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Introduction

In the forty years of existence of derived category, it was first thought as a tool in
algebraic geometry, especially in the development of duality theories that were done
by Hartshorne and others. After these first moments, the theory provided a powerful
homological tool for the study of linear differential equations. The basic example in the
literature that can be found about this is the Riemann-Hilbert problem of associating
suitable regular systems of differential equations to constructible sheaves. This studies
can be found in the work of Kashiwara and Schapira. See M. Kashiwara, P. Schapira
“Sheaves on manifolds” ([15]).

To understand the structure of the derived category is necessary to study the axioms
of triangulated categories that were introduced in the mid 1960’s by J.L.Verdier in his
thesis “Des catégories dérivées des catégories abéliennes” ([21]). The role of the triangles
in the derived category is a similar role of the exact sequence in the abelian category. But
it is important to remember that these axioms had their origins in algebraic geometry
and algebraic topology. Nowadays there are important applications of triangulated
categories in areas like algebraic geometry, algebraic topology (stable homotopy theory),
commutative algebra, differential geometry and representation theory of artin algebras.
See, for instance, the book of D. Happel- “Triangulated categories and the representation
theory of finite dimensional algebras” ([11]).

The objective of this notes is to present an introdutory material to the undergraduate
and graduate students that would like to know some ideas about the derived category.

These are the notes a one week series of introductory lectures which I gave in the
XXIII-Escola de Álgebra, in Maringá, Paraná, Brazil. Firstly we introduced the concepts
of additive and abelian category to show the axioms of triangulated category that are
our main objective. The triangulated category obey four axioms. We first introduced
the first three axioms and their consequences on chapter one and then the octahedral
axioms in various equivalent forms in a separate section of the first chapter.

The objective of this section is to give a model capable of making this axiom more
palatable since, in general, the form that it is presented in the literature does not
remind the reader of any similar structure in other fields of mathematics. So, we make
the necessary efforts here to present another form of this axiom that is similar to other
tools that could be seen in the abelian categories.

We present in chapter one the main example of triangulated category, the homotopy
category of complexes. Secondly, to understand the morphisms in the derived category
I introduced the concept of localization in chapter two. To those that are starting to
study localization, we present the necessary background to understand the localization
of non commutative ring. We believe that with this model in mind the student will
profit more from the study of localization of categories.
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6 INTRODUCTION

On chapter two, the student will find the necessary information and exercises to begin
to manipulate morphisms in the derived category. So, on chapter three we introduce
the definition of derived category of an abelian category and we explain how one sees
the original abelian category as a subcategory of its derived category.

After having done all this work, it is natural to have many questions about the behav-
ior of the derived category or its applications. Therefore, we present here a bibliography
in portuguese and in english that will help the students to make further investigations.

The reader that whishes to know the history and the motivation of the begining
of the derived category with many details, should read the introduction of the book
”Sheaves on Manifolds - M. Kashiwara and M. Schapira ([15]).
Acknowledgements: I am particularly grateful to Sônia Maria Fernandes-DMA-
UFV, Tanise Carnieri Pierin -DMAT-UFPR and Eduardo Nascimento Marcos IME-
USP, who carefully worked through the text and sent me detailed lists of corrections,
questions and remarks. These notes were writen for the first time in 2014 and were
used in a minicourse which I tough in the XXIII-Escola de Álgebra in Maringá, Paraná,
Brazil. The last version was written during my visit to IME-USP in 2018, where I got
finantial help of Fapesp, process 2018/08104− 3.



CHAPTER 1

Triangulated Categories

In this chapter we quickly present the concepts of additive and abelian categories.
We are mainly interested in the defining axioms of abelian category. We give some of
the imediatly properties of these categories, which came from the refered axioms. Next
we define the notion of pre-triangulated categories, which are the triangulated categories
that do not necessarily satisfy the octahedral axiom.

The axioms of pre-triangulate category will be given in a separate section. Pre-
triangulated structures have a lot of similarity with the additive category.

An important example of triangulated category will be presented, the homotopy
category of complexes. Most of the topic compiled here can be found in the book
“Lectures on Derived Categories”, by Milicic ([18]).

1. Additive Category

In this section we present the basic definitions of additive and abelian categories. It
is possible to find many good books about this topic. But nowadays we have on the
internet many thesis (or TCC in Portuguese) about this. I strongly suggest the work
of the student Valente Santiago Vargas from Unam - Mexico ”Elementos de álgebra
homológica en categoŕıas abelianas y el Teorema de Inmersión en la categoŕıa de grupos
abelianos” ([20]).

Definition 1.1. A category A is called an additive category if the following
conditions hold:

(A1) For every X, Y ∈ ObjA, HomA(X, Y ) is an abelian group and the composition
of morphisms is bilinear over the integers.

(A2) The category A contains a zero object 0 (ie, for an object X ∈ ObjA, such that
the sets HomA(X, 0) and HomA(0, X) has precisely one element).

(A3) For every pair of objects X, Y ∈ A there exists a coproduct X ⊕ Y in A.

Definition 1.2. Let (Mλ)λ∈Λ be a family of objects in A. A coproduct

(M, (ιλ)λ∈Λ)

of this family is an object M in A and a family of morphisms ιλ : Mλ → M such
that, if (M ′, (ι′λ)λ∈Λ) is a pair with ι′λ : Mλ →M ′ then, there exists a unique morphism
f : M →M ′ such that fιλ = ι′λ.

Example 1.1. (a) Let R be a ring and consider R as a category: ObjA = ∗ and
Hom(∗, ∗) = R. The composition of morphisms is given by ring multiplication.
Then this category satisfies A1. But this category is not additive in general
because there is no zero object or coproduct. The coproduct of ∗ with ∗ would
have to be ∗ together with fixed morphisms

g1 : ∗ → ∗
7



8 1. TRIANGULATED CATEGORIES

and
g2 : ∗ → ∗.

Then the universal property would mean that for an arbitrary ring, any element
of R, f1 : ∗ → ∗ and f2 : ∗ → ∗ there exists a unique element f factoring them
as f1 = fg1 and f2 = fg2.

(b) Let R be an associative ring with unit element. Then the category Mod R of all
right R-modules is additive. Similarly, the category mod R of finitely generated
R-modules is additive. In particular, the categories Ab of abelian groups and
V ecK of vector spaces over a field K are additives.

(c) For a ring R the full subcategory R-Proj of projective right R-modules is ad-
ditive; similarly for R-proj, the category of finitely generated projective right
R-modules.

The zero morphism in Hom(A,B) is a morphism that factors through the object
zero.

Lemma 1.1. Let A be a category with zero object. Then the set Hom(X, Y ) has
precisely one zero morphism.

Proof: We know that a zero morphism α : A→ B is a morphism that factors through

the object zero. Let A
α→ 0 and 0

β→ B morphisms in A and let 0AB = βα be a zero
morphism. Suppose that 0′ is another zero object in A and let 0′AB = β′α′, α′ : A→ 0′,
β′ : 0′ → B. How 0 and 0′ are zero objects, then there is an unique morphism h : 0′ → 0
so the composition hα′ is another morphism from A to 0, so hα′ = α. In the same way
βh = β′. Then 0AB = βα = βhα′ = β′α′ = 0′AB. �

Lemma 1.2. Let α : A → B and 0 the zero morphism 0 : C → A. Then α0 = 0
where the last zero is the unique morphism from C → B that factors through the zero
object.

Proof: We have the following

C
0
//

0
��

A
α
// B

0

0

OO

So α0 = (α0)0. Then α0 = 0. �

Lemma 1.3. Let X, Y be objects in A and ιX : X → X ⊕ Y , ιY : Y → X ⊕ Y the
morphisms of the coproduct. Then there exist pX : X ⊕ Y → X and pY : X ⊕ Y → Y
satisfying pXιX = 1X , pXιY = 0 and pY ιY = 1Y , pY ιX = 0 and ιXpX + ιY pY = 1X⊕Y .

Proof: The following diagram

X

X

1X
;;

ιX
// X ⊕ Y Y

ιY
oo

0
cc

allows us to say that there exist an unique pX : X ⊕ Y → X such that pXιX = 1X and
pXιY = 0. In the similar way we have the other equations. And finally we have

(ιXpX + ιY pY )ιX = ιXpXιX + ιY pY ιX = ιX1X = ιX
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and
(ιXpX + ιY pY )ιY = ιY .

Then we have two morphisms doing the following diagram commutative:

X ⊕ Y

X

ιX
;;

ιX
// X ⊕ Y

OO

Y

ιY
cc

ιY
oo

Then ιXpX + ιY pY = 1X⊕Y . �
We introduced next the category of complexes over an aditive category. This category

has a crucial hole in this work.
Let A be an additive category. A complex over A is a family

X• = (Xn, dnX)n∈Z

of objects Xn of A and morphisms dnX : Xn → Xn+1 such that

dnXd
n−1
X = 0.

The object Xn is called homogeneous component of degree n of X•. Let X• and Y • be
complexes over A. A morphism of complexes f • : X• → Y • is a family of morphisms
f = (fn : Xn → Y n) satisfying

fndn−1
X = dn−1

Y fn−1.

The complexes over an additive category A together with the morphism of complexes
form a category C(A), the category of complexes over A.

Proposition 1.4. Let A be an additive category. The category of complexes C(A)
is again additive.

Proof: The addition of morphism of complexes is defined in the following way

f + g = (fn + gn)n∈Z.

It is easy to check that (A1) in the definition of additive category holds. The zero object
in C(A) is the complex (0A, d), where 0A is the zero object of the additive category A
and all differentials are the unique zero morphism on the zero object.

Let X• and Y • be two complexes in C(A). We define X• ⊕ Y • = (Xn ⊕ Y n, dn)n∈Z,
where dn is obtained in the following way:

Let ιnX : Xn → Xn⊕Y n and ιnY : Y n → Xn⊕Y n be morphisms from the coproduct,
then we have the following diagram

Xn+1 ⊕ Y n+1

Xn

ιn+1
X dnX

88

ιnX
// Xn ⊕ Y n Y n

ιnY
oo

ιn+1
Y dnY

ff

From the above diagram and from uniqueness in the universal property, there exists a
unique morphism d and we have the following commutative diagram:

Xn+1 ⊕ Y n+1

Xn

ιn+1
X dnX

88

ιnX
// Xn ⊕ Y n

dn

OO

Y n
ιnY
oo

ιn+1
Y dnY

ff
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From uniqueness in the universal property applied to the following diagram

Xn+2 ⊕ Y n+2

Xn

0
88

ιnX
// Xn ⊕ Y n

dn+1dn

OO

Y n
ιnY
oo

0
ff

we have that dn+1dn = 0.
Therefore, we have the complex X• ⊕ Y • = (Xn ⊕ Y n, dn)n∈Z and we have to prove

that this complex satisfies the properties of a coproduct in the category of complex
C(A).

Let ιX = (ιnX : Xn → Xn⊕ Y n)n∈Z and ιY = (ιnY : Y n → Xn⊕ Y n)n∈Z morphisms of
complexes. Let Z• be an arbitrary complex and let fX• : X• → Z• and fY • : Y • → Z•

be arbitrary morphisms.
So there exists a family of morphisms (fn)n∈Z, f

n : Xn ⊕ Y n → Zn satisfying

fnιnX = fnX•

fnιnY = fnY • .

We have to prove that f • = (fn)n∈Z is a morphism of complexes.

Xn

dnX

��

ιnX

ww

fn
X•

$$

Xn ⊕ Y n

dn

��

fn
// Zn

dnZ

��

Y n

ιY n

gg

fn
Y •

::

Xn+1

ιn+1
X

ww

fn+1
X•

$$

Xn+1 ⊕ Y n+1 fn+1

// Zn+1

Y n+1

ιY n+1

gg

fn+1
Y •

::

For this it is enough to prove that dnZf
n = fn+1dn. We have the following

dnιnX = ιn+1
X dnX

fn+1
X• d

n
X = dnZf

n
X•

dnιnY = ιn+1
Y dnY

fn+1
Y • d

n
Y = dnZf

n
Y • .

So
fn+1dn = fn+1dn(ιnXp

n
X + ιnY p

n
Y ) =

fn+1ιn+1
X dnXp

n
X + fn+1ιn+1

Y dnY p
n
Y = fn+1

X• d
n
Xp

n
X + fn+1

Y • d
n
Y p

n
Y =

dnZf
n
X•p

n
X + dnZf

n
Y •p

n
Y = dnZ(fnX•p

n
X + fnY •p

n
Y )

dnZ(fnιnXp
n
X + fnιnY p

n
Y ) = dnZf

n.�
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2. Triangulated Category

2.1. Axioms. In order for an aditive category to be triangulated it needs a new
structure called a triangulated structure. In some sence this new structure is similar to
the notions of exact sequences, which are necessary for an additive category to be an
abelian category (Definition 3.1). For an additive category to be triangulated it needs
first an autoequivalence, which is called a suspention functor then a set of sequences of
morphism between some objects which is called exact triangles, obeying some axioms,
as we explain in this section.

The work of Paul Balmer (“Triangulated Categories with Several Triangulations”,
[4]) explain what we mean in the begining of this section. If an aditive category is
abelian, the aditive structure already detemines the short exact sequences, so the abelian
structure. That is not the same, a priori for a triangulate structure.

