\documentclass[12pt,psamsfonts]{amsart} \usepackage{amssymb,eucal,epsfig} \textheight = 8.39in \textwidth = 6.0in \oddsidemargin=0.3in \evensidemargin=0.3in \topmargin=0.0in \headsep = 0.35in \headheight = 0.17in \topmargin = 0.38in \topskip=0.14in \footskip=0.42in \def\Dj{\hbox{D\kern-.73em\raise.30ex\hbox{-} \raise-.30ex\hbox{}}} \def\dj{\hbox{d\kern-.33em\raise.80ex\hbox{-} \raise-.80ex\hbox{\kern-.40em}}} %\textheight 22cm %\textwidth 16cm %\oddsidemargin 0.1cm %\evensidemargin 0.1cm \def\id{\operatorname{id}} \def\im{\operatorname{im}} \def\ad{\operatorname{ad}} \def\tr{\operatorname{tr}} \def\Ric{\operatorname{Ric}} \def\ric{\operatorname{ric}} %added \def\rk{\operatorname{rk}} %added \def\Span{\operatorname{Span}} %added \def\es{\emptyset} \def\sq{\subseteq} \def\<{\langle} %added \def\>{\rangle} %added \def\ip{\<\cdot,\cdot\>} %added \def\N{\mathbb N} \def\Z{\mathbb Z} \def\R{\mathbb R} \def\0{\mathbb 0} \renewcommand{\theenumi}{\alph{enumi}} \renewcommand{\labelenumi}{(\theenumi)} \renewcommand{\theenumii}{\roman{enumii}} \theoremstyle{plain} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{lemma}{Lemma}[section] \newtheorem{corollary}{Corollary}[section] \theoremstyle{definition} \newtheorem{definition}{Definition}[section] \theoremstyle{remark} \newtheorem{remark}{Remark}[section] \newtheorem{example}{Example}[section] \numberwithin{equation}{section} \begin{document} \setcounter{page}{1} %\thispagestyle{empty} % \baselineskip=0.20in \vspace{25mm} \baselineskip=0.25in %\bibliography{catalan} \title[The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak] {The Generalized Difference of $\chi^{2}$ over $p-$ metric spaces defined by Musielak} \vspace{15mm} \author[N. Subramanian]{N. Subramanian$^1$ } \address{$^1$Department of Mathematics, \newline \indent SASTRA University, \newline \indent Thanjavur-613 401, India} \email{nsmaths@yahoo.com} \keywords{ analytic sequence, double sequences, $\chi^{2}$ space, difference sequence space,Musielak - modulus function, $p-$ metric space, Lacunary sequence, ideal. \\ \indent 2010 {\it Mathematics Subject Classification}. 40A05,40C05,40D05.\\ \indent {\it Received}: \\ \indent {\it Revised}: \\} \begin{abstract} In this paper, we define the sequence spaces: $\chi^{2qu}_{f\mu}\left(\Delta\right)$ and $\Lambda^{2qu}_{f\mu}\left(\Delta\right),$ where for any sequence $x=\left(x_{mn}\right),$ the difference sequence $\Delta x$ is given by $\left(\Delta x_{mn}\right)_{m,n=1}^{\infty}=\left[\left(x_{mn}-x_{mn+1}\right)-\left(x_{m+1n}-x_{m+1n+1}\right)\right]_{m,n=1}^{\infty}.$ We also study some properties and theorems of these spaces. \end{abstract} %\baselineskip=0.25in \maketitle \section{Introduction} Throughout $w,\chi$ and $\Lambda$ denote the classes of all, gai and analytic scalar valued single sequences, respectively. \\We write $w^{2}$ for the set of all complex sequences $(x_{mn}),$ where $m,n\in \mathbb{N},$ the set of positive integers. Then, $w^{2}$ is a linear space under the coordinate wise addition and scalar multiplication. \\\indent Some initial works on double sequence spaces is found in Bromwich [2]. Later on, they were investigated by Hardy [3], Moricz [7], Moricz and Rhoades [8], Basarir and Solankan [1], Tripathy [11], Turkmenoglu [12], and many others. \\\\We procure the following sets of