\documentclass[reqno]{amsart} \usepackage{hyperref} \begin{document} \title[ Existence and multiplicity results...] {Existence and multiplicity results for elliptic problems with Nonlinear Boundary Conditions and variable exponents} \author[A. Zerouali, B. Karim, O. Chakrone and A. Anane ] {A. Zerouali, B. Karim, O. Chakrone and A. Anane} % in alphabetical order \address{A. Zerouali \newline Centre R\'egional des M\'etiers de l'\'{E}ducation et de la Formation, F\`es, Maroc} \email{abdellahzerouali@yahoo.fr} \address{B. Karim\newline Universit\'e Moulay Isma\"{\i}l, Facult\'e des Sciences et T\'echniques, Arrachidia, Maroc} \email{karembelf@gmail.com} \address{O. Chakrone and A. Anane \newline Universit\'e Mohamed Premier, Facult\'e des Sciences, Oujda, Maroc} \email{chakrone@yahoo.fr; ananeomar@yahoo.fr} \thanks{Submitted XX. Published XX.} \subjclass[2000]{35J48, 35J65, 35J60, 47J30, 58E05} \keywords{Variable exponents; Elliptic problem; Nonlinear boundary conditions;\hfill\break\indent Multiple solutions; Three critical points theorem; Variational methods} \begin{abstract} By applaying the Ricceri's three critical points theorem, we show the existence of at least three solutions to the following elleptic problem: \begin{equation*} \begin{gathered} -div[a(x, \nabla u)]+|u|^{p(x)-2}u=\lambda f(x,u), \quad \text{in }\Omega, \\ a(x, \nabla u).\nu=\mu g(x,u), \quad \text{on } \partial\Omega, \end{gathered} \end{equation*} where $\lambda$, $\mu \in \mathbb{R}^{+},$ $\Omega\subset\mathbb{R}^N(N \geq 2)$ is a bounded domain of smooth boundary $\partial\Omega$ and $\nu$ is the outward normal vector on $\partial\Omega$. $p: \overline{\Omega} \mapsto \mathbb{R}$, $a: \overline{\Omega}\times \mathbb{R}^{N} \mapsto \mathbb{R}^{N},$ $f: \Omega\times\mathbb{R} \mapsto \mathbb{R}$ and $g:\partial\Omega\times\mathbb{R} \mapsto \mathbb{R}$ are fulfilling appropriate conditions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and main result} In this article, we consider the elliptic problem with nonlinear boundary conditions and variable exponents \begin{equation}\label{p1} \begin{gathered} -div[a(x, \nabla u)]+|u|^{p(x)-2}u=\lambda f(x,u), \quad \text{in }\Omega, \\ a(x, \nabla u).\nu=\mu g(x,u), \quad \text{on } \partial\Omega, \end{gathered} \end{equation} where $\lambda$, $\mu\in [0,\infty)$, $\Omega\subset\mathbb{R}^N(N \geq 2)$ is a bounded domain with smooth boundary $\partial\Omega$ and $\nu$ is the outward normal vector on $\partial\Omega$. $f: \Omega\times\mathbb{R} \mapsto \mathbb{R}$ and $g:\partial\Omega\times\mathbb{R} \mapsto \mathbb{R}$ are two Carath\'{e}odory functions. %Next, let %$F(x,u)=\int_0^uf(x,s)ds$ and $G(x,u)=\int_0^ug(x,s)ds$. $p\in C(\overline{\Omega})$ is the variable exponent.