In the following definition, the additive functor T is an automorphism, that is, it
is invertible, thus there exists a functor T−1 on the additive category T such that
T ◦T−1 and T−1 ◦T are the identity functors. Sometimes we use the following notation
T nX = X[n], T n(f) = f [n], ∀ n ∈ Z.

A triangle in T is a sequence of objects and morphisms in T of the form

X → Y → Z → TX.

A morphism of triangles is a triple (f, g, h) of morphisms such that the following
diagram is commutative in T :

X
u
//

f
��

Y
v
//

g
��

Z
w
//

h
��

TX

Tf
��

X ′
u′
// Y ′

v′
// Z ′

w′
// TX ′

If the morphisms f, g and h are isomorphisms in T , then the morphism of triangles
is called isomorphism of triangles.

Definition 2.1. Let T be an additive category. The structure of a pre-triangu
lated category on T is given by an additive automorphism

T : T → T
called shift functor and a set of triangles called exact triangles

A→ B → C → TA

subject to the axioms TR1, TR2, TR3.

(TR1) Any triangle isomorphic to an exact triangle is again an exact triangle. For
every object X in T , the triangle

X
IdX−→X −→ 0 −→ TX

is an exact triangle. Any morphism u : X → Y ∈ T can be completed to an
exact triangle

X
u−→ Y −→ Z −→ TX.

(TR2) A triangle

X
u−→ Y

v−→ Z
w−→ TX
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is an exact triangle if and only if the triangle

Y
v−→ Z

w−→ TX
−Tu−→ TY

is an exact triangle.

(TR3) Given exact triangles X
u−→ Y

v−→ Z
w−→ TX and A

u′−→ B
v′−→ C

w′−→ TA,
then each commutative diagram

X
u
//

f
��

Y
v
//

g
��

Z
w
// TX

Tf
��

A
u′
// B

v′
// C

w′
// TA

can be completed to a morphism of triangles (but not necessarily uniquely).

Lemma 2.1. Let X
f→ Y

g→ Z
h→ TX be an exact triangle. Then the composition of

any two consecutive morphisms in the triangle is equal to zero.

Proof : Consider the commutative diagram, which can be completed.

X
1
//

1
��

X //

f
��

0

��

// TX

T1
��

X
f
// Y

g
// Z

h
// TX

So gf = 0. �

Proposition 2.2. Let A → B → C → TA be an exact triangle in a triangulated
category T . Then for any object A0 ∈ T , there is the following induced exact sequences:

Hom(A0, A)→ Hom(A0, B)→ Hom(A0, C)

Hom(C,A0)→ Hom(B,A0)→ Hom(A,A0).

Proof:

A0
Id
//

��

A0

f
��

// 0

��

A // B // C

This allows us to lift f to A0 → A. This implies that the first sequence is exact.
That the second sequence is exact is similar. Due to TR2,

Hom(A0, B)→ Hom(A0, C)→ Hom(A0, TA)

is exact. �
With this proposition one obtains in fact a long exact sequence

· · · → Hom(A0, B)→ Hom(A0, C)→ Hom(A0, TA)→ Hom(A0, TB)→ Hom(A0, TC)→ · · ·
is exact.

We give now a series of statements whose proof we left to the reader.
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Proposition 2.3. Let

X
u
//

f
��

Y
v
//

g
��

Z

h
��

w
// TX

Tf
��

A
u′
// B

v′
// C

w′
// TA

be a morphism of two exact triangles. If two among the morphisms f, g and h are
isomorphisms, then the third one is also an isomorphism.

Therefore, the third vertex in an exact triangle is determined up to isomorphism.

Corollary 2.4. Let X
f→ Y

g→ Z
h→ TX be an exact triangle in T . If two of its

vertices are isomorphic to 0, then the third one is isomorphic to 0.

Corollary 2.5. Let X
f→ Y

g→ Z
h→ TX be an exact triangle. Then the following

statements are equivalent:
(i) f is an isomorphism;
(ii) Z ' 0.

Proposition 2.6. The following are equivalent for an exact triangle

X
f→ Y

g→ Z
h→ TX

(a) f is a split monomorphism.
(b) g is a split epimorphism.
(c) h = 0.

Proposition 2.7. Let X
ιX−→ X⊕Y be the natural inclusion and let p : X⊕Y p→ Y

be the natural projection. Then

X
ι→ X ⊕ Y p→ Y

0→ TX

is an exact triangle.

Proposition 2.8. Let X
u→ Z

v→ Y
0→ TX be an exact triangle. Then there exists

a morphism
Φ : X ⊕ Y → Z such that the following diagram is an isomorphism of triangles

X
ι
//

1
��

X ⊕ Y p
//

Φ
��

Y

1
��

// TX

T1
��

X
u

// Z
v

// Y
0
// TX

Definition 2.2. Given a morphism u in a pre-triangulated category T , we have
then a triangle A

u→ B → C → TA. We call C the cone of u.

Exercise: 1. If A
u→ B → C → TA is an exact triangle, show that A → B is an

isomorphism if and only if C ' 0.
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3. Abelian Category

In this section we present a canonical way to construct a pre-triangulated category
out of an abelian category.

Definition 3.1. A category A is an abelian category if it is an additive category,
have kernel and cokernel, every monomorphism α is the kernel of some morphism in A,
every epimorphism is the cokernel of some morphism in A and every morphism A

α→ B
can be written as A

u→ I
v→ B such that u is an epimorphism and v is a monomorphism.

As we said before, the fact that an additive category to be abelian does not depend
on any aditional structure. This is already done with the additive structure.

Let R be a ring. The category Mod R of all R-modules is an abelian category.
However, mod R, the subcategory of Mod R of finitely generated modules is, in general,
not an abelian category. We have that mod R is an abelian category if and only if R is
a noetherian ring. So, a consequence of this is that the category of finite dimensional
vector spaces over a field is abelian and the category of finitely generated abelian groups
is abelian. More examples of interesting, of non abelian category can be found in the
book “Fourier-Mukai Transforms in Algebraic Geometry - D. Huybrechts” ([14]).

Proposition 3.1. Let A be an abelian category. Then the category of complexes
C(A) is an abelian category.

We have seen that the category of complexes is an additive category. We leave to
the reader the following exercise.

Exercise: 2. Prove the Proposition above.

An abelian category A is semisimple if any short exact sequence in A splits.

Theorem 3.2. Let A be a pre-triangulated category which is an abelian category.
Then every monomorphism and epimorphism in A splits.

Proof: Let f : X → Y be a monomorphism in A. Then, by (TR1), there exists an
exact triangle

X
f→ Y

g→ Z
v→ TX

and by (TR2) there exists an exact triangle

Y → Z
v→ TX

−Tf→ TY.

Therefore −Tf ◦ v = 0 and Tf is a monomorphism. Thus v = 0 and so g is a split
epimorphism and f is a split monomorphism. �

This Theorem shows that if an abelian category has a structure of pre-triangulated
category then it is unique and the category is what is called semisimple.

4. Pre-triangulated structure on the Homotopic Category of Complexes

We shall see in this chapter that the homotopy category of complexes over an additive
category is a pre-triangulated category. We would like to emphasize the fact that in
general, the homotopy category is not abelian even if the original one is abelian (see
”Teorema de Morita para Categoria Derivada”-M.R. Fidelis ([7]). On the other hand
the homotopy category has the structure of a pre-triangulated category.

We can identify the category A with a full subcategory of C(A) in the following
proposition.
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Proposition 4.1. Let A be an abelian category. The functor C : A → C(A)
mapping X ∈ A to the complex X• with X0 = X and X i = 0 for i 6= 0 is fully and
faithful.

Any object X of an abelian category A, can be considered as a complex

· · · → 0→ 0→ X → 0→ 0 · · ·
with X in the 0-th place. This complex will be called 0-complex or stalk complex
at zero. A stalk complex is a complex where there is only one non zero entry.

Example 4.1. Now we give an example of an automorphism in C(A), the category
of complex, which will be of interess. Let T : C(A) → C(A) be the functor defined as
follows: if X is a complex in A, then

(TX•)n = Xn+1

dnTX = −dn+1
X ,

for each n ∈ Z, and if f • : X• → Y • is a morphism of complexes, then Tf • : TX• → TY •

is given by (Tf •)n = fn+1 for all n ∈ Z.

Definition 4.1. We say that a complex X• is bounded below if there exists
n0 ∈ Z such that Xn = 0 for n < n0. Similarly we can define a complex bounded
above. The complex X• is a bounded complex if it is bounded above and below.
We denote C−(A) the full subcategory of C(A) consisting of bounded above complexes
and we denote C+(A) the full subcategory of C(A) consisting of the bounded below
complexes. We denote Cb(A) the full subcategory of C(A) of the bounded complexes.

The subcategories C−,+,b(A) of C(A) are invariant for action of the translation functor
T and are additive if A is additive.

Definition 4.2. Let A be an additive category. Two morphisms f •, g• : X• → Y •

in the category C(A) of complexes are called homotopic, denoted by f • ∼ g•, if there
exists a family (sn)n∈Z of morphisms sn : Xn → Y n−1 in A satisfying

fn − gn = dn−1
Y sn + sn+1dnX .

In particular, setting g to be zero morphism, we can speak of morphisms being
homotopic to zero.

Exercise: 3. Verify that ∼ is an equivalence relation. If f •, g• : X• → Y • are
morphism of complexes and f • ∼ g• and α• : W • → X• is an arbitrary morphism of
complexes, then also the composition f •α• ∼ g•α• are homotopic. Similary if β• : Y • →
W • then β•f • ∼ β•g• are homotopic.

In particular if a morphism of complex is homotopic to zero then any composition
on the left or in the right is also. Moreover the sum of two morphism homotopic to zero
is homotopic to zero. That is what it usually abreviate by saying the morphisms which
are homotopic to zero form an ideal in the category of complexes.

From these properties in the exercise, we have a well-defined composition of equiva-
lence classes of morphisms modulo homotopy by defining the composition of represen-
tatives.
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Definition 4.3. Let A be an additive category. The homotopy category K(A)
has the same objects as the category C(A) of complexes over A. The morphisms in the
homotopy category are the equivalence classes of morphisms in C(A) modulo homotopy.

Proposition 4.2. Let A be an additive category. Then the homotopy category K(A)
is again an additive category.

In the last section we defined pre-triangulated category and we shall see that the
homotopy category K(A) of complexes over an additive category A is a pre-triangulated
category. This result will then give a more structural explanation of the following
observation that K(A) is not abelian. We have proved that if an abelian category is
triangulated, then every exact sequence splits. The category of complex C(A) endowed
with the shift functor (translation functor) does not define a triangulated category, since
it is not in general semisimple.

Exercise: 4. Shows that, if A is a semisimple category then C(A) is semisimple
and therefore triangulated.

Exercise: 5. Let f • : X• → Y • be a morphism of complex. Prove that the following
statements are equivalent:
(a) f • is homotopic to zero;
(b) T (f •) is homotopic to zero.

Using this exercise we conclude that the translation functor T induces an isomor-
phism of

HomK(A)(X
•, Y •) ' HomK(A)(TX

•, TY •).

It follows that T induces an automorphism of the additive category K(A) and as
before we define the full subcategories K+(A),K−(A),Kb(A) of the bounded below
complexes , bounded above complexes and bounded complexes.

Let
H : C(A)→ K(A)

be the natural functor which is the identity on objects and maps morphisms of complexes
into their homotopy classes. This functor is an additive functor which commutes with
the translation functor. We also have the additive functor K = H ◦ C : A → K(A)
where C is the functor that maps each objects X ∈ A in the 0-complex induced by X
(Proposition (4.1)).

Proposition 4.3. The functor K : A → K(A) is fully faithful.

Now we talk about the cohomology. Assume that A is an abelian category. For
p ∈ Z and any complex X• ∈ C(A), we define

Hp(X•) = KerdpX/Imd
p−1
X

in A. If f : X• → Y • is a morphism of complexes,

fp(KerdpX) ⊂ KerdpY

and
fp(Imdp−1

X ) ⊂ Imdp−1
Y ,

and f induces a morphism

Hp(f) : Hp(X•)→ Hp(Y •).
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Therefore, Hp : C(A) → A is a functor. These functors are additive and are called
cohomological functors.

Exercise: 6. Given f •, g• : X• → Y • two homotopic morphisms of complexes,
prove that H0(f) = H0(g). Conclude that Hp(f) = Hp(g) for all p ∈ Z.

These functors have the following property:

Hp(T (X•)) = Hp+1(X•)

and

Hp(T (f)) = Hp+1(f).

Therefore,

Hp = H0 ◦ T p

for any p ∈ Z.
We have seen that given a morphism f : X → Y in a pre-triangulated category A,

then the third vertex of the triangle is well determined. Now we give the construction
of an object in the category of complex that helps to determine this ”third object” in
the pre-tringulated category K(A).

