
Bol. Soc. Paran. Mat. (3s.) v. 27 1 (2009): 65–83.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/spm doi:10.5269/bspm.v27i1.9069

Invariant connections on Euclidean space

Rui Albuquerque and Luisa Consiglieri

abstract: We recall and solve the equivalence problem for a flat C1 connection
∇ in Euclidean space, with methods from the theory of differential equations. The
problem consists in finding an affine transformation of Rn taking ∇ to the so called
trivial connection. Generalized solutions are found in dimension 1 and some exam-
ple problems are solved in dimension 2, mainly dealing with flat connections. A
description of invariant connections in the plane is attempted, in view the study of
real orbifolds. Complex meromorphic connections are shown in the cone cL(p, q) of
a lens-space.
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1. Introduction

We wish to study linear connections ∇ on R
n which are less than smooth from

the point of view of the differentiable class, i.e. their Christoffel symbols are not
C∞. We are particularly interested in observing the behavior of the associated
tensors, such as the torsion and curvature, and solving the equivalence problem in
the framework of non-smooth connections on smooth manifolds. This is generically
as follows: given two manifolds M1,M2 endowed with linear connections ∇1,∇2,
prove the existence of a diffeomorphism Φ : M1 → M2 such that Φ · ∇1 = ∇2. The
diffeomorphism is then called an affine transformation.
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The equivalence problem is an old theme, as we may see e.g. in [8,9,10], yet
its importance in geometry remains. The equivalence problem is solved in [10] in
the category of analytic manifolds with analytic connections, so it seems that the
problem should be undertaken with PDE tools. Under mild conditions, we solve it
for the case of the trivial connection in R

n, leaving aside the demand of analyticity.
For one particular example in R

2 we explicitly give the solution.

We also recall invariant connections for some groups of diffeomorphisms, i.e.
groups of affine transformations for a same ∇. These are most relevant in the
theory of symmetric spaces. Translations plus one isomorphism F invariant ∇ are
studied in R

2, in order to bring curvature and holonomy issues into the theory of
orbifolds.

Orbifolds are a generalization of manifolds to include the notion of singularities
at the origin of the kind R

n/G, where G is a finite subgroup of GLn. Certainly
any definition of connection in this category will agree locally with a G-invariant
connection in Euclidean space (cf. [6,7]).

We show that R
2/〈F 〉, where F is the conjugation map, admits a symplec-

tic connection, torsion free, with non-vanishing curvature. Also we prove that all
foldings by conjugate-rotations of the plane F (z) = eiθz admit some specific flat
non-trivial connections. We look for connections which are translation invariant,
but one should leave such condition in order to solve the question of which connec-
tion better interprets the orbifold singularity.

To finish this article on the quest towards local invariant connections, we treat
the case of lens spaces L(p, q) and their cone singularity. Here the case is of mero-
morphic objects and, indeed, we find a family of such conections, non-flat. We
remark this new ∇ is just an unnoticed particular case within the whole subject of
[12].

1.1. Linear connections. Let M be any paracompact smooth manifold and let
XU denote the Lie algebra of smooth vector fields on an open subset U of M .

We recall the notion of a linear connection on a manifold M . It is given by
a covariant derivative, i.e. an operator ∇ on the space of pairs of smooth vector
fields X,Y defined on M , sending another smooth vector field ∇XY on M , and
satisfying the following relations:
(i) ∇X(fY ) = df(X)Y + f∇XY (called the Leibniz identity),
(ii) ∇X(Y + Z) = ∇XY +∇XZ ,
(iii) ∇fX1+X2

Y = f∇X1
Y +∇X2

Y , ∀f ∈ C∞
M , ∀X,X1, X2, Y, Z ∈ XM .

From the first two conditions it follows that ∇ is a local operator (cf. [5]): if
two vector fields Y1, Y2 agree on some open subset U , then so do their covariant
derivatives. To prove this suppose Y = 0 on U and multiply it by a function
f ∈ C∞

M with supp f ⊂ U and f = 1 on a neighborhood of m ∈ U (these functions
exist always). Then fY = 0 exists on M and the result follows by (i). Furthermore
we may find the covariant derivative of vector fields defined only on some open
subset U .

Contrary to other local operators, as for instance the Lie bracket of vector fields,
the covariant derivative of Y ∈ XU induces a well-defined linear map ∇Y : TmM →
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TmM for any m ∈ U ; for each v ∈ TmM just take a chart (x1, . . . , xn) around m
and any smooth functions fi such that v = Xm, where X =

∑

fi
∂

∂xi
. Then the

previous facts and condition (iii) imply that we can define ∇vY := ∇XY |m =
∑

fi(m)∇ ∂
∂xi

Y |m — which therefore does not depend nor on the chart, nor on the

extension X of v.
The following two tensors are used in the study of linear connections. The

torsion

T∇(X,Y ) = ∇XY −∇Y X − [X,Y ]

and the curvature

R∇(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

These are tensors indeed, linear over the C∞
U ring, as it is easy to prove. One

can see the curvature as a measure of how covariant derivatives of Z commute,
along the directions X,Y , up to the one along the Lie commutator of X and
Y . The connection is called flat if R∇ = 0. Obviously, T∇ ∈ Ω2(TM) and
R∇ ∈ Ω2(EndTM).

