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ABSTRACT
 Let R be a prime ring and F and G be generalized derivations of R with associated derivations d and g respectively. In the present paper, we shall investigate the commutativity of R admitting generalized derivations F and G satisfying any one of the properties: 
(i) F(x)x = x G(x), (ii) F(x2) = x2 , (iii) [F(x), y] = [x, G(y)], (iv) d(x)F(y) = xy, (v) F([x, y]) = [F(x), y] + [d(y), x] and (vi) F(x ◦ y) = F(x) ◦ y − d(y) ◦ x for all x, y in some appropriate subset of R.
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1. INTRODUCTION

Throughout this paper, R will represent an associative ring with center Z(R). Recall that a ring R is prime if aRb = 0 implies a = 0 or b = 0. If R has an involution σ, then R is said to be prime if aRb = aRσ(b) = 0 implies a = 0 or b = 0. Every prime ring equipped with an involution is  prime but the converse need not be true in general. As an example, taking S = R× R0 where R0 is an opposite ring of a prime ring R with (x, y) = (y, x). Then S is not prime if (0, a) S (a, 0) = 0. But if we take (a, b) S (x, y) = 0 and (a, b) S σ ((x, y)) = 0, then aRx × yRb = 0 and aRy × xRb = 0, and thus aRx = yRb = aRy = xRb = 0. This shows that R is prime (see for reference [9]). An ideal I of R is a ideal if I is invariant under σ i.e. σ (I) = I. Oukhtite et al. defined a set of symmetric and skew symmetric elements of R as Saσ(R) = {x R | σ(x) = x}. For any x, y  R, the symbol [x, y] stands for commutator xy − yx and the symbol x ◦ y denotes the anti-commutator xy + yx. We shall make extensive use of the following basic commutator identities: [xy, z] = x[y, z] + [x, z]y, [x, yz] = y[x, z]+[x, y]z, xo(yz) = (xoy)z−y[x, z] = y(xoz)+[x, y]z and (xy)oz = x(yoz)− [x, z]y = (xoz)y + x[y, z].
As defined by Bresar [6], an additive map F: R → R is called a generalized derivation associated with d if there exists a derivation d: R → R (an additive map d: R → R is called a derivation if d (xy) = d(x)y + xd(y) holds for all x, y ∈ R)  such that F (xy) = F(x) y + xd(y) for all x, y ∈ R. One can easily check that the notion of generalized derivation covers the notions of a derivation and a left multiplier (i.e. F (xy) = F(x) y for all x, y ∈ R). Particularly, we can observe that: For a fixed a ∈ R, the map da : R → R defined by da(x) = [a, x] for all x ∈ R is a derivation which is said to be an inner derivation. An additive map ga,b: R → R is called a generalized inner derivation if ga,b(x) = ax + xb for some fixed a, b ∈ R. It is easy to see that if ga,b(x) is a generalized inner derivation, then
ga,b(x) (xy) = ga,b(x)y + xd−b(y) for all x, y ∈ R, where d−b is an inner derivation.
Several authors [1, 2, 3, 17, 18, 19, 20] have established numerous results concerning derivations and generalized derivations of prime rings. In 2005, Oukhtite et al. conferred an extension of prime rings in the form of  -prime rings and proved a number of results which hold true for prime rings (see for references [9 - 16]). In [7] and [8] author et al. extended results concerning derivations and generalized derivations of prime rings to some more general settings.  Ashraf et al. too contributed to this newly emerged theory in [5], apart from great deal of work in the field of prime rings.
Recently, in [4], Ashraf et al. extended some known theorems for derivations to generalized derivations in the setting of semiprime rings.
Now a natural question arises: Under what additional condition these results can be extended in semiprime rings. However, in this perspective, we prove the results for prime rings exhibiting generalized derivations F and G associated with derivations d and g respectively and hope for similar conversion to semiprime rings in near future.
We define the following properties for all x, y  I, ideal of prime ring R, such that:
(P1) F(x) x  x G(x) = 0.
(P2) F(x2)  x2 = 0.
(P3) [F(x), y]  [x, G(y)] = 0.
(P4) d(x) F(y)  xy = 0.
(P5) F([x, y]) = [F(x), y] + [d(y), x].
(P6) F(x) ◦ y − d(y) ◦ x = 0.

2. MAIN RESULTS
To prove our results, we need the following known lemmas:
Lemma 2.1 ([10, Lemma 3.1]) Let R be a σ-prime ring and let I be a nonzero σ−ideal of R. If a, b in R satisfy a I b = a I σ(b) = 0, then a = 0 or b = 0.
Lemma 2.2 ([11, Lemma 2.2]) Let I be a nonzero σ-ideal of R and 0 d be a derivation on R which commutes with σ. If [x, R] I d(x) = 0 for all x ∈ I, then R is commutative.