Let A be an additive category and f • : X• → Y • be a morphism of complex in
C•(A). We define a graded object C•f by Cn

f = Xn+1 ⊕ Y n for all n ∈ Z. We also define

dnCf : Cn
f → Cn+1

f by

dnC•f =

[
−dn+1

X 0
fn+1 dnY

]
Exercise: 7. Prove that dn+1

C•f
◦dnC•f = 0 and then conclude that (C•f , dCf ) is a complex

in C•(A).

We call the complex (C•f , dCf ) the mapping cone of f. Note, however, that C•(A)
endowed with the shift functor T does not define a pre-triangulated category. For

example, the cone of the morphism X•
1X•→ X• is not zero, however is homotopic to zero.

Now we define some important morphisms to construct the exact triangle in the
homotopic category. Let

ιf : Y • → C•f

be the morphism of complex given by ιnf = (0 1Y n)t for all n ∈ Z. It is easy to verify

that dnC•f
◦ ιnf = ιn+1

f ◦ dnY for all n ∈ Z, so ιf is a morphism of complexes in C•(A). Now

let

pf : C•f → T (X•)

given by pnf = (1Xn+1 0). We have pn+1
f ◦ dnC•f = dnT (X•) ◦ pnf for all n ∈ Z, so pf is a

morphism of complexes in C•(A). From the construction, we always have

pf ◦ ιf = 0.

Proposition 4.4. Let A be an abelian category. Then we have an exact sequence
of complexes

0• → Y •
ιf→ C•f

pf→ T (X•)→ 0•.
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The proof is left to the reader.
Let f • : X• → Y • a morphism of complexes. The above short exact sequence

splits, if an only if f • is homotopic to zero. In fact, if the short exact sequence
splits, then there exist σ : T (X•) → C•f such that pf ◦ σ = 1TX• . So by defini-
tion of pf is possible to say that σ(x) = (x,−s(x)) for some morphism s, that is,
σn(x) = (x,−sn+1(x)). From dnC•f

◦ σn(x) = σn+1(−dn+1
X• (x)) = (−dn+1

X• (x), fn+1(x) −
dnY •(s

n+1(x))) = (−dn+1
X• (x), sn+2dn+1

X• (x)). So fn+1(x) = dnY •s
n+1(x)+sn+2dn+1

X• (x). Now,
if we suppose that f • is homotopic to zero, then this last equation gives us that pf is
an split epimorphism.

Definition 4.4. Let A be an additive category. Let f • : X• → Y • be a morphism
in C•(A). Then the diagram

X•
f•→ Y •

ιf→ C•f
pf→ T (X•)

is called the standard triangle in C•(A) attached to f •.

Then, we can conclude that for every standard triangle in K•(A) there is a corre-
sponding short exact sequence in C•(A)

0• → Y •
ιf→ C•f

pf→ T (X•)→ 0•.

On the other hand, it is not true that any short exact sequence in C(A) would lead
to an exact triangle in the homotopy category K•(A). But it is crucial to understand
that a short exact sequence in C•(A) induces an exact triangle in the localization of the
K•(A). This explanation will be done in the next section.

We present now one important proposition about morphisms between standard tri-
angles.

Proposition 4.5. Let

X•
f
//

u
��

Y •

v
��

X•1
g
// Y •1

be a diagram in C•(A) which commutes up to homotopy (v ◦ f ∼ g ◦ u). Then there
exists a morphism w : C•f → C•g such that the diagram

X•
f
//

u

��

Y •

v

��

ιf
// C•f

w

��

pf
// T (X•)

T (u)

��

X•1
g
// Y •1

ιg
// C•g

pg
// T (X•1 )

commutes up to homotopy. If the first diagram commutes in C•(A), then the second
diagram commutes in C•(A).

Proof : By hypothesis v ◦ f ∼ g ◦ u, ie,

g ◦ u− v ◦ f = dY •1 ◦ h+ h ◦ dX•
for some h.
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If we define

wn =

[
un+1 0
−hn+1 vn

]
for all n ∈ Z, then it is easy to see that each square in the following diagram is commu-
tative:

Xn+1 fn+1

//

99

un+1

��

Y n+1
ιn+1
f

//

77

vn+1

��

Xn+2 ⊕ Y n+1

66

wn+1

��

(1 0)t
// Xn+2

��

Xn

un

��

dn
X•

<<

fn
// Y n

ιnf

//

vn

��

dn
Y •

;;

Xn+1 ⊕ Y n

dn
C•
f

66

wn

��

(1 0)t
// Xn+1

::

��

Xn+1
1

gn+1

// Y n+1
1

ιn+1
g

// Xn+2
1 ⊕ Y n+1

1

(1 0)t
// Xn+2

1

Xn
1

dn
X•1

<<

gn
// Y n

1

ιng
//

dn
Y •1

;;

Xn+1
1 ⊕ Y n

1

dn
C•g

77

(1 0)t
// Xn+1

1

;;

and dnC•g ◦ w
n = wn+1 ◦ dnC•f because v ◦ f ∼ g ◦ u. The other squares are commutative

without the homotopy. �
Remark:

(a) Doing the composition ιf ◦ f •, we have (0 1)tfn = (0 fn)t. So this composition
is not zero in C•(A). But, taking sn = (1 0)t we have

(0 fn)t = sn+1 ◦ dnX• + dn−1
C•f
◦ sn

so (0 f •) ∼ 0•.
Therefore ιf ◦ f • = 0 in K•(A).

(b) Let X• be a complex in C•(A) and X•
1X•→ X• the identity morphism. The

mapping cone of the identity morphism in degree n is Cn
1X•

= Xn+1⊕Xn. The
differential is [

−dn+1
X• 0

1Xn+1 dnX•

]
and it is possible to prove that the identity morphism 1C•1X•

: C•1X• → C•1X• is

homotopic to zero via the map s = (sn)n∈Z where

sn =

[
0 1Xn

0 0

]
Thus, in the homotopy category K(A), the identity morphism 1C•1X•

: C•1X• →
C•1X• is equal to the zero map. So, in the homotopy category the mapping cone
C•1X• is isomorphic to the zero complex.

Now we have the necessary elements to define the exact triangles in the homotopic
category of complexes. So, let A be an additive category and K•(A) the corresponding

homotopic category of complexes with the translation functor T . We say that X
f→
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Y
g→ Z

h→ TX is an exact triangle in K•(A) if it is isomorphic to the image of a
standard triangle in K•(A), ie, it is isomorphic to a triangle

X•
f•→ Y •

ιf→ C•f
pf→ T (X•).

Theorem 4.6. Let A be an additive category and K•(A) the homotopic category
of complexes equipped with the translation functor T and the classes of exact triangles.
Then K•(A) is a pre-triangulated category.

Proof : We give now a sketch of the proof of the validity of TR1. The proof of TR2
and TR3 can be found in the book of D.Milicic-Lectures on Derived Categories [18].

We have that any triangle isomorphic to an exact triangle is an exact triangle and

for any f • : X• → Y • in K•(A), there exists an exact triangle X•
f•→ Y • → Z• → TX•.

We have shown that the cone C•1X• of the identity morphism on X• is isomorphic to
0 in K•(A). Therefore, the diagram

X•
1X•
//

1X•

��

X•

1X•

��

// 0 //

0
��

TX•

1TX•

��

X•
1X•
// X•

ι1X•
// C•1X•

p1X•
// TX•

is commutative in K•(A) and the vertical morphisms are isomorphisms. Since the
bottom row is the image of a standard triangle, then the top row is an exact triangle.
So the axiom TR1 is satisfied. �

5. Octahedral Axiom

A triangulated category is a pre-triangulated category whose pre-triangulated struc-
ture obeys one axiom more TR4, called the octahedral axiom. This axiom is called the
”octahedral axiom” because its representation looks like the skeleton of an octahedron.
The definition of a triangulated category was given by Jean-Louis Verdier (1963) in his
posthumous published Ph.D. thesis, which was based on the ideas of Grothendieck.

(TR4) Given exact triangles (α1, α2, α3), (β1, β2, β3), and (γ1, γ2, γ3) with γ1 = β1α1 ,
there exists an exact triangle (δ1, δ2, δ3) making the following diagram commu-
tative:

X
α1
//

1
��

Y
α2

//

β1
��

U

δ1
��

α3
// TX

T1
��

X
γ1
// Z

β2
��

γ2
// V

δ2
��

γ3
// TX

Tα1

��

W
1
//

β3
��

W
β3
//

δ3
��

TY

TY
Tα2
// TU

Definition 5.1. We call triangulated category a pre-triangulated category which
satisfies the axiom TR4.
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The first contact with this axiom causes an odd feeling. This feeling is a necessary
ingredient to profit from the explanation we try to give in the next pages.

In general the TR4 axiom is presented in the fashion showed above. But we would like
to give an equivalent form of presentation that was suggested by V. Dlab. He suggested
that the octahedral axiom should be equivalent to a simpler ”push-out” property. The
first formulation and also the proof of this observation was given by Parshall and Scott
in ”Derived Categories, Quasi-Hereditary Algebras and Algebraic Groups” ([5]) and
reformulated recently by Henning Krause in ”Derived categories, resolutions, and Brown
representability” ([17]). This equivalent form has some similarities to other things that
happen in abelian categories. Then, for the readers who are familiar with abelian
categories, this new presentation will clarify the axiom TR4 and the strangeness will be
replaced by beauty.

We would like to remind you of some properties of an abelian category in order to
present this equivalent definition. Those properties give us the existence of an exact
sequence and specific pull-back and push-out.

A commutative square

A
f
//

f ′
��

B

g

��

B
′ g′

// C

is a pull-back and a push-out if and only if we can dispose the objects and morphisms
of the square in an exact sequence:

0→ A
(f −f ′)t−→ B ⊕B′ (g g′)−→ C → 0.

One of the conditions for this sequence to be exact is that (g g′)(f − f ′)t = 0, and
this happens if and only if the above square is commutative. Now, to prove that

A
(f −f ′)t−→ B ⊕B′

is the kernel of (g g′), lets suppose that the square is a pull-back. Let u : X → B ⊕ B′
be a morphism such that (g g′)u = 0. Then, rewriting u = (u1 u2)t, from the equality

(g g′)(u1 u2)t = 0

we can conclude that gu1 = −g′u2. From the pull-back diagram

Z

A B

C C

0

0

η

f

f ′

g′

g

there exists a unique θ : X → A such that fθ = u1 and f ′θ = −u2, that is,
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(f − f ′)tθ = (u1 u2)t,

showing us that u factors through (f − f ′)t. This finishes the proof that (f − f ′)t is
the kernel of (g g′).

Another step which is necessary to prove the exactness of the sequence above is to
show that (f − f ′)t is a monomorphism. For this, consider a morphism η : Z → A such
that (f − f ′)tη = 0. Then, fη = 0 and f ′η = 0. These two equalities give us to the
following picture:

Z

A B

B′ C

0

0

η

f

f ′

g′

g

which will be explained now. From the equality g0 = g′0 and the uniqueness property of
the pull-back, there exists a unique h : Z → A such that fh = 0 and f ′h = 0. Besides,
η and the zero morphism satisfy the property of h. Therefore, by uniqueness, η = 0 and
so (f − f ′)t is a monomorphism.

Then we have that the following sequence of morphisms

0→ A
(f −f ′)t−→ B ⊕B′ (g g′)−→ C

is an exact sequence.
It remain us to prove that (g g′) is an epimorphism and for this purpose we will

use the push-out’s property of the square. Let η : C → X be a morphism such that
η(g g′) = 0. Then ηg = 0 = ηg′, which leads us to the following diagram:

A B

B′ C

X

0

0

η

f

f ′

g′

g

By uniqueness we have η = 0.
Conversely, suppose that

0→ A
(f −f ′)t−→ B ⊕B′ (g g′)−→ C → 0

is an exact sequence. Let u1 : X → B and u2 : X → B′ be morphisms such that
gu1 = g′u2. Then (g g′)(u1 − u2)t = 0. By the property of the kernel, there exists a



5. OCTAHEDRAL AXIOM 23

unique θ : X → A such that (f − f ′)tθ = (u1 − u2)t. Then, fθ = u1, f
′θ = u2. So the

square is a pull-back diagram and in a similar way, using the property of the cokernel,
we can obtain that the square is a push-out, which finishes the proof.

We know that in a triangulated category we do not have at our disposal an exact
sequence, because in this kind of categories, every exact sequence is a split sequence.
On the other hand, the triangles constitute the structure of this category.

We will now present a type of square which is not necessarily a pull-back and a push-
out square as the one we considered before, but which has another similar property in
the context of pre-triangulated category. The square

X
α′
//

α′′
��

Y ′

β′

��

Y
′′ β′′

// Z

is called homotopy cartesian if there exists an exact triangle

X
(α′ α′′)t−→ Y ′ ⊕ Y ′′ (β′ −β′′)−→ Z

γ−→ TX.

The map γ is called a differential of the homotopy cartesian square. In this definition
we can see the similarity with the problem presented before. We will introduce now an
axiom called TR4′ and we will prove that TR4 and TR4′ are equivalent. We call TR4′

the following axiom:

(TR4’) Every pair of morphisms X → Y and X → X ′ can be completed to a morphism
between exact triangles:

X //

��

Y //

��

Z

1
��

// TX

��

X ′ // Y ′ // Z // TX ′

such that the left hand square is a homotopy cartesian square whose differential
is the compositon Y ′ → Z → TX.