double sequences: \begin{center} $\mathcal{M}_{u}\left(t\right):=\left\{\left(x_{mn}\right)\in w^{2}: sup_{m,n\in N}\left|x_{mn}\right|^{t_{mn}}<\infty \right\},$ \end{center} \begin{center} $\mathcal{C}_{p}\left(t\right):=\left\{\left(x_{mn}\right)\in w^{2}: p-lim_{m,n\rightarrow \infty}\left|x_{mn}-\l\right|^{t_{mn}}=1\hspace{0.05cm}for\hspace{0.05cm}some\hspace{0.05cm}\l\in \mathbb{C}\right\},$ \end{center} \begin{center} $\mathcal{C}_{0p}\left(t\right):=\left\{\left(x_{mn}\right)\in w^{2}: p-lim_{m,n\rightarrow \infty}\left|x_{mn}\right|^{t_{mn}}=1\right\},$ \end{center} \begin{center} $\mathcal{L}_{u}\left(t\right):=\left\{\left(x_{mn}\right)\in w^{2}: \sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\left|x_{mn}\right|^{t_{mn}}<\infty\right\},$ \end{center} \begin{center} $\mathcal{C}_{bp}\left(t\right):=\mathcal{C}_{p}\left(t\right)\bigcap \mathcal{M}_{u}\left(t\right)$ and $\mathcal{C}_{0bp}\left(t\right)=\mathcal{C}_{0p}\left(t\right)\bigcap \mathcal{M}_{u}\left(t\right)$; \end{center} where $t=\left(t_{mn}\right)$ is the sequence of strictly positive reals $t_{mn}$ for all $m,n\in \mathbb{N}$ and $p-lim_{m,n\rightarrow \infty}$ denotes the limit in the Pringsheim's sense. In the case $t_{mn}=1$ for all $m,n\in \mathbb{N};\mathcal{M}_{u}\left(t\right),\mathcal{C}_{p}\left(t\right),\mathcal{C}_{0p}\left(t\right),\mathcal{L}_{u}\left(t\right),\mathcal{C}_{bp}\left(t\right)$ and $\mathcal{C}_{0bp}\left(t\right)$ reduce to the sets $\mathcal{M}_{u},\mathcal{C}_{p},\mathcal{C}_{0p},\mathcal{L}_{u},\mathcal{C}_{bp}$ and $\mathcal{C}_{0bp},$ respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. G$\ddot{o}$khan and Colak [14,15] have proved that $\mathcal{M}_{u}\left(t\right)$ and $\mathcal{C}_{p}\left(t\right),\mathcal{C}_{bp}\left(t\right)$ are complete paranormed spaces of double sequences and gave the $\alpha-,\beta-,\gamma-$ duals of the spaces $\mathcal{M}_{u}\left(t\right)$ and $\mathcal{C}_{bp}\left(t\right).$ Quite recently, in her PhD thesis, Zelter [16] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [17] and Tripathy [11] have independently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Ces$\grave{a}$ro summable double sequences. Altay and Basar [20] have defined the spaces $\mathcal{BS},\mathcal{BS}\left(t\right),\mathcal{CS}_{p},\mathcal{CS}_{bp},\mathcal{CS}_{r}$ and $\mathcal{BV}$ of double sequences consisting of all double series whose sequence of partial sums are in the spaces $\mathcal{M}_{u},\mathcal{M}_{u}\left(t\right),\mathcal{C}_{p},\mathcal{C}_{bp},\mathcal{C}_{r}$ and $\mathcal{L}_{u},$ respectively, and also examined some properties of those sequence spaces and determined the $\alpha-$ duals of the spaces $\mathcal{BS}, \mathcal{BV},\mathcal{CS}_{bp}$ and the $\beta\left(\vartheta \right)-$ duals of the spaces $\mathcal{CS}_{bp}$ and $\mathcal{CS}_{r}$ of double series. Basar and Sever [21] have introduced the Banach space $\mathcal{L}_{q}$ of double sequences corresponding to the well-known space $\ell_{q}$ of single sequences and examined some properties of the space $\mathcal{L}_{q}.