Ideally slowly oscillating sequences

Resumen

An ideal $I$ is a family of subsets of positive integers $\mathbb{N}$ which is closed under taking finite unions and subsets of its elements. In this paper, we introduce the notion of ideally slowly oscillating sequences, which is lying between ideal convergent and ideal quasi-Cauchy sequences, and study on ideally slowly oscillating continuous functions, and ideally slowly oscillating compactness.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Bipan Hazarika, Rajiv Gandhi University

Department of Mathematics

Assistant Professor

Citas

Y. Altin, M. Mursaleen and H. Altinok, Statistical summability (C, 1) for sequences of fuzzy real numbers and a Tauberian theorem, Jour. Intell. Fuzzy Systems, 21(6)(2010) 379-384.

D. Burton and J. Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly, 117(4)(2010), 328-333.

H.Çakalli, and B. Hazarika, Ideal-quasi-Cauchy sequences, Jour. Ineq. Appl., 2012(2012) pages 11, doi:10.1186/1029-242X-2012-234

H. Çakalli, N-ward continuity, Abstract and Applied Analysis, Vol 2012(2012) Article ID 680456, p-8, doi:10.1155/2012/680456.

H. Çakalli, H. Kaplan, A study on N-quasi Cauchy sequences, Abstract and Applied Analysis, Volume 2013 (2013), Article ID 836970, 4 pages, doi.org/10.1155/2013/836970

H. Çakalli, Forward continuity, J. Comput. Anal. Appl., 13(2)(2011), 225-230.

H. Çakalli, Statistical ward continuity, Appl. Math. Lett., 24(10)(2011), 1724-1728, doi:10.1016/j.aml.2011.04.029

H. Çakalli, Statistical-quasi-Cauchy sequences, Math. Comput. Modelling, 54(5-6)(2011), 1620-1624, doi: 10.1016/j.mcm.2011.04.037

H. Çakalli, Slowly oscillating continuity, Abstr. Appl. Anal. Hindawi Publ. Corp., New York, ISSN 1085-3375, Volume 2008, Article ID 485706, (2008), MR 2009b:26004

H. Çakalli, On G-continuity, Comput. Math. Appl., 61(2011), 313-318.

H. Çakalli, Delta quasi-Cauchy sequences, Math. Comput. Modelling, 53(2011), 397-401.

H. Çakalli, A study on ideal ward continuity, arXiv:1305.3227v1

H. Çakalli, A. Sönmez, and Ç. G. Aras, -statistically ward continuity, arXiv:1305.0697.

H. Çakalli, A. Sönmez, Slowly oscillating continuity in abstract metric spaces, Filomat, 27(5)(2013), 925-930.

H. Cakalli, I. Çanak, M. Dik, -quasi-slowly oscillating continuity, Appllied Mathematics and Computation, 216(2010), 2865-2868.

I. Çanak, Ü. Totur, A condition under which slow oscillation of a sequence follows from Cesáro summability of its generator sequence, Appllied Mathematics and Computation, 216(2010), 1618-1623.

I. Çanak, Ü. Totur, Some Tauberian conditions for Cesáro summability method, Mathematica Slovaca, 62(2)(2012), 271-280.

I. Çanak, Ü. Totur, Alternative proofs of some classical type Tauberian theorems for Cesáro summability of integrals, Mathematical and Computer Modelling, 55(3)(2012), 1558-1561.

I. Çanak, An extended Tauberian theorem for the (C, 1)-summability method, Applied Mathematics Letters, 21(1)(2008), 74-80.

J. Connor, K. G. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math., 33(1)(2003), 93-121. MR 2004e:26004

M. Dik and I. Canak, New Types of Continuities, Abstr. Appl. Anal., Volume 2010, Article ID 258980, (2010), doi:10.1155/2010/258980

H. Fast, Sur la convergence statistique, Colloq. Math., 2(1951), 241-244. MR 14:29c

J. A. Fridy, On statistical convergence, Analysis, 5(1985), 301-313 . MR 87b:40001

G.H. Hardy, Theorems relating to the summability and slowly oscillating series, Proc. London Math. Soc., 8(2)(1910) 310-320.

B. Hazarika, Lacunary difference ideal convergent sequence spaces of fuzzy numbers, Journal of Intelligent and Fuzzy Systems, 25(1)(2013), 157-166,DOI: 10.3233/IFS-2012-0622

B. Hazarika, On generalized difference ideal convergence in random 2-normed spaces, Filomat, 26(6) (2012), 1265-1274.

B. Hazarika, Ideal convergence in locally solid Riesz spaces, Filomat, 28(4)(2014), 797-809.

B. Hazarika, S.A. Mohiuddine, Ideal convergence of random variables, Jour. Func. Spaces Appl., Volume 2013, Article ID 148249, 7 pages, doi.org/10.1155/ 2013/148249

P. Kostyrko, T. Salát, and W. Wilczynski, I-convergence, Real Analysis Exchange, 26(2)(2000-2001),669-686.

F. Móricz, Ordinary convergence follows from statistical summability (C, 1) in the case of slowly decreasing or oscillating sequences, Colloq. Math., 99(2004) 207-219.

F. Móricz, Tauberian conditions, under which statistical convergence follows from statistical summability (C, 1), J. Math. Anal. Appl., 275 (2002) 277-287.

T. Salát, B. C. Tripathy and M. Zimon, On some properties of I-convergence, Tatra Mt. Math. Publ., 28(2004), 279-286.

M. Sleziak, I-continuity in topological spaces, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher Univesity Nitra, 6 (2003), 115-122.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.

B. C. Tripathy and B. Hazarika, I-monotonic and I-convergent sequences, Kyungpook Math. J., 51(2011), 233-239, DOI 10.5666-KMJ.2011.51.2.233

R.W. Vallin, Creating slowly oscillating sequences and slowly oscillating continuous functions, With an appendix by Vallin and Cakalli, Acta Math. Univ. Comenian(N.S.) 80(1)(2011), 71-78.

A. Zygmund, Trigonometric Series, CambridgeUniversity Press, Cambridge, UK, 2nd edition, 1979.

Publicado
2015-02-16
Sección
Articles