We should prove now that TR4 is equivalent to TR4′. But first we introduce another
formulation of TR4′.

(TR4”) The diagram

X //

��

Y //

��

Z // TX

X ′ // Y ′

consisting of a homotopy cartesian square with differential δ : Y ′ → TX and an exact
triangle can be completed to a morphism of exact triangles

X //

��

Y //

��

Z

1
��

// TX

��

X ′ // Y ′ // Z // TX ′

such that the composition Y ′ → Z → TX is equal to δ.
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Theorem 5.1. Let T be a pre-triangulated category. Then the axioms TR4, TR4′

and TR4′′ are equivalent.

Proof: First we would like to show that the axiom TR4′ implies the axiom TR4′′. Then,
we have to suppose that there is a diagram

(1) U
α
//

φ
��

V
β
//

Ψ
��

W
γ
// TU

X
κ
// Y

consisting of a homotopy cartesian square with differential δ : Y → TU and an exact
triangle. We have to construct the second triangle which is necessary for the diagram
TR4′′.

We are going to use the axiom TR4′ which gives us a triangle. Then, by applying
the axiom TR4′ on α and φ, we obtain a morphism between exact triangles such that

(2) U
α
//

φ
��

V
β′
//

Ψ′

��

W ′

1
��

γ′
// TU

Tφ
��

X
κ′
// Y ′

λ′
// W ′ µ′

// TX

the left hand square is homotopy cartesian with differential γ′λ′. However, this diagram
is not yet the diagram TR4′′ that we would like to have. We can use the following
strategies to obtain the necessary diagram.

Putting together the triangle (1) and the diagram (2) we obtain the diagram

(3) U

1
��

α
// V

1
��

β
// W

σ
��

γ
// TU

1
��

U
α
//

φ
��

V
β′
//

Ψ′

��

W ′

1
��

γ′
// TU

Tφ
��

X
κ′
// Y ′

λ′
// W ′ µ′

// TX

The morphism σ is an isomorphism and from the commutative square we have σβ =
λ′Ψ′. Thus β = σ−1λ′Ψ′. We also have Tφγ = µ′σ. These commutative squares can
help to construct the following morphism between exact triangles

(4) U
α
//

φ
��

V
β
//

Ψ′
��

W

1
��

γ
// TU

Tφ
��

X
κ′
// Y ′

σ−1λ′
// W

µ′σ
// TX

In order to have the TR4′′ diagram, we still have to change the object Y ′ in (4), and
introduce the necessary morphism to have the correct differential.

In the first paragraphs we had organized some homotopic squares and we also had
some triangles with the respective differential. It remains us to find the most suitable
triangle to finish the proof of TR4′′.

The diagram (1) gives us the triangle

(5) U
(α φ)t

// V ⊕X (Ψ −κ)
// Y

δ
// TU
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and the diagram (2) gives us the triangle

(6) U
(α φ)t

// V ⊕X (Ψ′ −κ′)
// Y ′

γ′λ′
// TU.

We can put the last two diagrams together to obtain the following morphism of triangles

(7) U

1
��

(α φ)t
// V ⊕X

1
��

(Ψ −κ)
// Y

τ
��

δ
// TU

1
��

U
(α φ)t

// V ⊕X (Ψ′ −κ′)
// Y ′

γ′λ′
// TU

where τ is an isomorphism and τΨ = Ψ′. From (1) we have the following:

(8) U
α
//

φ
��

V
β
//

Ψ
��

W

1
��

γ
// TU

Tφ
��

X
κ
// Y

σ−1λ′τ
// W

µ′σ
// TX

Each square is commutative due to the following:

1) The first square is commutative because of (1).
2) The second one is commutative because of σ−1λ′τΨ = σ−1λ′Ψ′ due to (7) and

σ−1λ′Ψ′ = β due to (4).
3) The third one is commutative because of µ′σ = Tφγ due to (4).

The last necessary observation is about the differential. We have to verify
if the composition γσ−1λ′τ is the differential δ of the first homotopic square.
From (3)

γσ−1λ′τ = γ′λ′τ

and from (7) we have

γ′λ′τ = δ.

So, we have proved the axiom TR4′′.

Lets prove that TR4′′ implies TR4. Suppose that there are exact triangles(α1, α2, α3),
(β1, β2, β3) and (γ1, γ2, γ3) with γ1 = β1α1. This can be seen in the diagram below:

X
α1
//

1
��

Y
α2
//

β1
��

U
α3
// TX

X
γ1
// Z

β2
��

γ2
// V

γ3
// TX

W

β3
��

TY

Now considering the morphism Y
(α2 β1)t−→ U⊕Z and completing it to an exact triangle

Y
(α2 β1)t−→ U ⊕ Z (δ′1 −γ′2)t−→ V ′

δ−→ TY, we obtain that the square
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Y
α2
//

β1
��

U

δ′1
��

Z
γ′2
// V ′

is a homotopic square with differential δ : V ′ → TY . By applying TR4′′ to the following
situation

Y
α2
//

β1
��

U
α3
//

δ′1
��

TX
−Tα1

// TY

Z
γ′2
// V ′

we obtain the diagram

(9) Y
α2
//

β1
��

U
α3
//

δ′1
��

TX

1
��

−Tα1
// TY

Tβ1
��

Z
γ′2
// V ′

γ′3
// TX

u
// TZ

where (−Tα1)γ′3 = δ. Note that from the square

X
α1
//

1
��

Y

β1
��

X
γ1
// Z

we can say that u = −Tγ1. We also have the following triangle

Y
β1−→ Z

β2−→ W
β3−→ TY

and the following homotopic square

Y
α2
//

β1
��

U

δ′1
��

Z
γ′2
// V ′

with differential δ : V ′ → TY . So we can apply TR4′′ and we have

Y
α2
//

β1
��

U

δ′1
��

Z

β2
��

γ′2
// V ′

W

β3
��

TY

which gives us
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(10) Y
β1
//

α2

��

Z
β2
//

γ′2
��

W

1
��

β3
// TY

Tα2

��

U
δ′1
// V ′

δ′2
// W

δ′3
// TU

and β3δ
′
2 = δ. Therefore we have the diagram

X
α1
//

1
��

Y
α2

//

β1
��

U
α3
//

δ′1
��

TX

1
��

−Tα1
// TY

Tβ1
��

X
γ1
// Z

β2
��

γ′2
// V ′

γ′3
//

δ′2
��

TX
−Tγ1

// TZ

W
1
//

β3
��

W

δ′3
��

TY
Tα2
// TU

and (−Tα1)γ′3 = δ = β3δ
′
2. Now we have the triangles

X
γ1
//

1
��

Z
γ2
//

1
��

V
γ3
// TX

1
��

X
γ1
// Z

γ′2
// V ′

γ′3
// TX

From the diagram above, there exists an isomorphism φ such that the following diagram
is commutative

(11) X
γ1
//

1
��

Z
γ2
//

1
��

V

φ
��

γ3
// TX

1
��

X
γ1
// Z

γ′2
// V ′

γ′3
// TX

Then we can complete the diagram below

X
α1
//

1
��

Y
α2
//

β1
��

U
α3
// TX

X
γ1
// Z

β2
��

γ2
// V

γ3
// TX

W

β3
��

TY

with the following choices: first defining δ1 = φ−1δ′1, and using that φγ2 = γ′2 and γ3 =
γ′3φ (11), then δ1α2 = φ−1δ′1α2 = φ−1γ′2β1 = γ2β1 (9) and γ3δ1 = γ3φ

−1δ′1 = γ′3δ
′
1 = α3

(9). Completing the diagram above we have the following:
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X
α1
//

1
��

Y
α2
//

β1
��

U

δ1
��

α3
// TX

T1
��

X
γ1
// Z

β2
��

γ2
// V

γ3
// TX

W

β3
��

TY

Defining δ′′2 = δ′2φ then δ′′2γ2 = δ′2φγ2 = δ′2γ
′
2 = β2 (10). We know that Tα2β3 = δ′3

(10) and β3δ
′′
2 = β3δ

′
2φ = −Tα1γ

′
3φ = −Tα1γ3. So the following diagram is commutative:

X
α1
//

1
��

Y
α2

//

β1
��

U

δ1
��

α3
// TX

T1
��

X
γ1
// Z

β2
��

γ2
// V

δ′′2
��

γ3
// TX

Tα1

��

W
1
//

β3
��

W
β3
//

δ′3
��

TY

TY
Tα2
// TU

We still have to prove that the following sequence

U
δ1→ V

δ′′2→ W
δ′3→ TU

is an exact triangle. From (10) we have the exact triangle

U
δ′1→ V ′

δ′2→ W
δ′3→ TU

and the commutative diagram:

(12) U
δ′1
//

1
��

V ′
δ′2
//

φ−1

��

W

1
��

δ′3
// TU

1
��

U
δ1
// V

δ′′2
// W

δ′3
// TU

So axiom TR4 is proven.
Let’s show show now that TR4 implies TR4′′. Suppose that there exists a diagram

X
α
//

φ1
��

Y
β
//

φ2
��

Z
γ
// TX

X ′
α′
// Y ′

consisting of a homotopy cartesian square with differential δ. So we have the exact
triangle below

X
(α φ1)t−→ Y ⊕X ′ (φ2 −α′)−→ Y ′

δ−→ TX
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.
By applying TR4 we obtain the commutative diagram

X
(α φ1)t

//

1
��

Y ⊕X ′ (φ2 −α′)
//

(1 0)
��

Y ′

β′

��

δ
// TX

T1
��

X
α

// Y

0
��

β
// Z

γ′

��

γ
// TX

T (α1 φ1)t

��

TX ′
1

//

(0 1)t

��

TX ′
(0 1)t
//

−Tα′
��

TY ⊕ TX ′

TY ⊕ TX ′
T (φ2 −α′)

// TY ′

in which the third column (β′, γ′,−Tα′) is an exact triangle. This gives us the following
morphism of triangles

X
α
//

φ1
��

Y
β
//

φ2
��

Z

1
��

γ
// TX

Tφ1
��

X ′
α′
// Y ′

β′
// Z

γ′
// TX ′

where δ = γβ′ is the differential of the homotopy cartesian square. So axiom TR4′′ is
proven.

Finally, lets show that TR4′′ implies TR4′. Given morphisms X
α→ Y and X

φ1→ X ′,
and applying TR1 we have the exact triangle

X
(α φ1)t−→ Y ⊕X ′ (β µ)−→ Z

δ−→ TX.

By applying TR1 to the morphism X
α−→ Y we obtain the following exact triangle

X
α−→ Y

β′−→ W
γ−→ TX.

Thus we have the following diagram

X
α
//

φ1
��

Y
β′
//

β
��

W
γ
// TX

X ′
−µ
// Z

consisting of a homotopy cartesian square with differential δ and an exact triangle.
Applying TR4′′, this diagram can be completed to

X
α
//

φ1
��

Y
β′
//

β
��

W

1
��

γ
// TX

Tφ1
��

X ′
−µ
// Z

ε
// W

θ
// TX

such that γε = δ. Thus axiom TR4′ is proven. �
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Exercise: 8. Consider the commutative diagram

X
α1
//

1
��

Y
α2
//

β1
��

U

ε
��

α3
// TX

1
��

X
γ1
// Z

γ2
// V

γ3
// TX

where the rows are exact triangles. Prove that:

(a) there exists a commutative diagram

X
α1
//

1
��

Y
α2
//

β1
��

U

ω
��

α3
// TX

1
��

X
γ1
// Z

γ′2
// V ′

γ′3
// TX

such that the middle square is a homotopic square and there exists an isomor-
phism η : V ′ → V and a morphism g : U → Z such that γ2 = ηγ′2, γ

′
3 = γ3η

−1

and ε = ηω + γ2g.
(b) there exists an exact triangle

Y
(α2 β2)t

// U ⊕ Z (ε−γ2g−γ2)
// U

−T (α1)γ3
// TX

in such a way that if g = 0, then the commutative diagram

Y
α2
//

β1
��

U

ε
��

Z
γ2
// V

is a homotopic square.

Theorem 5.2. Let A be an additive category and K•(A) the homotopic category
of complexes equipped with the translation functor T and the classes of exact triangles.
Then K•(A) is a triangulated category.



CHAPTER 2

Localization

Before introduce the definition of localization of categories, we give a motivation
defining localization in rings. This material is inspired in the work of Michael Artin
which can be found online. Remember that a ring can be understood as a category
with one object, so this is really a particular case of the general theory, but it easy to
grasp. More details can be found in the work of M. Artin [3]. First of all, we would
like to explain localization of non-commutative rings. We would like to use fractions
in noncommutative algebra, i.e, we would like to embed a domain A in a skew field of
fractions.

The idea from an Ore set, is quite similar to the one used in the construction of
rational numbers from integers. However it is a little more sophisticated in this case
because we do not have commutativity.

Then we define the Ore set, that will be the set of denominators of our fractions. The
Ore condition that we put in this definition is a condition that allows us to multiplicate
two fractions and obtain a new one. To do so, we need a relation between left fractions
and right fractions. So, this axiom reflects this idea very well. Another property is that
two elements of the set of denominators have common multipliers. Because of this it
is possible to give a condition that relates two fractions and this condition will allow
us to define an equivalence class in this set of fractions. Given these properties we will
construct the ring of right fractions.

