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Wave Equation with Acoustic/Memory Boundary Conditions

André Vicente

abstract: In this paper we prove the existence and uniqueness of global solution
to the mixed problem for the wave equation with acoustic boundary conditions on
a portion of the boundary and memory type conditions on the rest of it.

Key Words: wave equation, acoustic boundary conditions, memory boundary
term.

Contents

1 Introduction 29

2 Notations and Principal Result 30

3 Perturbed Problem 32

1. Introduction

Let Ω ⊂ R
n be an open, bounded and connected set with smooth boundary Γ

and T > 0. Suppose Γ is divided into two portion of positive measure Γ = Γ0 ∪ Γ1

such that Γ0 ∩ Γ1 = ∅. Let ν be the outward unit normal vector on Γ. Moreover,
consider the following given functions F : Ω × (0, T ) → R ; f, g, h : Γ1 → R ;
β : R+ → R ; u0, u1 : Ω → R and δ0 : Γ1 → R. In this work we study the mixed
problem for the wave equation with acoustic/memory boundary conditions

u′′ −∆u = F in Ω× (0, T ), (1)

u+

∫ t

0

β(t− s)
∂u

∂ν
(s) ds = 0 on Γ0 × (0, T ), (2)

∂u

∂ν
= δ′ on Γ1 × (0, T ), (3)

u′ + fδ′′ + gδ′ + hδ = 0 on Γ1 × (0, T ), (4)

u(x, 0) = u0(x), u
′(x, 0) = u1(x) , x ∈ Ω, (5)

δ(x, 0) = δ0(x), δ
′(x, 0) =

∂u0

∂ν
(x) , x ∈ Γ1, (6)

where ′ =
∂

∂t
and ∆ =

n
∑

i=1

∂2

∂x2i
is the Laplacian operator.
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Mixed problems for wave equations with homogeneous boundary conditions
have been studied for a long time. However, time-dependent boundary conditions
seems to be more suitable to model concrete applications, see [2], [10] , [14].

In this direction boundary conditions of memory type, as equation (2), imposed
on a portion of the boundary and Dirichlet condition on the rest of the boundary,
have been considered, for instance [1], [4], [12] and [13]. Equation (2) means that
the portion Γ0 is clamped in a body with viscoelastic properties. On the other
hand, wave equations equipped with time-dependent acoustic boundary conditions
have been considered also. For locally reacting boundaries, conditions (3) and (4),
were introduced by Beale-Rosencrans [2] and studied in [3], [5], [6], [7], [8] and
[11]. In these cases, the solution u of the wave equation (1) is the velocity potential
of a fluid undergoing acoustic wave motion and δ(x, t) is the normal displacement
to the boundary at time t with the boundary point x. Similarly, acoustic boundary
conditions have been coupled with homogeneous Dirichlet condition on a portion of
the boundary, excepted in [7], [9] and [11] where the acoustic boundary condition
were imposed in the whole boundary Γ.

The main purpose of this paper is to study the combination of acoustic and
memory boundary conditions. We prove the existence and uniqueness of global
solution to the problem (1)-(6). Our proof is based on Galerkin’s method and
compactness arguments. Technical difficulties in studying equation (2) lead us, by
using the inverse Volterra’s operator, to another equivalent condition in which the
normal derivative ∂u

∂ν
appears explicit. Furthermore, the usual approach to the

Galerkin’s method meet up with technical problems when estimating approximate
solutions u′′m(0). In order to avoid these difficulties we first solve a problem with
homogeneous initial data and then we take an appropriated transformation to
reduce the study of the nonhomogeneous case to similar one with homogeneous
initial data. Finally we observe that when we have homogeneous Dirichlet condition
on a portion Γ0 of the boundary with positive measure, the natural space to be
considered is {u ∈ H1(Ω) such that the trace ofu = 0 a. e. in Γ0} and Poincaré’s
inequality trivially holds in such space. In our case, we do not have homogeneous
Dirichlet condition on a portion of the boundary, then we introduce a close subspace
W of H1(Ω) where the Poincaré inequality is satisfied.