\\ Throughout this paper, we denote $$p^- = \min_{x\in \overline{\Omega }} p(x);~~~~p^+ =\max_{x\in\overline{\Omega}}p(x);$$ $$ p^{*}(x)=\left\{% \begin{array}{ll} Np(x)/[N-p(x)] & \hbox{ if } p(x)0$ such that the function $a$ satisfies the growth condition\\ $|a(x, s)|\leq c(1+|s|^{p(x)-1})$ for a.e. $x\in\overline{\Omega}$ and all $s\in\mathbb{R}^{N},$ where $|.|$ denotes the Euclidean norm. \item[$(H_{4})$] The monotonicity condition $0\leq [a(x, s_{1})-a(x, s_{2})](s_{1}-s_{2})$ holds for a.e. $x\in\overline{\Omega}$ and all $s_{1}$, $s_{2}\in\mathbb{R}^{N}.$ With equality if and only if $s_{1}=s_{2}.$ \item[$(H_{5})$] The inequalities $|s|^{p(x)}\leq a(x, s)s\leq p(x)A(x, s)$ hold for a.e. $x\in\overline{\Omega}$ and all $s\in\mathbb{R}^{N}.$ \end{itemize} A first remark is that hypothesis $(H_{0})$ is only needed to obtain the multiplicity of solutions. As in \cite{Boureanu2013}, we have decided to use this kind of function $a$ satisfying $(H_{0})$--$(H_{5})$ because we want to assure a high degree of generality to our work. Here we invoke the fact that, with appropriate choices of $a$, we can obtain many types of operators. We give, in the following, two examples of well known operators which are present in lots of papers. \textbf{Examples:} \begin{enumerate} \item If $a(x, s)=|s|^{p(x)-2}s,$ we have $A(x, s)=\frac{1}{p(x)}|s|^{p(x)}.$ \\$(H_{0})$--$(H_{5})$ are verified, and we arrive to the $p(x)$-Laplace operator\\ $div(a(x,\nabla u))= div(|\nabla u|^{p(x)-2}\nabla u)=\triangle_{p(x)}u.$ \item If $a(x, s)= (1+|s|^{2})^{(p(x)-2)/2}s,$ we have $A(x, s)=\frac{1}{p(x)}[(1+|s|^{2})^{p(x)/^{2}}-1].$ \\$(H_{0})$--$(H_{5})$ are verified, and we find a generalized mean curvature operator\\ $div(a(x,\nabla u))= div((1+|\nabla u|^{2})^{(p(x)-2)/2}\nabla u).$ \end{enumerate} The energy functional corresponding to problem \eqref{p1} is defined on $W^{1, p(x)}(\Omega)$ as \begin{equation}\label{erfuc} H(u)=\Phi(u)+\lambda\Psi(u)+\mu J(u), \end{equation} where \begin{gather}\label{phi} \Phi(u)=\int_{\Omega} A(x, \nabla u)dx+ \int_{\Omega}\frac{1}{p(x)}| u| ^{p(x)}dx,\\ \label{psi} \Psi(u)=-\int_{\Omega}F(x,u)dx, \\ \label{:J} J(u)=-\int_{\partial\Omega}G(x,u)d\sigma, \end{gather} where $F(x,u)=\int_{0}^{u}f(x, s)ds,$ $G(x,u)=\int_{0}^{u}g(x, s)ds,$ and $d\sigma$ is the $N-1$ dimensional Hausdorff measure. Let us recall that a weak solution of \eqref{p1} is any $u\in W^{1, p(x)}(\Omega)$ such that \[ \begin{aligned} & \int_{\Omega }a(x, \nabla u)\nabla v dx+ \int_{\Omega }| u| ^{p(x)-2}uv dx\\ & =\lambda\int_{\Omega}f(x,u)vdx+\mu\int_{\partial\Omega}g(x,u)vd\sigma \quad \text{for all } v\in W^{1, p(x)}(\Omega). \end{aligned} \] The study of differential and partial differential equation with variable exponent has been received considerable attention in recent years. This importance reflects directly into a various range of applications. There are applications concerning elastic materials \cite{Zhikov1986}, image restoration \cite{Chen2006}, thermorheological and electrorheological fluids \cite{ Antontsev2006, Ruzicka2002} and