Generalized derivations in prime and semiprime

  • Shuliang Huang Chuzhou University
  • Nadeem ur Rehman Aligarh Muslim University Department of Mathematics

Résumé

Let $R$ be a prime ring, $I$ a nonzero ideal of $R$ and $m, n$  fixed positive integers.  If $R$ admits a generalized derivation $F$ associated with a  nonzero derivation $d$ such that $(F([x,y])^{m}=[x,y]_{n}$ for  all $x,y\in I$, then $R$ is commutative. Moreover  we also examine the case when $R$ is a semiprime ring.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Shuliang Huang, Chuzhou University

Department of Mathematics

Références

M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math., 42 (2002), no.1-2, 3-8.

N. Argac and H. G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math. Soc., 46(2009), no.5, 997-1005.

K. I. Beidar, W. S. Martindale and V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.

M. Bresar, On the distance of the composition of two derivations to be the generalized derivations, Glasgow Math. J., 33(1991), 89-93.

C. L. Chuang, GPIs having coefficents in Utumi quotient rings, Proc. Amer. Math. Soc., 103(1988), no.3, 723-728.

C. L. Chuang, Hypercentral derivations, J. Algebra, 161(1994), 37-71.

M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internt. J. Math. & Math. Sci., 15(1992), 205-206.

J. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math., 60(1975), no.1, 49-63.

B. Hvala, Generalized derivations in prime rings, Comm. Algebra, 26(1998), no.4, 1147-1166.

S. L. Huang, On generalized derivations of prime and semiprime rings, Taiwanese Journal of Mathematics (to appear).

I. N. Herstein, Center-like elements in prime rings, J. Algebra, 60(1979), 567-574.

V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17(1978), 155-168.

T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27(1998), no.8, 4057-4073.

C. Lanski, An engel condition with derivation, Proc. Amer. Math. Soc., 118(1993), no.3, 731-734.

T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20(1)(1992), 27-38

W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12(1969), 176-584.

J. H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull., 27(1984), no.1, 122-126.

M. A. Quadri, M. S. Khan and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J.pure appl. Math., 34(2003), no.98, 1393-1396.

Publiée
2015-05-06
Rubrique
Articles