Linear connections give us the notion of geodesics, i.e. curves γ which satisfy
∇γ′γ′ = 0 (we may deduce as above that the operator ∇γ′ is well defined over a

curve γ, i.e., if Y, Ỹ are vector fields on a neighborhood of γ such that Yγ = Ỹγ ,

then ∇γ′Y = ∇γ′ Ỹ ).
To finish, suppose we have two connections ∇1,∇2. Then it is trivial to check

that their difference is a tensor: ∇1 = ∇2 + Γ with ΓX ∈ EndTM, ∀X ∈ TM , or
simply Γ ∈ Ω1(EndTM).

1.2. Diffeomorphisms action on connections. We recall here other well known
facts about connections.

Let M,N be two manifolds and suppose Φ : M → N is a smooth diffeomor-
phism. Then Φ induces a linear map X 7→ Φ ·X defined by:

Φ ·X y = dΦ(XΦ−1(y)), ∀y ∈ N.

We shall consider the action of the diffeomorphism Φ against the Lie bracket of
vector fields acting on smooth functions. First, let f ∈ C∞

N . Then

(Φ ·X)(f) = X(f ◦ Φ) ◦ Φ−1. (1)

Hence for two smooth vector fields on M , we find (Φ·X)((Φ·Y )(f)) = X((Φ·Y )(f)◦
Φ)◦Φ−1 = X(Y (f ◦Φ))◦Φ−1. Applying this formula twice we get (Φ · [X,Y ])(f) =
[Φ ·X,Φ · Y ](f), which proves that Φ : XM → XN is a Lie algebra homomorphism.

Notice that, for any h ∈ C∞
M , we have Φ · (hX) = (h ◦Φ−1)Φ ·X = (Φ ·h)Φ ·X,

extending notation to functions. Also notice that formula (1) can be written as
(Φ ·X)(Φ · h) = Φ · (X(h)).

Given a diffeomorphism Ψ : N → O to any other manifold O, we have Ψ · (Φ ·
X) = (Ψ ◦ Φ) ·X.
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The relevant property of the ‘push-forward’ map is its action on the space of
connections. Given a connection ∇ on M we may define a new connection Φ · ∇
on N by

(Φ · ∇)ZW = Φ ·
(

∇Φ−1·ZΦ
−1 ·W

)

for any Z,W ∈ XN . The only non trivial identity to check is the Leibniz identity:

(Φ · ∇)ZfW = Φ ·
(

∇Φ−1·ZΦ
−1 · (fW )

)

= Φ ·
(

∇Φ−1·Z(Φ
−1 · f)(Φ−1 ·W )

)

= Φ ·
(

(Φ−1 · f)∇Φ−1·ZΦ
−1 ·W + d(Φ−1 · f)(Φ−1 · Z) (Φ−1 ·W )

)

= fΦ ·
(

∇Φ−1·ZΦ
−1 ·W

)

+Φ ·
(

(Φ−1 · Z)(Φ−1 · f)
)

W

= f(Φ · ∇)ZW + Z(f)W.

The action on connections under composition of two diffeomorphisms carries canon-
ically, as it should: Ψ · (Φ · ∇) = (Ψ ◦ Φ) · ∇.

Let ∇̃ be another connection on N . We recall that a map Φ which satisfies
∇̃ = Φ · ∇ is called an affine transformation. If it is an affine transformation of M
onto itself, with ∇̃ = ∇, then the connection is said to be Φ invariant. All these
definitions are in [8] or [10].

As we have been showing, any given tensors transform under the push-forward
map in an obvious way. For instance Φ · T∇(Z,W ) = Φ · (T∇(Φ−1 · Z,Φ−1 ·W )).
The following identities are easy to check:

TΦ·∇ = Φ · T∇, RΦ·∇ = Φ ·R∇. (2)

Under affine transformations, clearly unparametrized geodesics are taken to
geodesics. A map which has such a property is called a projective transformation.
This notion has been thoroughly studied in Riemannian geometry. Recently, V.
S. Matveev proved the Lichnerowicz-Obata conjecture, stating that a connected
group which acts projectively on a closed Riemannian manifold, then acts affinely
(cf. the proof and the history of this conjecture in [13,14]). A close question dealing
with projective metric structures in real dimension 2, is found in recent [3]. Our
last section studies R

2 too.

Example 1.1 The trivial connection d in M = R
n is defined as

dXY = (dY1(X), . . . , dYn(X)) = X1
∂Y

∂x1
+ · · ·+Xn

∂Y

∂xn

where X,Y are seen as vector-valued functions M → TM = M×R
n in the ubicuous

notation Xx = (x,Xx). Of course, d is torsion free and flat. Let Diff(Rn) denote
the group of diffeomorphisms of Rn. Then it would be interesting to know the orbit
of d on the space of torsion free and flat connections, under the action of any given
subgroup H ⊂ Diff(Rn).
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Example 1.2 On homogeneous spaces M = G/H, one explores the use of G-
invariant connections, that is, connections invariant under all left translations of
M induced by elements of G. They are in 1-1 correspondence, when H is closed,
with direct sum decompositions of the Lie algebra Lie(G) = Lie(H) ⊕ m such that
ad (H)(m) = m, cf. [10].