mathematical biology \cite{Fragnelli2010}. Ricceri's three critical points theorem is a powerful tool to study boundary problem of differential equation (see, for example, \cite{Afrouzi2007,Bonanno2003a,Bonanno2003,Bonanno2011}). Particularly, Mihailescu \cite{Mihuailescu2007} use three critical points theorem of Ricceri \cite{Ricceri2000} study a particular $p(x)$-Laplacian equation. He proved existence of three solutions for the problem. Liu \cite{Liu2008} study the solutions of the general $p(x)$-Laplacian equations with Neumann or Dirichlet boundary condition on a bounded domain, and obtain three solutions under appropriate hypotheses. Shi \cite{Shi2009} generalizes the corresponding result of \cite{Mihuailescu2007}. The multiple solutions of $p(x)$-biharmonic equation under sublinear condition has been studied in \cite{Li2013} by L. Li, L. Ding and W.W. Pan. To our knowledge, there is no result of multiple solutions of elliptic problems with nonlinear boundary conditions and variable exponents. We enumerate the hypotheses concerning the functions $f,$ $F$ and $g$. \begin{itemize} \item[(I1)] For $t \in C(\overline{\Omega})$ and $t(x) 0$ for a.e. $x\in\Omega$ and all $s\in ]0,c_{1}]$; \item[(I3)] there exist $p_1(x)\in C(\overline{\Omega})$ and $p^+0$ which satisfies, for each $\mu\in[0,\delta]$, the problem \eqref{p1} has at least three weak solutions whose norms in $W^{1, p(x)}(\Omega)$ are less than $\omega$. \end{theorem} \section{Preliminaries} \hspace{0.4 cm} We first recall some basic facts about the variable exponent Lebesgue-Sobolev.\\ For $p\in C_{+}(\bar{\Omega}),$ we introduce the variable exponent Lebesgue space $$L^{p(x)}(\Omega):=\left\{u; u:\Omega\rightarrow \mathbb{R} \mbox{ is a measurable and } \int_{\Omega}|u|^{p(x)}dx < +\infty\right\},$$ endowed with the Luxemburg norm $$ |u|_{p(x)}:= \inf\left\{\alpha>0; \int_{\Omega}\left|\frac{u(x)}{\alpha}\right|^{p(x)}dx\leq 1 \right\},$$ which is separable and reflexive Banach space (see \cite{KR}).\\ Let us define the space $$ W^{1, p(x)}(\Omega):= \{u\in L^{p(x)}(\Omega); |\nabla u|\in L^{p(x)}(\Omega)\},$$ equipped with the norm $$ \|u\|= \inf\left\{\alpha>0; \int_{\Omega} \left(\left|\frac{\nabla u(x)}{\alpha}\right|^{p(x)}+ \left|\frac{u(x)}{\alpha}\right|^{p(x)}\right)dx\leq 1 \right\};~~~~\forall u\in W^{1, p(x)}(\Omega).$$ Let $W^{1, p(x)}_{0}(\Omega)$ be the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p(x)}(\Omega).$ \begin{proposition}\cite{F, FZ, HKV, KR}\label{P1} \begin{itemize} \item[(1)]$W^{1, p(x)}_{0}(\Omega)$ is separable reflexive Banach space; \item[(2)] If $q \in C_{+}(\bar{\Omega})$ and $q(x)0$, such that $$|u|_{p(x)}\leq C|\nabla u|_{p(x)}~~~~\forall u \in W^{1, p(x)}_{0}(\Omega).$$ \end{itemize} \end{proposition} An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the mapping $\rho$ defined by $$\rho(u):=\int_{\Omega}\left[|\nabla u|^{p(x)}+|u|^{p(x)}\right]dx,~~~~\forall u\in W^{1, p(x)}(\Omega).