But we would like to emphasize that the idea of building the ring of fractions here
is exclusively to give a quick insight to the main idea of the next section, that is, the
localizing of category. We hope it will be easier to understand the idea of localizing a
category, because you will have a model of reference.

The main theorem of this chapter (Theorem (1.5)) is completely translated to the
language of category. Another similarity that we would like to call your attention to is
when S, is both a left and a right Ore set. Then the rings of left fractions and of right
fractions are isomorphic. In the next section, we define a ”localizing class of morphism
in a category and we set both properties to be a localizing class, i.e, S is a kind of right
and left Ore set. Therefore we can establish a bijection between the equivalence classes
of left fractions and right fractions between two objects of a certain category.

1. Ore Set

An Ore set gives us the main ingredients to build fractions and to multiply fractions
in such a way that the product of two fractions will be another fraction.

To explain these ideas, we need some definitions. Let A be a ring and s ∈ A. We say
that s is regular if it is neither left nor right zero divisor, i.e., if as = 0 implies a = 0
and also sa = 0 implies a = 0. If s is regular, then we can cancel: sa = sb implies that
a = b and as = bs implies a = b.

31
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Another important aspect of regular elements is the following: If a regular element
s has a right inverse, then it is invertible. It is easy to see this fact. Suppose that s is
a regular element with a right inverse t: st = 1. Then, from the equation sts = s, we
have s(ts− 1) = 0. So ts = 1.

We will work with right fractions

as−1

where a, s ∈ A. The first question that we have to think is: Is the formal product of
two right fractions

(bs−1)(at−1)

a right fraction? We can see that we need to rewrite a left fraction as a right fraction.

Definition 1.1. Let A be a ring. We call a subset S ⊆ A a right Ore set if it has
the following properties:

(a) st ∈ S for all s, t ∈ S and 1 ∈ S.
(b) The elements of S are regular.
(c) For all a ∈ A and s ∈ S, there exist b ∈ A and t ∈ S such that

sb = at.

The condition (c) is called right Ore condition.
The following results give us an idea about the ring of fractions that we have talked

about previously.

Theorem 1.1. Let S ⊂ A be a right Ore set. There is a ring A[S−1] of right
fractions and an injective ring homomorphism A→ A[S−1] such that the ring A[S−1] is
determined by the following universal properties:

(a) the image of every element s ∈ S is invertible in A[S−1], and
(b) every element of A[S−1] can be written as a product as−1.

Moreover, any homomorphism f : A → R such that the images of elements of S are
invertible in R factors uniquely throught A[S−1].

When S is both a left and a right Ore set, then the rings of left fractions and of right
fractions are isomorphic. Now we will prove some properties of Ore sets. The second
property in the following lemma says that if we have fractions 1/s and 1/t then it is
possible to transform them in fractions with a common denominator.

Lemma 1.2. Let S be a right Ore set of a ring A.

(i) Suppose that s, t ∈ S and there exists x ∈ A such that sx = t. Then x is
regular.

(ii) Let s, t ∈ S, then there exists a common multiple u ∈ S, i.e., u = sx and u = ty
for some regular elements x, y ∈ A.

(iii) With the notation of the Ore condition, suppose that sb1 = at1 and also sb2 =
at2 , with s, t1, t2 ∈ S. Then, there are regular elements x1, x2 ∈ A such that
t1x1 = t2x2 and b1x1 = b2x2.

Proof: (i) If xa = 0, then ta = 0. This implies that a = 0. Now we suppose that
bx = 0. Applying (c) to s, t in the definition of Ore set, we have u, v, with u ∈ S such
that su = tv. Then, we have sxv = tv = su. Then xv = u and with bu = 0 and u ∈ S,
follows that b = 0. So x is regular.
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(ii) Let s, t ∈ S. By the right Ore condition there exist x ∈ A and y ∈ S such that

sx = ty.

Since S is closed under multiplication u = ty ∈ S.
(iii) We choose a common multiple t1x1 = t2x2 ∈ S with x1, x2 regular. Then

sb1x1 = at1x1 = at2x2 = sb2x2. Since s is regular, then b1x1 = b2x2. �
The part (iii) of this lemma is establishing a relation between two fractions.

Exercise: 9. We can define the following relation: two fractions a1s
−1
1 and a2s

−1
2

are related if there are regular elements x1, x2 such that s1x1 ∈ S, and s1x1 = s2x2 and
a1x1 = a2x2. Verify that we have an equivalence relation.

Now we describe the equivalence classes as elements of a direct limit. Then, first
we define the following category S: the set of objects S0 is the set S. Given s, t ∈ S,
HomS(s, t) = {x ∈ A|sx = t}.

We have the following properties to this category:

(a) Given s, t ∈ S, there is at most one element x ∈ A such that sx = t.
(b) Given s, t ∈ S, there exist an element u ∈ S such that HomS(s, u) 6= ∅ and

HomS(t, u) 6= ∅.
This two properties allow us to say that S is a filtered category. The first property

can be proved in the following way: sx = t and sy = t implies sx = sy and since
s is regular follows the prove. The second property: From Lemma (1.2) (ii), given
s, t ∈ S, there exist x, y ∈ A such that sx = ty. Then, u = sx and x ∈ HomS(s, u) and
y ∈ HomS(t, u).

Now we define the following left A-module generated freely by formal fractions as−1.

Exercise: 10. Prove that the left A-module AA is canonically isomorphic to As−1.

Exercise: 11. Let S and A−Mod be two categories and F : S → A−Mod defined
by:

F (s) = As−1

and for each morphism s→ t (i.e, sx = t),

F (s→ t) = As−1 → At−1 : as−1 7→ (ax)t−1.

Show that F is a functor.

Let B = lim−→As−1. The elements of B can be represented by formal fractions as−1.

If as−1 and bt−1 represent the same element in B, there exist x, x′ ∈ A such that,
sx = tx′ ∈ S and ax = bx′.

Exercise: 12. Show that

(a) B is a left A-module
(b) there are canonical injective linear maps As−1 → B
(c) There is a injective linear map AA→ B.
(d) The left multiplication by s ∈ S on B is injective.

Exercise: 13. Since B is a left A-module, show that there is a canonical bijection
of left A-modules

AB → HomA(AA,AB).
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Proposition 1.3. For every β ∈ B, the right multiplication by β on A extends
uniquely to an endomorphism ϕβ :A B →A B. This extension provides a bijection
B → EndAB.

Proof Case 1: β ∈ A.
So we can define φβ : B → B by

as−1 7→ aαt−1.

The element α and t are such that sα = βt (Ore condiditon).
Now we have to prove that φβ is well defined, verifying independence of the two

choices made. The first was the choice of α, t in the Ore condition, and the second was
the choice of the fraction as−1.

Suppose that we have another choice sα′ = βt′. We have from Lemma (1.2) (iii) that
there are x1, x2 such that tx1 = t′x2 and αx1 = α′x2. Then the fraction are equivalent:
aα′t′−1 = aαt−1.

Now we discuss the other choice that we had done. Suppose that we have two
fractions that are equivalent: as−1 = a′s′−1. Then, there are x, y such that sx = s′y and
ax = a′y. We also have the following equalities:

as−1 = ax(sx)−1

(ax)(sx)−1 = (a′y)(s′y)−1

(a′y)(s′y)−1 = a′s′−1.

Then, it suffices to treat the case that the second fraction is such that a′ = ax and
s′ = sx.

We have

φβ(as−1) = aα1s
−1
1

(sα1 = βs1) and

φβ((ax)(sx)−1) = (ax)α2s
−1
2

((sx)α2 = βs2).
Since there is δ such that s2δ = s1δ, then

sα1δ = βs1δ

and

(sx)α2δ = βs2δ.

Then sα1δ = (sx)α2δ. Since s is regular, α1δ = xα2δ. Then (ax)α2s
−1
2 =

(ax)α2δ(s2δ)
−1 = aα1δ(s2δ)

−1 = aα1δ(s1δ)
−1 = aα1s

−1
1 .

It is easy to see that φβ is A-linear.
Case 2: β = σ−1, σ ∈ S. By definition we have φβ(as−1) = as−1σ−1. We identify the
formal product as−1σ−1 = a(σs)−1. It is easy to check the independence of the choice
of fraction representating and A-linearity.
Case 3:

Let β ∈ B. We represent β = ασ−1. Then right multiplication by β is the compo-

sition of two maps A
α→ A

σ−1

→ B. This composition extends to B in two steps that we
can see in the following diagram:
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A
α
//

��

A
σ−1
//

��

B

��

A
α
//

��

B
φσ−1

//

��

B

��

B
φα
// B

φσ−1
// B

.

�
Now we check that φβ is the only A-linear extension of A→ B.

Lemma 1.4. An endomorphism φ :A B →A B of is determined uniquely by the
element φ(1A) = β.

Proof Let φ : B → B an endomorphism. Then φ(a) = aφ(1). Let β = φ(1). Since
φ : A → B, is the restriction of φ, then it can be extended to B. We will prove that
the extension is uniquely determined. Since φ is defined on A, then to each s ∈ S, φ is
defined on s. So, we have only one way to define φ(s−1) because

sφ(s−1) = φ(ss−1) = φ(1B) = 1B.

So the extension of φ : A→ B is uniquely determined. �

Theorem 1.5. Let S ⊂ A be a right Ore set. There is a ring A[S−1] of right fractions
and an injective ring homomorphism A→ A[S−1] such that

(a) the image of every element s ∈ S is invertible in A[S−1], and
(b) every element of A[S−1] can be written as a product as−1.

Moreover, any homomorphism f : A → R such that the images of elements of S are
invertible in R factors uniquely throught A[S−1].

Proof Let E = EndAB be a ring. Since HomA(AA,AB) ' B, and we have the bijection
Φ : B → HomA(AA,AB), b 7→ φb that gives B the ring structure and we know that the
multiplication on B corresponds to a composition in HomA(A,B), then a composition
on HomA(B,B).

We see that the bijection B → End B is an isomorphism of A-modules. Let β3 =
α1β1 + α2β2 ∈ B. Since φβ3 = α1φβ1 + α2φβ2 we can prove that the bijection is an
homomorphism of ring. �

2. Localization of Categories

The derived category of an abelian category is constructed from the homotopy cat-
egory of complexes. This construction is done by localizing that category with respect
to the class of quasi-isomorphisms. We call attention to the fact that the class of
quasi-isomorphisms usually does not satisfy the conditions for being a localizing class.
Therefore it is necessary to consider the homotopy category. The conditions which are
necessary to localize it (similar to those ones given by Ore sets in the last section) will
be presented in this chapter.

We should prove that the class of quasi-isomorphisms in the homotopy category is a
localizing class. However, because of the limit of space in this course, we will only give
the main notations and some necessary calculations to understand and to manipulate
the localizing category.
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It is also important to ask if the category that will be localized is a small category or
not. We know that if S is a set, then the localization exists. This topic discussion and its
bibliography along with the one about the set of equivalence class of left fraction being
a set or not, can be found in the book ”An Introduction to Homological Algebra”, by C.
A. Weibel ([22]). The reader can also find more details about localization of categories
in the book ”A Course on Derived Categories”, by Amnon Yekutieli ([23]).

2.1. Left and Right Fractions. Let C be a category and let S be an arbitrary
class of morphisms in C. The idea of localization of a category C with respect to S is to
create a new category C[S−1] together with a functor Q : C → C[S−1] satisfying

(L1) Q(s) is an isomorphism for all s ∈ S, and
(L2) any functor F : C → T such that F (s) is an isomorphism for all s ∈ S, factors

uniquely through Q, ie, there exists G : C[S−1]→ T such that G ◦Q = F .

The above mentioned idea is our objective in the next pages, that is, allow the reader
the possibility to understand this new category.

The calculus of fractions which appears in the description of the localization of a
category was developed by P. Gabriel and M. Zisman in ”Calculus of Fractions and
Homotopy Theory” ([8]).

Before begining to give the necessary conditions to make the localizing category, we
would like to present what is the main set of morphisms that we would like to localize.
In the next sections, we will present the category of complex and the homotopy category
of complex. In this category the set of quasi-isomorphisms, ie, the set of morphisms of
complex such that the induced morphism in the homology are isomorphisms, will be
localized, because we need this kind of complex to be isomorphic.

But not only this. Another important property we need is that the left and right
functors defined for example in categories that have enough projectives or enough in-
jectives could be well defined in the homotopy category.

Definition 2.1. Let C be a category and S be a set of morphisms in C. We say
that S admits left fractions if the following axioms hold:

(LF1) If s, t ∈ S are composable morphisms in S, then st ∈ S. The identity 1X ∈ S
for all X ∈ C.

(LF2) Each pair of morphisms X ′
f ′→ Y ′

s′← Y , with s′ ∈ S, can be completed to a
commutative square

X
f
//

s
��

Y

s′
��

X ′
f ′
// Y ′

with s ∈ S.
(LF3) Let f, g : X → Y be morphisms in C. If there is a morphism s : Y → Y ′ in S

such that sf = sg, then there exists a morphism t : X ′ → X in S such that
ft = gt.

