\documentclass[twoside]{article} \usepackage{graphics} \usepackage{graphicx} \usepackage{latexsym} \usepackage{amssymb} \usepackage{amsmath} \usepackage{BSPMsample} \usepackage{multirow,natlib,float} %\usepackage {graphicx,natlib,fleqn,geometry,amsthm,amsmath,amsfonts,amssymb,float,bm,multirow} \begin{document} \title[ High Order Variable Mesh Size Exponential Finite Difference Method] {High Order Variable Mesh Size Exponential Finite Difference Method for the Numerical Solutions of Two Point Boundary Value Problems } %\thanks{The project is partially supported by...}} %between [] goes the title that will appear on the top of every %odd page, between {} goes the real title. %\thanks{...} put your grant \author[P. K. Pandey ]{P. K. Pandey } %between [] goes the authors that will appear on the top of every %even page, between {} goes the real author. \address{P. K. Pandey\\Department of Mathematics, \\ Dyal Singh College (Univ. of Delhi), \\ Lodhi Road, New Delhi-110003, India\\ \\ \email:pramod\_10p@hotmail.com \\ } \maketitle \begin{abstract} In this article, we presented a non-uniform mesh size high order exponential finite difference scheme for the numerical solutions of two point boundary value problems with Dirichlet's boundary conditions. Under appropriate conditions, we have discussed the local truncation error and the convergence of the proposed method. Numerical experiments have been carried out to demonstrate the use and high order computational efficiency of the present method in several model problems. Numerical results showed that the proposed method is accurate and convergent. The order of accuracy is at least cubic which is in good agreement with the theoretically established order of the method. \end{abstract} %%put here Key words \keywords Exponential finite difference method, Cubic order, Singular Perturbed Problem, Two-point boundary value problem, High Order Non-uniform Mesh Size Method, Nonlinear Method. \tableofcontents %% put here the subject class \2000mathclass{65L05, 65L12} \section{Introduction}\label{sec1} In this article we considered a method for the numerical solution of the two-point boundary value problems of the form \begin{equation} y''(x)=f(x,y),\quad a1 $}\\ \frac{(b-a)(1-r)}{1-r^N} & \text{if \quad $ r<1 $ } \nonumber \end{cases} \end{equation} where $r=r_i ,\quad \forall\quad i=1,2,....,N $ in computation. The order of the convergence $(O_N)$ of the method (11) is estimated by the formula \begin{equation} (O_N)=\log_m(\frac{MAY_N}{MAY_{mN}}), \nonumber \end{equation} where m can be estimated by considering the ratio of $N's$.\\ We have used Newton-Raphson iteration method to solve the system of nonlinear equations arisen from equation (11) or (12). All computations were performed on a Windows 7 Ultimate operating system in the GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel Core i3-2330M 2.20 Ghz PC. The solutions are computed on \emph{N} nodes and iteration is continued until either the maximum difference between two successive iterates is less than $10^{-10}$ or the number of iteration reached $10^5$. \\ \\ \textbf{Problem 1.} The first model problem is a linear problem \cite{Scott} given by \begin{multline} y''(x)=\frac{-3\epsilon}{(\epsilon+x)^2}y,\quad y(-0.1)=\frac{-0.1}{\sqrt{(\epsilon+0.01)}},\quad y(0.1)=\frac{0.1}{\sqrt{(\epsilon+0.01)}},\\ x\in[-0.1,0.1]. \nonumber \end{multline} The analytical solution is $ y(x)=\frac{x}{\sqrt{(\epsilon+x^2)}}$. The MAY computed by method (11) for different values of \emph{N} and $\epsilon$ are presented in Table 1.