$$ \begin{proposition} \cite{FH} \label{P2} For $u, u_{k}\in W^{1, p(x)}(\Omega); k=1,2,...,$ we have \begin{itemize} \item[(1)] $\|u\|\geq1$ if and only if $\|u\|^{p^{-}}\leq \rho(u)\leq\|u\|^{p^{+}};$ \item[(2)] $\|u\|\leq1$ if and only if $\|u\|^{p^{-}}\geq \rho(u)\geq\|u\|^{p^{+}};$ \item[(3)] $\|u_{k}\| \rightarrow 0$ as $k\rightarrow +\infty$ if and only if $\rho(u_{k})\rightarrow 0$ as $k\rightarrow +\infty$; \item[(4)] $\|u_{k}\| \rightarrow +\infty$ as $k\rightarrow +\infty$ if and only if $\rho(u_{k})\rightarrow +\infty$ as $k\rightarrow +\infty$. \end{itemize} \end{proposition} In the sequel, we recall the revised form of Ricceri's three critical points theorem \cite[Theorem 1]{Ricceri2009} and \cite[Proposition 3.1]{Ricceri2000a}. \begin{theorem}[{\cite[Theorem 1]{Ricceri2009}}] \label{thm:ricceri} Let $X$ be a reflexive real Banach space. $ \Phi\colon X \to \mathbb{R} $ is a continuously G\^{a}teaux differentiable and sequentially weakly lower semicontinuous functional whose G\^{a}teaux derivative admits a continuous inverse on $ X',$ where $X'$ is the dual of $X,$ and $\Phi$ is bounded on each bounded subset of $X$; $\Psi\colon X \to \mathbb{R} $ is a continuously G\^{a}teaux differentiable functional whose G\^{a}teaux derivative is compact; $ I \subseteq \mathbb{R} $ an interval. Assume that \begin{equation}\label{qiangzhi} \lim_{\|x\| \to +\infty } (\Phi(x)+\lambda \Psi (x))=+\infty \end{equation} for all $ \lambda \in I $, and that there exists $h\in \mathbb{R}$ such that \begin{equation}\label{t2} \sup_{\lambda \in I} \inf_{x \in X} (\Phi (x)+ \lambda (\Psi (x)+h)) < \inf_{x \in X} \sup_{\lambda \in I} (\Phi (x)+ \lambda (\Psi (x)+ h)). \end{equation} Then, there exists an open interval $ \Lambda \subseteq I $ and a positive real number $ \rho $ with the following property: for every $ \lambda \in \Lambda $ and every $ C^1 $ functional $ J\colon X \mapsto \mathbb{R} $ with compact derivative, there exists $ \delta > 0 $ such that, for each $ \mu \in [0,\delta] $ the equation \[ \Phi '(x)+\lambda \Psi '(x)+\mu J'(x)=0 \] has at least three solutions in $X$ whose norms are less than $ \omega$. \end{theorem} \begin{proposition}[{\cite[Proposition 3.1]{Ricceri2000a}}] \label{propo} Let $X$ be a non-empty set and $\Phi, \Psi$ two real functions on $X$. Assume that there are $r > 0$ and $ x_0, x_1 \in X$ such that \[ \Phi(x_0)=-\Psi(x_0)=0, \quad \Phi(x_1)>r, \quad \sup_{ x \in \Phi^{-1} ( ]-\infty ,r ] ) } -\Psi(x) < r \frac{-\Psi(x_1)}{\Phi(x_1)}. \] Then, for each $ h $ satisfying \[ \sup_{ x \in \Phi^{-1} ( ]-\infty ,r ] ) } -\Psi(x) < h < r \frac{-\Psi(x_1)}{\Phi(x_1)}, \] one has \[ \sup_{\lambda \geq 0} \inf_{x \in X}(\Phi(x)+\lambda(h +\Psi(x))) < \inf_{x\in X} \sup_{\lambda \geq 0} (\Phi(x)+\lambda(h +\Psi(x))). \] \end{proposition} In our work, we designate by $X$ the Sobolev space with variable exponent $W^{1, p(x)}(\Omega).