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Existence of solutions for a resonant Steklov Problem

Aomar ANANE, Omar CHAKRONE, Belhadj KARIM and Abdellah ZEROUALI

ABSTRACT: In this paper, we prove the existence of weak solutions to the problem
Apu = 0 in © and |Vu|p_2g—7: = Aim(a)|ulP72u + f(x,u) — h on 99, where Q is
a bounded domain in RV (N > 2), m € LI(9Q) is a weight, A1 is the first positive
eigenvalue for the eigenvalue Steklov problem Apu = 0 in © and |Vu\p_2% =
Am(z)|ulP~2u on 9Q. f and h are functions that satisfy some conditions.

Key Words: : Steklov problem, Weights, Landesman-Lazer conditions, Palais—
Smale conditions.
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1. Introduction
Consider the problem

Apu =0 in €,
|VulP=2 8% = Aim(@) ulP~>u + f(z,u) — b on 89,

(1)

Q will be a bounded domain in RY (N > 2), with a Lipschitz continuous boundary,
1<p<oo,m€Lq(8Q)where%<q<ooifp<Nandqzlifp2N.
We assume that m™ = max(m,0) # 0 and [,,mdo < 0. f: 92 xR =R is a
Carathéodory function satisfying the growth condition

[f(x,5)] < als|"~" + b(w) (2)

for all s € R and a.e. = € dQ. Here a = ¢st > 0, b € L” (9Q) and h € L" (9Q),
where 7’ is the conjugate of r = q’i—ql. A1 design the first positive eigenvalue of the
following Steklov problem

To find (u,A) € (WhP(Q)\ {0}) x RT  such that
Npu = 0 in Q, (3)
|Vu|p_2% = m(z)|ulP%u on 9N).

It is well-known that

1 1
Ap:=  inf {/ |Vu|Pde 7/ m(z)|u|Pdo = 1}.
ueWir(Q) (P Jo P Joa
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Recall that \; is simple (see [7]). Moreover, there exists a unique positive eigen-
function o7 whose norm in W?(Q) equals to one. We say that u € WHP(Q) is a
weak solution of (1) if

/\Vu\p_QVuVLpd;v:)\l/ m|u|p_2u<,0da+/ f(x,u)wdo—/ hodo
Q 00 00 o0

for all o € W1P(Q), where do is the N — 1 dimensional Hausdorff measure.

Classical Dirichlet problems involving the p-Laplacian have been studied by
various authors, we cite the works [1], [2], [3], [4], [5], [6] and [8] . Our purpose
of this paper is to extend some of the results known in the Dirichlet p-Laplacian
problem. We prove the existence of solutions for a resonant Steklov problem under
Landesman-Lazer conditions.

2. Existence of solutions for a resonant Steklov problem

In this section, we study the solvability of the Steklov problem (1) under
Landesman-Lazer conditions and by using the minimum principle. The following
theorem is our main ingredient.

Theorem 2.1 (Minimum principle)
Let X be a Banach space and ® € C*(X,R). Assume that ® satisfies the Palais—
Smale condition and bounded from below. Then c = igl(fq) s a critical point.

Suppose that f satisfies the hypotheses below
lim f(z,s) =1(z); hIJP f(z,s) = k(x) a.e. x € 00 (4)
S——+00

§—— 00

/BQ k(x)pirdo < /({m h(z)prdo < /aQ l(z)prdo, (5)

where ¢ is the normalized positive eigenfunction associated to A;.

The following theorem is main result in this paper.

Theorem 2.2 Let m € LI(0Q), m* # 0 and [,, mdo < 0. Assume (2), (4) and
(5) are fulfilled. Then the problem (1) admits at least a weak solution in W1P(Q).

The following lemmas will be used in the proof of Theorem 2.2, it guarantees
the existence of a critical point. The functional energy associated to the problem

(1) is

1 1
(b(u)zf/ |Vu|pdx—f/ m|u|pda—/ F(x,u)da—l—/ hudo,
pPJa P Joq 9 fs19)

F(x,t) ::/O f(z,s)ds.

where
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Lemma 2.1 Let m € L9(9Q), m* # 0 and [, mdo < 0. Assume (4) and (5)
are fulfilled. Then ® satisfies the Palais—Smale condition (PS) on WP().

Proof: Let (u,) be a sequences in WP(2) and ¢ be a real number such that
|®(uy,)| < c for all n and ®'(u,) — 0. We prove that (u,) is bounded in W1?(Q),
we assume by contradiction that [|un|| — +00 as n — +o00. Let v, = ier, thus

v, is bounded, for a subsequence still denoted by (v,), we have v,, — v weakly
in WHP(Q), v, — v strongly in LP(Q)) and v, — v strongly in L%(aQ). The
hypothesis |®(u,)| < ¢ implies

1 A F(z,up n
lim (/ Vo, |Pdx — —1/ m|v, |[Pdo — / MdU + h—2 da) =0.
n—+oo \p Jo P Joo oo llun|l? oo lunl[P

Since, by hypotheses on p, h, u, and using (4)

F
lim (— LACATY hu"da> =0,
n—+oo oa llunllP oa  lunll?

while

. 1 1

lim — m|v,|Pdo = = m|v|Pdo,

n=+oo P Jan P Joq

we have

lim /\an|pdx:)\1/ m|v|Pdo.
n—-+4oo Q 90

Using the weak lower semi-continuity of norm and the definition of A\;, we get

)\1/ m\v|pd0§/ |Vv|pdm§liminf/ |an|pdx:/\1/ m|v|Pdo.
o0 Q n=+oo Jo a0

Thus, v, — v strongly in W1P(Q) and

)\1/ m|v|pdaz/ |Vo|Pdz.
a9 Q

This implies, by the definition of ¢, that v = +¢; (since [, mdo < 0).
Letting
F(z,s) . N
B TP
9(, s) = { f(z,0), ifs=0.