\\ \textbf{Problem 2.} The second model problem is a nonlinear problem \begin{equation} \epsilon y''(x)= \frac{3}{2}y^2 ,\quad y(0)=4,\quad y(1)= 1, \quad x\in[0,1]. \nonumber \end{equation} The analytical solution is $y(x)=\frac{4}{(1+\frac{x}{\sqrt(\varepsilon)})^2}$. The MAY computed by method (11) for different values of \emph{N} are presented in Table 2.\\ \textbf{Problem 3.} The third model problem is a linear problem \cite{O'Riordan} given by \begin{equation} \epsilon y''(x)=\frac{4}{(x+1)^4}(1+\sqrt{\epsilon}(x+1))y -f(x),\quad y(0)=2,\quad y(1)=-1,\quad x\in[0,1], \nonumber \end{equation} where $f(x)$ is calculated so that $ y(x)=-\cos(\frac{4\pi x}{x+1})+\frac{3[\exp(\frac{-2\epsilon}{\sqrt{\epsilon}(x+1)})-\exp(\frac{-1}{\sqrt{\epsilon}})]}{1-\exp(\frac{-1}{\sqrt{\epsilon}})}$ is the analytical solution. The MAY computed by method (11)for different values of \emph{N} and $\epsilon$ are presented in Table 3 .\\ \ \begin{table}[H] \caption{Maximum absolute errors (Problem 1).} \vskip.4em \setlength{\tabcolsep}{.10mm} \renewcommand{\arraystretch}{1.25} \begin{tabular}{|c|c|c|} \hline \multirow{2}{*}{} & {} & {Maximum absolute error } \\ \setlength{\tabcolsep}{9.8 mm} ${\,r_1\,}$ & {\,\emph{N}\,}& \begin{tabular}{c c c c c} \hline % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ... ${\epsilon =1.0}$ \quad&\qquad${\epsilon =10^{-4}}$ \qquad \quad&\qquad ${\epsilon =10^{-6}}$ \qquad&\qquad ${\epsilon =10^{-8}}$\qquad &\quad\qquad ${\epsilon =10^{-10}}$ \\ %\hline \end{tabular} \\ \cline {3-3} \hline \multirow{3}{*}{1.01} \setlength{\tabcolsep}{9.8 mm} & \,200 \, & \begin{tabular}{ c c c c c } .49479455(-2)\quad &\quad.18858910(-3)\quad&\quad.95963478(-5)\quad&\quad .26226044(-5)\quad&\quad .41723251(-6)\\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & \,400 \, & \begin{tabular}{ c c c c c} .49697235(-2)\quad&\quad .15079975(-4)\quad&\quad .66757202(-5)\quad&\quad .71525574(-6)\quad&\quad .47683716(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{7.0mm} & \,800 \, & \begin{tabular}{ c c c c c } %\hline % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ... .50188862(-2)\quad&\quad.91791153(-5)\quad&\quad.67353249(-5)\quad&\quad.77486038(-6)\quad&\quad .10728836(-5) \\ \end{tabular} \\ \setlength{\tabcolsep}{7.0mm} & \,1600 \, & \begin{tabular}{ c c c c c } %\hline % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ... .50241202(-2)\quad&\quad.81062317(-5)\quad&\quad.31590462(-5)\quad&\quad.71525574(-6)\quad&\quad .23841858(-6) \\ \end{tabular} \\ \cline {3-3} \hline \multirow{3}{*}{1.06} \setlength{\tabcolsep}{9.8 mm} & \,200 \, & \begin{tabular}{ c c c c c } .49364120(-2)\quad &\quad.29802322(-6)\quad&\quad.77486038(-6)\quad&\quad .11324883(-5)\quad&\quad .17881393(-6)\\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & \,400 \, & \begin{tabular}{ c c c c c} .49356222(-2)\quad&\quad .35762787(-6)\quad&\quad .77486036(-6)\quad&\quad .11324883(-5)\quad&\quad .17881393(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{7.0mm} & \,800 \, & \begin{tabular}{ c c c c c } %\hline % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ... .49356222(-2)\quad&\quad .35762787(-6)\quad&\quad .77486036(-6)\quad&\quad .11324883(-5)\quad&\quad .17881393(-6) \\ \end{tabular} \\ \cline {3-3} \hline \end{tabular} \end{table} \ \begin{table}[H] \caption{Maximum absolute errors with comparison to \cite{Pandey} (Problem 2).