The first axiom is a simple condition to have a closed set, and this condition is
analogous to that multiplicative system we have in commutative algebra. The second
and third ones give us the possibility of changing the order of the morphisms when
we need it. The role of the last axiom will be clear in the proofs we will present. This
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axiom helps us to construct a commutative square from a non commutative one. A more
thorough explanation of how reasonable these axioms are is given by Yannick Delbecque
in his thesis ”Les catégories dérivées” ([6]).

It is not only possible to localize the category with respect to a class of morphisms
but also with respect to a class of objects in order to obtain similar results. This work
was done in the book ”Derived Equivalence for Group Rings”, by Steffen Konig and
Alexander Zimmermann ([16]).

The dual of left fraction is called right fraction. So we can define the dual of
Definition (2.1)

Definition 2.2. Let C be a category and let S be a set of morphisms in C. We say
that S admits right fractions if the following axioms holds:

(RF1) If s, t ∈ S are composable morphisms in S, then st ∈ S. The identity 1X ∈ S
for all X ∈ C.

(RF2) Each pair of morphisms X ′
s← X

f→ Y , with s ∈ S, can be completed to a
commutative square

X
f
//

s
��

Y

s′
��

X ′
f ′
// Y ′

with s′ ∈ S.
(RF3) Let f, g : X → Y morphisms in C. If there is a morphism s : X ′ → X in S such

that fs = gs, then there exists a morphism t : Y → Y ′ in S such that tf = tg.

We would like to define the category of left fractions (C[S−1]) as the category whose
class of objects is the class of objects of C and the morphisms are the equivalence class
of fractions. So, in order to do that, we need first to define fractions.

Given objects X, Y ∈ (C[S−1])0, we call

{(s, f)|s : X → X ′ ∈ S, f : X → Y }
a set of left fractions from X to Y . Two left fractions (s, f) and (t, g) from X to
Y are called equivalent left fractions if there exists morphisms r and h making the
following diagram commutative

X ′′′

h
��

r
}}

X ′

f
((

s
~~

X ′′

g

!!
t

vv
X Y

in such a way that sr ∈ S.

Lemma 2.1. (a) The equivalence of left fractions is an equivalence relation.
(b) The equivalence of right fractions is an equivalence relation.

Proof: Since (b) can be obtained dually, we will only prove (a). We need to verify that
the relation is transitive. The other properties are quite simple. Let (s, f), (t, g) and
(u, h) three left fractions.
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F
f

  

s

~~

M N

G
g

  

t

~~

M N

H
h

  

u

~~

M N

Suppose (s, f) equivalent to (t, g) and (t, g) equivalent to (u, h). Thus, there exists
morphisms p, q and r, v such that

P

q
��

p
��

F

f
''

s

~~

G
g

  t
ww

M N

and
Q

v
��

r
��

G

g
''

t

~~

H
h

  
u

ww
M N

are commutative diagrams and sp ∈ S and tr ∈ S.
Consider now the morphisms

Q

r
��

P
q
// G

where r ∈ S. According to (LF2), there exists morphisms γ and β, with β ∈ S, such
that the following diagram is commutative:

R
γ
//

β
��

Q

r
��

P
q
// G

Since sp ∈ S, then spβ ∈ S and

s(pβ) = (tq)β = t(rγ) = (uv)γ.

Also
f(pβ) = (gq)β = g(rγ) = h(vγ).

Thus pβ and vγ give us the equivalence between the left fractions (s, f) and (u, h).
�

Definition 2.3. Let C be a category and let S be a set of morphisms in C that
admits left fractions. We call C[S−1] class of left fractions:
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(a) Obj (C[S−1]) = Obj C.
(b) Given objects X, Y in C, the set of morphisms from X to Y coincides with the

equivalence classes of left fractions.
(c) Composition: Let (s, f) : X → Y and (t, g) : Y → Z be two classes of left

fractions with s : X ′ → X and t : Y ′ → Y ∈ S. By applying (LF2) to

X ′
f→ Y

t← Y ′, there exist a left fraction X ′
u← U

h→ Y ′ such that fu = th. So
we define

(t, g) ◦ (s, f) = (su, gh).

In the same way we can define the class of right fractions that will be denoted by
[S−1]C.

Exercise: 14. The composition in the definition above determines the left fraction
(su, gh), which depends on a choice of U, u and h. Prove that its equivalence class is
independent of these choices.

Lemma 2.2. The composition of equivalence classes of left fractions is associative.

Proof: Exercise. �

Lemma 2.3. Giving the objects of an additive category A and considering the equiv-
alence classes of left fractions as morphisms, we can obtain a category A[S−1], that will
be called the category of left fractions.

Exercise: 15. Given a left fraction (s, f)

X ′

f   
s

~~

X Y

applying RF2, suppose that we can complete the diagrams in the following ways:

X
f
//

s
��

Y

t
��

X ′
g
// Y ′

and

X
f
//

s
��

Y

t′
��

X ′
g′
// Y ′′

Prove that (t, g) and (t′, g′) are equivalent right fractions.

Theorem 2.4. Let C be a category and let S be a set of morphisms in C that admits
left and right fractions. Then there exists an isomorphism of categories C[S−1] ' [S−1]C.

Proof: Exercise.
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Theorem 2.5. Let A be an additive category and let Q : A → A[S−1] be the appli-

cation which is the identity on the objects and associates a morphism X
f→ Y to the left

fraction (1X , f)

X
f

  

1X

~~

X Y

Then this application defines a functor and we can see in this way A as a full subcategory
of A[S−1], since this functor is fully faithfull.

Proof : Exercise.
Given two equivalent left fractions (s, f) and (t, g) from X to Y , then there exists

morphisms r and h making the following diagram commutative

X ′′′

h
��

r
}}

X ′

f
((

s
~~

X ′′

g

!!
t

vv
X Y

in such a way that sr ∈ S. So Q(sr) = Q(s)Q(r). Since Q(s) is an isomorphism, so is
Q(r). Similarly Q(h) is an isomorphism. So

Q(f)Q(s)−1 = Q(f)Q(r)Q(r)−1Q(s)−1 =

Q(fr)Q(sr)−1 = Q(gh)Q(th)−1 =

Q(g)Q(h)Q(h)−1Q(t)−1 = Q(g)Q(t)−1

and this shows that these morphisms are equal in the category C[S−1].

Exercise: 16. Prove the previous theorem.

Theorem 2.6. Let F : A → B be a functor such that F (s) is an isomorphism for
any s ∈ S. Then there exists a unique functor G : A[S−1]→ B such that G ◦Q = F .

Exercise: 17. Prove the previous theorem.

2.2. Localization of an additive category. Assuming that A is an additive
category and S is a class of morphisms that admits left fractions and right fractions, we
call fractions the morphism in the localized category.

In this case, for example, the axiom (LF3) can be replaced by the property: let
f : M → N be a morphism. Then there exists s ∈ S such that sf = 0 if and only if
there exists t ∈ S such that ft = 0. Actually, since HomA(M,N) is an abelian group,
then sf = sg is equivalent to s(f − g) = 0 and ft = gt is equivalent to (f − g)t = 0.

Another important aspect about the sum of fractions is that, given a finite family
of left fractions, that is, a family of class of fractions, we can choose another family of
fractions with the same denominator to replace it. We discuss this property in the next
lemma.
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Lemma 2.7. Let

Li
fi

  

si

~~

M N

be left fractions representing morphisms ϕi : M → N for all 1 ≤ i ≤ n in A[S−1]. Then
there exists an object L in A, s ∈ S and morphisms gi : L→ N in A such that the left
fractions

L
gi

��

s

~~

M N

represent ϕi for all 1 ≤ i ≤ n.

Proof : If n = 1, there is nothing to prove. Assume that n > 1 and that there exists
k, t ∈ S and morphisms hi, 1 ≤ i ≤ n− 1, such that

K
hi

  

t

~~

M N

represents ϕi for 1 ≤ i ≤ n− 1. By LF2, there exists a commutative diagram

U
u′
//

u
��

Ln

sn
��

K
t
// M

where u ∈ S and tu = snu
′ ∈ S. Then the diagram

U

1U
��

u
~~

K

hi
''

t

~~

U
hiu

  tu
vv

M N

shows that the left fraction

U
hiu

  

tu

~~

M N

represents ϕi, 1 ≤ i ≤ n− 1, and the diagram
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U

1U
��

u′

~~

Ln

fn
''

sn

~~

U
fnu′

��tu
vv

M N

shows that the left fraction

U
fnu′

  

tu

~~

M N

represents ϕn. �
Let ϕ and Ψ be the following morphisms

L
f

��

s

~~

M N

and L
g

��

s

~~

M N

in HomA[S−1](M,N). Then is possible to prove that the morphism

L
f+g

��

s

~~

M N

depends only on ϕ,Ψ, that is, it is dependent of the choice of L, s, f and g.
So, we can give a structure of abelian group to the set HomA[S−1](M,N) with the

operation defined above.
We denote the zero morphism in HomA[S−1](M,N) by 0. It is represented by the left

fraction

M
0

  

IdM

}}

M N

If s : L→M ∈ S, then we have the following commutative diagram

L

1L
��

s

~~

M

0
''

1M

}}

L
0

��
s

vv
M N

Therefore
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M
0

  

IdM

}}

M N

and L
0

��

s

~~

M N

are equivalent fractions.
We would like to emphasize that if M , N and P are three objects in A, since the

addition in HomA(X, Y ) is associative for all X, Y ∈ A, then the binary operation on
HomA[S−1](M,N) is also associative, HomA[S−1](M,N) is an abelian group and then the
composition of morphisms

HomA[S−1](M,N)× HomA[S−1](N,P ) −→ HomA[S−1](M,P )

is biadditive.

Lemma 2.8. Considering A as a full subcategory of A[S−1], the zero object in A[S−1]
is the zero object of A.

Proof : Consider a zero endomorphism in A[S−1]

M
0

  

s

~~

0 0

Then we have the commutative diagram

M

s
��

1M

}}

M

0
((

s

~~

0
Id0

  
Id0

vv0 0

So the left fraction

M
0

  

s

~~

0 0

can be represented by

0

����

0 0

This fraction also represents the zero morphism. Therefore, the only zero endomorphism
is the zero morphism.

Let

L1

  ��

0 N
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be a morphism of 0 to N and suppose that there exists another morphism from 0 to N :

L2

  ��

0 N

The diagram

0

v
��

u

~~

L1

f
((

s

��

L2

g

  t
ww

0 N

shows us that su = tv = 10 ∈ S ( where 10 is the identity of the zero object) and fu = gv.
Therefore these two morphisms are equal and so there exists exactly one morphism from
0 to N . We leave to the reader the proof that there is only one morphism from M to 0. �

If M , N ∈ A[S−1], then there exists a coproduct of M and N in A[S−1]. It is
possible to prove that A[S−1] becomes an additive category.

We also can prove that the functor Q : A → A[S−1] is additive. Indeed, let f, g :
M → N be morphisms in A. Then the morphisms Q(f), Q(g) ∈ A[S−1] are represented
by the left fractions

M
f

  

IdM

}}

M N

and M
g

  

IdM

}}

M N

Hence, Q(f) +Q(g) is represented by

M
f+g

  

IdM

}}

M N

thus Q(f + g) = Q(f) +Q(g).
So, if A is an additive category, then A[S−1] is an additive category and the quotient

functor Q : A → A[S−1] is additive.
Many properties about the localizing category are pointed in the next theorem. One

of them is that Q(s) is an isomorphism in this category. That means that Q(s) = (1, s)
is invertible in the localizing category. It is easy to verify that (s, 1) is the inverse of
(1, s).

Exercise: 18. Let s, t ∈ S be morphisms and (s, t) a fraction. Prove the following
properties:
(a) (s, 1) ◦ (1, t) = (s, t)
(b) (s, t) ◦ (t, s) = (s, s)
(c) (t, s) ◦ (s, t) = (t, t)
(d) Prove that for t and s ∈ A, (s, s) and (t, t) are the identity in A[S−1].
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Theorem 2.9. Let A be an additive category and let S be a class of left fractions.
Then A[S−1] is an additive category, unique up to isomorphism, and the functor Q :
A → A[S−1] is an additive functor such that:
(a) Q(s) is an isomorphism for all s ∈ S;
(b) if B is an additive category and F : A → B is an additive functor such that F (s) is an
isomorphism for all s ∈ S, then there exists an unique additive functor G : A[S−1]→ B
such that F = G ◦Q, that is, making the following diagram commutative

A F
//

Q
��

B

A[S−1]
G

<<

We start now a discussion about an important aspect of morphisms in the localized
category. We usually have some difficulties to verify when a morphism in this type of
category is a zero morphism or not. So the next lemma will shed some light on these
characteristics. We have an equivalence that can help us identify these morphisms.

Proposition 2.10. Let ϕ : M → N be a morphism in A[S−1] represented by a left
fraction (s, f). Then the following conditions are equivalent:
(a) ϕ = 0
(b) There exists t ∈ S such that ft = 0
(c) There exists t ∈ S such that tf = 0.