Case 1: Suppose that v,, — ¢1, then we have u,(x) — +o0o0 and
flz,un(z)) = k(x) ae. z € 09,
g(x, up(x)) — k(x) a.e. x € O0.

Therefore, the Lebesgue theorem implies that

T [ (gl un(@)) — S (@ un (@) vndor = (0= 1) [ k(z)g1 (2)do
oQ oQ
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On the other hand, |®(u, )| < ¢ implies that

—cpg/ |an|pd:rf)\1/ m\vn|pd07/ pF(m,un)d0+/ hu,do < cp, (6)
Q a0 a0 a0

and ®'(u,) — 0 implies that for all € > 0 there exists ng € N such that for all
n > ng, we have

o0

—& < —/ |Vun|pdx+)\1/ m|un|pdo+/ f(x,un(x))un(z)da—/ h(z)u,(x)do < e.
Q oN [219)
7
By summing up (6) and (7), we get

[z, un(2))un(z)do — / pF(z,u,)do + (p—1) h(z)up(x)do > —cp — ¢,
o0 a0 Ele)
dividing by ||u,||, we obtain

—cp—¢

Sz, un(m))vn(x)da—/

o0 o0

Passing to the limit, we obtain
/ h(z)p1(z)do > / k(x)p1(z)do,
o0 o0

which contradicts (5).
Case 2: Suppose that v,, — —¢1, then we have u,,(z) - —oo and

flz,un(z)) = l(z) a.e. x € 09,

g(x,up(x)) — I(x) a.e. z € 0.
By summing up (6) and (7), we get

fz,un(z))uy (x)do — /

pF(z,uy)do + (p — 1)/ h(z)u,(x)do < cp+e,
o0

o0 o0

dividing by ||u,||, we obtain

pg(x, Uy ) vy (z)do+(p—1) /69 h(@)vn(x)do < [unl|

f(z, un(x))vn(x)da—/

o0 oQ

Passing to the limits, we get
l(x)p1(z)do < / h(z)p1(x)do.
o0 o0

which contradicts (5). Finally, (u,) is bounded in W1P(Q), for a subsequences
still denoted by (u,, ), there exists u € WP(Q) such that u,, — u weakly in WP (£2)
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and wu,, — u strongly in Lo (09). By the hypotheses on m, h, u, and using (4),

we deduce that
lim M|t P2t (U, — u)do = 0,
n—-+oo 90

ngr-&I-loo o f(zyun)(z)(uy — u)do =0,

lim h(u, —u)do = 0.
n——+oo 90

On the other hand, we have

lim &' (u,)(u, —u) =0,

n——+4oo

therefore
lim / |V, |P~2Vu,V (u, —u)dr =0,
Q

n—-+4oo

of more u,, — u strongly in L?(Q?), thus

lim / |t [Py (U, — w)diz = 0,
Q

n—-+oo

it then follows from the (ST) property that u, — u strongly in W1 ().

O

Lemma 2.2 Let m € L9(0Q), m* # 0 and [, mdo < 0. Assume (4) and (5)

are fulfilled. Then ® is bounded from below.

Proof: It suffices to show that ® is coercive. Suppose by contradiction that there
exists a sequence (u,) such that ||u,|| — 400 and ®(u,) < e¢. As in proof of
Lemma 2.1, we can show that v, = 2~ — +p;. By the definition of A;, we have

T uall

0< / VunlPde — / mlun|Pdo,
Q o0

thus

—/ F(z,up(z))do + hupdo < ®(u,) < c.
lo) a0

Case 1: Suppose that v, — ;. Dividing (8) by ||u,]||, we obtain

7/ F(m7un(x))d0+/ hy, do < D(uy) < c
oo unll o0 |[un]] [|unl|

Passing to the limit, we get

—/ kE(x)prdo + h(z)p1rdo <0,
o0 o9

[lunl]
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which contradicts (5).
Case 2: Assume that v, — —¢1. Dividing (8) by ||u,||, we obtain

_/ F(x7un(m))do+/ hu, do < D(uy) < c_
oo llunll o |[unl| [un|l ™ [un]]

Passing to the limit, we get

/ l(x)(pldo—/ h(z)p1do <0,
oN o

which contradicts (4). O

Proof: |Proof of Theorem 2.2] Assumption (2) implies that ® in a C! functional on
W1P(Q). By Lemma 2.1, ® satisfies the Palais-Smale condition and it is bounded
from below by Lemma 2.2. To prove that ® attains its proper infimum in W (Q)
(see Theorem 2.2). Finally the problem (1) admits a least a weak solution. O
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