} \vskip.4em \setlength{\tabcolsep}{.10mm} \renewcommand{\arraystretch}{1.25} \begin{tabular}{|c|c|c|} \hline \multirow{2}{*}{} & {} & {Maximum absolute error } \\ \setlength{\tabcolsep}{9.8 mm} ${\,r_1=1.08\,}$ & {\,\emph{N}\,}& \begin{tabular}{c c c c } \hline % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ... ${\epsilon =1.0}$ \qquad &\,\quad \qquad ${\epsilon =10.0}$ \qquad &\quad \qquad ${\epsilon =100.0}$\quad & \quad\qquad ${\epsilon =1000.0}$ \\ %\hline \end{tabular} \\ \cline {3-3} \hline \multirow{3}{*}{} \setlength{\tabcolsep}{9.8 mm} & \,4 \, & \begin{tabular}{ c c c c } .21700012(-2)\quad&\quad.81062317(-5)\quad&\quad .23841858(-6)\quad&\qquad.00000000 \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & \,8 \, & \begin{tabular}{ c c c c } .75817108(-4)\quad&\quad.23841858(-6)\quad&\quad .23841858(-6)\quad&\quad.23841858(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & \,16 \, & \begin{tabular}{ c c c c } .95367432(-6)\quad&\quad.23841858(-6)\quad&\quad.23841858(-6)\quad&\quad .23841858(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} $method $ & \,32 \, & \begin{tabular}{ c c c c } .23841858(-6)\quad&\quad.23841858(-6)\quad&\quad .23841858(-6)\quad&\quad .23841858(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} (11) & \,64 \, & \begin{tabular}{ c c c c } .23841858(-6)\quad&\quad.23841858(-6)\quad&\quad .23841858(-6)\quad&\quad .23841858(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & \,128 \, & \begin{tabular}{ c c c c } .23841858(-6)\quad&\quad.23841858(-6)\quad&\quad .23841858(-6)\quad&\quad .23841858(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & \,256 \, & \begin{tabular}{ c c c c } .11920929(-5)\quad& \quad .11920929(-5)\quad&\quad.11920929(-5)\quad&\quad .11920929(-5) \\ \end{tabular} \\ \cline {3-3} \hline \multirow{3}{*}{} \setlength{\tabcolsep}{9.8 mm} & \,4 \, & \begin{tabular}{ c c c c } .24600029(-1)\quad&\quad.12617111(-2)\quad&\quad .23126602(-4)\quad&\quad.23841858(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & \,8 \, & \begin{tabular}{ c c c c } .60970783(-2)\quad&\quad.31232834(-3)\quad&\quad .52452087(-5)\quad&\quad.23841858(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & \,16 \, & \begin{tabular}{ c c c c } .14939308(-2)\quad&\quad.87022781(-4)\quad&\quad.23841858(-6)\quad&\quad .23841858(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} $ method \quad in\,$ & \,32 \, & \begin{tabular}{ c c c c } .53775311(-3)\quad&\quad.31709671(-4)\quad&\quad .23841858(-6)\quad&\quad .23841858(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} $\cite{Pandey}$ & \,64 \, & \begin{tabular}{ c c c c } .36931038(-3)\quad&\quad.18835068(-4)\quad&\quad .23841858(-6)\quad&\quad .23841858(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & \,128 \, & \begin{tabular}{ c c c c } .35333633(-3)\quad&\quad.19550323(-4)\quad&\quad .23841858(-6)\quad&\quad .23841858(-6) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & \,256 \, & \begin{tabular}{ c c c c } .35226345(-3)\quad& \quad.18119812(-4)\quad&\quad .23841858(-6)\quad&\quad .23841858(-6) \\ \end{tabular} \\ \cline {3-3} \hline \end{tabular} \end{table} \ \begin{table}[H] \caption{Maximum absolute errors with comparison to \cite{Pandey} (Problem 3).