Our paper is organized as follows. In section 2 we introduce the notations and
the main result. In section 3 we deal with the perturbed problem and then prove
the main result Theorem 2.1.
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2. Notations and Principal Result

The inner product and norm in L2(Ω), L2(Γ) and L2(Γi), i = 0, 1, are denoted,
respectively, by

(u, v) =

∫

Ω

u(x)v(x) dx ; |u| =

(
∫

Ω

|u(x)|2 dx

)
1

2

;

(δ, θ)Γ =

∫

Γ

δ(x)θ(x) dΓ ; |δ|Γ =

(
∫

Γ

|δ(x)|2 dΓ

)
1

2

;

(δ, θ)Γi
=

∫

Γi

δ(x)θ(x) dΓ ; |δ|Γi
=

(
∫

Γi

|δ(x)|2 dΓ

)
1

2

.

Let H(∆,Ω) = {u ∈ H1(Ω);∆u ∈ L2(Ω)} be the Hilbert space equipped with

the norm ‖u‖H(∆,Ω) =
(

‖u‖2
H1(Ω) + |∆u|2

)
1

2

, where H1(Ω) is the real Sobolev

space of first order. Denoting γ0 : H1(Ω) → H
1

2 (Γ) and γ1 : H(∆,Ω) → H− 1

2 (Γ)
the trace map of order zero and the Neumann trace map on H(∆,Ω), respectively,
we have γ0(u) = u|Γ and γ1(u) =

(

∂u
∂ν

)

|Γ
for all u ∈ D(Ω). Some times to simplify

the notation we write u and ∂u
∂ν

instead of γ0(u) and γ1(u), respectively.

For each point x0 fixed in Γ let Vx0
= {u ∈ C1(Ω) such that u(x0) = 0}. The

Poincaré inequality holds in Vx0
, that is,

|u|2 ≤ D2 |∇u|2 for all u ∈ Vx0
,

where D is the diameter of Ω. Now we consider V =
⋃

x∈Γ

Vx and Poincaré’s in-

equality holds in V also, since the constant D is independent of x ∈ Γ. By density
the Poincaré inequality still holds in the H1(Ω) closure of V which we denote by

W := V
H1(Ω)

. The inner product and norm in W are denoted, respectively, by

((u, v)) =
n
∑

i=1

∫

Ω

∂u

∂xi
(x)

∂v

∂xi
(x)dx,

‖u‖ =

(

n
∑

i=1

∫

Ω

∣

∣

∣

∣

∂u

∂xi
(x)

∣

∣

∣

∣

2

dx

)
1

2

=

(
∫

Ω

|∇u(x)|2 dx

)
1

2

.

Poincaré’s inequality and the continuity of trace map yield a constant C such
that

|γ0(u)|
2
Γ ≤ C ‖u‖2, for all u ∈W. (7)

As we sad before we shall replace equation (2) to another equivalent one. We
write the convolution product operator

(β ∗ ϕ)(t) =

∫ t

0

β(t− s)ϕ(s) ds.
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Suppose that β : [0,∞) → R satisfies

β ∈W 2,1(0,∞) , β(0) 6= 0 and η |β′|L1(0,∞) < 1 , where η =
1

β(0)
, (8)

then from Banach’s fix point Theorem there exists a unique function k ∈W 1,1(0,∞),
usually called by resolvent kernel, such that

k(t) = −ηβ′(t)− η(β′ ∗ k)(t), a.e. in (0,∞). (9)

The Volterra Operator ψ(ξ) = −β(0)ξ−β′ ∗ ξ for all ξ ∈ L∞(0, T ;L2(Γ0)) is well
defined and its inverse is given by ψ−1(ζ) = −η(ζ + k ∗ ζ).