1.3. Connections in R
n. We shall now restrict our study to connections in Eu-

clidean space. We change notation a bit and assume F : Rn → R
n is a diffeomor-

phism. Also we let (x1, . . . , xn) or (y1, . . . , yn) denote Euclidean coordinates and
abbreviate the induced vector fields ∂

∂xi
to ∂i. This is just the vector ei of the

canonical basis. Writing F (x) = y then

F · ∂i y = dF (∂i x) =

n
∑

j=1

∂Fj

∂xi
(x)∂i y.

From now on we assume Einstein’s summation convention.
Let ∇ be any connection. It is determined by the Christoffel symbols: ∇∂i

∂j =
Γh
ij∂h.

Proposition 1.1 Let ∇̃ = F · ∇. Then the Christoffel symbols Γ̃h
ij of this new

connection satisfy the equation:

∂2Fk

∂xi∂xj
+

∂Fl

∂xi

∂Fm

∂xj
Γ̃k
lm ◦ F =

∂Fk

∂xh
Γh
ij . (3)

Proof: We have that

∇̃F ·∂i
F · ∂j y = F ·

(

∇i∂j
)

y =
∂Fk

∂xh
(x)Γh

ij(x)∂k y.

On the left hand side we have, letting G = F−1,

∇̃F ·∂i
F · ∂j y = ∇̃ ∂Fl

∂xi
(x)∂l

∂Fm

∂xj
∂m y =

∂Fl

∂xi
(x)∇̃l

(∂Fm

∂xj
∂m

)

y =

=
∂Fl

∂xi
(x)

∂2Fm

∂xq∂xj
(x)

∂Gq

∂yl
(y)∂m y +

∂Fl

∂xi
(x)

∂Fm

∂xj
(x)Γ̃k

lm(y)∂k y =

=
∂2Fm

∂xi∂xj
(x)∂m y +

∂Fl

∂xi
(x)

∂Fm

∂xj
(x)Γ̃k

lm(y)∂k y

since G(y) = x. Hence the formula (3). 2

Of course, we may write an equation analogous to (3) in terms of G = F−1, since
G · ∇̃ = ∇. Moreover, a given connection on a manifold satisfies such equation,
with Γ̃ = Γ, under any coordinate change diffeomorphism.

Given any ∇̃ and ∇, when does there exist a diffeomorphism F which makes
the two connections the affine transformation of one another? This is called the
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equivalence problem. In [10, chapter VI, theorem 7.4] it is proved that a local
solution to this problem exists in a point x0, if the connections have analytic
Christoffel symbols and if higher order derivatives of the torsion and the curvature
tensors satisfy

φ · (∇kT∇
x0
) = ∇̃kT̃∇

y0
, φ · (∇kR∇

x0
) = ∇̃kR̃∇

y0
,

for all k = 0, 1, 2, ... and for a linear isomorphism φ : Tx0
M → Ty0

N . By a local
solution it is meant a diffeomorphism F : U → V from a neighborhood U of x0

onto a neighborhood V of y0 and such that dFx0
= φ. Moreover, the problem is

solved globally in the restricted context of analytic manifolds M,N .

Remark 1.1 An interesting consequence of this result is the following. If M is a
C∞ manifold with a C∞ linear connection such that ∇T∇ = 0, ∇R∇ = 0, then
M is an analytic manifold and the connection is analytic [10, chapter VI, theorem
7.7]. This shows that all symmetric spaces are analytic manifolds.

For other relevant questions on the equivalence problem with further constraints
we refer to [11] and the references there in.

Remark 1.2 There is another type of transformation of linear connections we
want to be aware (this applies generally to connections on vector bundles, cf. [5]).
The gauge transformations, which we recall in the case of U open in R

n, are defined
by a map u : U → GLn and act on connections ∇ = d+Γ almost like an “infinitesi-
mal affine transformation” covering the identity map of the manifold. Namely, they
are defined by

(u∇u−1)XY := u(∇X(u−1Y )) = ∇XY − (∇Xu)u−1Y

or, we may say, Γ transforms into Γ−(∇u)u−1 (notice that the inverse is in GLn).

Before we proceed, we recall in local coordinates the formula for R∇(∂i, ∂j)∂k =
Rl

ijk∂l:

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γl

ipΓ
p
jk − Γl

jpΓ
p
ik. (4)

1.4. Flat connections. It is easy to see the gauge transformation induces a
conjugation by u of the curvature tensor, but the same is not true for the torsion.

Proposition 1.2 Any flat connection ∇ is locally equal to the gauge transforma-
tion udu−1, for some map u. Such connection is torsion free if, and only if,

n
∑

l=1

∂uij

∂xl
ulk =

n
∑

l=1

∂uik

∂xl
ulj , ∀i, j, k ∈ {1, . . . , n}. (5)

Proof: Let s0 = (∂1, . . . , ∂n). We first show that there is a solution of ∇s = 0, for
a smooth frame s : U → (Rn)n, on an open neighborhood U of each point. Writing
in matrix notation s = s0u and ∇s0 = s0Γ, we have

∇s = (∇s0)u+ s0du = s0(Γu+ du).
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Now Γu+ du = 0 is a first order linear differential equation, which has a solution
if, and only if, its exterior derivative is zero. Therefore we compute dΓu−Γ∧du+
d2u = 0 or, equivalently, dΓ + Γ ∧ Γ = 0. But, the reader may care to deduce this
is the same as R∇ = 0.

