Existence of solution for Dirichlet problem with p(x)-Laplacien

  • Nimoun Moussaoui CRMEF (Centre Régionale des Métiers d’Education et de Formation)
  • L. Elbouyahyaoui CRMEF (Centre Régionale des Métiers d’Education et de Formation)

Résumé

In this paper we study an elliptic equation involving the p(x)-Laplacien operateur, for that equation we prove the existence of a non trivial weak solution. The proof relies on simple variational arguments based on the Mountain-Pass theorem.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory, J. Func. Anal. 14(1973), 349-381.

X. Fan, J.Shen and D. Zhao, Sobolev Embedding Theorems for Spaces Wk,p(x) (Ω), J. Math. Anal. Appl. 262(2001), 749-760.

X. Fan and D. Zhao, on the spaces Lp(x) (Ω) and W m,p(x) (Ω). J.Math. Anal. Appl. 263(2001), 424-446.

X. L.Fan and Q.H.Zhang, Existence of solution for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. 52(2003), 1843-1852.

T. C. Halsey, Electrorheologicalfluids, Science 258(1992), 761-766.

P. S. Ilyas, Dirichlet problem with p(x)-Laplacian. AMS.Math.Reports 10(60),1(2008), p 43-56.

K. Kefi, p(x)-Laplacian with indefinite weight. AMS. V 139, N 12 (2011),p 4351-4360.

M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Roy. Soc. London Ser. A 462(2006), 2625-2641.

M. Magdalena Boureanu, Existence of solution for an elliptic equation involving the p(x)- Lplace operator. E,J,D,E, Vol 2006(2006), N. 97, p. 1-10.

M. Ruzicka, Eletrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.

V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR. Izv. 29(1987), 33-66.

D. Zhao and X. L. Fan, On the Nemytskii operators from L p1(x) (Ω) to L p2(x) (Ω). J. Lanzhou Univ. 34(1998), 1-5.

Publiée
2014-09-22
Rubrique
Articles