Differentiating (2) with respect to t and applying the inverse Volterra’s Opera-
tor, we obtain

∂u

∂ν
= −η (u′ + k(0)u− k(t)u0 + k′ ∗ u) on Γ0 × (0, T ) , (10)

which is equivalent to (2). Hence we have the following equivalent problem

u′′ −∆u = F in Ω× (0, T ), (11)

∂u

∂ν
= −η (u′ + k(0)u− k(t)u0 + k′ ∗ u) on Γ0 × (0, T ), (12)

∂u

∂ν
= δ′ on Γ1 × (0, T ), (13)

u′ + fδ′′ + gδ′ + hδ = 0 on Γ1 × (0, T ), (14)

u(x, 0) = u0(x), u
′(x, 0) = u1(x) in Ω, (15)

δ(x, 0) = δ0(x), δ
′(x, 0) =

∂u0

∂ν
(x) on Γ1. (16)

In order to state our main result we assume:

f, g, h ∈ C(Γ1) such that f(x), h(x) > 0 and g(x) ≥ 0 , for all x ∈ Γ1 (17)

and
k ∈W 1,1(0,∞) ∩W 1,2(0,∞) . (18)

Theorem 2.1 Suppose (17) and (18) hold. Let u0, u1 ∈W ∩H2(Ω), δ0 ∈ L2(Γ1),
F, F ′ ∈ L∞

loc(0,∞;L2(Ω)) with

∂u0

∂ν
= −η u1 on Γ0. (19)

Then, for all T > 0, there exist a unique pair (u, δ), in the class

u, u′ ∈ L∞(0, T ;W ) such that u(t) ∈ H(∆,Ω) a.e. in [0, T ] ; (20)

u′′ ∈ L∞(0, T ;L2(Ω)); δ, δ′, δ′′ ∈ L∞(0, T ;L2(Γ1)), (21)

which comprise a solution to the problem (11)-(16).



wave equation with acoustic/memory boundary conditions 33

3. Perturbed Problem

Let f, g, h, F, k, u0, u1 and δ0 be as in Theorem 2.1. We define

φ(x, t) = u0(x) + tu1(x) , (22)

F(x, t) = F (x, t) + ∆φ(x, t) , (23)

r(x, t) = −η[φ′(x, t) + k(0)φ(x, t)− k(t)φ(x, 0) + (k′ ∗ φ)(t)]−
∂φ

∂ν
(x, t). (24)

Whence we consider the following perturbed problem

v′′ −∆v = F in Ω× (0, T ), (25)

∂v

∂ν
= −η (v′ + k(0)v + k′ ∗ v) + r on Γ0 × (0, T ), (26)

∂v

∂ν
= δ′ −

∂φ

∂ν
on Γ1 × (0, T ), (27)

v′ + fδ′′ + gδ′ + hδ = −φ′ on Γ1 × (0, T ), (28)

v(x, 0) = v′(x, 0) = 0 in Ω, (29)

δ(x, 0) = δ0(x), δ
′(x, 0) =

∂u0

∂ν
(x) on Γ1. (30)

Theorem 3.1 (Perturbed Problem) Let φ ,F and r given by (22)-(24). For
all T > 0, there exist a unique pair (v, δ), in the class

v, v′ ∈ L∞(0, T ;W ) such that v(t) ∈ H(∆,Ω) a.e. in [0, T ] ; (31)

v′′ ∈ L∞(0, T ;L2(Ω)); δ, δ′, δ′′ ∈ L∞(0, T ;L2(Γ1)), (32)

which comprise a solution to the problem (25)-(30).

Proof.: Let (wj)j∈N, (zj)j∈N be orthonormal bases in W and L2(Γ1), respectively.
For each m ∈ N let Um = span{w1, w2, . . . , wm} and Zm = span{z1, z2, . . . , zm}.
From ODE theory, we can find 0 < Tm ≤ T , vm : Ω × [0, Tm] → R and δm :
Γ1 × [0, Tm] → R such that

vm(x, t) =

m
∑

j=1

αjm(t)wj(x) and δm(x, t) =

m
∑

j=1

βjm(t)zj(x)

satisfy the approximate problem

(v′′m(t), wj) + ((vm(t), wj)) + (η[v′m(t) + k(0)vm(t) + (k′ ∗ vm)(t)], γ0(wj))Γ0

− (r(t), γ0(wj))Γ0
+

(

∂φ(t)

∂ν
− δ′m(t), γ0(wj)

)

Γ1

= (F(t), wj) , (33)