We begin with

Theorem 2.1 Let R be a two torsion free prime ring and I a nonzero ideal of R. Suppose that R admits generalized derivations F and G with associated nonzero derivations d and g which commutes with respectively. Let R satisfy the property (P1).Then R is commutative.
Proof of Theorem 2.1: (i) By our hypothesis (P1), we have
F(x) x = x G(x) for all x ∈ I.								(1)
Linearizing (1) we find that
F(x) y + F(y) x = xG(y) + yG(x) for all x, y ∈ I. 					(2)
Replace x by xy in (2), to get
F(x) y2 + x d(y) y + F(y) xy = xy G(y) + y G(x) y + yx g(y) for all x, y ∈ I. 	(3)
Multiplying relation (2) with y from right yields 
F(x) y2 + F(y) xy = x G(y) y + y G(x) y for all x, y ∈ I. 				(4)
Combining (3) and (4), we obtain	
x d(y) y = yx g(y) + x [y, G(y)] for all x, y ∈ I.					(5)
For any r ∈ R, replacing x by rx in (5), we get
rx d(y)y = yrx g(y) + rx [y, G(y)] for all x, y ∈ I, r ∈ R. 				(6)
On left multiplying (5) by r, we have
rx d(y) y = ryx g(y) + rx [y, G(y)] for all x, y ∈ I, r ∈ R. 				(7)
From (6) and (7), we get [y, r] x g(y) = 0. Therefore,
[y, r] I g(y) = 0 for all y ∈ I, r ∈ R. 							(8)
Let y  I ∩ Saσ(R); since g commutes with σ, the relation (8) yields 
[y, r] I g(y) = 0 = [y, r] I σ (g(y)) for all y ∈ I, r ∈ R. 				(9)
By virtue of Lemma 2.1, either [y, r] = 0 or g(y) = 0. 
Let y ∈ I. As y +  (y) is an element of   I, then 
[y +  (y), r] = 0 or g(y +  (y)) = 0 for all r ∈ R.
Case 1: If [y +  (y), r] = 0, the fact that y  (y)   I, yields
[y  (y), r] = 0 or g(y -  (y)) = 0 r ∈ R.
If [y  (y), r] = 0, then 0 = [y -  (y), r] + [y +  (y), r] = 2[y, r] = 0. 
Therefore, [y, r] = 0, since chaR   2.
If g(y -  (y)) = 0 r ∈ R, then g(y) = g ( (y)) =  (g(y)). 
Hence, by application of Lemma 2.1 equation (8) implies [y, r] = 0 or g(y) = 0.
Case 2: If g(y +  (y)) = 0, then g(y) =  g ( (y)) =    (g(y)), and in view of (8) 
[y, r] I g(y) = 0 = [y, r] I σ (g(y)).
 Hence by Lemma 2.1, we arrive at [y, r] = 0 or g(y) = 0.
If g(y) = 0, then for any r in R, we find that y d(r) = 0 for all y ∈ I. 
Hence, I d(r) = I R d(r) = (I) R d(r) = 0. 
Since I  0 and R is  - prime, we obtain d(R) = 0. Hence, d = 0 a contradiction.
Now suppose that [y, r] = 0. Then for any s in R, we can write
0 = [sy, r] = [s, r] y = [s, r] I = [s, r] R I = [s, r] R (I) = 0.
Since I  0, in view of - primness of R, we obtain [s, r] = 0 for all r, s ∈ R.
Hence R is commutative.
(ii) Similarly we can prove that R is commutative, if F(x) x + x G(x) = 0 for all x ∈ I.	
Following on the same lines with necessary variations and taking G = F or G = −F in Theorem 2.1, we get the following corollary: 
Corollary 2.1 Let R be a two torsion free prime ring and I a nonzero ideal of R. Suppose that R admits a generalized derivation F with associated nonzero derivation d which commutes with such that [F(x), x] = 0 for all x  I or if F(x) ◦ x = 0 for all x  I, then R is commutative.
Theorem 2.2 Let R be a two torsion free prime ring and I a nonzero ideal of R. Suppose that R admits generalized derivations F with associated nonzero derivation d which commutes with  such that the  property (P2) is satisfied. Then R is commutative.
Proof of Theorem 2.2: (i) From the hypothesis of (P2), we write
F(x2) = x2 for all x  I.
Replacing x by x + y in the above relation, we get
F(x2 + y2 + xy + yx) = x2 + y2 + xy + yx for all x, y  I.				(10)
Using (P2) in (10), we obtain
F(xy + yx) = xy + yx for all x, y  I.	 						(11)
Rewriting equation (11), we get F(x ◦ y) = x ◦ y for all x, y  I.
Hence, by virtue of result [14, Theorem 2.2], we get the required result. 
(ii) Further, if F(x2) + x2 = 0 for all x  I, then we find that F(xoy) + (xoy) = 0 for all x, y  I. Following the same technique as used in the proof of [14, Theorem 2.2], we get the required result.	
Theorem 2.3 Let R be a two torsion free prime ring and I a nonzero ideal of R. Suppose that R admits generalized derivations F and G with associated nonzero derivations d and g which commutes with respectively. If R satisfies property (P3), then R is commutative.
Proof of Theorem 2.3: (i) By the hypothesis of (P3), we have
	[F(x), y] = [x, G(y)] for all x, y  I. 
Replacing y by yx in the above expression, we obtain
	y [F(x), x] = [x, y] g(x) + y[x, g(x)] for all x, y I.	 				(12)
For any r  R, again replacing y by ry in (12) and applying (12), we get 
	[x, r] y g(x) = 0 for all x, y I.
Therefore, [x, R] I g(x) = 0 for all x I. 
Hence, by application of Lemma 2.2 we conclude that R is commutative.
(ii) Using the same techniques as used above we conclude R is commutative, if [F(x), y] + [x, G(y)] = 0 for all x, y  I.
Substituting G = F or G = −F in Theorem 2.3 and applying similar arguments, we can prove the following corollary.
Corollary 2.3: Let R be two torsion free prime ring and I a nonzero ideal of R. Suppose that R admits generalized derivations F and G with associated nonzero derivations d and g which commutes with respectively. If [F(x), y] = [x, F(y)] for all x, y  I or if [F(x), y] + [x, F(y)] = 0 for all x, y  I, then R is commutative.