$ Quite recently Subramanian and Misra [22] have studied the space $\chi^{2}_{M}\left(p,q,u\right)$ of double sequences and gave some inclusion relations. \\\indent The class of sequences which are strongly Ces$\grave{a}$ro summable with respect to a modulus was introduced by Maddox [6] as an extension of the definition of strongly Ces$\grave{a}$ro summable sequences. Connor [23] further extended this definition to a definition of strong $A-$ summability with respect to a modulus where $A=\left(a_{n,k}\right)$ is a nonnegative regular matrix and established some connections between strong $A-$ summability, strong $A-$ summability with respect to a modulus, and $A-$ statistical convergence. In [24] the notion of convergence of double sequences was presented by A. Pringsheim. Also, in [25]-[26], and [27] the four dimensional matrix transformation $\left(Ax\right)_{k,\ell}=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}a_{k \ell}^{mn}x_{mn}$ was studied extensively by Robison and Hamilton. \\\indent We need the following inequality in the sequel of the paper. For $a,b,\geq 0$ and $00\right\},$ \end{center} The space $\ell_{M}$ with the norm \begin{center} $\left\|x\right\|=inf\left\{\rho >0: \sum_{k=1}^{\infty}M\left(\frac{\left|x_{k}\right|}{\rho}\right)\leq 1 \right\},$ \end{center} becomes a Banach space which is called an Orlicz sequence space. For $M\left(t\right)=t^{p}\left(1\leq p<\infty\right),$ the spaces $\ell_{M}$ coincide with the classical sequence space $\ell_{p}.$ \\\indent A sequence $f=\left(f_{mn}\right)$ of modulus function is called a Musielak-modulus function. A sequence $g=\left(g_{mn}\right)$ defined by \begin{center} $g_{mn}\left(v\right)=sup\left\{\left|v\right|u-\left(f_{mn}\right)\left(u\right):u\geq 0\right\},m,n=1,2,\cdots$ \end{center} is called the complementary function of a Musielak-modulus function $f$. For a given Musielak modulus function $f,$ the Musielak-modulus sequence space $t_{f}$ and its subspace $h_{f}$ are defined as follows \begin{center} $t_{f}=\left\{x\in w^{2}:I_{f}\left(\left|x_{mn}\right|\right)^{1/m+n}\rightarrow 0\hspace{0.05cm}as\hspace{0.05cm}m,n\rightarrow \infty\right\},$ \end{center} \begin{center} $h_{f}=\left\{x\in w^{2}:I_{f}\left(\left|x_{mn}\right|\right)^{1/m+n}\rightarrow 0\hspace{0.05cm}as\hspace{0.05cm}m,n\rightarrow \infty\right\},$ \end{center} where $I_{f}$ is a convex modular defined by \begin{center} $I_{f}\left(x\right)=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}f_{mn}\left(\left|x_{mn}\right|\right)^{1/m+n}, x=\left(x_{mn}\right)\in t_{f}.$ \end{center} We consider $t_{f}$ equipped with the Luxemburg metric \begin{center} $d\left(x,y\right)=sup_{mn}\left\{inf\left(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}f_{mn}\left(\frac{\left|x_{mn}\right|^{1/m+n}}{mn}\right)\right)\leq 1\right\}$ \end{center} If $X$ is a sequence space, we give the following definitions: \\\\(i)$X^{'}$= the continuous dual of $X;$ \\\\(ii)$X^{\alpha}=\left\{a=(a_{mn}):\sum{_{m,n=1}^{\infty}}\left|a_{mn}x_{mn}\right|<\infty,\hspace{.05cm}for\hspace{0.05cm} each\hspace{0.05cm} x\in X\right\};$ \\\\(iii)$X^{\beta}=\left\{a=(a_{mn}):\sum{_{m,n=1}^{\infty}}a_{mn}x_{mn}\hspace{0.05cm}is\hspace{0.05cm} convegent,\hspace{0.05cm}for each\hspace{0.05cm} x\in X\right\};$ \\\\(iv)$X^{\gamma}=\left\{a=(a_{mn}):sup_{mn}\geq 1\left|\sum_{m,n=1}^{M,N}a_{mn}x_{mn}\right|<\infty, for each x\in X \right\};$ \\\\(v)$let\hspace{0.05cm} X\hspace{0.05cm} be an FK-space\hspace{0.05cm}\supset\phi;\hspace{0.05cm}then\hspace{0.05cm}X^{f}=\left\{f(\Im_{mn}):f\in