Existence of Renormalized Solutions for p(x)-Parabolic Equation with three unbounded nonlinearities
Abstract
In this article, we study the existence of a renormalized solution for the nonlinear $p(x)$-parabolic problem associated to the equation: $$\frac{\partial b(x,u)}{\partial t} - \mbox{div} (a(x,t,u,\nabla u)) + H(x,t,u,\nabla u) = f - \mbox{div}F \;\mbox{in }\;Q= \Omega\times(0,T)$$with $ f $ $ \in L^{1} (Q),$\; $b(x,u_{0}) \in L^{1} (\Omega)$ and $ F \in (L^{P'(.)}(Q))^{N}. $The main contribution of our work is to prove the existence of a renormalized solution in the Sobolev space with variable exponent. The critical growth condition on $ H(x,t,u,\nabla u)$\; is with respect to$ \nabla u$, no growth with respect to $u$ and no sign condition or the coercivity condition.Downloads
References
A. Aberqi, J. Bennouna, M. Mekour, H. Redwane, Existence results for a nonlinear parabolic problems with lower order terms. Int. Journal of Math. Analysis, Vol.7, 2013, no. 27, 1323-1340.
L. Aharouch, E. Azroul and M. Rhoudaf, Strongly nonlinear variational degenerated parabolic problems in weighted sobolev spaces. The Australian journal of Mathematical cal Analysis and Applications, Vol. 5, Article 13, pp 1-25, 2008.
Y. Akdim, J. Bennouna, M. Mekkour, H. Redwane, Existence of renormalized solutions for parabolic equations without the sign condition and with unbounded nonlinearities.Applicationes Mathematical 39(1), 1-22
Y. Akdim, J. Bennouna, M. Mekkour, Renormalized solutions of nonlinear degenerated parabolic equations with natural growth terms and L1-data. International journal of evolution equations, Volume 5, Number 4, pp. 421-446, 2011.
Y. Akdim, J. Bennouna, M. Mekkour and M. Rhoudaf, Renormalized solution of nonlinear degenerated parabolic problems with L1-data: existence and uniquness. Recent developments is nonlinear analysis, proccedings of the conference in Mathematics and Mathematical physics world scientific publishing C.O Ltd.
Y. Akdim, J. Bennouna, M. Mekkour, Solvability of degenerated Parabolic equations without sign condition and three unbounded nonlinearities Electronic Journal of Differential Equations, Vol. 2011(2011), No. 03, pp. 1-26.
E. Azroul, M. Benboubker, M. Roudaf, Entropy solutionor some p(x)-Quasi linear problem with right-hand side measure. African Diaspora Journal of Mathematics Vol. 13 Number 2, pp 23-44 (2012)
M. Bendahmane, P. Wittbold, A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data J. Differential equations 249(2010)1483-1515 .
D. Blanchard and F. Murat, Renormalized solution of nonlinear parabolic problems with L1-data: existence and uniqueness, proc, Roy, Soc. Edinburgh Sect. A 127(1997) 1137-1152.
D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of renormalized solutions for a fairly general class of nonlinear parabolic Problems, J. Differential equation (177)(2001), 331, 374.
L. Boccardo, D. Giachetti, J.-I. Diaz, F. Murat, Existence and regularity of renormalized solutions of some elliptic problems involving derivatives of nonlinear terms Journal of differential equations 106, pp. 215-237,1993.
R.J. Diperna, P-L. Lions, On the Cauchy problem for the Boltzmann equations : Global existence and weak stability, Ann. of Math. 130, pp. 285-366, 1989.
X.L Fan, D. Zhao, on the spaces Lp(x)(
) and Wm,p(x)(
). J. Math Anal, Appl 263 (2001) 424-446
X.L Fan, D. Zhao, the generalised Orlicz-Sobolev space Wk,p(x)(
) , J. Gansu Educ, College 12(1)( 1998), 1-6
J. L. Lions, Quelques mèthode de rèsolution des problèmes aux limites non linèaires, Dunod, Paris 1969.
J. M. Rakotoson, Resolution of the critical cases for the problems with L1-data asymptotic analysis when right hand side is in L1(
). 6, pp. 285-293, 1993.
J. Simon, Compact sets in the space Lp(0, T,B), Ann. Mat. Pura Appl. 146(1987), 65-96.
O. Kovacik, J. Rakonsik, on space Lp(x)(
) and W1,p(x)(
) czechoslovak Math J. 41(116)(1991)592-618.
A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncation, Ann. Mat. Pura Appl. 177(4)(1999)143-172.
H. Redwane, Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, Adv. Dynam. Systems. Appl. 2 (2007). 241-264.
H. Redwane, Solutions renormalisèes de problèms paraboliques et elliptiques non linèaires, ph. D. thesis, Rouen,1997.
H. Redwane, Existence results for a classe of parabolic equations in Orlicz spaces, Electron. J. Qual. Theory Differential equations 2010, no. 2, 19 pp.
D. Zhao, W, J. Qiang, X. L Fan, On generalised Orlicz-Sobolev spaces Lp(x)(
) J. Gansu Sci 9(2), 1997, 1-7.
C. Zang, S. Zhou Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1-data J. Differential equations 248(2010) 1376-1400.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).