Proof : We first prove that (a) implies (b). Let Q : A → A[S−1] be the additive
functor which comes from localization. We are supposing that ϕ = 0, hence

Q(f) ◦Q(s)−1 =

L
f

��

1L

��

◦ L
1

��

s

~~

= L
f

��

s

~~

L N M L M N

Therefore, from Q(f) ◦Q(s)−1 = ϕ = 0, we have Q(f) = 0 and so

Q(f) = L
f

��

IdL

��

L N

represents the zero morphism in HomA[S−](L,N) and the zero morphism from L to N
is represented by

L
0

��

IdL

��

L N

Hence, these two left fractions are equivalent, that is, there exists u, v : U → L in A
such that v = u ∈ S and fu = 0.
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U

v
��

u

��

L

f
''

1L

��

L
0

  1L
ww

L N

Now we prove that (b) implies (a). We are supposing that there exists u : U → L in
S such that fu = 0. Then Q(f)Q(u) = 0. Hence Q(f) = 0. Therefore,

ϕ = L
f

��

s

��

= Q(f)Q(s)−1 = 0

L N

�
This last result allows us to say that if f : M → N is a morphism in A, then we

have that the statement Q(f) = 0 is equivalent to tf = 0, for some t ∈ S, which is also
equivalent to ft = 0, for some t ∈ S.

In the next result, we have another consequence of the previous proposition. This
curious consequence comes from the following reasons. We know that the localizing
functor Q : A → A[S−1] maps each object M ∈ A to M ∈ A[S−1]. So, if we say
that Q(M) = 0, then immediately we want say that M = 0 in the category A. But
this obvious mistake is due to our tendency to forget that the definition of zero object
depends on the set of morphisms in the category (an object 0 is zero if for each object
in this category, there exists only one morphism from this object to zero and only one
morphism from 0 to this object). So, the aim of the next result is to present the necessary
and sufficient conditions to an object in A to be zero in A[S−1].

Proposition 2.11. Let X be an object in A. Then the following statements are
equivalent:

(a) Q(X) = 0;
(b) There exists an object Y ∈ A such that the zero morphism in HomA(Y,X) is

in S;
(c) There exists an object Y ∈ A such that the zero morphism in HomA(X, Y ) is

in S.

Proof : Suppose that Q(X) = 0. We know that Q(X) = X. Then X = 0 means
that X is the zero object inA[S−1], that is, every morphism Y → X or X → Y inA[S−1]
is zero. So, in particular, the identity in A[S−1] from X to X is the zero morphism,
that is, the morphism

X
1X

  

1X

~~

X X
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is equivalent to

X
0

  

1X

~~

X X

Therefore, there exists U ∈ A and u : U → X in S such that u = 0 and the following
diagram is commutative

U

u
��

u

~~

X

1X
''

1X

~~

X
0

  1X
ww

X X

Now, supposing that there exists u : U → X in S a zero morphism, we have to prove
that there exists only one morphism in HomA[S−1](X, Y ) and HomA[S−1](Y,X), for each
Y ∈ A. Let

L
f

��

s

��

X Y

be a morphism in HomA[S−1](X, Y ). We have u = u◦1U ∈ S and since u = 0, u◦1U = s◦0
and f ◦ 0 = 0 ◦ 1U , we obtain the following commutative diagram

U

1U
��

0

��

L

f
''

s

��

U
0

��
u

ww
X Y

So we have proved that any given morphism (s, f) in HomA[S−1](X, Y ) is the zero mor-
phism.

We leave to the reader the proof that there exists only one morphism in
HomA[S−1](Y,X).

Exercise: 19. Let f : X → Y be a morphism in A. Prove that Q(f) is a monomor-
phism (epimorphism) if f is a monomorphism (epimorphism). Observe that the former
observations shows that the reverse implication is, in general, false.





CHAPTER 3

Derived Category

Let A be an abelian category and let K•(A) be the corresponding homotopy category
of complexes with the triangulated structure. A morphism f • : X• → Y • in C•(A) is
called a quasi-isomorphism if Hp(f) : Hp(X•)→ Hp(Y •) are isomorphisms for all p ∈ Z,
where Hp is the cohomology defined in (4).

Exercise: 20. Let f • : X• → Y • be a quasi-isomorphism and let g• : X• → Y • be
homotopic to f •. Prove that g• is also a quasi-isomorphism.

By abuse of language we say that a morphism in K•(A) is a quasi-isomorphism if all
of its representatives are quasi-isomorphism.

Example 0.1. Let X ∈ModR and let

· · · → P n → · · ·P 1 → P 0 → X → 0

be a projective resolution of X. Then the 0-complex with X concentrated in degree zero
and the complex

· · · → P n → · · ·P 1 → P 0 → 0→ · · · 0
are quasi-isomorphic. A similar statement holds if we take injective resolutions of X.

Let S be the class of all quasi-isomorphisms in K•(A). An object X• ∈ K•(A) is
called acyclic if Hp(X•) = 0 for all p ∈ Z.

Exercise: 21. Let f • : X• → Y • be a morphism in K•(A). Prove that the following
conditions are equivalent:
(i) The morphism f • is a quasi-isomorphism.
(ii) The cone of f • is acyclic.

Definition 0.1. Let C be a triangulated category. A class of morphisms S that
admits left and right fractions is compatible with triangulation if it satisfies
(i) For any morphism s ∈ S, Ts ∈ S.
(ii) Given a diagram

X //

s
��

Y //

t
��

Z // TX

Ts
��

X ′ // Y ′ // Z ′ // TX ′

where the rows are exact triangles and the first square is commutative, and s, t ∈ S,
then it can be completed to a morphism of triangles

X //

s
��

Y //

t
��

Z

u
��

// TX

Ts
��

X ′ // Y ′ // Z ′ // TX ′

where u ∈ S.

49
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Proposition 0.1. The class S of all quasi-isomorphism in K•(A) is a class of
morphisms that admits left and right fractions and is compatible with the tringulation.

In general, if C is a triangulated category and S is a localizing class in C compatible
with the triangulation, then the category C[S−1] is triangulated and the natural functor
Q : C → C[S−1] is an exact functor.

Definition 0.2. Let A be an abelian category, C•(A) the corresponding category
of complexes and K•(A) the homotopic category of complexes which is a triangulated
category. Let S be the class of quasi-isomorphism in K•(A). We know that S is a
localizing class compatible with the triangulation of K•(A). The localization of the
category K•(A) with respect to the class S of all quasi-isomorphisms will be denoted by
D•(A) and will be called derived category of A.

Now we have a concrete example of a class of morphisms that admits right and left
fractions, that is, the set of quasi-isomorphism. We know that this class of morphisms is
compatible with the triangulation. So, we can use this class of morphisms to illustrate
the Proposition (2.10) with an example.

Example 0.2. Let X, Y ∈ A and X[0] the 0-complex and Y [i] the complex with
cohomology zero for j 6= i and cohomology Y in i. Let

K•

s•

||

f•

""

X[0] Y [i]

be a morphism in HomD•(A)(X, Y [i]) with s• a quasi-isomorphism. So, since X[0] is a
0-complex, with cohomology zero except in degree zero, then K• has cohomology zero,
except in degree zero, whose cohomology is H0(K•) = X.

Now, consider the following morphism of complexes t• : L• → K• with L• defined
in the first row of the following diagram

· · · // Ki−3

1
��

di−3
// Ki−2

1
��

di−2
// Ker di−1

� _

��

// 0

��

// · · ·

· · · // Ki−3 di−3
// Ki−2 di−2

// Ki−1 di−1
// Ki // · · ·

It is a quasi-isomorphism if i 6= 0. If i < 0, the composition below

· · · // Ki−3

1
��

di−3
// Ki−2

1
��

di−2
// Ker di−1

� _

��

// 0

��

// · · · // 0

��

// · · ·

· · · // Ki−3

��

di−3
// Ki−2

��

di−2
// Ki−1

��

di−1
// Ki

��

// · · · // K0

f0

��

// · · ·

· · · // 0 // 0 // 0 // 0 // · · · // X // · · ·
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L•
t•→ K•

f•→ Y [i] is zero and since i < 0, t• is a quasi-isomorphism. Therefore, by
Proposition (2.10), the fraction

K•

s•

||

f•

""

X[0] Y [i]

is zero if i < 0.

Theorem 0.2. Let C and D be two triangulated categories and F : C → D an exact
functor. Let S be a localizing class in C compatible with the triangulation such that
s ∈ S implies that F (s) is an isomorphism in D. Then there exists a unique functor
FS : C[S−1]→ D such that F = FS ◦Q and the functor FS is exact.

Example 0.3. The first ideas about the structure of the derived category can be
obtained from the following construction. Let C(A) be the category of complexes in
A. And C0(A) is the category where all its differentials are zero (cyclic complexes)
(C(A)0 ⊂ C(A)). This category is isomorphic to the category

∞∏
n=−∞

A[n]

where A[n] is the n-th copy of A.
We would like to give a relation between this category and the derived category in

the case of A is a semisimple category. First we define a functor

F : C(A)→ C0(A).

We use now the following notation (X•, d•) to a complex X• with the respective differen-
tial d•. Then F ((X•, d•)) = (Hn(X•, d•), 0) is a cyclic complex and F (f : (X•, d•X•)→
(Y •, d•Y •)) = (H•(f), 0). Since the functor F transforms quasi-isomorphism in isomor-
phism, it can be factors through D(A). So we have for any category A a functor
G : D(A) → C0(A). If A is a semisimple abelian category, then this functor is an
equivalence of categories. The proof can be read in the book Methods of Homological
Algebra -S.I. Gelfand and Y.I. Manin ([10]).

Another reasonable functor to define between A and D(A) is a functor that maps
objects of A in stalk complex at zero, ie, complex concentrated in degree zero. This
simple functor gives us a kind of embedding of A in D(A). The comprehension of this
embedding sheds light on the structure of the derived category.

1. The behavior of the category A inside the derived category D(A)

A complex X• will be called a H0-complex if Hn(X•) = 0 for n 6= 0. This notion
is a generalization of the notion of 0-complex.

We have seen that the functor K : A → K•(A) defined by K(X) = X•, where X•

is the 0-complex, and morphisms of complexes are associated to their homotopy classes
is a full and faithful functor. Considering Q : K•(A) → D(A) the localizing functor
defined in (2.9), we would like to prove that the functor Q ◦K gives us an equivalence
between A and the full subcategory of D(A) given by H0-complex.
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Theorem 1.1. Let A be an abelian category. The functor Q ◦K : A → D(A) yields
an equivalence of the category A and the full subcategory of D(A) formed by H0-complex.

Proof : The equivalence is given by Q ◦K and the functor

H0 : D•(A)→ A
defined by H0(X•) = Kerd0

X•/Im d−1
X• and if (s, f) : X• → Y • is a fraction, then

H0(s•, f •) = H0(f •) ◦H0(s•)−1.
First we need to prove that H0 ◦Q ◦K ' 1 and Q ◦K ◦H0 ' 1 on the objects. For

this purpose, let X ∈ A. Then

H0(Q ◦K(X)) = H0(X•),

where X• is the 0-complex defined by the object X ∈ A. Therefore

H0(Q ◦K(X)) = X.

Let Z• be a H0-complex. We would like to prove that

Q ◦K ◦H0(Z•) ' Z•.

We know that Q◦K ◦H0(Z•) is the 0-complex with the homology H0(Z•) concentrated
in the degree zero. So, we have to prove that this 0-complex is isomorphic to the
H0-complex Z• in the derived category. Let V • be the complex

· · · // Z−i
d−i
// · · · // Z−1 // Kerd0

Z•
// 0 // · · ·

with the differential induced by the differentials of Z•. Then we have a quasi-isomorphism

V •
s•→ Z•

· · · // Z−1

1
��

// Kerd0
Z•

//
� _

��

0

��

// · · ·

· · · // Z−1
d−1
Z•

// Z0 // Z1 // · · ·
and the quasi-isomorphism V •

t•→ Q ◦K ◦H0(Z•)

· · · // Z−1

��

// Kerd0
Z•

//

p

��

0

��

// · · ·

· · · // 0 // H0(Z•) // // · · ·
where Q ◦K ◦H0(Z•) is the 0-complex with the homology H0(Z•) concentrated in the
degree zero and p : Kerd0

Z• → Kerd0
Z•/Im d−1

Z• is the natural projection. Thus we have
a morphism in D•(A) given by the fraction

V •

s• t•

##

Z• H0(Z•)

By exercise (18), we have that this last morphism is an isomorphism in D•(A).
Now we would like to prove that the morphism
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ϕ : HomA(X, Y )→ HomD•(A)(Q ◦K(X), Q ◦K(Y ))

is an isomorphism. Considering f : X → Y a morphism inA, thenQ◦K(f) = Q(f •),
where f • : X• → Y • is a morphism from the 0-complex X• to the 0-complex Y • defined
in the degree zero by f . The morphism Q(f •) is the fraction (1X• , f

•)

X•

1X• f•

!!

X• Y •

Thus H0(Q ◦ K(f)) = H0(1X• , f
•) = H0(f •) ◦ H0(1X•)

−1. In this case H0(f •) = f
because f • is the morphism induced by f on 0-complexes. Analogously, H0(1X•) = 1X .
Therefore

H0(Q ◦K(f)) = f.

