∥2
L2(Ω) ≤ R. Thus, by hypothesis (iii) of function g we obtain

∥Bu∥2
L2(Ω) =

∫
Ω
|g(u(x))|2dx

≤ c3

∫
Ω
|u(x)|2dx

≤ Rc3.

• B is monotone

Indeed, let u1, u2 ∈ L2(Ω). Then by hypothesis (i) of function g, we obtain:
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(Bu1 −Bu2, u1 − u2)L2(Ω) = Re

∫
Ω

(Bu1 −Bu2)(u1 − u2)dx

=
∫

Ω
Re{(g(u1)− g(u2))(u1 − u2)}dx ≥ 0

• B is hemicontinuous

Indeed, we have to prove that given any sequence tn ⊂ R such that tn → 0 then
lim

n→∞
(B(u+ tnv), w)L2(Ω) = (Bu,w)L2(Ω) for all u, v ∈ L2(Ω).

For this purpose, define fn = g(u+ tnv)w. Thus,

|fn(x)| = |g(u(x) + tnv(x))||w(x)|
≤ c2|u(x) + tnv(x)||w(x)|
≤ c2|u(x)||w(x)|+ c4|v(x)||w(x)| almost everywhere in Ω

where c4 is such that |tn| ≤ c4.

Since u, v, w ∈ L2(Ω) then fn ∈ L1(Ω) ∀ n ∈ N. Moreover, if h is the function defined by h(x) =
c2|u(x)||w(x)|+ c4|v(x)||w(x)|, it follows that h ∈ L1(Ω) and |fn| ≤ h(x) almost everywhere in Ω.
Note that due to the continuity of g, we deduce that lim

n→∞
g(u(x) + tnv(x))w(x) = g(u(x))w(x). Thus, by

the Lebesgue Dominated Convergence Theorem, we conclude that∫
Ω
|g(u(x) + tnv(x))w(x)− g(u(x))w(x)|dx→ 0.

Then ∣∣∣∣ ∫
Ω
g(u(x) + tnv(x))w(x)− g(u(x))w(x)dx

∣∣∣∣→ 0

and, consequently,
Re

∫
Ω
g(u(x) + tnv(x))w(x)dx→ Re

∫
Ω
g(u(x))w(x)dx

that is, lim
n→∞

(B(u+ tnv), w)L2(Ω) = (Bu,w)L2(Ω).

Therefore, B is a monotone map, maps bounded sets into bounded sets and is hemicontinuous and,
since A is a maximal monotone operator, then by (5.59) [Linear and nonlinear semigroups lecture notes.
Cavalcanti, Marcelo.] we conclude that T ≡ A + B : D(A + B) ⊂ L2(Ω) → L2(Ω) is maximal mono-
tone in L2(Ω). Thus, assuming S ≡ 0 in problem (5.11.453), then according to Theorem 5.295 for each
u0 ∈ D(A+B) = H1

0 (Ω) ∩H2(Ω) = L2(Ω) there exists a unique map u : [0,∞) → L2(Ω) weak solution
of problem (5.11.451). 2
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Chapter 6

Appendix

6.1 Properties

Results used in Example 5.286.

TECHNICAL RESULTS ON TRACE OPERATORS

Claim 1: If v ∈ V then γ0v ∈ H1/2(Γ1).

Proof of Claim 1: Let {(U1, φ1), ..., (Uk, φk), (Uk+1, φk+1), ..., (Uk+l, φk+l)} be a system of local
charts for Γ0 ∪ Γ1, such that

{(U1, φ1), ..., (Uk, φk)} is a system of local charts for Γ0,

and
{(Uk+1, φk+1), ..., (Uk+l, φk+l)} is a system of local charts for Γ1,

such that
Um ∩ Un = ∅, ∀m = 1, ..., k; ∀n = k + 1, ..., k + l.

Such consideration is possible because, by hypothesis, Γ0 ∩ Γ1 = ∅.

Consider also C∞ partitions,

θ0, θ1, ..., θk and θ′
0, θk+1, ..., θk+l

subordinate to the respective open covers

Ω, U1, ..., Uk and Ω, Uk+1, ..., Uk+l.

Then

• supp

(
θ0

2 + θ′
0
2

)
⊂ Ω, supp

(
θi

2

)
⊂ Ui, ∀i = 1, ..., k + l;

• 1
2 [θ0(x) + θ′

0(x)] + 1
2

k+l∑
i=1

θi(x) = 1, ∀x ∈ Ω;

• 0 ≤ θ′
0 ≤ 1, 0 ≤ θi ≤ 1, ∀i = 0, 1, ..., k + l.

We know that γ0v ∈ H1/2(Γ0 ∪ Γ1). Then, letting ϕi(u) = ˜(uθi) ◦ φ−1
i be the null extension of

(uθi) ◦ φ−1
i , we obtain
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∥γ0v∥2
H1/2(Γ1) =

k+l∑
i=k+1

∥ϕi(γ0v)∥2
H1/2(Rn−1)

=
k+l∑
i=1
∥ϕ(γ0v)∥2

H1/2(Rn−1) ( since γ0v = 0 on Γ0 )

=
√

2
k+l∑
i=1

∣∣∣∣∣∣∣∣ϕi

2 (γ0v)
∣∣∣∣∣∣∣∣2

H1/2(Rn−1)
=
√

2∥γ0v∥2
H1/2(Γ) <∞,

which gives us γ0v ∈ H1/2(Γ1).

