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The beginning of the Fuc̆ik spectrum for a Steklov Problem

Aomar Anane, Omar Chakrone, Belhadj Karim & Abdellah Zerouali

abstract: In this paper, we give some properties of the first nonprincipal eigen-
value for an asymmetric Steklov problem with weights, and we study the Fuc̃ik
spectrum.
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1. Introduction

In a previous work [4], we investigated the eigenvalues of the following asym-
metric Steklov problem with weights

{

△pu = |u|p−2u in Ω,
|∇u|p−2 ∂u

∂ν = λ[m(x)(u+)p−1 − n(x)(u−)p−1] on ∂Ω,
(1)

where ν denotes the unit exterior normal, 1 < p < ∞ and △pu = div(|∇u|p−2∇u)
indicate the p–Laplacian. Ω ⊂ R

N be a bounded domain with a Lipschitz contin-
uous boundary, where N ≥ 2, m, n ∈ Lq(∂Ω) with N−1

p−1 < q if 1 < p ≤ N and
q ≥ 1 if p > N . We proved the existence of a first nonprincipal positive eigenvalue
c(m,n) for (1).

Our purpose in the present paper is to give some properties of c(m,n) and to
study the Fuc̆ik spectrum of the Steklov problem on W 1,p(Ω). Recall that the
latter is defined as the set Σ = Σ(m,n) of those (α, β) ∈ R

2 such that
{

△pu = |u|p−2u in Ω,
|∇u|p−2 ∂u

∂ν = αm(x)(u+)p−1 − βn(x)(u−)p−1 on ∂Ω,
(2)

has a nontrivial solution. Let λ1(m) be the principal positive eigenvalue of the
following Steklov problem

{

△pu = |u|p−2u in Ω,
|∇u|p−2 ∂u

∂ν = λm(x)|u|p−2u on ∂Ω.
(3)
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The Fuc̆ik spectrum Σ clearly contains the lines {0} × R, R × {0}, {λ1(m)} × R,
R×{λ1(n)} and also possibly the lines R×{−λ1(−n)} and {−λ1(−m)}×R. It will
be convenient to denote by Σ∗ = Σ∗(m,n) the set Σ without these 2, 3 or 4 lines.
In this work, we show in particular that if m and n both change sign in ∂Ω, then
each of the four quadrants in the (α, β) plane contains a first (nontrivial) curve of
Σ. This is probably the main results of our paper.

In the preliminary Section 2, we collect some results relative to the usual Steklov
problem (3). We also recall some results concerning c(m,n) the first nonprincipal
positive eigenvalue of (1). Several properties of the c(m,n) as a function of the
weights m,n are investigated in Section 3: continuity, monotonicity and homogene-
ity. In Section 4, we apply our results to the study of the Fuc̆ik spectrum. We also
proved the continuity, the monotonicity of the first (nontrivial) curve of Σ, and we
show that the two trivial lines {λ1(m)} × R, R× {λ1(n)} are isolated in Σ.

2. Preliminaries

Throughout this paper Ω will be a bounded domain in R
N with a Lipschitz

continuous boundary. We assume that m, n ∈ Lq(∂Ω), where q as above. We also
assume that

m+ = max(m, 0) 6≡ 0 and n+ = max(n, 0) 6≡ 0, (4)

and dσ is the N−1 dimensional Hausdorff measure. We start by recall some results
relative to the usual Steklov problem (3). Let

‖u‖W 1,p(Ω) =

(
∫

Ω

|∇u|pdx+

∫

Ω

|u|pdx

)1/p

be the norm of W 1,p(Ω), and for any integer k ≥ 1 let

1

λk(m)
= sup

C∈Ck

min
u∈C

∫

∂Ω
m|u|pdσ

‖u‖pW 1,p(Ω)

,

where

Ck = {C ⊂ W 1,p(Ω);C is compact, symmetric and γ(C) ≥ k},

with γ is the Krasnoselski genus.