The second part of the result is trivial to check. 2

In the following, let DF = [∂Fi

∂xj
]. Here we state an approach to the equivalence

problem for the trivial connection.

Proposition 1.3 Let u : Rn → GLn be a C1 map. Suppose ∇ = udu−1 is torsion
free. Then ∇ = F · d for a diffeomorphism F if, and only if,

u ◦ F = DF k (6)

with k a constant invertible matrix.

Proof: The existence of F is assumed either way. By straightforward computations
we find F · s0 = s0 DF|F−1 and (F · d)X(F · s0) = F · (dF−1·Xs0) = 0, with
s0 = (∂1, . . . , ∂n). Hence condition (6), say u = DF|F−1 k, implies that s0uk

−1 is
parallel for F · d. From Proposition 1.2 and its proof, having such parallel frame

implies F · d = uk−1d(uk−1)
−1

= udu−1 = ∇.
Reciprocally, if F · d = udu−1 is satisfied, then s0u is parallel for F · d. Hence

s0u = (F · s0)k, for some constant k, and consequently (6) holds. 2

Notice that, once we find F , we may incorporate k in u.

2. Existence results for the equivalence problem

2.1. The dimension n = 1 case. In R suppose we are given a linear connection
∇ = d + Γ, with Γ a 1-form with values in EndR = R. Clearly, a 1-form on the
real line corresponds to a function Γ1

11 such that Γx(v) = Γ1
11(x)v, ∀v ∈ R, and

clearly the torsion and the curvature of ∇ both vanish. Nevertheless, we may still
try to solve the equivalence problem. According to Proposition 3 we look for a
diffeomorphism F which verifies the following nonlinear ODE of second order (we
let Γ = Γ1

11)

F ′′ + (F ′)2Γ ◦ F = 0. (7)

Noteworthy, with the most simple non-trivial connection, that is, with Γ a non-zero
constant, we obtain the transformation

F (x) =
1

Γ
log |x+ c1|+ c2,

where c1, c2 are constants, which requires further notice on restrictions of the do-
main.

In order to study the differential equation (7) with generic Γ, we introduce the
following weak variational problem.
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Definition 2.1 We say that F , defined on an interval ]a, b[ (−∞ < a < b <
+∞), is a generalized solution to (7) if F belongs to the Sobolev space H1(a, b) and
satisfies

F ′(a)G(a) +

∫ b

a

F ′G′ = F ′(b)G(b) +

∫ b

a

|F ′|2Γ(F )G, ∀G ∈ H1(a, b). (8)

Remark 2.1 The weak formulation (8) is obtained by the following computation:

∫ b

a

F ′′G+ |F ′|2Γ(F )G = 0 ⇔ [F ′G]ba −
∫ b

a

F ′G′ +

∫ b

a

|F ′|2Γ(F )G = 0.

When boundary conditions are taken into account, (7) becomes a boundary
value problem.

Proposition 2.1 Assume that Γ is a continuous real function such that

Γ(t)t ≤ α < 1 or Γ(t)t ≥ β > 1, ∀t ∈ R. (9)

Then the boundary value problem to (7) under

1. the homogeneous Dirichlet conditions has the unique generalized solution F ≡
0;

2. the homogeneous Neumann conditions has the generalized solutions F ∈ R;

3. the mixed conditions, F (a) = 0 and F ′(b) = Fb ∈ R \ {0}, has a unique
generalized solution F in the following sense

∫ b

a

F ′G′ = FbG(b) +

∫ b

a

|F ′|2Γ(F )G, ∀G ∈ V, (10)

where V is the set of functions G ∈ H1(a, b) such that G(a) = 0.

Proof: Assume that Γ(t)t ≤ α, for all t ∈ R. Otherwise the proof is analogous.
Let us concentrate on the existence proof to the mixed boundary value problem
(case 3) under the Galerkin method. The cases 1 and 2 are similar and simpler. Let
A be the induced operator of the weak variational equality (10), i.e., A : V → V ′

defined by

〈AF,G〉 =
∫ b

a

F ′G′ −
∫ b

a

|F ′|2Γ(F )G.

Applying the Poincaré inequality, we recall that V is a separable Hilbert space

endowed with the norm
(

∫ b

a
|G′(x)|2dx

)1/2

. Letting {Hk} be a basis of V , we set

the finite dimensional space as VN = 〈H1, · · · , HN 〉 for N ∈ N. Using (9) it follows
that A is coercive:

〈AF, F 〉 =
∫ b

a

|F ′|2(1− Γ(F )F ) ≥ (1− α)

∫ b

a

|F ′|2, with 1− α > 0.
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Then there exists a Galerkin solution FN ∈ VN such that

∫ b

a

F ′
NG′ = FbG(b) +

∫ b

a

|F ′
N |2Γ(FN )G, (11)

for all G ∈ VN and, by density, for all G ∈ V . Taking G = FN in (11) we obtain

‖FN‖2V =

∫ b

a

|F ′
N |2 = F 2

b +

∫ b

a

|F ′
N |2Γ(FN )FN ≤ F 2

b +

∫ b

a

|F ′
N |2α.

Thus the Galerkin solution satisfies the estimate

‖FN‖V ≤ Fb√
1− α

.