$ \section{Proof of main result} Its clear that from $(H_{1})$, the Fr\'{e}chet derivative of $\Phi$ is the operator $ \Phi'\colon X \rightarrow X'$ defined as $$\langle \Phi'(u), v\rangle = \int_{\Omega }a(x, \nabla u)\nabla v dx+ \int_{\Omega }| u| ^{p(x)-2}uv dx \mbox{ for any } u, v\in X.$$ We start by proving some properties of the operator $\Phi'$. \begin{theorem} \label{thm1.4} Suppose that the mapping $a$ satisfies $(H_{0})$--$(H_{5})$. Then the following statements holds. \begin{itemize} \item[(1)] $\Phi'$ is continuous, bounded and strictly monotone. \item[(2)] $\Phi'$ is of $(S_{+})$ type. \item[(3)] $\Phi'$ is a homeomorphism. \end{itemize} \end{theorem} \begin{proof} (1) Since $\Phi'$ is the Fr\'{e}chet derivative of $\Phi$, it follows that $\Phi'$ is continuous and bounded. Using $(H_{4})$ and the elementary inequalities \cite{Simon1978} \begin{gather*} | x-y| ^{\gamma }\leq 2^{\gamma }( | x| ^{\gamma -2}x-| y| ^{\gamma -2}y) ( x-y) \quad \text{if }\gamma \geq 2, \\ | x-y| ^2\leq \frac{1}{( \gamma -1) }( | x| +| y| ) ^{2-\gamma }( | x| ^{\gamma -2}x-| y| ^{\gamma -2}y) ( x-y) \quad \text{if }1<\gamma <2, \end{gather*} for all $( x,y) \in \mathbb{R}^{N}\times\mathbb{R}^{N}$, we obtain for all $u,v\in X$ such that $u\neq v$, \[ \langle \Phi'(u)-\Phi'(v),u-v\rangle >0, \] which means that $\Phi'$ is strictly monotone. (2) Let $( u_n) _n$ be a sequence of $X$ such that \[ u_n\rightharpoonup u \text{ weakly in }X \text{ as }n \rightarrow +\infty\quad \text{and}\quad \limsup_{ n\to +\infty }\langle \Phi'(u_n),u_n-u\rangle \leq 0. \] Using the compact embedding $W^{1,p(x)}(\Omega)\hookrightarrow L^{p(x)}(\Omega),$ we have $$\lim_{n\to +\infty} \int_{\Omega}(|u_{n}|^{p(x)-2}u_{n}-|u|^{p(x)-2}u)(u_{n}-u)dx =0.$$ Thus $$\limsup_{n\to +\infty} \int_{\Omega}a(x, \nabla u_{n})(\nabla u_{n}-\nabla u)dx \leq 0.$$ The following theorem assure that $u_{n} \rightarrow u$ strongly in $W^{1, p(x)}(\Omega)$ as $n \rightarrow +\infty.$ \begin{theorem} [\cite{Le2009}, Theorem 4.1] The Carath\'eodory function $a\colon \overline{\Omega}\times\mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ described by $(H_{0})$--$(H_{5})$ is an operator of type $(S_{+})$ that is, if $u_{n}\rightharpoonup u$ weakly in $W^{1,p(x)}(\Omega)$ as $n \rightarrow +\infty$ and $$\limsup_{n\to +\infty} \int_{\Omega}a(x, \nabla u_{n})(\nabla u_{n}- \nabla u)dx \leq 0,$$ then $u_{n} \rightarrow u$ strongly in $W^{1, p(x)}(\Omega)$ as $n \rightarrow +\infty.