Proposition 2.1 Assume m ∈ Lq(∂Ω) and m+ 6≡ 0 in ∂Ω. Then λk(m) is a
sequence of eigenvalues of problem 3 such that λk(m) → +∞ as k → +∞.

Proposition 2.1 is proved in [5] by applying a general result from infinite dimen-
sional Ljusternik-Schnirelman theory (see [6]). In [5], the authors proved the sim-
plicity, isolation and monotonicity with respect to the weight of the first eigenvalue
λ1(m) of the Steklov eigenvalue problem 6.

The lemma below guarantees that in a mountain pass situation, any minimizing
path contains a critical point at the mountain pass level.
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Lemma 2.1 (see [1] and [2])
Let E be a real Banach space and let M := {u ∈ E; g(u) = 1}, where g ∈ C1(E,R)
and 1 is a regular value of g. Let f ∈ C1(E,R) and consider the restriction f̃ of f
to M .
Let u, v ∈ M with u 6= v and assume that

H := {h ∈ C([0, 1],M);h(0) = u and h(1) = v}

is nonempty and that

c := inf
h∈H

max
w∈h([0,1])

f(w) > max{f(u), f(v)}.

Suppose that h ∈ H is such that max
u∈h([0,1])

f̃(u) = c. Then there exists u ∈ h([0, 1])

with f̃(u) = c and which is a critical point of f̃ .

Let us conclude this section with some results concerning c(m,n) the first non-
principal positive eigenvalue of (1). Let A and Bm,n : W 1,p(Ω) → R, defined by
A(u) = 1

p‖u‖
p
W 1,p(Ω) and Bm,n(u) =

1
p

∫

∂Ω
[m(u+)p + n(u−)p]dσ. At this point let

us introduce the set Mm,n := {u ∈ W 1,p(Ω);Bm,n(u) = 1}. The condition m+ 6≡ 0

implies that Mm,n 6= . Moreover the set Mm,n is a C1 manifold in W 1,p(Ω). Ã
denotes the restriction of A to the manifold Mm,n. In [4] we showed the following
theorem concerning the first nonprincipal positive eigenvalue c(m,n) for (1), where

c(m,n) = inf
γ∈Γ

max
u∈γ[0,1]

Ã(u) and (5)

Γ = {γ ∈ C([0, 1],Mm,n) : γ(0) = −ϕn and γ(1) = ϕm},

where ϕm denotes the normalized positive first eigenvalue of λ1(m).

Theorem 2.1 c(m,n) is an eigenvalue of (1) which satisfies

max{λ1(m), λ1(n)} < c(m,n).

Moreover there is no eigenvalue of (1) between max{λ1(m), λ1(n)} and c(m,n).

3. Some properties of the first non trivial eigenvalue

In the following proposition suppose that mk, nk,m, n satisfy our preliminaries
conditions.

Proposition 3.1 If (mk, nk) → (m,n) in Lq(∂Ω) × Lq(∂Ω) then c(mk, nk) →
c(m,n).

Lemma 3.1 (see [4]) Let vk ∈ W 1,p(Ω) with vk ≥ 0, vk 6≡ 0 and |vk > 0| → 0.
Let nk be bounded in Lq(∂Ω). Then

∫

∂Ω
nkv

p
kdσ/‖vk‖

p
W 1,p(Ω)dx → 0.
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Proof: [Proof of Proposition 3.1.] We first prove the upper semicontinuity. Let
ε > 0 and take γ ∈ Γ such that max

t∈[0,1]
A(γ(t)) < c(m,n) + ε. Since Bm,n(γ(t))

is continuous in its 3 arguments (m,n, t), we deduce that, for k sufficiently large
max
t∈[0,1]