Thus we can extract a subsequence of FN , still denoted by FN , such that

FN ⇀ F in V,

FN → F in C([a, b]),

with F ∈ H1(a, b) →֒ C([a, b]). In order to prove that F is a solution to (10) we
will pass to the limit in (11) for all G ∈ V as N tends to infinity. To pass to the
limit the term on the left hand side in (11), it is sufficient the weak convergence of
F ′
N to F ′ in L2(a, b). Notice that this does not allow to pass to the limit the last

term on the right hand side in (11). So to prove the strong convergence it remains
to show that

‖F ′
N‖L2 → ‖F ′‖L2 as N → +∞. (12)

First let us identify |F ′
N |2 as an element of the dual space of C([a, b]). Hence we

can extract a subsequence of |F ′
N |2, still denoted by |F ′

N |2, weak-* convergent to χ
in L1(a, b). Next passing to the limit (11) it results

∫ b

a

F ′G′ = FbG(b) +

∫ b

a

χΓ(F )G

for all G ∈ V . In particular taking G = F we obtain

∫ b

a

|F ′|2 = F 2
b +

∫ b

a

χΓ(F )F. (13)

Now passing to the limit in (11) when G = FN is chosen, we get

lim

∫ b

a

|F ′
N |2 = F 2

b +

∫ b

a

χΓ(F )F. (14)

Finally gathering (13) and (14) we conclude (12). 2
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2.2. The dimension n = 2 case. In dimension 2 we will find the integrability
condition (5), for F belonging to C2. As a first case to study, we present the
following example.

Example 2.1 We consider the symmetric and flat connection ∇ = d + Γ given
by Γ1

11(x, y) = f(x), Γ2
22(x, y) = g(y), where f, g are Cα, and any other Γk

ij = 0.

Then ∇ is flat by trivial reasons. Solving ∇ = F ·d with F ∈ Cα+2, implies solving
for F1 the system







∂2
xxF1 + (∂xF1)

2f(F1) = 0
∂2
xyF1 + (∂xF1)(∂yF1)f(F1) = 0

∂2
yyF1 + (∂yF1)

2f(F1) = 0
.

An analogous system must be satisfied by F2. Imposing further ∂yF1 = ∂xF2 = 0
we see that the problem is equivalent to solving the dimension 1 case.

Next we present a non-constant example.

Example 2.2 Consider the open set R
+ × R and a connection given by ∇x∂x =

− 1
2x∂x, ∇x∂y = 1

2x∂y = ∇y∂x, ∇y∂y = x∂x, in real coordinate functions. An easy
computation shows that ∇ is flat: R∇(∂x, ∂y)∂x =

∇x∇y∂x −∇y∇x∂x = ∇x
1

2x
∂y −∇y

(

− 1

2x
∂x
)

=
(

− 1

2x2
+

1

4x2
+

1

4x2

)

∂y = 0

and R∇(∂x, ∂y)∂y =

= ∇x∇y∂y −∇y∇x∂y = ∇xx∂x −∇y

( 1

2x
∂y
)

= ∂x − x

2x
∂x − x

2x
∂x = 0.

Now the group-valued map u may be deduced from Γ = udu−1 = −(du)u−1, i.e.
the equations

Γ1u = −∂u

∂x
, Γ2u = −∂u

∂y
.

Henceforth we find that the equation in F = (F1, F2)




√
2F1

2 e
− F2√

2 −
√
F1e

F2√
2

1
2
√
F1

e
− F2√

2

√
2

2
√
F1

e
F2√

2



 =

[

∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y

]

is the one to be solved, applying Proposition 1.3. Notice
{

F1, F2

}

= JacF = 1.
This is the case where the map u takes values in SL(2,R).

Find F1 and F2 in the forms F1(x, y) = e2(f(x)−g(y)), F2(x, y) =
√
2(f(x) +

g(y)); then we obtain the following equations

2
√
2f ′(x)e2f(x)−2g(y) = e−2g(y)

−2g′(y)e2f(x)−2g(y) = −e2f(x)

2
√
2f ′(x) = e−2f(x)

2g′(y) = e2g(y)
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or equivalently

d

dx
e2f =

1√
2
,

d

dy
e−2g = −1.

Then we obtain

f(x) =
1

2
log

(
∣

∣

∣

∣

x√
2
+ c1

∣

∣

∣

∣

)

, g(y) = −1

2
log(| − y + c2|)

where c1 and c2 are determined according to the domain.

Considering c1 = c2 = 0, we obtain the function

(F1, F2) =

(

− xy√
2
,

√
2

2
log(

x√
2(−y)

)

)

, x > 0, y < 0,

solving our particular and illustrative problem.

Remark 2.2 In Proposition 1.3, if u is such that

{

∂yF1(x, y) = 0
∂xF2(x, y) = 0

⇒
{

F1 = F1(x)
F2 = F2(y)

and u11 and u22 are functions in F2 and F1, it results

F ′
1(x) = u11(x, y) F ′

2(y) = u22(x, y).

This is impossible. Then we conclude that the existence of a solution depends on
u.