Claim 2: If u ∈ V ∩H2(Ω) with ∂u

∂ν
= 0 on Γ1 and v ∈ V then ⟨γ1u, γ0v⟩H−1/2(Γ),H1/2(Γ) = 0.

Proof of Claim 2: Consider the system of local charts for Γ0 ∩ Γ1 and ˜uθi ◦ φ−1
i as in claim 1.

Define, here, ϕi(u) =
˜uθi

2 ◦ φ
−1
i .

Now, by the Riesz Representation Theorem, there exists a unique w ∈ H1/2(Γ) such that

⟨γ1u, γ0v⟩H−1/2(Γ),H1/2(Γ) = (w, γ0v)H1/2(Γ),

and then

⟨γ1u, γ0v⟩H−1/2(Γ),H1/2(Γ) = (w, γ0v)H1/2(Γ) =
k+l∑
i=1

(ϕi(w), ϕi(γ0v))H1/2(Rn−1).

But w = 0 in H1/2(Γ1), whence

ϕk+1(w) = ... = ϕk+l(w) = 0 on Γ1,

and thus,

⟨γ1u, γ0v⟩H−1/2(Γ),H1/2(Γ) =
k∑

i=1
(ϕi(w), ϕi(γ0v))H1/2(Rn−1) = 1

2(w, γ0v)H1/2(Γ0).

Since v ∈ V, then γ0v = 0 on Γ0, and with this, we conclude that

⟨γ1u, γ0v⟩H−1/2(Γ),H1/2(Γ) = 1
2(w, γ0v)H1/2(Γ0) = 0.

(For more details or better understanding of the arguments used in the proof of claims 1 and 2,
consult (MC-S), page 277.)

Claim 3: The map γ0 : V → H1/2(Γ1) is surjective.

Proof of Claim 3: Given z ∈ H1/2(Γ1), we can consider the extension z̃ ∈ H1/2(Γ) of z on Γ
given by

z̃(x) =
{
z(x), if x ∈ Γ1,

0, if x ∈ Γ0.

Since the trace γ0 : H1(Ω)→ H1/2(Γ) is surjective, there exists y ∈ H1(Ω) such that γ0y = z̃. But

γ0y = z̃|Γ0 = 0,

whence it follows y ∈ V.

AUXILIARY RESULTS
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6.1 Properties

Theorem 1: Let E and F be Banach spaces and A : D(A) ⊂ E → F a linear, closed operator
with D(A) = E. Then,

i) A is bounded;

ii) D(A∗) = F ′;

iii) A∗ is bounded.

Proof: See Theorem 2.50, page 95 of (MC-A).

Theorem 2: Let X and X ′ be reflexive and strictly convex. Let F : X → X ′ be the duality map
of X. Let A be a monotone subset of X ×X ′. Then A is maximal monotone in X ×X ′ if, and only if,
for some λ > 0 (equivalently, for all λ > 0), Im(A+ λF ) = X ′.

Proof: See Theorem 1.2, page 39 of (VB).

Corollary 3: Let X be reflexive and B be monotone, hemicontinuous and bounded from X into
X ′. Let A be a maximal monotone operator on X ×X ′. Then A+B is maximal monotone.

Proof: See Corollary 1.1, page 39 of (VB).

Theorem 4 (Kachurovskii): Let K be a convex set in V and let φ : V → (−∞,+∞] be Gateaux
differentiable at each u ∈ K, where K = D(φ). The following statements are equivalent:

i) φ is convex;

ii) φ′(u)(v − u) ≤ φ(v)− φ(u), for all u, v ∈ K;

iii) ⟨φ′(u)− φ′(v), u− v⟩V ′,V ≥ 0, ∀u, v ∈ K.

Proof: See Proposition 7.4, page 80 of (RS).

Theorem 5: Let φ : W → (−∞,+∞] be convex, Λ : V → W continuous and linear, and assume
that φ is continuous at some point of Im(Λ). Then ∂(φ ◦ Λ) = Λ′ ◦ ∂φ ◦ Λ.

Proof: See Proposition 7.8, page 82 of (RS).

Theorem 6: Let X be a real Banach space. If φ is a proper, convex and lower semicontinuous
function on X, then ∂φ is a maximal monotone operator from X to X ′

Proof: See Theorem 2.1, page 54 of (VB).

Theorem 7: Let φ : V → (−∞,+∞] be convex and proper. If φ is Gateaux-differentiable at
u ∈ int(dom(φ)), then ∂φ(u) = {φ′(u)}. If φ is continuous and ∂φ(u) has a unique element, then φ is
Gateaux-differentiable at u.

Proof: See Proposition 7.6, page 81 of (RS).

Theorem 8: Let A be an ω−accretive operator, closed in a Banach space X, and satisfying

D(A) ⊂ Im(I + λA), for all λ > 0 small.

Let X be reflexive and y0 ∈ D(A). Then there exists a unique y ∈W 1,∞([0,∞);X) satisfying

dy

dt
+Ay ∋ 0, t > 0

y(0) = y0.

Proof: See Theorem 1.5, page 216 of (VB2).
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