A(γ(t)/Bmk,nk
(γ(t))1/p) < c(m,n)+ε, consequently we have lim sup c(mk, nk) ≤

c(m,n) + ε. Since ε is arbitrary, the upper semicontinuity follows. To prove the
lower semicontinuity, suppose by contadiction that, for a subsequence, c(mk, nk) →
c0 with c0 < c(m,n). Let uk ∈ Mmk,nk

be a solution of (1), for λ = c(mk, nk)
and for the weights mk, nk. As ‖uk‖W 1,p(Ω) remains bounded, for a subsequence
uk → u0 weakly in W 1,p(Ω); moreover u0 ∈ Mm,n and u0 is a solution of (1) for
λ = c0 and for the weights m,n. Since c0 < c(m,n) then c0 = λ1(m) and u0 = ϕm

or c0 = λ1(n) and u0 = −ϕn. Consider the first case (similar argument in the other
case). In that case |u−

k | → 0. It then follows from Lemma 3.1 that

∫

∂Ω

n(u−
k )

pdσ/‖u‖pW 1,p(Ω) → 0. (6)

But multiplying by u−
k the equation satisfied by uk, one gets that the expression

in (6) is equal to 1/c(mk, nk), which goes to 1/c0 6= 0, a contradiction. 2

Proposition 3.2 If m ≤ m̂ and n ≤ n̂, then c(m,n) ≥ c(m̂, n̂).

Proof: If γ is a path admissible in formula (5) for c(m,n), then
1
p

∫

∂Ω
(m̂(γ(t)+)p + n̂(γ(t)−)p)dσ ≥ 1 and consequently γ̂(t) := γ(t)/Bm̂,n̂(γ(t))

1/p

is well–defined and is a path admissible in formula (5) for c(m̂, n̂). Moreover
A(γ̂(t)) ≤ A(γ(t)), and the conclusion follows. 2

To conclude this section, let us observe that definition (5) clearly implies that
c(m,n) is homogeneous of degree -1:

c(sm, sn) = c(m,n)/s for s > 0. (7)

Some sort of separate sub-homogeneity also holds, which will be useful later:

Proposition 3.3 If 0 < s < ŝ, then c(ŝm, n) < c(sm, n) and c(m, ŝn) < c(m, sn).

Proof: We will deal with the first inequality (similar argument for the second one).
Let u be an eigenfunction in Msm,n associated to c(sm, n) and let γ be the path in
Msm,n from ϕsm to −ϕn constructed from u as in the proof of Proposition 31 of
[1]. The path γ̂(t) := ( sŝ )

1/pγ(t)+ − γ(t)− is then admissible in the definition (5)
of c(ŝm, n) and we have

A(γ̂(t)) =
s

pŝ
‖γ(t)+‖pW 1,p(Ω) +

1

p
‖γ(t)−‖pW 1,p(Ω)

≤
1

p
‖γ(t)‖pW 1,p(Ω) = A(γ(t)),
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with strict inequality if γ(t)+ 6≡ 0. So the path γ̂ goes in Mŝm,n from ϕŝm to −ϕn

and remains at levels < c(sm, n) except at the point v := −u−/Bsm,n(−u−)1/p

where the level is c(sm, n). It follows that c(ŝm, n) < c(sm, n). Assume now by
contradiction that c(ŝm, n) = c(sm, n). We can apply Lemma 2.1 to the path γ̂ in
the manifold Mŝm,n to conclude that v must be a critical point of the restriction of
A in Mŝm,n at level c(ŝm, n). But this is impossible since v does not change sign.

2

4. Fuc̆ik spectrum

Assume that the weights m an n satisfy our preliminaries conditions. The Fuc̆ik
spectrum is thus defined as the set Σ = Σ(m,n) of those (α, β) ∈ R

2 such that (2)
has a nontrivial solution. Σ clearly contains the lines {0}×R, R×{0}, {λ1(m)}×R,
R × {λ1(n)} and also possibly the lines R × {−λ1(−n)} and {−λ1(−m)} × R. It
will be convenient to denote by Σ∗ = Σ∗(m,n) the set Σ without these 2, 3 or 4
lines.

We will start by looking at the part of Σ∗ which lies in R
+ × R

+. The case of
the other quadrants will be considered briefly at the end of the section. From the
properties of λ1(n), λ1(m) follows that if (α, β) ∈ Σ∗ ∩ (R+×R

+), then α > λ1(m)
and β > λ1(n).