In conclusion, if we find (F1, F2) of class C2 we have the following restrictions
on u:

∂

∂x
[u12(F1, F2)] =

∂

∂y
[u11(F1, F2)] ,

∂

∂x
[u22(F1, F2)] =

∂

∂y
[u21(F1, F2)]

or, equivalently,

∂u12

∂ξ1
u11 +

∂u12

∂ξ2
u21 =

∂u11

∂ξ1
u12 +

∂u11

∂ξ2
u22,

∂u22

∂ξ1
u11 +

∂u22

∂ξ2
u21 =

∂u21

∂ξ1
u12 +

∂u21

∂ξ2
u22.
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2.3. In dimension n. Here we state the existence result to Proposition 1.3. In
order to adapt the proof of the generalized Frobenius Theorem [15, pp. 167], we
rewrite (6) as

uij = ∂lFiklj ⇔ ∂jFi = uilwlj ,

with w denoting the inverse matrix of k. Let us begin by stating the following
existence result.

Proposition 2.2 Let u be a GLn(R)-valued function in C1 such that

sup
ξ∈Rn

‖uil(ξ)wlj‖ ≤ Kij (15)

sup
ξ∈Rn

∥

∥

∥

∥

∂uil

∂ξp
(ξ)wlj

∥

∥

∥

∥

≤ Kpij (16)

and for any δ < 1/max{Kpij} set Q̄ = [−1, 1]× B̄δ(0) ⊂ R
n+1. Then there exists

z ∈ C1(Q̄) such that
∂tzi(t, x) = uil(z(t, x))wlqxq. (17)

Moreover, the solution z verifies

∂jzi(t, x) =

∫ t

0

(∂uil

∂zp
(z(τ, x))∂jzp(τ, x)wlqxq + uil(z(τ, x))wlj

)

dτ. (18)

Proof: In order to apply the Schauder fixed point theorem [15, pp. 56], let us
consider the ball, with radius R > 0,

BR := {ξ ∈ C1(Q̄) : ‖ξ‖C1 ≤ R}.

Let us construct the mapping L : ξ 7→ z as follows

zi(t, x) =

∫ t

0

uil(ξ(τ, x))wlqxqdτ.

From (15), it follows

max
Q̄

‖z‖ ≤ max{Kij}δ, max
Q̄

‖∂tz‖ ≤ max{Kij}δ.

From (16), the derivative of zi with respect to xj verifies

‖∂jzi‖ =

∥

∥

∥

∥

∫ t

0

(∂uil

∂ξp
(ξ)∂jξpwlqxq + uil(ξ)wlj

)

dτ

∥

∥

∥

∥

≤

≤ max{Kpij}δR+max{Kij}, ∀i, j ∈ {1, · · · , n}.

Thus, choosing

R =
(2δ + 1)max{Kij}
1−max{Kpij}δ

,
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L maps the ball BR into itself. Since L is a continuous mapping, in order to
conclude that L is compact it remains to show that L maps bounded sets into
relatively compact sets. Indeed, for any M ⊂ C1(Q̄) bounded set and observing
that C1 is compactly embedded in C, every sequence {zm} ⊂ L(M) contains a
convergent subsequence. Thus the Schauder fixed point theorem guarantees the
existence of z ∈ C1(Q̄) such that Lz = z.

The derivative (18) is a consequence of Lz = z. 2

Now we are able to adapt the proof of the generalized Frobenius Theorem
[15, pp. 167]. Note that the generalized Frobenius Theorem gives two equivalent
statements requiring the existence of z ∈ C2.

Theorem 2.1 Suppose that the assumptions of Proposition 2.2 are fulfilled. If
additionally the integrability condition holds

∂uij

∂ξp
upqwqmwjl =

∂uij

∂ξp
upqwqlwjm (19)

then there exists F ∈ C1 satisfying (6). Moreover, if F ∈ C2 then u verifies (19).

Proof: Defining
vij(t) = ∂jzi(t, x)− tuil(z(t, x))wlj (20)

it satisfies the ordinary differential equation

v′ij(t) = ∂t∂jzi(t, x)− uil(z(t, x))wlj − t
∂uil

∂zp
∂tzpwlj . (21)

From (18) we have

∂t∂jzi =
∂uil

∂zp
∂jzpwlqxq + uilwlj .

Introducing this relation and successively (17) of Proposition 2.2 in (21) we obtain

v′ij(t) =
∂uil

∂zp
∂jzpwlqxq − t

∂uil

∂zp
∂tzpwlj

=
∂uil

∂zp
∂jzpwlqxq − t

∂uil

∂zp
upmwmqxqwlj .

Applying the assumption (19) it results the linear ODE

v′ij(t) =
∂uil

∂zp
wlqxqvpj . (22)

Thus the initial condition vij(0) = ∂jzi(0, x) = 0 implies that the ODE (22) has
the unique solution v ≡ 0. Setting F (x) = z(1, x) and using (20) we get

∂jFi = uilwlj ,
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which concludes the proof of Theorem 2.1.
Finally, for F ∈ C2, the condition (19) is due to the Schwartz property of

functions of class C2. 2

If we change u to the matrix valued map u k, then we realize the integrability
condition (19) is in fact the one on the torsion stated in (5).

3. Invariant linear connections

Given a linear connection ∇ on a manifold M , one may define the subgroup
Diff(M,∇) of affine transformations of ∇. It is still a problem to find its di-
mension, as well as that of the orbit of ∇ under Diff(M) in the space of linear
connections.