X^{'}\right\};$ \\\\(vi)$X^{\delta}=\left\{a=(a_{mn}):sup_{mn}\left|a_{mn}x_{mn}\right|^{1/m+n}<\infty,\hspace{0.05cm}for each \hspace{0.05cm}x\in X\right\};$ \\\\$X^{\alpha}.X^{\beta},X^{\gamma}$ are called $\alpha-\hspace{0.05cm}(or K\ddot{o}the-Toeplitz)$dual of $X,\beta-(or \hspace{0.05cm}generalized-K\ddot{o}the-Toeplitz)\hspace{0.05cm} dual\hspace{0.05cm} of X,\gamma-\hspace{0.05cm}dual \hspace{0.05cm}of\hspace{0.05cm} X,\hspace{0.05cm}\delta\hspace{0.05cm}-\hspace{0.05cm}dual\hspace{0.05cm} of X\hspace{0.05cm} respectively. X^{\alpha}$ is defined by Gupta and Kamptan [13]. It is clear that $X^{\alpha}\subset X^{\beta}$ and $X^{\alpha}\subset X^{\gamma},$ but $X^{\beta}\subset X^{\gamma}$ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded. \\\indent The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz as follows \begin{center} $Z\left(\Delta\right)=\left\{x=\left(x_{k}\right)\in w: \left(\Delta x_{k} \right)\in Z\right\}$ \end{center} for $Z=c,c_{0}$ and $\ell_{\infty},$ where $\Delta x_{k}=x_{k}-x_{k+1}$ for all $k\in \mathbb{N}.$ \\ Here $c,c_{0}$ and $\ell_{\infty}$ denote the classes of convergent,null and bounded sclar valued single sequences respectively. The difference sequence space $bv_{p}$ of the classical space $\ell_{p}$ is introduced and studied in the case $1\leq p\leq \infty$ by Ba\c{s}ar and Altay and in the case $00.$ Suppose that $sup_{r,s\geq 1}\frac{\varphi_{rs}^{*}}{\varphi_{rs}^{**}}=\infty,$ then there exists a sequence of members $\left(rs_{jk}\right)$ such that $lim_{j,k\rightarrow \infty}\frac{\varphi_{jk}^{*}}{\varphi_{jk}^{**}}=\infty.$ Hence, we have \\$\left[\Lambda^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi_{rs}^{*}}\right]^{V}=\infty.$ Therefore \\$x\notin \left[\Lambda^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi^{**}}\right]^{V},$ which is a contradiction. This completes the proof. \subsection{Proposition} If $f=\left(f_{mn}\right)$ be any Musielak function. Then \\$\left[\Lambda^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi^{*}}\right]^{V} =\\ \left[\Lambda^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi^{**}}\right]^{V}$ if and only if $sup_{r,s\geq 1}\frac{\varphi_{rs}^{*}}{\varphi_{rs}^{**}}< \infty, sup_{r,s\geq1}\frac{\varphi_{rs}^{**}}{\varphi_{rs}^{*}}> \infty.$ \\\textbf{Proof: } It is easy to prove so we omit. \subsection{Proposition} The sequence space $\left[\chi^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}$ is not solid \\\textbf{Proof:} The result follows from the following example. \\\textbf{Example:} Consider \\$x=\left(x_{mn}\right)=\begin{pmatrix} 1 & 1 & . . . & 1 \\ 1 & 1 & . . . & 1 \\ . & \\ . & \\ . & \\ 1 & 1 & . . . & 1 \end{pmatrix}\in \left[\chi^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}.$ Let \\\\$\alpha_{mn}=\begin{pmatrix} -1^{m+n} & -1^{m+n} & . . . & -1^{m+n} \\ -1^{m+n} & -1^{m+n} & . . . & -1^{m+n} \\ . & \\ . & \\ . & \\ -1^{m+n} & -1^{m+n} & . . . & -1^{m+n} \end{pmatrix},$ for all $m,n\in \mathbb{N}.$ \\\\Then $\alpha_{mn} x_{mn}\notin \left[\chi^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}.