$ \end{theorem} (3) Note that the strict monotonicity of $\Phi'$ implies its injectivity. Moreover, $\Phi'$ is a coercive operator. Indeed, using $(H_{5})$, Proposition\ref{P2} and since $p^{-}-1>0$, for each $u\in X$ such that $\| u\| \geq 1$ we have \[ \frac{\langle \Phi'(u),u\rangle }{\| u\| }=\frac{\int_{\Omega}[a(x,\nabla u)\nabla u + |u|^{p(x)} ]dx}{\| u\| }\geq \| u\| ^{p^{-}-1}\to \infty \quad \text{as } \| u\|\to \infty . \] Consequently, the operator $\Phi'$ is a surjection and admits an inverse mapping. It suffices then to show the continuity of $\Phi'^{-1}$. Let $(f_n)_n$ be a sequence of $X'$ such that $f_n\to f$ in $X'$ as $n \rightarrow +\infty$. Let $u_n$ and $u$ in $X$ such that \[ \Phi'^{-1}( f_n) =u_n\quad \text{and}\quad \Phi'^{-1}( f) =u. \] By the coercivity of $\Phi'$, one deducts that the sequence $( u_n)$ is bounded in the reflexive space $X$. For a subsequence, we have $u_n\rightharpoonup \widehat{u}$ weakly in $X$ as $n \rightarrow +\infty$, which implies \[ \lim_{n\to +\infty } \langle \Phi'(u_n)-\Phi'(u),u_n- \widehat{u}\rangle =\lim_{n\to +\infty }\langle f_n-f,u_n-\widehat{u}\rangle =0. \] It follows by the property $(S_{+})$ and the continuity of $\Phi'$ that \[ u_n\to \widehat{u}\quad \text{ strongly in } X\quad \text{and}\quad \Phi'(u_n)\to \Phi'(\widehat{u})=\Phi'(u)\quad \text{in } X' \text{ as } n \rightarrow +\infty. \] Moreover, since $\Phi'$ is an injection, we conclude that $u=\widehat{u}$. \end{proof} Now we can give the proof of our main result. \begin{proof}[Proof of Theorem \ref{thm}] Set $\Phi(u)$, $\Psi(u)$ and $J(u)$ as \eqref{phi}, \eqref{psi} and \eqref{:J}. So, for each $u$, $v\in X$, one has \begin{gather*} \langle\Phi '(u),v\rangle =\int_{\Omega}[a(x, \nabla u)\nabla v + | u|^{p(x)-2}uv]dx, \\ \langle\Psi '(u),v\rangle =-\int_{\Omega}f(x,u)v\,dx, \\ \langle J'(u),v\rangle =-\int_{\partial\Omega}g(x,u)v\,d\sigma. \end{gather*} From Theorem \ref{thm1.4}, the functional $\Phi$ is a continuous G\^{a}teaux differentiable and sequentially weakly lower semicontinuous functional whose G\^{a}teaux derivative admits a continuous inverse on $X'$. By (I1) and (I5), $\Psi$ and $J$ are continuously G\^{a}teaux differentiable functionals. Moreover, using the compacity of embedding $W^{1,p(x)}(\Omega)\hookrightarrow L^{p(x)}(\Omega)$ and the trace embedding $W^{1,p(x)}(\Omega)\hookrightarrow L^{p(x)}(\partial\Omega)$ (Proposition \ref{P1}), we deduce that $\Psi'$ and $J'$ are compact. Obviously, $\Phi$ is bounded on each bounded subset of $X$ under our assumptions.\\ From $(H_{5})$, if $\|u\|\geq 1$ then \begin{align*}\label{eq:3.1} \Phi(u)&=\int_{\Omega} A(x, \nabla u)dx+ \int_{\Omega}\frac{1}{p(x)}| u| ^{p(x)}dx\\& \geq \int_{\Omega}\frac{1}{p(x)}(|\nabla u|^{p(x)}+ |u| ^{p(x)}) dx\\&\geq \frac{1}{p^{+}}\rho(u)\\& \geq\frac{1}{p^{+}}\|u\|^{p^{-}}, \end{align*} Meanwhile, for each $\lambda\in\Lambda$, \begin{align*} \lambda\Psi(u) & =-\lambda\int_{\Omega}F(x,u)dx\\ & \geq -\lambda\int_{\Omega}c_{2}(1+|u|^{\gamma(x)})dx\\ & \geq -\lambda c_{2}(|\Omega|+\|u\|_{\gamma(x)}^{\gamma^+})\\ & \geq -c'_2(1+\|u\|_{\gamma(x)}^{\gamma^+})\\ & \geq -c''_2(1+\|u\|^{\gamma^+}) \end{align*} for any $u\in X$, where $c'_2$ and $c''_2$ are positive constants and $\|.