One may also try to determine the linear connections on a manifold M which
are invariant under a given set of diffeomorphisms. If we have a Lie group G, then
it is easy to produce G-left invariant connections as bilinear maps g×g → g, where
g is the Lie algebra of left invariant vector fields (cf. example 2, section 1.2).

Translation invariant connections on R
n are those for which Γk

ij are all constants.
This is trivial to deduce from (3) applied to any map F (x) = x+ v, with v ∈ R

n.
A homothety invariant connection is one for which

λΓk
ij(λx) = Γk

ij(x) (23)

as we may see taking F (x) = λx in the usual equation (6). Except for the trivial
connection and assuming continuity, these λ-invariant connections do not exist
on the whole space, but only on R

n\{0}. They are determined by any maps
Γk
ij : Sn−1 → R where Sn−1 is the unit sphere. Indeed taking the limit λ → 0 in

(23), yields Γ = 0, i.e. the trivial connection. We observe that if we consider these
∇ invariant for all λ, then ∇ is flat at infinity. This follows from equation (2) on
the curvature. Essentially, we deduce Rλx(u, v)w = 1

λ2Rx(u, v)w, ∀u, v, w ∈ R
n.

3.1. Over-determined systems of translation invariant connections in

R
2. Now we are going to find linear connections in R

2 which are invariant for all
translations plus one more single isomorphism F (x1, x2) = (ax1 + bx2, cx1 + dx2).
In view of the case of orbifolds, we are going to assume detF = ±1 (we want the
group generated by F to be finite).

The 8 equations from (3) are the following:

i, j, k
1, 1, 1 a2Γ1

11 + acΓ1
12 + acΓ1

21 + c2Γ1
22 = aΓ1

11 + bΓ2
11

1, 1, 2 a2Γ2
11 + acΓ2

12 + acΓ2
21 + c2Γ2

22 = cΓ1
11 + dΓ2

11

1, 2, 1 abΓ1
11 + adΓ1

12 + cbΓ1
21 + cdΓ1

22 = aΓ1
12 + bΓ2

12

1, 2, 2 abΓ2
11 + adΓ2

12 + cbΓ2
21 + cdΓ2

22 = cΓ1
12 + dΓ2

12

2, 1, 1 abΓ1
11 + bcΓ1

12 + adΓ1
21 + cdΓ1

22 = aΓ1
21 + bΓ2

21

2, 1, 2 abΓ2
11 + bcΓ2

12 + adΓ2
21 + cdΓ2

22 = cΓ1
21 + dΓ2

21

2, 2, 1 b2Γ1
11 + bdΓ1

12 + bdΓ1
21 + d2Γ1

22 = aΓ1
22 + bΓ2

22

2, 2, 2 b2Γ2
11 + bdΓ2

12 + bdΓ2
21 + d2Γ2

22 = cΓ1
22 + dΓ2

22

(24)
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One can reduce the system restricting to some particular subspace of linear
connections. For instance, torsion free: then the system (24) reduces to 6 equations
in 6 variables, because Γk

12 = Γk
21, k = 1, 2. Indeed, (3) is symmetric in i, j if

∇ = d + Γ is torsion free.

Metric connections. A second case is that of metric connections with torsion
(without torsion there is only the trivial, Levi-Civita connection): Γk

ij = −Γj
ik, i.e.

Γi ∈ so. Thus there are only two unknowns and the system (24) is given by

[

Γ2
11 Γ2

21

]

S = 0

where

S =

[

b+ ac a2 − d −ad+ a ab+ c bc ab −bd b2

c2 ac −cd cb cd+ b ad− d a− d2 bd+ c

]

.

In order to have rkS < 2 we must have, e.g.,























(b+ ac)ac− (a2 − d)c2 = c(ab+ cd) = 0
ad(d− 1)(a− 1)− abcd = ad(±1 + 1− a− d) = 0
b2(cd+ b)− bc(bd+ c) = b(b2 − c2) = 0
(a2 − d)cb− a2bc− ac2 = −c(bd+ ac) = 0
−bd(bd+ c)− b2(a− d2) = −b(cd+ ab) = 0

Then we find non-trivial F given by

Fa,±(x, y) = ±(x,−y), or Fb,±(x, y) = ±(y, x).

Proposition 3.1 Fa,± and Fb,± are the only non-trivial isomorphisms F of the
plane for which there exist non-trivial metric, translation and F invariant connec-
tions.

For Fa,+ the connections are given by Γk
ij = 0 for all i, j, k except Γ2

21 = −Γ1
22.

For Fb,+ the connections are given by Γk
ij = 0, for all i, j, k except those satis-

fying also the condition Γ2
11 = −Γ1

12 = −Γ2
21 = Γ1

22.

In both cases, ∇ = d + Γ is flat.

The proof follows from the system above and the curvature computations are trivial.
Notice we may state corresponding results for the minus cases.

Symplectic connections. Another interesting type of confections is that of sym-
plectic torsion free connections: Γk

ij is totally symmetric when contracted with the
2-form ω = dx ∧ dy (see e.g. [2]), arising from the parallelism of ω, ∇ω = 0. This
is the same as Γ1

i1 = −Γ2
i2 or, equivalently, Γi ∈ sl(2,R). In sum,

Γ1
11 = −Γ2

12 = −Γ2
21, Γ1

21 = −Γ2
22 = Γ1

12. (25)
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Now system (24) resumes to
























a2 − a 2ac c2 −b
−c− 2ac −c2 0 a2 − d
ab+ b ad+ bc− a cd 0

−ad− cb+ d −cd− c 0 ab
ab+ b bc+ ad− a cd 0

−bc− ad+ d −cd− c 0 ab
b2 2bd+ b d2 − a 0

−2bd −d2 + d −c b2

































Γ1
11

Γ1
12

Γ1
22

Γ2
11









= 0.

