Quasirecognition by prime graph of $C_{n}(4) $, where $ n\geq17 $ is odd

  • Somayeh Mosavi Sahrekord University Faculty of Mathematical Sciences Department of pure Mathematics
  • Neda Ahanjideh Sahrekord University Faculty of Mathematical Sciences Department of pure Mathematics

Résumé

Let $G$ be a finite group and let $\Gamma(G) $ be the prime graph of $ G$. We assume that $ n\geq 17$ is an odd number. In this paper, we show that if $ \Gamma(G) = \Gamma(C_{n}(4))$, then $ G$ has a unique non-abelian composition factor isomorphic to $C_{n}(4)$. As consequences of our result, $C_{n}(4)$ is quasirecognizable by its spectrum and by prime graph.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Somayeh Mosavi, Sahrekord University Faculty of Mathematical Sciences Department of pure Mathematics
Student in Department of pure Mathematics, Faculty of Mathematical Sciences
Neda Ahanjideh, Sahrekord University Faculty of Mathematical Sciences Department of pure Mathematics
Assistant Prof. in Department of pure Mathematics, Faculty of Mathematical Sciences,
Publiée
2014-02-03
Rubrique
Articles