Then ϕ is injective. Now, to prove the surjectivity we take Φ : Q ◦ K(X) →
Q◦K(Y ) a morphism in D•(A), where Q◦K(X) and Q◦K(Y ) are 0-complexes with X
concentrated in degreee zero and Y concentrated in degree zero respectively. So Φ can

be represented by the fraction: Z•

s• f•

!!

X• Y •

where X• and Y • are 0-complexes

with X and Y concentrated in degree zero respectively. Since s• is a quasi-isomorphism
so Z• is an H0-complex and H0(Z•) ' X.

Consider the following morphism in A:

φ : X
H0(s•)−1

−→ H0(Z•)
H0(f•)−→ Y.

So, we would like to prove that Q ◦ K(φ) = Φ. We know that Q ◦ K(φ) = Q(φ•)
where φ0 = φ and φi = 0 for i 6= 0 and Q(φ•) is the fraction

X•

1• φ•

!!

X• Y •

where each complex X•, Y • are 0-complex with X and Y concentrated in degree zero
respectively. To prove that Q ◦ K(φ) and Φ are equal, we have to prove that both
fractions are in the same equivalent class. We must construct the commutative diagram

V •

h•

��

r•

}}

Z•

f•
((

s•

}}

X•

φ•

!!1•
vv

X• Y •

such that s• ◦ r• is a quasi-isomorphism.
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Let V • the following complex:

· · · → Z−2
d−2
Z•−→ Z−1

d−1
Z•−→ Ker d0

Z• −→ 0 −→ · · ·
Therefore, we can define the quasi-isomorphism r• : V • → Z•:

· · · // Z−2

1
��

d−2
Z•
// Z−1

1
��

d−1
Z•
// Kerd0

Z•
//

� _

��

0

��

// · · ·

· · · // Z−2
d−2
Z•
// Z−1

d−1
Z•

// Z0
d0
Z•

// Z1 // · · ·
and the morphism h• : V • → X•:

· · · // Z−2

��

d−2
Z•
// Z−1

��

d−1
Z•
// Kerd0

Z•
//

H0(s•)◦p
��

0

��

// · · ·

· · · // 0 // 0 // X // 0 // · · ·
where p : Ker d0

Z• → H0(Z•) is the natural projection. Therefore s• ◦ r• = 1• ◦ h• since
if x ∈ Ker d0

Z• , then s0 ◦ r0(x) = s0(x) and H0(s•)(p(x)) = H0(s•)(x) = s0(x).
Now we would like to prove that φ• ◦ h• = f • ◦ r•. We need only to prove in degree

zero. So, φ0 ◦ h0 = φ0 ◦H0(s•) ◦ p = φ ◦H0(s•) ◦ p = H0(f •) ◦H0(s•)−1 ◦H0(s•) ◦ p =
H0(f •) ◦ p = H0(f •). And is easy to see that f 0 ◦ r0 = H0(f •).

Therefore, the fractions (s•, f •) and (1•, φ•) are equivalent and this allows us to say
that Q ◦K(φ) = Φ. �

2. The connection between Extensions and Fractions

In this section we denote to the composition of the translation functor T i by [i]. So,
the object T i(X) will be denoted by the notation X[i] and a morphism T i(f) by f [i].

Let X, Y ∈ A. We would like to present a close connection between the morphisms
HomD•(A)(X, Y [i]) in the derived category and the extensions Exti(X, Y ), that is, the
set of exact sequences

E : 0→ Y → K−i+1 → · · · → K0 d0→ X → 0

in A module the usual equivalence relation. We would like to define a map

Exti(X, Y ) −→ HomD•(A)(X, Y [i]).

So we take the extension E and we map this extension to a fraction that will be con-
structed now.

Let K• the following complex:

· · · → 0→ Y → K−i+1 → · · · → K0 → 0→ 0 · · ·
and let s• : K• → X[0] the following quasi-isomorphism

· · · // Y

��

// K−i+1

��

// · · · // K−1

��

// K0 //

d0

��

0

��

// · · ·

· · · // 0 // 0 // · · · // 0 // X // 0 // · · ·
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and let f • : K• → Y [i] the following morphism of complexes:

· · · // Y

1
��

// K−i+1

��

// · · · // K−1

��

// K0 //

��

0

��

// · · ·

· · · // Y // 0 // · · · // 0 // 0 // 0 // · · ·
Therefore with E we can associate the following fraction on D•(A):

K•

s•

||

f•

""

X[0] Y [i]

We have seen that if i < 0, then the morphisms in HomD•(A)(X, Y [i]) are zero mor-
phisms (Example (0.2)). If i > 0, is possible to map each fraction in HomD•(A)(X, Y [i])
to an extension in Exti(X, Y ). These computation can be found on page 167 in the
book ”Methods of Homological Algebra”, by S. I. Gelfand and Y. I. Manin ([10]).

2.1. Exact Sequence of Complexes and Triangles. Now we would like to ex-
plain the remark that a short exact sequence in C•(A) induces an exact triangle in D•(A)
but not necessarily in K•(A) (See ”Triangulated Categories: Definitions, Properties and
Examples - Thorsten Holm and Peter Jφrgensen ([13]).

Let f • : X• → Y • be a morphism of complex in C•(A) . The mapping cylinder of
f • is the complex Cyl(f) such that

Cyl(f)n = Xn ⊕Xn+1 ⊕ Y n

and

dnCyl(f)(x, x
′, y) = (dnX•x− x′,−dn+1

X• x
′, fn+1x′ + dnY •y).

Exercise: 22. Check that Cyl(f) is indeed a complex, that is,

dn−1
Cyl(f) ◦ dnCyl(f) = 0.

Consider the following morphism of complexes

ι : X• → Cyl(f)

given by ιn = (1Xn , 0, 0) and

π : Cyl(f)→ C•f

given by

πn =

[
0 1Xn+1 0
0 0 1Y n

]
These maps indeed commute with the differentials and we have a short exact se-

quence in C(A)

0→ X•
ι→ Cyl(f)

π→ C•f → 0
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Proposition 2.1. Let f • : X• → Y • be a morphism of complexes. Then there are
morphisms of complexes σ : Y • → Cyl(f) with σn = (0, 0, 1Y n) and τ : Cyl(f) → Y •

with τn = (fn, 0, 1Y n) such that the following holds:
(i) The following diagram with exact rows is commutative in the category C•(A) of
complexes

0 // Y •

σ

��

ιf
// C•f

1

��

pf
TX•

��

// 0

0 // X•

1
��

// Cyl(f)

τ

��

// C•f
// 0

X• // Y •

(ii) τ ◦ σ = 1Y • and σ ◦ τ is homotopic to the identity 1Cyl(f), ie, Y • and Cyl(f) are
isomorphic in the homotopy category, and hence also in the derived category D•(A).
(iii) σ and τ are quasi-isomorphism.

Corollary 2.2. Given any short exact sequence 0→ X•
f•→ Y •

g•→ Z• → 0 in C(A)
there exists a corresponding exact triangle D•(A) of the form

X•
f•→ Y •

g•→ Z• → TX•

Proof : Consider the following diagram of exact sequences in the row

0 // X•

1
��

ι
// Cyl(f •)

τ

��

π
// C•f

γ

��

// 0

0 // X•
f•

// Y •
g•

// Z• // 0

It is possible to define γ by γn(x, y) = gn(y) and check that this is a morphism of
complexes. Since 1 and τ are quasi-isomorphism, using the long exact sequence of
cohomology, it is possible to prove that γ is a quasi-isomorphism. So, we have the
following isomorphism of triangles in the derived category

X•

1
��

f•
// Y •

1
��

ιf•
// C•f

γ

��

pf•
// TX•

1
��

X•
f•
// Y •

g•
// Z•

pf•◦γ−1

// TX•

but not necessarily in the homotopy category. �



CHAPTER 4

Hereditary Categories

If a category is hereditary then its derived category can be easily described. Therefore
we finish these notes describing the derived category of a hereditary category.

Hereditary categories are important examples for many phenomena in the Repre-
sentation Theory. For instance, in the context of the Representation Theory we can
use Auslander-Reiten Theory to present the structure of some hereditary categories, for
example module category over an hereditary algebra, or the category of coherent sheaves
on a weighted projective line, introduced by W. Geigle and H. Lenzing in ”A class of
weighted projective lines arising in representation theory of finite dimensional algebras”
([9]). This kind of presentation uses Auslander-Reiten quiver, whose presentation illus-
trate very well some concepts of representation finite, tame and wild algebras and the
concepts of wild, tame tubular, tame domestic coherent sheaves.

An investigation of the class of algebras that are derived equivalent to an heredi-
tary category can be found in “The Strong Global Dimension of Piecewise Hereditary
Algebras”, by E. R. Alvares, P. Le Meur and E. N. Marcos ([1]).

1. Derived Category of an Hereditary Category

Let H be a small, abelian and connected k-category, where k is a field. We are
supposing that Exti(X, Y ) is finite dimensional over k for every i ∈ Z. The category H
is called hereditary if Ext2(−,−) = 0.

If k is an algebraically closed field and the hereditary category H has a tilting object,
then Happel’s theorem (“A characterization of hereditary categories with tilting object”,
by D. Happel [12] and “Um estudo sobre categorias hereditárias com objeto inclinante”
- C. Schmidt [19]) states that, up to derived equivalence, there are only two standard
types of hereditary category: one of them is mod H of finite dimensional modules over
a finite dimensional hereditary k-algebra H, and the other one is the category CohX
of coherent sheaves on a weighted projective line X. We suggest the book ”Handbook
of Tilting Theory”, edited by L. Angeleri Hugel, D. Happel and H. Krause [2]. In this
book there is a good compendium of hereditary categories, written by Helmut Lenzing.

We would like to show that if H is hereditary, then Db(H) is the additive closure of
the disjoint union ∨

i∈Z

H[i]

where each H[n] is a copy of H with objects X[n], X ∈ H is a complex with cohomology
concentrated in degree n. In this case, morphisms are determined by
HomDb(H)(X[m], Y [n]) = Extn−mH (X, Y ), and the composition is given by Yoneda com-
position of Ext. The notation

∨
i∈Z
H[i] indicates that there are no non-zero morphisms

backwards, that is, from H[n] to H[m] for n > m. We would like to prove the following:

57
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Theorem 1.1. Let H be an abelian category. Then Db(H) ' ∨
i∈Z
H[i]

Proof : It is easy to see that
∨
i∈Z
H[i] is a full subcategory of the bounded derived

category Db(H). Each object X in the full subcategory
∨
i∈Z
H[i] has the shape X =

⊕n∈ZXn[n], where Xn ∈ H and only finitely many Xn are non-zero. Let X• be a
complex in C(H) with X i = 0 for degree i > n

· · · → Xn−1 dn−1

→ Xn → 0→ · · ·
Denoting Bi = Im di−1 and Zi = Ker di, we have the following exact sequences

0→ Bn f→ Xn h→ Hn(X•)→ 0

0→ Zn−1 b→ Xn−1 c→ Bn → 0

where f and b are the canonical inclusion maps, h is the projection and c is induced
by dn−1. Since H is an hereditary category, this latter exact sequence gives us the
epimorphism

Ext1(Hn(X•), Xn−1)→ Ext1(Hn(X•), Bn)→ 0.

The diagram below shows better the relation between the morphisms involved in
this computation.

0

##

0

Bn

f

!!

<<

Xn−2 dn−2
//

a

$$

Xn−1 dn−1
//

c
;;

Xn

Zn−1

b

::

$$
0

::

0

Therefore, we have the following commutative diagram

0

��

0

��

Zn−1 1
//

b
��

Zn−1

b
��

0

��

0 // Xn−1

c

��

e
// X

n

c

��

g
// Hn(X•) //

1
��

0

0 // Bn

��

f
// Xn

��

h
// Hn(X•)

��

// 0

0 0 0
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with exact sequences in each rows and columns. So we have the following quasi-
isomorphism U•

α→ X•, where U• is the first complex in the diagram below

· · · // Xn−3

1
��

// Xn−2
(0 a)t

//

1
��

Xn−1 ⊕ Zn−1

(1 b)
��

(e 0)
// X

n

c
��

// 0

· · · // Xn−3 dn−3
// Xn−2 dn−2

// Xn−1 dn−1
// Xn // 0

Consider now V • to be the following complex

· · · → Xn−3 dn−3

→ Xn−2 a→ Zn−1 → 0→ · · · .
We also have the quasi-isomorphism U• → V • ⊕Hn(X•)[n]:

· · · // Xn−3

1
��

// Xn−2
(0 a)t
//

1
��

Xn−1 ⊕ Zn−1

(0 1)
��

(e 0)
// X

n

g

��

// 0

· · · // Xn−3 dn−3
// Xn−2 a

// Zn−1 0
// Hn(X•) // 0

Therefore we have an isomorphism in the derived category

U•

}} ''

X• V • ⊕Hn(X•)[n]

We can apply again this procedure to obtain the result. �
In the picture below we have an idea of the structure of the derived category of an

abelian hereditary category:

· · · H[−n] · · · H[0] H[1] H[2] · · · H[n] · · ·
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