\|_{\gamma(x)}$ is the usual norm of $W^{1,\gamma(x)}(\Omega)$. Combining the two inequalities above, we obtain \[ \Phi(u)+\lambda\Psi(u)\geq \frac{1}{p^+}\|u\|^{p^-}-c''_2(1+\|u\|^{\gamma^+}), \] since $\gamma^+0$, such that \[ F(x,s)p^+$, it follows that \begin{equation}\label{eq:lim} \lim_{r\to 0^+}\frac{\sup_{\|u\|^{p^+}/p^+\leq r}-\Psi(u)}{r}=0. \end{equation} Let $u_1 \in C^1(\Omega)$ be a function positive in $\Omega$, with $\max_{\overline{\Omega}} u_1 \leq c_{1}$. Then, $u_1 \in X$ and $\Phi(u_1) > 0$. In view of $(I2)$ we also have $-\Psi(u_1) = \int_{\Omega} F(x,u_1(x)) dx > 0$. Therefore, from \eqref{eq:lim}, we can find $r \in \big( 0, \min\{ \Phi(u_1), \frac{1}{p^+} \} \big)$ such that \begin{equation*} \sup_{\|u\|^{p^+}/p^+ \leq r} (-\Psi(u)) < r\frac{-\Psi(u_1)}{\Phi(u_1)}. \end{equation*} Now, let $u \in \Phi^{-1} ((-\infty, r])$. Then, $\int_{\Omega} (p(x)A(x, \nabla u)+ |u|^{p(x)} ) dx \leq rp^+ <1$ which, by Proposition \ref{P2}, implies $\|u\|<1$. Consequently, \begin{equation*} \frac{1}{p^+}\|u\|^{p^+} \leq \frac{1}{p^{+}}\rho(u)\leq \int_{\Omega} (p(x)A(x, \nabla u)+ |u|^{p(x)} ) dx < r. \end{equation*} Therefore, we infer that $\Phi^{-1} ((-\infty, r]) \subset \left\{ u \in X : \frac{1}{p^+}\|u\|^{p^+} < r \right\}$, and so \begin{equation*} \sup_{ u \in \Phi^{-1} ( ]-\infty ,r ] ) }(-\Psi(u)) < r \frac{-\Psi(u_1)}{\Phi(u_1)}. \end{equation*} At this point, conclusion follows from Proposition \ref{propo} and Theorem \ref{thm:ricceri}. \end{proof} \begin{thebibliography}{99} \bibitem{Afrouzi2007} G. A. Afrouzi, S. Heidarkhani; Three solutions for a Dirichlet boundary value problem involving the $p$-Laplacian, \textit{Nonlinear Anal.}, {\bf 66} (2007), pp. 2281--2288. \bibitem{Antontsev2006} S. N. Antontsev, J. F. Rodrigues; On stationary thermorheological viscous flows, \textit{Ann. Univ. Ferrara Sez. VII Sci. Mat.}, 52 (2006), pp. 19--36. \bibitem{Bonanno2003a} G. Bonanno, P. Candito; Three solutions to a Neumann problem for elliptic equations involving the $p$-Laplacian, \textit{Arch. Math. (Basel)}, {\bf 80} (2003), pp. 424--429. \bibitem{Bonanno2003} G. Bonanno, R. Livrea; Multiplicity theorems for the Dirichlet problem involving the $p$-Laplacian, \textit{Nonlinear Anal.}, {\bf 54} (2003), pp. 1--7. \bibitem{Bonanno2011} G. Bonanno, G. Molica Bisci, V. R{\u{a}}dulescu; Multiple solutions of generalized Yamabe equations on Riemannian manifolds and applications to Emden-Fowler problems, \textit{Nonlinear Anal. Real World Appl.}, {\bf12}, (2011), pp. 2656--2665. \bibitem{Boureanu2013} M. M. Boureanu, D. N. Udrea; Existence and multiplicity results for elliptic problems with $p(.)$-Growth conditions, \textit{Nonlinear Anal. Real World Appl.}, {\bf14}, (2013), pp. 1829--1844. \bibitem{Chen2006} Y. Chen, S. Levine, R. Ran; Variable exponent , linear growth functionals in image restoration, \textit{SIAMJ. Appl. Math.