Theorem 2.4 Let R be a two torsion free prime ring and I a nonzero ideal of R. Suppose that R admits a generalized derivation F with associated nonzero derivation d commuting with   . Let R satisfy property (P4).Then R is commutative.

Proof of Theorem 2.4: (i) From the hypothesis of (P4), we have
d(x)F(y) = xy for all x, y  I.								(13)
Replacing y by yx in (13) and using (P4), we get
d(x) y d(x) = 0 for all x, y  I.							(14)
This implies that d(x) xy d(x) = 0 for all x, y  I.						(15) 
Equation (14) also yields that
x d(x) y d(x) = 0 for all x, y  I.							(16) Equation (15) together with equation (16) gives
 	[d(x), x] y d(x) = 0 for all x, y  I. Therefore [d(x), x] I d(x) = 0 for all x  I. 
Since d commutes with σ, Lemma 2.1 gives [d(x), x] = 0 or d(x) = 0  x  I.
If d(x) = 0 x  I, then for any r ∈ R, we have 
0 = d (xr) = x d(r) = I d(r) = I R d(r) = (I) R d(r) = 0.
Since I is nonzero, -primeness of R yields d = 0 for all r in R, a contradiction.
Next, suppose that [d(x), x] = 0  x  I.
Then, by the application of techniques used in the proof of the result ([11, Theorem 1.2]), we conclude that R is commutative. 
(ii) If d(x) F(y) + xy = 0 for all x, y  I, then using the same techniques as used above with necessary variations we get the required result.

Theorem 2.5 Let R be a 2-torsion free - prime ring and I be a nonzero  -ideal of R. Suppose that R admits a generalized derivation F with associated nonzero derivation d commuting with  such that property (P5) is satisfied. Then R is commutative.

Proof of Theorem 2.5: By our hypothesis (P5), we have
F([x, y]) = [F(x), y] + [d(y), x].							(17)
Replacing y by yx in (17) and employing (17), we find that
2[x, y] d(x) = y [F(x), x] + y [d(x), x] for all x, y  I.		 		(18)
For any r R, again replacing y by ry in (18) and applying (18), we get
 2[x, r] y d(x) = 0 for all x, y  I.
 Since R is 2-torsion free, we get [x, r] y d(x) = 0 for all x, y I and r  R.
Therefore, [x, R] I d(x) = 0 for all x I and r  R.
By application of Lemma 2.2, we conclude that R is commutative.

Theorem 2.6 Let R be a 2-torsion free prime ring and I be a nonzero ideal of R. Suppose that R admits a generalized derivation F with associated nonzero derivation d commuting with. Let R satisfies property (P6). Then R is commutative.

Proof of theorem 2.6: By the hypothesis of (P6), we have
F(x ◦ y) = F(x) ◦ y − d(y) ◦ x for all x, y  I. 						(19)
Replacing y by yx in (19) and using (P6), we find that
(x ◦ y) d(x) = − y [F(x), x] − y(d(x) ◦ x) + [y, x] d(x) for all x, y  I.			(20)
For any r  R, replacing y by ry in (20) and applying (20), we get
	2[x, r] y d(x) = 0 for all x, y  I.
Since R is 2-torsion free, we obtain [x, r] y d(x) = 0 for all x, y  I and r  R. 
Therefore, [x, R] I d(x) = 0 for all x   I.
Hence, by virtue of Lemma 2.2 we get R is commutative.
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