The rank of the essentially 6x4 matrix is less than 4 in situations our ‘computer’
does not obtain a pleasant result. But the case a = −d = 1, c = b = 0 is a solution.
Then the connections are given by (25) and Γ1

12 = Γ2
11 = 0. According to (4) we

find
R2

121 = −Γ2
21Γ

1
11 = (Γ1

11)
2.

Complex connections. We also have the case of complex or gl(1,C)-connections:

Γ1
11 = Γ2

12, Γ1
12 = −Γ2

11, Γ1
21 = Γ2

22, Γ1
22 = −Γ2

21 (26)

This gives an over-determined system as above, still unsolved according to its rank.
If we moreover demand Γ torsion free, then the system reduces to 2 unknowns:

[

Γ1
11 Γ1

12

]

S = 0

where

S =

[

a2 − c2 − a 2ac− c ab− cd− b
2ac+ b c2 − a2 + d ad+ cb− a

ad+ bc− d b2 − d2 + a 2bd+ c
−ab+ cd− c 2bd− b −b2 + d2 − d

]

The condition for rk < 2 remains to be deduced, but if we require F ∈ GL(1,C),
that is F (x, y) = (ax+ by,−bx+ ay), then F = Id is the only isomorphism which
admits that kind of invariant connections.

If we look for F of the previous kind, that is F (x, y) = (ax+ cy, cx− ay) then
the equations for rk < 2 resume to the vanishing of

(a2 − c2 − a)(c2 − a2 − a)− (2ac− c)(2ac+ c) =

= −(a2 − c2)2 + a2 − 4a2c2 + c2

= (a2 + c2)(1− a2 − c2).

Equivalently, a2 + c2 = 1. Since we were hoping for detF = ±1 the result is
automatic; thus we may write a = cos θ, c = sin θ, to find the condition

(cos 2θ − cos θ)Γ1
11 + (sin 2θ + sin θ)Γ1

12 = 0.

In sum we have proved the following.
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Proposition 3.2 There exist complex, torsion free, translation and F invariant
connections on C for each conjugate rotation F (z) = eiθz.

Such connections are given by any λ ∈ R and

Γ1
11 = Γ2

12 = −Γ1
22 = Γ2

21 = −λ(sin 2θ + sin θ),

Γ1
12 = −Γ2

11 = Γ1
21 = Γ2

22 = λ(cos 2θ − cos θ).

Moreover, these connections are flat.

The curvature is trivial since Γ is constant and a type (1, 0) form; since there are
no type (2, 0) forms on the complex line, R∇ = dΓ + Γ ∧ Γ = 0.

In truth, all translation invariant complex connections in C are flat, cf. formulae
(4,26).

3.2. Invariant connections on orbifolds cL(p, q). Let ∇ be a holomorphic
connection in C

n with coordinates (z1, . . . , zn), i.e. its Christoffel symbols for
∇∂zi

∂zj are holomorphic functions. Then the equations of an affine holomorphic
transformation F are again determined by system (3) but with the xj replaced by
holomorphic coordinates zj = xj + iyj . Indeed, since F · ∂zj = 0, we must have

∇∂zj
∂zj

= ∇∂zi
∂zj = 0

where as usual ∂zj = 1
2 (∂xj

− i∂yj
), ∂zj

= ∂zj .
We recall the lens space L(p, q) = S3/Zp, the orbit space for the action of

F (z1, z2) = (az1, dz2) on the 3-sphere, with a, d ∈ C such that ap = 1, d = aq. In
the study of the cone with a singularity

cL(p, q) = {λz : z ∈ L(p, q), λ ∈ R
+} = C

2/〈F 〉,

there are invariant connections with meromorphic coefficients, as we shall see in
the following example.

Example 3.1 cL(p, q) admits a meromorphic connection with Christoffel symbols

Γ1
12 = Γ1

21 = Γ2
22 = 1

z2
Γ1
22 = z1

z2

2

Γ2
12 = Γ1

11 = Γ2
21 = 1

z1
Γ2
11 = z2

z2

1

.

The holomorphic curvatures of ∇ = d + Γ are

R1
121 = R2

122 = 0, R1
122 =

2

z22
, R2

121 = − 2

z21
.

For the proof, notice that, although ∇ is not translation invariant, we may still
formally use system (24) viewing the Γ’s composed with F on the left hand side.
Then essentially two types of equation appear:

aΓ1
11 ◦ F = Γ1

11, a2Γ2
11 ◦ F = dΓ2

11,

and these equations have obvious solutions.
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The search of meromorphic connections on orbifolds was studied in [12]; anyway
our example seems to be original. The use of connections in this context has
appeared in [6,7]

We remark that the classification of orbifold singularities with complex structure
is still an open problem and there are various approaches to it either through the
Riemannian or the complex perspective — cf. [1,4] and the references therein to
see the wealth of examples and geometries one might continue searching for.
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