$ Hence \\ $\left[\chi^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}$ is not solid. \subsection{Proposition} The sequence space $\left[\chi^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}$ is not monotone \\\textbf{Proof:} The proof follows from Proposition 3.12. \\\indent A sequence $x=\left(x_{mn}\right)$ is said to be $\varphi-$ statistically convergent or $s_{\varphi}-$ statistically convergent to 0 if for every $\epsilon >0,$ \begin{center} $lim_{rs}\left|\left\{u_{mn}\left[f_{mn}\left(\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}\right)\right]^{q_{mn}}\right|\geq \epsilon \right\}=0$ \end{center} where the vertical bars indicates the number of elements in the enclosed set. In this case we write $s_{\varphi}-limx=0$ or $x_{mn}\rightarrow 0\left(s_{\varphi}\right)$ and $s_{\varphi}=\left\{x:\exists 0\in \mathbb{R}:s_{\varphi}-lim x=0 \right\}.$ \subsection{Proposition} For any sequence of Musielak functions $f=\left(f_{mn}\right)$ and $q=\left(q_{mn}\right)$ be double analytic sequence of strictly positive real numbers. Then \\$\left[\chi^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}\subset \\\left[s^{2qu}_{\varphi f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}.$ \\\textbf{Proof:}Let $x\in \left[\chi^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}$ and $\epsilon>0.$ Then \\$u_{mn}\left[f_{mn}\left(\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}\right)\right]^{q_{mn}}\geq \\\left|\left\{u_{mn}\left[f_{mn}\left(\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}\right)\right]^{q_{mn}}\right|\geq \epsilon \right\}$ \\from which it follows that $x\in \left[s^{2qu}_{\varphi f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}.$ \\\indent To show that $\left[s^{2qu}_{\varphi f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}$ strictly contain \\$\left[\chi^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}.$ We define $x=\left(x_{mn}\right)$ by $\left(x_{mn}\right)=mn$ if $rs-\left[\sqrt{\varphi_{rs}}\right]+\leq mn\leq rs$ and $\left(x_{mn}\right)=0$ otherwise. Then \\$x\notin \left[\Lambda^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}$ and for every $\epsilon \left(0<\epsilon\leq 1\right),$ \begin{center} $\left|\left\{u_{mn}\left[f_{mn}\left(\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}\right)\right]^{q_{mn}}\right|\geq \epsilon \right\}=\frac{\left[\sqrt{\varphi_{rs}}\right]}{\varphi_{rs}}\rightarrow 0$ as $r,s\rightarrow \infty$ \end{center} i.e $x\rightarrow 0\left(\left[s^{2qu}_{\varphi f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}\right),$ where $\left[\right]$ denotes the greatest integer function. On the other hand, \begin{center} $u_{mn}\left[f_{mn}\left(\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}\right)\right]^{q_{mn}}\rightarrow \infty$ as $r,s\rightarrow \infty$ \end{center} i.e $x_{mn}\not\rightarrow 0\left[\chi^{2qu}_{f\mu},\left\|\mu_{mn}\left(x\right),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right]^{V}.$ This completes the proof. \\\\\textbf{Competing Interests: } Authors have declared that no competing interests exist. \begin{thebibliography}{1} \bibitem{Basarir}{M.Basarir} and {O.Solancan}, { On some double sequence spaces}, \textit{J. Indian Acad. Math.}, \textbf{21(2)} (1999), ~193-200. \bibitem{Bromwich}{T.J.I'A.Bromwich}, { An introduction to the theory of infinite series} \textit{Macmillan and Co.Ltd. },{New York}, \textbf (1965). \bibitem{Hardy}{G.H.Hardy}, { On the convergence of certain multiple series}, \textit{Proc. Camb. Phil. Soc.