} \vskip.4em \setlength{\tabcolsep}{.10mm} \renewcommand{\arraystretch}{1.25} \begin{tabular}{|c|c|c|} \hline \multirow{2}{*}{} & {} & {Maximum absolute error } \\ \setlength{\tabcolsep}{9.8 mm} ${\,r_1=1.06\,}$ & ${\,\epsilon \,}$& \begin{tabular}{c c c c } \hline % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ... ${\emph{N}=100}$ \qquad &\,\quad \qquad ${ \emph{N}=500}$ \qquad & \qquad ${\emph{N}=1000}$\quad & \quad\qquad ${\emph{N}=1500}$ \\ %\hline \end{tabular} \\ \cline {3-3} \hline \multirow{3}{*}{} \setlength{\tabcolsep}{9.8 mm} &$ \,1.0 \,$ & \begin{tabular}{ c c c c } .32806396(-3)\quad&\quad.81896782(-4)\quad&\quad .8428968(-4)\quad&\quad .81658363(-4) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $ \,2^{-4} \,$ & \begin{tabular}{ c c c c } .97751617(-5)\quad&\quad.11980534(-4)\quad&\quad .11861324(-4)\quad&\quad.12099743(-4) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-6} \,$ & \begin{tabular}{ c c c c } .54240227(-5)\quad&\quad.56922436(-5)\quad&\quad .56624413(-5)\quad&\quad .54836273(-5) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-8} \,$ & \begin{tabular}{ c c c c } .14781952(-4)\quad&\quad.14960766(-4)\quad&\quad .14930964(-4)\quad&\quad .14662743(-4) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-10} \,$ & \begin{tabular}{ c c c c } .21040440(-4)\quad&\quad.20861626(-4)\quad&\quad .20891428(-4)\quad&\quad .20593405(-4) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} $method$ & $\,2^{-12} \,$ & \begin{tabular}{ c c c c } .29563904(-4)\quad&\quad.29027462(-4)\quad&\quad .28967857(-4)\quad&\quad .28938055(-4) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} (11) &$ \,2^{-14} \,$ & \begin{tabular}{ c c c c } .68480372(-1)\quad&\quad.65816164(-1)\quad&\quad .65812349(-1)\quad&\quad .65810800(-1) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} &$ \,2^{-16} \,$ & \begin{tabular}{ c c c c } .97610575(0)\quad&\quad.94299066(0)\quad&\quad .94299060(0)\quad&\quad .94299066(0) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-18} \,$ & \begin{tabular}{ c c c c } .27835369(-4)\quad&\quad.12516975(-5)\quad&\quad .26702881(-4)\quad&\quad .12516975(-5) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-20} \,$ & \begin{tabular}{ c c c c } .22050738(-3)\quad&\quad.11920929(-5)\quad&\quad .11920929(-5)\quad&\quad .11920929(-5) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-22} \,$ & \begin{tabular}{ c c c c } .26870966(-2)\quad&\quad.10728836(-5)\quad&\quad .10728836(-5)\quad&\quad .10728836(-5) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} &$ \,2^{-24} \,$ & \begin{tabular}{ c c c c } .48569411(-1)\quad&\quad.11920929(-5)\quad&\quad .11920929(-5)\quad&\quad .11920929(-5) \\ \end{tabular} \\ \cline {3-3} \hline \multirow{3}{*}{} \setlength{\tabcolsep}{9.8 mm} &$ \,1.0 \,$ & \begin{tabular}{ c c c c } .38763934(-2)\quad&\quad.33957958(-2)\quad&\quad .33957660(-2)\quad&\quad .33954034(-2) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $ \,2^{-4} \,$ & \begin{tabular}{ c c c c } .19446164(-2)\quad&\quad.19327551(-2)\quad&\quad .19329339(-2)\quad&\quad.19328594(-2) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-6} \,$ & \begin{tabular}{ c c c c } .11941493(-2)\quad&\quad.11839569(-2)\quad&\quad .11841953(-2)\quad&\quad .11840165(-2) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-8} \,$ & \begin{tabular}{ c c c c } .48494339(-3)\quad&\quad.48014522(-3)\quad&\quad .48032403(-3)\quad&\quad .48032403(-3) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-10} \,$ & \begin{tabular}{ c c c c } .43356419(-3)\quad&\quad.36138296(-3)\quad&\quad .36138296(-3)\quad&\quad .36132336(-3) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} $ method\quad in\,$ & $\,2^{-12} \,$ & \begin{tabular}{ c c c c } .49465895(-3)\quad&\quad.34594536(-3)\quad&\quad .34594536(-3)\quad&\quad .34594536(-3) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} $\cite{Pandey}$ &$ \,2^{-14} \,$ & \begin{tabular}{ c c c c } .67013502(-3)\quad&\quad.33903122(-3)\quad&\quad .33909082(-3)\quad&\quad .33909082(-3) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} &$ \,2^{-16} \,$ & \begin{tabular}{ c c c c } .11677146(-2)\quad&\quad.33509731(-3)\quad&\quad .33515692(-3)\quad&\quad .33521652(-3) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-18} \,$ & \begin{tabular}{ c c c c } .27157217(-2)\quad&\quad.33360720(-3)\quad&\quad .33360720(-3)\quad&\quad .33372641(-3) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-20} \,$ & \begin{tabular}{ c c c c } .79871528(-2)\quad&\quad.33271313(-3)\quad&\quad .33271313(-3)\quad&\quad .33271313(-3) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} & $\,2^{-22} \,$ & \begin{tabular}{ c c c c } .25293380(-1)\quad&\quad.33223629(-3)\quad&\quad .33217669(-3)\quad&\quad .33223629(-3) \\ \end{tabular} \\ \setlength{\tabcolsep}{9.8 mm} &$ \,2^{-24} \,$ & \begin{tabular}{ c c c c } .85839853(-1)\quad&\quad.33134222(-3)\quad&\quad .33128262(-3)\quad&\quad .33128262(-3) \\ \end{tabular} \\ \cline {3-3} \hline \end{tabular} \end{table} \ We have described a high order method for numerically solving two-point boundary value problems and several model problems considered to demonstrate the performance of the proposed method. Numerical result for examples 1 which is presented in table 1, for different values of $r_i$ show as $\epsilon $ decreases and $\emph{N} $ increases, for the non-uniform mesh size, maximum absolute error decreases but not substantial. The numerical results for examples 2, is maximum absolute error either decreases or remains same as there are change in \emph{N} but $\epsilon $ remains same. The results for examples 3, the maximum absolute error increases as $\epsilon $ decreases and \emph{N} increases. Over all method (11) is convergent and convergence of the method depends on choice of mesh ratio $ r_i$. The main advantage of the proposed high order method over method in \cite{Pandey} is its computational efficiency in considered model problems. %It is an advantage of the exponential finite difference method over existing method \cite{Mohan}. \section{ Conclusion} A new non-uniform mesh size high order method to find the numerical solution of two point boundary value problems has been developed. At each nodal point $x = x_i, i = 1, 2,....., N,$ we will obtain a system of algebraic equations given by (11). If the source function is f(x) then the system of equations from (11) is linear otherwise we will obtain nonlinear system of equations. It is obvious that special method required for some special problem where the solution is not regular and varies rapidly, so non-uniform mesh size method is natural choice. The new high order method produces good numerical approximate solutions for variety of model problems with non-uniform mesh i.e. $r_i\neq 1$. The numerical results of the model problems showed that the new high order