− (v′m(t), zj)Γ1
= (fδ′′m(t) + gδ′m(t) + hδm(t), zj)Γ1

+ (φ′(t), zj)Γ1
, (34)

vm(0) = v′m(0) = 0, (35)

δm(0) = δ0m =

m
∑

i=1

(δ0, zi)Γ1
zi → δ0 em L2(Γ1), δ′m(0) =

∂u0

∂ν
, (36)
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for j = 1, . . . ,m.
Now we need estimates which allow us to extend the solutions um, δm to the

whole interval [0, T ] and pass to limit as m→ ∞. From (33) and (34) we have the
following approximate equations:

(v′′m(t), w) + ((vm(t), w)) + (η[v′m(t) + k(0)vm(t) + (k′ ∗ vm)(t)]− r(t), γ0(w))Γ0
+

+

(

∂φ(t)

∂ν
− δ′m(t), γ0(w)

)

Γ1

= (F(t), w) , ∀ w ∈ Um, (37)

− (v′m(t), z)Γ1
= (fδ′′m(t) + gδ′m(t) + hδm(t), z)Γ1

+ (φ′(t), z)Γ1
, ∀ z ∈ Zm. (38)

Estimate I: Taking w = 2v′m(t) in (37), z = 2δ′m(t) in (38) and substituting the
second equation into to the first, we obtain

d

dt

(

|v′m(t)|2 + ‖vm(t)‖2 + |f
1

2 δ′m(t)|2Γ1
+ |h

1

2 δm(t)|2Γ1

)

+2η|v′m(t)|2Γ0
+2|g

1

2 δ′m(t)|2Γ1

= −2ηk(0) (vm(t), v′m(t))Γ0
− 2η ((k′ ∗ vm)(t), v′m(t))Γ0

+ 2 (r(t), v′m(t))Γ0

− 2

(

∂φ(t)

∂ν
, v′m(t)

)

Γ1

− 2 (φ′(t), δ′m(t))Γ1
+ 2 (F(t), v′m(t)) . (39)

We observe that

|2ηk(0) (vm(t), v′m(t))Γ0
| ≤

η

3
|v′m(t)|2Γ0

+ 3ηk(0)2C‖vm(t)‖2; (40)

|2η ((k′ ∗ vm)(t), v′m(t))Γ0
| ≤

η

3
|v′m(t)|2Γ0

+ 3η|k′|L1(0,∞)

∫ t

0

|k′(t− s)||vm(s)|2Γ0
ds;

(41)

|2 (r(t), v′m(t))Γ0
| ≤

η

3
|v′m(t)|2Γ0

+
3

η
|r(t)|2Γ0

, (42)

Using (40)-(42) in (39) and integrating from 0 to t ≤ Tm, we get

|v′m(t)|2 + ‖vm(t)‖2 + |f
1

2 δ′m(t)|2Γ1
+ |h

1

2 δm(t)|2Γ1
+ η

∫ t

0

|v′m(ξ)|2Γ0
dξ

+2

∫ t

0

|g
1

2 δ′m(ξ)|2Γ1
dξ ≤

∣

∣

∣

∣

f
1

2

∂u0

∂ν

∣

∣

∣

∣

2

Γ1

+ |h
1

2 δm(0)|2Γ1
+ 3ηk(0)2C

∫ t

0

‖vm(ξ)‖2dξ

+3η|k′|L1(0,∞)

∫ t

0

∫ ξ

0

|k′(ξ − s)||vm(s)|2Γ0
dsdξ

+

∫ t

0

[

3

η
|r(ξ)|2Γ0

− 2

(

∂φ(ξ)

∂ν
, v′m(ξ)

)

Γ1

− 2 (φ′(ξ), δ′m(ξ))Γ1
+ 2 (F(ξ), v′m(ξ))

]

dξ.