}, 66 (2006), pp. 1383--1406. \bibitem{F}{X.L. Fan}; Regularity of minimizers of variational integrals with $p(x)$-growth conditions, \textit{Ann. Math. Sinica}, 17A(5)(1996), pp. 557--564. \bibitem{FH}{X.L. Fan, X.Y. Han}; Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$, \textit{Nonlinear Anal.}, 59 (2004), pp. 173--188. \bibitem{Fragnelli2010} G. Fragnelli; Positive periodic solutions for a system of anisotropic parabolic equations, \textit{J. Math. anal. Appl.}, 73 (2010), pp. 110--121. \bibitem{FZ}{X.L. Fan, D. Zhao}; On the generalized orlicz-Sobolev space $W^{k,p(x)}(\Omega)$, \textit{J. Gancu Educ. College}, 12(1) (1998), pp. 1--6. \bibitem{HKV}{P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen}; The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, \textit{Potential Anal.}, 25 (2006), no. 3, pp. 205--222. \bibitem{KR}{O.Kov\'{a}cik, J. R\'{a}kosnik}; On spaces $L^{p(x)}$ and $W^{k, p(x)}$, \textit{Czechoslovak Math. J.}, 41(1991), pp. 592--618. \bibitem{Le2009}{V.K. Le}; On a sub-supersolution method for variational inequalities with Leary-Liones operator in variable exponent spaces, \textit{Nonlinear Anal.}, 71(2009) pp. 3305--3321. \bibitem{Li2013} L. Li, L. Ding, W.W. Pan; Existence of multiple solutions for a $p(x)$-biharmonic equation, \textit{Electronic Journal of Differential Equations}, Vol. 2013(2013), No. 139, pp. 1--10. \bibitem{Liu2008} Q. Liu; Existence of three solutions for $p(x)$-Laplacian equations, \textit{Nonlinear Anal.}, {\bf 68} (2008), pp. 2119--2127. \bibitem{Mihuailescu2007} M. Mih\u{a}ilescu; Existence and multiplicity of solutions for a Neumann problem involving the $p(x)$-Laplace operator, \textit{Nonlinear Anal.}, {\bf 67} (2007), 1419--1425. \bibitem{Ricceri2000a} B. Ricceri; Existence of three solutions for a class of elliptic eigenvalue problems, \textit{Math. Comput. Modelling}, {\bf 32} (2000), 1485--1494. \bibitem{Ricceri2000} B. Ricceri; On a three critical points theorem, \textit{Arch. Math. (Basel)}, {\bf 75} (2000), 220--226. \bibitem{Ricceri2009} B. Ricceri; A three critical points theorem revisited, \textit{Nonlinear Anal.}, {\bf 70} (2009), 3084--3089. \bibitem{Ruzicka2002} M. Ruzicka; Electrorheological Fluids: \textit{Modeling and Mathematical Theory}, Springer-verlag, Berlin, 2002. \bibitem{Shi2009} X. Shi, X. Ding; Existence and multiplicity of solutions for a general $p(x)$-Laplacian Neumann problem, \textit{Nonlinear Anal.}, {\bf 70} (2009), 3715--3720. \bibitem{Simon1978} J. Simon; R\'egularit\'e de la solution d'une \'equation non lin\'eaire dans $\mathbb{R}^{N}$, volume {\bf 665} of \textit{Lecture Notes in Math.}, Springer, Berlin, (1978), 205--227. \bibitem{Zang2008} A. Zang, Y. Fu; Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, \textit{Nonlinear Anal.}, {\bf 69} (2008), 3629--3636. \bibitem{Zhikov1986} V. V. Zhikov; Averaging of functionals of the calculus of variations and elasticity theory, \textit{Izv. Akad. Nauk SSSR Ser. Mat.}, {\bf 50} (1986), 675--710. \end{thebibliography} \end{document}