method is computationally efficient. The rate of convergence of the present method is cubic. The idea presented in this article leads to the possibility to develop non-uniform mesh size difference methods to solve third order and fourth order boundary value problems in ordinary differential equations. Works in these directions are in progress. %\section{Bibliography} %\ack The author is grateful to the anonymous reviewers and editor for their valuable suggestions, which substantially improved the standard of the paper. \begin{thebibliography}{99} \bibitem{Ascher} Ascher, U., Mattheij, R. M. M. AND Russell, R. D., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, NJ (1988). \bibitem{Collatz} Collatz, L ., Numerical Treatment of Differential Equations (3/ed.). Springer Verlag, Berlin,(1966). \bibitem{Keller} Keller, H. B., Numerical Methods for Two Point Boundary Value Problems. Blaisdell Publ. Co.,New York, Waltham, Ma(1968). \bibitem{Stoer} Stoer, J. and Bulirsch , R., Introduction to Numerical Analysis (2/e). Springer-Verlag, Berlin Heidelberg (1991). \bibitem{Baxley} Baxley, J. V., Nonlinear Two Point Boundary Value Problems in Ordinary and Partial Differential Equations (Everrit, W.N. and Sleeman, B.D. Eds.), Springer-Verlag, New York (1981), 46-54. \bibitem{Roos} Roos, H.G., Stynes, M. and Tobiska, L., Numerical Methods for Singularly Perturbed Differential Equations. Springer, New York (1996). \bibitem{Hairer} Hairer, E., Nørsett, S. P. and Wanner, G., Solving Ordinary Differential Equations I Nonstiff Problems (Second Revised Edition). Springer-Verlag New York, Inc. New York, NY, USA (1993). \bibitem{Jain} M.K. Jain, Numerical Solution of Difierential Equations, Wiley Eastern Limited, New Delhi, (1984). \bibitem{Van}Van Niekerk, F.D., A nonlinear one step methods for initial value problems. Comp. Math. Appl. 13(1987), 367-371. \bibitem{Pandey-1} Pandey, P. K., Solving Two Point Boundary Value Problems for Ordinary Differential Equations Using Exponential Finite Difference Method. Bol. Soc. Paran. Mat. (2014), **-**. \bibitem{Pandey} Pandey, P. K. and Pandey B. D., Variable Mesh Size Exponential Finite Difference Method for the Numerical Solutions of Two Point Boundary Value Problems. Bol. Soc. Paran. Mat. (2014), **-**. \bibitem{Varga} Varga, R. S., Matrix Iterative Analysis, Second Revised and Expanded Edition. Springer-Verlag, Heidelberg, (2000). \bibitem{Golub}Golub, G. H. and Van Loan, C.F., Matrix Computations. John Hopkins University Press , Baltimore, USA (1989). \bibitem{Henrici} Henrici, P., Discrete Variable Methods in Ordinary Differential Equations. John Wiley and Sons, New York, (1962). \bibitem{Volkov} Volkov, Y. S. and Miroshnichenko, V. L. , Norm estimates for the inverses of matrices of monotone type and totally positive matrics. Siberian Mathematical Journal Vol. 50, No. 6,(2009), 982-987. \bibitem{Ahlberg} Ahlberg, J. H. and Nilson, E. N. , Convergence properties of the spline fit. J. SIAM, 11, No. 1, (1963), 95-104. \bibitem{Scott} Scott, M. R. and Watts, H. A., Computational solution of linear two point boundary value problems via orthonormalization. SIAM J. Numer. Anal. 14 (1977), 40-70. \bibitem{O'Riordan} O'Riordan, E. and Stynes, M., A uniformely accurate finite element method for a singularly perturbed one-dimensional reaction-diffusion problem. Math. Comput.,47 (1986), 555-570. \end{thebibliography} \end{document}