}, \textbf{19} (1917), ~86-95. \bibitem{Krasnoselskii}{M.A.Krasnoselskii} and {Y.B.Rutickii}, {Convex functions and Orlicz spaces}, \textit{Gorningen, Netherlands}, \textbf{1961}. \bibitem{Lindenstrauss}{J.Lindenstrauss} and {L.Tzafriri}, {On Orlicz sequence spaces}, \textit{Israel J. Math.}, \textbf{10} (1971), ~379-390. \bibitem{Maddox}{I.J.Maddox}, {Sequence spaces defined by a modulus}, \textit{Math. Proc. Cambridge Philos. Soc}, \textbf{100(1)} (1986), ~161-166. \bibitem{Moricz}{F.Moricz}, { Extentions of the spaces $c$ and $c_{0}$ from single to double sequences}, \textit{Acta. Math. Hung.}, \textbf{57(1-2)}, (1991), ~129-136. \bibitem{Moricz} {F.Moricz} and {B.E.Rhoades}, { Almost convergence of double sequences and strong regularity of summability matrices}, \textit{Math. Proc. Camb. Phil. Soc.}, \textbf{104}, (1988), ~283-294. \bibitem{Nakano} {H.Nakano}, {Concave modulars}, \textit{J. Math. Soc. Japan}, \textbf{5}(1953), ~29-49. \bibitem{Ruckle}{W.H.Ruckle}, {FK spaces in which the sequence of coordinate vectors is bounded}, \textit{Canad. J. Math.}, \textbf{25}(1973), ~973-978. \bibitem{Tripathy} {B.C.Tripathy}, { On statistically convergent double sequences}, \textit{Tamkang J. Math.}, \textbf{34(3)}, (2003), ~231-237. \bibitem{Turkmenoglu}{A.Turkmenoglu}, { Matrix transformation between some classes of double sequences}, \textit{J. Inst. Math. Comp. Sci. Math. Ser.}, \textbf{12(1)}, (1999), ~23-31. \bibitem{Kamthan}{P.K.Kamthan} and {M.Gupta}, {Sequence spaces and series, Lecture notes, Pure and Applied Mathematics}, \textit{65 Marcel Dekker, In c., New York} , \textbf 1981. \bibitem{Gokhan} {A.G$\ddot{o}$khan} and {R.$\c{C}$olak}, {The double sequence spaces $c_{2}^{P}\left(p\right)$ and $c_{2}^{PB}\left(p\right)$}, \textit{Appl. Math. Comput.}, \textbf{157(2)}, (2004), ~491-501. \bibitem{Gokhan} {A.G$\ddot{o}$khan} and {R.$\c{C}$olak}, {Double sequence spaces $\ell_{2}^{\infty}$}, \textit{ibid.}, \textbf{160(1)}, (2005), ~147-153. \bibitem{Zeltser}{M.Zeltser}, {Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25}, \textit{Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu}, \textbf{2001}. \bibitem{Mursaleen}{M.Mursaleen} and {O.H.H. Edely}, {Statistical convergence of double sequences}, \textit{J. Math. Anal. Appl.}, \textbf{288(1)}, (2003), ~223-231. \bibitem{Mursaleen}{M.Mursaleen}, {Almost strongly regular matrices and a core theorem for double sequences}, \textit{J. Math. Anal. Appl.}, \textbf{293(2)}, (2004), ~523-531. \bibitem{Mursaleen}{M.Mursaleen} and {O.H.H. Edely},{Almost convergence and a core theorem for double sequences}, \textit{J. Math. Anal. Appl.}, \textbf{293(2)}, (2004), ~532-540. \bibitem{Altay}{B.Altay} and {F.Ba$\c{S}$ar}, {Some new spaces of double sequences}, \textit{J. Math. Anal. Appl.}, \textbf{309(1)}, (2005), ~70-90. \bibitem{Basar}{F.Ba$\c{S}$ar} and {Y.Sever}, {The space $\mathcal{L}_{p}$ of double sequences}, \textit{Math. J. Okayama Univ}, \textbf{51}, (2009), ~149-157. \bibitem{Subramanian}{N.Subramanian} and {U.K.Misra}, {The semi normed space defined by a double gai sequence of modulus function}, \textit{Fasciculi Math.}, \textbf{46}, (2010). \bibitem{Cannor}{J.Cannor}, {On strong matrix summability with respect to a modulus and statistical convergence}, \textit{Canad. Math. Bull.