(43)
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We note that

3η|k′|L1(0,∞)

∫ t

0

∫ ξ

0

|k′(ξ − s)||vm(s)|2Γ0
dsdξ ≤ 3η|k′|2L1(0,∞)C

∫ t

0

‖vm(ξ)‖2 dξ;

(44)
∫ t

0

3

η
|r(ξ)|2Γ0

dξ ≤ C1 + C2(T + T 3); (45)

2

∫ t

0

(

∂φ(ξ)

∂ν
, v′m(ξ)

)

Γ1

dξ = 2

∫

Γ1

∫ t

0

−
∂φ′

∂ν
(x, ξ)vm(x, ξ)dξ+

∂φ

∂ν
(x, ξ)vm(x, ξ)|t0dΓ

≤ C3 + C4(T + T 2) + C

∫ t

0

‖vm(ξ)‖2dξ +
1

2
‖vm(t)‖2 . (46)

Coming back with these estimates to (43) and applying Gronwall’s inequality, we
have that there exist a constant, L1 = L1(T ) > 0, independent of the m and
t ∈ [0, Tm], such that

|v′m(t)|2 + ‖vm(t)‖2 + |δ′m(t)|2Γ1
+ |δm(t)|2Γ1

≤ L1, ∀ t ∈ [0, Tm]. (47)

From this estimate we can extend the solution of the approximate problem to the
whole interval [0, T ] and (47) holds for all t ∈ [0, T ].
Estimate II: Taking w = v′′m(t) in the approximate equation (37) and putting
t = 0, we come to

|v′′(0)|2 =

(

−ηu1 −
∂u0

∂ν
, v′′m(0)

)

Γ0

+ (F (0) + ∆u0, v
′′
m(0)) . (48)

Now, taking z = δ′′m(t) in (38) and putting t = 0 we get

0 =

(

fδ′′m(0) + g
∂u0

∂ν
+ hδm(0), δ′′m(0)

)

Γ1

+ (u1, δ
′′
m(0))Γ1

.

This inequality, (48), the assumptions on u0, u1, δ0, F, f, g, h and (19) yield a con-
stant C5 such that

|v′′m(0)|+ |δ′′m(0)|Γ1
≤ C5. (49)

Differentiating (37) and (38) with respect to t and taking w = 2v′′m(t) and
z = 2δ′′m(t) we find

d

dt

(

|v′′m(t)|2 + ‖v′m(t)‖2 + |f
1

2 δ′′m(t)|2Γ1
+ |h

1

2 δ′m(t)|2Γ1

)

+2η|v′′m(t)|2Γ0
+2|g

1

2 δ′′m(t)|2Γ1

= −2ηk(0) (v′m(t), v′′m(t))Γ0
− 2η

(

d

dt
(k′ ∗ vm)(t), v′′m(t)

)

Γ0

+ 2 (r′(t), v′′m(t))Γ0
− 2

(

∂φ′(t)

∂ν
, v′′m(t)

)

Γ1

+ 2 (F ′(t), v′′m(t)) . (50)
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Next we estimate each term in the right hand side of (50). We note that

|2ηk(0) (v′m(t), v′′m(t))Γ0
| ≤

η

3
|v′′m(t)|2Γ0

+ 3ηk(0)2C‖v′m(t)‖2; (51)

|2 (r′(t), v′′m(t))Γ0
| ≤

η

3
|v′′m(t)|2Γ0

+
3

η
|r′(t)|2Γ0

. (52)

Since

d

dt
(k′ ∗ vm)(t) = k′(t)vm(0) +

∫ t

0

k′(τ)v′m(t− τ)dτ = (k′ ∗ v′m)(t),

analogously to the (41) we have
∣

∣

∣

∣

∣

2η

(

d

dt
(k′ ∗ vm)(t), v′′m(t)

)

Γ0

∣

∣

∣

∣

∣

≤
η

3
|v′′m(t)|2Γ0

+ 3η|k′|L1(0,∞)

∫ t

0

|k′(t− s)||v′m(s)|2Γ0
ds. (53)

Using (51)-(53) in (50), integrating from 0 to t ≤ T and noting (49), we obtain

|v′′m(t)|2 + ‖v′m(t)‖2 + |f
1

2 δ′′m(t)|2Γ1
+ |h

1

2 δ′m(t)|2Γ1
+ η

∫ t

0

|v′′m(ξ)|2Γ0
dξ

+2

∫ t

0

|g
1

2 δ′′m(ξ)|2Γ1
dξ ≤ C6 + 3ηk(0)2C

∫ t

0

‖v′m(ξ)‖2dξ

+3η|k′|L1(0,∞)