Theorem 4.1 For any s > 0, the line β = sα in the (α, β) plane intersects Σ∗ ∩
(R+×R

+). Moreover the first point in this intersection is given by α(s) = c(m, sn),
β(s) = sα(s), where c(., .) is defined in (3).

Proof: It is easily adapted from Theorem 4.1 of [3]. 2

Letting s > 0 varying, we get in this way a first curve C := {(α(s), β(s)) : s > 0}
in Σ∗ ∩ (R+ × R

+). Here are some properties of this curve.

Proposition 4.1 The functions α(s) and β(s) in Theorem 4.1 are continuous.
Moreover α(s) is strictly decreasing and β(s) is strictly increasing. One also has
that α(s) → as s → 0 and β(s) → +∞ as s → +∞.

Proof: It is easily adapted from Proposition 4.2 of [3]. 2

Lemma 4.1 The lines R×{λ1(n)} and {λ1(m)}×R are isolated in Σ∗∩(R+×R
+).

Proof: Assume by contradiction the existence of a sequence (αk, βk) ∈ Σ∗∩ (R+×
R

+) such that αk → α0 and βk → β0 with α0 ∈ R and say β0 = λ1(n). Let uk be
an eigenfunction corresponding to (αk, βk). Put vk = uk

||uk||
. Note that vk changes

sign, for a subsequence, vk → v0 weakly in W 1,p(Ω), strongly in Lp(Ω) and strongly

in L
pq

q−1 (∂Ω) with

∫

Ω

|∇v−0 |
pdx+

∫

Ω

|v−0 |
pdx = λ1(n)

∫

∂Ω

n(x)(v−0 )
pdσ. (8)



26 Aomar Anane, Omar Chakrone, Belhadj Karim & Abdellah Zerouali

Consequently either (i) v−0 ≡ 0 or (ii) v−0 is an eigenfunction associated to λ1(n).
In case (i), v0 ≥ 0, v0 6= 0 and so v0 > 0 in Ω, which implies |v−k > 0| → 0.

It then follows from Lemma 3.1 that
∫

∂Ω

βkn(x)(v
−
k )

p/‖v−k ‖
p
W 1,p(Ω) → 0, (9)

which is impossible since by the equation satisfied by vk, the expression in (9) is
equal to 1. In case (ii), v0 < 0 in Ω, which implies |v+k > 0| → 0. An argument as
above applied to v+k then leads to a contradiction. 2

To conclude this section we consider the distribution Σ∗ in the other quadrants
of R×R. From now on we do not assume below that the weights m, n satisfy the
condition (4).

Proposition 4.2 Σ∗(m,n) intersects R+×R
+ (resp. R

−×R
−, R+×R

−, R−×R
+)

if and only if m+ and n+ 6≡ 0 in ∂Ω (rep. m− and n− 6≡ 0 in ∂Ω, m+ and n− 6≡ 0
in ∂Ω, m− and n+ 6≡ 0 in ∂Ω).

Proof: The necessary conditions follow from the fact that, if (α, β) ∈ Σ∗, then,
for u a corresponding solution of (2),

0 < ‖u+‖p = α

∫

∂Ω

m|u+|pdσ and 0 < ‖u−‖p = β

∫

∂Ω

m|u−|pdσ.

To prove the sufficient conditions, let us consider for instance R
− × R

− (similar
arguments in the other quadrants). We have that (α, β) ∈ Σ∗(m,n)∩R−×R

− if and
only if (−α,−β) ∈ Σ∗(−m,−n)∩R

−×R
−. The assumption m− and n− 6≡ 0 in ∂Ω

means that the weights −m, −n satisfy (−m)+ and (−n)+ 6≡ 0 in ∂Ω, i.e. satisfy
the condition (4). Consequently Theorem 4.1 implies that Σ∗(−m,−n)∩R

+ ×R
+

is nonempty and consequently Σ∗(m,n) ∩ R
− × R

− is nonempty. 2

Corollary 4.1A If m and n both change sign in ∂Ω, each of the four quadrants
in the (α, β) plane contains a first curve of σ∗.
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