}, \textbf{32(2)}, (1989), ~194-198. \bibitem{Pringsheim}{A.Pringsheim}, {Zurtheorie derzweifach unendlichen zahlenfolgen}, \textit{Math. Ann.}, \textbf{53}, (1900), ~289-321. \bibitem{Hamilton}{H.J.Hamilton}, {Transformations of multiple sequences}, \textit{Duke Math. J.}, \textbf{2}, (1936), ~29-60. \bibitem{---------}{----------}, {A Generalization of multiple sequences transformation}, \textit{Duke Math. J.}, \textbf{4}, (1938), ~343-358. \bibitem{---------}{----------}, {Preservation of partial Limits in Multiple sequence transformations}, \textit{Duke Math. J.}, \textbf{4}, (1939), ~293-297. \bibitem{Robison}, {G.M.Robison}, {Divergent double sequences and series}, \textit{Amer. Math. Soc. Trans.}, \textbf{28}, (1926), ~50-73. \bibitem{Goes} {G.Goes} and {S.Goes}. {Sequences of bounded variation and sequences of Fourier coefficients}, \textit{Math. Z.}, \textbf{118}, (1970), ~93-102. \bibitem{Gupta} {M.Gupta} and {S.Pradhan}, {On Certain Type of Modular Sequence space}, \textit{Turk J. Math.}, \textbf{32}, (2008), ~293-303. \bibitem{Woo} {J.Y.T. Woo}, {On Modular Sequence spaces}, \textit{Studia Math.}, \textbf{48}, (1973), ~271-289. \bibitem{Wilansky}{A.Wilansky}, {Summability through Functional Analysis}, \textit{North-Holland Mathematical Studies, North-Holland Publishing, Amsterdam}, \textbf{Vol.85}(1984). \bibitem{Chandra} {P.Chandra} and {B.C.Tripathy}, {On generalized Kothe-Toeplitz duals of some sequence spaces }, \textit{Indian Journal of Pure and Applied Mathematics}, \textbf{33(8)} (2002), ~1301-1306. \bibitem{Tripathy} {B.C.Tripathy} and {S. Mahanta}, {On a class of vector valued sequences associated with multiplier sequences},\textit{Acta Math. Applicata Sinica (Eng. Ser.)}, \textbf{20(3)} (2004), ~487-494. \bibitem{Tripathy} {B.C.Tripathy} and {M.Sen}, {Characterization of some matrix classes involving paranormed sequence spaces}, \textit{Tamkang Journal of Mathematics}, \textbf{37(2)} (2006), ~155-162. \bibitem{Tripathy} {B.C.Tripathy} and {A.J.Dutta}, {On fuzzy real-valued double sequence spaces $_{2}\ell^{p}_{F}$}, \textit{Mathematical and Computer Modelling}, \textbf{46 (9-10)} (2007), ~1294-1299. \bibitem{Tripathy} {B.C.Tripathy} and {B.Sarma}, {Statistically convergent difference double sequence spaces}, \textit{Acta Mathematica Sinica}, \textbf{24(5)} (2008), ~737-742. \bibitem{Tripathy} {B.C.Tripathy} and {B.Sarma}, {Vector valued double sequence spaces defined by Orlicz function}, \textit{Mathematica Slovaca}, \textbf{59(6)} (2009), ~767-776. \bibitem{Tripathy} {B.C.Tripathy} and {A.J.Dutta}, {Bounded variation double sequence space of fuzzy real numbers}, \textit{Computers and Mathematics with Applications}, \textbf{59(2)} (2010), ~1031-1037. \bibitem{Tripathy} {B.C.Tripathy} and {B.Sarma}, {Double sequence spaces of fuzzy numbers defined by Orlicz function}, \textit{Acta Mathematica Scientia}, \textbf{31 B(1)} (2011), ~134-140. \bibitem{Tripathy} {B.C.Tripathy} and {P.Chandra}, {On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function}, \textit{Anal. Theory Appl. }, \textbf{27(1)} (2011), ~21-27. \bibitem{Tripathy} {B.C.Tripathy} and {A.J.Dutta}, {Lacunary bounded variation sequence of fuzzy real numbers}, \textit{Journal in Intelligent and Fuzzy Systems}, \textbf{24(1)} (2013), ~185-189. \end{thebibliography} \end{document}