∫ t

0

∫ ξ

0

|k′(ξ − s)||v′m(s)|2Γ0
dsdξ

+

∫ t

0

[

3

η
|r′(ξ)|2Γ0

− 2

(

∂φ′(ξ)

∂ν
, v′′m(ξ)

)

Γ1

+ 2 (F ′(ξ), v′′m(ξ))

]

dξ. (54)

We have

3η|k′|L1(0,∞)

∫ t

0

∫ ξ

0

|k′(ξ − s)||v′m(s)|2Γ0
dsdξ ≤ 3η|k′|2L1(0,∞)C

∫ t

0

‖v′m(ξ)‖2 dξ;

(55)
∫ t

0

3

η
|r′(ξ)|2Γ0

dξ ≤ C7 + C8T ; (56)

and proceeding as in (46), we obtain

2

∫ t

0

(

∂φ′(ξ)

∂ν
, v′′m(ξ)

)

Γ1

dξ ≤ C9 +
1

2
‖v′m(t)‖2 . (57)

Substituting (55)-(57) in (54), we can apply Gronwall’s inequality to get a constant
L2 = L2(T ) > 0, independent of the m and t ∈ [0, T ], such that

|v′′m(t)|2 + ‖v′m(t)‖2 + |δ′′m(t)|2Γ1
+ |δ′m(t)|2Γ1

≤ L2, ∀ t ∈ [0, T ]. (58)
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which is the second estimate.
From (47) and (58) we can find subsequences, still denoted by (vm)m∈N, (δm)m∈N

and functions v , δ such that

vm
∗
⇀ v in L∞(0, T ;W ) , δm

∗
⇀ δ in L∞(0, T ;L2(Γ1)) ,

v′m
∗
⇀ v′ in L∞(0, T ;W ) , δ′m

∗
⇀ δ′ in L∞(0, T ;L2(Γ1)) ,

v′′m
∗
⇀ v′′ in L∞(0, T ;L2(Ω)), δ′′m

∗
⇀ δ′′ in L∞(0, T ;L2(Γ1)).

(59)

Using compactness arguments and the convergences (59) we can pass to limit,
as m→ ∞, in the approximate equations (37), (38). Whence we have

(v′′(t), w) + ((v(t), w)) + (η[v′(t) + k(0)v(t) + (k′ ∗ v)(t)]− r(t), γ0(w))Γ0

+

(

∂φ(t)

∂ν
− δ′(t), γ0(w)

)

Γ1

= (F(t), w) , ∀ w ∈W , (60)

− (v′(t), z)Γ1
= (fδ′′(t) + gδ′(t) + hδ(t), z)Γ1

+ (φ′(t), z)Γ1
, ∀ z ∈ L2(Γ1). (61)

The last equation proves (28). Taking w ∈ D(Ω) in (60) we obtain

v′′(t)−∆v(t) = F(t) in D′(Ω) , a.e. in (0, T ) , (62)

and since F(t), v′′(t) ∈ L2(Ω), we can see that ∆v(t) ∈ L2(Ω), and equation (62)
holds a.e. in Ω× (0, T ), which proves (25).

Now we shall interpret the sense in which v and δ satisfy (26) and (27). Mul-
tiplying (25) by w ∈ W , integrating over Ω and using the Green’s formula we
find
∫

Ω

v′′w dx+

∫

Ω

∇v∇w dx− 〈γ1(v(t)), γ0(w)〉
H

−
1

2 (Γ)×H
1

2 (Γ)
=

∫

Ω

Fw dx.

