<b>Odd-order quasilinear evolution equations posed on a bounded interval</b> - 10.5269/bspm.v28i1.10816
Résumé
We study in a rectangle Q_T = (0, T)×(0, 1) global well-posedness of nonhomo-geneous initial-boundary value problems for general odd-order quasilinear partial differential equations. This class of equations includes well-known Korteweg–de Vries and Kawahara equations which model the dynamics of long small-amplitude waves in various media. Our study is motivated by physics and numerics and our main goal is to formulate a correct nonhomogeneous initial-boundary value problem under consideration in a bounded interval and to prove the existence and uniqueness of global in time weak and regular solutions in a large scale of Sobolev spaces as well as to study decay of solutions while t → ∞.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2010-08-05
Numéro
Rubrique
Articles
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).