$\mathcal{I}$ and $\mathcal{I}^{\ast}$ convergence of multiple sequences of fuzzy numbers
Résumé
Recently, the concept of statistical convergence for multiple sequences of fuzzy numbers has been studied by Kumar et al. This motivate us to extend the idea of $\mathcal{I}$-convergence to sequences of fuzzy numbers of multiplicity greater than two.Téléchargements
Références
R. P.Agnew, On summability of multiple sequences, American Journal of Mathematics, 1/4(1934), 62-68.
P. Das, P. Kastyrko, W. Wilczyn'ski and P.Malik, I and I ∗ -convergence of double sequences, Math. Slovaca, 58 (2008), 605-620.
H. Fast, Surla convergence statistique, colloq. Math., 2(1951), 241 - 244.
J. A. Fridy, On statistical convergence, Analysis, 5(1985), No. 4, 301 - 313.
P. Kastyrko, W.Wilczyn'ski and T.Salát, ˘ I-convergence, Real Analysis Exchange, 26(2)(2000), 669-686.
J. S. Kwon, On statistical and p-Cesaro convergence of fuzzy numbers. Korean J. Comput. Appl. Math., 7( 2000), 195-203.
F. Móricz, Some remarks on the notion of regular convergence of multiple series, Acta Mathematica Hungarica, 41(1-2)(1983), 161-168.
F. Móricz, Statistical convergence of multiple sequences. Arch. Math., 81(2003), 82 - 89.
M. Mursaleen and S.A.Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 41(2009), 2414-2421.
M. Mursaleen, S. A. Mohiuddine and O.H.H.Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comp. Math. Appl., 59(2010), 603-611.
M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(64)(4)(2010), 359-371.
M. Mursaleen and A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca, 61(6)(2011), 933-940.
M. Mursaleen and S .A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(2012), 49-62.
F. Nuray and E. Savas, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, 45(1995), 269-273.
F. Nuray, Lacunary statistical convergence of sequences of fuzzy numbers, Fuzzy Sets Syst., 99(3)(1998), 353-355.
V. Kumar, I and I∗ -convergence of double sequences, Math. Communi., 12(2007), 171-181.
V. Kumar, On the ideal convergence of sequences of fuzzy numbers, Inform. Sci., 178(2008), 4670-4678.
P. Kumar, V. Kumar and S.S. Bhatia, Multiple sequences of fuzzy numbers and their statistical convergence, Mathematical Sciences, 2012 6:2.
T. Salát, On statistically convergent sequences of real numbe ˘ rs, Math. Slovaca, 30(1980), 139-150.
E. Savaş, On statistically convergent sequences of fuzzy numbers, Inform. Sci., 137(4)(2001), 277-282.
E. Savaş and M. Mursaleen, On statistical convergent double sequences of fuzzy numbers, Inform. Sci., 162(2004), 183-192.
E. Savaş and R. F. Patterson, Lacunary statistical convergence of multiple sequences, Applied Mathematics Letters, 19(6)(2006), 527-534.
E. Savaş, Some double lacunary I-convergent sequence spaces of fuzzy numbers defined by Orlicz function, Journal of Intelligent and Fuzzy Systems, 23(5)(2012), 249-257.
I. J.Schoenberg, The integrability of certain functions and related summability methods, American Mathematical Monthly, 66(1951), 361-375.
B. Tripathy and B. C. Tripathy, On I-Convergence of double sequences, Soochow Journal of Mathematics, 31(2005), 549-560.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).