This and (60) yield

〈γ1(v(t)), γ0(w)〉
H

−
1

2 (Γ)×H
1

2 (Γ)
= − (η[v′(t) + k(0)v(t) + (k′ ∗ v)(t)], γ0(w))Γ0

+(r(t), γ0(w))Γ0
−

(

∂φ(t)

∂ν
− δ′(t), γ0(w)

)

Γ1

, ∀ w ∈W , a.e. in [0, T ] , (63)

which proves (26) and (27).
Uniqueness: Let (v1, δ1) and (v2, δ2) be solutions to (25)-(30). Define ϑ = v1−v2
and θ = δ1 − δ2, then

ϑ′′ −∆ϑ = 0 a.e. in Ω× (0, T ), (64)

ϑ′ + fθ′′ + gθ′ + hθ = 0 a.e. on Γ1 × (0, T ), (65)

〈γ1(ϑ(t)), γ0(w)〉
H

−
1

2 (Γ)×H
1

2 (Γ)
= − (η[ϑ′(t) + k(0)ϑ(t) + (k′ ∗ ϑ)(t)], γ0(w))Γ0

+(θ′(t), γ0(w))Γ1
, ∀ w ∈W , a.e. in [0, T ], (66)

ϑ(x, 0) = ϑ′(x, 0) = 0 in Ω, (67)

θ(x, 0) = θ′(x, 0) = 0 on Γ1. (68)
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Multiplying (64) by ϑ′, (65) by θ′, integrating over Ω and Γ1, respectively, and
observing (66) we obtain

d

dt

(

|ϑ′(t)|2 + ‖ϑ(t)‖2 + |f
1

2 θ′(t)|2Γ1
+ |h

1

2 θ(t)|2Γ1
+ ηk(0)|ϑ(t)|2Γ0

)

+ 2η|ϑ′(t)|2Γ0

+ 2|g
1

2 θ′(t)|2Γ1
= −2η ((k′ ∗ ϑ)(t), ϑ′(t))Γ0

. (69)

Note that

∣

∣2η ((k′ ∗ ϑ)(t), ϑ′(t))Γ0

∣

∣ ≤ η|k′|L1(0,∞)

∫ t

0

|k′(t− s)||ϑ(s)|2Γ0
ds+ η|ϑ′(t)|2Γ0

.

Using this estimate in (69), integrating from 0 to t ≤ T and proceeding as in (44)
we can see that there exists a constant C10 > 0 such that

|ϑ′(t)|2 + ‖ϑ(t)‖2 + |θ′(t)|2Γ1
+ |θ(t)|2Γ1

≤ C10

∫ t

0

‖ϑ(ξ)‖2dξ,

which yields ϑ = 0 a.e. in Ω × [0, T ] and θ = 0 a.e. in Γ1 × [0, T ]. This complete
the proof of uniqueness.

2

Remark 3.1 If we have regularity on function v, for instance v ∈ L∞(0, T ;W ∩
H2(Ω)), we can see that (26) and (27) hold a.e. in Γ0× (0, T ) and Γ1× (0, T ),
respectively. To verify this assertion, let

H = {(γ0(ψ))|Γ1

such that ψ ∈W with (γ0(ψ))|Γ0
= 0}

Thus H is dense in L2(Γ1). We can rewrite (63) as

(

∂v

∂ν
(t), γ0(w)

)

Γ0

+

(

∂v

∂ν
(t), γ0(w)

)

Γ1

=

− (η[v′(t) + k(0)v(t) + (k′ ∗ v)(t)]− r(t), γ0(w))Γ0
−

(

∂φ(t)

∂ν
− δ′(t), γ0(w)

)

Γ1

,

∀ w ∈W . Hence,

(

∂v

∂ν
(t) +

∂φ(t)

∂ν
− δ′(t), z

)

Γ1

= 0, ∀ z ∈ H,

which gives
∂v

∂ν
= δ′ −

∂φ

∂ν
, a.e. in Γ1 × (0, T ).

Analogously, we can prove that

∂v

∂ν
= −η[v′ + k(0)v + (k′ ∗ v)] + r, a.e. in Γ0 × (0, T ).
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Remark 3.2 Let (v, δ) be the solution to the perturbed problem given by the-
orem (3.1) and φ the function defined in (22). Then we can easily verify that
(u, δ), where

u(x, t) = v(x, t) + φ(x, t),

is the solution to (11)-(16) and theorem (2.1) is proved.
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